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Abstract
In their death throes, stars dole out their atmospheric material to the interstellar medium

in dramatic stellar winds and spectacular explosions. The details of this profound metamor-

phosis, from star to remnant, play a key role in the next generation of star formation as well

as the energetic and chemical evolution of galaxies and the universe as a whole. Dying stars

are thought to be the source of all of the nuclei heavier than iron in the universe, as well

as more complex molecules, such as carbon chains, which form the backbone of life as we

know it.

High mass Wolf-Rayet stars are likely progenitors of many types of Supernova, yet due

to observational constraints we lack the most basic information about most of them: rather

they are part of binary systems. This information is key to the determination of rather or not

these stars will go supernova, since depending on its nature the companion can either draw

mass off the Wolf-Rayet star, effectively quenching the march to explosion, or feed material

onto the Wolf-Rayet star, speeding its demise as a supernova. Models of galactic evolution

depend sensitively on the frequency of supernova for several reasons: they inject a great deal

of energy into the Interstellar medium, they are the only known producers of nuclei heavier

than nickel, and the shock waves that they create can stimulate star formation. In turn, the

energy generated by supernova explosions drives the galactic wind, the heavier elements

now present in the Interstellar Medium increase the efficiency of star formation, and the

groups of new stars formed in the wake of a shock are thought to lead to the development

of spiral arms in galaxies. In addition, because high mass stars are so short-lived, they can

cycle through hundreds of generations in the time it takes one solar-type star’s to evolve.
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Though intermediate mass stars merely fizzle out in comparison, they are pivotal to

the evolution of the universe because they make up over 97% of the stars that have had

enough time to evolve off the Main Sequence since the Big Bang. These stars produce

more than half of the carbon in the universe as well as much of the nitrogen, oxygen, and

more complex molecules such as aromatic rings of carbon. This process, often referred to

as chemical enrichment, strongly affects the star formation rates and the characteristics of

the next generation of stars.

In this work, we explore the contributions of these two classes of stars to our own

galaxy: we quantify the nature of the chemical enrichment to the Milky Way from a large

sample of intermediate mass stars, and determine the binary status of a sample of Wolf-

Rayet stars in the Milky Way.
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Chapter 1

Introduction

The brief yet enigmatic transition a dying star makes from glowing ball of gas to diffuse

nebulae of stardust has long puzzled astronomers. During this phase, the circumstellar ma-

terial can transforms the symmetry of its distribution, its chemistry and its ionization state.

These changes reflect the complex interplay between dust formation on the micro scale

and nebular shaping on the macro scale. Armed with our knowledge of the basic physics

involved, researchers have developed models that allow us to leverage laboratory data to

better understand this interplay. This thesis work marries observational data to these mod-

els to investigate the physical and chemical processes that shape and transform the nebula

during this epoch. Specifically, we use observational data on two types of dying stars to

identify the shaping agents present in the transition from star to nebula and characterize the

dust formation processes which take place in these circumstellar environments, which are

among the universe’s most important incubators of celestial dust and complex molecules,

including the organic molecules that are the basis for life as we know it. In the first project,

discussed in Chapters Two and Three, I present my investigation (carried out with several

collaborators) of intermediate mass stars during their transition to Planetary Nebula, with a

particular focus on the chemical evolution of the dust and a phenomenon called “dual dust

chemistry” with its apparent connection to the morphology of the newly formed nebula.

1



These two chapters will be submitted for publication this month (June 2013). For the sec-

ond project, described in Chapter Four, my co-authors and I investigated the binary status of

a sample of extremely massive dying stars called Wolf-Rayet stars, work which has impli-

cations for our understanding of the role that binarity plays in the formation and evolution

of these stars. This chapter has been submitted for publication and is currently in revisions.

Before I discuss the manner of their ultimate demise, I’ll give an abbreviated summary

of the lives of these stars. The path a star follows in its lifetime is determined primarily by

its initial mass, which astronomers call the Zero Age Main Sequence (ZAMS) Mass. High-

mass stars (MZAMS > 8M�) live a rock ’n’ roll lifestyle, burning brightly but dying young

and dramatically as supernovae. In contrast, intermediate-mass stars (0.8M� > MZAMS >

8M�) burn slowly, plodding along their evolutionary tracks for billions of years before

dispersing their outer layers into space and fading from view as cooling embers, better

known as white dwarfs. After I’ve summarized the evolutionary paths of each class of star,

I’ll give a synopsis of the most relevant literature on the phases studied here, where the

stars are releasing their material back into space on their march towards oblivion. Finally,

I’ll describe the work presented here and it’s implications for our understanding of expiring

stars.

1.1 Intermediate-Mass Stars: Future Planetary Nebulae

Intermediate-mass stars are those with an initial (zero age main sequence, or ZAMS)

mass of 0.8M� − 8M� (approximately; this range depends on metallicity, among other

things). These stars spend most of their lives (roughly 109 years or more than 85% of their

lifetimes; Blöcker 1995) converting hydrogen to helium on the main sequence. Once the

core hydrogen is spent, and thus the outward pressure due to fusion ceases, gravity causes

the core to contract to the point that the material around the (at this point inert) helium

core is dense and hot enough to start to fuse hydrogen in a shell around the core, initiating

2



the giant phase. Due to the contraction of the core, more hydrogen is made available for

fusion and the extra outward pressure caused by this extra energy generation causes the

outer layers to puff up (but cool because they are now farther from the energy source).

The core continues to contract until reaches the critical temperature (108 K) required for

helium begin to fuse into carbon in the core via the triple-alpha process (in a secondary

reaction, oxygen is created from the fusion of carbon and helium via the alpha process),

while hydrogen burning continues in a surrounding shell in a phase we call the horizontal

giant branch.

When the core helium is exhausted, the core contracts once again, resulting in a de-

generate C/O core surrounded by helium- and hydrogen-burning shells. This increases the

energy output from the central fusion zone, which causes the outer layers to again expand.

This phase is called the AGB; the star burns hydrogen and helium in shells surrounding

the spent C/O core. The helium burning is thermally unstable, and thus periodic runaway

fusion reactions produce thermal pulses called helium flashes (this phase is called the Ther-

mal Pulse AGB), where the helium ignites but quickly burns all the available fuel. During

the AGB phase, there is a slow, dense and sometimes erratic stream of material leaving

the star called the AGB wind. This wind has epochs of density enhancement due to the

thermal pulsations described above, which could account for the appearance of shells in the

structure of the circumstellar material.

As the mass loss process continues, the thick cloud of dust and gas it creates can obscure

the star itself in visible wavelengths (Garcı́a-Lario 2006). Eventually, the central star will

have lost most of its mass (model predictions range from 70-85% of the initial mass for a

MZAMS = 4M� star; Stanghellini & Renzini 2000). This depletion of the stellar envelope

will eventually lead the slow, dense AGB wind to cease. The mass loss rate thus drops by

an order of magnitude and the material expelled by the AGB wind drifts away and becomes

a detached shell of material (van der Veen et al. 1989); this marks the beginning of the

post-AGB phase (Kwok 1993).
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Though we can conjecture about what happens next, observations are often difficult

due to the significant reddening and/or obscuration of the central star. This obscuration

is problematic because it introduces observational bias. Stars that have massive, optically

thick dust clouds can be more difficult to find in optical/NIR surveys since there may only

be emission from reflected starlight, while most can be easily found in mid-IR surveys due

to thermal emission from the dust.

Post-AGB stars observed in the infrared with IRAS apparently fit into an evolutionary

sequence with the effective temperatures (TEFF ) steadily increasing until the star is hot

enough to ionize its envelope (spectral types marching from K, G, F, A to B; ionization

begins at roughly TEFF > 25, 000 K; Balick & Frank 2002). Near the end of this pro-

gression, when the central star is a spectral type A or B, the star enters the transition from

post-AGB to young planetary nebula. This transition lasts mere thousands of years. Once

the star gets hot enough to ionize its envelope, the planetary nebula (PN) phase commences.

The ionized material is optically thin, so for the obscured cases, the central star re-emerges

in visible wavelengths once the ionization front has traveled sufficiently far out into the en-

velope. Morphologies of these young PNe are diverse: bipolar, elliptical, point-symmetric

and spherical (Balick & Frank 2002).

1.1.1 Why So Square?

One of the unsolved mysteries of planetary nebulae is how they are shaped. They exhibit

a dazzling array of symmetries and sizes; so much so that it seems unlikely one process

could account for them all. Magnetic fields, rotation, binary interactions, and inherently

asymmetric winds have all been proposed as shaping mechanisms (Owocki et al. 1996;

Blackman et al. 2001; De Marco 2009; Meixner et al. 1997, respectively).

For the most part, giant stars appear to be spherically symmetric. Though few AGB

stars have been spatially resolved, they were traditionally assumed to have spherically sym-

metric mass loss as well. We now know, however, that many AGB stars have non-spherical
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outflows. A seminal Hubble survey that imaged the stars thought to be in the phase im-

mediately following the AGB found a high incidence of at least axisymmetry (Ueta et al.

2000). Most planetary nebulae also show departures from spherical symmetry (Balick &

Frank 2002). The time of onset of and the triggering mechanisms for these asymmetries are

still not understood.

1.1.2 Dust Chemistry

During the AGB phase, stars shed most of their outer envelope in a dense circumstellar

wind. This wind contains products of nucleosynthesis from earlier phases, particularly

helium, carbon and oxygen. These winds are typically characterized as having a carbon-

or oxygen-rich chemistry. Helium flashes that happen during the AGB phase can cause the

convection zone to reach all the way down to the helium-burning shell, carrying up material

enhanced with 12C. If this process is efficient enough (but the competing mechanism called

Hot Bottom Burning is not; Karakas 2010), the carbon will tie up all of the oxygen in CO,

leaving only C to form other molecules. This creates a carbon-rich environment. Otherwise,

oxygen dominates the chemistry in the circumstellar environment. Whether a star has an

oxygen- or carbon-rich environment is tied closely to its initial mass; only the subset of stars

with a mass of (roughly) 1.5 − 4M� typically become carbon-rich (Karakas & Lattanzio

2007).

The value of this C/O ratio dramatically affects the asteromineralogical and perhaps

even morphological characteristics of the circumstellar envelope in the AGB phase and

beyond. During the post-AGB phase, carbon-rich dust species are much more optically

thick, thus affecting everything from the efficiency with which radiation pressure drives

the winds to how much of the envelope is shielded from stellar radiation. This shielding

could allow for the formation of more complex molecules or larger dust grains. A small

minority of AGB stars called dual chemistry objects show evidence of both carbon and

oxygen species in their dust, a phenomenon which has yet to be understood (Szczerba et
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al. 2007). The incidence of this so-called dual chemistry is much higher in post-AGB

stars, however, and in these cases the phenomenon could be indicative of either an O-

rich environment preserved in outflows (Zijlstra et al. 1991), or in a stable, dusty structure

(potentially a circum-stellar disk around the post-AGB star or a binary companion, or a

circum-binary disk) while the mass loss from the central star transformed to C-rich (Zijlstra

et al. 1991; Waters et al. 1998; Molster et al. 1999). Alternatively, the photo-dissociation

of CO by a hot central star could create a non-equilibrium state where limited amount of

C is available in an O-rich envelope (Guzman-Ramirez et al. 2011; Guzmán-Ramı́rez et al.

2012).

1.1.3 Post-AGB Stars: Previous Work

A number of photometric and spectroscopic studies have been undertaken to iden-

tify potential post-AGB sources. Photometric identifications for proto planetary nebulae

(PPNe), such as those developed on the basis of IRAS colors (van der Veen & Habing

1988) greatly expanded the number of candidate post-AGB objects. Newer studies have

applied photometric selection criteria to stars in our own galaxy (Ramos-Larios et al. 2009)

and the LMC and SMC (van Aarle et al. 2011). Spectral surveys, such as the one carried

out by Suárez et al. (2006) have further refined our understanding of the optical properties

of post-AGB stars as a class. Spectral surveys of O-rich PPNs with ISO revealed crys-

talline silicates (Molster et al. 2002b) while surveys of C-rich spectra revealed features at

21 and 30µm and unidentified infrared emission features at 3.3, 6.2, 7.7 and 11.3 µm now

commonly associated with PAHs (Hrivnak et al. 2000). The Toruń catalogue of Galac-

tic post-AGB and related objects currently contains 326 likely post-AGBs (Szczerba et al.

2007).

Imaging surveys of PPNe undertaken with the ground-based IR cameras (MIRAC2 &

Berkcam) and the Hubble Space Telescope revealed elongation in all of the detected and

resolved reflection nebulae (Meixner et al. 1999; Ueta et al. 2000). Furthermore, those sur-
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veys and subsequent work (Ueta et al. 2005; Siódmiak et al. 2008; Lagadec et al. 2011)

confirmed the existence of two distinct classes of proto-planetary nebulae: SOLE-Toroidal

(star-obvious low-level-elongated) nebulae, which do not totally obscure the central star,

tend to have elliptical morphology and have low surface brightness nebulosity, and DU-

PLEX Core-Elliptical (dust-prominent longitudinally extended) nebulae, which have dense,

optically thick dust waists that completely or partially obscure the central star and often ex-

hibit dramatic bipolar morphologies. These classes are not merely distinguished by the

viewing angle alone; they have been found to represent distinct morphological classes with

differing optical thicknesses in the circumstellar shell. This difference may correlate with

progenitor mass, with DUPLEX nebulae forming from high-mass progenitor AGBs while

SOLE nebulae form from intermediate-mass progenitors. Meixner et al. (2002) suggested

that the enhanced mass loss that forms the dusty waists in the DUPLEX nebulae is enabled

by a binary companion.

Several mechanisms have been proposed to explain the shaping of planetary nebulae,

most of which fall into three broad categories: magnetic fields, rotation, and binary inter-

actions. The diversity of shapes and sizes in planetary nebula seems to indicate that more

than one shaping mechanism is responsible, and indeed, many current theories on the for-

mation of individual nebulae involve a combination of shaping agents. In broad terms, the

close-in magnetic fields and rotation can shape the nebula by creating inherently asymmet-

ric winds, thus creating equatorially enhanced outflows that lead to the formation of dusty

waists or collimated polar outflows. Large-scale magnetic fields can shape the envelope at

later stages (Sabin et al. 2007). However, models that generate jets, collimated outflows

and circum-stellar (or circum-binary) disks can also be constructed on the basis of binary

interactions (De Marco 2009). There is presently no consensus on this issue; for more on

each of these models and the question of nebular shaping, see the excellent review by Balick

& Frank (2002).
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1.1.4 This work

In this work I present the results of one of the largest, most comprehensive space-based

surveys of post-AGB stars to date. The survey was carried out on the world’s most sensitive

near- and mid- infrared space telescope with a sample that is ten times larger than the typical

post-AGB study. This unique data set has allowed my co-authors and I to shine new light

on a subject that has in the past been plagued by small number statistics.

To address the question of shaping, it is imperative that researchers determine the first

incidence (in an evolutionary sense) of asymmetry in these objects. In this work, my co-

authors and I assess the symmetry of the circumstellar material in a sample of late stage

post-AGB stars, both through direct imaging and a detailed analysis of the characteristics

of the circumstellar dust species. In particular, we model the Spectral Energy Distribution of

the dust to look for the signature of a circumstellar waist structure. Additionally, in the later

planetary nebula phase, the occurrence of so-called “dual chemistry” in the circumstellar

dust appears to be phenomenologically related to the presence of a dense, circumstellar

waist (Guzman-Ramirez et al. 2011). In this work, we test that hypothesis for the late-

stage post-AGB phase. In addition, several observational signatures have been proposed

as indicators of evolutionary status in post-AGB stars. We have collected these proposed

signatures and searched for correlations among them to test their veracity as evolutionary

clocks. This analysis is the first of its type, as previous studies have typically included fewer

than ten sources.

For this work, I’ve grouped together observations proposed for by my collaborators

in separate programs to form a sample of targets that span the entire temporal sequence

from star to nebula (Fazio et al. 2006, 2007, 2008; currently available in the IPAC Spitzer

archive1). The three observational programs were targeted at slightly different epochs of the

transition from star to nebula: post-AGB stars (26 stars; Program ID 50116), young PNe
1http://irsa.ipac.caltech.edu/data/SPITZER/docs/spitzerdataarchives/
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(36 targets called “transition objects” in the proposal; Program ID 30036), and planetary

nebulae (18 sources; Program ID 40115). Each of these is discussed in more detail below.

My co-authors and I designed the post-AGB sample to select stars that are nearing or

have just passed the end of the post-AGB phase, that is, stars that are on the brink of or

have just begun ionizing their envelopes. To find such stars, my collaborators started with

targets that were characterized as post-AGB candidates based on their IRAS colors (Suárez

et al. 2006) and then further constrained them to have a central star of spectral type A and

a far-IR excess typical of PNe dust emission (Parthasarathy et al. 2000). The spectral type

condition should limit the sample to objects with very hot central stars, which should be

those that are at the very end of the post-AGB phase. Type A stars should not generally be

hot enough to ionize surrounding material.

To isolate true young PNe (“transition objects”), i.e. stars that have just begun to ion-

ize their circumstellar envelopes, my collaborators chose a sample of post-AGB candidate

(again selected based on IRAS colors and infrared excess) with slightly hotter spectral type

B central stars were chosen. These stars should be very nearly hot enough to emit ioniz-

ing radiation. As an independent measure of ionization, my collaborators also observed

these sources with the radio interferometer called the Very Large Array; 16 of the 36 were

detected, confirming the presence of ionized gas (Umana et al. 2004; Cerrigone et al. 2008).

The planetary nebulae chosen by my co-authors all have H-deficient central stars of late,

carbon-rich Wolf-Rayet spectral type ([WC 8–12]). These PNe may also have in common a

peculiar spectroscopic property: simultaneous evidence for both oxygen-based crystalline

silicates and carbon-based PAHs in their dust. A correlation between PNe with [WC] central

stars has been well established (Cohen et al. 2002), but the physics responsible for this

relationship is still debated (Perea-Calderón et al. 2009).
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Observations

The intermediate-mass star sample I’ve compiled comprises 70 targets in total that were

observed with Spitzer Space Telescope. All have infrared spectra covering 5–40 µm and

images centered at 3.6, 4.5, 5.8 and 8 µm . Additionally, I was awarded six half-nights on

the Magellan 6 m telescopes, some of the planet’s largest ground-based telescopes, located

at La Silla Observatory in Chile, to get follow-up data (near-infrared spectra and images).

The IRAC and PANIC imaging revealed extended emission around a few post-AGBs,

the results of which I will discuss in Chapter Three. In addition, I extracted photometry for

all of the sources. I used these photometric points, with the addition of archival photometry,

to model the Spectral Energy Distributions (SEDs) of these sources.

As seen in the infrared, carbon-rich sources show emission in the aromatic infrared

bands (AIBs) commonly attributed to polycyclic aromatic hydrocarbons (PAHs) at 3.3, 6.2,

7.7, 8.6 and 11.3 µm (Hrivnak et al. 2007), as well as an SiC feature at 11.3 µm (Speck et al.

2009) and in some cases a mysterious feature at 21 µm (Cerrigone et al. 2011). Oxygen-

rich sources have silicate features at ∼10-18 µm and ∼24-33 µm and show evidence for

water ice (Dijkstra et al. 2006).

Interestingly, Cerrigone et al. (2009) found that approximately 40% of the transition

object sample were dual-chemistry objects (showing evidence for both silicates and PAHs),

a striking contrast to the global occurrence of ∼ 10% among PNe. The authors noted

that this might be due to a selection effect, in particular the choice of objects with a far-

IR excess which may be indicative of the presence of a disk. Additionally, 70% of those

dual-chemistry objects were radio-detected in free-free emission, hinting at a potential cor-

relation between photo-dissociation and the dual-chemistry phenomenon. Modeling of the

PAH features resulted in the conclusion that the PAH molecules are located in the out-

flows, far from the central star. While the transition objects appear to have a 40% incidence

of dual-chemistry objects, the nominally younger post-AGB sample had only 20% of the
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objects displaying dual-chemistry characteristics. This reinforces the idea that dual dust

chemistry may be associated with photo-dissociation rather than spatially segregated dust

structures. This will be discussed in greater detail in Chapter Two.

The IRS spectra for 67 of the proposed sources has revealed the following breakdown

in the sample (three objects that had failed observations): 14 O-rich post-AGBs, 10 C-rich

post-AGBs, 20 Mixed Chemistry post-AGBs, 10 Young PNe, 5 mature PNe, and 8 sources

that were misidentified (LBVs, YSOs). In all of the post-AGB sources, more than one

dust emitting component is necessary to fit the SED, with dust temperatures ranging from

100-1000 K.

I will present the resulting spectra and spectral analysis in Chapter Two, and the imaging

and analysis of the Spectral Energy Distribution are presented in Chapter Three.

1.2 High-Mass Stars: Future Supernovae

Stars that are born with more than 8M� of initial mass evolve quickly along the main

sequence, where they convert most of their core hydrogen to helium on the order of 106

years via the CNO cycle (hydrogen fusing to helium using carbon, nitrogen, and oxygen

as catalysts). Once the core hydrogen is exhausted, the star leaves the main sequence,

the outer layers expand and the star becomes a giant and then supergiant. During these

phases, nuclear fusion via the alpha process (helium fusing with carbon to make oxygen,

then helium fusing with oxygen to make Ne, and so on to produce all the alpha elements)

happens first in the core, and once the fuel is exhausted there, the burning migrates outward

into shell burning, resulting in concentric shells of nuclear fusion. In these massive stars,

this nuclear fusion ladder can create nuclei as heavy as 56Fe (plus 56Ni that decays to 56Co

then 56Fe) in the core. The supergiant phase lasts even less time; for the most massive stars,

only 105 years. Once the core material has been converted to Ni and Fe, it becomes inert

and there is no further exothermic fusion reaction that can produce the energy necessary
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to stave off gravitational collapse. When the pull of gravity overwhelms the core, it will

collapse to become a white dwarf supported by electron degeneracy. When (and if) the

degenerate core grows to reach the Chandrasekhar limit of 1.4M�, the star will implode

and meet its demise as a supernova.

The particular high-mass stars studied in this work are called Wolf-Rayet stars, which

are thought to have evolved from the most massive supergiants (MZAMS > 8M�) (Crowther

2007). These stars exhibit high mass loss (10−5 to 10−4M� per year), and are thought to

be the stellar progenitors of Type Ibc and some Type II supernova. The winds coming off

these stars are so dense that the stellar surface continuum is almost completely obscured.

As a result, their spectra are dominated by broad emission lines (±3000 km/s) and very

few (if any) lines of absorption. The spectra are also unique in their lack of hydrogen lines.

Wolf-Rayet spectra are instead dominated by helium, with highly ionized carbon, nitrogen

and oxygen lines. These are all thought to be core material, and are not normally observed

on the surface of stars (Crowther 2007). The role that mass loss plays in the evolution of

these stars is poorly known, as are the exact mechanisms of the loss. Many Wolf-Rayet stars

are components in systems of interacting binaries. The unusually large amounts of hot gas

streaming off these stars makes the detection of actual mass exchange dynamics possible,

and also provides an opportunity to watch binary interactions and the resulting feedback

happen on a shorter time scale.

The anomalous lack of hydrogen in the spectra of Wolf-Rayet stars has led some to

hypothesize that they were originally more massive stars (Of stars, red supergiants or lumi-

nous blue variables), but their binary companions have stripped them of their outer layers

via Roche-lobe overflow (RLOF). This would result in the core of the star being exposed,

and could explain the presence of core material on the surface (Crowther 2007). The per-

centage of WR stars that form via RLOF is unknown, but theory predicts as many as 19% of

WRs in the Milky Way (Bartzakos et al. 2001) have formed this way. Thus far, researchers

have found evidence for binary companions in 40% of galactic WR stars (van der Hucht
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2001), but the spectroscopic and photometric methods used to detect binary companions

(and even planets) in other types of stars do not work well for Wolf-Rayet stars due to their

peculiarities, so the theory that all WR stars are the result of binary interactions cannot be

ruled out.

This work presents the first attempt to apply a promising new technique to test this

binary formation scenario: near infrared interferometry. This technique is potentially the

best tool that we have to answer this question because an interferometer samples the spatial

frequencies of the on-sky brightness distribution, thus enabling us to easily distinguish the

signal variation due to a binary companion from variations due to intrinsic variability of the

star. This study is the first attempt to answer the WR binary question because the Palomar

Testbed Interferometer (PTI) that we used was among the first such instruments that were

sensitive enough to detect any Wolf-Rayet stars at all. Though this work is the first attempt

to resolve previously undiscovered companions of WR stars, studies of this type have spa-

tially resolved known spectroscopic WR binaries for the first time, enabling us to constrain

orbital parameters and approximate distance measurements: using the IOTA3 Interferom-

eter, researchers were able to resolve the binary system of WR 140 (Monnier et al. 2004).

Using a mask on a single telescope, the technique that is a precursor to the use of modern

multi-telescope near infrared interferometers, a group was able to model the pinwheel neb-

ula surrounding (known binary) WR 104 (Monnier et al. 1999) with Keck I, while similar

structure was mapped around (known binary) WR 98a (Tuthill et al. 1999), and Allen et al.

(1981) were able measure the extent of the dust shells around two Wolf-Rayet stars. The

increased sensitivity and order-of-magnitude improvement in angular resolution offered by

interferometric telescope arrays such as PTI have finally made interferometry a viable tech-

nique for studying more than just the few brightest WR stars.

13



1.2.1 Wolf-Rayet Stars: Previous Work

As the chemically evolved progeny of massive O-type stars, WR stars are characterized

by heavy mass loss. These stars are flinging their outer envelopes away into space at thou-

sands of kilometers per second, resulting in a mass loss of 10−5−10−4M� per year, which

can form nebulae around the central stars that are tens to hundreds of stellar radii in extent.

The spectra of these stars are similar to massive O-type stars, but anomalous for their

lack of hydrogen absorption lines. Instead, we see emission lines from material that results

from nuclear CNO burning. These bright, broad emission lines from the strong stellar

winds dominate the spectra. Subtypes WN and WC are defined by the appearance of optical

emission lines from He, C, N and O ions. In WN (nitrogen) spectra He I-II and N III-V lines

dominate, and in WC (carbon) spectra C II-IV, He I-II and O III-IV lines dominate. For an

excellent review of the properties of Wolf-Rayet stars, see van der Hucht (1992).

The energy distribution of WRs exhibits a prominent excess in the infrared due to the

absorption and re-emission of most of the stellar radiation by the circumstellar envelope.

This energy is primarily re-radiated in continuum free-free emission (Hackwell et al. 1974).

Some dusty WR stars exhibit periodic or episodic variability in the infrared, indicative of

dust formation events (Williams, 1987). Late WC stars also exhibit thermal dust emission

lines (Allen et al. 1972). This infrared excess and the bright, compact central sources make

these objects ideal for investigations of binary status with near-infrared interferometers.

1.2.2 This Work

The unusual characteristics of Wolf-Rayet stars has led some to speculate that all WR

stars are in multiple systems (van der Hucht 2001). In this scenario, the companion is re-

sponsible for stripping away the outer layers of the star. Unambiguous detections of binary

companions in these stars are rare because of the high levels of intrinsic variability in both

the photometric data and the spectra. Detecting shifts in the emission line is complicated
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by extreme broadening due to high velocities in the winds. In addition the dust seems

to form sporadically and non-isotropically, so that infrared lines are also subject to a great

deal of intrinsic variation. Fortunately, thanks to advances in observational instrumentation,

near-infrared interferometers have gained the sensitivity necessary to observe some of these

sources. This technique holds great promise because the signature of intrinsic stellar vari-

ability is easily distinguished from the signature produced by a binary companion. In this

work, we present one of the earliest attempts to apply this newly developed instrumentation

to a sample Wolf-Rayet stars with the aim of unambiguously determining the binarity of the

brightest observable WRs. In doing so, we establish interferometry as a superior technique

for future determinations of WR binarity.

Using the Palomar Testbed Interferometer, we attempted to observe every Wolf-Rayet

star that was bright enough to possibly produce fringes in the best seeing conditions. These

stars were WR 121, 134, 136, 137, 139 and 140. In addition, we supplemented our data

with some archival data from the Keck Interferometer shared risk time. We pulled archival

observations for WR 134, 135, 136, 137, 140 and 148. These were valuable to us as the

Keck interferometer has a different orientation and baseline from PTI, and thus provided

slightly better coverage of the Fourier transform space corresponding to the intensity dis-

tribution on the sky, called the UV plane. We were lucky enough to catch WR 121 in an

unusual outburst that conveniently increased its brightness significantly; we propose this

was a dust creation event of the type that has been proposed for other WR stars. Unfortu-

nately, we were the only group monitoring the star at that time, so the data we have on the

outburst are limited. Nonetheless, we were able to constrain the size of the circumstellar

envelope and report that the star is likely single, despite its dramatic variability that in other

sources has been tied to stellar wind interactions in a wind collision region (e.g. WR 140;

Dougherty et al. 2005).

The seeing requirements for these sources was stringent and the data on these stars

ended up being more sparse than we had hoped. Wolf-Rayet stars are known to be vari-
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able in the near infrared and likely have complex dust distributions (such as the pinwheel

nebulae mentioned above), and the scarce UV plane coverage limited our ability to dis-

tinguish between binarity and these complexities. Despite these limitations, we were able

to constrain binarity for most of the sources and provide estimates of their angular extent,

which demonstrates the power of our method and will provide critical proof of concept for

observations proposed using the next generation of interferometers. In Chapter Four, we

describe this work and the conclusions we were able to draw from the observations.

1.3 Conclusions

The results of two research projects are presented here. The first is one of the largest,

most comprehensive space-based surveys of post-AGB stars to date. The survey was car-

ried out on the world’s most sensitive near- and mid- infrared space telescope with a sample

that is ten times larger than the typical post-AGB study. As I discuss in Chapters Two and

Three, we have found that the majority of late-stage post-AGBs in our sample appear to

harbor a reservoir of dust near the star, likely in the form of a dusty waist or disk, where

the dust grains coagulate and are processed by radiation from the central star. These objects

also seem to have at least two distinct dust components which are either spatially segre-

gated (such as in an outflow and a disk) or that are merely distinguished by their exposure

to radiation from the central source (e.g., if a dusty waist shields radiation from part of the

outflow). These results have important implications for our understanding of both the neb-

ular shaping mechanisms taking place around these stars and the nature of the stardust that

these stars provide in feedback to the interstellar medium.

The second project, described in Chapter Four, employed a novel technique to asses

the binary status of a sample of extremely massive Wolf-Rayet stars. Though the study

was plagued by the limited sampling typical of such pioneering studies, we were able to

ascertain the presence (or lack thereof) of binary companions in most of our targets, and
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critically determined that at least some WR stars are not currently binaries, a conclusion

that has important implications for our understanding of how WR stars are formed.

Finally, I will sum up the conclusions of this research and outline how this data could

be used in future work.
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Chapter 2

A Spitzer Spectroscopic Survey of

post-AGB stars

The final bursts of nuclear fusion in intermediate mass stars (0.8–8M�) on the asymp-

totic giant branch (AGB) result in episodes of enhanced mass loss. As this material drifts

outward and cools, a dense, rich circumstellar environment is created that is ripe for the

growth of myriad molecular species (see Olofsson 2008) and the condensation of circum-

stellar dust grains (Murakawa et al. 2010). Among the diverse molecular and dust species

observed in these environments are crystalline silicates (Molster et al. 2002a), polycyclic

aromatic hydrocarbons (PAHs, e.g. Tielens 2008), Silicon Carbide (SiC; e.g. De Marco

2009), and C60 “bucky balls” (Cami et al. 2010; Kwok & Zhang 2011). These molecular

factories and the nuclear fusion that fuels them are the driving engine behind the chemical

enrichment of the interstellar medium, which feeds and shapes the next generation of stars

and planets.

Post-AGB objects are those caught just after the AGB phase, in the rapid (≈ 103–104

year-long) transition from AGB star to planetary nebula (PN; e.g. Kwok 1993, van Winckel

2003). Commencing at the terminus of heavy AGB mass loss, the post-AGB phase is

characterized by the presence of a cool, dense circumstellar cloud of gas and dust drifting
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away from a quiescent central star that is slowly heating up as it contracts. If the central

star becomes hot enough before the circumstellar material disperses, it will photodissociate

and later photoionize some or all of this circumstellar material. Thus, objects on the post-

AGB form a nominal evolutionary sequence from K to G, F, A and eventually OB. For the

purpose of this paper, we define our terms in the following way: after the end of heavy AGB

mass loss, the star is a post-AGB star. Once the central star reaches ionizing temperatures,

we call the object a young planetary nebula (YPN).

Planetary Nebulae (PNe) display a dazzling variety of shapes and sizes, and the question

of how these shapes and sizes are determined has been the subject of decades worth of

investigation. The subject is still hotly debated, but the emerging understanding is that

binary companions (even substellar companions) may play a significant role (Nordhaus

et al. 2010; for an excellent review, see De Marco 2009). In particular, a companion may

shape or focus mass loss, leading to the formation of a dusty Keplerian disk orbiting the

star or a dusty “waist” (equatorial density enhancement) in the outflows. At the heart of

this debate are the critical early stages of nebular shaping that take place on the post-AGB,

when an actor as small as a planet can establish initial conditions that can lead to subsequent

large-scale shaping.

As the central star evolves, the chemical characteristics of the circumstellar environ-

ment, namely the C/O ratio, can change. This change is thought to be the result of a third

dredge up in the absence of efficient hot bottom burning that takes place in only a subset

of the AGB mass range (approximately 1.5–4M�, depending on metallicity; see Karakas

et al. (2002) for further discussion). In these environments, CO will form first, leaving only

the more abundant of C or O to form other molecules. Thus, the chemistry of the molecules

that form around these stars in the later post-AGB phase can be classified in two broad

categories: carbon-rich and oxygen-rich. This picture, however, is over simplified: in fact,

many post-AGB sources show evidence for both carbon- and oxygen-containing molecules

(Cerrigone et al. 2009). Many hypotheses have been proposed to explain this, including
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the preservation of O-rich material in a disk while the remainder of the environment be-

comes C-rich, or the photodissociation of CO making some limited O available to form

other molecules.
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In this chapter, we explore the chemical evolution of post-AGB stars as they evolve

to PN. This sample represents the largest of its type, enabling us to use the evolutionary

maturity of these objects as a baseline to explore how these stars and their circumstellar

environment evolve during the PPN phase. Specifically, we use infrared spectroscopy to

trace changes in infrared emission features such as PAHs and silicates through the evolu-

tion process. Table 2.1 lists some of these potential evolutionary indicators. Because we

have detailed knowledge of the conditions (densities, abundances and timescales) neces-

sary to foster the growth and destruction of these dust particles, placing their positions on

an evolutionary track can help us to understand the mechanisms driving the evolution of the

circumstellar envelope. This analysis will help us to determine rather the warm and hot dust

observed around these stars is contained in a stable circumstellar structure or if it is simply

forming in the outflows.

In section 2.1, we describe our data and reduction procedures. In section 2.2, we discuss

our observational results; section 2.3 describes our data analysis procedure and results of

spectral model fitting. In section 2.4, we discuss the big picture implications of this work.

2.1 Data

For this work, a sample of 70 targets spanning the range from post-AGB star to Plan-

etary Nebulae were chosen from three completed GTO programs on Spitzer (Fazio et al.

2006, 2007, 2008. Each program combined observations using the Infrared Array Camera

(IRAC; Fazio et al. 2004) and the Infrared Spectrometer (IRS; Houck et al. 2004) onboard

the Spitzer Space Telescope (Werner et al. 2004). The observations were taken in three

observing programs: 30036 (post-AGB stars), 40115 (mixed chemistry PNe) , and 50116

(transition objects). These three programs were chosen for inclusion so that the sample

spans the evolutionary transition from post-AGB star to Planetary Nebula.
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2.1.1 Sample Selection

The post-AGB stars in this sample were first identified as post-AGB candidates on the

basis of the IRAS colors (Parthasarathy & Pottasch 1986), and later confirmed w/ the addi-

tion of optical spectroscopy (Parthasarathy et al. 2000; Suárez et al. 2006). In order to target

the late-stage post-AGB stars, a subset of post-AGB candidates w/ hot (Spectral Type F, A

or B) central stars was chosen from among the lists of candidates. The effective temperature

range for the central stars, based on spectroscopic types, range from 5,100–29,000 K.

Figure 2.1 An IRAC image of young Planetary Nebula Abell 30, w/ the high resolution IRS
slits overlaid to demonstrate the difference between the long (larger) and short (smaller)
wavelength slit orientation and extent. The resulting spectrum is also overlaid as a typical
example of the flux differences observed in these extended sources.
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2.1.2 IRS Reduction

The brightest objects observed w/ IRS were taken in High Resolution Staring mode

(10–37 µm; R ≈ 600) to avoid saturating the detector. The remainder were observed w/

Low Resolution Staring mode (5–38 µm; R ≈ 60–127). All Basic Calibrated Data (BCD)

images were cleaned and masked w/ the campaign-specific rogue pixel masks using an IDL

tool designed to remove image artifacts, including those due to cosmic rays and hot pixels,

called IRSClean1. Once the images were cleaned, the method of reduction diverged for the

two spectral modes : Low Resolution and High Resolution.

High Resolution Spectra

The High Resolution targets (most of the PNe, as well as some bright compact objects)

were taken w/ dedicated backgrounds. Because we were targeting the emission around the

central star, the backgrounds were taken w/in the boundaries of the extended nebula. Thus,

we are subtracting out any contribution from the nebular foreground and our data will show

only emission that originates in the core region.

w/in each nod position, the cleaned science and background images were combined

(using the mean if there were only two images or the median if there were more). The

background images were then subtracted from each science image w/ the same nod position.

Spectra were extracted from these cleaned, background subtracted images using the SPICE

software package (ver. 2.5.0) provided by the NASA/IPAC Infrared Science Archive for the

extraction of IRS spectra. We extracted spectra from each nod position and compared the

two for inter-nod discrepancies, the order edges were clipped and a nod mean was taken for

each source. The resulting spectra are seen in Figures 2.2 through 2.5.

We encountered many problems in reducing the High Resolution mode data, includ-

ing flux mismatches between the orders, each order having an overall arched shape, zig
1http://irsa.ipac.caltech.edu/data/SPITZER/docs/dataanalysistools/tools/irsclean/
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zags imposed by the jagged order edges due to imperfect pointings, a spurious emission

line at 19 microns, and very poorly constrained data at the longest wavelengths. Some

of these problems are likely the result of our targets not being true point sources, perhaps

especially at the longer wavelengths. This is consistent w/ the pattern we noticed in the

data, that the targets that were most affected had a greater degree of nebulosity. To mitigate

these effects, we extracted these spectra in every possible way using SPICE, as mentioned

above, and also using the SMART IRS reduction software (version 1.6, Higdon et al. 2004;

Lebouteiller et al. 2010). We found that for the High Resolution data, the SPICE Optimal

Point Source extraction algorithm was the best. Optimal extraction involves first computing

a wavelength-collapsed flux profile across the slits, and then the resulting profile is used to

weight the extraction. This improved our jagged edge-order effects significantly and also

improved the effects of some sources being slightly off center in the slits. Even so, there

were some order mismatches; to address those, we first scaled the order containing the

25 µm wavelength range (convolved w/ the IRAS 25 µm bandpass) to agree w/ the IRAS

photometric point at 25 µm (found in the IRAS Point Source Catalogue, v.2; Joint IRAS

Science 1994), and then scaled the other orders to match. In most cases, this resulted in

an overall flux adjustment of less than 15%. As an independent verification, we performed

synthetic photometry on the scaled shorter wavelength orders and verified their agreement

(w/in errors) w/ the published IRAS flux at 12 µm.

Low Resolution Spectra

The Low Resolution Spectrograph targets were taken w/out dedicated backgrounds, so

in general the off-source nod position was used as a background. In some cases, one nod

position caught emission from a nearby star; in these cases, an exposure taken while the

star was aligned w/ a different order was used. We also sampled several extraction routines

for these date, and found that the best result was derived from an Optimal Point Source ex-

traction performed w/ SMART. Again this is probably because our sources were not perfect
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point sources and/or were not perfectly centered, and as such the standard sum-across-the-

slit routines created large mismatches between orders. The optimal routine minimizes these

mismatches, and this is most easily done w/ the optimal two-nod extraction in SMART.

Even w/ this optimized extraction, in some cases we found that there was still a flux mis-

match between the Short-Low (SL) and Long-Low (LL); this is to be expected for objects

w/ extended emission, since the aperture for LL is much larger than that of SL, and thus

more light is collected from the surrounding nebula (in addition, the slits for the two wave-

length segments differ in size and orientation, so that the long wavelength mode captured

more of the nebulae; see Figure 2.1, which shows an IRAC image of one of the PNe w/ the

spectral slits overlaid for demonstration). To account for these discrepancies, we multiplied

the SL data by a scalar derived from the order mismatch and the scaled the entire spectrum

(convolved w/ the IRAS 25 µm bandpass) to agree w/ the IRAS photometric point at 25

µm (found in the IRAS Point Source Catalogue, v.2; Joint IRAS Science 1994). This will

not affect the relative strengths of lines in the spectra since this is only multiplication by a

scalar, and should account for the difference in the size of the SL and LL slits.

2.1.3 Continuum subtraction method

In order to make the classifications discussed above, we had to distinguish the emis-

sion features from the thermal dust continuum. The broad, blended nature of the infrared

emission features in these sources presents a challenge when attempting to define a region

that contains only continuum emission. Thus, we chose to employ a fitting routine that fits

the continuum, the gas-phase emission, and dust features simultaneously. We modified this

routine, called PAHfit (the standard IDL routine MPFIT w/ the addition of AIB features

built-in, downloadable from the author’s website2 and described by Smith & Draine 2012)

to include several more features that are known to occur in post-AGB stars (silicates at 10

µm, SiC at 30 µm, and the unidentified 21 µm feature). This worked well for the feature-
2http://tir.astro.utoledo.edu/jdsmith/research/pahfit.php
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Figure 2.2 Post-AGB sources classified as oxygen-rich, based on the presence of a 10 µm
silicate feature, marked w/ the vertical line. Typical error bars for this data set are shown
on IRAS 17376-2040. Based on the IRAC image, IRAS 18237-0715 may be a Luminous
Blue Variable or Young Stellar Object (see Ch. 2).
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Figure 2.3 Post-AGB sources classified as carbon-rich, based on the presence of AIBs,
marked w/ vertical lines.
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Figure 2.4 Post-AGB sources classified as carbon-rich, based on the presence of AIBs,
marked w/ vertical lines.
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Figure 2.5 Atypical Post-AGB sources w/ less obvious classification. IRAS 17195-2710 is
classified as oxygen-rich, while IRAS 18313-1730 is classified as mixed.
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rich Carbon chemistry sources, but failed to find a good fit in the oxygen chemistry sources.

Thus, to characterize the 10 µm feature, we subtracted a locally defined continuum and then

fit the line w/ a gaussian.

2.1.4 Line and dust feature fitting method

To characterize the emission features in the spectra, we modified PAHfit (which is based

on the IDL routine MPFIT, and has all of the AIB features built in) to include several

specific dust features that are known to occur in post-AGB stars (silicates at 10 and 30 µm,

and the unidentified 21 µm feature). This routine allows us to extract the characteristics

of individual features and their relative strengths. Table 2.3 lists the feature strengths and

Table 2.4 the scientifically relevant ratios for all of the carbon-rich sources.

2.2 Results

The final product of this processing can be seen in Figures 2.2 to 2.5. The 70 sources

observed can be broken down into four categories: confirmed post-AGB stars (47), Young

Planetary Nebulae (10), Mature Planetary Nebulae (5), and miscellaneous (8; mis-identified

post-AGB stars and failed or incomplete observations). In order to call a source a post-AGB

star, we required that it have thermal emission from dust, following the IRAS selected cri-

teria of Szczerba et al. (2007). This criteria could in fact exclude some post-AGB stars that

have optically thin dust or because the circumstellar material dissipated so rapidly that it

will not be illuminated by the central star again (these are called “failed” Planetary Nebula,

which are discussed in Moe & De Marco 2006). Additionally, because we selected sources

w/ hot central stars, most of these fall w/in an SED class that can also include Young Stellar

Objects (YSOs) that are still forming and Luminous Blue Variables (LBVs) that can harbor

both hot and cool circumstellar dust. We have ruled out several sources as post-AGB based

on their anomalous spectra, and also referred to our IRAC imaging at 8 µm to determine if
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the star lies in what appears to be a star-forming or H2 region. These sources, along w/ the

rest of the sample, are listed in Table 2.2.
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We can further divide the confirmed post-AGB sources according to the chemical com-

position of the gas-phase molecules and solid state dust. We identified 14 sources that

had a 10-micron silicate feature, which implies the presence of an oxygen-rich dust; we

have labeled these at oxygen-rich post-AGB stars. Ten other confirmed post-AGB stars dis-

play Aromatic Infrared Bands (AIBs; due to gas-phase hydrocarbon rings often attributed

to PAHs) which indicate that the circumstellar environment is carbon-rich; these we call

carbon-rich post-AGB stars. An additional 20 sources were found to have emission in both

the 10 micron silicate bump and in the AIBs; these we labeled as dual-chemistry post-AGB

stars. Of the sources that did not meet our post-AGB criteria, ten were identified as Young

Planetary Nebulae because they have both thermal dust emission as well as nebular (ion-

ized) emission lines indicating that the central star has reached ionizing temperatures; the

five most evolved (non-post-AGB) objects in our sample we have labeled Mature Plane-

tary Nebula because they have nebular emission lines but no thermal dust emission. The

remaining eight sources were thrown out because they are not true post-AGB stars, but

instead Young Stellar Objects, Luminous Blue Variables, or perhaps dusty Giants.

A surprising result of these classifications is the unexpectedly high fraction of “dual-

chemistry” post-AGB stars. This could be due to a selection bias, as we have chosen stars

that are bright enough in the infrared to have shown up in surveys such as IRAS (the stars

must show up in most or all of the IRAS bands to have been selected on the basis of IRAS

colors as our sources were). The time window in which one might expect to observe the

characteristic signature of both hot and cool dust in an individual post-AGB star is quite

small, unless there is a mechanism (such as a dusty waist or disk) that is storing mate-

rial close to the star for a more extended period of time, thus making the source bright

in more of the mid- and far-infrared wavelengths. If such a structure does not exist, one

would expect any dust formed around the star to cool and dissipate rapidly and thus not

be bright at the shorter IR wavelengths for very long. By adopting a sample selected on

the basis of IRAS colors, we might expect to have weighted our sample towards stars that
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harbor stable dust reservoirs near the star in addition to having dust in outflows. Thus, the

high incidence of these “dual-chemistry” objects in our sample favors the scenario in which

the dual-chemistry phenomenon is related to the presence of a dusty waist or disk around

the star. Further, if we divide the post-AGB stars according to the central star tempera-

ture into young post-AGB stars and mature post-AGB stars, we find that the incidence of

“dual-chemistry” objects is 30% among the younger post-AGB stars (defined as having a

TEFF < 10, 000 K), while among the mature post-AGB stars, that number is 54%. This

may indicate that the molecules responsible for the AIB emission in these “dual-chemistry”

stars forms at the onset of ionization rather than as a result of a truly carbon-rich circumstel-

lar environment created by a Third Dredge Up in the AGB phase. This is consistent w/ the

findings of Cerrigone et al. (2009), where my collaborators concluded that the molecules

responsible for the AIBs (for convenience, we’ll call them PAHs) are not located in the

stellar atmospheres of a carbon-rich mass loss. In that study, the ionization fraction of the

PAHs was very low, yet the central wavelengths of the features at 6.2, 7.7 and 11.2 µm are

blue-shifted, indicating that the radiation from the central star is very hard. This scenario

could indicate that the PAHs are located in the outflows, far from the central star, or might

also be explained if the PAHs were shielded from the central star by a dust structure such

as a dusty disk/waist. In this scenario, it seems most likely that PAHs are not the result of

C-rich mass loss but rather photodissociation of CO in an O-rich environment.

There are many spectral features in these objects that can be used as chemical and evo-

lutionary diagnostics. The most direct measure of the evolutionary status of these objects

would the TEFF of the central star, as it is contracting and heating up during this phase.

Unfortunately, the post-AGB stars in this sample are dust enshrouded and we are unable to

observe the starlight directly; the spectral types of these stars were determined from very

faint reflected starlight, and are thus highly uncertain (corresponding to errors on the cen-

tral star’s TEFF of as much as 10,000 K). We must therefore turn to other diagnostics to

assess the maturity of individual sources. All types of post-AGB stars in my sample should
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have emission due to H2, and those lines will tell how it is being excited (UV or shock),

which thus give us an indicator of hardness of the starlight’s radiation (and thus a minimum

TEFF for the central star). The strength of forbidden lines such as [Ne II], [Fe II] and [S I]

reveal the excitation mechanism (photodissociation or shock), and the ratios between them

the ionization fraction (Fong et al. 2001), again measures of the minimum TEFF of the

central star. The ionization fraction measures the degree of maturity the object has reached,

since the central star is not expected to be hot enough to emit ionizing UV photons until

immediately before the PN phase. The same is true for theH2 excitation; if it is only shock-

induced, the object is most likely on the young end of the late post-AGB sequence, while if

the culprit is photodissociation from UV photons, it must be nearing the PN phase. While

our post-AGB data does not include any forbidden lines, we can look at the ionization frac-

tion of molecular emission lines, a clue which we will use, along w/ hydrogen ionization

information gleaned from near infrared imaging, to attempt to organize the sample in an

evolutionary sequence (similar to what was done in Bachiller et al. 1997). Additional clues

we will use in our attempt to place our sample in an evolutionary sequence are several dust

chemistry-specific proxies for the evolutionary age of the source that have been proposed

in the literature. These are detailed below.

For O-rich sources, the silicate feature at 10 µm is thought to shows in emission on

the AGB, then absorption on the post-AGB, and back to emission in the Planetary Nebula

phase, where the envelope is again optically thin (Kwok 1993). This is another clue to the

evolutionary status of individual targets that we will use in our sequencing. The presence,

shape and strength of these features can provide evidence of grain growth processing (Gie-

len et al. 2008). The ratios of these lines can yield temperatures for individual species, and

even geometry of the dust shell (Molster et al. 2002a).

C-rich sources will have a spectrum characterized by emission in the AIBs at 3.3, 6.2,

7.7, 8.6 and 11.3 µm (Hrivnak et al. 2007). There are also features at 20.1 µm (colloquially

called the 21 µm feature) and 30 µm that are specific to carbon rich PPNs, which are
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likely due to aliphatic carbon compounds (Zhang et al. 2010). The SiC feature at 11.3 µm

has been shown to transition from emission to absorption and back to emission as the star

evolves, much like the silicate features in O-rich stars (Speck et al. 2009). In both cases,

this feature could be modeled as a convolution of emission and absorption lines, and the

resultant parameter tested as a potential age indicator.

Using each of these parameters as potential measures of the maturity of the object, we

can then search for correlations between maturity of the central source and other character-

istics of the dust, such as excitation and chemical composition.

2.2.1 C-rich sources

As mentioned above, we have classified as C-rich the post-AGB sources that possess

emission in the Aromatic Infrared Bands commonly attributed to PAHs, though more likely

an amorphous mix of aromatic and aliphatic compounds (Kwok & Zhang 2011). An ex-

ample of this emission is shown in Figure 2.6 In addition, a few sources have an emission

complex at 21 µm, the source of which is debated but seems to be associated w/ the presence

of the AIBs (see Cerrigone et al. 2011 for a thorough discussion). We know that the forma-

tion of AIBs requires a carbon-rich environment (Allamandola et al. 1985), and at first it

was assumed that these ”carbon-rich“ post-AGB stars must have undergone a third dredge

up that provided sufficient carbon to the circumstellar environment to make it carbon-rich

(Straniero et al. 1997). Zhang et al. (2010) suggest that the carbon molecules first form

as aliphatic compounds and then transform to aromatic as the star evolves. However, some

have suggested an alternative pathway: it could be that the photodissociation of CO near a

shock front (likely caused by the interaction of a super-fast post-AGB wind w/ the slower

AGB wind) or due to hardening radiation form the central star in an O-rich environment

could free up enough carbon to allow for the formation of the aromatic molecules that

we observe in emission w/out the entire environment actually being carbon rich (Guzman-

Ramirez et al. 2011; Guzmán-Ramı́rez et al. 2012). This is a hypothesis that we can test
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w/ our data, since these two formation scenarios would clearly happen at different stages of

evolution: if the carbon compounds are evolving from aliphatic (arising in the 21 and 30 µm

emission) to aromatic (arising in several AIBs near 10 µm) as the star evolves, we should

see a correlation in our data between the maturity of the source and the ratio of the aliphatic

feature strengths to the aromatic feature strengths. If, however, these AIBs were forming as

a result of photodissociation, the incidence of dual chemistry will instead spike at the lat-

est evolutionary stages when the radiation from the central source becomes hard enough to

photodissociate the CO (assuming the dissociation is a result of high energy photons from

the star and not a shock due to wind-wind interactions). If the latter were true, then the dual

chemistry sources would just be O-rich sources in the last evolutionary stage before PN, af-

ter the onset of ionization, and the true C-rich sources would only display the 30 µm feature.

In addition, there are several other spectral features in post-AGB stars that we have

characterized in order to search for evolutionary diagnostics: the integrated strength of the

15-20µm plateau (proposed by Peeters et al. 2002 to be a blend of emissions due to bending

modes of the C rings), a 15.8µm feature possibly due to a larger solid state molecule and

that may be connected w/ the presence of the 21 µm features (Hrivnak et al. 2009), a C2H2

molecular feature seen in emission or absorption at 13.7 µm, and Amorphous SiC at 11.3

µm which can be seen in emission, absorption or some combination thereof as mentioned

in Section 2.3.

2.2.2 O-rich sources

We characterize the O-rich targets in our sample by the presence of silicate features,

including amorphous silicates (amorphous olivine at 9.8 and 18 µm; amorphous pyroxene

at 10µm), crystalline silicates (forsterite (Mg2SiO4) and enstatite (MgSiO3) at 11.3, 16.2,

19.7, 23.7, 28, and 33.6 µm), and silica at 9 and 21 µm. The ratio between 11.3/9.8 µm

features can be seen as a measure of crystallinity (those being the purest of the crystalline
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Figure 2.6 An example of AIB emission in a carbon-rich source, shown in log scale.

and amorphous silicate features, respectively; Gielen et al. 2008). Crystallinity is often

considered a measure of dust grain processing under the assumption that the grains are

formed as amorphous silicates and then crystallized by high temperature annealing as the

central star heats up. Thus, we consider this ratio a potential indicator of evolutionary status

to be included in our analysis.

2.3 Analysis

In order to get the necessary line strengths from the IRS spectra, we modified PAHfit

(Smith & Draine 2012), which already includes the AIBs. To that, we added the silicate

features described above, as well as the unidentified carbon features at 21 and 30 µm.
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Defining a continuum in these sources is a challenge in the IRS wavelength window, where

the dust features are broad and overlapping over the entire range. Thus, we chose to define

the continuum as the best fitting sum of n blackbodies, where 0<n<10. In this way we can

avoid building in a systematic bias by our choice of continuum definition. A sample of the

fit result is shown in Figure 2.7.

Figure 2.7 Example of a best fit found by our modified version of PAHfit. The white points
are the Spitzer data. The components shown are dust continuum (red lines), AIBs (blue
lines), and emission lines (purple lines). The green line shows the total model fit.
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Table 2.3. Results of the modeling for Carbon rich sources with PAHfit.
I. Integrated line fluxes

Identifier I12 + I12.6 + I13.5 I11.3 I11.2 I7.6 + I7.8 I6.2

IRAS 09470-4617 4.67E-08 3.36E-08 3.46E-09 4.69E-08 2.25E-08
IRAS 11353-6037 · · · 2.99E+11 3.36E+10 2.95E+11 1.69E+11
IRAS 11387-6113 4.54E+11 8.98E+11 · · · 1.62E+10 1.03E+11
IRAS 12145-5834 7.00E+10 1.06E+11 4.41E+10 3.02E+11 1.77E+11
IRAS 14482-5725 · · · 7.01E+11 2.52E+11 6.31E+11 3.30E+11
IRAS 15482-5741 3.45E+11 1.13E+12 3.68E+10 5.81E+10 · · ·
IRAS 17376-2040 5.82E+11 6.02E+11 3.16E+10 4.73E+11 4.42E+11
IRAS 21546+4721 7.92E+11 7.35E+11 6.02E+10 8.16E+11 3.98E+11
IRAS 14429-4539 1.02E+14 2.00E+13 · · · 5.20E+13 5.96E+12
IRAS 01005+7910 4.02E+12 2.61E+12 5.66E+11 7.93E+12 5.41E+12
IRAS 17423-1755 3.09E+12 2.34E+11 · · · 3.20E+11 4.09E+11
IRAS 17542-0603 5.00E+10 9.46E+11 · · · 4.63E+11 6.78E+11
IRAS 18371-3159 · · · 2.63E+10 6.36E+10 6.98E+10 2.93E+10
IRAS 18379-1707 · · · 3.56E+11 3.23E+11 1.36E+12 7.85E+11
IRAS 20462+3416 · · · 5.92E+11 2.18E+11 2.06E+12 1.08E+12
IRAS 22023+5249 1.89E+11 1.75E+11 6.45E+10 8.13E+11 4.73E+11
IRAS 22495+5134 · · · 3.43E+12 · · · 1.82E+12 7.60E+11
IRAS 19306+1407 · · · · · · 6.90E+10 3.69E+10 3.14E+10
IRAS 19336-0400 · · · · · · · · · 2.45E+11 1.30E+11
IRAS 19590-1249 1.78E+10 3.39E+11 3.92E+10 · · · 7.68E+10
IRAS 21289+5815 · · · 4.97E+11 1.01E+11 1.04E+12 4.67E+11
IRAS 19200+3457 · · · 1.41E+11 8.36E+10 7.71E+10 6.25E+10

Note. — Integrated line fluxes are in units of Jy/sec (W/m2 ∗10−26).
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To address the evolutionary status of these objects, the relevant values from these spec-

tral fits are the strengths and ratios of certain gas-phase molecular AIB emission lines

(Draine & Li 2007). One such ratio is that of the emission from AIBs attributed to ion-

ized PAHs at 6.2 and 7.7 µm to the strength of the 11.2 and 11.3 µm features, which are

due to neutral PAHs; these ratios are shown in Table 2.4. The C-H out-of-plane bending

modes that produce emission features at 12, 12.6 and 13 µm are due to isolated aromatic

rings, while the feature at 11.3 µm is produced by large groups of carbon atoms (on the

order of 50). Thus, the ratio of these, shown in Table 2.4 as I12+I12.6+I13.5
I11.3

, is a measure

of the size of the emitting hydrocarbons. In principle, the ratio of features strengths due to

aromatic compounds (all AIBs) versus those due to aliphatic ones (21 and 30 µm features)

could also be an indicator of evolutionary status; unfortunately, this is not well quantified

in our data because the 21 and 30 µm features are extremely broad and thus the measured

strengths depend sensitively on our choice of continuum.

Though PAHfit worked well on the abundant AIB features in our carbon-rich stars, the

silicates in our oxygen-rich stars were not faithfully reproduced w/ the model. This is prob-

ably due to the fact that the central wavelength and the fwhm of the silicate features is not

consistent across all stars, and in our sources the feature is sometimes a superposition of

emission and absorption, w/ the central wavelengths of the two slightly offset. Thus, we

instead used a classification system to describe the appearance of the 10 µm silicate fea-

ture: Type I for sources w/ a simple gaussian-like emission line peaking at 9.8 µm (example

shown in Fig. 2.8), similar to what is seen in the Inter Stellar Medium (ISM; Kemper et al.

2004; van Breemen et al. 2011), and Type II for those sources that appear to have a com-

posite structure and peaking closer to 11 µm (such structure was associated in Molster et al.

2002a w/ the presence of a disk; see Figures 2.9 and 2.10); classifications of each source

are shown in 2.2. The change in the profile of the silicate emission could be indicative of

grain processing in a circumstellar disk (grain growth and thermal annealing of the amor-

phous silicates to crystalline forms), as Bouwman et al. (2001) have shown is the case for
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the silicates in disks around Herbig Ae/Be stars. In addition, we detect crystalline silicate

emission features at 23.7, 27.6, and 33.6 µm in many of our sources, which we label as hav-

ing Type III silicates, as shown in 2.11 (also cataloged in 2.2). Molster et al. (2002a) found

a prevalence of strong crystalline silicate bands in stars w/ expected disk-like geometries.

Crystalline silicates can form in one of two ways around these sources: direct condensation

in outflows or annealing. Crystalline silicates condense directly from the winds or quickly

crystallize if the temperature at the dust condensation radius is above the glass transition

temperature Tg ≈ 1000 K (depending on gas pressure), which corresponds to a mass loss

rate of & 2 × 10−7 for conditions typical of oxygen-rich AGB circumstellar environments

(Speck et al. 2008)). This mass loss rate is the very top of the range for for oxygen-rich

AGB stars (van Loon et al. 2005), and thus in the vast majority of cases we expect sili-

cates to condense in amorphous form (Speck et al. 2008). The best understood pathway for

amorphous silicates to crystallize is high-temperature annealing, which would require dust

to be held close to the star so that as the central star heats up along the post-AGB, these

amorphous grains could be heated to the glass transition temperature. However, Molster

et al. (1999) argue that there must be an alternate, low-temperature annealing mechanism

that can take place in the presence of a long-lived circumstellar or circumbinary disk. In

any case, crystalline slilicates can be considered highly processed dust grains in nearly all

post-AGB sources, and their presence is further evidence that the dust responsible for the

infrared emission is held in a stable reservoir near the star long enough for significant grain

coagulation and annealing to take place (Molster et al. 1999). This is further supported

by the strong correlation found by Molster et al. (2002a) between the presence of a highly

flattened dust distribution (“disk-like sources”) and a high degree of crystallinity among the

emitting silicates.

We have eliminated from our post-AGB list two oxygen-rich sources that appear to be

outliers, IRAS 18367-1233 and IRAS 18023-3409. IRAS 18367-1233 has a narrow silicate

emission feature inside an absorption feature superposed on the 10 µm silicate emission
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Figure 2.8 Example of a continuum subtracted 10 µm feature classified as Silicate Type I
w/ a relatively smooth, gaussian-like emission profile.

(Figure 2.12); since this is unique among our sources we suspect this is not a post-AGB

star. IRAS 18023-3409 has a P Cygni profile superposed on the 10 µm emission (Figure

2.13); we already suspected that this source was an LBV, and this seems to confirm that.

As an aside, in many of the C-rich sources, we detect the 10 µm feature in absorption, but

this is likely due to line of sight silicates in the ISM and not circumstellar dust. Please see

Section 2.4 for further discussion.

2.4 Conclusions

To find correlations between our measured parameters and evolutionary status, it would

be ideal to have at least one reliable baseline to measure against. In theory, the central star
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Figure 2.9 Example of a continuum subtracted 10 µm feature classified as Silicate Type II,
w/ a composite structure of emission and absorption or a blended emission feature.

temperature would be excellent, since all stars increase in temperature as they evolve at this

stage. Unfortunately, the central star temperatures are not well determined for these stars

due to significant dust obscuration. Despite the fact that we chose a subset of sources for

which there is a published spectral type, those are often derived from faint reflected starlight

and have large uncertainties, corresponding to a temperature range spanning thousands of

degrees Kelvin. Nonetheless, it is the best measure we currently have for a baseline, and as

such we will compare our proposed evolutionary tracers w/ these values. Shown in Figures

2.14 to 2.16 are plots of observables that have been predicted as measures of evolutionary

status. We do not find any correlations, which could be an artifact of the large error bars on

the central star temperatures and does not necessarily disprove these theories.
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Figure 2.10 Example of the remainder after the continuum and a gaussian 10 µm bump
has been subtracted. This source is classified as having Silicate Type II emission, w/ a
composite structure of emission and absorption or a blended emission feature.

2.4.1 Ionization Fractions

Since we have chosen a sample of post-AGB stars that are just beginning to ionize

their envelopes, the most direct measure of evolutionary status in our data is the ioniza-

tion fraction. As the central star heats up, the ionization front travels outward through the

circumstellar material, and thus in the simplest case of uniformly distributed material, the

ionization fraction should increase linearly from the start of ionization to the edge of the

envelope. Though this would be easy to track if we could watch a single object evolve

over time, using this measure to place diverse sources on the same timeline is much more

difficult. These sources vary in the extent of circumstellar material they harbor, the density

and opacity of that material (and thus the radial velocity of the ionization front), and of
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Figure 2.11 An example continuum-subtracted spectrum for an O-rich source, showing
crystalline silicate emission lines at 23.7, 27.6, and 33.6 µm. This source is classified as
having Silicate Type II emission.

course the mass of the central stellar remnant (which affects the rate at which the heating

progresses, again affecting the speed of the ionization front). In our analysis, we measure

the ionization of the grains responsible for the AIB emission by comparing the strengths of

the features attributed to neutral PAHs versus those attributed to ionized PAHs. This is not

necessarily a measure of the ionization fraction of the circumstellar envelope as a whole;

the correlation between these two quantities depends on the spatial distribution and the for-

mation pathway of the emitting PAHs. Nonetheless, we are able to confirm a correlation

between our two measures of the ionization fraction of the PAHs in the carbon-rich sources,

which is a good sanity check, and may indicate that the ionization fraction is a better mea-

sure of evolutionary status than the existing TEFF estimates. The only other evolutionary
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Figure 2.12 The remainder for IRAS 18367-1233 at 10 µm after subtraction of the contin-
uum and the gaussian 10 µm bump.The unusual structure of this silicate emission has led
us to conclude that this source is not a post-AGB star.

indicator we have for the C-rich sources is the ratio that is a measure of the growth of the

AIB-emitting grains (commonly attributed to PAHs). We have plotted the ionization frac-

tion versus this measure (see Figure 2.18). Though we do see a potential correlation, our

sample is small enough that we cannot confirm this. It should be noted that the growth of

AIB grains should be quenched once the star gets hot enough to photodissociate them, so

we do not expect an indefinite linear increase in this measure. Additionally, the ionization

fraction will not increase linearly even in the case of a single star, though we can say in

general terms that it should increase as the central star heats up.

Overall, we do not detect convincing evidence for the correlation between any of our

proposed evolutionary measures and the TEFF of the central star. However, due to large
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Figure 2.13 The remainder for IRAS 18023-3409 at 10 µm after subtraction of the contin-
uum and the gaussian 10 µm bump. The unusual structure of this silicate emission has led
us to conclude that this source is not a post-AGB star.

uncertainties is this temperature, any one of these measures or some combination of them

might still be an observational diagnostic of evolutionary status. To find such a correla-

tion, we need to do a systematic search for correlations among the evolutionary measures,

discussed in detail in the Conclusion chapter.

2.4.2 Grain processing

We do, however, detect significant emission from highly processed dust grains; overall,

75% of our sources show emission from crystalline silicates or large groups of hydrocar-

bons. This is strong evidence for the presence of a stable dust structure near the central

stars in the majority of our sources, particularly the hottest sources (over half of which have
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Figure 2.14 Silicate Classes versus TEFF of the central star. The Silicates were placed into
two sequences to check for correlation w/ evolution. Silicate Sequence A (I, I & III, II, III)
would represent silicates forming as amorphous grains and becoming more crystalline as
the central star heats up. This is the sequence that has the most observational evidence, but
we do not see a correlation in our (admittedly small) sample. Silicate Sequence B (III, I &
III, II, I) produces a more plausible correlation w/ central star temperatures, but there is no
physical basis for this sequence.

mixed chemistry; Gielen et al. 2011). We cannot distinguish between a rotating disk and

a dusty density-enhanced waist w/ our data, but either case strongly suggests the presence

of a binary companion because models of the formation scenarios of such structures favor

binarity (Nordhaus et al. 2010).
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Figure 2.15 The ionization fraction of the aromatic hydrocarbons versus the TEFF of the
central star, based on published spectral types. Due to the severe dust obscuration of the
central star, these spectral types are quite uncertain; as shown here, there is no correlation
w/ the ionization fraction as one might expect if these temperatures were a reliable estimate
of evolutionary status.
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Figure 2.16 A proxy of the size of the emitting aromatic hydrocarbons versus the TEFF of
the central star, based on published spectral types. If the aromatic hydrocarbons are forming
as a result of the photodissociation of CO, we would expect to see their size increase initially
as the central star warms, but then as the radiation from the central star hardens they should
be destroyed and taper off in size.
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Figure 2.17 Two independent measures of the ionization fraction of the aromatic hydrocar-
bons.

60



Figure 2.18 The ionization fraction of the aromatic hydrocarbons plotted against the grain
size of the same grains.
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Chapter 3

A Spitzer Imaging Survey of

Post-AGB Stars

In addition to the spectra, an imaging survey of the same sources was performed using

the Infrared Array Camera (IRAC; Fazio et al. 2004) onboard the Spitzer Space Telescope

(Programs 30036, 40115, and 50116; Werner et al. 2004). We have, for the first time,

resolved the extended emission around several of the post-AGB stars, as well as discovered

new nebular structures around some Planetary Nebulae.

3.1 Data

The same sample of 70 targets spanning the range from post-AGB star to Planetary

Nebulae were observed. These stars were chosen to span the evolutionary transition from

post-AGB star to Planetary Nebula. The post-AGB stars in this sample were first identified

as post-AGB candidates on the basis of the IRAS colors (Parthasarathy & Pottasch 1986),

and later confirmed with the addition of optical spectroscopy (Parthasarathy et al. 2000;

Suárez et al. 2006). In order to target the late-stage post-AGB stars, a subset of post-AGB

candidates with hot (Spectral Type F, A or B) central stars was chosen from among the lists
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of candidates. The effective temperature range for the central stars, based on spectroscopic

types, is 5,100–29,000 K.

3.1.1 Observations & Data Reduction

To search for extended emission among these objects, they were imaged using the in-

frared array camera (IRAC) on Spitzer in four broadband channels centered at 3.6, 4.5, 5.8,

and 8.0 µm. The images were taken in a high dynamic range (HDR) mode, so each ob-

ject was imaged with a short and a long exposure. The majority of the compact sources

(candidate post-AGBs; PID 30036, 50116) were taken using 12 and 0.6 sec exposures in

a medium-sized dither pattern. A few of the brightest targets were taken using subarray

mode, which uses only a subset of the array but more frequent sampling, to avoid saturation

(with a larger dither pattern). The PNe (PID 40115) were taken in HDR mode with longer

exposures in general. Table 3.1 details the exposure times and the corresponding sensitiv-

ities for each source. Only the PNe and non-standard post-AGB cases are listed, with the

last line labelled “Remainder” describing the standard exposure times and sensitivities for

all candidate post-AGB sources not listed.
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Table 3.1. IRAC Image Sensitivities

Target Observing Mode TEXP NEXP 3.6 µm 4.5 µm 5.8 µm 8.0 µm
sec MJy/sr MJy/sr MJy/sr MJy/sr

NGC 1501 IRAC HDR Map 30/1.2 20 0.00376 0.00504 0.0204 0.0229
PN M 2-31 IRAC HDR Map 12/0.6 12 0.0114 0.013 0.0445 0.0476
PN M 2-20 IRAC HDR Map 30/1.2 12 0.00486 0.00651 0.0264 0.0295
NGC 40 IRAC HDR Map 30/1.2 12 0.00486 0.00651 0.0264 0.0295
PN PB 6 IRAC HDR Map 30/1.2 12 0.00486 0.00651 0.0264 0.0295
NGC 2867 IRAC HDR Map 12/0.6 12 0.0114 0.013 0.0445 0.0476
PMR 2 IRAC HDR Map 30/1.2 12 0.00486 0.00651 0.0264 0.0295
NGC 7026 IRAC HDR Map 12/0.6 12 0.0114 0.013 0.0445 0.0476
PN PB 8 IRAC HDR Map 30/1.2 12 0.00486 0.00651 0.0264 0.0295
Hen 2-99 IRAC HDR Map 30/1.2 12 0.00486 0.00651 0.0264 0.0295
PMR 1 IRAC HDR Map 30/1.2 40 0.00266 0.00356 0.0144 0.0162
Abell 30 IRAC HDR Map 30/1.2 60 0.00217 0.00291 0.0118 0.0132
PN M 4-18 SubArray 0.4 16 0.0316 0.0216 0.109 0.0399
NGC 5315 SubArray 0.4 16 0.0316 0.0216 0.109 0.0399
Hen 2-459 SubArray 0.4 16 0.0316 0.0216 0.109 0.0399
PN PM 1-310 SubArray 0.4 16 0.0316 0.0216 0.109 0.0399
iras 17460 SubArray 0.1 36 0.121 0.108 0.239 0.0817
iras 18435 SubArray 0.1 36 0.121 0.108 0.239 0.0817
iras 19157 SubArray 0.1 36 0.121 0.108 0.239 0.0817
Remainder IRAC HDR Map 12/0.6 16 0.00992 0.0113 0.0385 0.0412

Note. — Sensitivities correspond to a 1-σ detection of extended emission. For the High Dynamic Range
(HDR) observations, NEXP corresponds to the number taken at each of the listed exposure times.

The IRACproc software (Schuster et al. 2006) ver. 4.3 was used to produce mosaics

from the individual frames. Raw Basic Calibrated Data (BCD) files were first run through

the fixup routine, then mkmopex bcd, then visually inspected for cosmic rays and other

image issues related to saturation. The most corrupted frames were either thrown out or

corrected with the tools provided in the IRACproc suite. Finally, I ran the mkmosaic bcd

routine, which aligns the individual pointings to make one mosaic for each wavelength

channel, all with the same pixel size of 0.6 arc seconds per pixel.

Many of the long exposure images were saturated by the central star, so the search

for extended emission was complicated by image corruption. Nevertheless, in some cases it

was possible to subtract the point spread function and recover the emission from circumstel-

lar material. To perform the psf subtraction, we again made use of the IRACproc software
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Schuster et al. (2006), which employs a PSF derived from observations of calibration stars

and other IRAC programs Marengo et al. (2009) and was sampled to match the pixel scale

of our mosaics. The sources for which we detected extended emission in at least one IRAC

channel are IRAS 19590-1249, IRAS 11353-6037, IRAS 10082-5647, IRAS 18070-2346,

IRAS 19399+2312, SAO 243233 and SAO 227229; these are shown in Figures 3.1 to 3.7.

Figure 3.1 Extended emission around IRAS 19590-1249 in IRAC Ch.2, after PSF subtrac-
tion. Shown in log scale (centered at 3.6 µm).

IRAC Photometry

To extract the photometry from the mosaics, we used a routine that is part of the

IRACproc suite of analysis tools called nsphot, which utilizes IRAF photometry and co-

ordinate transformation tools. The routine applies aperture photometry to all sources in

each mosaic, which are then matched up to our source list. The aperture used for this pro-

cedure has a 4-pixel radius, which corresponds to an angular size of 2.4 arc seconds in our

mosaics. This routine works optimally for unsaturated, unresolved point sources, which is

true of most of our targets (for most of the brightest targets we extracted photometry from

the short exposure frames where the detector was unsaturated). A few of the targets were
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Figure 3.2 Resolved structure of IRAS 11353-6037 in IRAC Ch.4, shown in log scale (cen-
tered at 8 µm). The diagonal bar in the upper right corner is an image artifact from a nearby
bright source.

too bright even for the short exposures; for these cases we instead performed a subtraction

of the point spread function (psf) using a routine called psf sub that is part of the IRACproc

suite of tools. We used this routine to subtract an oversampled model psf from the image,

adjusting the magnitude of the psf until the wings of the diffraction spikes a perfectly sub-

tracted to the background noise level. The results of this procedure resulted in differences

of 2% or less to those obtained with aperture photometry. The resulting fluxes are listed in

Table 3.2 according to the standard IRAC magnitude convention described in Reach et al.

(2005). The zero-magnitude flux densities are 280.9 ± 4.1, 179.7 ± 2.6, 115.0 ± 1.7, and

64.13± 0.94 Jy in the [3.6], [4.5], [5.8], and [8] µm channels, respectively.
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Figure 3.3 Extended emission around IRAS 10082-5647 in IRAC Ch.4, shown in log scale
(centered at 8 µm). This target has been identified as a Herbig-Haro object in the most
recent post-AGB catalog by Sczerba et al. 2007. The diagonal line seen here is a bright
source artifact that occurs in this channel.
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Figure 3.4 Extended emission around IRAS 19399+2312 in IRAC Ch.4, shown in log scale
(centered at 8 µm). Based on the spectrum of this source, we have determined that it is not
a post-AGB.
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Figure 3.5 Extended emission around SAO 227229 in IRAC Ch.4, shown in log scale (cen-
tered at 8 µm). Due to the line of sight proximity to an H II region, this star may be a Young
Stellar Object. This object is very faint, but the spectrum is very similar to other post-AGBs
in our sample, so we have not removed it from our post-AGB list.
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Figure 3.6 Extended emission around SAO 243233 in IRAC Ch.4, shown in log scale (cen-
tered at 8 µm). Due to the line of sight proximity to an H II region, this star may be a
Young Stellar Object. The spectrum suffers from low signal to noise, but it is very similar
to other post-AGB spectra in our sample so we have not eliminated it from the post-AGB
candidates.
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Figure 3.7 Extended emission around IRAS 18070-2346 in IRAC Ch.4, shown in log scale
(centered at 8 µm). This object also appears to be a YSO based on the spectrum and its
coincidence in the line of sight with an H II region.
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3.2 Results

The imaging provides two key pieces of information on these systems: the extent and

morphology of the shell (an upper limit of 5 arcsec on the angular size for unresolved ob-

jects), and the photometric flux in each of the channels. Though we did not resolve enough

of the objects to include morphology or dust shell extent in our statistical analysis, we can

test if our data is consistent with the hypotheses relating chemistry and morphology. In

addition to our photometry and spectra, we collected photometric data published on these

objects from the literature to increase the wavelength coverage for the formal modeling of

the Spectral Energy Distribution. Sources for this photometry include the point source cat-

alogs from IRAS (channels centered at 12, 25, 60 and 100 µm ; Neugebauer et al. 1984),

2MASS (channels centered at 1.25, 1.65 and 2.17 µm ; Skrutskie et al. 2006), SIMBAD

UBVR magnitudes, and AKARI FIS (channels centered at 65, 90, 140, and 160 µm ; Ya-

mamura et al. 2009, 2010).

3.2.1 Modeling the Spectral Energy Distribution

To solve the problem of radiative transfer in the dust shells around these stars, we recre-

ated the observed Spectral Energy Distributions (SEDs) for each source using a the DUSTY

code (Ivezic 1999). DUSTY takes as input the temperature of the central star as well as sev-

eral properties of the dust shell; in our case, as a first run, we specified:

1. Central source: blackbody curve with temperature matching the spectral type of the

target T?;

2. Chemistry of the envelope: either 100% silicates or 100% amorphous carbon, de-

pending on IRS features (Chemistry);

3. Grain size distribution: power law a−3.5, amin = 0.005, amax = 0.25, a being the

grain radius in µm (amin&max varied, but not the power law exponent);

4. Density distribution: power law proportional to R−2, R being the shell radius;
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5. Shell relative thickness: Rout = 1000Rin;

6. Dust temperature at Rin: adapted to each SED (Tdust);

7. Optical depth at 60 µm : calculated for each star from IRAS data (τ60).

Each model was then iterated to find the best fit; in order to simulate multiple dust

components, the model was run multiple times in succession, working outward with the

output from the previous model entered as the central radiation source. (see the results for

the subset of sources that have completed modeling in Table 3.3; Cerrigone et al. 2009).
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The limitations of the 1-D DUSTY models produce several unphysical artifacts; to find

a good fit to the SEDs, most of the O-rich sources required the addition of amorphous

carbon, despite the fact that we do not believe it to be present in the stars. In addition,

the models required very large dust grains (up to 100 µm in size); while it is not totally

implausible that these sources have large dust grains (our spectra do indicate a high de-

gree of grain processing), 100 µm dust grains would indeed be extraordinary, particularly

for sources with such hard (and thus destructive) radiation fields. Though dust grains can

coagulate in an outflow, without some type of density enhancement (even an outflowing

torus), the duration of time in which dust particles would remain in a sufficiently dense

environment that collisions would be frequent is very short. The simplest explanation for

the presence of such large dust grains, then, is that the dust remains in a region of enhanced

density. It is possible that these dust grains are forming in the midplane of a waist or disk

where they are shielded from radiation, but if that were the case they would likely be too

cold to detect in the mid-infrared. In any case, our data does not constrain grain sizes very

well; sub-millimeter observations would be ideal for that.

3.3 Conclusions

We have imaged a sample of post-AGB with Spitzer to characterize the circumstellar

dust that is implied by the SEDs of these sources. We succeeded in resolving for the first

time an elongated structure in the circumstellar material around IRAS 11353-6037, which

we have classified as having mixed chemistry. We also resolved nebulosity around IRAS

19590-1249, and though it is not perfectly symmetric we do not see any evidence for a dusty

waist or disk. We were able to detect extended emission around several other sources as

well, but our data indicates that all of the rest were mis-identified as post-AGBs. With so few

detections of nebulae, it is not possible to characterize the morphology of these sources with

imaging. To investigate these sources further, we used the radiative transfer code DUSTY
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to reproduce the Spectral Energy Distributions of our spectroscopic and photometric data

combined with fluxes at other wavelengths from published surveys. All of these models

required at least two dust components (hot and cool, ranging from 100-1,300 K), which

may represent the fossil remains of previous episodes of mass loss or may be the result

spatially distinct regions such as an outflow and a circumstellar (or circumbinary) disk or

dusty waist. These models also required large dust grains, which is further evidence for

the existence of a dusty waist or disk that retains the dust in a reservoir near the star that

produces the warm, dense environment necessary for the formation of larger grains and

thermal annealing.
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Chapter 4

Interferometric Study of Wolf-Rayet

stars

Wolf-Rayet (WR) stars are the chemically evolved progeny of massive (Minitial &

20M�) O-type stars characterized by heavy mass loss (Massey 1981). Most WR stars

exhibit an infrared excess due to free-free emission or dust. Some dusty WR stars have

periodic or episodic variability in the infrared, indicative of dust formation events (Williams

et al. 1987b). These stars eject, or are stripped of, their outer envelopes at thousands of

kilometers per second, with mass-loss rates of 10−5 − 10−4M� per year. The winds are

often so dense that they obscure the stellar surface and can form nebulae around the central

star that are ∼ 5− 20 pc in extent (Bransford et al. 1999).

The spectra of these stars are similar in appearance to massive O-type stars, but anoma-

lous due to their lack of Hydrogen absorption lines; instead, emission lines are seen from

the nuclear products of CNO burning. Roche lobe overflow to a binary companion is in

some cases believed to be responsible for stripping away the outer (H-rich) envelope of a

massive star to reveal its core fusion products . Thus, interpretation of spectral data hinges

on the knowledge of such a companion. However, determination of binarity has proved

difficult due to the intrinsic photometric variability and exceptionally high line-broadening
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wind velocities in these stars. Thus, long baseline interferometers are uniquely suited to an-

swer this question. The aim of this study was to determine binary status for the Wolf-Rayet

stars that were observable with the Palomar Testbed Interferometer.

Bright, broad He, C, N and O emission lines dominate the spectra of WR stars with

widths upwards of 3000 km/s. WRs are classified into subtypes, WN (nitrogen rich) and

WC (carbon rich), defined by the appearance of optical emission lines from He, C, N and

O ions. In WN spectra, He I-II and N III-V lines dominate, while in WC spectra C II-IV,

He I-II and O III-IV lines dominate. For excellent reviews of the properties of Wolf- Rayet

stars, see van der Hucht (1992) and Crowther (2007).

The spectral energy distribution of WRs exhibit a prominent excess in the infrared due

to the absorption and re-emission of most of the stellar radiation by the circumstellar enve-

lope. This energy is primarily re-radiated in continuum free-free emission (Hackwell et al.

1974). However, late WC stars also exhibit infrared emission due to thermal dust (Allen

et al. 1972). This infrared excess and the bright, compact central sources make these objects

ideal for investigations with near-infrared interferometers.

Recent studies of WRs using optical interferometry have successfully resolved some

spectroscopic binaries, enabling astronomers to constrain orbital parameters and approx-

imate distance measurements. Using the IOTA Interferometer, researchers were able to

spatially resolve WR 140 (Monnier et al. 2004). Using an interferometric technique called

aperture masking on the Keck I, structure was resolved in the pinwheel nebula surrounding

WR 104 (Monnier et al. 1999), and a similar structure was mapped around WR 98a (Tuthill

et al. 1999). Additionally, near-infrared speckle interferometry has been used to measure

the extent of some dust shells around Wolf-Rayet stars (Allen et al. 1981).

In sections 4.2 and 4.3, we discuss our experiment to detect and potentially resolve a

new group of WR systems with the Palomar Testbed Interferometer and related archival data

from the Keck Interferometer. We discuss the data reduction process in section 4.3, present
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our analysis of each system in section 4.4, and section 4.5 we summarize our conclusions

based on these first look observations.

4.1 Instrumentation and Facilities

4.1.1 The Palomar Testbed Interferometer

The Palomar Testbed Interferometer (PTI) was a near-IR (J,H, and K bands), long base-

line, two-element interferometric array located at the Palomar Observatory in North San

Diego County, California. It was built by the Jet Propulsion Laboratory, California Insti-

tute of Technology, for NASA to develop interferometric techniques applicable to the Keck

Interferometer (KI) (Colavita et al. 1999) and was operated from 1995 to 2008. PTI con-

sisted of three 50 cm siderostats, each feeding light into a 40 cm fixed telescope. Any two

telescopes could be combined in pairwise combination at one time. This provided a choice

of three baselines of 86 m (NW), 87 m (SW), and 110 m (NS), that could resolve targets

optimally in the 1 to 5 mas angular size range.

Before combination, beams from the two apertures were tilt corrected and pathlength

matched. Interference occurred in the pupil plane at a beamsplitter, where the two combined

outputs were focused onto an IR detector. Both outputs were band-limited by the astronom-

ical filter K (2.0 to 2.4 µm) in the observations presented herein. One of the outputs was

focused onto a single pixel (white light channel), and the other was dispersed via prism

into five spectral channels with average channel widths of 97 nm. Before dispersion, the

combiner output intended for the spectral channels was spatially filtered by a single-mode

IR fiber. There was no spatial filtering of the white light channel other than what occurs

naturally due to the finite pixel size (40 µm) and F/10 relay optics. The white light and

spectral channels were positioned along a common row of pixels of a NICMOS-3 array.

The optical paths between the two telescopes were matched using a set of delay lines for

each beam. Long delay lines tracked the sidereal motion of the target, while fast delay lines
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were used to compensate for the higher frequency pathlength changes due to atmospheric

fluctuations. For more detailed information on PTI and standard fringe tracking with the

interferometer, see Colavita et al. (1999).

4.1.2 Keck Interferometer

The two 10 m Keck telescopes are combined to form the Keck Interferometer (KI),

separated by 85 m, oriented along a line 38◦ east of north (Colavita & Wizinowich 2003).

Each telescope is equipped with its own adaptive optics system (Wizinowich et al. 2003),

and both are active for all interferometric observations. For each telescope, the beam is

routed through the telescope Coudé train to the beam combination laboratory located be-

neath the telescope observation platforms. As in the case for PTI, the optical paths between

the two telescopes are matched using a set of long and fast delay lines for each beam. In

the case of the KI when these data were acquired, the long delay lines are fixed during an

observation, and the fast delay lines are used not only to track the target over a small range

of hour angles, but to compensate for the atmosphere as well (Vasisht et al. 2003).

Angle tracking to stabilize the telescope images is done at J band (1.2 µm), while sci-

ence and fringe tracking measurements are accomplished in H and K bands. As was the

case for the PTI, interference between the two beams occurs in the pupil plane using a

beamsplitter. For the KI however, both beamsplitter outputs are spatially filtered using a

single mode fiber. One of them is typically dispersed into four spectral channels for the

lowest spectral resolution observations, and the other is used as the wide-band white light

channel for fringe tracking.

4.2 Data and Reduction

The data were taken at PTI and KI between 16 May 2003 and 16 Oct 2003 in two

different, initially unrelated programs. For the PTI data, calibrators were chosen to be
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within 10◦ of the target star and to be unresolved (i.e. much less than 1.0 mas) to the

interferometer (see Table 4.1) on the typical NS (110m) baseline. The KI data were archival

as part of the KI initial shared-risk observing , and so the authors did not choose calibrators

for this part of the project. Upon careful analysis for each calibrator prior to reducing

the data, some of the calibrators in the KI archive appear to be unsuitable (as explained

by suspect binarity, possible confusion with nearby bright source, or variability on short

time scales). Hence only a small fraction of the KI data in the archive could be reliably

reduced. This was ascertained by examining the predicted system visibilities using only

the calibrators together, and from archival research on the potential calibrators using the

SIMBAD and Vizier databases. See Table 4.1 for information on the data reduction and

predicted angular sizes of the calibrators used for the project.

For the PTI data, a non-standard 50 ms integration frame rate was implemented due to

the known inherent faintness of the targets. These data could only be taken on some of the

very best observing nights at the interferometer, and therefore complete UV coverage was

not the primary goal of the experiment. The interferometric signal from a binary pair will

display quasi-sinusoidal variation as a function of Hour Angle, so the minimal coverage

gained as the Earth rotates the projected baseline in the span of a few nights is sufficient to

distinguish an unresolved point source from a binary or some more complicated structure.

These data are not contained in the NexScI archive due to the non-standard observing mode.

In order to make this data accessible for future observers, we have included the complete,

reduced wideband data in Table 4.2.

These data were reduced in the standard fashion (c.f. Boden et al. 1999), using in-

coherent averaging for both the wide-band and narrow-band data, with standard jitter and

ratio corrections applied. For the KI data, reduced with the same tools available at the

NExScI software tools repository, a flux calibration technique implemented in 2007 was

employed (c.f. flux bias memo) for data reduction, and this was found to markedly improve

the calibration of the KI data. These data were reduced using incoherent averaging, no ratio
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correction and a standard jitter correction of 0.04, along with the flux bias correction. All

data for which the system visibilities dropped below 50% or for which the system jitter rose

above 2.0 radians were deemed unreliable and discarded for both instruments.

PTI calibrators were initially vetted using the NExScI tool getCal and then performing

further archival/literature research to eliminate suspected binaries and variable stars or stars

expected to have significant emission lines in the infrared. Calibrator angular sizes were es-

timated, as part of the selection process, using the NExScI tool Fbol. The Fbol tool obtains

archival data from the SIMBAD and Vizier databases, including photometry and, where

possible parallax. A model spectrum derived from black body curves is matched to the

spectral type and luminosity class of the calibrator and then fit to the archival photometry,

corrected for reddening based on B-V colors, and scaled for absolute flux levels to arrive at

an estimated angular diameter for the calibrator. Uncertainties on diameters were associated

with a reduced chi-squared fit of the model to the archival photometry, and were generally

set to be no less than 0.1 mas. If a fit suggested the spectral type had been misclassified

by more than one Spectral Type or the archival photometry strongly suggested variability

or infrared excesses, then a calibrator was deemed unsuitable (which was the case for some

calibrators used for the KI archival data).
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Table 4.3. Wideband Visibility Data

Target Wideband (2.17 µm) Date (UT) U V Baseline
Calibrated V 2 m/d/y/h:m:s m m

WR 121 0.46906 ± 0.02699 5/21/2003/09:20:49 -83.104207 -22.45284 PTI NW
WR 121 0.47775 ± 0.02120 5/21/2003/10:28:16 -82.329409 -20.823947 PTI NW
WR 121 0.48337 ± 0.03190 5/21/2003/10:30:39 -82.170421 -20.767433 PTI NW
WR 121 0.46827 ± 0.01604 5/28/2003/09:25:22 -83.643025 -21.676408 PTI NW
WR 121 0.49154 ± 0.01733 5/28/2003/10:10:15 -81.639651 -20.597843 PTI NW
WR 134 1.04507 ± 0.17473 7/9/2003/10:39:23 -64.235902 -49.293042 PTI NW
WR 134 0.99925 ± 0.05000 8/9/2003/11:32:41 31.088729 79.096597 Keck
WR 136 1.00900 ± 0.06834 6/3/2003/10:09:33 -52.158109 -95.334441 PTI NS
WR 136 0.97805 ± 0.04101 6/3/2003/11:29:34 -32.894353 -104.669336 PTI NS
WR 136 0.95156 ± 0.06348 6/5/2003/09:45:22 -82.918544 -10.20814 PTI NW
WR 136 0.91667 ± 0.08104 6/5/2003/11:01:12 -82.034787 -27.347984 PTI NW
WR 136 0.94372 ± 0.05540 6/5/2003/11:55:09 -75.913296 -38.971192 PTI NW
WR 136 1.05531 ± 0.17524 7/9/2003/10:13:28 -70.264921 -45.329474 PTI NW
WR 136 1.34308 ± 0.20904 7/9/2003/11:14:11 -55.872892 -55.791259 PTI NW
WR 136 1.24569 ± 0.45175 7/9/2003/11:19:13 -54.490881 -56.543951 PTI NW
WR 137 0.85452 ± 0.09626 6/3/2003/10:17:17 -51.050957 -96.471125 PTI NS
WR 137 0.26138 ± 0.02375 6/3/2003/11:46:37 -28.862123 -105.916404 PTI NS
WR 137 0.32210 ± 0.00781 6/3/2003/11:49:00 -28.190114 -106.094961 PTI NS
WR 137 0.85402 ± 0.16326 7/9/2003/10:27:34 -67.852018 -46.766938 PTI NW
WR 137 0.53514 ± 0.05000 8/8/2003/10:40:27 42.429778 73.214755 Keck
WR 137 0.64115 ± 0.05000 8/8/2003/10:42:18 42.126426 73.418796 Keck
WR 139 1.44459 ± 0.30259 7/9/2003/10:57:06 -62.213288 -52.058885 PTI NW
WR140 0.83753 ± 0.03204 6/3/2003/10:17:17 -44.161015 -98.660063 PTI NS
WR140 0.29304 ± 0.00733 6/3/2003/11:46:37 -82.079548 -27.003904 PTI NW
WR140 0.32003 ± 0.01810 6/3/2003/11:49:00 -81.897955 -27.622642 PTI NW
WR140 0.63979 ± 0.01847 7/9/2003/10:27:34 -80.218947 -32.234542 PTI NW
WR140 0.29507 ± 0.05826 8/8/2003/11:29:14 34.714751 76.673837 Keck
WR140 0.45047 ± 0.08439 8/8/2003/12:12:12 25.763674 80.624579 Keck
WR140 0.88627 ± 0.04022 10/15/2003/05:20:35 50.49501 63.372301 Keck
WR140 0.86902 ± 0.04024 10/15/2003/05:40:18 48.116401 66.321223 Keck
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Table 4.3 (cont’d)

Target Wideband (2.17 µm) Date (UT) U V Baseline
Calibrated V 2 m/d/y/h:m:s m m

WR140 0.95519 ± 0.03463 10/16/2003/05:36:36 48.085093 66.356336 Keck
WR140 0.83750 ± 0.03353 10/16/2003/05:55:10 45.514992 68.99084 Keck
WR140 0.61931 ± 0.03016 10/16/2003/06:11:59 42.925199 71.247497 Keck
WR 148 0.98175 ± 0.10544 10/15/2003/06:07:54 47.214476 63.247849 Keck
WR 148 1.01420 ± 0.04791 10/15/2003/06:09:40 46.972968 63.536669 Keck
WR 148 0.83647 ± 0.14987 10/15/2003/06:24:43 44.799479 65.93923 Keck
WR 148 1.11021 ± 0.07185 10/15/2003/06:26:33 44.521351 66.223861 Keck
WR 148 0.72792 ± 0.09084 10/15/2003/06:40:36 42.295767 68.345009 Keck
WR 148 0.78680 ± 0.04873 10/15/2003/06:42:26 41.995598 68.611694 Keck
WR 148 0.87783 ± 0.07196 10/15/2003/06:56:10 39.646256 70.561204 Keck
WR 148 0.83581 ± 0.12481 10/15/2003/06:57:59 39.324866 70.810351 Keck
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Table 4.4. Adopted Binary Parameters

Parameter WR 137 WR 148

P 4766 ± 66 da 4.3174 dd

e 0.178 ± 0.042a 0.079 ± 0.030d

a 16 AU 38R�d

i 67◦a 66.7◦

T0 (JD) 2450198 ± 186a 2449639.961 ± 0.219d

ω 326◦ ± 15◦a unknown
Ω 137◦b unknown
d 1.82 kpcc 8.28 kpce

aLefèvre et al. 2005, bThis paper, cNugis & Lamers 2000,
dMarchenko et al. 2003, evan der Hucht 2001
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4.3 Analysis of Individual Target Data

In total, eight different WR systems were attempted with PTI and KI during the summer

and fall of 2003. In all but one of the systems, it was possible to acquire fringes. The

calibrators used for each set of observations along with the summarized results for each

source are presented in Tables 4.1 and 4.2. In Table 4.2 the calibrated PTI wideband data

are presented along with the observation dates.

Figure 4.1 The “best fit” model for WR 121 plus the actual PTI narrow-band data. Hour
angle (HA) is increasing in the models from -1.33 to 0.0 hours from red to yellow, as
indicated by the arrows. This model was produced by a uniformly illuminated ring with
major axis of 6.5 mas outer diameter, 1.0 masinner diameter, and minor axis of 2.5 mas
outer diameter, 1.0 mas inner diameter aligned with the major axis coincident with the
declination axis. We note that the models are relatively insensitive to changes along the
declination direction (see the text for details). We stress that none of the models are able to
reproduce the inflection seen in the V2 at 2.4µm, indicating that the actual observations of
WR 121 are more complex than anything that can be modeled parametrically or constrained
easily with this small amount of HA coverage.

4.3.1 WR 121

Target star WR 121 (HIP 91911) was characterized as a Wolf-Rayet star by Merrill &

Burwell (1950) and has since been spectroscopically classified as a WC9 (Roberts 1962).
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Figure 4.2 Other VMT parametric models attempted to fit the narrow band data for WR 121.
Hour angle (HA) is increasing in the models from -1.33 to 0.0 hours from red to yellow, as
indicated by the arrows. In most cases, the visibility increases toward positive HA. Error
bars (not included) are 0.02 in V2.

At a distance of 1830 pc (van der Hucht 2001), the star exhibits irregular obscuration events,

and its binarity is unknown. Cohen & Kuhi (1977) first suggested that the star was a binary

due to the dilution of emission lines, but later spectroscopic studies done by Torres & Conti

(1984) found no evidence of a companion star. Veen et al. (1998) suggested that the occa-

sional obscurations are due to intermittent dust production. The currently accepted value

for the terminal wind velocity is 1100 km/s (van der Hucht 2001). A study to characterize

the variability of this source as perhaps originating in a Corotating Interaction Region was

carried out by St-Louis et al. (2009), but they were unable to rule out the possibility that

the variability was originating in some type of colliding wind binary interaction. In the

near-infrared PTI wavelength regime (2.0-2.4 µm), Figer et al. (1997) found prominent He

I and He II emission features at 2.1636 µm, 2.185 µm, and 2.3464 µm and weak CII and

CIV emission lines at 2.0824 µm, 2.1131 µm and 2.3243 µm.

We initially disregarded the observations of this target because the source was much

brighter and more resolved than expected based on flux counts and raw visibility measured
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by PTI. Pitault et al. (1983) published a K band magnitude for this source of Kmag =

6.10 and Williams et al. (1987a) measured Kmag = 5.97, possibly indicative of low level

variability of the source. The PTI-derived Kmag was 2.3± 0.05, more than 3.5 magnitudes

brighter than expected for WR 121. When we examined the nearby field using surveys like

2MASS, SDSS and POSS, we intially concluded that the target acquisition system might

have locked on a bright star 1.5 arcminutes away, NSV 11276. However, NSV 11276 is

classified by SIMBAD as an M6 dwarf, and based on the Vmag = 14 and a calculated

distance modulus from Cox (2000), we calculate that this star would have an angular size

of less than 0.1 mas. Such a star would not have been resolved by PTI and would produce

fringes with a V2 close to 1.0. Adding to the confusion, NSV 11276 has aKmag = 2.294±

0.256 from 2MASS (Cutri et al. 2003). If NSV 11276 were actually a giant star rather than

a dwarf, with a physical diameter based on van Belle et al. (1999) of '230R�, it would

be at a distance of 100-166 pc based on these measurements. Such a star has an absolute

visual magnitude of −0.3 (Cox 2000) and thus would have an apparent visual magnitude

between 4.7-5.8, much brighter than SIMBAD’s listed magnitude for NSV 11276. We

further verified the correct pointing of PTI by done examining the logs for the metrology

measurements, which acquired the stellar fringes at the predicted pointing position without

significant offsets. Therefore, we rule out that we acquired anything other than WR 121.

As presented above, PTI caught WR 121 in an apparent outburst. Because of the un-

expectedly higher photon counts, it was possible to get good SNR on the five individual

spectral channel data at K band (Figure 4.1). Examination of these data shows a unique

feature, that the data rise in V2 from 2.0-2.3 µm, and then drop again in the 2.4µm channel.

This is true for all hour angles, and on both nights, and is significant given the typical V2

error of 0.02-0.03. Unfortunately, because WR 121 is so far south for PTI, the NW baseline

was the only one with which we could observe this target. This baseline, for very far south

targets, is not very sensitive along the declination direction, which means true data fitting

for so few UV points is mostly meaningless. We did, however, use the Visibility Modeling
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Tool (VMT) at NExScI to try to reproduce the unique shape of the V2. We found no sat-

isfactory one or two-component parametric models which can reproduce both the extent of

the V2 and the change in the 2.4µm channel (Figure 4.2). Further, there are no prominent

emission lines near 2.4µm (Figer et al. 1997), which might explain this type of change in

the spectral V2 that might be attributed to a resolved emission line.

A few consistencies do appear when attempting to model the data. First, there is re-

solved emission which is likely more elongated in the dec direction than along RA, whether

distributed as a disk, ring or gaussian, having a ratio of approximately 2:1 or higher, with

the minor axis (oriented along the RA direction) in the size range of about 2-3 mas. Two

component models, whether for an unresolved point source with a ring, disk, or secondary

point source, all require flux ratios of 3:1 or higher in the central point source as compared

with the outer parametric feature. None of these toy models can reproduce the detailed

shape of the V2 at 2.4µm. We conclude that whatever happened in the outburst of WR 121

had a complex shape, not easily constrained with a single-baseline interferometer.

Veen et al. (1998) constructed a dust condensation model to explain the occasional “ob-

scuration events” observed in visible wavelengths for WR 121. They argue that the optical

obscuration is caused by extinction due to a rash of dust formation in the circumstellar en-

vironment. The formation of dust clouds in such a hot environment is not understood, but

if that is the mechanism behind these events, as the authors suggest, and this event is sim-

ilar to the near infrared outburst that we have observed, then it might be that the emission

region we have resolved is one of these dust clouds. Such clouds would almost certainly

have a complex shape, and indeed, we have not been able to reproduce the resolved emis-

sion with any geometrically simple models. These condensation events occur interior to

the permanent dust shell, which is estimated by Williams et al. (1987a) to have an inner

edge at a radius of 180RWR. Based on a Wolf-Rayet radius of 13R� (Howarth & Schmutz

1992), this puts the inner radius of the dust shell at 2340R�. Veen et al. (1998) found that

the condensation responsible for these transient obscuration events must take place at radii
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ranging from 80–800R�. Assuming the distance of 1830 pc from van der Hucht (2001), the

inner radius of the permanent dust shell would have an angular size of 11.9 mas, which is

much larger than anything reproduced in the toy models performed here. The angular size

of the transient dust condensation event interior to this shell modeled by Veen et al, how-

ever, falls right in the “sweet spot” of the interferometer sensitivity in the 1-4 mas range.

Thus, it seems that we have serendipitously observed this source during a dust formation

episode with an instrument that happened to be capable of resolving features on the size

scale of the dust cloud. In an attempt to confirm that the star underwent an “obscuration

event” around the time of our observation, we searched the literature and online archive in

the hope that someone was monitoring this source, but were unsuccessful. While there is

not enough data to constrain these estimates further, these PTI data potentially indicate that

WR 121 was captured during some type of dust obscuration or transient event in mid 2003.

4.3.2 WR 136

Target star WR 136 (HD 192163) has a much studied ring nebula around it, called

NGC 6888. However, the nebula’s large angular size (18’ x 12’, Chu et al. 1983) places

it well outside of our near-infrared interferometer‘s field of view (Moore et al. 2000).

For its spectral type, WR 136 contains an anomalous abundance of Hydrogen, '10% by

mass (Crowther & Smith 1996). Spectroscopically, this star is apparently single, though

there is significant, periodic spectral variability on the order of 4.5 days (Antokhin &

Cherepashchuk 1985). The distance to WR 136 of 1260 pc is well known because of its

proposed membership in the Cygnus OB1 association, based on cluster fitting to the B main

sequence stars (Garmany & Stencel 1992). The terminal velocity, based on Ca IV emission

line width at 3.207 µm, is 1490 km/s (Ignace et al. 2001). Emission features in the near in-

frared are dominated by He II at 2.188 µm and 2.343 µm, and He II blended with He I and H

I at 2.165 µm (Libonate et al. 1995). Mid-infrared observations by Smith & Houck (2001)

show a broad flat absorption feature near 10µm, indicative of warm ('1000K), possibly
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optically thick dust, with a continuum-like stellar spectrum short of 9.6µm. This observa-

tional result is consistent with models of Zubko (1998), where physical models of dust and

gas fitted to optical, NIR and IRAS data predict the inner dust shell radius for WR 136 at

700R∗ and the dust component spectrum peaking near 3µm.

Both the KI baseline and two PTI baselines (the NS 110 m and the NW 86 m) were

unable to resolve any binarity in the WR 136 system in the wideband K observations. This

allows us to put an upper limit on the size of a single star of 1.0 mas, or assuming the

distance of 1260 pc, 0.79 AU, which is a radius of less than 85 D�. A binary with a flux

ratio of up to 0.8:1 would be resolved by these interferometers on these baselines at angular

separations of larger than about 0.5 mas at the declination of WR 136, and so we can rule

out a nearly equal brightness binaries with projected separations of about 0.4 AU or larger

as well. At 1260 pc, a 13R� WR star with a 700R∗ dust radius would be resolved at

approximately 67 mas diameter. This is far outside the range of PTI’s sensitivity, but could

contribute a modicum of incoherent flux, which would serve to lower the measured V2.

Again, because WR 136 was effectively unresolved to PTI, we do not believe we have even

marginally resolved the inner radius of the presumed warm dust shell detected by Smith

& Houck (2001). An imaging interferometer with a shorter baseline, or thermal infrared

sensitivity, may be able to resolve such features in this system.

4.3.3 WR 137

Target star WR 137 (HD 192641) is a long period binary, consisting of a WC7 (MWR =

4.4±1.5M�) and an O9 star (MO = 20±2M�;Lefèvre et al. 2005; Gies 2003). The system

has a period of 13.05± 0.18 years and observed aperiodic dust formation episodes with the

last recorded dust formation maximum occurring in 1997 (Marchenko et al. 1999). These

maxima are thought to be associated with the periastron passage of the O-star and the Wolf-

Rayet, perhaps caused by colliding stellar winds (Lefèvre et al. 2005). A shorter periodicity

has also been observed at 0.83 days by Lefèvre et al. (2005) and colleagues. Polarization
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Figure 4.3 Binary orbit model fits to the wideband interferometer data for WR 137. Both
binary models adopted the values of Lefèvre et al. 2005; the missing angular parameter (Ω
, longitude of the Ascending Node) was varied to find the best fit to the Position Angle and
separation derived from interferometric measurements at a particular phase in two cases.
The resulting models are shown for Rajagopal 2010, yielding Ω = 112◦, and the value that
best agrees with our data, Ω = 137◦. Both agree with the separations predicted by Lefèvre
et al. 2005 to within their published error bars. The data point from PTI’s NW baseline was
taken in poor weather conditions, so we do not consider it to be very reliable.

measurements in visible and near-infrared wavelengths have confirmed an aspherical sym-

metry in the winds (Harries et al. 2000). The terminal velocity of the wind, derived from

P Cygni profiles, is 1885 km/s (Prinja et al. 1990). The most prominent emission features

in the K band are blended C IV at 2.0754 µm and a C III line at 2.1118 µm. Other minor

emission features include C III, He I and He II (Figer et al. 1997). Williams et al. (1987a)

predict the existence of a persistent dust shell atRin = 6130RWR andRout ≈ 2Rin, which
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Figure 4.4 Narrowband Visibilities for WR 137 and their evolution over time. We see little
clear evidence for the strong emission lines between 2.0 and 2.2 microns seen in WR 137
by Figer and McLean. The data, however, are particularly noisy in the shortest and longest
channels owing to atmospheric noise (mostly from water vapor) and the inherent faintness
of the source. We also note the PTI data from June 2003 are much noisier than the KI data
from August of that year.

would correspond at 1.82 kpc (with RWR = 4R�) to an angular size of ≈126 mas, outside

the interferometer’s field of view but possibly capable of contributing to an incoherent flux.

WR 137 was observed on two separate nights at PTI using both the NW and NS base-

lines. Further, there are two data points in the KI archive, which unfortunately only have

one reliable calibrator available for the data reduction. We have resolved the pair in the

wideband observations and also recorded evolution in the visibility over time (Figure 4.3).
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A spectroscopic orbit for this known binary was published by Lefèvre et al. (2005),

the details of which are in Table 4.2. This is essentially a 2-D orbit, where only M sin3 i

is uniquely determined for each star; they adopted published stellar masses to derive the

inclination of 67◦. A seventh orbital element is required to uniquely determine a 3-D orbit,

namely, the longitude of the ascending node, or Ω.

Our interferometric measurements are sensitive to three parameters: the separation,

brightness ratio, and position angle (PA) between the two stars. As such, we are not capable

of producing a full orbital solution. However, if we adopt the published binary parameters,

we are able to use our data to constrain the final orbital element, Ω, that specifies the po-

sition angle between the two stars when they align in the plane of the sky. This parameter

can only be obtained from spatially resolved observations, since it essentially specifies the

orientation of the system as it is projected on the plane of the sky. We can only deduce the

position angle if we assume a certain brightness ratio between the two stars. There is a great

deal of degeneracy between these two parameters, and without more data the best we can

do is rule out a region in binary parameter space. Rajagopal (2010) observed this system

with the Center for High Angular Resolution Astronomy (CHARA) interferometer, where

they obtained closure phase measurements which break this degeneracy. They published a

snapshot of the system including the brightness ratio, PA and angular separation between

the two stars at the time of their observation.

Adopting their value for the brightness ratio allows us to determine (within the errors

of the adopted parameters) the PA between the two stars at the time of measurement by

using the VMT to reproduce the PTI and KI wideband data. We started with the predicted

separation based on Lefèvre et al. (2005) and then explored the local parameter space (PA,

separation and flux ratios) to find the values of those parameters that most closely matched

our observations. It is important to note that this is not a robust fitting procedure; there are

many possible solutions that will reproduce our data. We have merely found those solutions
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that comprise a local minima in the restricted parameter space defined by our assumptions

based on previous studies of this source.

We produce a solution consistent with a separation of 9.32 mas, a PA of 303.7◦ and

fluxes of 60% for the primary, 30% for the secondary and 10% incoherent flux which we

attribute to the unresolvable dust shell. The incoherent flux is consistent with leftover hot

dust from potential dust production events in the recent past. Nevertheless, we find it is

impossible to match the singular PTI NW data point, though we note that the system visi-

bility (58%) that night was very close to our cutoff for discarding the data. This result is not

conclusive, as there is too little interferometric data to constrain well a complicated system

which includes potential dust formation events. However, it may be possible with interfer-

ometric imaging to fully resolve what appears to be a dust enshrouded binary system.

If we adopt the values found above for the separation and PA of the system at the time of

observation and use the phase given by the spectroscopic orbital solution, we can calculate

the last orbital parameter, Ω. We have performed such a calculation and performed fits

to our data, based on the orbit of Lefèvre et al. (2005) and the brightness ratio found by

Rajagopal (2010). We find a PA (measured from the brighter star to the fainter) of 303.7◦

at the time of the PTI measurements, which corresponds to Ω = 137◦.

For comparison, we did the same calculation for the interferometric observations pub-

lished by Rajagopal (2010), again assuming the parameters of Lefèvre et al. (2005), which

leads to Ω = 112◦. The two orbital solutions are plotted with our data points in Figure 4.3;

Table 4.2 contains the full list of binary fit parameters adopted.

4.3.4 WR 140

Target star WR 140 (HD 193793) is a prototypical colliding-wind binary, with a spec-

tral type WC7 + O4-5 and an orbital period of 2899 ± 1.3 days (Marchenko et al. 2003).

Previous periastron passages of this binary have been marked by dust formation episodes
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Figure 4.5 Wideband Visibilities for WR 140. We expect these values to vary in time as
well as with respect to HA, but lack the necessary coverage for a fit.

lasting several months, the last episode occurring in 2001. Near-infrared observations taken

with aperture-masked Keck I in 2001 resolved a complicated partial ring-shaped distribu-

tion attributed to a transient dust shell that formed after periastron passage (Monnier et al.

2002). Radio observations from the VLBA have similarly resolved a bow-shaped emission

region in the wind collision zone between the two components (Dougherty et al. 2005). The

only prominent spectral emission feature of WR 140 in the K-band is a broad, blended C

IV and C III lines at 2.0746 µm and 2.1067 µm with a He I line on the long-wavelength

shoulder of the blended C line at 2.12 µm, respectively (Figer et al. 1997).

This well-known dusty binary was observed on both the NW and NS baselines at PTI,

and can also be found in the archives of the Keck Interferometer. In both data sets, the

star is resolved and evolving in the wideband, with resolved, evolving spectral features
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in the narrowband (see Figures 4.6 and 4.5). The interferometric visibility in the second

spectral channel, centered at 2.12 µm, appears to be less resolved than in the two adjacent

channels. This is suggestive of the spatial distribution of these lines being closer to the

photometric center of the WR 140 system as compared with the stellar continuum and/or

hot dust emission in this system. Many recent studies of spatial-spectral line distributions

using interferometry have been able to demonstrate detailed distributions and physics for

YSOs in particular (c.f. Eisner et al. 2010), and it would be reasonable to expect that

a spectrally resolved imaging interferometer could contribute more information towards

understanding a complex dusty system such as WR 140.

4.3.5 WR 148

Wolf-Rayet star WR 148 (HD 197406) is a single-line spectroscopic binary with an

orbital period of 4.3 days (Smith et al. 1996; Bracher 1979). It is unusually far from the

Galactic plane for a WR star, which along with its peculiar velocity relative to Galactic

plane orbits led Drissen et al. (1986) to classify it as a runaway star possibly ejected from the

Galactic plane by a supernova explosion. The companion is believed to be compact (either

a neutron star or black hole), perhaps enclosed in the WR envelope (Moffat & Isserstedt

1980). Flare events, x-ray emission, long-term variation on the order of years, and random

short-term variability have all been observed (Panov et al. 2000).

This star was observed with the Keck Interferometer (Figure 4.7). The wideband data

appears to be marginally resolved over a small range of hour angles (0.63 to 1.47) over one

night of data comprising a total of 83 visibility measurements. This is consistent with one

of two interpretations, the first being that the source containts a slightly resolved uniform

disk of 1.15 mas. However, the trend in the data toward lower visibilities at the largest hour

angles suggests a second possible interpretation: that WR 148 is an equal brightness binary

of unresolved point sources separated on the order of 0.8mas, preferentially in the direction

of declination. Based on the binary parameters in Table 4.2, at the distance of 8.28 kpc (van
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der Hucht 2001), the binary would not be resolved. Even at the 4.5 kpc kinematic distance

derived by Dubner et al. (1990), which we consider to be a lower limit on the distance, the

average separation would be 0.04 mas, well below the interferometer’s resolution. So either

the WR 148 system is much less distant than previously published, or some type of resolved

dusty distribution is present in this system.

4.3.6 WR 134, WR 135 and WR 139

Due to the stringent seeing requirements needed to observe these sources at PTI, the

resultant data were too sparse to be conclusive in these three cases. WR 134, an apparent

single star, was fringe tracked with PTI and found to be unresolved, although only 3 visibil-

ity points with a great deal of scatter were acquired. It was also unresolved in the archival

KI data, as reported by Rajagopal (2010); and we found this as well even after one bad

calibrator was thrown out and we re-reduced the data. If there is no variation of the V2 with

time, this measurement may serve to place an upper limit on the uniform disk angular size

of 1.0 mas, which at the distance of 1.74 kpc (van der Hucht 2001), corresponds to a phys-

ical diameter of 0.58 AU or 62D�. This might be consistent with resolving a dust shell,

though the data are too sparse to make a definitive conclusion. None of the KI data on WR

135 could be calibrated and it was too faint to attempt with PTI. The most likely reason for

any failure to acquire fringes is an excessively faint and/or over-resolved source. WR 139

was observed on one night with PTI, however only two visibility points were acquired in

marginal seeing (as traced by the high jitter and low system visibilities). As such we choose

not to evaluate this target, except to indicate that it appears possible to fringe track it with a

near-infrared interferometer.
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4.4 Conclusions

We performed observations with PTI, to attempt to resolve the binarity and spectral

features of a handful of Wolf-Rayet systems. This experiment was not intended to derive

orbits as exceptional seeing conditions were necessary to operate on targets at this K-band

magnitude (as faint as Kmag = 6.3). After the data were acquired it was learned that

a similar program at nearly the same time of year had been undertaken at the KI during

initial shared-risk observing in the summer and fall of 2003. With PTI we were able to

fringe track on 4 of the 6 targets. Of these, only WR 121 cannot be confirmed to be a

binary or have a resolved (presumed dusty) distribution in the system. WR 134 and 139

were both able to be fringe tracked with PTI, however the data were considered too sparse

to warrant even rudimentary evaluation. Nevertheless, it is possible to acquire fringes on

both these sources. KI archival data was available on most of these targets as well, and

in a few cases we reduced and added the data to those reported here from PTI to be able

to better describe and constrain the systems. WR 135 and 148 were attempted exclusively

with the KI by another team during shared risk observations in 2003. For WR 148 the data

are consistent with a marginally resolved system, likely a dusty circumbinary distribution

as the single-lined binary is in a very short period orbit. It is clear, especially for imaging

interferometers, that Wolf-Rayet systems are excellent targets as they present complex and

evolving visibilities with resolved spectral features due to emission lines and dust. Given

the stringent NIR magnitude requirements for modern interferometers, about a dozen are

accessible for imaging (i.e., much better UV plane coverage) with VLTI and CHARA.

Observations with these instruments, which offer better spatial resolution, sensitivity and

coverage of the UV plane, have the potential to significantly increase our understanding of

the dust formation and shaping induced by binary interactions, as well as the structure in and

evolution of the winds of single Wolf-Rayet stars. Long-term monitoring of these stars with

an interferometer could improve our understanding of these dust formation events and why
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they occur, and could help us quantify the physics of the wind interactions in binary systems

that shape the circumstellar dust. Next generation instruments, such as the Magdalena

Ridge Observatory Interferometer, will dramatically increase the pool of observable Wolf-

Rayet systems, allowing for statistical characterizations of these fascinating stars.
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Figure 4.6 Narrowband Visibilities for WR 140 and their evolution over time. The 2.1 µm
channel contains a blended C IV, C III and He I emission feature, which appears to be
less resolved, and therefore closer to the photometric center of the star than the hot dust
component, represented by the other continuum-dominated channels.
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Figure 4.7 Wideband visibilities for WR 148. Shown are the models for a 1.15 mas uniform
disk (diamonds) and an equal brightness binary separated by 0.8 mas in the direction of
declination (triangles). With the limited UV coverage available, we find a slight preference
for the second interpretation. This likely requires a re-evaluation of the distance for the
system.
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Chapter 5

Conclusion

In each of Chapters 2-4, we have addressed one aspect of the process that returns stars

to the dust from which they were born. We have discovered that a majority of late-stage

post-AGBs appear to harbor a reservoir of dust near the star, likely in the form of a dusty

waist or disk, where the dust grains coagulate and are processed by radiation from the

central star. These objects also seem to have at least two distinct dust components which

are either spatially segregated from one another (such as in an outflow and a disk) or that

are merely distinguished by their exposure to radiation from the central source (e.g., if

a dusty waist shields radiation from part of the outflow). Models of various formation

scenarios for potential dust reservoirs favor the presence of a binary companion to provide

gravitational focussing in the outflows or direct formation of a circumstellar disk via Roche

Lobe Overflow. Though few binary companions have been observationally detected in post-

AGBs, De Marco (2009) have suggested that all PNe are the result of such interactions.

This is a hotly debated question that remains unanswered. Our data do not detect binarity

directly, but do seem to favor this formation scenario for our sources.

The more massive Wolf-Rayet stars pose an equally vexing question: are they all the

result of binary interactions via Roche Lobe Overflow, or is there a single-star process that

can strip away the outer layers of the star with equal efficiency? To test this hypothesis, we
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took interferometric observations of the few WR systems that are close enough to barely

meet the minimum flux requirements for such observations. Though the data were plagued

by small statistics and large error bars, owing to the fact that they could only be observed

in the absolute best seeing conditions, we were able to conclude that some stars are indeed

binary as well as put upper limits on the separation of any binary companion for others.

All of these studies address the broader question of the role that binarity plays in stellar

evolution. We have discovered that companions, even planet-scale ones, can profoundly

effect the evolutionary path of a star and ultimately the manner of its demise. In addi-

tion, binary companions may provide the physical conditions that make the circumstellar

envelopes of evolved stars rich environments for the formation of a menagerie of complex

molecules, including those that are the basis of life on our planet and potentially others.

5.1 Future Work

5.1.1 Principal Component Analysis: A search for correlations between spec-

tral features, evolutionary status

Several properties of Young PNe (YPN) have been proposed as tracers of the evolu-

tion along the track from post-AGB to PN. The diversity of YPNs, particularly in mass,

dust chemistry, and binarity (still unknown for almost all of the objects in this sample) has

stymied past attempts to find a solid indicator of evolutionary status among these objects.

Thus, as a next step, one could pursue use a Principal Component Analysis (PCA) to tease

out any correlations between the many candidate age indicators. Ideally analysis would

synthesize the results from a spectral fitting procedure, described below. In this way one

may be able to find an observational parameter (or linear combination of a few parameters)

that provide a good diagnostic of the evolutionary status of these objects. If this analysis is

successful, the resulting observational tool would contribute immensely to our understand-

ing of how the C-rich, O-rich, and Mixed chemistry post-AGB stars evolve.
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Each of the columns one could potentially use in a PCA are described below:

1. Transition from Aliphatic to Aromatic: As discussed above, for the carbon-rich sources,

Zhang et al. 2010 suggest that the structure of the carbon dust may transform over

time, from aliphatic to aromatic compounds. As a measure of this, one could use the

ratio of feature strengths at 21, 30, and 10 µ m:

[21]µm+[30]µm
[10]µm

which is the ratio of features attributed to aliphatic compounds to those attributed to

aromatic compounds. This parameter should increase with time if there is a correla-

tion.

2. Ionization Fraction: The most direct method we have to measure the evolutionary sta-

tus of an object is the ionization fraction. As the central star heats up, the ioniza-

tion front travels outward through the circumstellar material, and thus in the simplest

case of uniformly distributed material, the ionization fraction should increase linearly

from the start of ionization to the edge of the envelope. Though this would be easy to

track if we could watch a single object evolve over time, using this measure to place

diverse sources on the same timeline is much more difficult. These sources vary in

the extent of circumstellar material they harbor, the density and opacity of that mate-

rial (and thus the radial velocity of the ionization front), and of course the mass of the

central stellar remnant (which affects the rate at which the heating progresses, again

affecting the speed of the ionization front). There are two measures of the ionization

fraction that one can test for correlation: the AIB and H2 ionization fractions. These

ratios are a measure of the degree of ionization in the carbon dust and H2 molecules,

respectively.

3. Grain Growth: Another observational quantity that evolves over time in these sources

is the size of the dust grains, as we have previously mentioned. The AIBs detected in

the IRS wavelengths of our Carbon-rich sources are attributed to specific grain sizes,
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as discussed in Ch. 2. Thus, one could test this parameter as a potential measure of

evolutionary state.

4. Amorphous SiC: The 11.3 µm feature detected in many of our Carbon-rich sources has

been attributed to amorphous SiC, and is thought to change from emission to absorp-

tion in the post-AGB to PN phase. Thus, one can test this as a potential diagnostic of

evoluti

5. Central Star Temperature: As discussed in Ch. 2, we have derived central star tem-

peratures from published Spectral Types for our sources. Though the uncertainties

in these values are large, one could nontheless use it as a potential age indicator for

these sources.

6. Amorphous Silicates: The features detected in our Oxygen rich sources at 9.9, 10, and

19 µm have been attributed to amorphous silicates, and both the strength of these

features and their central wavelengths are proposed to evolve over time. Thus, one

can use these measures in a test for correlations as well.

7. Crystalline silicates: The infrared emission detected in many of our Oxgen-rich sources

at 11.3, 16.2, 19,7, 23.7, 28, and 33.6 µm are due to crystalline silicates. These

grains are thought to form via thermal annealing, and are thus excellent indicators

of the stability of the dusty reservoir near the star, as well as the characteristics of

the radiation coming from the central star. In addition, the percentage of silicates in

crystalline form indicates the degree of dust processing within the reservoir. Both of

these can also be used to trace evolutionary status.

This analysis, though ambitious, may provide the pivotal clue astronomers have failed

to find so far: the key to unlocking the evolutionary relationship between the astonishingly

diverse range of dying intermediate-mass stars.

115



Bibliography

Allen, D. A., Barton, J. R., & Wallace, P. T. 1981, MNRAS, 196, 797

Allen, D. A., Swings, J. P., & Harvey, P. M. 1972, A&A, 20, 333

Antokhin, I. I., & Cherepashchuk, A. M. 1985, Soviet Astronomy Letters, 11, 355

Bachiller, R., Forveille, T., Huggins, P. J., & Cox, P. 1997, A&A, 324, 1123

Balick, B., & Frank, A. 2002, ARA&A, 40, 439

Bartzakos, P., Moffat, A. F. J., & Niemela, V. S. 2001, MNRAS, 324, 18

Blackman, E. G., Frank, A., Markiel, J. A., Thomas, J. H., & Van Horn, H. M. 2001, Nature,

409, 485
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