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ABSTRACT 

 

 

This study presents a new approach to determine the controllability and 

observability of a large scale nonlinear dynamic thermal system using graph-theory. The 

novelty of this method is in adapting graph theory for nonlinear class and establishing a 

graphic condition that describes the necessary and sufficient terms for a nonlinear class 

system to be controllable and observable, which equivalents to the analytical method of 

Lie algebra rank condition. The graph theory of a directed graph (digraph) is utilized to 

model the system, and the rule of its adaptation in nonlinear class is defined. 

Subsequently, necessary and sufficient terms to achieve controllability and observability 

condition are investigated through the structural property of a digraph called 

connectability. It will be shown that the connectability condition between input and 

states, as well as output and states of a nonlinear system are equivalent to Lie-algebra 

rank condition. This approach has been proven to be easier from a computational point of 

view and is thus found to be useful when dealing with a large system. 
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Chapter One 

 

INTRODUCTION 

 

 

 This introductory chapter gives the motivation and problem statement for the 

research, as well as the overview of the thesis. 

 

 

1.1 Motivation 

 

Commercial buildings are a significant and growing consumer of global energy 

resources. America’s 4.9 million commercial buildings span a great variety of functions, 

sizes, operating schedules and types, from large “24/7” hospitals to small retail stores. 

Providing the necessary energy services in these buildings (lighting, comfort, fresh air, 

cooking, and power for computers and other equipment) required 6,500 trillion Btu of 

energy in 2003, 18% of the USA annual energy use as indicated on Department of 

Energy’s Website. Commercial buildings also constitute the most electric-intensive sector 

in the country; 55% of their energy needs are provided by electricity, while 32% are 

provided by natural gas. The growth of energy usage and the energy crisis together with 

the realization that energy resources are not inexhaustible, and the general trend towards 
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a cleaner environment, have led to the development of many practices that aim at using 

energy as "optimally" as possible. This has materialized in the commercial building 

sector in the form of building equipment refinements and control system improvements.  

In the refinement of building equipment, one of the significant trends, which 

becomes the interest of this research, is the idea for distributed power generation – 

namely, the notion of power sources near the end user - such as a microturbine, especially 

with a conjunction of combined heat and power technology (CHP). This technology has 

received increasing attention by the general public due to its great potential to supply 

both thermal and electrical energy, which increase its fuel utilization up to 85% compared 

to a single electrical only type of distributed power generation as indicated in Department 

of Energy’s Website.  Furthermore, CHP also improves power quality and reliability as 

well as transmission and distribution system support, while at the same time lowering the 

greenhouse gas production. Since the capital cost of installing such equipment can greatly 

influence the decision making process, it is desirable to more fully utilize the energy 

produced. Hydronic radiant floor heating, absorption and desiccant cooling equipment, 

are examples of thermally activated equipment that can be interconnected with CHP. 

Furthermore, with deregulation in utility industry, some states also allow the end user to 

sell their own electricity produced back to them by interconnecting the CHP with the 

grid.   

In control system improvement, application of optimal control has shown the 

potential to reduce U.S. commercial building energy consumption by about roughly 10% 

of current total use [Quartararo, Roth and Brodrick 2006, 66-68]. In addition, control 

systems offer significant peak demand reduction potential.  An optimal control system is 
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an emerging system that aims to optimize building energy cost and consumption, while at 

the same still maintaining the productivity of the building. In a typical office building, for 

example, to keep the productivity of the occupants in it, its energy use accounts for 30 

percent of operating costs which is the largest single category of controllable costs. This 

condition opens a lot of potential for optimal control to reduce its energy usage while still 

maintaining the occupants’ productivity. 

 As the building systems to be controlled become more interconnected, it becomes 

more difficult to design the controller for optimizing system operation. Mathematical 

model of the system becomes larger and more complex due to the nonlinearity of the real 

system. These high dimensionalities, nonlinearities, and complexities of interconnection 

in such a large-scale system provide difficulties not only in modeling, control or 

optimization, but also in the fundamental issues of stability, controllability, and 

observability. The problem of assessing these structural properties becomes much more 

difficult. This thesis is an effort to meet these challenges, especially in the analysis of 

structural properties of controllability and observability, which becomes the main interest 

of this research. 

 

 

1.2 Background 

 

Research in the area of controllability and observability of nonlinear systems has 

been addressed in many works [Lee and Marcus 1961; Hermann 1963; Hermes 1964; 

Balakrishnan 1966; Mohler and Rink 1968; Haynes and Hermes 1970; Kucera 1970; 
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Brockett 1972; Jurdjevic and Sussmann 1972; Kreener 1974; Brockett 1975; Hermann 

and Krener 1977; Sussmann 1983; Sussmann 1987]. The necessary and sufficient 

conditions to achieve this property are very well established for several form of nonlinear 

systems. These conditions have been established using essentially differential geometric 

approach. However, the use of such tools always assumes the exact knowledge of the 

state space matrices which characterized the system’s model. In many modeling 

problems, these matrices have a number of fixed zero entries determined by the physical 

laws while the remaining entries are not known precisely. To study the properties of these 

systems in spite of the poor knowledge, the idea is to keep the zero/non-zero entries in 

the state space matrices. Therefore, a model that conserves the fixed zeros while 

replacing the non-zero entries with a free parameter is considered. There are a huge 

amount of interesting works in the literature using this type of modeling technique [Lee 

and Marcus 1967; Lin 1974; Shields and Pearson 1976; Reinschke 1984]. The obtained 

model is called the structured model. These models are useful to describe the class of 

systems having the same structure because they capture most of the available structural 

information from physical laws. Moreover, their study requires a low computational 

burden which allows one to deal with large-scale systems. Because of these features, the 

structured systems are adapted to study properties like the controllability and 

observability. This thesis deals with this kind of system. 

Many results on structured systems use graph-theoretic approach. This approach 

is mainly dedicated to linear systems for which many structural properties such as 

controllability, observability and stability of several classical control problems have been 

addressed [Lin 1974; Shields and Pearson 1976; Glover and Silverman 1976; Reinschke 
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1984]. Furthermore, from these studies, it follows that graph-theoretic approach provides 

simple and elegant solutions and so is very well suited to analyze large-scale systems 

[Gilbert 1963; Chen and Desoer 1970; Brasch and Pearson 1971; Bhandarkar and  

Fahmy 1972; Grasselli 1972; Ito and Yonemura 1972; Klamka 1972; Hwang and 

Wolovich 1974; Davison and Wang 1975; Davison 1977]. Unfortunately, the number of 

studies utilizing graph-theory in nonlinear system is limited. There is clearly a need for 

the same type of approach for handling nonlinear systems, as well as the large-scale 

version of it. 

 

                                                                                                                                               

1.3 Proposed Research 

 

The objective of this research is to develop a simple theoretical analysis for 

controllability and observability of large-scale nonlinear systems with applications to 

thermal dynamic systems, which represent a building’s energy system considered in this 

research. More precisely, the proposed research provides a simple necessary and 

sufficient condition to achieve controllability and observability of a nonlinear system 

using graph-theoretic approach. Furthermore, it is anticipated that the result of this 

research is equivalent to the differential geometric based controllability and observability 

criteria and is suitable to tackle large-scale system. 

Most widely used controllability and observability analysis methods require full 

knowledge of the system to be controlled. Furthermore, these methods are 

computationally intensive, thus it is appropriate to handle smaller scale type of systems, 
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that is, systems in the order of less than ten. However, given today’s engineering problem 

that is characterized with high dimensionalities and nonlinearities, conventional analysis 

methods are insufficient. Controllability and observability analysis for a large scale linear 

system has been addressed through the use of structural controllability and obseravability 

techniques which take advantage of the sparsity structure that a large-scale system 

carries. However, few researches have addressed this subject for large-scale nonlinear 

system.   

In this research the following subjects are expected to be developed: 

1. Develop a graph theoretic approach for nonlinear system structural properties 

analysis as a way to manage a large-scale version of such class 

2. Develop a method to evaluate the necessary and sufficient condition for 

controllability and observability of a nonlinear system based on the graph theory 

approach 

3. Apply the obtained method to investigate the controllability and observability of 

real life problems such as building energy systems  

 

 

1.4 Thesis Overview 

 

 Chapter two presents a comprehensive review of the area of controllability and 

observability for linear and nonlinear systems as well as for structured and large-scale 

systems. Given that the testbed of this research is thermal related energy building 

systems, Chapter three focuses on the theoretical basis for thermal dynamic system 
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models development that is utilized for control design purposes. This includes a digraph 

model representation for nonlinear systems that is proposed in this research. The 

modeling theory described in Chapter three is subsequently applied to the actual, real life 

system under research and the obtained model is presented in Chapter four. The 

derivation of graph-theoretic approach for analyzing the controllability and observability 

of a structured nonlinear system is discussed in Chapter five. The derivation includes 

graph-theoretic definitions that are utilized to satisfy necessary and sufficient conditions 

for a class of nonlinear systems to be controllable and observable. The proof that the 

proposed method is equivalent to the Lie algebra rank condition is also presented. 

Chapter six describes the application of the proposed method to investigate a large-scale 

structured nonlinear thermal dynamic system that is considered in this research. A 

summary of the research results, conclusion and future work is presented in Chapter 

seven. 
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Chapter Two 

 

LITERATURE REVIEW 

 

 

 To obtain an appreciation for the work related to controllability and observability, 

it is the goal of the literature review to familiarize the reader with past and present work 

in the field.  Due to the relevance of the main research topic of this dissertation, much of 

this chapter will focus on past and present success in the area of controllability and 

observability for systems such as: linear dynamic systems, structured systems, large-scale 

systems and non-linear systems. These results were selected since they are considered as 

the groundwork for this research.   

   

 

2.1 Introduction 

 

The two structural properties that play a fundamental role in both the theoretical 

and practical aspects of control design are controllability and observability (C&O). 

Controllability deals with the ability of a dynamic system to steer its state from the initial 

condition to some desired state by controlling its inputs over a finite amount of time. 

Observability, on the other hand, deals with the ability of a dynamic system to reconstruct 
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or identify the rest of the states’ information given partial measurement of the system 

e.g., inputs and outputs. Figure 1 and 2 illustrate these concepts. 

 

 

Figure 1: Controllability [Willems 2005, 3] 

 

y(t) x(to)y(t) x(to)

 

Figure 2: Observability [Willems 2005, 5] 

 

To better understand how the concept of controllability and observability of a 

system play an important role in control theory, consider the following example.  A 

typical linear dynamic closed-loop system is described by Figures 3 and 4. 
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r u xx' = Ax+Bu

 y = Cx+Du

State-Space

G

 

Figure 3: Control System with State Feedback 

r u cx' = Ax+Bu

 y = Cx+Du

State-Space1

G Observer
x-bar

 

Figure 4: State Feedback Control with Observer 

 

Assume that a state space system in Figure 3 and 4 can be described by Equation 

2.1:  

( ) ( ) ( )
( ) ( )tCxty

tButAxtx

=

+=&
         (2.1) 

A closed-loop system is established by feeding back the state variables x through a 

constant feedback matrix G which modifies the input function ( )tu  to the following 

function: 

( ) ( ) ( )trtGxtu +−=          (2.2) 

 

The closed loop system of Equation (2.1) is consequently transformed into Equation (2.3) 

where feedback matrix G is now incorporated:  

( ) ( ) ( ) ( )tBrtxBGAtx +−=&         (2.3) 
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The solution to the control system with state feedback is determined by whether or not a 

feedback matrix G can be derived; that is, if Eigenvalues of ( )GBA ⋅− of the closed-loop 

system are of certain prescribed values. The existence of the solution to this Eigenvalues 

Technique (also known as Pole Placement Technique), is directly based on the concept of 

controllability. The system of 2.1 is said to be controllable if there exists a constant 

feedback matrix G that grants the Eigenvalues of ( )GBA ⋅− to be arbitrarily assigned.  

Furthermore, when the state variable’s information is being utilized as the feedback 

controller, this algorithm requires that the state variables are accessible.  

However, feeding back states of the system holds two practical limitations during 

the design process. First, when the number of state variables for feedback is excessive, 

the cost of sensing each of these state variables can be unaffordable.  Second, the 

feedback control cannot work as expected when all of the state variables are not directly 

accessible from the system. Figure 4 shows the block diagram of a closed-loop system, 

which can overcome this shortcoming through the use of an observer which estimates the 

system state variable from the system output ( )tc . The observer estimates the state vector 

barx − based on the observable output ( )tc , which subsequently is utilized by the 

feedback matrix G to generate the control input ( )tc . When such an observer is attainable 

from a system described by Equation 2.1, the system is said to be observable.  
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2.2 Controllability and Observability of Linear Systems 

 

When modern control theory set the stage in the 1950s through the introduction of 

state-space model concepts, optimal control was born. During the development process of 

this optimal control, it was recognized that certain non-degeneracy assumptions were 

needed in establishing the results, that is, under what condition that a dynamic linear 

system is controllable in its entire state-space?  However, it was not until the 1960s that 

the property of controllability was finally introduced by Kalman [1960, 1], which was 

applied to characterize the degrees of freedom available when attempting to control a 

system. Kalman and his team developed a method of testing called controllability rank 

test that is performed on a certain matrix called the controllability matrix constructed 

from the state-space matrices of a dynamic linear system. By using this rank condition 

test, the ability for control input to affect the state vector can be investigated; hence the 

controllability of a dynamic linear system can be determined. Another topic that was 

raised during the modern control era is state feedback control, that is, a control system 

that utilizes system input as a function only of the current state vector. However, in many 

control situations the system state vector is not available for direct measurement which 

makes it difficult to evaluate the control input functions. The device which reconstructs 

this state vector is called an observer which is itself a linear system driven by the 

available output and inputs to the original system. The ability for the system to obtain an 

observer is tested by using the observability rank test condition also developed by 

Kalman [1960, 1] and Luenberger [1964, 74]. The observability rank test condition is 

performed on a certain matrix formed by the state-space matrices of a dynamic linear 
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system, called observability matrix. Both of Kalman’s simple rank conditions for 

controllability and observability are ubiquitous in linear system analysis. 

The basic theory of controllability and observability of linear systems developed 

by Kalman is described as follows. A control system represented by continuous linear 

time invariant (LTI) systems with the following general form of state-space models is 

considered: 

( ) ( ) ( ) ( )
( ) ( ) ( )




==

+==
=Σ

tCxxgty

tButAxuxftx ,&
     

( )
( )EquationOutput

EquationState

−

−

;

;
    (2.4)  

where ( ) ( )0xtx o = being initial condition; and ( ) ntx ℜ∈ , ( ) pty ℜ∈ , ( ) ltu ℜ∈  being the 

state, output, and input vectors of finite dimensional space; and nn
A

×ℜ∈ , 

ln
B

×ℜ∈ , np
C

×ℜ∈  being time-constant, input and output matrices with constant (time-

independent) elements. The following definition describes the state-space model that 

represents Equation 1.  

Definition 2.2.1 (State Space Representation): 

The state space representation (SSR) that is described by Equation 2.4 is the triplet of 

constant matrices (A, B, C). The dimension of an SSR is the dimension of the state 

vector: ( )[ ] ntx =dim . The state space χ is the set of all states: 

( ) χ∈tx , [ ] n=χdim . 

 

2.2.1 Controllability 

 Here the state controllability of an LTI system according to Kalman [1960, 1] is 

considered and is defined as the following: 
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Definition 2.2.2 (State Controllability): 

A state space model of a system is called state controllable if it is possible to drive any 

state ( )1tx  to any other state ( ) ( )12 txtx = that is desired with an appropriate input in finite 

12 ttt −= time. 

 In the case of an LTI system, the above definition is specialized to the following:  

Definition 2.2.3 (LTI State Controllability): 

A state space model of an LTI system given by its realization matrices ( )CBA ,,  is called 

state controllable if it is possible to drive any state ( )1tx  to any other state ( ) ( )12 txtx ≠  

that is desired with an appropriate input in finite time 12 ttt −= . 

 Subsequently, in order to determine the controllability of an LTI system, the 

following theorem defines its necessary and sufficient condition:   

Theorem 2.2.1 (Controllability Rank Test): 

A state-space model of an LTI system with realization matrices  ( )CBA ,,  is state 

controllable if and only if the controllability matrix [ ]BABAABBC
n

n

12 −= K  is 

of full rank, that is [ ] nCrank n =  

 

2.2.2 Observability 

Here the state observability of an LTI system according to Kalman [1960, 1] is 

considered and is defined as the following: 

Definition 2.2.4 (State Observability): 

Given the inputs and the outputs of a system over a finite time interval, if it is possible to 

determine the value of the states based on these values and a state-space system model as 
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functions of inputs and outputs as well as its derivatives, then the system is called state 

observable. 

 In the case of an LTI system, the above definition is specialized to the following:  

Definition 2.2.5 (LTI State Observability): 

Given a state-space model by its realization matrices ( )CBA ,, and the measured input 

and output signals ( ) ( ){ }
fo ttttytu ≤≤|, , the system is state observable if the state 

signal x at a given time 0t , such that ( )0tx  can be determined.  

 Subsequently, in order to determine the state observability of an LTI system, the 

following theorem defines its necessary and sufficient condition:   

Theorem 2.2.2 (Observability Rank Test): 

Given a state-space model of a LTI system by its realization matrices ( )CBA ,, , this state-

space model is state observable if and only if the observability matrix 

[ ]12 −= n

n CACACACO K  is of full rank, that is [ ] nOrank n = .  

 

 

2.3 Controllability and Observability of Nonlinear System 

 

 The following is the basic theory of nonlinear controllability and observability in 

a differential geometric approach that were gathered from the works of Lee and Marcus 

[1961, 36-58], Hermann [1963, 325-332], Hermes [1964, 241-260], Balakrishnan [1966, 

465-568], Mohler and Rink [1968, 477-486], Haynes and Hermes [1970, 450-460], 

Kucera [1970, 160-168], Brockett [1972, 265-284], Jurdjevic and Sussmann [1972, 95-

116], Kreener [1974, 43-52], Brockett [1975, 54-63], Hermann and Krener [1977, 728-
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740], Sussmann [1983a, 1-116; 1987b, 158-194]. Nonlinear finite dimensional systems, 

which represent a wide class of nonlinear system is considered in this study. The general 

form of state space models of finite dimension nonlinear system is described by Equation 

2.5. 

( ) ( ) ( )( )

( ) ( )( )





=

=
=Σ

txhty

tutxftx
~

,
~

&
     

( )
( )EquationOutput

EquationState

−

−

;

;
          (2.5) 

where x , u , y  being the state, input and output vectors and  

nmn
f ℜℜ×ℜ a:
~

, 
pmn

h ℜℜ×ℜ a:
~

 being the smooth nonlinear mappings. If the 

nonlinear functions f
~

and h
~

above are in a special form, an input-affine form is obtained: 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( )





==

+==
=Σ

∑ =

txhtxhty

tutxgtxgtutxftx
m

i ii

~

,
~

10
&

     
( )
( )EquationOutput

EquationState

−

−

;

;
  (2.6) 

with the same state, input, and output vector x , u , and y as  above, and with the smooth 

nonlinear mappings nn

ig ℜℜ a: for mi ,,1,0 K= , pn
h ℜℜ a: . It is important to 

observe that the input signals enter into the input-affine nonlinear state-space model in a 

linear way, that is, the mapping f
~

in the original general nonlinear state-space model in 

Equation 2.5 is linear with respect to u . 

From the nonlinear control system theory point of view, the state-space model of 

a nonlinear system Σ in Equation 2.6 is considered to represent a nonlinear control 

system whose system state x evolves on an n-dimensional smooth connected 

manifold M . ( ) Mtx ∈  is the state of the system at time ℜ∈t where 
nM ℜ⊆  (an open 

subset of nℜ ), ( ) ( )tutu mK,1 are real valued input functions that are piecewise constant 

and can take any value in an open interval ℜ⊆Ι containing zero, and ( ) pty ℜ∈ are the 
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output vectors. nn
g ℜℜ a:0 is the drift vector field (analytic) on M , and 

nn

ig ℜℜ a: for mi ,,1 K= are control vector fields (analytic) on M . It is assumed that 

the system Σ  is complete, that is, for every bounded measurable input ( )tui  and every 

Mx ∈0 there exists a solution to ( ) ( )( )tutxf ,
~

such that ( ) 00 xtx =  and ( ) Mtx ∈  for all 

ℜ∈t . Notation ( ) [ ]( )10 ,, tttu is used to denote functions defined on [ ]10 , tt . In response to 

a set of constant inputs, the state of the system evolves along an integral curve of one of 

these vector fields. More generally, the state trajectory generated by a piecewise constant 

input vector will be composed of several segments, each of which lies along the integral 

curve of one of these vector fields. 

Furthermore, the control variable u represents the externally applied control 

inputs to the systems and the output variable y represents the observable parameters of 

the system. The state variable x may or may not be directly measurable and is used to 

represent the memory of the system. The past history of Σ affects its future evolution 

only through information conveyed by this variable. Since the study is geared toward the 

local rather than global analysis, U is denoted as an open neighborhood of Mx ∈0 . 

 

2.3.1 Controllability of Input-Affine Nonlinear System 

 The problem statement of controllability in the nonlinear system case is 

characterized by the set of states that are reachable from a given initial state [Isidori 1995, 

1-99]. The following definitions describe these concepts.  
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Definition  2.3.1 ( reachableU − ): 

Given a subset MU ⊆ , 1
x is reachableU − from 0

x (denoted by 01
xRx U ) if there exists 

a bounded measurable control ( ) [ ]( )10 ,, tttu satisfying ( ) Ω∈tu  for [ ]10 , ttt ∈  such that the 

corresponding solution ( ) [ ]( )10 ,, tttx of differential equation (2.6) satisfies ( ) 00 xtx = , 

( ) 11 xtx = and ( ) Utx ∈ for all [ ]10 , ttt ∈ . Denote ( ) { }0110 : RxxMxxR ∈=  the set of 

points reachable from 0
x   

 Based on this definition, the state controllability for a nonlinear system in general 

is defined as follows: 

Definition 2.3.2 (State Controllability): 

The system Σ is said to be controllable at 0
x if ( ) MxR =0 and Σ controllable if 

( ) MxR = for every Mx ∈  

This definition however may result in a longer time to reach the point near 0
x . 

Therefore, a stronger notion of controllability is addressed locally which requires that the 

trajectory stay near 0
x . 

Definition 2.3.3 (Local State Controllability): 

The system Σ is said to be locally controllable at 0
x if for every neighborhood U of 0

x , 

( )0
xRU  is also a neighborhood of 0

x ; Σ is locally controllable if it is locally controllable 

at every Mx ∈  

Subsequently, a controllability distribution C∆ is formulated.  The controllability 

distribution C∆ is the nonlinear analog of linear controllability matrix that is constructed 

using the Lie algebra of vector fields ( ) ( )( )tutxf ,
~

 on M  corresponding to constant 
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control Ι∈u . Hence, the controllability distribution C∆  is equivalent to the 

controllability matrix nC of a linear system. It was suggested that if the dimension of 

C∆ is constant or if the system Σ  is analytic, then there exists a unique maximal 

submanifold 'M of M through 0
x which carries all the trajectories of Σ passing through 

0
x such that any point on this submanifold can be reached from 0

x going forward and 

backward along the trajectories of the system. In particular if the dimension of ( )0
xC∆ is 

n then MM =' . Hence, the system is “controllable” in some sense. The following 

theorems define the necessary and sufficient conditions for a nonlinear system to be 

locally controllable. 

Theorem 2.3.1 (Controllability Rank Test): 

It is said that Σ satisfies the controllability rank condition at 0
x if in a neighborhood of 

0
x , [ ] nC =∆dim . If this holds for all Mx ∈0 , then Σ satisfies the controllability rank 

condition. Thus, if Σ  satisfies the controllability rank condition at Mx ∈0 , then Σ has 

the local reachability property at 0
x  

On the basis of the above explanation, clearly the first step toward the analysis of 

local controllability of a nonlinear system is to find R, which in this case is established 

through the derivation of a controllability distribution ∆ C using the Lie bracket.  Isidori 

[1995, 1-99] proposes an algorithm for constructing the controllability distributions as 

follows: 
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Algorithm for Constructing the Controllability Distribution 

1. Starting Point: ∆ 0 = span{g1, …, gm} 

2. Development of the controllability Distribution: ∆ k = ∆ k-1 + [ ]∑
=

−∆
m

i

kig

0

1,  

Note that one term in the last sum [ ]1, −∆ kig  is computed by using the functions 

(φ 1,…, φ l) spanning the distribution ∆ k-1: [ ]1, −∆ kig  = span {[g1, φ 1], …, [g1, φ l] } 

3. Stopping Condition: If ∃ k* such that ∆ k = ∆ k-1, then ∆ C = ∆ k* = 00 |,, ∆mgg K  

Once the controllability distribution is established, the reachable set rank test condition 

can be performed. 

 

2.3.2 Observability of Input-Affine Nonlinear System 

The problem statement of observability in the nonlinear system focuses on finding 

the condition where the initial state 0
x can be distinguished given the output 

measurement [Isidori 1995, 1-99]. Therefore, the definition on distinguishability, or in 

this case indistinguishability as well as observability, is presented here: 

Definition 2.3.4 ( ishableindistinguU − ): 

Given a subset MU ⊆ , and Uxx ∈10 , , 0
x is ishableindistinguU − from 1

x (denoted 

01
xIx U ) if for every control ( ) [ ]( )10 ,, tttu  whose trajectories ( ) [ ]( )100 ,, tttx and 

( ) [ ]( )101 ,, tttx from 0
x and 1

x both lie in U , fails to distinguish between 0
x and 1

x , such 

that, if ( ) Utx ∈0 and ( ) Utx ∈1 for [ ]10 , ttt ∈ , then ( ) [ ]( ) ( ) [ ]( )1010
,,,, 10 tttutttu

xx
Σ=Σ . 

Denote ( ) { }0110 : IxxMxxI ∈=  the set of points indistinguishable from 0
x   
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Based on this definition, the state observability for a nonlinear system in general is 

defined as follows: 

Definition 2.3.5 (State Observability): 

The system Σ is said to be observable at 0
x if ( ) { }00 xxI =  and Σ is observable if 

( ) { }xxI = for every Mx ∈  

However , this definition may result in a longer time to distinguish a point near 

0
x . Therefore, a stronger notion of observability that is addressed locally is introduced. 

Definition 2.3.6 (Local State Observability): 

The system Σ is said to be locally observable at 0
x if for every neighborhood U of 0

x , 

( ) { }00
xxIU =  ; Σ is locally observable  if this is true for every Mx ∈  

In the spirit of the approach to nonlinear controllability described previously, an 

analogous method to the observability for a nonlinear system is developed for nonlinear 

systems. The relevant object in this study is the observation space OΩ , the smallest linear 

space of functions on M which contains the observations ( ) ( )xgxg n,,1 K  which are 

closed with respect to Lie differentiation by vector fields ( ) ( )( )tutxf ,
~

, and the 

differentials of Ω  denoted by Ωd . It is suggested that if the dimension of OdΩ  is 

constant over M then indistinguishability exists over M . In other words, there exists a 

system with the same input-output behavior as Σ , but which is “observable” in the sense 

that neighboring points are distinguishable. In particular, if the dimension of Ωd is 

always m then Σ has this property. 

The following theorems define the necessary and sufficient condition for a 

nonlinear system to be locally observable. 
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Theorem 2.3.2 (Observability Rank Test): 

Σ satisfies the observability rank condition at 0
x if in a neighborhood of 0

x , 

[ ] nd O =Ωdim . If this holds for all Mx ∈0 , then, Σ satisfies the observability rank 

condition. Thus, if Σ  satisfies the observability rank condition at Mx ∈0 , then Σ has the 

local distinguishability property at 0
x  

Based on the above explanation, the first step toward the analysis of local 

observability of nonlinear systems is to construct the observability co-distribution that is 

based on Observation space Ω using the Lie derivative on its output function and vector 

field.  Isidori [1995, 1-99] proposes an algorithm for constructing the observability co-

distributions d Ω  as follows: 

Algorithm for Constructing the Observability Co-Distribution 

1. Starting Point: Ω 0 = span{dh1,…,dhp} 

2. Development of the observability Distribution:  Ω k = Ω k-1 + 1

0

−

=

Ω∑ k

m

i
igL  

3. Stopping criterion: if there exists an integer k* such that Ω k* = Ω k*-1, then  

Ω 0 = Ω k* = 00 |,, Ωmgg K  

Once the observability co-distribution is established, the observability rank test condition 

can be performed. 
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2.4 Controllability and Observability of Structured Systems 

 

The controllability and observability in the framework of traditional control 

theory assumes the exact knowledge of the state space matrices characterizing the 

system’s model. In many modeling problems however, these matrices have a number of 

fixed zeros entries determined by the physical laws while the remaining are not known 

precisely. To study the properties of these systems in spite of poor knowledge, the idea is 

to preserve the zero/non-zero entries in the state space matrices. Thus, models where the 

fixed zeros are conserved while the non-zeros are replaced by free parameters are 

considered here. This kind of model is called a structured model and is very useful to 

describe the class of systems having the same structure. They capture most of the 

structural information available from physical laws.  

Interestingly, the study of structured systems may be considered to have been 

started with Lin [1974, 201-208], and also in later papers Glover & Silverman [1976, 

534-537] and Shields & Pearson [1976, 203-212], where they all studied controllability 

and observability of structured systems. Lin proposed the notion of structural 

controllability and observability for structured linear systems, where instead of using 

numerically given matrices A, B and C, the corresponding structure matrices [ ]A , [ ]B , and 

[ ]C of the same dimensions are considered. Furthermore, the structural rank condition is 

utilized to test it. This proposed theory is based on Lin’s previous theory, which proves 

that a property of a system holds structurally for a structurally equivalent system if the 

property under investigation holds numerically for almost admissible numerical 

realizations. Thus, structural controllability and observability become the process of 
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analyzing whether or not at least one admissible realization of a system, with the same 

structure that is controllable and observable in the usual numerical sense, exists. 

Furthermore, Lin also introduced a graph theoretic concept, where the structured system 

is represented by a graph, and structural controllability and observability analysis can 

now be investigated based on the connectability between the system states with the input 

and output, respectively.  Later on, Glover & Silverman [1976, 534-537] and Shields & 

Pearson [1976, 203-212] extend Lin’s study [1974, 201-208] to multi input and multi 

output systems where both concentrated on an analytic approach.  

 

2.4.1 Structure Matrices and its Properties  

 The following definitions are needed to better understand the concept of a 

structured system [Lin 1974; Shields and Pearson 1976; Reinschke 1984]. First, given a 

general matrix Q , its structure matrix [ ]Q is defined as follows: 

Definition 2.4.1 (Structured Matrix): 

The elements of a structure matrix [ ]Q  are either fixed at zero or indeterminate values 

which are assumed to be independent of one another. 

[ ]




=
V

Q
ji

0
,

     
otherwise

wif ij ,0=
        (2.7) 

Hence, [ ]Q  is the characteristic matrix of the non-zero entries of Q . 

 Furthermore, when the sign of the matrix element is very important to be 

maintained e.g. for system property analysis, the signed structure matrix { }Q represents 

the signed structure of a matrix Q .  
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Definition 2.4.2 (Signed Structured Matrix): 

The elements of a structure matrix { }Q  are either fixed at zero or indeterminate values 

which are assumed to be independent of one another. 

{ }





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−

+=

V

VQ ji

0

,      

,0

,0
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<
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ij

ij

wif

wif

wif

 

 The following definitions describe the basis of a structured system. They are 

applied to develop structural properties of structured systems. 

Definition 2.4.3: 

A numerically given matrix Q is called an admissible numerical realization (with respect 

to [ ]Q ) if it can be obtained by fixing all indeterminate entries of [ ]Q  at particular values. 

Two matrices 'Q and "Q  are said to be structurally equivalent if both 'Q  and "Q  are 

admissible numerical realizations of the same structure matrix [ ]Q . 

Definition 2.4.4: 

A property holds structurally within a class of structurally equivalent systems if the 

property under investigations holds numerically “for almost” all admissible numerical 

realizations. 

 Using the basis of structured system theory defined above, structural properties 

can now be derived. Structural Rank is one of the structural properties that is essential in 

deriving the concept of structural controllability and observability. 

Definition 2.4.5 (Structural Rank): 

A set of independent entries of [ ]Q  are defined as a set of indeterminate entries, no two of 

which lie on the same line (row or column). 
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The structural rank (for short, s-rank) of [ ]Q is defined as the maximum number of 

elements contained in at least one set of independent entries. 

It should be noted that the s-rank of [ ]Q is equal to the maximal rank (in the usual 

numerical sense) of all admissible numerical matrices Q. 

 

2.4.2 Structural Controllability 

 When the concern in the controllability analysis is in the form of structured 

matrices, structural controllability is applied to ensure the given structured system is 

controllable [Lin 1974; Shields and Pearson 1976; Glover and Silverman 1976; Reinschke 

1984]. Hence, the following definition is applied.  

Definition 2.4.6 (Structural Controllability): 

A class of systems given by its structure matrix pair [ ]BA, is said to be structurally 

controllable (for short, s-controllable) if there exist at least one admissible realization 

( ) [ ]BABA ,, ∈ being controllable in the usual numerical sense  

 Furthermore, in order to determine if the structured system is structurally 

controllable, the necessary and sufficient conditions that must be satisfied are described 

by the following theorem. 

Theorem 2.4.1: 

A linear system with structure matrices [ ] [ ] [ ]( )CBA ,, is: 

Structurally controllable, if the block matrix [ ]BA,  is of full structural rank: 

[ ]( ) nBAranks =− , , with n being the number of state variables. 
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2.4.3 Structural Observability 

When the concern in the observability analysis is in the form of structured 

matrices, structural observability is applied to ensure the given structured system is 

observable [Lin 1974; Shields and Pearson 1976; Glover and Silverman 1976; Reinschke 

1984]. Hence, the following definition is applied. 

Definition 2.4.7 (Structural Observability): 

A class of systems given by its structure matrix pair [ ]CA, is said to be structurally 

observable (for short, s-observable) if there exists at least one admissible realization 

( ) [ ]TT
CAAC ,, ∈ being observable in the usual numerical sense. 

Furthermore, in order to determine if the structured system is structurally 

controllable, the necessary and sufficient condition that must be satisfied is described by 

the following theorem. 

Theorem 2.4.2: 

A linear system with structure matrices [ ] [ ] [ ]( )CBA ,, is structurally observable if the block 

matrix [ ]T
AC, is of full structural rank, that is, [ ]( ) nACranks

T
=− , , with n being the 

number of state variables. 

 

 

2.5 Controllability and Observability of Large-Scale Systems 

 

Today’s engineering problem characterized by a higher degree of complexity and 

larger numbers of dimensions of its mathematical model has created one of the biggest 

challenges for control theory in order to come up with a satisfactory control solution 
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[Jamshidi 1997, 1]. The well established classical control theory is now insufficient to 

apply as the computational effort required to model the system, analyze its structural 

properties and design the controller has become either impossible or uneconomical to 

solve even with modern computer technology [Siljak 2005, 1]. Therefore it is only 

natural to seek techniques which reduce the computational effort of these large-scale 

systems. For this reason, a considerable amount of interest in the research area for large-

scale dynamic systems began as early as the 1960 [Gilbert 1963, 128-151]. The earliest 

efforts which focused on reducing the computational effort, were realized by taking 

advantage of the special structure that a large scale system generally holds, that is, a 

structured model [Lin 1974; Shields and Pearson 1976; Glover and Silverman 1976; 

Reinschke 1984]. When a special structure is identified, that is, a large-scale system with 

its matrice coefficients consists of relatively few nonzero elements, it allows the system 

to either be kept intact or decoupled into smaller subsystems. When keeping the large 

structure intact, the system sparseness allows the structure to be transformed into a format 

where efficient computation can be performed. Such techniques include “compact basis 

triangularization” and “generalized upper bounding” [Siljak 1999, 209-224]. On the other 

hand, when decoupling is visible, the original system is divided into a number of 

subsystems involving a certain adjusted coefficient that represents the interconnection 

parameter. Hence, the subsystem can be resolved independently and the solution to the 

overall original system is realized [Brittain, Otaduy, Perez, and Rovere 1988, 108-112]. 

These techniques are called the multilevel or hierarchical approach and the approach have 

led the endeavor of exploring different techniques to solve large-scale system problems in 

modeling, structural property analysis, as well as control design.  
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Figure 5:(a) Large Scale Systems in Parallel and (b) Large Scale Systems in Series 

 

The controllability and observability of large scale systems itself were first 

considered in 1963 where the classical rank condition method was applied to two 

different structure combinations of two linear subsystems, namely series and parallel 

[Gilbert 1963, 128-151]. Assuming that each subsystem has distinct Eigen values and 

they are both controllable and observable under the rank condition, the result turned out 

to be different when they formed these two structures. Two subsystems are in series 

where the output of the first subsystem becomes the input of the other. Under this 

condition, depending on the parameter of each subsystem, there is the possibility that this 

combination is uncontrollable and unobservable. On the other hand, when the two 

subsystems are in parallel that is, when both subsystems share the same input and the 

overall output is the sum of the two outputs, assuming each subsystem has distinct eigen 

values, under this condition, the large-scale system will always be controllable and 

observable as long as each subsystem is also controllable and observable.  
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Since this initial work, the interest toward this subject grew. Many studied to 

explore other techniques that do not rely on the classical rank condition since computing 

the rank conditions on systems with such large dimensions posed an ill numerical 

problem. Furthermore, when the tests fail, there is no indication how the rank deficiency 

can be removed and fixed even in relatively simple situations. For these reasons, system 

structure in conjunction with graph theory was considered by Lin [1974, 201-208]. Here, 

the concepts of structural rank, structural controllability and observability, as well as 

connectability were introduced. The central problem in determining the controllability 

and observability of a large scale system using the structural properties and graph theory 

is about finding the connectability between subsystems as well as between system 

input/output and system state [Chen and Desoer 1970; Brasch and Pearson 1971; 

Bhandarkar and  Fahmy 1972; Grasselli 1972; Ito and Yonemura 1972; Klamka 1972; 

Hwang and Wolovich 1974; Davison and Wang 1975; Davison 1977].. While the method 

of finding the controllability and observability (C&O) of this large scale linear system 

can be considered established, little literature has been found which discusses the C&O 

for large scale nonlinear systems [Boukhobza and Hamelin 2007, 1968-1974]. However, 

the approaches that are utilized for the large scale linear systems have inspired and 

assisted the research to conceptualize the method of checking the C&O of large-scale 

nonlinear systems. The next few sections describe the concept of controllability and 

observability using a graph theoretic approach for linear systems that provides a simple 

and elegant solution and so is very well suited to analyze large-scale system.  
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2.5.1 Digraph of a Structured System  

 Graph theory, which first appeared in Euler’s paper in 1736 [Hopkins and Wilson 

2004, 198-207], is the study of mathematical structures that are utilized to model pairwise 

relations between objects from a certain collection. A “graph” in this context refers to a 

collection of nodes or vertices and a collection of edges that connect pairs of vertices 

[Deo 1974, 1]. A graph may be undirected which means that there is no distinction 

between the two nodes associated with each edge or directed, where its edges may be 

directed from one vertex to another. Many physical situations, however, entail directed 

graphs such as:  the street map of a city with one-way streets, flow networks with valves 

in the pipe, and electrical networks. Structured systems can also be represented elegantly 

by means of directed graphs or simply called digraphs. Using this type of representation, 

it is possible to study well-known system theoretic properties from a graph theoretic point 

of view. For this reason, a digraph is employed to model a large-scale linear system.  

The following terminologies are defined to understand the digraphs [Reinschke 

1984, 1]. The graph ( )EVG ,= of a structured LTI system represented by a state space 

model is defined by a vertex set V and an edge set E . The vertex set V is given by 

YXU UU with { }muuU ,,1 K= the set of input vertices, { }nxxX ,,1 K= the set of state 

vertices, and { }
pyyY ,,1 K=  the set of output vertices. Denoting ( )',vv  for a directed edge 

from the initial vertex Vv ∈ to the terminal vertex Vv ∈' , the edge set E  is described by 

CBA EEE UU with ( )[ ]{ }0, , ≠= jiijA AxxE , ( )[ ]{ }0, , ≠= jiijB BxuE  and 

( )[ ]{ }0, , ≠= jiijC CyxE . In the latter, for instance [ ] 0, ≠jiA means that the ( )thji, entry 

of the matrix [ ]A is a parameter (nonzero).  
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 In order to perform a structured system properties analysis from a graph theoretic 

point of view, the following digraph terminologies are useful. Let W , 'W  be two non-

empty subsets of the vertex set V  of the graph G .There exists a path from W to 'W if 

there is an integer k  and there are vertices Vwww k ∈,,, 10 K  such that Ww ∈0 , 

'Wwk ∈ and ( ) Eww ii ∈− ,1 for ki ,,2,1 K= . The vertex 0w is called the start vertex. and 

the vertex kw is called the end vertex. The path consists of the vertices 

kwww ,,, 10 K where it may happen that some of the vertices occur more than once.  The 

path is simple if every vertex on the path occurs only once. Occasionally, a path as above 

is denoted as containing the vertices kwww ,,, 10 K as the sequence of edges it consists of, 

such that ( ) ( ) ( )kk wwwwww ,,,,,, 12110 −K or simply as kwww →→→ K10 . The number 

of edges contained in the sequences kwww ,,, 10 K  are called the length of the path. 

Furthermore, by means of “path”, an important type of connectedness in digraphs 

is described by the following. Two vertices, 0w and kw are said to be strongly connected 

if there is both a path from 0w to kw and a path from kw to 0w . A closed path is a path in 

which the initial and final vertices are the same. A closed path is said to be a cycle if one 

reaches going along the path no vertex, other than the initial-final vertex, more than once. 

The number of edges contained in a cycle defines the length of this cycle. Cycles of 

length 1 are called self cycles. A set of vertex disjoint cycles are said to be a cycle family.  

 

2.5.2 Controllability via Connectability 

  Hereafter a graphical criterion to characterize the structural controllability is 

presented [Reinschke 1984,1]. 
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Definition 2.5.1 (Input connectable): 

Given system structural graph of a linear system with structure matrices [ ] [ ]( )BA , , there 

should be at least one direct path from each of the input variable/s to each of the state 

variables 

The following theorem is applied to check the controllability of a structured linear 

system. 

Theorem 2.5.1: 

A linear system with structure matrices [ ] [ ] [ ]( )CBA ,, is structurally controllable if: 

1. Matrix [ ]A  is of full structural rank, and 

2. The system structural graph is input connectable 

 

2.5.3 Observability via Connectability 

Hereafter a graphical criterion to characterize the structural controllability is 

presented [Reinschke 1984]. 

Definition 2.5.2 (Output connectable): 

Given a system structural graph of a linear system with structure matrices [ ] [ ]( )CA , , there 

should be at least one direct path from each of the state to all of the output variable/s. 

The following theorem is applied to check the controllability of a structured linear 

system. 

Theorem 2.5.2: 

A linear system with structure matrices [ ] [ ] [ ]( )CBA ,, is structurally observable if: 

1. Matrix [ ]A  is of full structural rank, and 

2. The system structural graph is output connectable 
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2.5.4 Example 

Consider an LTI system described by Equation 2.7.  
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       (2.7) 

The graph ( )EVG ,=  that represents the state space model of Equation 2.7 can be 

defined as follows. The vertex set V is given by YXU UU with { }21 1,1 BBU = the set of 

input vertices, { }21, xxX = the set of state vertices, and { }21 , yyY =  the set of output 

vertices. Denoting ( )',vv  for a directed edge from the initial vertex Vv ∈ to the terminal 

vertex Vv ∈' , the edge set E  is described by CBA EEE UU with ( )[ ]{ }0, , ≠= jiijA AxxE , 

( )[ ]{ }0, , ≠= jiijB BxuE  and ( )[ ]{ }0, , ≠= jiijC CyxE .  Figure 6 depicts the obtained 

digraph. 

Y1x1(0,1)x2(0,1) a c

B12

b

B11

b

a

c
Y2

aa

 

Figure 6: Digraph of Equation 2.7 

 Based on the obtained digraph, a structural property analysis can be performed. 

From observation, it can be determined that the given LTI system is indeed both 

controllable and observable according to Theorem 2.5.1 and 2.5.2. 

 



35 

Chapter Three 

 

THERMAL DYNAMIC SYSTEM MODEL 

 

 

 A dynamic model of a system as well as its properties forms the background of 

any control design activity [Bokor, Hangos, and Szederkényi 2004, 1]. This chapter 

focuses on the theoretical basis for thermal dynamic system model’s development, which 

is utilized for control design purposes. The theories that are covered include the Thermal 

Network approach which is utilized to derive mathematical equations governed by the 

first law of thermodynamics principle; The Nonlinear State Space model which is utilized 

for control design analysis; The Structured Model which is utilized for control design 

analysis from a system structure point of view, and the Digraph which is utilized to 

model the system graphically. Each of of these modeling techniques forms a sequence 

that is required in order to obtain a model that is utilized for system structural properties 

analysis using graph theory. 
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3.1 Thermal Dynamic Model for Control Purposes 

 

A modeling task is specified by giving the description of the system to be 

modeled together with the modeling goal, that is, the intended use of the model [Cameron 

and Hangos 2001, 19-40]. The modeling goal for the most part determines the model, its 

variable, spatial and time characteristics, as well as its resolution or level of detail and 

precision. In the case of this research, where the goal of the modeling is to obtain a 

mathematical model that can be useful for control system design of a thermal dynamic 

system, it is suggested that the main requirement of the model is the ability to capture the 

time characteristics, such a time constants. 

Given the goal of the modeling effort, thermal network modeling approach is 

selected. This approach is very intuitive and allows a systematic formulation and solution 

of general and complicated problems.  Furthermore, in order to obtain a finite 

dimensional system model that is adequate in handling control design, lumping the 

thermal dynamic parameters is also suggested. In thermal dynamic system, the lumped 

parameter is termed as balance volume or lump which has properties containing only 

one-phase that is assumed to be perfectly mixed and isothermal [Bokor, Hangos, and 

Szederkényi 2004, 1]. This lumped parameter model results in a mathematical model that 

is composed of systems of ordinary differential equations (ODEs) and is often coupled 

with many nonlinear and linear algebraic constraints. The total system is referred to as a 

differential-algebraic equation set (DAE) and it is governed by the first law of 

thermodynamics, that is, conservation balances for energy. In this case, the thermal 
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dynamic DAE is developed by following the conservation of energy principles. The 

general conservation balance for total energy over the balance volume is given by: 


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
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


+
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
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−
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

=








system 

Sink

system out the

energyofflow

systemtheinto

energyofflow

energy  totalof

change of Rate
       (3.1) 

Furthermore, the linear algebraic part of the model is called constitutive equation, 

which is obtained by identifying different means of energy transport mechanisms that 

should be included in the model. This mechanism is referred to the three fundamentals of 

heat transfer: 

1. Conduction is an energy transport mechanism as a result of molecular-level 

kinetic energy transfer in solids, liquids and gases. The difference between the 

thermal dynamical state variables, that is, temperature in the two phases is the 

driving force for the transport.  

2. Convection is an energy transport mechanism that is carried by the transport of 

larger-scale motions of a fluid, either liquid or gas. The convection of a lumped 

thermal dynamic system is represented by the inflows and outflows of the lumped 

parameter or balance volumes. 

3. Radiation is an energy transport mechanism that is established by 

electromagnetic waves. For radiation to occur, there needs to be two surfaces with 

two different temperatures. 

Each of these mechanisms can be represented by specific forms of constitutive equations 

with basic property that are assumed to be strictly-additive, which is very essential in 

constructing the energy conservation balance equation of a thermal dynamic. 

The next few sections describe the model development process of a nonlinear 

thermal dynamic system. This particular modeling approach is the starting point in 
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developing a new structural property analysis method of controllability and observability 

for large-scale structured nonlinear thermal dynamic systems: 

1. Thermal Networks. A brief overview of a concept for constructing a thermal 

dynamic model for control purposes is discussed here. 

2. State space models of Thermal Dynamic Systems. Basic notions of state space 

representation for a nonlinear system are reviewed. This includes: a 

decomposition of the state equations driven by the mechanism taking place in the 

thermal dynamic system.  

3. Structured System of Thermal Dynamic Systems. The thermal dynamic system 

is a good example of a model that captures most of the structurally available 

information from physical laws. Therefore, the concept of a structured system for 

a thermal dynamic system is presented here. 

4. Digraph of Nonlinear Thermal Dynamic System. Given that the goal of this 

research is to develop a graphical theoretic approach for controllability and 

observability analysis, it is fundamental to understand how a mathematical model 

is converted to a graphical model. This approach will be presented in this section. 

 

 

3.2 Thermal Networks 

 

Thermal network approach approximates a thermal dynamic system as being 

composed of a finite number of parts N , called nodes, each of which represents a balance 

volume or lump [Bokor, Hangos, and Szederkényi 2004, 1]. 
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Definition 3.2.1 (Balance Volume): 

Parts of a lumped thermal dynamic system which contain only one phase and can be 

assumed to be perfectly mixed will be termed balance volumes or lumps. It is also 

assumed that each node is to be isothermal. 

To model heat exchange, the nodes are connected by resistance, thus forming a 

thermal network. Neighboring nodes are nodes that are directly coupled by conduction, 

convection, or radiation. The heat flow between neighbors is given by Equation 3.2: 

nn

nn

nn
R

TT
Q

'

'
'

−
=−

&           (3.2) 

where nnR ' is the resistance between 'n and n and it is used to represent three different 

heat transfer mechanisms: conduction, convection and radiation. In addition, there may 

be direct heat input nQ& at node n , from heat sources such as solar radiation, an electric 

heater, or boiler. Furthemore, the heat capacity of node n is denoted by nC  while its 

temperature is indicated by nT . 

Assuming constant nC , the rate of change of the heat stored in node n is nnTC & , 

and by the first law of thermodynamics it must be equal to the total rate of heat input. 

Thus the heat balance of node n is a first-order differential equation in nT : 

n

N

n nn

nn

nn Q
R

TT
TC && +

−
=∑

=1' '

'          (3.3) 

As for signs, it is noted that nn TT −' is positive; heat flows from 'n to n  making a positive 

contribution to nT& . In most cases, a given node can interact directly with only a relatively 

small number of nodes, and so the number of nonzero terms in this sum is much smaller 

than N . 
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Equation 3.3, one for each node, forms a system of N first-order differential 

equations with N unknowns, that is, the node temperature nT . By analogy with electric 

circuits it is convenient to represent a thermal network by diagrams: 

1. Electronic capacitor represents a capacitance C  

2. Electronic resistor represents a resistance R  

3. Temperature T are analogous to voltages 

4. Heat flow Q& are analogous to currents 

 

Figure 7: Resistance R and Capacitance C 

 

There is one to one correspondence between the diagram and the set of equations 

of thermal network. The diagram has the advantage of being much easier to grasp, but the 

equation is needed for finding the solutions. Once the diagram has been drawn, one can 

easily write down the equations where there is one first-order differential equation for 

each node. 

To illustrate the application of thermal network approach, consider a heat 

exchanger as depicted by Figure 8. 
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Figure 8: Heat Exchanger 

 

The heat exchanger is one of the widely used thermal dynamic systems, which is 

utilized for energy exchange between at least two fluid phase streams, hot and cold 

streams. While the heat exchanger is usually considered a distributed thermal dynamic 

system, it is acceptable to build and approximate a lumped parameter model using finite 

difference approximations of their spatial variables. A heat exchanger can then be seen as 

a composite lumped parameter thermal dynamic system consisting of elementary 

dynamic units as depicted in Figure 8. Here, a heat exchanger consists of two perfectly 

stirred balance volumes (lumps) connected by a heat conducting wall. One lump is called 

the hot ( h ) and the other one the cold ( c ). Using the thermal network approach, the 

following electric circuit that represents the heat transfer mechanism of a heat exchanger 

is obtained and is illustrated by Figure 9. 

 



42 

 

 

Figure 9: Circuit Model of a Heat Exchanger 

 

Subsequently, the following DAE set is derived: 

convC

coci

cond
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−
+

−
=&         (3.4) 

convH

hohi

cond

coho

hoh
R

TT

R

TT
TC

−
+

−
=&         (3.5) 

Furthermore, to obtain a complete and detailed DAE, the algebraic constitutive equation 

is incorporated. The following is the constitutive equation for the heat exchanger 

example: 

jjjj VcpC ρ=  where balance volume/lump chj ,=  

UA
Rcond

1
=  

jj

convj
cpm

R
&

1
=  

where: 

jcp : Specific heat of lump j  

jρ :  Density of lump j  

jV : Volume of lump j  

U : Constant heat transfer coefficient (conduction)  
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A : Contact surface area 

jm& : mass flow rate at lump j  

jiT : inlet temperature of lump j  

joT : outlet temperature of lump j  

Substituting these constitutive equations into Equation 3.4 and 3.5, the following 

complete mathematical model of a heat exchanger is obtained: 

( ) ( )( ) ( )( )cocicpchocococccp TTcmTTUATVc −+−= &&ρ      (3.6) 

( ) ( )( ) ( )( )hohihphcohohohhhp TTcmTTUATVc −+−= &&ρ      (3.7) 

 

 

3.3 State Space of Thermal Dynamic 

 

The law of conservation of energy has made the state space models a natural 

representation of thermal dynamic model equation as it allows an easy transformation 

between the two. Not only that, with state space form, the clear engineering meaning of 

the original thermal dynamic model equation is well maintained.  

State, which is the base of the state-space model, is defined as the smallest 

possible subset of a system that can represent the entire state of the system at any given 

time. Thus, instead of describing a system as an operator mapping from the input space to 

the output space using the entire input-output history and the planned input to calculate 

future outputs, new information called state of the system at time t0 is used. The state of 

the system at time t0 includes all past information up to time t0, initial condition for the 
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outputs, as well as its derivatives and its past input history. Therefore, in order to 

calculate all future values output, that is y(t) for t ≥ t0, only input u(t) for t ≥ t0 and the state 

x(t) at t = t0 is needed. In summary, the state-space model is defined as a model that uses 

the concept of state. 

A general state-space model is composed by two sets of equations: 

1. State equations are a set of time–dependent ordinary differential equations that 

describe the evolution of the states as a function of the input and state variables. 

In order to describe a system, it requires a finite number of state equations and the 

same number of state variables. Thus, it is called finite dimensional system. 

2. Output equations are a set of algebraic equations that describe the relation 

between the value of the output signals to the state and the input signals. 

The general form of state-space models of continuous linear time invariant (LTI) 

system is described by Equation 3.8: 

( ) ( ) ( ) ( )
( ) ( ) ( )




==

+==
=Σ

tCxxgty

tButAxuxftx ,&
     

( )
( )EquationOutput

EquationState

−

−

;

;
    (3.8)  

Given the initial condition ( ) ( )0xtx o = , ( ) ntx ℜ∈ , ( ) pty ℜ∈ , ( ) ltu ℜ∈  represent the 

state, output, and input vectors of finite dimensional space; and nnA ×ℜ∈ , 

lnB ×ℜ∈ , npC ×ℜ∈  represent time-constant, input and output matrices with constant 

(time-independent) elements. 

Definition 3.3.1 (Linear State Space Representation): 

The state space representation (SSR) that is described by Equation 3.8 is the triplet of 

constant matrices (A, B, C). The dimension of an SSR is the dimension of the state 

vector: ( )[ ] ntx =dim . The state space χ is the set of all states: 
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( ) χ∈tx , [ ] n=χdim .  

 Continuing the previous example of a heat exchanger, Equation 3.9 and 3.10 are 

the continuous time state equations of the heat exchanger which follow the energy 

conservation balances: 
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Subsequently, assuming that the heat exchanger is fully observable, that is, system output 

is measurable, Equation 3.9 and 3.10 become the following state space equation:   
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






=








=

ho

co

T

T

x

x
x

2

1
, 








=








=

hi

ci

T

T

u

u
u

2

1
, and 








=








=








=

ho

co

T

T

x

x

y

y
y

2

1

2

1
. 

In a realistic case, however, a linear model of the heat exchanger is not valid as 

the flow rates are the controllable input variables. Hence, a nonlinear system is 

considered and its general form of continuous time state space models is described rather 

differently. Nonlinear finite dimensional system represents a wide class of nonlinear 

systems. However, in the case of this research, lumped thermal dynamic models derived 

from first engineering principles are considered here. The general form of state space 

models of finite dimension nonlinear systems is described by Equation 3.12: 
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with the state, input and output vectors x , u , y and with the smooth nonlinear mappings  

nmnf ℜℜ×ℜ a:
~

, 
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~

. If the nonlinear functions f
~
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above are in 

a special form, an input-affine form is obtained: 
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with the same state, input, and output vector x , u , and y as  above, and with the smooth 

nonlinear mappings nn

ig ℜℜ a: for mi ,,1,0 K= , pnh ℜℜ a: . Hence, the nonlinear 

state space model of the heat exchanger becomes the following: 
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The nonlinear state equation 3.9 and 3.10 becomes: 
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Subsequently, the nonlinear state space matrices of Equation 3.13 would have the 

following: 
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With the notation above the state equation 3.13 can be written in the following general 

form: 
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i
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i
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In the above equation one can clearly see the origin of the terms on the right-hand side: 

1. Linear state transfer term or drift term/conduction: 
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2. Bilinear state convection term originating from the output convection with  
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3.4 Structured System 

 

In the framework of the traditional control theory of nonlinear systems, the entries 

of the state-space matrices (A
i
, B, C) of an input-affine nonlinear system are regarded as 

numerical data given with 100 percent precision. For physical reasons, however, the 

parameters involved in the entries of A
i
, B, and C are only approximately known. 
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Consequently, it is adequate to regard the entries of A
i
, B and C as indeterminate. Only 

some entries which are often precisely zero have exact numerical values. 

In the context of “controllability and observability of a structured system,” 

utilizing only the “structure” of the matrices A
i
, B and C is proposed in this research. This 

means, instead of numerically given matrices A
i
, B and C, the corresponding structure 

matrices [ ]iA , [ ]B , and [ ]C of the same dimensions are considered. The following 

definition is suggested for this research. 

Definition 3.4.1 (Structured Matrix): 

The elements of a structure matrix [ ]CBA kk ,,  are either fixed at zero or indeterminate 

values which are assumed to be independent of one another. 
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Definition 3.4.2 (Signed Structured Nonlinear Thermal Dynamic System with Drift): 

The elements of a structure matrix { }CBA kk ,,  are either fixed at zero or indeterminate 

values which are assumed to be independent of one another. 
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Following the previous example of a heat exchanger, the following matrices of a 

structured system model of Equation 3.16 is obtained: 

1. Linear state transfer term or drift term/conduction: 









=

0

2.2

0

1,2

0

2,1

0

1,10

ee

ee
A  

2. Bilinear state convection term originating from the output convection with  


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

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
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1,11 e
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
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
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e
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3. Linear input term originating from the input convection with  












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1
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1,11

0

0
b

b

e

e
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










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1

2,2

1,1

0

0
b

b

e

e
B  and  








=

c

c

e

e
C

2,2

1,1

0

0
 

If a structured Nonlinear Thermal Dynamic System with Drift model is considered, the 

matrices of Equation 3.16 become the following: 

1. Linear state transfer term or drift term/conduction: 


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





−

−
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2. Bilinear state convection term originating from the output convection with  
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3. Linear input term originating from the input convection with  
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Note that in the case of a structured thermal dynamic system models which follow the 

form of Equation 3.16, the following equalities are valid: 

1. At node i , 
0

,

0

, jiii ee −= , for nj ,,1 K= , except ji =  

2. At node i , 
kb

ji

k

ji ee ,, −=  for nj ,,1 K= , except ji = and mk ,,1 K=  

where n  is the dimension of state space model and  m is the number of input variables. 

 

 

3.5 Digraph of Nonlinear System 

  

 Many results on structured systems are related to the graph theoretic approach. 

However, this approach is mainly dedicated to linear systems. Structural properties of 

linear system such as controllability and observability, as well as solvability of classical 

control problems such as disturbance rejection, input-output decoupling, fault detection, 

and isolation, are studied using the graph theoretic approach. Survey paper [Commault, 

Dion, and Van der Woude 2003, 1125-1144] reviews the most significant results in this 

area. From these studies, it follows that graph-theoretic approach provides simple and 

elegant solutions and so is very well suited to analyze large-scale or/and uncertain 
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systems. Unfortunately, not so many works based on graph-theoretic methods deal with 

nonlinear systems. This section is devoted to the definition of a digraph which represents 

a structured bilinear system.  

The graph ( )EVG ,= of a structured bilinear system represented by its state space 

model of equation 3.16 is defined by a vertex set V and an edge set E . The vertex set V is 

given by YXB UU with { }m

nbbB ,,1

1 K= the set of fixed- input vertices associated with 

state vertex i and input variable m  , { }nxxX ,,1 K= the set of state vertices, 

{ }
pyyY ,,1 K=  the set of output vertices. Denoting ( )',vv  for a directed edge from the 

initial vertex Vv ∈ to the terminal vertex Vv ∈' , the edge set E  is described by 

CBA
EEE ll UU ' with ( )[ ]{ }0, , ≠= ji

l

ijA
AxxE l  ml ,,1,0 K= , ( )[ ]{ }0, ,

'
' ≠= ji

l

ijB
BxuE l  for 

ml ,,1' K= and ( )[ ]{ }0, , ≠= jiijC CyxE . In the latter, for instance [ ] 0, ≠ji

l
A means that 

the ( )thji, entry of the matrix [ ]lA is a non-zero parameter. Moreover, for ml ,,1,0 K=  

and ml ,,1' K= , an index l  is assigned to each  edge 'll
BA

EEe U∈ . Note that several 

indexes may be given to an edge e  if it belongs to several subsets ( ) edgesEE ll
BA

−'U . 

For mll ,,1' K== , this index correspond to system input lu . This completes how a 

structured bilinear system is being represented by a digraph. 

Furthermore, denote W , 'W  being two nonempty subsets of the vertex set V  of 

the graph G . A path exists from W to 'W if there is an integer k  and there are 

vertices Vwww k ∈,,, 10 K  such that Ww ∈0 , 'Wwk ∈ and ( ) Eww ii ∈− ,1 for ki ,,2,1 K= . 

The vertex 0w is called the beginning vertex. The vertex kw is called the end vertex. It is 

said that the path consists of the vertices kwww ,,, 10 K , where it may happen that some of 
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the vertices occur more than once. It also said that each of the vertices in kwww ,,, 10 K is 

contained in the path. The path is called simple if every vertex on the path occurs only 

once. Occasionally, a path described above is containing the vertices  kwww ,,, 10 K as the 

sequence of edges it consists of, that is ( ) ( ) ( )kk wwwwww ,,,,,, 12110 −K or simply as 

kwww →→→ K10 .The number of edges contained in the sequences kwww ,,, 10 K is 

called the length of the path. 

By means of path, several important types of connectedness in digraphs are 

defined. Two vertices, 0w and kw are said to be strongly connected if there is both a path 

from 0w to kw and a path from kw to 0w . A closed path is a path whose initial and final 

vertices are the same. A closed path is said to be a cycle if one reaches going along the 

path no vertex, other than the initial-final vertex, more than once. The number of edges 

contained in a cycle defines the length of this cycle. Cycles of length 1 are called self 

cycles. A set of vertex disjoint cycles is said to be a cycle family. 

 Using the previous example of the heat exchanger, a digraph now can be derived. 

Figure 10 depicts the digraph of the previous example of the heat exchanger. 

Y1x1x2 0 c

B2
2

2

B1
1

1

0

c
Y2

0,10,2

 

Figure 10: Digraph of Heat Exchanger 
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Chapter Four 

 

BUILDING COMBINED HEAT AND POWER SYSTEM: 

A LARGE-SCALE NON-LINEAR THERMAL DYNAMIC SYSTEM 

 

 

 This chapter focuses on a mathematical model development of a real case system 

which fits the definition of a large-scale system. Rather than directly modeling the system 

as a whole, the system is modeled by first decoupling it along the physical boundaries of 

its subsystems which subsequently combining to form a large-scale system. Chapter four 

is used as the basis theory to construct a mathematical model of each subsystem as well 

as a state space and a digraph model of the large-scale system after all subsystems are 

integrated. The process begins in section 4.1 where the description of the actual large-

scale system is reviewed. The mathematical model of each subsystem is derived in 

section 4.2. The obtained models are then combined forming a large-scale state space 

model in section 4.3. For structural analysis purposes, the structured system approach is 

imposed to the model and its digraph is constructed in section 4.4.  
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4.1 Building Combined Heat and Power: a System Description 

 

According to the U.S. Lodging Census Database, currently there are 48,000 

lodging establishments representing about 4.4 million rooms across the fifty states and 

the District of Columbia as indicated on the Environmental Protection Agency’s Website. 

With high compatibility between the energy profile of lodging facility and the type of 

energy that a CHP produces, it is believed that CHP package would have the potential for 

a profound impact on a national energy savings initiative which significantly furthers the 

penetration of CHP technology into the national energy spectrum. Therefore, a research 

project was started several years ago to investigate the optimization of CHP in 

conjunction with several different types of thermally activated building equipment in a 

specific hotel building. The goal of the research is to develop an intelligent control 

system that can economically control the operation of CHP and its integrated building 

equipment while maintaining the comfort level of building’s occupants. 

The building combined heat and power (BCHP) system of a hotel building, where 

the research project takes place, consisted of three units of CHP microturbine, hydronic 

radiant floor heating, and domestic water heaters which are interconnected through a 

glycol loop distribution system. The basic energy system, that is, CHP microturbines, 

heat exchangers, and control system, is housed in a 15x25 foot building located at the 

edge of the back parking lot of the hotel (hereafter referred to as the Test Facility). The 

test facility that is connected to the hotel by several electric cable runs and conduits is 

used as a control room/research office. Furthermore, it is also the central hub for the 

research activities, including data collection, and coordination of the use of the CHP 

energy in the hotel.  
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Figure 11: Hotel Building 

 

 

Figure 12: Inside of the Test Facility 

 

Each unit of CHP Microturbine generates 28 kW at 480V three-phase forming a 

distributed generation (DG) component of this building research. The microturbine 

outputs have individual 50A breaker protection and are bused together through a 200A 

breaker feeding a 480-208V 225kVA transformer and a 480-480V 45kVA transformer. 

Each transformer has a disconnect device accessible from the outside of the hotel. The 

208V output of the 225kVA transformer is connected through a transfer switch to a 200A 

switchgear breaker and to a “protected load” panel. The output of the 480V isolation 

transformer is connected to the 480/277V service panel. With this configuration, the 
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480V panel is supplied by the microturbines through the 480V isolation transformer or 

through the 225kVA transformer if the microturbines are off. A protected load panel is 

supplied through the transfer switch. Figure 13 illustrates a schematic for the electric 

component of this CHP system. 

 

Figure 13: Electric System Design 

 

Under full load capacity, each unit of CHP Microturbine potentially produces 

200,000 Btu of thermal energy which is used to feed the building thermal activated 

components, such as a hydronic radiant floor heating system as well as for the whole 

hotel domestic water heating. The heat-exchanger of the microturbine captures the hot air 

that is being exhausted when microturbines generate electricity, and transfers its heat to a 

heat distribution system called main loop, which is served by glycol. Depending on the 

amount of electricity that is being generated, the temperature of the exhaust air ranges 

from 350
0
F to 500

0
F. When this excess heat is transferred to the main loop, the glycol is 
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heated to a temperature of 175
0
F to 185

0
F, which is sufficient to activate any thermal 

activated equipment in a building. Figure 14 depicts the schematic diagrams of the 

overall BCHP system. Measurement devices are placed in a subsystem to monitor the 

flow rate and temperature of the hot glycol during its circulation. Note that the pool 

mechanical room area was not included in this research. 

The hydronic radiant floor heating system is utilized to provide space heating for 

some portion of the area in the building which includes lobby, dining area, kitchen, and 

offices. The space heating system utilizes three inch diameter plastic tubing embedded in 

concrete floors of the building interior to distribute the heat from high temperature glycol. 

Conventionally, an external water heater or boiler arrangement is used. This research 

investigates how such subsystems can be extended to use CHP waste heat streams and 

thereby increase the overall building energy efficiency. The hydronic systems had to be 

designed and integrated together in a manner that would not interfere with the normal 

hotel construction procedures and schedule. Thus, prior to concrete being poured, a 

hydronic heating pipe in was placed in the floors. Figure 15 depicts the piping system 

installation of a hydronic radiant floor heating system. 

There are seventeen active loops of hydronic radiant floor heating that serve the 

lobby, dining area, kitchen and office area of the hotel, and three inactive loops in the 

floor of the indoor swing pool area. Several measurement units were embedded evenly 

across the floor of these areas to monitor the temperature of the floor surface. During the 

winter, the current operation of the hydronic system is regulated by a PID controller. The 

controller maintains the glycol input temperature that enters the hydronic system at a 

temperature of 105
0
F. This temperature is obtained by regulating the mixing valve 
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between the fresh hot glycol from the CHP with the return cold glycol that leaves the 

hydronic loops. With this input temperature, normally the floor surface would reach a 

maximum temperature of 85
0
F, which is the comfortable operating temperature of a 

radiant floor heating system. Various temperature monitoring and flow control devices 

were installed at appropriate locations in the hotel during its construction and is 

illustrated by Figure 16 through 18. Note that the temperature sensors are marked as plus 

(+) signs. These are connected to the Test Facility through a control and instrumentation 

cable run. 

As for domestic water heating, there are two water tanks with a capacity of 1,000 

gallons each. Each tank is equipped with a heat exchanger that is utilized to heat the 

water by exchanging the thermal energy from the hot glycol. In addition, a gas-fired 

boiler was installed at each tank and is operated on a stand-by mode. The operation of the 

domestic water heater is also governed by a PID controller which maintains the water 

temperature of each tank between 135
0 

F to 145
0
F. This temperature is achieved by 

regulating the flow rate of the hot glycol that flows into the heat exchanger of the 

domestic water heater while the water flow rate is kept constant. During the peak load 

period, such as the morning, if the temperature of water tank falls below 135
0 

F and hot 

glycol flow is already at the maximum capacity, a stand-by boiler will start to operate, 

adding needed heat to bring up the water temperature to 135
0
F. When the temperature of 

the water tank reaches the prescribed temperature, the glycol and water flow rate is 

stopped by turning off the pump and closing the valve. 

Design concepts for CHP systems based strictly on electric usage is called electric 

priority mode, and attempts to use heat simply to improve efficiency. A design option 
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based solely on the heat usage is called thermal priority model, and considers the 

electricity as a corollary bonus. Neither of these approaches provides the full benefit of 

the CHP system. However, for the purpose of this study, the initial control design was 

based on these two approaches. The initial control system that was utilized to regulate the 

BCHP operation revolves around PID control. During the thermal priority mode, the PID 

controller takes a measurement of the main loop at the return side, that is, the cold glycol 

that is coming from the building, and maintains this temperature to be at 175
0
F by 

ramping up and down the micoturbine set point in generating the electricity. Under this 

scheme, there is no exhaust air being released to the atmosphere. During the electric 

priority mode, as the microturbine generates electricity according to the assigned 

capacity, a PID controller is programmed to maintain the exhaust air temperature at 

185
0
F by varying the opening of the aerator valve, and thus releasing excess hot air to the 

atmosphere. Thus, the current set up is not operating efficiently.  

The operation of BCHP tends to waste energy due to a mismatch between energy 

supply and demand. For example, when the building thermal demand is actually at lower 

capacity, oversupply during this period is most likely to occur. Furthermore, the present 

control system is also lacking of access to local utility rate information where the unit is 

located. This is important especially when a CHP is operated in the area where time of 

use utility rate is applied. With time of use type of rate, where different price of energy 

occurs at different times of the day, analysis needs to be performed in real time to justify 

the time and the type of operation of the BCHP. For example, when the analysis shows 

that it costs more to operate the BCHP than buying the same amount of energy through 

the utility company, then the controller will command the CHP to shutdown the operation 
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until the economic savings can start to occur again. Moreover, depending on the 

agreement with the utility company, the control system with access to utility rate 

information would be able to determine the time to sell the electricity which is produced 

through its DG to the utility in order to maintain the overall efficiency.  

 

Figure 14: Hydronic Radiant Floor Heating System Installation 

 

 

Figure 15: Hydronic Heating Manifold and Control Valves 
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Figure 16: Schematic of BCHP System 
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Figure 17: Hydronic Radiant Floor Heating System Circuits 
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Figure 18: Hydronic Temperature Sensor Location 
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4.2 Nonlinear Thermal Dynamic Model of BCHP System 

 

To obtain the overall BCHP system model, each of the subsystem models 

previously defined are interconnected in such a way that they represent the true BCHP 

system.  In order to better track the transformation into a large-scale system, Figure 4.9 

depicts the block diagram of the BCHP system, which describes the integration of the 

previously defined subsystems. Furthermore, in this thesis, only nonlinear systems are 

considered. As it can be observed from the figure, as a result of being interconnected, 

subsystem’s output may become another subsystem’s input. Therefore, Table 1-3 is used 

to describe the transformation of the notation that is used at the subsystem level to the 

state notation that is used to model the large-scale system.  The number of states for the 

BCHP system is now 14; the number of controllable input variables is 12 and the 

constant input variable is 4. The current set up for the BCHP system is that all states are 

fully observable. This means there is a sensor measuring the temperature at each state. 

Hence, the number of output is also 14.  The detail transformation of the mathematical 

equation that integrates the subsystem into a large-scale system can be seen in Appendix 

B.  

 The next step is to transform the large-scale system mathematical equation into a 

nonlinear state space form. In this case, the state space of BCHP follows Equation 3.13, 

which is a special form of a nonlinear system, input-affine: 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( )
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where x , u ,and y is state, input, and output vector, respectively; and 
nn

ig ℜℜ a: for 

mi ,,1,0 K= , 
pn

h ℜℜ a:  the smooth nonlinear mappings with system dimension n of 

14, number of inputs m of 12 and number of outputs p of 14. One simplified notation is 

made to shorten the state space form, that is: 

iiip

jiji

i
Vc

AU
k

ρ

,,
=   

where nji ,,1,0, K= , the conductive coefficient between state iand state j .  

Table 1: State Notation 

Definition  Subsystem Level 

Large Scale 

System Level 

Microturbine-HX Air Supply temperature Tho1 x1 

Microturbine-HX Glycol Supply temperature Tco1 x2 

Main Loop-HX Primary Glycol Supply temperature Thmx4 x3 

Main Loop-HX Primary Glycol Return temperature Tc4 x4 

Main Loop Glycol Secondary Supply temperature Thml4 x5 

Main Loop Glycol Secondary Return temperature Tcml4 x6 

DWH-HX “A” – Glycol Supply temperature Tho2A x7 

DWH-HX “A” – Water Return temperature Tco2A x8 

DWH-HX “B” – Glycol Supply temperature Tho2B x9 

DWH-HX “B” – Water Return temperature Tco2B x10 

Hydronic – Glycol Supply temperature Thmx3 x11 

Hydronic - Glycol Return temperature Tho3 x12 

Floor temperature Tf3 x13 

Building Space Air temperature Tz3 x14 
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Table 2: Constant Input 

Definition Large-Scale System Notation 

Microturbine-HX air inlet temperature 
1b  

DWH-HX ”A” water inlet temperature 
2b  

DWH-HX ”B” water inlet temperature 
3b  

HVAC air supply temperature 
4b  

 

Table 3: Controllable Input 

Definition Large-Scale System Notation 

Microturbine-HX exhaust air volumetric flow rate  
1u  

Microturbine-HX glycol volumetric flow rate 
2u  

Main loop glycol bypass volumetric flow rate 
3u  

Main loop glycol volumetric flow rate 
4u  

Hydronic glycol volumetric flow rate  
5u  

HVAC supply air volumetric flow rate 
6u  

DWH-HX ”A” glycol volumetric flow rate 
7u  

DWH-HX ”A” water volumetric flow rate 
8u  

DWH-HX ”B” glycol volumetric flow rate 
9u  

DWH-HX ”B” water volumetric flow rate 
10u  

Hydronic glycol mixed volumetric flow rate 
11u  

Hydronic glycol return volumetric flow rate 
12u  
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Figure 19: BCHP System and Subsystem Boundary 
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 Subsequently, the BCHP state space model of Equation 4.25 is transformed into a more 

meaningful form where its state equation represents the heat transfer mechanism. The new 

structure of state equation follows Equation 3.16: 

Cxy

ubBxAxAx i

i
m

i

i

=









++= ∑

=1

0&
        (3.16) 

where the following definitions are applied: 

4. nnA ×=:0
 matrix of Linear state transfer term or drift term/conduction: 

5. nnA
m ×=: matrix of Bilinear state convection term  

6. nnB
m ×=: Linear input term originating from the input convection 

 

Using Definition 3.4.2 of a Signed Structured Nonlinear Thermal Dynamic System 

with Drift that is outlined in chapter three, a structured model of BCHP can be obtained.  

Definition 3.4.2 (Signed Structured Nonlinear Thermal Dynamic System with Drift): 

The elements of a structure matrix { }CBA kk ,,  are either fixed at zero or indeterminate 

values which are assumed to be independent of one another. 
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The result of derivation for the structured model of BCHP can be seen in Appendix A. 

The contribution of the signed structured model in controllability and observability 

analysis can be observed in chapter five. 

Following the structured model, a digraph of BCHP can be constructed utilizing 

the nonlinear method for developing the digraph. The graph ( )EVG ,= of a structured 

bilinear system represented by its state space model of Equation 3.16 is defined by a 

vertex set V and an edge set E . The vertex set V is given by YXB UU with 

{ }m

nbbB ,,1

1 K= the set of fixed- input vertices associated with state vertex iand input 

variable m  , { }nxxX ,,1 K= the set of state vertices, { }
pyyY ,,1 K=  the set of output 

vertices. Denoting ( )',vv  for a directed edge from the initial vertex Vv ∈ to the terminal 

vertex Vv ∈' , the edge set E  is described  is described by CBA
EEE ll UU ' with 

( )[ ]{ }0, , ≠= ji

l

ijA
AxxE l  ml ,,1,0 K= , ( )[ ]{ }0, ,

'
' ≠= ji

l

ijB
BxuE l  for ml ,,1' K= and 

( )[ ]{ }0, , ≠= jiijC CyxE . In the latter, for instance [ ] 0, ≠ji

l
A means that the ( )thji, entry 

of the matrix [ ]lA is a nonzero parameter. Moreover, for ml ,,1,0 K=  and ml ,,1' K= , an 

index l  is assigned to each  edge 'll
BA

EEe U∈ . Note that several indexes may be given 

to an edge e  if it belongs to several subsets ( ) edgesEE ll
BA

−'U . For mll ,,1' K== , this 

index correspond to system input lu . Figure 20 depicts the BCHP system digraph.
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Chapter Five 

 

CONTROLLABILITY  

OF A STRUCTURED NONLINEAR THERMAL DYNAMIC SYSTEM  

VIA CONNECTABILITY APPROACH 

 

 

This chapter presents a new approach to controllability of structured nonlinear 

systems using a graph-theoretic approach. On the basis of a digraph representation, the 

necessary and sufficient conditions for the controllability of a structured non-linear 

system are expressed in graphic terms. These conditions have an intuitive interpretation 

and are easy to check by hand for small systems and by means of well-known 

combinatorial techniques for large-scale systems. The results presented here then serve as 

the analytic foundation for controllability analysis for the research system presented in 

the previous chapter. 

 

 

5.1 Controllability of a Non-Linear Thermal Dynamic System 

 

In this thesis, the following special form of a nonlinear system of input-affine is 

considered: 
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( ) ( )( ) ( )( ) ( )

( ) ( )( )





=

+=
=Σ ∑ =

txhty

tutxgtxgtx
m

i ii10
&

  
( )
( )EquationOutput

EquationState

−

−

;

;
  (5.1) 

where ( ) ( ) ( )( ) nT
n Mtxtxtx ℜ⊂∈= ,,1 K , ( ) ( ) ( )( ) mT

m tututu ℜ⊂Ω∈= ,,1 K , 

( ) ( ) ( )( ) pT
p tytyty ℜ∈= ,,1 K  are, the state, the input and the output vectors, respectively;  

 and nn

ig ℜℜ a: for mi ,,1,0 K= , and 
pn

h ℜℜ a:   are the smooth nonlinear 

mappings. As the focus of this research is on a thermal dynamic system, Equation 5.1 that 

follows the first principle of thermodynamics in energy conservation is considered and is 

characterized by the bilinear system form described by Equation 5.2.   

( ) ( ) ( ) ( )

( ) ( )







=









++=

=Σ
∑

=

tCxty

tubBtxAtxAtx i

i
m

i

i

1

0&
 

( )
( )EquationOutput

EquationState

−

−

;

;
  (5.2)  

For mi ,,0 K= , 
nni

A
×ℜ∈ , 

1×ℜ∈ ni
bB , and npC ×ℜ∈ are state space matrices form of 

∞C function vector fields on M that represents the following heat transfer mechanisms: 

1. nnA ×=:0
 matrix of Linear state transfer term or drift term/conduction: 

2. nnA
i ×=: matrix of Bilinear state convection term  

3. mnbB
i ×=: Linear input term originating from the input convection 

4. npC ×=: matrix of system output 

Hereafter a nonlinear thermal dynamic system Σ is denoted by bilinear thermal dynamic 

system (BTS). 

The problem statement of controllability in the bilinear thermal dynamic system 

(BTS) case remains characterized by the set of states that are reachable from a given 

initial state as defined previously in chapter two:  
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Definition  2.3.1 ( reachableU − ): 

Given a subset MU ⊆ , 
1

x is reachableU − from 
0

x (denoted by 01 xRx U ) if there exists 

a bounded measurable control ( ) [ ]( )10 ,, tttu satisfying ( ) Ω∈tu  for [ ]10 , ttt ∈  such that the 

corresponding solution ( ) [ ]( )10 ,, tttx of differential equation (2) satisfies ( ) 00 xtx = , 

( ) 11 xtx = and ( ) Utx ∈ for all [ ]10 , ttt ∈ . Denote ( ) { }0110 : RxxMxxR ∈=  the set of 

points reachable from
0

x . 

 Furthermore, previously defined local state controllability is also considered: 

Definition 2.3.3 (Local State Controllability): 

The system Σ is said to be locally controllable at 
0

x if for every neighborhood U of 
0

x , 

( )0xRU  is also a neighborhood of
0

x ; Σ is locally controllable if it is locally controllable 

at every Mx ∈ .  

Moreover, in order to test the controllability of a nonlinear system, the previously defined 

theorem of the necessary and sufficient condition for a nonlinear system to be locally 

controllable is utilized. 

Theorem 2.3.1 (Controllability Rank Test): 

A nonlinear system Σ satisfies the controllability rank condition at 
0

x if in a 

neighborhood of 
0

x , [ ] nC =∆dim . If this holds for all Mx ∈0
, Σ satisfies the 

controllability rank condition. Thus, if Σ  satisfies the controllability rank condition at 

Mx ∈0
, then Σ has the local reachability property at 

0
x  

Therefore, the first step toward the analysis of the local controllability of a 

nonlinear system is to find R, which is established through the derivation of 
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controllability distribution ∆ C using Lie bracket.  Isidori [1995, 1] proposes an algorithm 

for constructing the controllability distributions as follows: 

Algorithm for Constructing the Controllability Distribution 

1. Starting Point: ∆ 0 = span{g1, …, gm} 

2. Development of the controllability Distribution: ∆ k = ∆ k-1 + [ ]∑
=

−∆
m

i

kig

0

1,  

Note that one term in the last sum [ ]1, −∆ kig  is computed by using the functions 

(φ 1,…, φ l) spanning the distribution ∆ k-1: [ ]1, −∆ kig  = span {[g1, φ 1], …, [g1, φ l] } 

3. Stopping Condition: If ∃ k* such that ∆ k = ∆ k-1, then ∆ C = ∆ k* = 00 |,, ∆mgg K  

where xAg
0

0 =  and ( )bBxAg
ii

i +=
 
 

 
 

 

5.2 Controllability of a Structured Non-Linear Thermal Dynamic System 

 

When the exact knowledge of the state space matrices characterizing the system’s 

model is not available, a structured model approach is suggested. In structured modeling, 

the system is characterized by system matrices that preserve the zero/non-zero entries in 

the state space matrices determined by the physical laws, which in this case is 

thermodynamic. Thus, the structured model is defined as a model where the fixed zeros 

are conserved while the non-zeros are replaced by free parameters. In the case of this 

research, a signed structured nonlinear thermal dynamic system as previously defined in 

chapter 3 is considered.  
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Definition 3.4.2 (Signed Structured Nonlinear Thermal Dynamic System with Drift): 

The elements of a structure matrix { }CBA kk ,, '  are either fixed at zero or indeterminate 

values which are assumed to be independent of one another. 
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Hereafter, a structured nonlinear thermal dynamic system is denoted by a structured 

bilinear thermal dynamic system (SBTS). 

Note that in the case of structured thermal dynamic system models which follow the form 

of Equation 5.2, the following equalities characterized the SBTS: 

1. At node i , 0

,

0

, jiii ee −= , for nj ,,1K= , except ji =  

2. At node i , 
kb

ji

k

ji ee ,, −=  for nj ,,1K= , except ji = and mk ,,1K=  

where n  is the dimension of state space model and  m is the number of input variables. 

Therefore, when the concern in the controllability analysis is in the form of 

structured matrices, structural controllability is applied to ensure any given structured 

system is controllable. Hence, equipped by Definition 2.4.3 to 2.4.5 from chapter two, the 

following definition for controllability of a structured nonlinear system can be devised.  
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Definition 5.2.1 (Structural Controllability for a Nonlinear System): 

A class of nonlinear systems given by their structure matrix pairs [ ]ii BAA ,,0  for 

mi ,,1K= is said to be structurally controllable (for short, s-controllable) if there exists at 

least one admissible realization ( ) [ ]iiii BAABAA ,,,, 00 ∈ being controllable in the usual 

numerical sense. 

As a result, based on Theorem 2.3.1 of controllability rank test for a nonlinear 

system, the necessary and sufficient condition for the controllability of a structured 

nonlinear system becomes the following:  

Theorem 5.2.1 (Controllability Rank Test for a Structured Nonlinear System): 

A structured nonlinear system [ ]Σ  characterized by structure matrix pair [ ]ii BAA ,,0  for 

mi ,,1K=  is structurally locally controllable if, for almost all the realization of ( ) [ ]Σ∈Σ , 

there exists controllability distribution ( ) [ ]CC ∆∈∆ of structural dimension n . 

Note that structural dimension here is equivalent to structural rank of Definition 2.4.5. 

 

 

5.3 Controllability of a Structured Non-Linear Thermal Dynamic System via 

Connectability Approach 

 

 This section focuses on providing the graphic condition equivalent to the one of 

Theorem 5.3.1 on structural controllability rank condition for a structured nonlinear 

system. Since the focus of the research is placed upon a bilinear thermal dynamic system 

(BTS), the first part of this section is devoted to some definition of a digraph utilized as 

the tool for analyzing structural controllability. The second part discusses the proposed 
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graphical criterion that characterized the structural controllability of a structured bilinear 

thermal dynamic system (SBTS).  

 

5.3.1 Digraph Definition for a Structured Thermal Dynamic System 

Given a structured bilinear thermal dynamic system [ ]Σ , some definitions based on 

digraph theory described in chapter three are devised: 

Definition 5.3.1 (State Digraph): 

State digraph [ ]( )ΣSG is a digraph ( )EVG ,= of a structured bilinear system [ ]Σ  

represented by its state space model of equation 5.2, and is characterized by the 

followings: 

a. The vertex set V is given by XBU with 
{ }m

nbbB ,,1

1 K=
the set of fixed- input 

vertices associated with state vertex i and input variable m  , and 

{ }nxxX ,,1 K=
the set of state vertices. 

b. The edge set E  is described by 
'll

BA
EE U

with 
( )[ ]{ }0, , ≠= ji

l

ijA
AxxE l

 

ml ,,1,0 K= , and
( )[ ]{ }0, ,

'
' ≠= ji

l

ijB
BxuE l

 for ml ,,1' K= .  

For ml ,,1,0 K=  and ml ,,1' K= , an index l  is assigned to each  edge 

'll
BA

EEe U∈
. Note that several indexes may be given to an edge e  if it belongs 

to several subsets 
( ) edgesEE ll

BA
−'U

. For mll ,,1' K== , this index corresponds 

to system input lu
.  
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Definition 5.3.2 (Input Connectable): 

State digraph [ ]( )ΣSG is input connectable if there exists path from at least m distinct 

input edges to every state vertex. 

 

5.3.2 Main Results 

 An obvious precondition of controllability is that the system inputs are able to 

influence all state variables. Said in graph-theoretic terms for bilinear systems, there must 

exist paths from input edges to all state vertices. Therefore, the following proposition is 

suggested in this research: 

Proposition 5.3.1:  

A structured bilinear thermal dynamic system (SBTS) [ ]Σ is structurally controllable if 

and only if in its associated state diagraph [ ]( )ΣSG is input connectable. 

In order to proof Proposition 5.4.1, it is important to show an SBTS that is input-

connectable, possesses the ability to satisfy the necessary and sufficient conditions for 

controllability in the standard numerical sense of Lie algebra rank condition as described 

in Theorem 5.3.1.  Thus, the following lemma is formulated: 

Lemma 5.3.1: 

If an n-order SBTS [ ]Σ characterized by structure matrix set [ ]ii BAA ,,0  for mi ,,1K=  is 

input connectable, then there holds a structured matrix formed by controllability 

distribution [ ]C∆ of [ ]Σ with structural rank n for almost all the realization of ( ) [ ]Σ∈Σ .    
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Proof of Lemma 5.3.1 

In order to verify Lemma 5.3.1, n-order SBTS is studied gradually to find the 

characteristics that would guarantee a result which satisfies the Lie algebra rank 

condition. It will be shown that in order to obtain a structured controllability distribution 

[ ]C∆ of [ ]Σ  with structural rank n for almost all the realization of ( ) [ ]Σ∈Σ   , a 

connectability property called input connectability must exist.  

First, consider an admissible second order bilinear thermal dynamic system 

following the thermodynamic first principle (n = 2) with single input (m = 1) described 

by the following state Equation:  
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To create a relationship that is proposed by Lemma 5.4.1, a signed structured model [ ]Σ  

is utilized. Thus, Equation 3.1 now becomes the following state equation: 
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Given an SBTS described by Equation 5.2, parameter Eki,j represents not only the 

structured entry of Ak matrix of i-th column and j-th row but also the edge that connects 

state vertex i to state vertex j associated with matrix Ak. Furthermore, bkj refers to the 

entry of k-th input of structured vector Bk of row j-th, which also represents the edge from 

vertex bkj to state vertex j. For the completeness, since SBTS is governed by the first 

principle of thermodynamics, based on the transformation the following equality is 

applied: 
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1. E01,1 = E02,1 = ks1  

2. E01,2 = E02,2 = ks2 

3. E11,1 = E12,1 = E11 = k11  

4. E11,1 = E12,1 = E12 = k12  

Using this SBTS matrix equation, Isidori’s algorithm [1995, 1] for structured 

controllability distribution [ ]C∆  of [ ]Σ is applied and the following structured matrix, 

consisting of two vectors, is obtained: 

K=∆C
           (5.5) 
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To check the Lie algebra rank condition of the structured matrix{ }1∆ , its determinant 

(Det [ ]1∆ ) is subsequently evaluated. Equation 5.6 described the structured parametric 

equation of Det [ ]( )1∆ : 
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 (5.6) 

In order to satisfy Lie algebra rank condition, a nonzero Det [ ]( )1∆  is required. 

Using the structured parametric equation described by Equation 5.6, gradually identifying 

the set of parameters that would result in nonzero determinant, given any combination of 

input parameters is performed. Tables 4 and 5 show the result of this determinant 

approach analysis. Table 4 shows the set parameters of Equation 5.6 that must exist in 

order to obtain a non-zero Det [ ]( )1∆  if system input enters through state x1 as described 
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by Equation 5.7. Tables 5 summarizes the parameters set of Equation 5.6 that must exist 

in order to obtain a non-zero Det [ ]( )1∆  if system input enters either through state x1 or 

state x2 as described by Equation 5.8, or both. 
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Table 4: Parametric Equation for Input Vector of state x1 

Input Vector 

(g1) Parameters 

(Edge/s) 

Det [ ]( )1∆  Parameteric Equation 

Parameter/Edges 

that must Exist for  

Det [ ]( )1∆ ≠  0 

111E  ( )111112 110 EEE−
2

1x  { }1211 0,1 EE  

211E  ( )212112 110 EEE−
2

2x  { }1221 0,1 EE  

11 11 bE  ( )111112 11110 bEbEE−  { }121 0,11 EbE  

2111 1&1 EE   ( )111112 110 EEE−
2

1x ( )211112 110 EEE+ 212 xx ( )212112 110 EEE−
2

2x  { }122111 0,11 EEE ∪  

1111 11&1 bEE  ( )111112 110 EEE−
2

1x ( )111112 11102 bEEE+ 1x ( )2

1112 110 bEE−  { }121111 0,111 EbEE ∪  

1121 11&1 bEE  ( )212112 110 EEE−
2

2x ( )112112 11102 bEEE− 2x ( )2

1112 110 bEE−  { }121121 0,111 EbEE ∪  

112111 11&1,1 bEEE  
( )111112 110 EEE−

2

1x ( )211112 110 EEE+ 212 xx ( )212112 110 EEE−
2

2x  

( )111112 11102 bEEE+ 1x ( )112112 11102 bEEE− 2x ( )2

1112 110 bEE−  
{ }12112111 0,1111 EbEEE ∪∪  

 

Column 1 of Table 4 shows several possible combinations of input vectors (g1) 

composed of input parameter/s connect/s only to state x1, which is described by Equation 

5.7. The application of these different input vector combinations results in several 
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different parametric determinant equations as described in column 2 of Table 4. 

Subsequently, these parametric equations are used to identify parameter(s) that 

satisfies(y) the Lie algebra rank condition, that is, for the determinant equation to not 

equal zero. It is observed from each equation that at least one nonzero parameter must 

exist in addition to the input parameter(s). Given that each parameter also represents an 

edge that connect initial vertex to terminal vertex, thus, based on this observation, it 

implies that any combination of input an edge 11iE  that enters to state x1, an additional 

edge connects that state x1, to state vertex 2, that is 120E , is required. The same approach 

is performed by assuming that the input vector (g1) enters the system to state x2 as 

described by Equation 5.8. 

Furthermore, when dealing with a nonlinear type of system, multi equilibrium is 

one of the properties that comes with it. This property may cause a Lie algebra rank 

condition of the structured matrix 1∆  to have a rank of less than n. Here, using Equation 

5.6, the singularity that is obtained when Det [ ]( )1∆ = 0 can now be identified as well. 

Since it is known that the parameters of Equation 5.6 cannot be zero, Det [ ]( )1∆ = 0 is most 

likely resulted from the value of the state condition itself. Table 5 summarizes the set 

parameters of Equation 5.6 that must exist in order to obtain a non-zero Det [ ]( )1∆ = 0 if 

system input enters either through state x1 or state x2 as described by Equation 5.7 and 

5.8, or both. This table also includes all possible singularity points that can result in 

Det [ ]( )1∆ = 0. In addition, Det [ ]( )1∆ = 0 can also be caused from the identicalness 

parameter value associated with each state. In this case, Det [ ]( )1∆ = 0 is possible to 

happen when the following identical equations occur: 
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1. ks1 = E01,1 = E02,1 = ks2 = E01,2 = E02,2  

2. k11 = E11,1 = E12,1 = E11 = k12 = E11,2 = E12,2 = E12 

 

Table 5: Edge/s that maintain SBTS structural controllability 

Input edge/s  

Additional 

Edge/s that 

must Exist for 

Det [ ]1∆ ≠  0 

Singular Point 

( ) ( ) ( )112111 1111 bEEE ∨∨   
120E  01121 === bxx  

( ) ( ){ } ( ) ( ){ } ( ) ( ){ }112111112111 11111111 bEEbEEEE ∪∨∪∨∪  
120E  

21 xx =  

11 1bx =  

12 1bx −=  

( ) ( ) ( ){ }112111 1111 bEEE ∪∪  
120E  

121 1bxx ==  

( ) ( ) ( )222212 1111 bEEE ∨∨  
210E  01121 === bxx  

( ) ( ){ } ( ) ( ){ } ( ) ( ){ }222222122212 11111111 bEEbEEEE ∪∨∪∨∪  
210E  

21 xx =  

11 1bx =  

12 1bx −=   

( ) ( ) ( ){ }222212 1111 bEEE ∪∪  
210E  

221 1bxx ==  

( ) ( ) ( ){ } ( ) ( ) ( ){ }222212112111 11111111 bEEEbEEE ∨∨∪∨∨  
2112 00 EE ∪  2,1,1,1, 12221121 bxbxbxbxxx −=−====  

 

Note that notation “ ∨ ”refers to symbol of OR, while ∪ refers to a symbol for 

combination.  
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As the result in Table 5 is observed, column 1 shows an input vector that is 

composed of every possible combination of input edges. Each input vector results in 

different parametric determinant equations where its additional must-exist edge is 

described in column 2. Column 3 subsequently derives a singularity point that may cause 

the Det [ ]( )1∆ = 0.  

Based on the result described in Table 4 and 5, a few remarks can be made: 

1. If the input to an SBTS system is represented by input edge(s) that connect(s) to state 

vertex 1, then, in order to satisfy the Lie algebra rank condition, an additional edge 

that connects to state vertex 2 is required. 

2.  Vice versa, if the input to an SBTS system is represented by input edges that connect 

to state vertex 2, then, in order to satisfy the Lie algebra rank condition, an additional 

edge that connects to state vertex 1 is required. 

3. If these “input” and “must-exist” edges are composed in a sequence with input 

edge(s) as the starting point, it forms a path that connects input edges to every state of 

the given SBTS. A state digraph that contains this type of path is defined by 

Definition 5.4.2 as an input connectable system. 

4. Singularity, that is, when the Det [ ]( )1∆ = 0, results in an unsatisfactory Lie algebra 

rank condition as its rank is less than n.  Given the non-zero parameter’s value, 

singularity happens only when the states (x’s) of the system reach singular points or 

equilibrium as described in column 3 of Table 5.  

5. If there exist path with width exactly n, a Lie algebra rank condition of full rank is 

most likely guaranteed.  
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To verify this finding, consider an admissible third order thermal dynamic bilinear 

system which has been modified to have its digraph notations given by Equation 5.9: 
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Following the same approach, concurrence is obtained and described by Table 6: 

Table 6: Structural Controllability Result Summary 

Input Vector 

(g1) Parameters 

(Edge/s) 

Det [ ]( )1∆  Parameteric Equation 

Parameter/Edges 

that must Exist for  

Det [ ]( )1∆ ≠  0 

2222 11&1 bEE  ( ) ( )2

2222222132121 111000 BxExEEEE +−  { }132122 0,0,1 EEE  

2222 11&1 bEE  ( ) ( )2

2222222112321332321 111000000 BxExEEEEEEE ++−  { }232122 0,0,1 EEE  

2222 11&1 bEE  ( ) ( )2

2222222312323 111000 BxExEEEE +  { }312322 0,0,1 EEE  

2222 11&1 bEE   ( )2
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This completes the proof of Lemma 5.4.1. 

Based on the above discussion, Proposition 5.4.1 can now be proven for 

characterizing the structural controllability of an SBTS system using a graphical criterion. 

Proposition 5.4.1: 

An SBTS [ ]Σ is said to be locally structurally controllable if and only of its state diagraph 

[ ]Σ=SG is input connectable. 
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Proof of Proposition 5.4.1: 

Necessary 

Assume that the condition of Proposition 5.4.1 is not satisfied, such that its state 

digraph [ ]Σ=SG is not input connectable according to Definition 5.4.2. Hence, based in 

Lemma 5.4.1, the given SBTS [ ]Σ is lacking one or two things: 

1. The given SBTS  [ ]Σ may not have input vectors even a single input edge 

cannot be derived. This implies inability to produce a controllability 

distribution C∆ ,  OR  

2. There is at least one missing must-exist-edge which results in an 

unsatisfactory Lie algebra rank condition for controllability.    

 

Sufficiency 

Assume that the condition of Proposition 5.4.1 is satisfied, such that its state 

digraph [ ]Σ=SG is input connectable according to definition 5.4.2. Then the given SBTS 

is able to produce a structured controllability distribution [ ]C∆ that satisfies the Lie 

algebra structural rank condition for structural controllability.  

 

Non-Controllability 

If a non-controllability aspect of an SBTS using this criterion is considered, it can 

be explained as follows: The proof of Lemma 5.4.1 shows that the singularity point of 

SBTS can cause an unsatisfactory result of the Lie algebra rank condition as the rank of 

the obtained controllability distribution is not a full rank. It was shown in Table 5 that 

singularity points include all states associated with input edges that are identical. As the 
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state in SBTS represents temperature, the identical state value implies an equal 

temperature between the states, or, simply put, that the STBS is at its equilibrium state. 

Thus, no energy exchange will occur even though system input is varied. Therefore, this 

state makes the system un-controllable. The main advantage of Proposition 5.4.1 is its 

computational aspect which is very well suited to large-scale systems. The graphical 

criterion has an intuitive interpretation and is easy to check by hand.  Furthermore, non-

controllability can also be identified easily by observation.  

 

 

5.4 Application 

 

In this section an illustration on the application of the proposed method is 

presented. The first part, an example of a 2 cell heat exchanger is utilized. This example 

is used to somewhat represent a large-scale structured nonlinear system. On the second 

part of this section, controllability of the BCHP system given in chapter four is 

investigated. 

 

5.4.1 Local Controllability of a nonlinear 2-cell Heat Exchanger 

An example of a cascade heat exchanger consists of a 2-cell heat exchanger in 

reverse flow as depicted by Figure 21. By definition, given that the system consists of 2 

subsystems of heat exchanger that are interconnected, this particular system can be 

considered as a large-scale system. 
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Figure 21: A Cascade Model of Heat Exchanger 

 

Based on energy conservation, the following thermal dynamic equation is derived 

to model the heat exchanger where the following notation is applied: 

x1 = Tc2, x2 = Th1 , x3 = Tc1, x4 = Th2, b1 = Thi  and b2 = Tci, where  u1 = vc and u2 = vh.   

x& 1 = 
1c

c

V

v
(x3 - x1) + k1(x2 – x1)  = -k1x1 + k1x2 + (

1

1

cV
 (-x1 + x3)) vc 

x& 2 = 
1h

h

V

v
(Thi – x2) + k2(x1 – x2) = k2x1 – k2x2 + (

1

1

hV
(- x2 + Thi)) vh 

x& 3 = 
2c

c

V

v
(Tci - x3) + k3(x4 – x3) = -k3x3 + k3x4 + (

2

1

cV
(-x3 + Tci)) vc  

x& 4 = 
2h

h

V

v
(x2 – x4) + k4(x3 – x4) = k4x3 – k4x4 + (

2

1

hV
(x2 - x4)) vh   (5.10) 

yj(t) = 
( )
( )







tx

tx

4

1  

State equation 5.10 is transformed into a state space form as described by Equation 5.11: 
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 (5.11) 

Subsequently, the structured model of Equation 5.11 based on a signed structured method 

given by Definition 2.4.2, is obtained and described by Equation 5.12. Hence, another 

transformation into a digraph is depicted in Figure 5.2. 
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   (5.12) 

Structural controllability using the graph-theoretic approach is first performed in 

order to investigate the controllability of the system. The result then is confirmed by the 

analytical structural controllability method and the proposed method of graph-theoretic 

approach can be verified. Figure 22 depicts the overall digraph of the nonlinear 2-cell 

heat exchanger. Subsequently, the state diagraph is constructed and depicted on Figure 

23. 
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Figure 22: Digraph of 2-Cell Heat Exchanger 
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Figure 23: State Digraph of Nonlinear 2-Cell Heat Exchanger 

 

Observing the state digraph of the nonlinear 2-cell heat exchanger depicted on 

Figure 23, it is clearly showed that the system is input connectable according to 

Definition 5.4.2. Hence, according to Proposition 5.4.1, the system is locally structurally 

controllable. This result is then verified against the analytical method of Theorem 5.3.1 

for the structural controllability rank test condition using the structured controllability 

distribution [ ]C∆  . Applying Isidori’s algorithm [1995, 1] for constructing controllability 

distribution, the following structured controllability distribution [ ]C∆  is obtained.
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    (5.13) 

Equation 5.13 describes the controllability distribution [ ]C∆  of nonlinear a 2-cell heat 

exchanger consisting of four vectors. The structural rank of [ ]C∆
 
is four. Except at a 

singular point where the rank of the distribution decreases, that is, x1 = x3,  x2 = Th1 , x1 = 

Tc1, x4 = x2. This singular point represents the equilibrium condition of the heat exchanger 

where the input and output temperature are equal. Therefore, any controllable input that 

is utilized will not control the output. 

 

5.4.2 Structural Controllability of BCHP system. 

 Consider a BCHP system described in chapter four. The state digraph of the 

system is depicted again on Figure 24. In order to investigate the controllability of the 

BCHP system, a graph-theoretic approach is favorable due to the size of the system. 

According to Proposition 5.4.1, the BCHP state digraph is input connectable. Hence, the 

system is locally structurally controllable, except at singular points where the structural 

rank of controllability distribution of BCHP system is not a full rank. This condition is 

obtained due to the temperature equilibrium that is reached in the system, thus no heat 

transfer occurs regardless of whether or not the variable control input is varied.  
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Figure 24: Input Connectable BCHP State Digraph 
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Chapter Six 

 

OBSERVABILITY 

OF STRUCTURED NONLINEAR THERMAL DYNAMIC SYSTEM  

VIA CONNECTABILITY APPROACH 

 

 

This chapter presents a new approach to observability of structured nonlinear 

systems using a graph-theoretic approach. On the basis of a digraph representation, the 

necessary and sufficient conditions for the observability of structured non-linear systems 

are expressed in graphic terms. These conditions have an intuitive interpretation and are 

easy to check by hand for small systems and by means of well-known combinatorial 

techniques for large-scale systems. The results presented here then serve as the analytic 

foundation for observability analysis for the research systems presented in the previous 

chapter. 

 

 

6.1 Observability of Non-Linear Thermal Dynamic System 

 

In this thesis, bilinear thermal dynamic system (BTS) as described by Equation 

5.2 is considered: 
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where ( ) ( ) ( )( ) nT
n Mtxtxtx ℜ⊂∈= ,,1 K , ( ) ( ) ( )( ) mT

m tututu ℜ⊂Ω∈= ,,1 K , 

( ) ( ) ( )( ) pT
p tytyty ℜ∈= ,,1 K  are, the state, the input and the output vectors, respectively;  

 and 
nn

A
×ℜ∈0

, for mi ,,1K= , 
nni

A
×ℜ∈ , 

1×ℜ∈ ni
bB , and npC ×ℜ∈ are state space 

matrices form of ∞C function vector fields on M representing the heat transfer 

mechanisms. 

The problem statement of observability in the nonlinear system focuses on finding 

the condition where the initial state 
0

x can be distinguished given the output 

measurement. This was previously described by Definition 2.3.4. 

Definition 2.3.4 ( ishableindistinguU − ): 

Given a subset MU ⊆ , and Uxx ∈10 , , it is said that 
0

x is ishableindistinguU − from 

1
x (denoted 

01
xIx U ) if for every control ( ) [ ]( )10 ,, tttu  whose trajectories ( ) [ ]( )100 ,, tttx and 

( ) [ ]( )101 ,, tttx from 
0

x and 
1

x both lie in U , fails to distinguish between 
0

x and 
1

x , i.e., if 

( ) Utx ∈0 and ( ) Utx ∈1 for [ ]10 , ttt ∈ , then ( ) [ ]( ) ( ) [ ]( )1010 ,,,, 10 tttutttu
xx

Σ=Σ . Denote 

( ) { }0110 : IxxMxxI ∈=  the set of points indistinguishable from
0

x . 

In the case of this research, local state observability is considered. 

Definition 2.3.6 (Local State Observability): 

The system Σ is said to be locally observable at 
0

x if for every neighborhood U of 
0

x , 

( ) { }00
xxIU =  ; Σ is locally observable  if this is true for every Mx ∈ .  
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Furthermore, in order to investigate the local observability of a nonlinear system, 

observability rank test condition is performed on the derivative of observation space Ω . 

This was discussed earlier in chapter two. 

Theorem 2.3.2 (Observability Rank Test): 

SBTS Σ satisfies the observability rank condition at 
0

x if in a neighborhood of 
0

x , 

[ ] nd O =Ωdim . If this holds for all Mx ∈0
, then Σ satisfies the observability rank 

condition. Thus, if Σ  satisfies the observability rank condition at Mx ∈0
, then Σ has the 

local distinguishability property at 
0

x . 

Therefore, the first step toward the analysis of local observability of nonlinear 

systems is to construct the observability co-distribution that is based on Observation 

space O using Lie derivative on output function and vector field.  Isidori [1995, 1] 

proposes an algorithm for constructing the observability co-distributions dO as follows: 

Algorithm for Constructing the Observability Co-Distribution 

4. Starting Point: Ω 0 = span{dh1,…,dhp} 

5. Development of the controllability Distribution:  Ω k = Ω k-1 + 1

0

−

=

Ω∑ k

m

i
igL  

6. Stopping criterion: if there exist an integer k* such that Ω k* = Ω k*-1, then  

Ω 0 = Ω k* = 00 |,, Ωmgg K  

where xAg
0

0 =  and ( )bBxAg
ii

i +=
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6.2 Observability of Structured Non-Linear Thermal Dynamic System 

 

When the concern in the observability analysis is in the form of structured 

matrices, structural observability is applied to ensure the given structured system is 

observable. Hence, the following definition is applied. 

Definition 6.2.1 (Structural Observability): 

A class of nonlinear systems given by its structure matrix pair [ ]CAA i ,,0

 for 

mi ,,1K= is said to be structurally observable (for short, s-observable) if there exist at 

least one admissible realization ( ) [ ]CAACAA ii ,,,, 00 ∈ being observable in the usual 

numerical sense. 

Furthermore in order to determine if the structured bilinear thermal dynamic 

system is structurally observable at 
0

x , based on theorem 2.3.2, the necessary and 

sufficient conditions that must be satisfied transformed into the following theorem. 

Theorem 6.2.1: 

Structured nonlinear thermal dynamic systems [ ]Σ  characterized by structure matrix pair 

[ ]CAA i ,,0  for mi ,,1K=  is structurally locally observable if, for almost all the 

realization of ( ) [ ]Σ∈Σ , there holds observability co-distribution ( ) [ ]OO Ω∈Ω of structural 

dimension n . 

Note that structural dimension here is equivalent to structural rank of Definition 2.4.5. 
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6.3 Observability of Structured Non-Linear Thermal Dynamic System via 

Connectability Approach 

 

This section focuses on providing the graphic conditions equivalent to the one of 

Theorem 6.2.1 on structural observability rank condition for structured nonlinear 

systems. Since the focus of the research is placed upon bilinear thermal dynamic systems 

(BTS), the first part of this section is devoted to some definition of a digraph utilized as 

the tools for analyzing structural observability. The second part discusses the proposed 

graphical criterion that characterized the structural observability of structured bilinear 

thermal dynamic systems (SBTS). 

 

6.3.1 Digraph Definition for Structured Thermal Dynamic System 

Given a structured bilinear thermal dynamic system [ ]Σ , some definitions based 

on digraph theory described in chapter three is devised: 

Definition 6.3.1 (Output Digraph): 

Output digraph [ ]( )ΣOG is a digraph ( )EVG ,= of a structured bilinear system [ ]Σ  

represented by its state space model of equation 5.2, and is characterized by the 

following: 

a. The vertex set V is given by XY U with { }
pyyY ,,1 K= the set of output 

vertices, and { }nxxX ,,1 K= the set of state vertices. 
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b. The edge set E  is described by CA
EE l U with ( )[ ]{ }0, , ≠= ji

l

ijA
AxxE l  

ml ,,1,0 K= , and ( )[ ]{ }0, , ≠= jiijC CxuE .  

For ml ,,1,0 K=  an index l  is assigned to each edge CA
EEe l U∈ . Note that 

several indexes may be given to an edge e  if it belongs to several subsets 

edgesE l
A

− . For ml ,,1K= , this index correspond to system input lu .  

Definition 6.3.2 (Output Connectable): 

Output digraph [ ]( )ΣOG is output connectable if paths exist from every state vertex to 

each of the output vertex consisting at least m distinct input edges. 

 

6.3.2 Main Results 

Observability is the dual concept of controllability, thus any statement about 

controllability has its direct counterpart concerning observability. Therefore, an obvious 

precondition of observability is that the system outputs are able to influence all state 

variables. Said in graph-theoretic terms for bilinear system, paths must exist from each 

state vertex to each output vertice. Therefore, the following proposition is suggested in 

this research: 

Proposition 6.3.1:  

A structured bilinear thermal dynamic system (SBLTD) [ ]Σ is structurally observable if 

and only if in its associated output diagraph [ ]( )ΣOG  is output connectable. 

In order to prove Proposition 6.3.1, it is important to show that ouput-connectable 

systems possess the ability to satisfy the necessary and sufficient conditions for a bilinear 
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system to be observable in the standard numerical sense of Lie algebra rank condition as 

described in Theorem 6.2.1.  Thus, the following lemma is formulated: 

Lemma 6.3.1: 

If an n-order SBTS [ ]Σ characterized by structure matrix pair [ ]CAm

l ,0=  ml ,,1,0 K=  is 

output connectable, then there holds a structured matrix formed by observability co-

distribution [ ]OΩ of [ ]Σ with rank n for almost all the realization of ( ) [ ]Σ∈Σ . 

 

Proof of Lemma 6.3.1 

In order to verify Lemma 6.3.1, n-order SBTS is studied gradually to find the one 

that would guarantee resulting in satisfying the Lie algebra rank condition. It will be 

shown that in order to obtain a structured observability distribution OΩ of [ ]Σ  with rank n 

for almost all the realization ofΣ , a certain connectability property, that is, output 

connectability must exist. 

First, consider an admissible second order SBTS (n = 2) with single input (m = 1) 

and observable output, that is, state x1, as described by the following state Equation:  

 

[ ]



















=









+

















−

−
+

















−

−
=

Σ

2

1

1

2

1

1

2

1

22

11

2

1

22

11

01

1

1

11

11

:

x

x
y

u
b

b
u

x

x

kk

kk

x

x

ksks

ksks
x&

   (6.1) 

To create a relationship that is proposed by Lemma 6.3.1, sign structure model [ ]Σ  is 

utilized. Thus Equation 6.1 now becomes the following state equation: 
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  (6.2)  

 

Given an SBTS described by Equation 6.2, parameter Eki,j represents both the structured 

entry of Ak matrix of i-th column and j-th row but also the edge that connects state vertex 

i to state vertex j associated with matrix Ak. Furthermore bkj refers to the entry of k-th 

input of structured vector Bk of row j-th, which also represents the edge from vertex bkj to 

state vertex j. On the output equation side EYi,j represents both the structured entry of C 

matrix of i-th column and j-th row and also the edge that connects state vertex i to state 

vertex j associated with matrix C. For the completeness, based on this substitution of 

parameter notation the following equality is: 

5. E01,1 = E02,1 = ks1  

6. E01,2 = E02,2 = ks2 

7. E11,1 = E12,1 = E11 = k11  

8. E11,1 = E12,1 = E12 = k12  

9. EY1 = 1 

 

Using this SBTS matrix equation, Isidori’s algorithm [1995, 1] for observability 

co-distribution [ ]OΩ of [ ]Σ is applied and the following structured matrix consisting of 

three vectors is obtained: 

[ ] [ ] [ ]{ }211121111 11,00,01 EEEEspan=Ω      (6.3) 
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To check the Lie algebra rank condition of the structured matrix 1Ω , its determinant 

(Det [ ]1Ω ) is subsequently evaluated. Equation 6.4 described two different possible 

structured parametric equations of Det [ ]1Ω : 

( )( )[ ]
( )( )[ ]211

211

11

01

E

E

=Ω

=Ω
         (6.4) 

 

In order to satisfy Lie algebra rank condition, a non-zero Det [ ]1Ω  is required. 

Using the structured parametric equation described by Equation x.4, it is observed that 

non-zero parameter of E021 or E121 would result in non-zero determinant if state x1 is 

observable. Vice versa, if state x2 is the observable state as described by Equation 6.5, 

using the same approach, the following structured parametric equation of Det [ ]1Ω  is 

obtained: 
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  (6.5)  

( )( )[ ]
( )( )[ ]121

121

11

01

E

E

=Ω

=Ω
         (6.6) 

 

Thus, non-zero parameter of E012 or E112 would result in non-zero determinant if state x2 

is observable. Table 7 summarizes the result of this finding: 
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Table 7: Edge/s that maintain SBTS observability 

Observability State  
Output Equation 

Parameter 

Edge that must Exist for 

Det [ ]1Ω ≠  0 

x1 1EY  
2121 10 orEE  

x2 2EY  
1212 10 orEE  

 

It is observed from Table 7 that at least one non-zero parameter must exist in 

addition to the output parameter. Given that each parameter also represents an edge that 

connects initial vertex to terminal vertex, thus, based on this observation, it implies that 

given an of output edge iEY  which represents the observable state xi, an additional edge 

with terminal vertex state xi is required.  

Based on the result described in Table 8 a few remarks can be made: 

6. If the output to an SBTS system is represented by an output edge that connects 

through state vertex 1, then, in order to satisfy Lie algebra rank condition, an 

additional edge that connects from state vertex 2 to state vertex 1 is required. 

7.  Vice versa, if the output to an STBLD system is represented by an output edge that 

connects through state vertex 2, then, in order to satisfy Lie algebra rank condition, an 

additional edge that connects from state vertex 1 to state vertex 2 is required. 

8. As these “output” and “must-exist” edges are composed in a sequence with the must-

exist edge as the starting point, it forms a path that connects output edges from every 

state of the given SBTS system. An output digraph that contains this type of path in 

previous sections is defined as an output connectable system. 

9. If path/s exist/s with width exactly n, Lie algebra rank condition of full rank is most 

likely guaranteed  
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To verify this finding, let’s consider an admissible third order TBLD which has 

been modified to have its digraph notations given by Equation 6.7: 
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    (6.7) 

Following the same approach, the must-exist-edges which verify the earlier remarks are 

obtained: 

 

Table 8: Structural Observability Results 

Observability State  

Output Equation 

Parameter 

Edge that must Exist for 

Det [ ]1Ω ≠  0 

x1 1EY  
3121 00 EE ∪  

x1 1EY  
3221 00 EE ∪  

x1 1EY  
2331 00 EE ∪  

 

This completes the proof of Lemma 6.3.1. 

Based on the above discussion, Proposition 6.3.1 for characterizing the structural 

observability of an STBLD system using a graphical criterion can now be proven. 

Proposition 6.3.1: 

An SBTS [ ]Σ is said to be locally structurally observable if and only of its output 

diagraph is output connectable. 
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Proof of Proposition 6.3.1: 

Necessary 

Assume that the condition of Proposition 6.3.1 is not satisfied, such that, its output 

digraph is not output connectable. Then based on the proof of Lemma 3.2, then the given 

STBLD system is lacking one or two things: 

1. The digraph of the given STBLD may not have output vectors that even a single 

output edge cannot be derived. This implies inability to even produce an 

observability distribution OΩ ,  OR  

2. There is at least one missing must-exist-edge which results in unsatisfactory Lie 

algebra rank condition for observability.    

 

Sufficiency 

Assume that the condition of Proposition 6.3.1 is satisfied, such that, its output 

digraph is output connectable. Then the given SBTS system is able to produce an 

observability co-distribution OΩ that satisfies the Lie algebra rank condition for structural 

observability.  

 

 

6.4 Application 

 

In this section an illustration on the application of the proposed method is 

presented. In the first part, an example of a 2 cell heat exchanger is utilized. This is used 
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as an example of a large-scale structured nonlinear system. On the second part of this 

section, controllability of the BCHP system given in chapter four is investigated. 

 

6.4.1 Local Observability of a nonlinear 2-cell Heat Exchanger 

An example of a cascade heat exchanger consisting of a 2-cell heat exchanger 

reverse flow as depicted by Figure 25 is considered.  

Tci Tc1 Tc2

ThiTh1Th2

12

vc

vh

Tci Tc1 Tc2

ThiTh1Th2

12

vc

vh

 

Figure 25: A Cascade Model of Heat Exchanger 

 

In the case of the observability analysis, note that the measurable outpout of the 

system is x1 = Tc2 and, x4 = Th2. Hence the same digraph as previously obtained is 

considered again here. 

Structural observability using graph-theoretic approach is first performed in order 

to investigate the observability of the system. The result is then confirmed by the 

analytical structural observability method thus the proposed method of graph-theoretic 

approach can be verified. Figure 26 depicts the overall digraph of the nonlinear 2-cell 

heat exchanger. Subsequently, an output diagraph is constructed using Definition 6.3.2 

and the result is depicted on Figure 27. 

Observing the output digraph of the nonlinear 2-cell heat exchanger depicted on 

Figure 6.3, it clearly shows that the system is output connectable according to Definition 
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6.4.2. Hence, according to Proposition 6.4.1 the system is locally structurally observable. 

This result is then verified against the analytical method of Theorem 6.2.1 for structural 

observability rank test condition using the structured observability co-distribution [ ]OΩ  . 

Applying Isidori’s algorithm [1995, 1] for constructing observability co- distribution, the 

following structured obeservability distribution [ ]OΩ  is obtained.
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Figure 26: Digraph of 2-Cell Heat Exchanger 
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Figure 27: Output Digraph 
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Equation 6.8 describes the structured observability co-distribution [ ]OΩ  of a 

nonlinear 2-cell heat exchanger consisting of six vectors. The structural rank of [ ]OΩ
 
is 

four. This shows that the proposed method of graph-theoretical approach is able to 

deduce the same conclusion as the analytical one. The main advantage of Proposition 

6.3.1 is its computational aspect which is very well suited to large-scale systems. The 

graphical criterion has an intuitive interpretation and is easy to check by hand.   

 

6.4.2 Structural Observability of BCHP System 

 The BCHP system described in chapter four is considered again. The actual set up 

of the BCHP system in the field is actually fully observable since there is a temperature 

sensor on every state of the system. For the purpose of this analysis, it is assumed that 

only a few measurements are available, that is:   

Table 9: BCHP Measurable Output 

Definition  

Large Scale 

System State 

Microturbine-HX Air Outlet temperature x1 

DWH-HX “A” – Water Outlet temperature x8 

DWH-HX “B” – Water Outlet temperature x10 

Building Space Air temperature x14 
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This measured output can be seen from the BCHP diagraph depicted in Figure 6.4. 

Applying Proposition 6.4.1 on the BCHP output digraph, the structural observability is 

investigated. From observation of the output digraph, it is clearly shown that the diagraph 

is output connectable according to Definition 6.3.2. There are paths from each state 

vertex to every output vertex, which includes 12 distinct input edges. Therefore, the 

BCHP system is structurally locally observable according to proposition 6.4.1. This 

exercise is very useful in determining the number of sensors to be installed, as well as the 

selection of location. Therefore the number of sensors that need to be installed can be 

reduced while still maintaining the information needed for observation and control 

purposes. 
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Figure 28: Output Digraph of BCHP system 
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Chapter Seven 

CONCLUSION AND FUTURE WORK 

 

 

7.1 Summary and Conclusions 

 

 In summary, the primary objective for this research was to develop a 

methodology for determining the controllability and observability of a large-scale 

nonlinear thermal dynamic system. As an alternative to the often difficult and 

computationally intensive analytical method of analyzing the structural property of a 

large-scale nonlinear system, graph-theoretical approach is proposed in this research. 

Using a new graph representation of a special class of nonlinear system – bilinear system 

– a necessary and sufficient condition for structural controllability and observability are 

given and expressed in graphic terms. This method needs information that can be 

observed from its system digraph, and is easy to check which makes it well suited to 

analyze the large-scale system of thermal dynamic bilinear system. The contributions of 

the thesis are as follows: 

Digraph Model for a Bilinear System: 

• In many modeling problems, the exact knowledge of the state space 

matrices is sometimes unknown. To mitigate this deficiency, for a model 

with its state space system determined by the physical laws, some 
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structured form can be defined. The study of such a model is called the 

structured modeling approach. This particular technique requires a low 

computational burden which allows one to deal with a large-scale system.  

• Many results on structured systems are related to the graph theoretic 

approach. However, this approach is mainly dedicated to a linear system 

and many do not deal with nonlinear systems. In this research, a graph 

representation for a bilinear system was developed using directed-graph. 

Some definitions that explore the property of connectability for a bilinear 

system was derived here. 

 

Controllability and Observability of a Large-Scale Structured Bilinear 

Thermal Dynamic System via Connectability Approach 

• A new analysis tool to investigate the structural controllability and 

observability of a structured thermal dynamic bilinear system is proposed. 

The necessary and sufficient condition for structural controllability and 

observability which normally is determined using the analytical method of 

Lie algebra rank condition is now represented by graph representation. 

From a computational point of view, the proposed approach is particularly 

suited for a large-scale system since it is free from numerical difficulties. 

The proposed condition can be easily implemented because the method 

requires simple computations based on finding paths in digraphs. 

Furthemore, the use of graph-theoretic approach makes it easy to visualize 

the system structure. This may be very helpful for the optimization of 
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actuator placement and sensor placement to achieve the controllability and 

observability of the system. 

 

7.2 Future Work 

 

 This research work focused on a new practical approach to investigate the 

controllability and observability of a large-scale nonlinear thermal dynamic system, and 

there are several areas of possible future work. Based on the result presented in this thesis 

there are several areas which are especially relevant: 

• Currently the technique to investigate the controllability and observability 

of a large scale nonlinear system is geared toward the structured system, 

such as a thermal dynamic system following thermodynamic principle. 

However, there are many other structured nonlinear systems following the 

engineering first principle that can be explored. Given that to a structured 

system a directed graph can naturally be associated, graph-theoretic 

approach still has a lot of potential to be utilized for structural properties 

analysis.  
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Appendix 1 

Heat Exchanger Model: 

Controllability and Observability of a Thermal Dynamic Nonlinear System 
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Appendix 2 

BCHP Model
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Figure 29: BCHP System and Subsystem Boundary 
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Table 10: State Notation 

Definition  
Large Scale 

System Level 

Microturbine-HX Air Supply temperature x1 

Microturbine-HX Glycol Supply temperature x2 

Main Loop-HX Primary Glycol Supply temperature x3 

Main Loop-HX Primary Glycol Return temperature x4 

Main Loop Glycol Secondary Supply temperature x5 

Main Loop Glycol Secondary Return temperature x6 

DWH-HX “A” – Glycol Supply temperature x7 

DWH-HX “A” – Water Return temperature x8 

DWH-HX “B” – Glycol Supply temperature x9 

DWH-HX “B” – Water Return temperature x10 

Hydronic – Glycol Supply temperature x11 

Hydronic - Glycol Return temperature x12 

Floor temperature x13 

Building Space Air temperature x14 

 

 

 

Table 11: Constant Input 

Definition Large-Scale System Notation 

Microturbine-HX air inlet temperature 
1b  

DWH-HX ”A” water inlet temperature 
2b  

DWH-HX ”B” water inlet temperature 
3b  

HVAC air supply temperature 
4b  
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Table 12: Controllable Input 

Definition Large-Scale System 

Notation 

Microturbine-HX exhaust air volumetric flow rate  
1u  

Microturbine-HX glycol volumetric flow rate 
2u  

Main loop glycol bypass volumetric flow rate 
3u  

Main loop glycol volumetric flow rate 
4u  

Hydronic glycol volumetric flow rate  
5u  

HVAC supply air volumetric flow rate 
6u  

DWH-HX ”A” glycol volumetric flow rate 
7u  

DWH-HX ”A” water volumetric flow rate 
8u  

DWH-HX ”B” glycol volumetric flow rate 
9u  

DWH-HX ”B” water volumetric flow rate 
10u  

Hydronic glycol mixed volumetric flow rate 
11u  

Hydronic glycol return volumetric flow rate 
12u  
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HX at the Microturbine 

Equations 1 and 2 are the differential equations that govern the heat exchanger between the hot exhaust-air from a micorturbine to the 

glycol main loop unit, which is based on the conservation of energy law. In linear system the input is the temperature of hot air that is 

produced by the microturbine. However in a nonlinear system, which is always the case, the input is the volume flow rate of the hot 

air that is coming from the microturbine as well as the volume flow rate of glycol that is coming from glycol main loop. 
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Glycol Loop  

Glycol main loop is the system that distributes the thermal energy that is produced by the microturbines to the load in the building. 

Glycol is the fluid that is used for the system. In this system, it is assumed that the thermal property of the glycol stays constant all 

through the process. Equations 3 through 6 are the differential equations of the glycol main loop, which is based on the law of 

conservation of energy. Equation 3 and 4 represent the dynamic of the glycol at the microturbine plant or in this case is called primary 

loop. Equation 5 and 6 represent the dynamic of the glycol at the load level or in this case is called secondary loop. 
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Water Heater  

There are two 1000 gallon water tanks that its temperature is required to maintain at 145
0
F at all times. Equations 7 through 10 are the 

differential equations to govern the dynamic of these two water tanks. Equations 7 and 8 represent the system for tank 1 and equations 

9 and 10 represent the system for tank 2. There are two operation modes for each tank namely charging and not-charging. Charging 

occurs when the temperature of the water inside the tank is less than 145
0
F. When the temperature of the water in the tanks is equal or 

greater than 145
0
F, the flow from the hot glycol to the hot water heat exchanger is shut down. 
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 y7(9) = x7(9) and y8(10) = x8(10) 
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Hydronic (11, 12, 13, 14) 

Hydronic Radiant Floor heating system is one of the building equipment that is used to maintain the temperature of building interior at 

the comfortable level during winter. Hydronic system consists of circuits of tubular pipe that is embedded under the floor. The pipe 

carries heated glycol from the glycol main loop, which has a function to heat the floor through conduction and convection. The heated 

floor then would radiate the heat to the interior of the building. Equations 11 through 14 are the differential equations of the hydronic 

system, which is based on the law of conservation of energy. In the case of this project, the hydronic system is controlled by regulating 

the flow rate of the glycol underneath the floor in order to maintain its temperature at 105
0
F during winter and 85

0
F during summer. 

This is achieved by mixing the glycol supply and its return. This process is represented by Equation 11 and 12. The load side of the 

hydronic system, which is at the building level, is represented by Equation 13 and 14 which shows the interaction that occurs in the 

building zone between the heated floor (hydronic system) and the building load, as well as additional heating system that is 

contributed by conventional HVAC system. 
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The state space form of the nonlinear large scale model of BCHP follows the following equation: 

State Equation: x& = f(x) + g(x) = f(x) + ∑
=

m

i 1

gi(x) = ATransfer(x) + ∑
=

m

i 1

Ni(x) + B
(i)

Convection  

Output Equation:  yj(t) = hj(x(t)), j = 1, …, p 
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Appendix 3 

Controllability of a Nonlinear System: A Proof 
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   

−
   

   

   

   

+
   

   

   

      

   
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(
)

(
)

(
)

(
)

(
)

(
)

  

  

   

   

−
+

−
+

   

   

− −

   

   

− −

−

   

   
+

1
1
3

1
1
3

1
1
1
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1
1
2

1
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1
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1
1
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2
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3
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2
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1
1

1
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1
1

1
1
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1
0

0
1

1
0

0
1

1
0

,

1
0

0
1

1
0

0
1

1
0

,
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1
1

fg
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E
B

fg
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B
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B
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x
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B
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E
E
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E
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E

E
E
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x
E

E
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x
E

x
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B
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n
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. T
h

erefo
re th

e sy
stem

 is lo
cally

 co
n

tro
llab

le
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 If B
 m

atrix
 d

o
es n

o
t ex

ist, 
2

∆
y
ield

s to
 th

e fo
llo

w
in

g
: 

2
∆

  
=

 sp
an

(
)

(
)

(
)

(
)

(
)

(
)

  

  

   

   

   

   

− −

   

   

− −

   

   

1
1
1

1
3

1
1
1

1
2

1
1
3

3
3

1
1

1
3

1
1
2

2
2

1
1

1
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1
1
3

3
3

1
1
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3

1
1
2

2
2

1
1

1
2

1
1
3

1
1
2

1
1
1

1
1

1
1

0

,

1
0

0
1

1
0

0
1

0

,

1
0

0
1

1
0

0
1

0

,

1 1 1

x
E

fg

x
E

fg

x
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E
E

fg

x
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E
E
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x
E

E
E

E

x
E

E
E

E

x
E

x
E

x
E

 �
 D

im
en

sio
n

 =
 3

 

T
h

is is th
e p

ro
o

f th
at g

iv
en

 n
=

3
 an

d
 m

=
1

, w
h

ere its d
iag

rap
h

 m
o

d
el is in

p
u

t co
n

n
ectab

le, th
at is rep

resen
ted

 b
y
 3

 ed
g

es th
at its fin

al v
ertex

 is each
 o

f th
e sy

stem
 states th

is eq
u

iv
alen

t to
 th

e lie alg
eb

ra ran
k

 

co
n

d
itio

n
 o

f th
e co

n
tro

lla
b

ility
 d

istrib
u

tio
n

. It is sh
o

w
s th

at g
iv

en
 n

=
3

 an
d

 m
=

1
, th

e n
u

m
b

er o
f co

lu
m

n
 th

at resu
lted

 fro
m

 th
e
 co

n
tro

llab
ility

 d
istrib

u
tio

n
 is 4

. T
h

erefo
re g

iv
en

 th
e fre

e p
aram

ete
r o

f th
e co

lu
m

n
, 

th
ere m

u
st b

e at le
ast n

 c
o

lu
m

n
 th

at is lin
early

 in
d

ep
en

d
en

t w
h

ich
 im

p
lies th

e ran
k

 o
f th

e co
n

tro
llab

ility
 d

istrib
u

tio
n

. 

N
o

w
, w

h
at h

ap
p

en
ed

 if th
e sy

stem
 is b

ein
g
 d

istu
rb

ed
 b

y
 elim

in
atin

g
 th

e p
a
th

 to
 state x

3 , th
at is,  g

1 (x)=
 

   

   

+

   

      

   
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E E

. G
rap

h
ically

 th
is m

ea
n

s th
ere is o

n
ly

 2
 p

ath
s. 

W
ill it still b

e co
n

tro
llab

le?
 

0
∆

  
=
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{
g
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 =
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   

   
+

0

1

1
1

1
1
2

1
1

1
1

x
E

B
x

E

 �
 D

im
en

sio
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1
∆

  
=
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(
)

  

  

   

   

−

−

   
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+

0
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)
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)
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)

  

  

   

   

−
+

   

   

−

   

   

−

−

   

   
+

0

1
1

1
1
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1
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0
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T
h

u
s th

e d
im

en
sio

n
 w

ill n
ev

er in
c
rease. 

W
h
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p
lies, th
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m
 is n

o
t g

o
in

g
 to
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e fu

lly
 co

n
tro

llab
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 M
o

re ex
am

p
les: 

G
iv

en
:  

f(x)  
=

 

   

      

   
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; g
1 (x)=

 

   

   

+

   

      
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0
∆

  
=

 sp
an

{
g

1 }
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an

   

   
+

0 0

1
1

1
1

1
1

B
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E
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 D

im
en

sio
n

 =
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1
∆

  
=

 sp
an

{
g

1 (x), [f(x),g
1 (x)]}

 

[f(x),g
1 (x)] =

(
)

(
)

(
)

(
)x

g
x x

f
x

f
x

x
g

1
1

∂

∂
−

∂

∂
 =

 
   

   

   

      

   

−
   

   

   

      

      

   

−
   

   

   

      

      

   
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0
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E
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(
)

(
)

   

   − −

−

=
   

   

   

   

−
   

   

   

      

   

−
   

   

   

      

   
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an

(
)
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)

  

  

   

   − −

−

   

   
+

1
1
1
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3

1
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1
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1
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1
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1
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 D

im
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It is n
o

t su
fficien

t, th
u

s 

2
∆

  
=

 
1

∆
 +

 [f(x), 
1

∆
] +

 [g
1  (x), 

1
∆

] 

     
=

 sp
an

{
g

1 (x), [f(x),g
1 (x)] , [f(x),[f(x),g

1 (x)]], [g
1 (x),[f(x),g

1 (x)]]}
 

w
h

ere
 

[f(x),g
1 (x)] =

 

   

   

+

   

      
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1
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   

+

   

      

   

=

   

    −

+

   

      
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=
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−
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[f(x),[f(x),g
1 (x)]] =

 
(

)
(

)
[

]
(
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[
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g
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x x

f
x

f
x

x
g

x
f

1
1

,
,

∂

∂
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   

−
   
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   
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(

)
(

)
   

   

−
−

−
−

=
   

   

   

   

−
   

   

   

      

   

−
   

   
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Appendix 4 

Observability of Nonlinear System: A proof 
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