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ABSTRACT

This study presents a new approach to determine the controllability and
observability of a large scale nonlinear dynamic thermal system using graph-theory. The
novelty of this method is in adapting graph theory for nonlinear class and establishing a
graphic condition that describes the necessary and sufficient terms for a nonlinear class
system to be controllable and observable, which equivalents to the analytical method of
Lie algebra rank condition. The graph theory of a directed graph (digraph) is utilized to
model the system, and the rule of its adaptation in nonlinear class is defined.
Subsequently, necessary and sufficient terms to achieve controllability and observability
condition are investigated through the structural property of a digraph called
connectability. It will be shown that the connectability condition between input and
states, as well as output and states of a nonlinear system are equivalent to Lie-algebra
rank condition. This approach has been proven to be easier from a computational point of

view and is thus found to be useful when dealing with a large system.

il



ACKNOWLEDGEMENT

The writing of this dissertation has been one of the most significant academic
challenges I have ever had to face. The pages of this dissertation hold far more than the
culmination of years of study. These pages also reflect the relationship with many
generous and inspiring people I have met since the beginning of my graduate work. The
list is long and can be longer, but I cherish each contribution to my development as a
scholar. It is to them that I owe my deepest gratitude:

To my advisor Dr. Rahmat Shoureshi, gracious mentor whose wisdom,
knowledge and guidance, kindness, understanding and patience, as well as commitment
to the highest standard, inspired me and motivated me. His mentorship is paramount in
providing a well rounded experience consistent with my long-term career goals. He
encouraged me to not only grow as good a research engineer but also as an independent
thinker. For everything you have done to me, I thank you, Dr. Shoureshi.

To NiSource Energy Technologies and Department of Energy for the technical
contributions, experimental data, expertise and financial support. The assistance of Dr.
Robert Kramer of NiSource had made this research a challenging, yet enjoyable
experience.

To my committee members Dr. Anneliese Andrews, Dr.Corinne Lengsfeld, Dr.
Kimon P. Valavanis, Dr. Yun-Bo Yi for their encouraging words, thoughtful criticism,

time and attention during busy quarters.

il



To my professors at University of Denver as well as other universities, especially:
Dr. Roger Salters, Dr. Peter Curtiss, Dr. William Levine, Dr. Moncef Krarti, Dr. David
Chichka and Dr. Todd Murphey, who with open heartedly welcomed me for innumerable
discussions. Their sincerity to share their knowledge is infectious and has been major
driving forces through my graduate career.

To my colleagues for sharing their enthusiasms and comments on my work as
well as assisting me with administrative tasks necessary for completing my doctoral
program: Donna Kolosky, Dr. Sun Wook Lim, and Soon-To-Be Dr. Christopher Baker.

To my managers: Dr. Kenneth Langer and Jason Hainline, Cindy Cogil, Robert
Fagg and John Harriman, as well as Rami Soppa whom I had and have the honor to work
with as an engineer. The experience that they shared with me will always be treasured.

To my invaluable network of supportive, forgiving, generous and loving friends
without them I could not have survived the process: the Sadagoris, the Renandos, the
Arifins, the Thsans, the Sumarnos, Paskal Kleden, Dida Navayette, Luthfia
Tjakraamidjaja, Asri Poeraatmadja and Dhania Iman

To my parents, Sjaiful Bahri and Sri Mulyati, whom I owe everything I am today.
They have always supported, encouraged and believed in me, in all my endeavors. To my
two sisters, Gita Petrimalia and Riska Andalina, who never had a chance of having a
brother nearby. Thank you for the love and understanding during the long years of my
education. Also to my parent in law, Sodikin Sastrawidjaja and Ai Komariah, brothers

and sister in law whose love is boundless.

v



To my two sons, Valdean and Valkean Permana, who both were born before this
dissertation is completed and who spent many days being apart to allow me to focus, [ am
deeply sorry. But [ am coming home.

And to my wife Vena Annisa, who stood beside me through thick and thin. Her
support, encouragement, patience and unwavering love were undeniably the bedrock
upon which the past six years of my life have been built. Her tolerance of my

uncontrollable mood is a testament in itself of her unyielding devotion and love.

For my Faith, my Family and my Friends



TABLE OF CONTENTS

CRAPLET DN ..ottt ettt e et e sttt e st e e sabte e sabteesabeeesabeeesabeeenas 1
L1 MIOTIVALION ..ottt ettt ettt et e e st et esaeeeaeeas 1
1.2 BACKZIOUNA ..ottt st sttt e 3
1.3 Proposed ReSEAICH .........ciiiiiiiiiiieiiecce ettt 5
1.4 ThESIS OVEIVIEW ..ccuuiiiiiiiiiieiieiieeteeste ettt sttt ettt ettt e e enees 6

(@] 1B 1 01 1<) S o TSRS 8
2.1 INEFOAUCTION ...ttt ettt e st e e seeeenees 8
2.2 Controllability and Observability of Linear Systems...........cccceevvieerieeenieenneeennne. 12

2.2.1 Controllability.....ccocuieeiiieiiiieeiie ettt sttt e e bee e 13
2.2.2 ODBSEIVADIIILY ..uvviieiiieciieeeiiee ettt e et e st e e eaee e saeeeebeeeenbeeenes 14
2.3 Controllability and Observability of Nonlinear System...........cccccueevvveeriieenineennnne. 15
2.3.1 Controllability of Input-Affine Nonlinear System ..........cccceeevuveervieerieeeninneens 17
2.3.2 Observability of Input-Affine Nonlinear System..........ccccceeeerviievieniienneennenns 20
2.4 Controllability and Observability of Structured SysStems ........cccccveeevveeerieercveeennne. 23
2.4.1 Structure Matrices and its Properties...........ceevveervieernieeniieeniieenieeeieeeeieeens 24
2.4.2 Structural Controllability.........cceeeviiieriiieiiiieeriee e 26
2.4.3 Structural ObServability........ccocuiiiiiiiiiiiiiiieeieeeeeee e 27
2.5 Controllability and Observability of Large-Scale Systems..........c.cccccveeeeveernnennee. 27
2.5.1 Digraph of a Structured SYSIEM ......eeeviiiiiiiiieiiieiieeeieeeeeeetee et 31
2.5.2 Controllability via Connectability .......c.cccccvveeriieerieeeiieeeiieeeiieeeieeeeieeeeaee e 32
2.5.3 Observability via Connectability .........ccccevcuieeriiiinieeniieeniieeeiieesee e 33
2.5 4 EXAMPIC...eiiiiiiiiieieiiieeee ettt et e et e e et e e s eabeeeeenaes 34

Chapter TRIEE......ooiiiiieiieeeee ettt sttt et eabee e ebee s 35
3.1 Thermal Dynamic Model for Control Purposes.........cccceecvveeriieenieeenieeeieeeeeeene 36
3.2 Thermal NEtWOTKS ....cc.eeiiiiiiiiiiieiieeeee et 38
3.3 State Space of Thermal DynamicC..........ccocvuieeiiieiiiieniiieeciie et 43
3.4 SrUCTUTEA SYSTEIM ...eeiiiiiiiiieiiiie ettt ettt ettt e et e e st e e e bee e sabeeesans 47
3.5 Digraph of Nonlinear SYSteM..........ceevuiieiiieeiieeeiieeeiee e esreeeree e e eereeeree e 50

CRAPLET FOUT ...ttt ettt sb e e st eesaee s 53
4.1 Building Combined Heat and Power: a System Description ...........ccccceeveuveernnennne 54
4.2 Nonlinear Thermal Dynamic Model of BCHP System..........ccccceevvevevieenciieennnene 64

vi



CRAPLET FIVE ..ttt ettt ettt e e eabee s 72

5.1 Controllability of a Non-Linear Thermal Dynamic System............cccccceeeveerneeenee. 72
5.2 Controllability of a Structured Non-Linear Thermal Dynamic System.................. 75
5.3 Controllability of a Structured Non-Linear Thermal Dynamic System via
Connectability APProach .........occueeiiiiiiiiiiiiee e 77
5.3.1 Digraph Definition for a Structured Thermal Dynamic System ...................... 78
5.3.2 Main RESUIES ..conniiiiiiiiiiiiieeieee et 79
I AN o] o) U1 5 (o) 1 HN USRS 88
5.4.1 Local Controllability of a nonlinear 2-cell Heat Exchanger ...........c.c.ccccec... 88
5.4.2 Structural Controllability of BCHP system. ........ccccccoooeeniiiniiniiiinienicieenee 92
CRAPLET STX. .ttt ettt e et e st e e sbt e e sabb e e s bt e e sabeeesabeeesabeeas 94
6.1 Observability of Non-Linear Thermal Dynamic System ..........ccccceevvieriienieeneenne. 94
6.2 Observability of Structured Non-Linear Thermal Dynamic System....................... 97
6.3 Observability of Structured Non-Linear Thermal Dynamic System via
Connectability APProach ........coccueeiiiiiiiiiiiiie e 98
6.3.1 Digraph Definition for Structured Thermal Dynamic System ............ccccccuee.e. 98
6.3.2 Main RESUIES ...cuuviiiiiiiiiiieieceeee et 99
YN o] o) U621 5 (o) 1 BRSSPSR 105
6.4.1 Local Observability of a nonlinear 2-cell Heat Exchanger .............c.ccccc...... 106
6.4.2 Structural Observability of BCHP System .........cccccvveviieeiiieniieeeieeeiieeeeen 108
CRAPLET SEVEI ....ceiiiiieiieeee ettt ettt e st e sttt e st e e sabee e sabeeenans 111
7.1 Summary and CONCIUSIONS ......ccuuiiiiiiieiiiieeiieeniieerieeerteeerreeeireeeaneeetreesseeeseseens 111
7.2 FULUIE WOTK ...oeiniiiiiiiiece ettt e 113
LS5 10] FT0Tea 21 o) 1| 2SS 114
APPENAIX 1ottt ettt et 129
FaN 0315 114 QTSRS 137
APPEIAIX 3.ttt ettt et e e e st e e st e e st e e s bt e et e e eane 150
APPEIAIX 4.ttt ettt ettt aeas 163

vii



LIST OF FIGURES

Figure 1: Controllability [Willems 2005, 3] ..c.eeiiiiiiiiieiieeeiieeeieeeeeeeeeeeiee e 9
Figure 2: Observability [Willems 2005, 5] ...ccouttiiiiiiiiiiiieiieeeeeeeiteeeeeeeiee et 9
Figure 3: Control System with State Feedback...........ccoceviiiniiiiiiniiiiiiiceces 10
Figure 4: State Feedback Control with ObSErver.........c.cccocveriiriiiniiiiieniceiecec e 10
Figure 5:(a) Large Scale Systems in Parallel and (b) Large Scale Systems in Series ...... 29
Figure 6: Digraph of EQUAtiOn 2.7 ....c...cociiiiiiiiiiieeieeeeeceeceeee et 34
Figure 7: Resistance R and Capacitance C .........c.cccocveeviiiiiiinieniiienieeieenieeeeneeeeee e 40
Figure 8: Heat EXChan@ET .......coouiiiiiiiiiiiiciceecccee et 41
Figure 9: Circuit Model of a Heat Exchanger...........cccoocoiiiiiiiiiiniiciceces 42
Figure 10: Digraph of Heat EXChanger..........cocccoviiiiiiiiiiiiiiiieicecececeece e 52
Figure 11: HOtel BUIIAING ...c.eveiiiiiiiiiiiieceeeeeeeeee et 55
Figure 12: Inside of the Test FaCIlity ......ccoooiiiiiiiiiiiiiiiiieccccceeeceece e 55
Figure 13: Electric System DeSi@N ........ccovuiiiiiiiiiiieiiiieeieeeieeeee ettt 56
Figure 14: Hydronic Radiant Floor Heating System Installation ...........c.cccecceevierneennenn. 60
Figure 15: Hydronic Heating Manifold and Control Valves .........c.ccccccevvieiiincnneennnen. 60
Figure 16: Schematic of BCHP System.........coceiiiiiiiiiniiiiienieeicicceenecceese e 61
Figure 17: Hydronic Radiant Floor Heating System CirCuits........c.ccceceerueevveenierneennens 62
Figure 18: Hydronic Temperature Sensor Location ............cceceevueerierieenicenieenienieennenns 63
Figure 19: BCHP System and Subsystem Boundary ...........ccccccooeeriiiiiinicnnicnicneennens 67
Figure 20: BCHP Digraph Model ..........cooooiiiiiiiiiieiiieeeeeeeeeeeeeeeee e 71



Figure 21: A Cascade Model of Heat EXChanger ............cccccevieeiiiniiiniiniciicniceeee 89
Figure 22: Digraph of 2-Cell Heat EXcChanger..........c.ccoceviiiiiiiiiiniiiiincecic e 91
Figure 23: State Digraph of Nonlinear 2-Cell Heat Exchanger.............ccocccooieniiniiennnen. 91
Figure 24: Input Connectable BCHP State Digraph........ccccccooeeiieniiiiiiniiniiinicieenes 93
Figure 25: A Cascade Model of Heat Exchanger ...........ccoccovieniiiiiiniiniicnicciecceee, 106
Figure 26: Digraph of 2-Cell Heat Exchanger...........cccceviiiiiniiiiiniccceccee, 107
Figure 27: Output DIgraphi.........ccooiiiiiiiiiiieiieeeeeeeee e 107
Figure 28: Output Digraph of BCHP system...........cooouiiiiiiiiiiiiniiiiiieceeeeeeeeeeeee 110
Figure 29: BCHP System and Subsystem Boundary ...........ccccccoceeviiniincnicnneenennen. 138

X



LIST OF TABLES

Table 1: State NOTAtION ......eoouiiiiiiiiieiieeieeee ettt et e ees 65
Table 2: Constant INPUL.........ooiiiiiiiiiiiie ettt s 66
Table 3: Controllable INPUL.........cooouiiiiiiiiiiii e 66
Table 4: Parametric Equation for Input Vector of state Xj........ccceeveeviieiniieeniieiniieenneen. 82
Table 5: Edge/s that maintain SBTS structural controllability ..........ccccecveeviiiiniiennneen. 84
Table 6: Structural Controllability Result Summary ...........ccocccoeviiiiniiiiniiiinieieee, 86
Table 7: Edge/s that maintain SBTS observability ........cccccceevviiiiiiiiniiiiniiiiniieeeieeee 103
Table 8: Structural Observability ReSults..........ccooouiiiiiiiiiiiiiiiiieeeee 104
Table 9: BCHP Measurable OUtPUL........ccccueiiiiiiiiiieiiieeeiieeeeteeeee et 108
Table 10: State NOTATION «....couveeuieriiiiieenieeeert ettt e e enees 139
Table 11: Constant INPUL.......ccccueiiiiiiiiiiieeeeee ettt e 139
Table 12: Controllable INPuUL........cccoiiiiiiiiiiiiiieeee e 140



Chapter One

INTRODUCTION

This introductory chapter gives the motivation and problem statement for the

research, as well as the overview of the thesis.

1.1 Motivation

Commercial buildings are a significant and growing consumer of global energy
resources. America’s 4.9 million commercial buildings span a great variety of functions,
sizes, operating schedules and types, from large “24/7” hospitals to small retail stores.
Providing the necessary energy services in these buildings (lighting, comfort, fresh air,
cooking, and power for computers and other equipment) required 6,500 trillion Btu of
energy in 2003, 18% of the USA annual energy use as indicated on Department of
Energy’s Website. Commercial buildings also constitute the most electric-intensive sector
in the country; 55% of their energy needs are provided by electricity, while 32% are
provided by natural gas. The growth of energy usage and the energy crisis together with

the realization that energy resources are not inexhaustible, and the general trend towards



a cleaner environment, have led to the development of many practices that aim at using
energy as "optimally" as possible. This has materialized in the commercial building
sector in the form of building equipment refinements and control system improvements.

In the refinement of building equipment, one of the significant trends, which
becomes the interest of this research, is the idea for distributed power generation —
namely, the notion of power sources near the end user - such as a microturbine, especially
with a conjunction of combined heat and power technology (CHP). This technology has
received increasing attention by the general public due to its great potential to supply
both thermal and electrical energy, which increase its fuel utilization up to 85% compared
to a single electrical only type of distributed power generation as indicated in Department
of Energy’s Website. Furthermore, CHP also improves power quality and reliability as
well as transmission and distribution system support, while at the same time lowering the
greenhouse gas production. Since the capital cost of installing such equipment can greatly
influence the decision making process, it is desirable to more fully utilize the energy
produced. Hydronic radiant floor heating, absorption and desiccant cooling equipment,
are examples of thermally activated equipment that can be interconnected with CHP.
Furthermore, with deregulation in utility industry, some states also allow the end user to
sell their own electricity produced back to them by interconnecting the CHP with the
grid.

In control system improvement, application of optimal control has shown the
potential to reduce U.S. commercial building energy consumption by about roughly 10%
of current total use [Quartararo, Roth and Brodrick 2006, 66-68]. In addition, control

systems offer significant peak demand reduction potential. An optimal control system is



an emerging system that aims to optimize building energy cost and consumption, while at
the same still maintaining the productivity of the building. In a typical office building, for
example, to keep the productivity of the occupants in it, its energy use accounts for 30
percent of operating costs which is the largest single category of controllable costs. This
condition opens a lot of potential for optimal control to reduce its energy usage while still
maintaining the occupants’ productivity.

As the building systems to be controlled become more interconnected, it becomes
more difficult to design the controller for optimizing system operation. Mathematical
model of the system becomes larger and more complex due to the nonlinearity of the real
system. These high dimensionalities, nonlinearities, and complexities of interconnection
in such a large-scale system provide difficulties not only in modeling, control or
optimization, but also in the fundamental issues of stability, controllability, and
observability. The problem of assessing these structural properties becomes much more
difficult. This thesis is an effort to meet these challenges, especially in the analysis of
structural properties of controllability and observability, which becomes the main interest

of this research.

1.2 Background

Research in the area of controllability and observability of nonlinear systems has
been addressed in many works [Lee and Marcus 1961; Hermann 1963; Hermes 1964;

Balakrishnan 1966; Mohler and Rink 1968; Haynes and Hermes 1970; Kucera 1970;



Brockett 1972; Jurdjevic and Sussmann 1972; Kreener 1974; Brockett 1975; Hermann
and Krener 1977; Sussmann 1983; Sussmann 1987]. The necessary and sufficient
conditions to achieve this property are very well established for several form of nonlinear
systems. These conditions have been established using essentially differential geometric
approach. However, the use of such tools always assumes the exact knowledge of the
state space matrices which characterized the system’s model. In many modeling
problems, these matrices have a number of fixed zero entries determined by the physical
laws while the remaining entries are not known precisely. To study the properties of these
systems in spite of the poor knowledge, the idea is to keep the zero/non-zero entries in
the state space matrices. Therefore, a model that conserves the fixed zeros while
replacing the non-zero entries with a free parameter is considered. There are a huge
amount of interesting works in the literature using this type of modeling technique [Lee
and Marcus 1967; Lin 1974; Shields and Pearson 1976; Reinschke 1984]. The obtained
model is called the structured model. These models are useful to describe the class of
systems having the same structure because they capture most of the available structural
information from physical laws. Moreover, their study requires a low computational
burden which allows one to deal with large-scale systems. Because of these features, the
structured systems are adapted to study properties like the controllability and
observability. This thesis deals with this kind of system.

Many results on structured systems use graph-theoretic approach. This approach
is mainly dedicated to linear systems for which many structural properties such as
controllability, observability and stability of several classical control problems have been

addressed [Lin 1974; Shields and Pearson 1976; Glover and Silverman 1976; Reinschke



1984]. Furthermore, from these studies, it follows that graph-theoretic approach provides
simple and elegant solutions and so is very well suited to analyze large-scale systems
[Gilbert 1963; Chen and Desoer 1970; Brasch and Pearson 1971; Bhandarkar and
Fahmy 1972; Grasselli 1972; Ito and Yonemura 1972; Klamka 1972; Hwang and
Wolovich 1974; Davison and Wang 1975; Davison 1977]. Unfortunately, the number of
studies utilizing graph-theory in nonlinear system is limited. There is clearly a need for
the same type of approach for handling nonlinear systems, as well as the large-scale

version of it.

1.3 Proposed Research

The objective of this research is to develop a simple theoretical analysis for
controllability and observability of large-scale nonlinear systems with applications to
thermal dynamic systems, which represent a building’s energy system considered in this
research. More precisely, the proposed research provides a simple necessary and
sufficient condition to achieve controllability and observability of a nonlinear system
using graph-theoretic approach. Furthermore, it is anticipated that the result of this
research is equivalent to the differential geometric based controllability and observability
criteria and is suitable to tackle large-scale system.

Most widely used controllability and observability analysis methods require full
knowledge of the system to be controlled. Furthermore, these methods are

computationally intensive, thus it is appropriate to handle smaller scale type of systems,



that is, systems in the order of less than ten. However, given today’s engineering problem
that is characterized with high dimensionalities and nonlinearities, conventional analysis
methods are insufficient. Controllability and observability analysis for a large scale linear
system has been addressed through the use of structural controllability and obseravability
techniques which take advantage of the sparsity structure that a large-scale system
carries. However, few researches have addressed this subject for large-scale nonlinear
system.
In this research the following subjects are expected to be developed:
1. Develop a graph theoretic approach for nonlinear system structural properties
analysis as a way to manage a large-scale version of such class
2. Develop a method to evaluate the necessary and sufficient condition for
controllability and observability of a nonlinear system based on the graph theory
approach
3. Apply the obtained method to investigate the controllability and observability of

real life problems such as building energy systems

1.4 Thesis Overview

Chapter two presents a comprehensive review of the area of controllability and
observability for linear and nonlinear systems as well as for structured and large-scale
systems. Given that the testbed of this research is thermal related energy building

systems, Chapter three focuses on the theoretical basis for thermal dynamic system



models development that is utilized for control design purposes. This includes a digraph
model representation for nonlinear systems that is proposed in this research. The
modeling theory described in Chapter three is subsequently applied to the actual, real life
system under research and the obtained model is presented in Chapter four. The
derivation of graph-theoretic approach for analyzing the controllability and observability
of a structured nonlinear system is discussed in Chapter five. The derivation includes
graph-theoretic definitions that are utilized to satisfy necessary and sufficient conditions
for a class of nonlinear systems to be controllable and observable. The proof that the
proposed method is equivalent to the Lie algebra rank condition is also presented.
Chapter six describes the application of the proposed method to investigate a large-scale
structured nonlinear thermal dynamic system that is considered in this research. A
summary of the research results, conclusion and future work is presented in Chapter

seven.



Chapter Two

LITERATURE REVIEW

To obtain an appreciation for the work related to controllability and observability,
it is the goal of the literature review to familiarize the reader with past and present work
in the field. Due to the relevance of the main research topic of this dissertation, much of
this chapter will focus on past and present success in the area of controllability and
observability for systems such as: linear dynamic systems, structured systems, large-scale
systems and non-linear systems. These results were selected since they are considered as

the groundwork for this research.

2.1 Introduction

The two structural properties that play a fundamental role in both the theoretical
and practical aspects of control design are controllability and observability (C&O).
Controllability deals with the ability of a dynamic system to steer its state from the initial
condition to some desired state by controlling its inputs over a finite amount of time.

Observability, on the other hand, deals with the ability of a dynamic system to reconstruct



or identify the rest of the states’ information given partial measurement of the system

e.g., inputs and outputs. Figure 1 and 2 illustrate these concepts.

undersired trajectory

/-"—‘—-—_

/—_\/m irajectory

time

- controlled )
- transition -~
undesired past _— -

time

desired future

Figure 1: Controllability [Willems 2005, 3]

v : |SYSTEMQ : xu)
observed to—be-deduced
variables variables

Figure 2: Observability [Willems 2005, 5]

To better understand how the concept of controllability and observability of a
system play an important role in control theory, consider the following example. A

typical linear dynamic closed-loop system is described by Figures 3 and 4.



u X' = Ax+Bu X
y = Cx+Du

State-Space

Figure 3: Control System with State Feedback

r u x' = Ax+Bu c
> y = Cx+Du

(-

State-Space1

x-bar

G ig——| Observer

Figure 4: State Feedback Control with Observer

Assume that a state space system in Figure 3 and 4 can be described by Equation

2.1)

A closed-loop system is established by feeding back the state variables x through a
constant feedback matrix G which modifies the input function u(r) to the following

function:

u(t) =—Gx(t)+ r(t) (2.2)

The closed loop system of Equation (2.1) is consequently transformed into Equation (2.3)
where feedback matrix G is now incorporated:

x(t)=(A—-BG)x(r)+ Br() (2.3)

10



The solution to the control system with state feedback is determined by whether or not a
feedback matrix G can be derived; that is, if Eigenvalues of (A— B-G)of the closed-loop
system are of certain prescribed values. The existence of the solution to this Eigenvalues
Technique (also known as Pole Placement Technique), is directly based on the concept of
controllability. The system of 2.1 is said to be controllable if there exists a constant
feedback matrix G that grants the Eigenvalues of (A—B-G)to be arbitrarily assigned.
Furthermore, when the state variable’s information is being utilized as the feedback
controller, this algorithm requires that the state variables are accessible.

However, feeding back states of the system holds two practical limitations during
the design process. First, when the number of state variables for feedback is excessive,
the cost of sensing each of these state variables can be unaffordable. Second, the
feedback control cannot work as expected when all of the state variables are not directly
accessible from the system. Figure 4 shows the block diagram of a closed-loop system,
which can overcome this shortcoming through the use of an observer which estimates the

system state variable from the system output c(t). The observer estimates the state vector
x—barbased on the observable output c¢(r), which subsequently is utilized by the

feedback matrix G to generate the control input c(t). When such an observer is attainable

from a system described by Equation 2.1, the system is said to be observable.

11



2.2 Controllability and Observability of Linear Systems

When modern control theory set the stage in the 1950s through the introduction of
state-space model concepts, optimal control was born. During the development process of
this optimal control, it was recognized that certain non-degeneracy assumptions were
needed in establishing the results, that is, under what condition that a dynamic linear
system is controllable in its entire state-space? However, it was not until the 1960s that
the property of controllability was finally introduced by Kalman [1960, 1], which was
applied to characterize the degrees of freedom available when attempting to control a
system. Kalman and his team developed a method of testing called controllability rank
test that is performed on a certain matrix called the controllability matrix constructed
from the state-space matrices of a dynamic linear system. By using this rank condition
test, the ability for control input to affect the state vector can be investigated; hence the
controllability of a dynamic linear system can be determined. Another topic that was
raised during the modern control era is state feedback control, that is, a control system
that utilizes system input as a function only of the current state vector. However, in many
control situations the system state vector is not available for direct measurement which
makes it difficult to evaluate the control input functions. The device which reconstructs
this state vector is called an observer which is itself a linear system driven by the
available output and inputs to the original system. The ability for the system to obtain an
observer is tested by using the observability rank test condition also developed by
Kalman [1960, 1] and Luenberger [1964, 74]. The observability rank test condition is

performed on a certain matrix formed by the state-space matrices of a dynamic linear
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system, called observability matrix. Both of Kalman’s simple rank conditions for
controllability and observability are ubiquitous in linear system analysis.

The basic theory of controllability and observability of linear systems developed
by Kalman is described as follows. A control system represented by continuous linear
time invariant (LTI) systems with the following general form of state-space models is
considered:

5 {x(t) = f(x,u)= Ax(t)+ Bu(t)  ;(State — Equation) 2.4)

y(t) = g(x) = Cx(t) ;(0utput - Equation)
where x(t,) = x(0)being initial condition; and x(t)e R", y(r)e R”,u(t)e R’ being the
state, output, and input vectors of finite dimensional space; and Ae R"™",
Be R™,Ce R”™ being time-constant, input and output matrices with constant (time-
independent) elements. The following definition describes the state-space model that
represents Equation 1.

Definition 2.2.1 (State Space Representation):

The state space representation (SSR) that is described by Equation 2.4 is the triplet of

constant matrices (A, B, C). The dimension of an SSR is the dimension of the state

vector: dim[x(t)] = n. The state space y is the set of all states:

x(t)e x, dim[y]=n.

2.2.1 Controllability
Here the state controllability of an LTI system according to Kalman [1960, 1] is

considered and is defined as the following:
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Definition 2.2.2 (State Controllability):
A state space model of a system is called state controllable if it is possible to drive any
state x(tl) to any other state x(t2 )= x(t1 )that is desired with an appropriate input in finite
t=t, —t time.

In the case of an LTI system, the above definition is specialized to the following:
Definition 2.2.3 (LTI State Controllability):
A state space model of an LTI system given by its realization matrices (A, B,C ) is called
state controllable if it is possible to drive any state x(tl) to any other state x(t2 ) # x(tl)
that 1s desired with an appropriate input in finite time t =1, — ¢, .

Subsequently, in order to determine the controllability of an LTI system, the
following theorem defines its necessary and sufficient condition:

Theorem 2.2.1 (Controllability Rank Test):

A state-space model of an LTI system with realization matrices (A, B,C) is state
controllable if and only if the controllability matrix C, =[B AB A*B ... A"'Blis

of full rank, that is rank [Cn ] =n

2.2.2 Observability
Here the state observability of an LTI system according to Kalman [1960, 1] is
considered and is defined as the following:
Definition 2.2.4 (State Observability):
Given the inputs and the outputs of a system over a finite time interval, if it is possible to

determine the value of the states based on these values and a state-space system model as
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functions of inputs and outputs as well as its derivatives, then the system is called state
observable.
In the case of an LTI system, the above definition is specialized to the following:

Definition 2.2.5 (LTI State Observability):

Given a state-space model by its realization matrices (A, B,C)and the measured input

and output signals {u(t),y(t)lto <t<t, }, the system is state observable if the state

signal x at a given time ¢, such that x(to) can be determined.

Subsequently, in order to determine the state observability of an LTI system, the
following theorem defines its necessary and sufficient condition:
Theorem 2.2.2 (Observability Rank Test):
Given a state-space model of a LTI system by its realization matrices (A, B,C ), this state-
space model is state observable if and only if the observability matrix

0, =lc ca ca> .. ca™']isof full rank, thatis rank[0,]=n.

2.3 Controllability and Observability of Nonlinear System

The following is the basic theory of nonlinear controllability and observability in
a differential geometric approach that were gathered from the works of Lee and Marcus
[1961, 36-58], Hermann [1963, 325-332], Hermes [1964, 241-260], Balakrishnan [1966,
465-568], Mohler and Rink [1968, 477-486], Haynes and Hermes [1970, 450-460],
Kucera [1970, 160-168], Brockett [1972, 265-284], Jurdjevic and Sussmann [1972, 95-

116], Kreener [1974, 43-52], Brockett [1975, 54-63], Hermann and Krener [1977, 728-
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740], Sussmann [1983a, 1-116; 1987b, 158-194]. Nonlinear finite dimensional systems,
which represent a wide class of nonlinear system is considered in this study. The general

form of state space models of finite dimension nonlinear system is described by Equation

2.5.

]E(x(t ), u (t )) ; (State - Equation) 2.5)
h

x(t)
Y= ]

y(t)=h(x(r)) :(Output — Equation)
where x, u, y being the state, input and output vectors and
FiR"XR" >R, bR xR™ > R” being the smooth nonlinear mappings. If the

nonlinear functions f and /& above are in a special form, an input-affine form is obtained:

ir)= Ji () ule))= g0 (o) + 200 &, (5l 0) - (State — Equation) )
h

( x(t)) — h( x(r)) :(Output — Equation)
with the same state, input, and output vector x, u, and y as above, and with the smooth
nonlinear mappings g.:R" > R"for i=0,1,....,m, h:R" > R". It is important to
observe that the input signals enter into the input-affine nonlinear state-space model in a
linear way, that is, the mapping f in the original general nonlinear state-space model in

Equation 2.5 is linear with respect to u .
From the nonlinear control system theory point of view, the state-space model of
a nonlinear system X in Equation 2.6 is considered to represent a nonlinear control

system whose system state xevolves on an n-dimensional smooth connected

manifold M . x(t)e M is the state of the system at time 7€ R where M < R" (an open
subset of R"), ul(t),...um(t)are real valued input functions that are piecewise constant

and can take any value in an open interval I < R containing zero, and y(r)e R” are the
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output vectors. g, :R"+> R"is the drift vector field (analyticy on M, and
g ' R" > R"for i =1,...,mare control vector fields (analytic) on M . It is assumed that

the system X is complete, that is, for every bounded measurable input u, (r) and every

x° € M there exists a solution to f(x(¢),u(t))such that x(to)z x* and x(r)e M for all

te R. Notation (u(r),[s°,¢'])is used to denote functions defined on [°,¢']. In response to

a set of constant inputs, the state of the system evolves along an integral curve of one of
these vector fields. More generally, the state trajectory generated by a piecewise constant
input vector will be composed of several segments, each of which lies along the integral
curve of one of these vector fields.

Furthermore, the control variable wurepresents the externally applied control
inputs to the systems and the output variable y represents the observable parameters of
the system. The state variable xmay or may not be directly measurable and is used to
represent the memory of the system. The past history of X affects its future evolution
only through information conveyed by this variable. Since the study is geared toward the

local rather than global analysis, U is denoted as an open neighborhood of x° e M .

2.3.1 Controllability of Input-Affine Nonlinear System
The problem statement of controllability in the nonlinear system case is
characterized by the set of states that are reachable from a given initial state [Isidori 1995,

1-99]. The following definitions describe these concepts.
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Definition 2.3.1 (U — reachable):
Given a subset U € M , x'is U — reachablefrom x°(denoted by x'R, x°) if there exists
a bounded measurable control (u(t), [to,tl])satisfying ult)e Q for te [to,tl] such that the
corresponding solution (x(t), [to,tl])of differential equation (2.6) satisfies x(to)z x’,
xt')=x"and x(t)e Ufor all re|’,s']. Denote R(x")=1{x'e M :x'Rx"} the set of
points reachable from x°

Based on this definition, the state controllability for a nonlinear system in general

is defined as follows:

Definition 2.3.2 (State Controllability):
The system Xis said to be controllable at x°if R(xo):M and X controllable if

R(x) =M forevery xe M

This definition however may result in a longer time to reach the point near x°.

Therefore, a stronger notion of controllability is addressed locally which requires that the
trajectory stay near x'.

Definition 2.3.3 (Local State Controllability):

The system X is said to be locally controllable at xif for every neighborhood U of x°,

R, (x°) is also a neighborhood of x°; ¥ is locally controllable if it is locally controllable

atevery xe M

Subsequently, a controllability distribution A.is formulated. The controllability

distribution A is the nonlinear analog of linear controllability matrix that is constructed

using the Lie algebra of vector fields f(x(t),u(t)) on M corresponding to constant
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controlu e I. Hence, the controllability distribution A_. 1is equivalent to the
controllability matrix C, of a linear system. It was suggested that if the dimension of
A is constant or if the system X is analytic, then there exists a unique maximal

submanifold M'of M through x°which carries all the trajectories of X passing through
x’such that any point on this submanifold can be reached from x°going forward and

backward along the trajectories of the system. In particular if the dimension of A, (xo )is

3

nthen M'= M . Hence, the system is ‘“controllable” in some sense. The following
theorems define the necessary and sufficient conditions for a nonlinear system to be
locally controllable.

Theorem 2.3.1 (Controllability Rank Test):

It is said that X satisfies the controllability rank condition at x’if in a neighborhood of

x°, dim[A_]=n. If this holds for all x”e M , then X satisfies the controllability rank

condition. Thus, if X satisfies the controllability rank condition at x"e M , then X has

the local reachability property at x°

On the basis of the above explanation, clearly the first step toward the analysis of
local controllability of a nonlinear system is to find R, which in this case is established
through the derivation of a controllability distribution Ac using the Lie bracket. Isidori
[1995, 1-99] proposes an algorithm for constructing the controllability distributions as

follows:
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Algorithm for Constructing the Controllability Distribution

1. Starting Point: Ao =span{gy, ..., gn}

2. Development of the controllability Distribution: Ay = A;; + z lg;.A]
i=0

Note that one term in the last sum [g;,A,_,] is computed by using the functions
(41,..., ¢)) spanning the distribution Aw: [g;,A,] =span {[gs, ¢1], .... (g1, ¢1] }
3. Stopping Condition: If 3k* such that Ay = Aj.j, then Ac= A== (gg..... 8, 1A)

Once the controllability distribution is established, the reachable set rank test condition

can be performed.

2.3.2 Observability of Input-Affine Nonlinear System

The problem statement of observability in the nonlinear system focuses on finding

the condition where the initial state x°can be distinguished given the output
measurement [Isidori 1995, 1-99]. Therefore, the definition on distinguishability, or in
this case indistinguishability as well as observability, is presented here:

Definition 2.3.4 (U —indistinguishable ):

Given a subset U c M, and x°,x'eU, x"is U —indistinguishable from x' (denoted
x'I,x") if for every control (u(r), [to,tI]) whose trajectories (xo (t), [to,tl])and
(xl(t), [to,tl])from xand x'both lie in U, fails to distinguish between x%and x', such
that, it x°(t)e Uand x'(t)e Ufor reli®,r'], then T, (el [*,r')=2  (()].r']).

Denote 7(x°)={x' € M : x'Ix"} the set of points indistinguishable from x°
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Based on this definition, the state observability for a nonlinear system in general is
defined as follows:

Definition 2.3.5 (State Observability):
The system Xis said to be observable at x’if I (xo)z {xo} and X is observable if
1 (x) = {x}for every xe M

However , this definition may result in a longer time to distinguish a point near

x°. Therefore, a stronger notion of observability that is addressed locally is introduced.

Definition 2.3.6 (Local State Observability):
The system X is said to be locally observable at x°if for every neighborhood U of x°,
1,(x*)={x"}; Tis locally observable if this is true for every xe M

In the spirit of the approach to nonlinear controllability described previously, an
analogous method to the observability for a nonlinear system is developed for nonlinear

systems. The relevant object in this study is the observation space €2, the smallest linear

space of functions on M which contains the observations gl(x),...,gn(x) which are

closed with respect to Lie differentiation by vector fields f(x(t),u(t)), and the
differentials of Q denoted by d€Q. It is suggested that if the dimension of dQ, is

constant over M then indistinguishability exists over M . In other words, there exists a
system with the same input-output behavior as X, but which is “observable” in the sense
that neighboring points are distinguishable. In particular, if the dimension of dQis
always mthen X has this property.

The following theorems define the necessary and sufficient condition for a

nonlinear system to be locally observable.
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Theorem 2.3.2 (Observability Rank Test):
Y satisfies the observability rank condition at x’if in a neighborhood of x°,

dim[dQ,]=n. If this holds for all x”e M, then, X satisfies the observability rank

condition. Thus, if X satisfies the observability rank condition at x” e M , then X has the

local distinguishability property at x°

Based on the above explanation, the first step toward the analysis of local
observability of nonlinear systems is to construct the observability co-distribution that is
based on Observation space Q using the Lie derivative on its output function and vector
field. Isidori [1995, 1-99] proposes an algorithm for constructing the observability co-
distributions dQ as follows:
Algorithm for Constructing the Observability Co-Distribution

1. Starting Point: Q ¢ = span{dh....,dh,}

2. Development of the observability Distribution: Q= Q. ;+ z L, Qpy
i=0

3. Stopping criterion: if there exists an integer k* such that Q = = Q ;= , then
Qo= Q= (ggsr 8 1)
Once the observability co-distribution is established, the observability rank test condition

can be performed.
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2.4 Controllability and Observability of Structured Systems

The controllability and observability in the framework of traditional control
theory assumes the exact knowledge of the state space matrices characterizing the
system’s model. In many modeling problems however, these matrices have a number of
fixed zeros entries determined by the physical laws while the remaining are not known
precisely. To study the properties of these systems in spite of poor knowledge, the idea is
to preserve the zero/non-zero entries in the state space matrices. Thus, models where the
fixed zeros are conserved while the non-zeros are replaced by free parameters are
considered here. This kind of model is called a structured model and is very useful to
describe the class of systems having the same structure. They capture most of the
structural information available from physical laws.

Interestingly, the study of structured systems may be considered to have been
started with Lin [1974, 201-208], and also in later papers Glover & Silverman [1976,
534-537] and Shields & Pearson [1976, 203-212], where they all studied controllability
and observability of structured systems. Lin proposed the notion of structural
controllability and observability for structured linear systems, where instead of using

numerically given matrices A, B and C, the corresponding structure matrices [A] , [B] , and
[C ]of the same dimensions are considered. Furthermore, the structural rank condition is

utilized to test it. This proposed theory is based on Lin’s previous theory, which proves
that a property of a system holds structurally for a structurally equivalent system if the
property under investigation holds numerically for almost admissible numerical

realizations. Thus, structural controllability and observability become the process of
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analyzing whether or not at least one admissible realization of a system, with the same
structure that is controllable and observable in the usual numerical sense, exists.
Furthermore, Lin also introduced a graph theoretic concept, where the structured system
is represented by a graph, and structural controllability and observability analysis can
now be investigated based on the connectability between the system states with the input
and output, respectively. Later on, Glover & Silverman [1976, 534-537] and Shields &
Pearson [1976, 203-212] extend Lin’s study [1974, 201-208] to multi input and multi

output systems where both concentrated on an analytic approach.

2.4.1 Structure Matrices and its Properties

The following definitions are needed to better understand the concept of a
structured system [Lin 1974; Shields and Pearson 1976; Reinschke 1984]. First, given a
general matrix Q, its structure matrix [Q]is defined as follows:
Definition 2.4.1 (Structured Matrix):
The elements of a structure matrix [Q] are either fixed at zero or indeterminate values

which are assumed to be independent of one another.

0 if w =0
[Q]i,j={ Ty 2.7)

V. otherwise
Hence, [Q] is the characteristic matrix of the non-zero entries of Q.
Furthermore, when the sign of the matrix element is very important to be
maintained e.g. for system property analysis, the signed structure matrix {Q}represents

the signed structure of a matrix Q.
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Definition 2.4.2 (Signed Structured Matrix):
The elements of a structure matrix {Q} are either fixed at zero or indeterminate values
which are assumed to be independent of one another.

0 if w; =0,
oL, =1+tv i w;>0,
-V i w; <0,

The following definitions describe the basis of a structured system. They are
applied to develop structural properties of structured systems.
Definition 2.4.3:
A numerically given matrix Q is called an admissible numerical realization (with respect
to [Q]) if it can be obtained by fixing all indeterminate entries of [Q] at particular values.

Two matrices Q'and Q" are said to be structurally equivalent if both Q' and Q" are

admissible numerical realizations of the same structure matrix [Q]

Definition 2.4.4:

A property holds structurally within a class of structurally equivalent systems if the
property under investigations holds numerically “for almost” all admissible numerical
realizations.

Using the basis of structured system theory defined above, structural properties
can now be derived. Structural Rank is one of the structural properties that is essential in
deriving the concept of structural controllability and observability.

Definition 2.4.5 (Structural Rank):
A set of independent entries of [Q] are defined as a set of indeterminate entries, no two of

which lie on the same line (row or column).
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The structural rank (for short, s-rank) of [Q]is defined as the maximum number of
elements contained in at least one set of independent entries.
It should be noted that the s-rank of [Q]is equal to the maximal rank (in the usual

numerical sense) of all admissible numerical matrices Q.

2.4.2 Structural Controllability

When the concern in the controllability analysis is in the form of structured
matrices, structural controllability is applied to ensure the given structured system is
controllable [Lin 1974; Shields and Pearson 1976; Glover and Silverman 1976; Reinschke
1984]. Hence, the following definition is applied.
Definition 2.4.6 (Structural Controllability):
A class of systems given by its structure matrix pair [A, B]is said to be structurally
controllable (for short, s-controllable) if there exist at least one admissible realization
(A, B)e [A, B] being controllable in the usual numerical sense

Furthermore, in order to determine if the structured system is structurally
controllable, the necessary and sufficient conditions that must be satisfied are described
by the following theorem.

Theorem 2.4.1:

A linear system with structure matrices ([A], [B], [C ])is:
Structurally controllable, if the block matrix [A, B] is of full structural rank:

s = rank([A, B]) =n, with n being the number of state variables.
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2.4.3 Structural Observability

When the concern in the observability analysis is in the form of structured
matrices, structural observability is applied to ensure the given structured system is
observable [Lin 1974; Shields and Pearson 1976; Glover and Silverman 1976; Reinschke
1984]. Hence, the following definition is applied.

Definition 2.4.7 (Structural Observability):

A class of systems given by its structure matrix pair [A, C]is said to be structurally
observable (for short, s-observable) if there exists at least one admissible realization
(C,A) € [A, C ]T being observable in the usual numerical sense.

Furthermore, in order to determine if the structured system is structurally
controllable, the necessary and sufficient condition that must be satisfied is described by
the following theorem.

Theorem 2.4.2:
A linear system with structure matrices ([A], [B], [C ])is structurally observable if the block
matrix [C, A[" is of full structural rank, that is, s — rank([C AL )= n, with n being the

number of state variables.

2.5 Controllability and Observability of Large-Scale Systems

Today’s engineering problem characterized by a higher degree of complexity and
larger numbers of dimensions of its mathematical model has created one of the biggest

challenges for control theory in order to come up with a satisfactory control solution
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[Jamshidi 1997, 1]. The well established classical control theory is now insufficient to
apply as the computational effort required to model the system, analyze its structural
properties and design the controller has become either impossible or uneconomical to
solve even with modern computer technology [Siljak 2005, 1]. Therefore it is only
natural to seek techniques which reduce the computational effort of these large-scale
systems. For this reason, a considerable amount of interest in the research area for large-
scale dynamic systems began as early as the 1960 [Gilbert 1963, 128-151]. The earliest
efforts which focused on reducing the computational effort, were realized by taking
advantage of the special structure that a large scale system generally holds, that is, a
structured model [Lin 1974; Shields and Pearson 1976; Glover and Silverman 1976;
Reinschke 1984]. When a special structure is identified, that is, a large-scale system with
its matrice coefficients consists of relatively few nonzero elements, it allows the system
to either be kept intact or decoupled into smaller subsystems. When keeping the large
structure intact, the system sparseness allows the structure to be transformed into a format
where efficient computation can be performed. Such techniques include “compact basis
triangularization” and “generalized upper bounding” [Siljak 1999, 209-224]. On the other
hand, when decoupling is visible, the original system is divided into a number of
subsystems involving a certain adjusted coefficient that represents the interconnection
parameter. Hence, the subsystem can be resolved independently and the solution to the
overall original system is realized [Brittain, Otaduy, Perez, and Rovere 1988, 108-112].
These techniques are called the multilevel or hierarchical approach and the approach have
led the endeavor of exploring different techniques to solve large-scale system problems in

modeling, structural property analysis, as well as control design.
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Figure 5:(a) Large Scale Systems in Parallel and (b) Large Scale Systems in Series

The controllability and observability of large scale systems itself were first
considered in 1963 where the classical rank condition method was applied to two
different structure combinations of two linear subsystems, namely series and parallel
[Gilbert 1963, 128-151]. Assuming that each subsystem has distinct Eigen values and
they are both controllable and observable under the rank condition, the result turned out
to be different when they formed these two structures. Two subsystems are in series
where the output of the first subsystem becomes the input of the other. Under this
condition, depending on the parameter of each subsystem, there is the possibility that this
combination is uncontrollable and unobservable. On the other hand, when the two
subsystems are in parallel that is, when both subsystems share the same input and the
overall output is the sum of the two outputs, assuming each subsystem has distinct eigen
values, under this condition, the large-scale system will always be controllable and

observable as long as each subsystem is also controllable and observable.

29



Since this initial work, the interest toward this subject grew. Many studied to
explore other techniques that do not rely on the classical rank condition since computing
the rank conditions on systems with such large dimensions posed an ill numerical
problem. Furthermore, when the tests fail, there is no indication how the rank deficiency
can be removed and fixed even in relatively simple situations. For these reasons, system
structure in conjunction with graph theory was considered by Lin [1974, 201-208]. Here,
the concepts of structural rank, structural controllability and observability, as well as
connectability were introduced. The central problem in determining the controllability
and observability of a large scale system using the structural properties and graph theory
is about finding the connectability between subsystems as well as between system
input/output and system state [Chen and Desoer 1970; Brasch and Pearson 1971;
Bhandarkar and Fahmy 1972; Grasselli 1972; Ito and Yonemura 1972; Klamka 1972;
Hwang and Wolovich 1974; Davison and Wang 1975; Davison 1977].. While the method
of finding the controllability and observability (C&O) of this large scale linear system
can be considered established, little literature has been found which discusses the C&O
for large scale nonlinear systems [Boukhobza and Hamelin 2007, 1968-1974]. However,
the approaches that are utilized for the large scale linear systems have inspired and
assisted the research to conceptualize the method of checking the C&O of large-scale
nonlinear systems. The next few sections describe the concept of controllability and
observability using a graph theoretic approach for linear systems that provides a simple

and elegant solution and so is very well suited to analyze large-scale system.
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2.5.1 Digraph of a Structured System

Graph theory, which first appeared in Euler’s paper in 1736 [Hopkins and Wilson
2004, 198-207], is the study of mathematical structures that are utilized to model pairwise
relations between objects from a certain collection. A “graph” in this context refers to a
collection of nodes or vertices and a collection of edges that connect pairs of vertices
[Deo 1974, 1]. A graph may be undirected which means that there is no distinction
between the two nodes associated with each edge or directed, where its edges may be
directed from one vertex to another. Many physical situations, however, entail directed
graphs such as: the street map of a city with one-way streets, flow networks with valves
in the pipe, and electrical networks. Structured systems can also be represented elegantly
by means of directed graphs or simply called digraphs. Using this type of representation,
it is possible to study well-known system theoretic properties from a graph theoretic point
of view. For this reason, a digraph is employed to model a large-scale linear system.

The following terminologies are defined to understand the digraphs [Reinschke
1984, 1]. The graph G = (V,E )of a structured LTI system represented by a state space
model is defined by a vertex set V and an edge set E. The vertex set Vis given by

UUXUYwith U = {ul,...,um}the set of input vertices, X ={x1,...,xn }the set of state
vertices, and Y = {yl yeees Y p} the set of output vertices. Denoting (v, v') for a directed edge

from the initial vertex v e V to the terminal vertex v'e V , the edge set E is described by

E,UE,UE.with  E,={x.x)lal, 20},  E,={u,.x)Bl,#0}  and
E. = {(xj, yl.][C ]i, i * 0}. In the latter, for instance [A]l.,j # 0 means that the (i, j)th entry

of the matrix [A] is a parameter (nonzero).
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In order to perform a structured system properties analysis from a graph theoretic
point of view, the following digraph terminologies are useful. Let W, W' be two non-
empty subsets of the vertex set V of the graph G .There exists a path from Wto W'if
there is an integer k and there are verticesw,,w,,...,w, €V such that w,e W,
w, € W'and (w, ,,w,)e Efor i=12,....k. The vertex w,is called the start vertex. and
the vertex w,is called the end vertex. The path consists of the vertices
Wy, W,,...,w, where it may happen that some of the vertices occur more than once. The
path is simple if every vertex on the path occurs only once. Occasionally, a path as above
is denoted as containing the vertices w,,w,,...,w, as the sequence of edges it consists of,
such that (w,,w, ),(w,,w,),....(w,_,,w, )or simply as w, = w, — ... = w,. The number
of edges contained in the sequences w,,w,,...,w, are called the length of the path.

Furthermore, by means of “path”, an important type of connectedness in digraphs
is described by the following. Two vertices, w,and w, are said to be strongly connected
if there is both a path from w,to w, and a path from w, tow,. A closed path is a path in

which the initial and final vertices are the same. A closed path is said to be a cycle if one
reaches going along the path no vertex, other than the initial-final vertex, more than once.
The number of edges contained in a cycle defines the length of this cycle. Cycles of

length 1 are called self cycles. A set of vertex disjoint cycles are said to be a cycle family.

2.5.2 Controllability via Connectability
Hereafter a graphical criterion to characterize the structural controllability is

presented [Reinschke 1984,1].
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Definition 2.5.1 (Input connectable):
Given system structural graph of a linear system with structure matrices ([A], [B]) , there

should be at least one direct path from each of the input variable/s to each of the state
variables

The following theorem is applied to check the controllability of a structured linear
system.

Theorem 2.5.1:
A linear system with structure matrices ([A], [B], [C ])is structurally controllable if:
1. Matrix [A] is of full structural rank, and

2. The system structural graph is input connectable

2.5.3 Observability via Connectability

Hereafter a graphical criterion to characterize the structural controllability is
presented [Reinschke 1984].
Definition 2.5.2 (Output connectable):
Given a system structural graph of a linear system with structure matrices ([A], [C ]), there
should be at least one direct path from each of the state to all of the output variable/s.

The following theorem is applied to check the controllability of a structured linear
system.

Theorem 2.5.2:

A linear system with structure matrices ([A], [B], [C ])is structurally observable if:
1. Matrix [A] is of full structural rank, and

2. The system structural graph is output connectable
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2.5.4 Example

Consider an LTI system described by Equation 2.7.
A + u
Xs A, Anlx, Bl,
yi|_|b Ofx
v, o1 X,

The graph G = (V, E) that represents the state space model of Equation 2.7 can be

2.7)

defined as follows. The vertex set V is given by U U X UY with U ={Bl,, Bl, }the set of
input vertices, X :{xl,x2 }the set of state vertices, and Y ={y1,y2} the set of output
vertices. Denoting (v, v') for a directed edge from the initial vertex ve V to the terminal
vertex v'e V , the edge set E is described by E, UE, UE_ with E, = {(xj,xi I[A]m. # O},
E, = {(uj,xil[B]Lj # O} and E. = {(xj,yil[c]i,j # O}. Figure 6 depicts the obtained

digraph.

Figure 6: Digraph of Equation 2.7

Based on the obtained digraph, a structural property analysis can be performed.
From observation, it can be determined that the given LTI system is indeed both

controllable and observable according to Theorem 2.5.1 and 2.5.2.
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Chapter Three

THERMAL DYNAMIC SYSTEM MODEL

A dynamic model of a system as well as its properties forms the background of
any control design activity [Bokor, Hangos, and Szederkényi 2004, 1]. This chapter
focuses on the theoretical basis for thermal dynamic system model’s development, which
is utilized for control design purposes. The theories that are covered include the Thermal
Network approach which is utilized to derive mathematical equations governed by the
first law of thermodynamics principle; The Nonlinear State Space model which is utilized
for control design analysis; The Structured Model which is utilized for control design
analysis from a system structure point of view, and the Digraph which is utilized to
model the system graphically. Each of of these modeling techniques forms a sequence
that is required in order to obtain a model that is utilized for system structural properties

analysis using graph theory.
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3.1 Thermal Dynamic Model for Control Purposes

A modeling task is specified by giving the description of the system to be
modeled together with the modeling goal, that is, the intended use of the model [Cameron
and Hangos 2001, 19-40]. The modeling goal for the most part determines the model, its
variable, spatial and time characteristics, as well as its resolution or level of detail and
precision. In the case of this research, where the goal of the modeling is to obtain a
mathematical model that can be useful for control system design of a thermal dynamic
system, it is suggested that the main requirement of the model is the ability to capture the
time characteristics, such a time constants.

Given the goal of the modeling effort, thermal network modeling approach is
selected. This approach is very intuitive and allows a systematic formulation and solution
of general and complicated problems. Furthermore, in order to obtain a finite
dimensional system model that is adequate in handling control design, lumping the
thermal dynamic parameters is also suggested. In thermal dynamic system, the lumped
parameter is termed as balance volume or lump which has properties containing only
one-phase that is assumed to be perfectly mixed and isothermal [Bokor, Hangos, and
Szederkényi 2004, 1]. This lumped parameter model results in a mathematical model that
is composed of systems of ordinary differential equations (ODEs) and is often coupled
with many nonlinear and linear algebraic constraints. The total system is referred to as a
differential-algebraic equation set (DAE) and it is governed by the first law of

thermodynamics, that is, conservation balances for energy. In this case, the thermal
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dynamic DAE is developed by following the conservation of energy principles. The

general conservation balance for total energy over the balance volume is given by:

Rate of ch flow of flow of Sink
{ ale or C ange}:{ ow O energy}_{ ow O energy}+{ 1mn } (3.1)

of total energy

into the system out the system system

Furthermore, the linear algebraic part of the model is called constitutive equation,

which is obtained by identifying different means of energy transport mechanisms that

should be included in the model. This mechanism is referred to the three fundamentals of

heat transfer:

1.

Conduction is an energy transport mechanism as a result of molecular-level
kinetic energy transfer in solids, liquids and gases. The difference between the
thermal dynamical state variables, that is, temperature in the two phases is the
driving force for the transport.

Convection is an energy transport mechanism that is carried by the transport of
larger-scale motions of a fluid, either liquid or gas. The convection of a lumped
thermal dynamic system is represented by the inflows and outflows of the lumped
parameter or balance volumes.

Radiation is an energy transport mechanism that is established by
electromagnetic waves. For radiation to occur, there needs to be two surfaces with

two different temperatures.

Each of these mechanisms can be represented by specific forms of constitutive equations

with basic property that are assumed to be strictly-additive, which is very essential in

constructing the energy conservation balance equation of a thermal dynamic.

The next few sections describe the model development process of a nonlinear

thermal dynamic system. This particular modeling approach is the starting point in
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developing a new structural property analysis method of controllability and observability

for large-scale structured nonlinear thermal dynamic systems:

1.

Thermal Networks. A brief overview of a concept for constructing a thermal
dynamic model for control purposes is discussed here.

State space models of Thermal Dynamic Systems. Basic notions of state space
representation for a nonlinear system are reviewed. This includes: a
decomposition of the state equations driven by the mechanism taking place in the
thermal dynamic system.

Structured System of Thermal Dynamic Systems. The thermal dynamic system
is a good example of a model that captures most of the structurally available
information from physical laws. Therefore, the concept of a structured system for
a thermal dynamic system is presented here.

Digraph of Nonlinear Thermal Dynamic System. Given that the goal of this
research is to develop a graphical theoretic approach for controllability and
observability analysis, it is fundamental to understand how a mathematical model

is converted to a graphical model. This approach will be presented in this section.

3.2 Thermal Networks

Thermal network approach approximates a thermal dynamic system as being

composed of a finite number of parts N , called nodes, each of which represents a balance

volume or lump [Bokor, Hangos, and Szederkényi 2004, 1].
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Definition 3.2.1 (Balance Volume):
Parts of a lumped thermal dynamic system which contain only one phase and can be
assumed to be perfectly mixed will be termed balance volumes or lumps. It is also
assumed that each node is to be isothermal.

To model heat exchange, the nodes are connected by resistance, thus forming a
thermal network. Neighboring nodes are nodes that are directly coupled by conduction,

convection, or radiation. The heat flow between neighbors is given by Equation 3.2:
Qn'—n _In "n 3.2

where R, is the resistance between n'and nand it is used to represent three different
heat transfer mechanisms: conduction, convection and radiation. In addition, there may

be direct heat input Qn at node n, from heat sources such as solar radiation, an electric
heater, or boiler. Furthemore, the heat capacity of node nis denoted by C, while its
temperature is indicated by 7.

Assuming constant C,, the rate of change of the heat stored in node nis C,T,,

and by the first law of thermodynamics it must be equal to the total rate of heat input.

Thus the heat balance of node nis a first-order differential equation in 7 ,:
. LT -T .
cT,=>-"—+Q, (3.3)

As for signs, it is noted that 7. —T, is positive; heat flows from n'to n making a positive

contribution to Tn. In most cases, a given node can interact directly with only a relatively

small number of nodes, and so the number of nonzero terms in this sum is much smaller

than N .
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Equation 3.3, one for each node, forms a system of N first-order differential
equations with N unknowns, that is, the node temperature 7,. By analogy with electric
circuits it is convenient to represent a thermal network by diagrams:

1. Electronic capacitor represents a capacitance C
2. Electronic resistor represents a resistance R

3. Temperature T are analogous to voltages

4. Heat flow Qare analogous to currents

Wiy

R4 Cy
| |
[
Figure 7: Resistance R and Capacitance C

There is one to one correspondence between the diagram and the set of equations
of thermal network. The diagram has the advantage of being much easier to grasp, but the
equation is needed for finding the solutions. Once the diagram has been drawn, one can
easily write down the equations where there is one first-order differential equation for
each node.

To illustrate the application of thermal network approach, consider a heat

exchanger as depicted by Figure 8.

40



TCi Tco

Figure 8: Heat Exchanger

The heat exchanger is one of the widely used thermal dynamic systems, which is
utilized for energy exchange between at least two fluid phase streams, hot and cold
streams. While the heat exchanger is usually considered a distributed thermal dynamic
system, it is acceptable to build and approximate a lumped parameter model using finite
difference approximations of their spatial variables. A heat exchanger can then be seen as
a composite lumped parameter thermal dynamic system consisting of elementary
dynamic units as depicted in Figure 8. Here, a heat exchanger consists of two perfectly
stirred balance volumes (lumps) connected by a heat conducting wall. One lump is called
the hot (/) and the other one the cold (c¢). Using the thermal network approach, the
following electric circuit that represents the heat transfer mechanism of a heat exchanger

is obtained and is illustrated by Figure 9.
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Ch
Figure 9: Circuit Model of a Heat Exchanger

Subsequently, the following DAE set is derived:

T _Tho +Tci_Tm

CT, = (3.4)
Rcond RconvC
. T, —T T. —T,
Cthm — ho co + hi ho (3.5)

R R

cond convH
Furthermore, to obtain a complete and detailed DAE, the algebraic constitutive equation
is incorporated. The following is the constitutive equation for the heat exchanger

example:

C; =cp,p,;V,; where balance volume/lump j = h,c

1
R = =—
cond UA
1
conyj l’i’lepj
where:

cp, : Specific heat of lump j
p;: Density of lump
V,: Volume of lump j

U : Constant heat transfer coefficient (conduction)
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A : Contact surface area

m; : mass flow rate at lump j
T : inlet temperature of lump j

T,, : outlet temperature of lump j

Substituting these constitutive equations into Equation 3.4 and 3.5, the following

complete mathematical model of a heat exchanger is obtained:
(cpcpcvc )Tm = (UA)(TC{) - Tho )+ (mccpc XTCi - Tco ) (3'6)

(cphphvh 'ho = (UA)(Tho - Tco )+ (mhcph XThi - Tho ) (3'7)

3.3 State Space of Thermal Dynamic

The law of conservation of energy has made the state space models a natural
representation of thermal dynamic model equation as it allows an easy transformation
between the two. Not only that, with state space form, the clear engineering meaning of
the original thermal dynamic model equation is well maintained.

State, which is the base of the state-space model, is defined as the smallest
possible subset of a system that can represent the entire state of the system at any given
time. Thus, instead of describing a system as an operator mapping from the input space to
the output space using the entire input-output history and the planned input to calculate
future outputs, new information called state of the system at time ty is used. The state of

the system at time ty includes all past information up to time to, initial condition for the

43



outputs, as well as its derivatives and its past input history. Therefore, in order to
calculate all future values output, that is y(¢) for 7> #p, only input u(¢) for >1y and the state
x(t) at t = ty is needed. In summary, the state-space model is defined as a model that uses
the concept of state.
A general state-space model is composed by two sets of equations:
1. State equations are a set of time—dependent ordinary differential equations that
describe the evolution of the states as a function of the input and state variables.
In order to describe a system, it requires a finite number of state equations and the
same number of state variables. Thus, it is called finite dimensional system.
2. Output equations are a set of algebraic equations that describe the relation
between the value of the output signals to the state and the input signals.
The general form of state-space models of continuous linear time invariant (LTI)
system is described by Equation 3.8:

5o {x(t) = f(x, u) = Ax(t)+ Bu(t) :(State — Equation) (3.8)

y(t) = g(x) = Cx(t) ;(0utput - Equation)
Given the initial conditionx(t,)=x(0), x(t)e R", y(t)e R”,ulr)e R' represent the
state, output, and input vectors of finite dimensional space; and Ae R"™",
Be R™,Ce R”" represent time-constant, input and output matrices with constant
(time-independent) elements.

Definition 3.3.1 (Linear State Space Representation):

The state space representation (SSR) that is described by Equation 3.8 is the triplet of

constant matrices (A, B, C). The dimension of an SSR is the dimension of the state

vector: dim[x(t)] =n. The state space y is the set of all states:
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x(t)e X, dim[}(]=n.
Continuing the previous example of a heat exchanger, Equation 3.9 and 3.10 are

the continuous time state equations of the heat exchanger which follow the energy

conservation balances:

i, =—2A (1, -T,)+ 221, -1, (3.9)
¢, PV Vi
UA %
= (T, -T,)+-<(,-T 3.10
co Cp ) pCVC ( co ho ) VC ( ci co ) ( )

Subsequently, assuming that the heat exchanger is fully observable, that is, system output

is measurable, Equation 3.9 and 3.10 become the following state space equation:

v, UA UA Ve g
VC Cp p L'VC Cp p L'VL' V
x= ¢ ¢ x+| ¢ u
UA v, UA v,
oot Voo 0w @11
L PV o CpPrVa h
o]
= X
"o 1]

[ x 1 T, U T, 3 X T,
where x = = , U= = ,and y = = = .
B2 T, u, T, Y2 Xy T,,

In a realistic case, however, a linear model of the heat exchanger is not valid as
the flow rates are the controllable input variables. Hence, a nonlinear system is
considered and its general form of continuous time state space models is described rather
differently. Nonlinear finite dimensional system represents a wide class of nonlinear
systems. However, in the case of this research, lumped thermal dynamic models derived
from first engineering principles are considered here. The general form of state space

models of finite dimension nonlinear systems is described by Equation 3.12:
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s = {x(l) = ]:C:(x(f), u(t))  (State - Equatior.z) G2
h(x(r),u(e) (Output — Equation)

with the state, input and output vectors x, u, y and with the smooth nonlinear mappings

fiR"XR" > R", B R"xR" > R”. If the nonlinear functions f and h above are in

a special form, an input-affine form is obtained:

(3.13)

. {x(r) = Fx)ule)) = g, () + X" g, (<, (t)  :(State — Equation)
i

(x(t)) = h(x(r)) :(Output — Equation)
with the same state, input, and output vector x, u, and y as above, and with the smooth
nonlinear mappings g, : R" > R"for i =0,L,...,m, h:R" > R’ . Hence, the nonlinear

state space model of the heat exchanger becomes the following:

A A
with simplification of k, __vA and k, = v
Cphlohvh Cpcpch

The nonlinear state equation 3.9 and 3.10 becomes:

T, =—k.x(t)+k.x, (t)+[€—f—;—j(vc (1)) (3.14)
o T _x
T,, =—k.x (t)+k x, (t)+[vh 7 j(v,, (1) (3.15)

Subsequently, the nonlinear state space matrices of Equation 3.13 would have the

following:

kh - kh
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With the notation above the state equation 3.13 can be written in the following general

form:

2
i= A0x+(2Aix+ Bibjui (3.16)

i=l
In the above equation one can clearly see the origin of the terms on the right-hand side:

1. Linear state transfer term or drift term/conduction:

__UA UA
AO — CpL.pCVC CpL.pCVC — _kC kC
UA __UA k, -k,

CpuPiVi CppPiVi

2. Bilinear state convection term originating from the output convection with

1y 0 0
Al=| v, T A=, _ L
0 O v,

3. Linear input term originating from the input convection with

0 O
— b T.
B' = g 0 0 1 Wherebz{l}z{”}
0O 0 V bz Thi

h

%,
Il

3.4 Structured System

In the framework of the traditional control theory of nonlinear systems, the entries
of the state-space matrices (A, B, C) of an input-affine nonlinear system are regarded as
numerical data given with 100 percent precision. For physical reasons, however, the

parameters involved in the entries of A’, B, and C are only approximately known.
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Consequently, it is adequate to regard the entries of A', B and C as indeterminate. Only
some entries which are often precisely zero have exact numerical values.

In the context of “controllability and observability of a structured system,”
utilizing only the “structure” of the matrices A’, B and C is proposed in this research. This

means, instead of numerically given matrices Ai, B and C, the corresponding structure
matrices [Ai],[B], and [C ]of the same dimensions are considered. The following
definition is suggested for this research.

Definition 3.4.1 (Structured Matrix):

The elements of a structure matrix [A" ,B*,C ] are either fixed at zero or indeterminate

values which are assumed to be independent of one another.

" eilf,' otherwise
0 if B =0,
o

i\j otherwise

], {

e

c

0 if C. =0,
{C}i, i= { v Y
€ ; otherwise
Definition 3.4.2 (Signed Structured Nonlinear Thermal Dynamic System with Drift):
The elements of a structure matrix {A" ,B", C} are either fixed at zero or indeterminate

values which are assumed to be independent of one another.

0 if A; =0,
{Ak }u =\+e, i A;>0,
—e, if A; <O,

LJ
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0 if Bj; =0,
B} =1+ if B>0,
—e¢” if B; <0,

if C;=0,
{c},=3+e, if C,>0,

ij
€ if (jﬁ <0,

Following the previous example of a heat exchanger, the following matrices of a

structured system model of Equation 3.16 is obtained:

1. Linear state transfer term or drift term/conduction:

0 0

0 €1 €
AT =l ¢ 0
€1 €,

2. Bilinear state convection term originating from the output convection with

Al = eil 0 A2 = 0 0
0o ol 0 e,

3. Linear input term originating from the input convection with

B' = elb’l E])z , B= elb’l ? and C = efJ E)
0 e, 0 e, 0 e,

If a structured Nonlinear Thermal Dynamic System with Drift model is considered, the

matrices of Equation 3.16 become the following:

1. Linear state transfer term or drift term/conduction:

0 0

0 —€ €
AT=1 0
€ €,
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2. Bilinear state convection term originating from the output convection with

e 0 0 O
Al = 11 A= ,
0 0 0 —€,

3. Linear input term originating from the input convection with

B' = elb’l E])z , B= elb’l ? and C = ef’l E)
0 e, 0 e, 0 e,

Note that in the case of a structured thermal dynamic system models which follow the

form of Equation 3.16, the following equalities are valid:

1. Atnode i, e’ :—egj,for j=1,...,n,excepti=j

Ll

2. Atnode i, ef

iy :—eff; for j=1,...,n,except i=jand k=1,...,m

where n is the dimension of state space model and mis the number of input variables.

3.5 Digraph of Nonlinear System

Many results on structured systems are related to the graph theoretic approach.

However, this approach is mainly dedicated to linear systems. Structural properties of

linear system such as controllability and observability, as well as solvability of classical

control problems such as disturbance rejection, input-output decoupling, fault detection,

and isolation, are studied using the graph theoretic approach. Survey paper [Commault,

Dion, and Van der Woude 2003, 1125-1144] reviews the most significant results in this

area. From these studies, it follows that graph-theoretic approach provides simple and

elegant solutions and so is very well suited to analyze large-scale or/and uncertain
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systems. Unfortunately, not so many works based on graph-theoretic methods deal with
nonlinear systems. This section is devoted to the definition of a digraph which represents
a structured bilinear system.

The graph G = (V, E )of a structured bilinear system represented by its state space
model of equation 3.16 is defined by a vertex set V and an edge set E . The vertex set V is
given by BUX UY with B ={b11,...,b;” }the set of fixed- input vertices associated with
state vertex iand input variable m , X = {xl,...,xn }the set of state vertices,
Y = {yl,..., y p} the set of output vertices. Denoting (v, v') for a directed edge from the
initial vertex ve Vto the terminal vertex v'eV, the edge set E 1is described by

E UE,UE.with E, ={x.x)Jla'], 20} 1=08..om, E, ={u,.x )[B'], %0} for

B
I'=1,...,mand E_ = {(xj,yl.][C]l.'j # O}. In the latter, for instance [Al "y # O means that
the (i, j)thentry of the matrix [A’ ]is a non-zero parameter. Moreover, for /=0,1,...,m
and I'=1,...,m, an index [ is assigned to each edge e€ E UEB,-. Note that several
indexes may be given to an edge e if it belongs to several subsets (E N UE o )—edges.

For [=1['=1,...,m, this index correspond to system input u,. This completes how a

structured bilinear system is being represented by a digraph.
Furthermore, denote W, W' being two nonempty subsets of the vertex set V of
the graph G . A path exists from Wto W'if there is an integer k& and there are

vertices w,, w,,...,w, € V such that wye W, w, € W'and (wi_l,wi)e Efor i=12,...,k.
The vertex w, 1s called the beginning vertex. The vertex w, is called the end vertex. It is

said that the path consists of the vertices w,,w,,...,w, , where it may happen that some of
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the vertices occur more than once. It also said that each of the vertices in w,,w,,...,w, is

contained in the path. The path is called simple if every vertex on the path occurs only

once. Occasionally, a path described above is containing the vertices w,,w;,...,w, as the
sequence of edges it consists of, that is (w,,w, ),(w,w,).....(w,_,,w, )or simply as
w, = w, = ... = w, . The number of edges contained in the sequences w,,w,,...,w, is
called the length of the path.

By means of path, several important types of connectedness in digraphs are

defined. Two vertices, w,and w, are said to be strongly connected if there is both a path
from w,to w,and a path from w, tow,. A closed path is a path whose initial and final

vertices are the same. A closed path is said to be a cycle if one reaches going along the
path no vertex, other than the initial-final vertex, more than once. The number of edges
contained in a cycle defines the length of this cycle. Cycles of length 1 are called self
cycles. A set of vertex disjoint cycles is said to be a cycle family.

Using the previous example of the heat exchanger, a digraph now can be derived.

Figure 10 depicts the digraph of the previous example of the heat exchanger.

B2, BT,

Figure 10: Digraph of Heat Exchanger

52



Chapter Four

BUILDING COMBINED HEAT AND POWER SYSTEM:

A LARGE-SCALE NON-LINEAR THERMAL DYNAMIC SYSTEM

This chapter focuses on a mathematical model development of a real case system
which fits the definition of a large-scale system. Rather than directly modeling the system
as a whole, the system is modeled by first decoupling it along the physical boundaries of
its subsystems which subsequently combining to form a large-scale system. Chapter four
is used as the basis theory to construct a mathematical model of each subsystem as well
as a state space and a digraph model of the large-scale system after all subsystems are
integrated. The process begins in section 4.1 where the description of the actual large-
scale system is reviewed. The mathematical model of each subsystem is derived in
section 4.2. The obtained models are then combined forming a large-scale state space
model in section 4.3. For structural analysis purposes, the structured system approach is

imposed to the model and its digraph is constructed in section 4.4.
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4.1 Building Combined Heat and Power: a System Description

According to the U.S. Lodging Census Database, currently there are 48,000
lodging establishments representing about 4.4 million rooms across the fifty states and
the District of Columbia as indicated on the Environmental Protection Agency’s Website.
With high compatibility between the energy profile of lodging facility and the type of
energy that a CHP produces, it is believed that CHP package would have the potential for
a profound impact on a national energy savings initiative which significantly furthers the
penetration of CHP technology into the national energy spectrum. Therefore, a research
project was started several years ago to investigate the optimization of CHP in
conjunction with several different types of thermally activated building equipment in a
specific hotel building. The goal of the research is to develop an intelligent control
system that can economically control the operation of CHP and its integrated building
equipment while maintaining the comfort level of building’s occupants.

The building combined heat and power (BCHP) system of a hotel building, where
the research project takes place, consisted of three units of CHP microturbine, hydronic
radiant floor heating, and domestic water heaters which are interconnected through a
glycol loop distribution system. The basic energy system, that is, CHP microturbines,
heat exchangers, and control system, is housed in a 15x25 foot building located at the
edge of the back parking lot of the hotel (hereafter referred to as the Test Facility). The
test facility that is connected to the hotel by several electric cable runs and conduits is
used as a control room/research office. Furthermore, it is also the central hub for the
research activities, including data collection, and coordination of the use of the CHP

energy in the hotel.
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Figure 12: Inside of the Test Facility

Each unit of CHP Microturbine generates 28 kW at 480V three-phase forming a
distributed generation (DG) component of this building research. The microturbine
outputs have individual S0A breaker protection and are bused together through a 200A
breaker feeding a 480-208V 225kVA transformer and a 480-480V 45kV A transformer.
Each transformer has a disconnect device accessible from the outside of the hotel. The
208V output of the 225k VA transformer is connected through a transfer switch to a 200A
switchgear breaker and to a “protected load” panel. The output of the 480V isolation

transformer is connected to the 480/277V service panel. With this configuration, the
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480V panel is supplied by the microturbines through the 480V isolation transformer or
through the 225kVA transformer if the microturbines are off. A protected load panel is
supplied through the transfer switch. Figure 13 illustrates a schematic for the electric

component of this CHP system.
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Figure 13: Electric System Design

Under full load capacity, each unit of CHP Microturbine potentially produces
200,000 Btu of thermal energy which is used to feed the building thermal activated
components, such as a hydronic radiant floor heating system as well as for the whole
hotel domestic water heating. The heat-exchanger of the microturbine captures the hot air
that is being exhausted when microturbines generate electricity, and transfers its heat to a
heat distribution system called main loop, which is served by glycol. Depending on the
amount of electricity that is being generated, the temperature of the exhaust air ranges

from 350°F to 500°F. When this excess heat is transferred to the main loop, the glycol is
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heated to a temperature of 175°F to ISSOF, which is sufficient to activate any thermal
activated equipment in a building. Figure 14 depicts the schematic diagrams of the
overall BCHP system. Measurement devices are placed in a subsystem to monitor the
flow rate and temperature of the hot glycol during its circulation. Note that the pool
mechanical room area was not included in this research.

The hydronic radiant floor heating system is utilized to provide space heating for
some portion of the area in the building which includes lobby, dining area, kitchen, and
offices. The space heating system utilizes three inch diameter plastic tubing embedded in
concrete floors of the building interior to distribute the heat from high temperature glycol.
Conventionally, an external water heater or boiler arrangement is used. This research
investigates how such subsystems can be extended to use CHP waste heat streams and
thereby increase the overall building energy efficiency. The hydronic systems had to be
designed and integrated together in a manner that would not interfere with the normal
hotel construction procedures and schedule. Thus, prior to concrete being poured, a
hydronic heating pipe in was placed in the floors. Figure 15 depicts the piping system
installation of a hydronic radiant floor heating system.

There are seventeen active loops of hydronic radiant floor heating that serve the
lobby, dining area, kitchen and office area of the hotel, and three inactive loops in the
floor of the indoor swing pool area. Several measurement units were embedded evenly
across the floor of these areas to monitor the temperature of the floor surface. During the
winter, the current operation of the hydronic system is regulated by a PID controller. The
controller maintains the glycol input temperature that enters the hydronic system at a

temperature of 105°F. This temperature is obtained by regulating the mixing valve
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between the fresh hot glycol from the CHP with the return cold glycol that leaves the
hydronic loops. With this input temperature, normally the floor surface would reach a
maximum temperature of 85°F, which is the comfortable operating temperature of a
radiant floor heating system. Various temperature monitoring and flow control devices
were installed at appropriate locations in the hotel during its construction and is
illustrated by Figure 16 through 18. Note that the temperature sensors are marked as plus
(+) signs. These are connected to the Test Facility through a control and instrumentation
cable run.

As for domestic water heating, there are two water tanks with a capacity of 1,000
gallons each. Each tank is equipped with a heat exchanger that is utilized to heat the
water by exchanging the thermal energy from the hot glycol. In addition, a gas-fired
boiler was installed at each tank and is operated on a stand-by mode. The operation of the
domestic water heater is also governed by a PID controller which maintains the water
temperature of each tank between 135° F to 145°F. This temperature is achieved by
regulating the flow rate of the hot glycol that flows into the heat exchanger of the
domestic water heater while the water flow rate is kept constant. During the peak load
period, such as the morning, if the temperature of water tank falls below 135° F and hot
glycol flow is already at the maximum capacity, a stand-by boiler will start to operate,
adding needed heat to bring up the water temperature to 135°F. When the temperature of
the water tank reaches the prescribed temperature, the glycol and water flow rate is
stopped by turning off the pump and closing the valve.

Design concepts for CHP systems based strictly on electric usage is called electric

priority mode, and attempts to use heat simply to improve efficiency. A design option
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based solely on the heat usage is called thermal priority model, and considers the
electricity as a corollary bonus. Neither of these approaches provides the full benefit of
the CHP system. However, for the purpose of this study, the initial control design was
based on these two approaches. The initial control system that was utilized to regulate the
BCHP operation revolves around PID control. During the thermal priority mode, the PID
controller takes a measurement of the main loop at the return side, that is, the cold glycol
that is coming from the building, and maintains this temperature to be at 175°F by
ramping up and down the micoturbine set point in generating the electricity. Under this
scheme, there is no exhaust air being released to the atmosphere. During the electric
priority mode, as the microturbine generates electricity according to the assigned
capacity, a PID controller is programmed to maintain the exhaust air temperature at
185°F by varying the opening of the aerator valve, and thus releasing excess hot air to the
atmosphere. Thus, the current set up is not operating efficiently.

The operation of BCHP tends to waste energy due to a mismatch between energy
supply and demand. For example, when the building thermal demand is actually at lower
capacity, oversupply during this period is most likely to occur. Furthermore, the present
control system is also lacking of access to local utility rate information where the unit is
located. This is important especially when a CHP is operated in the area where time of
use utility rate is applied. With time of use type of rate, where different price of energy
occurs at different times of the day, analysis needs to be performed in real time to justify
the time and the type of operation of the BCHP. For example, when the analysis shows
that it costs more to operate the BCHP than buying the same amount of energy through

the utility company, then the controller will command the CHP to shutdown the operation
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until the economic savings can start to occur again. Moreover, depending on the
agreement with the utility company, the control system with access to utility rate
information would be able to determine the time to sell the electricity which is produced

through its DG to the utility in order to maintain the overall efficiency.

Figure 15: Hydronic Heating Manifold and Control Valves
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4.2 Nonlinear Thermal Dynamic Model of BCHP System

To obtain the overall BCHP system model, each of the subsystem models
previously defined are interconnected in such a way that they represent the true BCHP
system. In order to better track the transformation into a large-scale system, Figure 4.9
depicts the block diagram of the BCHP system, which describes the integration of the
previously defined subsystems. Furthermore, in this thesis, only nonlinear systems are
considered. As it can be observed from the figure, as a result of being interconnected,
subsystem’s output may become another subsystem’s input. Therefore, Table 1-3 is used
to describe the transformation of the notation that is used at the subsystem level to the
state notation that is used to model the large-scale system. The number of states for the
BCHP system is now 14; the number of controllable input variables is 12 and the
constant input variable is 4. The current set up for the BCHP system is that all states are
fully observable. This means there is a sensor measuring the temperature at each state.
Hence, the number of output is also 14. The detail transformation of the mathematical
equation that integrates the subsystem into a large-scale system can be seen in Appendix
B.

The next step is to transform the large-scale system mathematical equation into a
nonlinear state space form. In this case, the state space of BCHP follows Equation 3.13,

which is a special form of a nonlinear system, input-affine:

Y =

()= Flle )= g0 (Wle) + 22, 0) < (Stae — Equation)
h

y(t ) = (X(t)) = h(x(t)) ;(0utput - Equation)
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where X, u ,and Yy is state, input, and output vector, respectively; and g, : R" > R" for

i=0,1,...,m, h:R" —> R’ the smooth nonlinear mappings with system dimension 7 of
14, number of inputs m of 12 and number of outputs p of 14. One simplified notation is

made to shorten the state space form, that is:

U. A

iLj o,

k. =
Cpipi‘/i

1

where i, j =0,1,...,n, the conductive coefficient between state iand state j .

Table 1: State Notation

Large Scale
Definition Subsystem Level

System Level
Microturbine-HX Air Supply temperature Thoi X;
Microturbine-HX Glycol Supply temperature Teoi X2
Main Loop-HX Primary Glycol Supply temperature Thinxa X3
Main Loop-HX Primary Glycol Return temperature T4 X4
Main Loop Glycol Secondary Supply temperature Thmia X5
Main Loop Glycol Secondary Return temperature Temia X6
DWH-HX “A” — Glycol Supply temperature Thoza X7
DWH-HX “A” — Water Return temperature Teo2a X8
DWH-HX “B” — Glycol Supply temperature Tho2B X9
DWH-HX “B” — Water Return temperature Teo2B X10
Hydronic — Glycol Supply temperature This X11
Hydronic - Glycol Return temperature Tho3 X2
Floor temperature Ty Xi3
Building Space Air temperature T X4
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Table 2: Constant Input

Definition Large-Scale System Notation
Microturbine-HX air inlet temperature b,
DWH-HX ”A” water inlet temperature b,
DWH-HX ”B” water inlet temperature b,
HVAC air supply temperature b,

Table 3: Controllable Input

Definition Large-Scale System Notation
Microturbine-HX exhaust air volumetric flow rate u,
Microturbine-HX glycol volumetric flow rate u,
Main loop glycol bypass volumetric flow rate u,
Main loop glycol volumetric flow rate u,
Hydronic glycol volumetric flow rate Us
HVAC supply air volumetric flow rate Ug
DWH-HX ”A” glycol volumetric flow rate U,
DWH-HX ”A” water volumetric flow rate Ug
DWH-HX ”B” glycol volumetric flow rate U,
DWH-HX ”B” water volumetric flow rate U,
Hydronic glycol mixed volumetric flow rate u,
Hydronic glycol return volumetric flow rate u,
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Equation 4.25 describes the state space form of the nonlinear large scale model of BCHP.
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Subsequently, the BCHP state space model of Equation 4.25 is transformed into a more
meaningful form where its state equation represents the heat transfer mechanism. The new

structure of state equation follows Equation 3.16:
x=Ax+| D A'x+Bb u,
i=1 (3.16)
y=Cx
where the following definitions are applied:
4. A”:=nxn matrix of Linear state transfer term or drift term/conduction:
5. A" =nXnmatrix of Bilinear state convection term

6. B" :=nXnLinear input term originating from the input convection

Using Definition 3.4.2 of a Signed Structured Nonlinear Thermal Dynamic System
with Drift that is outlined in chapter three, a structured model of BCHP can be obtained.
Definition 3.4.2 (Signed Structured Nonlinear Thermal Dynamic System with Drift):
The elements of a structure matrix {Ak ,B*.C } are either fixed at zero or indeterminate

values which are assumed to be independent of one another.

if 4; =0,
{Ak}z:j =<+el, if A;>0,
—e if Ai]; <0,
0 if B; =0,
{Bk'},-,_,- = +e<b".' zf Bi]; >0,
—¢” if B} <0,
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0 if C; =0,
C;=q+ef, i C;>0,
_et. if €, <0,

ij
The result of derivation for the structured model of BCHP can be seen in Appendix A.
The contribution of the signed structured model in controllability and observability
analysis can be observed in chapter five.

Following the structured model, a digraph of BCHP can be constructed utilizing
the nonlinear method for developing the digraph. The graph G = (V,E)of a structured
bilinear system represented by its state space model of Equation 3.16 is defined by a

vertex set Vand an edge setE. The vertex set Vis given by BUX UY with
B ={bf,...,b,’," }the set of fixed- input vertices associated with state vertex iand input

variable m , X ={x1,...,xn }the set of state vertices, Y ={y1,...,yp} the set of output

vertices. Denoting (v, v') for a directed edge from the initial vertex ve€ V to the terminal

vertex v'eV, the edge set E is described is described by E, UE, . UE.with
E :{(xj,xil[A[]i‘j ;tO} [=0,1,....m, EB,‘ :{(uj,xl.l[B"],‘j ¢0} for [I'=1,...,mand
E.= {(x I yil[C]i, i * 0}. In the latter, for instance [Al ], ; #0means that the (i, j)th entry

of the matrix [Al]is a nonzero parameter. Moreover, for /[ =0,1,...,m and ['=1,...,m, an
index [ is assigned to each edge e€ E UE .- Note that several indexes may be given
to an edge e if it belongs to several subsets (EA, UEB,. )—edges. For [ =I'=1,...,m, this

index correspond to system input u,. Figure 20 depicts the BCHP system digraph.

70



Figure 20: BCHP Digraph Model

Note that since the current setup of the BCHP system is fully observable, this particular model does not include the output equation of the BCHP state space model due to limited space on the page.
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Chapter Five

CONTROLLABILITY
OF A STRUCTURED NONLINEAR THERMAL DYNAMIC SYSTEM

VIA CONNECTABILITY APPROACH

This chapter presents a new approach to controllability of structured nonlinear
systems using a graph-theoretic approach. On the basis of a digraph representation, the
necessary and sufficient conditions for the controllability of a structured non-linear
system are expressed in graphic terms. These conditions have an intuitive interpretation
and are easy to check by hand for small systems and by means of well-known
combinatorial techniques for large-scale systems. The results presented here then serve as
the analytic foundation for controllability analysis for the research system presented in

the previous chapter.

5.1 Controllability of a Non-Linear Thermal Dynamic System

In this thesis, the following special form of a nonlinear system of input-affine is

considered:
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(x(t))+ ZZI 8, (x(t))ul. (t) ; (State - Equation)

° . (5.1)
y(t) = h(x(t)) :(Output — Equation)

where x(t)=(x,(r).....x, ()" e M cR",ult)=(u,().....u, () € QcR™,

m

y6)=(y, (). y , (r) e %* are, the state, the input and the output vectors, respectively;

and g, :R"+H>R"for i=0,1,...,m, and h:R"—>R" are the smooth nonlinear

mappings. As the focus of this research is on a thermal dynamic system, Equation 5.1 that
follows the first principle of thermodynamics in energy conservation is considered and is

characterized by the bilinear system form described by Equation 5.2.

()= on(z){i A'x(0)+ Bibjui () (State - Equation)

Y= i=1
¥(t)= Cxe)

5.2
:(Output — Equation) (5-2)

For i=0,...,m, A'e R™, Bbe R™, and CeR""are state space matrices form of
C~ function vector fields on M that represents the following heat transfer mechanisms:

1. A" :=nxn matrix of Linear state transfer term or drift term/conduction:

2. A’ :=nxnmatrix of Bilinear state convection term

3. B'b:=nxmLinear input term originating from the input convection

4. C=pXnmatrix of system output
Hereafter a nonlinear thermal dynamic system X is denoted by bilinear thermal dynamic
system (BTS).
The problem statement of controllability in the bilinear thermal dynamic system
(BTS) case remains characterized by the set of states that are reachable from a given

initial state as defined previously in chapter two:
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Definition 2.3.1 (U — reachable):

Given a subset U ¢ M , x'is U — reachablefrom x°(denoted by x'R,x") if there exists
a bounded measurable control (u(t), [to,tl])satisfying ut)e Q for re [to,tl] such that the
corresponding  solution (x(t), [to,tl]) of differential equation (2) satisfies x(to)z x’,
At')=x"'and x(t)eUfor all re|®,r']. Denote R(x*)={x'e M :x'Rx"} the set of
points reachable from x°.

Furthermore, previously defined local state controllability is also considered:

Definition 2.3.3 (Local State Controllability):
The system X is said to be locally controllable at x’if for every neighborhood U of x°,
R, (xo) is also a neighborhood of x”; X is locally controllable if it is locally controllable

atevery xe M .

Moreover, in order to test the controllability of a nonlinear system, the previously defined
theorem of the necessary and sufficient condition for a nonlinear system to be locally
controllable is utilized.

Theorem 2.3.1 (Controllability Rank Test):

A nonlinear system X satisfies the controllability rank condition at x°if in a
neighborhood of x°, dim[A.]=n. If this holds for all x°e M, Isatisfies the
controllability rank condition. Thus, if ¥ satisfies the controllability rank condition at

x” e M, then X has the local reachability property at x°
Therefore, the first step toward the analysis of the local controllability of a

nonlinear system is to find R, which is established through the derivation of
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controllability distribution Ac using Lie bracket. Isidori [1995, 1] proposes an algorithm
for constructing the controllability distributions as follows:
Algorithm for Constructing the Controllability Distribution

1. Starting Point: Ao = span{g, ..., gu}

2. Development of the controllability Distribution: Ay = A; + Z[g oA
i=0

Note that one term in the last sum [g;,A,_, ] is computed by using the functions
(¢ 1,..., ¢) spanning the distribution Ay.: [g;,4,,] =span {[gs, ¢11, .... [g1, 411 }

3. Stopping Condition: If 3k* such that Ay = Aj.j, then Ac= A== (gg..... 8, 1Ag)

where g, = A’x and g, = (Aix+Bib)

5.2 Controllability of a Structured Non-Linear Thermal Dynamic System

When the exact knowledge of the state space matrices characterizing the system’s
model is not available, a structured model approach is suggested. In structured modeling,
the system is characterized by system matrices that preserve the zero/non-zero entries in
the state space matrices determined by the physical laws, which in this case is
thermodynamic. Thus, the structured model is defined as a model where the fixed zeros
are conserved while the non-zeros are replaced by free parameters. In the case of this
research, a signed structured nonlinear thermal dynamic system as previously defined in

chapter 3 is considered.
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Definition 3.4.2 (Signed Structured Nonlinear Thermal Dynamic System with Drift):
The elements of a structure matrix {Ak ,B*,C } are either fixed at zero or indeterminate

values which are assumed to be independent of one another.

if Af=0,
Wl ={+ef, i Al>o,
—ef if Ar<o,

0 if Bf=0,
B}, =1+e  if Bi>o,

—ebm, if B! <0,

0 if C,;=0,
iChy=yrel; o >0,
—ef. if C; <0,

ij
Hereafter, a structured nonlinear thermal dynamic system is denoted by a structured
bilinear thermal dynamic system (SBTS).

Note that in the case of structured thermal dynamic system models which follow the form
of Equation 5.2, the following equalities characterized the SBTS:

. 0o _ 0 . .
1. Atnode i, e, =—e;;, for j=1...,n, excepti=j

i,i

2. Atnode i, el.'fj =—el.”;. for j=1,...,n,except i=jand k=1,...,m

where 7 is the dimension of state space model and m is the number of input variables.
Therefore, when the concern in the controllability analysis is in the form of

structured matrices, structural controllability is applied to ensure any given structured

system is controllable. Hence, equipped by Definition 2.4.3 to 2.4.5 from chapter two, the

following definition for controllability of a structured nonlinear system can be devised.
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Definition 5.2.1 (Structural Controllability for a Nonlinear System):
A class of nonlinear systems given by their structure matrix pairs [AO,Ai ,B' ] for

i =1,...,mis said to be structurally controllable (for short, s-controllable) if there exists at

least one admissible realization (AO,Ai,Bi)e [AO,Ai,B[]being controllable in the usual

numerical sense.

As a result, based on Theorem 2.3.1 of controllability rank test for a nonlinear
system, the necessary and sufficient condition for the controllability of a structured
nonlinear system becomes the following:

Theorem 5.2.1 (Controllability Rank Test for a Structured Nonlinear System):

A structured nonlinear system [Z] characterized by structure matrix pair [AO, A, Bi] for
i =1,...,m is structurally locally controllable if, for almost all the realization of (Z)e [E] ,
there exists controllability distribution (AC )e [Ac]of structural dimensionn .

Note that structural dimension here is equivalent to structural rank of Definition 2.4.5.

5.3 Controllability of a Structured Non-Linear Thermal Dynamic System via

Connectability Approach

This section focuses on providing the graphic condition equivalent to the one of
Theorem 5.3.1 on structural controllability rank condition for a structured nonlinear
system. Since the focus of the research is placed upon a bilinear thermal dynamic system
(BTS), the first part of this section is devoted to some definition of a digraph utilized as

the tool for analyzing structural controllability. The second part discusses the proposed
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graphical criterion that characterized the structural controllability of a structured bilinear

thermal dynamic system (SBTS).

5.3.1 Digraph Definition for a Structured Thermal Dynamic System

Given a structured bilinear thermal dynamic system!, some definitions based on
digraph theory described in chapter three are devised:
Definition 5.3.1 (State Digraph):

State digraph Gy ([Z]) is a digraph Gz(v’E)of a structured bilinear system [Z]

represented by its state space model of equation 5.2, and is characterized by the

followings:
a. The vertex set V is given by BUX with B= {bll SR }the set of fixed- input
vertices associated with state vertex fand input variable ™ | and
X =1x%, }the set of state vertices.
b. The edge set E is described by E UE, with Ey :{(xj ’xil[Al]i’j ;tO}

[1=01,...m 4 Ey o 0 3 FE) S

[=01,....m and I'=1,....m

For , an index ! is assigned to each edge

ec £, U EBI'. Note that several indexes may be given to an edge € if it belongs

(EAI UEB")_edgeS. For l:l'zl,.

to several subsets M "this index corresponds

to system input .
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Definition 5.3.2 (Input Connectable):

State digraph Gy ([Z])is input connectable if there exists path from at least m distinct

input edges to every state vertex.

5.3.2 Main Results

An obvious precondition of controllability is that the system inputs are able to
influence all state variables. Said in graph-theoretic terms for bilinear systems, there must
exist paths from input edges to all state vertices. Therefore, the following proposition is
suggested in this research:
Proposition 5.3.1:
A structured bilinear thermal dynamic system (SBTS) [E]is structurally controllable if
and only if in its associated state diagraph G ([Z]) is input connectable.

In order to proof Proposition 5.4.1, it is important to show an SBTS that is input-
connectable, possesses the ability to satisfy the necessary and sufficient conditions for
controllability in the standard numerical sense of Lie algebra rank condition as described

in Theorem 5.3.1. Thus, the following lemma is formulated:

Lemma 5.3.1:
If an n-order SBTS [Z] characterized by structure matrix set [AO,Ai,Bi ] fori=1,...,m is
input connectable, then there holds a structured matrix formed by controllability

distribution [Ac]of [Z] with structural rank n for almost all the realization of (£)e [Z]
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Proof of Lemma 5.3.1

In order to verify Lemma 5.3.1, n-order SBTS is studied gradually to find the
characteristics that would guarantee a result which satisfies the Lie algebra rank

condition. It will be shown that in order to obtain a structured controllability distribution

[Ac]of [Z] with structural rank n for almost all the realization of(X)e [E] , a

connectability property called input connectability must exist.
First, consider an admissible second order bilinear thermal dynamic system
following the thermodynamic first principle (n = 2) with single input (m = 1) described

by the following state Equation:

ks, ks | x —kl, k1, | x bl,
Yox= + U+ U (5.3)
ks, —ks, | x, kl, —kl, | x, bl,

To create a relationship that is proposed by Lemma 5.4.1, a signed structured model [E]

is utilized. Thus, Equation 3.1 now becomes the following state equation:

—FEO EQ —E1 El bl
[Z] i L1 21 || %1 4 1,1 21 || % ", + 1 u (5.4)
E01,2 - EOz,z Xy Ell,z - Elz,z Xy bl,

Given an SBTS described by Equation 5.2, parameter Ek;; represents not only the
structured entry of A; matrix of i-th column and j-th row but also the edge that connects
state vertex i to state vertex j associated with matrix A. Furthermore, bk; refers to the
entry of k-th input of structured vector By of row j-th, which also represents the edge from
vertex bk; to state vertex j. For the completeness, since SBTS is governed by the first
principle of thermodynamics, based on the transformation the following equality is

applied:
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1. EO;;=EO0y;=ks;
2. EO0;2=E0;;=ks;
3. El;;=El,;=El; =kl
4. El;;=El,;=El,=kl;
Using this SBTS matrix equation, Isidori’s algorithm [1995, 1] for structured

controllability distribution [AC] of [Z] is applied and the following structured matrix,

consisting of two vectors, is obtained:

Ac=... 5.5)

- El,x, + El, x, + Bl
El,x, —El,,x, +BIl,

((El EO,, + El, E0,,)—(EO, El,, + E0, El,,))x, +((- E1,, EO,, — El,, E0,,)— (- EO,, El,, — EO,, El,,))x, | [ EO,,Bl, + E0, Bl,
(( El, EO — El, E0,,)— (= EO,, El,, — E0, E1,,))x, + ((E1,, EO,, + El,, E0,, )— (EO,, El,, + EO,, El,, ))x, EO0,,Bl, — E0,, B,

To check the Lie algebra rank condition of the structured matrix {Al}, its determinant
(Det [Al]) is subsequently evaluated. Equation 5.6 described the structured parametric

equation of Det ([Al ])

[EOII(E11|E112)+ EOZI(Ellellz)_ Eolz(Elu Elu )_ Eozz(ElnEllz )])Cl2 -

[EOII(E121E112)+ EOzl(Ellelzz)_ EOlz(ElnElzl )_ EO,, (E121 El, )]2x1x2 +... (5'6)
[EOII(E121E122)+ EOZI(EIZZ Elzz)_ E012 (EIZIEIZI )_ EOZZ(EIZI E122 )]xzz +

[-2E0,,(E1, E1,b1,) + 2E0,, (E1,, E1, b1, )+ (2E0,, (EL,, E1,b1,) - EO,, (EL,, E1,b1,))— EO,,(E1,, E1,b1, )lx, —

[- E0,, (E1, E1,b1,) - (EO,, (E1,, E1,b1,) - 2EO0,, (El,, E1,b1, )+ 2E0,, (El,, E1,b1,) - 2E0,, (E1,, E1,b1, )], +

[ E0,,(E1,b1, E1,b1,)+ EO,, (E1, E1,b1,b1,) - EO,, (E1, E1,b1,b1,)+ EO,, (E1, E1,b1,b1,)]

In order to satisfy Lie algebra rank condition, a nonzero Det ([Al]) is required.
Using the structured parametric equation described by Equation 5.6, gradually identifying
the set of parameters that would result in nonzero determinant, given any combination of
input parameters is performed. Tables 4 and 5 show the result of this determinant

approach analysis. Table 4 shows the set parameters of Equation 5.6 that must exist in

order to obtain a non-zero Det ([A1 ]) if system input enters through state x; as described
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by Equation 5.7. Tables 5 summarizes the parameters set of Equation 5.6 that must exist

in order to obtain a non-zero Det ([Al]) if system input enters either through state x; or

state x, as described by Equation 5.8, or both.

[—-EO,, EO,, |[x] [-El, EL, |x bl

[Z]: _).C — 1,1 2,1 1 + 1,1 2,1 1 ul + 1 ul (5.7)
| EO,, —EO,,|x,| | 0 0 | x, 0
[—EO EO,, [x] [ O 0 X 0

[£]: 5= b T+ D] (5.8)
| EO, , —EOM__xz_ _Elly2 —El,, | x, bl,

Table 4: Parametric Equation for Input Vector of state x;
Input Vector Parameter/Edges

(g;) Parameters

Det ([A1 ]) Parameteric Equation

that must Exist for

(Edge/s) Det([A]) = 0
El, —E0,(E1,EL,,) x,° {E1,,,E0,,}
El,, —E0,(El, El,,) x,° {E1,,,E0,}
EL,bl, - E0,(EL,b1,E1,b1)) {Elb1,,E0,,}
El, & El,, —E0,(E1,El,,) x,> + E0,(E1, El,,) 2x,x, — EO,, (E1,, E1,,) x,° {E1,, UEL, ,E0,}
El, &E1,b1, —E0,,(E1,El,,) x,> +2E0,,(E1, E1,b1,) x, —EO,, (E1,b1, )’ {EL,, UEL DL, EO,,}
El, & Elbl, —E0,(E1, El,) x,” —=2E0,,(E1, E1,b1,) x, — EO,, (E1,b1,)’

{E1,, UEL b1, EO,}

El,,El, & El,bl,

—E0,(E1,,E1,,) x,> + E0,,(E1,, E,,) 2x,x, — EO, (E1, E1,,) x,

+2E0,(E1, E1,b1,) x, —2E0,,(E1,, E1,b1,) x, — EO,, (E1,b1,)*

{E1,, UEL, UEL DL, EO,}

Column 1 of Table 4 shows several possible combinations of input vectors (g;)

composed of input parameter/s connect/s only to state x;, which is described by Equation

5.7. The application of these different input vector combinations results in several
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different parametric determinant equations as described in column 2 of Table 4.
Subsequently, these parametric equations are used to identify parameter(s) that
satisfies(y) the Lie algebra rank condition, that is, for the determinant equation to not
equal zero. It is observed from each equation that at least one nonzero parameter must
exist in addition to the input parameter(s). Given that each parameter also represents an
edge that connect initial vertex to terminal vertex, thus, based on this observation, it

implies that any combination of input an edge El, that enters to state x;, an additional

edge connects that state x;, to state vertex 2, that is EQ,,, is required. The same approach
is performed by assuming that the input vector (g;) enters the system to state x; as
described by Equation 5.8.

Furthermore, when dealing with a nonlinear type of system, multi equilibrium is
one of the properties that comes with it. This property may cause a Lie algebra rank
condition of the structured matrix A, to have a rank of less than n. Here, using Equation
5.6, the singularity that is obtained when Det ([Al])= 0 can now be identified as well.
Since it is known that the parameters of Equation 5.6 cannot be zero, Det ([A1 ]): 0 is most
likely resulted from the value of the state condition itself. Table 5 summarizes the set
parameters of Equation 5.6 that must exist in order to obtain a non-zero Det ([Al ])= 0 if
system input enters either through state x; or state x, as described by Equation 5.7 and
5.8, or both. This table also includes all possible singularity points that can result in
Det([Al]): 0. In addition, Det([Al]): 0 can also be caused from the identicalness
parameter value associated with each state. In this case, Det([Al]): 0 is possible to

happen when the following identical equations occur:
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1. kS] = EOL] = EOz,] = kS2 = EO],Z = E02,2

2. kllelLJZEIZJZEI]:k]22E11,22E12,2=E12

Table 5: Edge/s that maintain SBTS structural controllability

Additional
Edge/s that
Input edge/s Singular Point
must Exist for
Det[A]# 0
(E1,,)v (EL, ) v (EL,B1,) EO,, X, =x,=bl, =0
(e ) o (e, v (B, ) o (E1 o1 v A(EL, o (E1,61, )} EO,, x =bl,
x, =—bl,
{(1,)u(EL, )u(EL D1} EO,, x, =x, =bl,
(E1,)v (E1,,)v (E1,b1,) EO,, X, =x,=bl, =0
{(E1) o (EL v (B, ) o (E1, 61, AEL, )o (E1,51,)} EO,, x =bl,
x, =—bl,
{(E1,) L (E1,) L (E1,51,)} EO,, x =x, =bl,
{(E1,)v (EL,)v (E1, 61, )} O{(EL, ) v (EL, ) v (EL,B1, )} E0,, UEO,, X =x,.x =bl,,x, =Bl x, =—bl,x, = b2

Note that notation “v “refers to symbol of OR, while U refers to a symbol for

combination.
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As the result in Table 5 is observed, column 1 shows an input vector that is
composed of every possible combination of input edges. Each input vector results in
different parametric determinant equations where its additional must-exist edge 1is
described in column 2. Column 3 subsequently derives a singularity point that may cause

the Det ([A,])= 0.

Based on the result described in Table 4 and 5, a few remarks can be made:

1. If the input to an SBTS system is represented by input edge(s) that connect(s) to state
vertex 1, then, in order to satisfy the Lie algebra rank condition, an additional edge
that connects to state vertex 2 is required.

2. Vice versa, if the input to an SBTS system is represented by input edges that connect
to state vertex 2, then, in order to satisfy the Lie algebra rank condition, an additional
edge that connects to state vertex 1 is required.

3. If these “input” and “must-exist” edges are composed in a sequence with input
edge(s) as the starting point, it forms a path that connects input edges to every state of
the given SBTS. A state digraph that contains this type of path is defined by
Definition 5.4.2 as an input connectable system.

4. Singularity, that is, when the Det ([Al ])= 0, results in an unsatisfactory Lie algebra

rank condition as its rank is less than n. Given the non-zero parameter’s value,
singularity happens only when the states (x’s) of the system reach singular points or
equilibrium as described in column 3 of Table 5.

5. [If there exist path with width exactly n, a Lie algebra rank condition of full rank is

most likely guaranteed.
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To verify this finding, consider an admissible third order thermal dynamic bilinear

system which has been modified to have its digraph notations given by Equation 5.9:

EO,, EO, EO, | x 0 0 Ofx
[£]:x=| E0,, EO, EO,|x, [+|0 El, O|x, |u (5.9)
EO, EO,, EO,|x | |0 0 0fx

Following the same approach, concurrence is obtained and described by Table 6:

Table 6: Structural Controllability Result Summary

Input Vector Parameter/Edges
(g;) Parameters Det ([A1 ]) Parameteric Equation that must Exist for
(Edge/s) Det([A,]) = 0
El,, & E1,b1, (_ E02|E021E0|3)E122x2(E122x2 "’Blz)2 {Elz’_’sEO’_’l’EOlS}

El, & E1,bl, (- E0,, E0,, EO,, + EO,, E0,, EO,, )El,, x, (El,, x, + B1,)’ {E1,,,E0,,,E0,,}

El,, & E1,b1, (E023E023E03|)Elzzxz(Elzzxz+Blz)2 {El’_’z’EOz}’EOSl}

E0,,,EO,,...

=0y, EOy EOyy = EO, BOx EO +..0) (ELux, +BL) P
El,, & E1,b1, EO0,, E0,, EO,, +EO0,, E0,, EO,, 242 2% 2 225 210 23
z BETmT UEO0,,.E0,,

This completes the proof of Lemma 5.4.1.
Based on the above discussion, Proposition 5.4.1 can now be proven for
characterizing the structural controllability of an SBTS system using a graphical criterion.

Proposition 5.4.1:
An SBTS [E] is said to be locally structurally controllable if and only of its state diagraph

G = [Z]is input connectable.
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Proof of Proposition 5.4.1:

Necessary

Assume that the condition of Proposition 5.4.1 is not satisfied, such that its state

digraph G = [Z]is not input connectable according to Definition 5.4.2. Hence, based in
Lemma 5.4.1, the given SBTS [E] is lacking one or two things:

1. The given SBTS [Z] may not have input vectors even a single input edge
cannot be derived. This implies inability to produce a controllability
distribution A, OR

2. There is at least one missing must-exist-edge which results in an

unsatisfactory Lie algebra rank condition for controllability.

Sufficiency

Assume that the condition of Proposition 5.4.1 is satisfied, such that its state

digraph G, = [2]is input connectable according to definition 5.4.2. Then the given SBTS
is able to produce a structured controllability distribution [Ac]that satisfies the Lie

algebra structural rank condition for structural controllability.

Non-Controllability

If a non-controllability aspect of an SBTS using this criterion is considered, it can
be explained as follows: The proof of Lemma 5.4.1 shows that the singularity point of
SBTS can cause an unsatisfactory result of the Lie algebra rank condition as the rank of
the obtained controllability distribution is not a full rank. It was shown in Table 5 that

singularity points include all states associated with input edges that are identical. As the
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state in SBTS represents temperature, the identical state value implies an equal
temperature between the states, or, simply put, that the STBS is at its equilibrium state.
Thus, no energy exchange will occur even though system input is varied. Therefore, this
state makes the system un-controllable. The main advantage of Proposition 5.4.1 is its
computational aspect which is very well suited to large-scale systems. The graphical
criterion has an intuitive interpretation and is easy to check by hand. Furthermore, non-

controllability can also be identified easily by observation.

5.4 Application

In this section an illustration on the application of the proposed method is
presented. The first part, an example of a 2 cell heat exchanger is utilized. This example
is used to somewhat represent a large-scale structured nonlinear system. On the second
part of this section, controllability of the BCHP system given in chapter four is

investigated.

5.4.1 Local Controllability of a nonlinear 2-cell Heat Exchanger

An example of a cascade heat exchanger consists of a 2-cell heat exchanger in
reverse flow as depicted by Figure 21. By definition, given that the system consists of 2
subsystems of heat exchanger that are interconnected, this particular system can be

considered as a large-scale system.
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Figure 21: A Cascade Model of Heat Exchanger

Based on energy conservation, the following thermal dynamic equation is derived
to model the heat exchanger where the following notation is applied:
Xi=Te,x0=Ty; ,x3=T.1, x4 =T, b] =Thi and b2 = Tci, where Uuy="ve and Uz = vp.

1

%
1= —(x3-x) + kiCe2—x7) =-kix; + kixo + (
cl cl

(-X7 +X3)) Ve

. 1
Ko = 2 (Thi— x2) + ko(x) — X2) = koxy — koxa + (— (- X2 + Th)) v
Vhl Vhl

i3= < (T - x3) + ka(xs — X3) = -kaxs + kaxg + ( ! (-x3 + Tei)) Ve
c2 c2
. 1
Fa= (= xg) + ka(xs — X) = kaxs — kaxg + (—— (32 - X9)) vy (5.10)
VhZ VhZ

0=l

State equation 5.10 is transformed into a state space form as described by Equation 5.11:
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1 1
] [~k &k 0 0 v 0 v 0 x, 0
. cl cl 0
X, k, -k, 0 0 + 0 0 0 01 *2 1 o
E 0 0 —ky K 0 0 _VL ol x VizT“ : 1)
X 0 0 k, -k 2 fx ‘ .
4 4 4 0 0 0 0 4 0
I _
0 0 0 -
1 X 0
0 —— 0 1
Vh1 X, ViThl
0 0 0 0 T |V
1 1 X3 0
0 — 0 ——|x 0
Vio th__

Subsequently, the structured model of

Equation 5.11 based on a signed structured method

given by Definition 2.4.2, is obtained and described by Equation 5.12. Hence, another

transformation into a digraph is depicted in Figure 5.2.

%] [-EO0, EO, 0 0
i |_| B0, —E0, 0 o |
X, 0 0 -EO,, EO, |~
X, 0 0 EO,, -EO,,
[-El, 0 EL, O0fx 0 (5.12)
i5]: 0 0 0 O0fx 0
0 0 -El, O|lx| |El,BL||"
0 0 0 0]x, 0
0o 0 0 0 x 0
0 —E2, 0 0 |x| |E2,,B2 ||
Moo 0 0 |x 0 !
0 E2,, 0 -E2,,|x, 0

Structural controllability using the graph-theoretic approach is first performed in

order to investigate the controllability of the system. The result then is confirmed by the

analytical structural controllability method and the proposed method of graph-theoretic

approach can be verified. Figure 22 depicts the overall digraph of the nonlinear 2-cell

heat exchanger. Subsequently, the state diagraph is constructed and depicted on Figure

23.
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X;(0.1)

Figure 23: State Digraph of Nonlinear 2-Cell Heat Exchanger

Observing the state digraph of the nonlinear 2-cell heat exchanger depicted on
Figure 23, it is clearly showed that the system is input connectable according to
Definition 5.4.2. Hence, according to Proposition 5.4.1, the system is locally structurally
controllable. This result is then verified against the analytical method of Theorem 5.3.1
for the structural controllability rank test condition using the structured controllability

distribution [AC] . Applying Isidori’s algorithm [1995, 1] for constructing controllability

distribution, the following structured controllability distribution [AC] is obtained.
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[— Al x, + Al x, 0

0 —A2,,x, + B2,
- Al,x, +Bl, | 0
0 A2, x, — A2, x, (5.13)

[ AL, kx, — Al kyx, + kAl x, + Al ko,
— Al kyx, + ALk, x,
Al kyx, + k;Bl,
— Al k,x; — k,Bl,
A2,,kx, — kB2,
A2, k,x, +k,B2,
— A2, kyx, — A2, kyx,
| A2, k,x, — A2,k x, + A2,k x, + A2,k x,

Equation 5.13 describes the controllability distribution [AC] of nonlinear a 2-cell heat
exchanger consisting of four vectors. The structural rank of [AC] is four. Except at a

singular point where the rank of the distribution decreases, that is, x; = x3, x2 = Tj; , X7 =
T.;, x4 = x. This singular point represents the equilibrium condition of the heat exchanger
where the input and output temperature are equal. Therefore, any controllable input that

is utilized will not control the output.

5.4.2 Structural Controllability of BCHP system.

Consider a BCHP system described in chapter four. The state digraph of the
system is depicted again on Figure 24. In order to investigate the controllability of the
BCHP system, a graph-theoretic approach is favorable due to the size of the system.
According to Proposition 5.4.1, the BCHP state digraph is input connectable. Hence, the
system is locally structurally controllable, except at singular points where the structural
rank of controllability distribution of BCHP system is not a full rank. This condition is
obtained due to the temperature equilibrium that is reached in the system, thus no heat

transfer occurs regardless of whether or not the variable control input is varied.
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Figure 24: Input Connectable BCHP State Digraph
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Chapter Six

OBSERVABILITY
OF STRUCTURED NONLINEAR THERMAL DYNAMIC SYSTEM

VIA CONNECTABILITY APPROACH

This chapter presents a new approach to observability of structured nonlinear
systems using a graph-theoretic approach. On the basis of a digraph representation, the
necessary and sufficient conditions for the observability of structured non-linear systems
are expressed in graphic terms. These conditions have an intuitive interpretation and are
easy to check by hand for small systems and by means of well-known combinatorial
techniques for large-scale systems. The results presented here then serve as the analytic
foundation for observability analysis for the research systems presented in the previous

chapter.

6.1 Observability of Non-Linear Thermal Dynamic System

In this thesis, bilinear thermal dynamic system (BTS) as described by Equation

5.2 is considered:
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x(t) = A%x(¢)+ (Zm: A'x(r)+ Bibjui I (State — Equation)
; (Output — Equation)

and AOEEK"X”, for i=1,...,m, A'e R™, BbeR™, and CeR""are state space

matrices form of C~function vector fields on M representing the heat transfer
mechanisms.

The problem statement of observability in the nonlinear system focuses on finding

the condition where the initial state x’can be distinguished given the output
measurement. This was previously described by Definition 2.3.4.

Definition 2.3.4 (U —indistinguishable):

Given a subset U c M , and x°,x' € U, it is said that x"is U —indistinguishablefrom
x' (denoted x'7,x") if for every control (u(r).[:",¢']) whose trajectories (x°(¢),[s°,'])Jand
(xl(t), [to,tll)from x"and x'both lie in U , fails to distinguish between x’and x',ie., if
x°(t)e Uand x'(t)e U for te [to,tl], then I, (w@).[:°.¢ ) = z, (().[:.#']). Denote
I(x*)={x"€ M : x'Ix"} the set of points indistinguishable from x°.

In the case of this research, local state observability is considered.

Definition 2.3.6 (Local State Observability):
The system Xis said to be locally observable at x'if for every neighborhood U of x°,

I, (xo ) = {xo} ; X1is locally observable if this is true for every xe M .

95



Furthermore, in order to investigate the local observability of a nonlinear system,
observability rank test condition is performed on the derivative of observation space €.
This was discussed earlier in chapter two.

Theorem 2.3.2 (Observability Rank Test):
SBTS Lsatisfies the observability rank condition at x’if in a neighborhood of x°,

dim[dQ, |=n. If this holds for all x”e€ M, then Zgagisfies the observability rank

condition. Thus, if X satisfies the observability rank condition at x° e M , then X has the
local distinguishability property at x°.

Therefore, the first step toward the analysis of local observability of nonlinear
systems 1is to construct the observability co-distribution that is based on Observation
space O using Lie derivative on output function and vector field. Isidori [1995, 1]
proposes an algorithm for constructing the observability co-distributions dO as follows:
Algorithm for Constructing the Observability Co-Distribution

4. Starting Point: Q o = span{dh,...,dh,}

5. Development of the controllability Distribution: Q= Q. ;+ Z L, Q.
i=0

6. Stopping criterion: if there exist an integer k* such that Q y+ = Q 4+, then

Qo= Qpx= <g0,...,gm |QO>

where g, = A’ and g, =(A'x+ B'b)
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6.2 Observability of Structured Non-Linear Thermal Dynamic System

When the concern in the observability analysis is in the form of structured
matrices, structural observability is applied to ensure the given structured system is
observable. Hence, the following definition is applied.

Definition 6.2.1 (Structural Observability):

A class of nonlinear systems given by its structure matrix pair [AO,Ai,C] for
i=1,...,mis said to be structurally observable (for short, s-observable) if there exist at
least one admissible realization (AO,Ai,C)e [AO,Ai,C]being observable in the usual

numerical sense.

Furthermore in order to determine if the structured bilinear thermal dynamic

system is structurally observable at x°, based on theorem 2.3.2, the necessary and
sufficient conditions that must be satisfied transformed into the following theorem.
Theorem 6.2.1:

Structured nonlinear thermal dynamic systems [Z] characterized by structure matrix pair
[AO,Ai , C] for i =1,...,m is structurally locally observable if, for almost all the
realization of (£)e [£], there holds observability co-distribution (QO )e [QO ]of structural

dimensionn .

Note that structural dimension here is equivalent to structural rank of Definition 2.4.5.
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6.3 Observability of Structured Non-Linear Thermal Dynamic System via

Connectability Approach

This section focuses on providing the graphic conditions equivalent to the one of
Theorem 6.2.1 on structural observability rank condition for structured nonlinear
systems. Since the focus of the research is placed upon bilinear thermal dynamic systems
(BTS), the first part of this section is devoted to some definition of a digraph utilized as
the tools for analyzing structural observability. The second part discusses the proposed
graphical criterion that characterized the structural observability of structured bilinear

thermal dynamic systems (SBTS).

6.3.1 Digraph Definition for Structured Thermal Dynamic System

Given a structured bilinear thermal dynamic system [Z], some definitions based

on digraph theory described in chapter three is devised:
Definition 6.3.1 (Output Digraph):
Output digraph G, ([Z])is a digraph G = (V, E )of a structured bilinear system [Z]

represented by its state space model of equation 5.2, and is characterized by the

following:

a. The vertex set Vis given by YU X with Y ={y1,...,yp }the set of output

vertices, and X = {xl,...,xn }the set of state vertices.
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b. The edge set E is described by E 6 UE.with E :{(xj,xil[A’]i,j ;tO}
[=0],...,m,andE_ = {(uj,xl.][C]l.,j # O}.
For [ =0.1,...,m an index [ is assigned to each edge ee EA, UE,. Note that

several indexes may be given to an edge e if it belongs to several subsets

E  —edges.For [ =1,...,m, this index correspond to system input u,.

Definition 6.3.2 (Output Connectable):

Output digraph G, ([Z])is output connectable if paths exist from every state vertex to

each of the output vertex consisting at least m distinct input edges.

6.3.2 Main Results

Observability is the dual concept of controllability, thus any statement about
controllability has its direct counterpart concerning observability. Therefore, an obvious
precondition of observability is that the system outputs are able to influence all state
variables. Said in graph-theoretic terms for bilinear system, paths must exist from each
state vertex to each output vertice. Therefore, the following proposition is suggested in
this research:
Proposition 6.3.1:

A structured bilinear thermal dynamic system (SBLTD) [E] is structurally observable if
and only if in its associated output diagraph G, ([Z]) is output connectable.

In order to prove Proposition 6.3.1, it is important to show that ouput-connectable

systems possess the ability to satisfy the necessary and sufficient conditions for a bilinear
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system to be observable in the standard numerical sense of Lie algebra rank condition as
described in Theorem 6.2.1. Thus, the following lemma is formulated:

Lemma 6.3.1:
If an n-order SBTS [E] characterized by structure matrix pair [A,’:O ,C ] [=01,...,m is

output connectable, then there holds a structured matrix formed by observability co-

distribution [QO Jof [Z] with rank n for almost all the realization of (Z)e [E]

Proof of Lemma 6.3.1

In order to verify Lemma 6.3.1, n-order SBTS is studied gradually to find the one
that would guarantee resulting in satisfying the Lie algebra rank condition. It will be
shown that in order to obtain a structured observability distribution €, of [Z] with rank n
for almost all the realization ofX, a certain connectability property, that is, output
connectability must exist.

First, consider an admissible second order SBTS (n = 2) with single input (m = 1)

and observable output, that is, state x;, as described by the following state Equation:

| —ks, ks, | x —-kl, k1, | x, bl,
x= + u, + u,
ks, —ks, | x, kl, —kl, | x, bl,

T (6.1)
[l o]™
y= .

To create a relationship that is proposed by Lemma 6.3.1, sign structure model [Z] is

utilized. Thus Equation 6.1 now becomes the following state equation:
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EOQ,, | x N —ElL,
—EOQ,, | x, El,

y= [EYII O{XI}
Xy

. _E01,1
x =
] EOQ,,

[Z:

E12!1 X, - bl, y
—El, ||x, | " |bl,|"

(6.2)

Given an SBTS described by Equation 6.2, parameter Ek;; represents both the structured

entry of A; matrix of i-th column and j-th row but also the edge that connects state vertex

i to state vertex j associated with matrix A;. Furthermore bk; refers to the entry of k-th

input of structured vector By of row j-th, which also represents the edge from vertex bk; to

state vertex j. On the output equation side EY;; represents both the structured entry of C

matrix of i-th column and j-th row and also the edge that connects state vertex i to state

vertex j associated with matrix C. For the completeness, based on this substitution of

parameter notation the following equality is:

5. E01,1=E02,1=kS1
6. EO],Q = EOZ,Z = kS2
7. El;;=El,;=El, =kl,

8. E11,12E12,12E12=k12
9. EY;=1

Using this SBTS matrix equation, Isidori’s algorithm [1995, 1] for observability

co-distribution [Qo]of [Z] is applied and the following structured matrix consisting of

three vectors is obtained:

lesp‘m{[l O]’[EOII Eozl]’[Eln EIZI]}

(6.3)
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To check the Lie algebra rank condition of the structured matrix €2, its determinant
(Det [Ql]) is subsequently evaluated. Equation 6.4 described two different possible

structured parametric equations of Det [Ql] :

2 (6.4)
N :

[(1)(E0,,)]
[(1)EL,, )]

In order to satisfy Lie algebra rank condition, a non-zero Det [Ql] is required.

Using the structured parametric equation described by Equation x.4, it is observed that
non-zero parameter of E0;; or E1,; would result in non-zero determinant if state x; is

observable. Vice versa, if state x; is the observable state as described by Equation 6.5,
using the same approach, the following structured parametric equation of Det [Ql] is

obtained:

. {_ EO1,1 E02,1 }{)ﬁ} {_ E11,1 E12,1 j||:xl } {bll }
X = + u, + u,
[Z] . EO,, —EO,, |x, El, -—El,|x, bl,

X
y=[o oEy,
X

2

(6.5)

Q= [(1)(E012 )]

Q‘l = [(1)(E112 )] (6.6)

Thus, non-zero parameter of E0;; or E1;, would result in non-zero determinant if state x;

is observable. Table 7 summarizes the result of this finding:
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Table 7: Edge/s that maintain SBTS observability

Output Equation Edge that must Exist for
Observability State
Parameter Det [Ql] =0
XJ EY, EO0,, 0rEl,,
X2 EY, EO,,0rEl,,

It is observed from Table 7 that at least one non-zero parameter must exist in
addition to the output parameter. Given that each parameter also represents an edge that
connects initial vertex to terminal vertex, thus, based on this observation, it implies that

given an of output edge EY, which represents the observable state x;, an additional edge

with terminal vertex state x; is required.

Based on the result described in Table 8 a few remarks can be made:

6. If the output to an SBTS system is represented by an output edge that connects
through state vertex 1, then, in order to satisfy Lie algebra rank condition, an
additional edge that connects from state vertex 2 to state vertex 1 is required.

7. Vice versa, if the output to an STBLD system is represented by an output edge that
connects through state vertex 2, then, in order to satisfy Lie algebra rank condition, an
additional edge that connects from state vertex 1 to state vertex 2 is required.

8. As these “output” and “must-exist” edges are composed in a sequence with the must-
exist edge as the starting point, it forms a path that connects output edges from every
state of the given SBTS system. An output digraph that contains this type of path in
previous sections is defined as an output connectable system.

9. If path/s exist/s with width exactly n, Lie algebra rank condition of full rank is most

likely guaranteed
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To verify this finding, let’s consider an admissible third order TBLD which has

been modified to have its digraph notations given by Equation 6.7:

EO,, EO, EO; | x 0 0 Ofux
x=|EO, EO, EO,|x,|+|0 El, O]x, |«
5] EO,, EO,; EO,; | x, 0 0 Ofx 67
X
y:[EYn 0 0} x,

X3

Following the same approach, the must-exist-edges which verify the earlier remarks are

obtained:
Table 8: Structural Observability Results
Output Equation Edge that must Exist for
Observability State
Parameter Det [Ql] =0
x] EYI E021 Y E031
X7 EY, E0, UEQ,,
X] EY, EO0,, UEO,,

This completes the proof of Lemma 6.3.1.

Based on the above discussion, Proposition 6.3.1 for characterizing the structural
observability of an STBLD system using a graphical criterion can now be proven.
Proposition 6.3.1:

An SBTS [E]is said to be locally structurally observable if and only of its output

diagraph is output connectable.
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Proof of Proposition 6.3.1:

Necessary
Assume that the condition of Proposition 6.3.1 is not satisfied, such that, its output
digraph is not output connectable. Then based on the proof of Lemma 3.2, then the given
STBLD system is lacking one or two things:
1. The digraph of the given STBLD may not have output vectors that even a single
output edge cannot be derived. This implies inability to even produce an

observability distribution Q,, OR

2. There is at least one missing must-exist-edge which results in unsatisfactory Lie

algebra rank condition for observability.

Sufficiency
Assume that the condition of Proposition 6.3.1 is satisfied, such that, its output
digraph is output connectable. Then the given SBTS system is able to produce an

observability co-distribution Q, that satisfies the Lie algebra rank condition for structural

observability.

6.4 Application

In this section an illustration on the application of the proposed method is

presented. In the first part, an example of a 2 cell heat exchanger is utilized. This is used
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as an example of a large-scale structured nonlinear system. On the second part of this

section, controllability of the BCHP system given in chapter four is investigated.

6.4.1 Local Observability of a nonlinear 2-cell Heat Exchanger
An example of a cascade heat exchanger consisting of a 2-cell heat exchanger

reverse flow as depicted by Figure 25 is considered.

Figure 25: A Cascade Model of Heat Exchanger

In the case of the observability analysis, note that the measurable outpout of the
system is x; = T, and, x4 = Tj;,. Hence the same digraph as previously obtained is
considered again here.

Structural observability using graph-theoretic approach is first performed in order
to investigate the observability of the system. The result is then confirmed by the
analytical structural observability method thus the proposed method of graph-theoretic
approach can be verified. Figure 26 depicts the overall digraph of the nonlinear 2-cell
heat exchanger. Subsequently, an output diagraph is constructed using Definition 6.3.2
and the result is depicted on Figure 27.

Observing the output digraph of the nonlinear 2-cell heat exchanger depicted on

Figure 6.3, it clearly shows that the system is output connectable according to Definition
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6.4.2. Hence, according to Proposition 6.4.1 the system is locally structurally observable.
This result is then verified against the analytical method of Theorem 6.2.1 for structural
observability rank test condition using the structured observability co-distribution [QO] .
Applying Isidori’s algorithm [1995, 1] for constructing observability co- distribution, the

following structured obeservability distribution [QO] is obtained.

Figure 26: Digraph of 2-Cell Heat Exchanger

Figure 27: Output Digraph
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1 00 0|[-EO0, EO, O 0
000 I[|] O 0 EO, -k~

[@,]= ’ (6.8)

—El, 0 El,, 0[][0 0 0 0
0O 0 0 O0f|0 E2,, 0 —-E2,,

Equation 6.8 describes the structured observability co-distribution [QO] of a
nonlinear 2-cell heat exchanger consisting of six vectors. The structural rank of [QO] 1s

four. This shows that the proposed method of graph-theoretical approach is able to
deduce the same conclusion as the analytical one. The main advantage of Proposition
6.3.1 is its computational aspect which is very well suited to large-scale systems. The

graphical criterion has an intuitive interpretation and is easy to check by hand.

6.4.2 Structural Observability of BCHP System

The BCHP system described in chapter four is considered again. The actual set up
of the BCHP system in the field is actually fully observable since there is a temperature
sensor on every state of the system. For the purpose of this analysis, it is assumed that

only a few measurements are available, that is:

Table 9: BCHP Measurable Output

Large Scale
Definition
System State
Microturbine-HX Air Outlet temperature X;
DWH-HX “A” — Water Outlet temperature X8
DWH-HX “B” — Water Outlet temperature X10
Building Space Air temperature X14
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This measured output can be seen from the BCHP diagraph depicted in Figure 6.4.
Applying Proposition 6.4.1 on the BCHP output digraph, the structural observability is
investigated. From observation of the output digraph, it is clearly shown that the diagraph
is output connectable according to Definition 6.3.2. There are paths from each state
vertex to every output vertex, which includes 12 distinct input edges. Therefore, the
BCHP system is structurally locally observable according to proposition 6.4.1. This
exercise is very useful in determining the number of sensors to be installed, as well as the
selection of location. Therefore the number of sensors that need to be installed can be
reduced while still maintaining the information needed for observation and control

purposes.
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Figure 28: Output Digraph of BCHP system

110



Chapter Seven

CONCLUSION AND FUTURE WORK

7.1 Summary and Conclusions

In summary, the primary objective for this research was to develop a
methodology for determining the controllability and observability of a large-scale
nonlinear thermal dynamic system. As an alternative to the often difficult and
computationally intensive analytical method of analyzing the structural property of a
large-scale nonlinear system, graph-theoretical approach is proposed in this research.
Using a new graph representation of a special class of nonlinear system — bilinear system
— a necessary and sufficient condition for structural controllability and observability are
given and expressed in graphic terms. This method needs information that can be
observed from its system digraph, and is easy to check which makes it well suited to
analyze the large-scale system of thermal dynamic bilinear system. The contributions of
the thesis are as follows:

Digraph Model for a Bilinear System:

¢ In many modeling problems, the exact knowledge of the state space
matrices is sometimes unknown. To mitigate this deficiency, for a model

with its state space system determined by the physical laws, some
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structured form can be defined. The study of such a model is called the
structured modeling approach. This particular technique requires a low
computational burden which allows one to deal with a large-scale system.

Many results on structured systems are related to the graph theoretic
approach. However, this approach is mainly dedicated to a linear system
and many do not deal with nonlinear systems. In this research, a graph
representation for a bilinear system was developed using directed-graph.
Some definitions that explore the property of connectability for a bilinear

system was derived here.

Controllability and Observability of a Large-Scale Structured Bilinear

Thermal Dynamic System via Connectability Approach

A new analysis tool to investigate the structural controllability and
observability of a structured thermal dynamic bilinear system is proposed.
The necessary and sufficient condition for structural controllability and
observability which normally is determined using the analytical method of
Lie algebra rank condition is now represented by graph representation.
From a computational point of view, the proposed approach is particularly
suited for a large-scale system since it is free from numerical difficulties.
The proposed condition can be easily implemented because the method
requires simple computations based on finding paths in digraphs.
Furthemore, the use of graph-theoretic approach makes it easy to visualize

the system structure. This may be very helpful for the optimization of
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actuator placement and sensor placement to achieve the controllability and

observability of the system.

7.2 Future Work

This research work focused on a new practical approach to investigate the
controllability and observability of a large-scale nonlinear thermal dynamic system, and
there are several areas of possible future work. Based on the result presented in this thesis
there are several areas which are especially relevant:

e (Currently the technique to investigate the controllability and observability
of a large scale nonlinear system is geared toward the structured system,
such as a thermal dynamic system following thermodynamic principle.
However, there are many other structured nonlinear systems following the
engineering first principle that can be explored. Given that to a structured
system a directed graph can naturally be associated, graph-theoretic
approach still has a lot of potential to be utilized for structural properties

analysis.
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Appendix 1
Heat Exchanger Model:

Controllability and Observability of a Thermal Dynamic Nonlinear System
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Observability Distribution:

¥ = hix() = | ™ MW

Qo= span{dhy, ..., dhy} = ﬁv @

13
Q= Q) + D L,Q

i=o0

The Lie-product of @ = dh along f according to the definition is:
T

L) =f () w|wﬂ + oW @I@ > @l& =0,

THUS, Li(x) = & (x) @I@

1 1
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2-Cell HX Reverse Flow
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Observability Distribution:
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Appendix 2

BCHP Model
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Figure 29: BCHP System and Subsystem Boundary
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Table 10: State Notation

Definition Large Scale

System Level
Microturbine-HX Air Supply temperature X;
Microturbine-HX Glycol Supply temperature X2
Main Loop-HX Primary Glycol Supply temperature X3
Main Loop-HX Primary Glycol Return temperature X4
Main Loop Glycol Secondary Supply temperature Xs
Main Loop Glycol Secondary Return temperature X6
DWH-HX “A” — Glycol Supply temperature X7
DWH-HX “A” — Water Return temperature X8
DWH-HX “B” — Glycol Supply temperature X9
DWH-HX “B” — Water Return temperature X10
Hydronic — Glycol Supply temperature X171
Hydronic - Glycol Return temperature X2
Floor temperature X3
Building Space Air temperature X14

Table 11: Constant Input

Definition Large-Scale System Notation
Microturbine-HX air inlet temperature b,
DWH-HX ”A” water inlet temperature b,
DWH-HX ”B” water inlet temperature b,
HVAC air supply temperature b,
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Table 12: Controllable Input

Definition Large-Scale System
Notation
Microturbine-HX exhaust air volumetric flow rate u,
Microturbine-HX glycol volumetric flow rate u,
Main loop glycol bypass volumetric flow rate U,
Main loop glycol volumetric flow rate u,
Hydronic glycol volumetric flow rate Us
HVAC supply air volumetric flow rate Uy
DWH-HX ”A” glycol volumetric flow rate U,
DWH-HX ”A” water volumetric flow rate Ug
DWH-HX ”"B” glycol volumetric flow rate U,
DWH-HX ”B” water volumetric flow rate U,
Hydronic glycol mixed volumetric flow rate u,
Hydronic glycol return volumetric flow rate U,
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HX at the Microturbine

Equations 1 and 2 are the differential equations that govern the heat exchanger between the hot exhaust-air from a micorturbine to the
glycol main loop unit, which is based on the conservation of energy law. In linear system the input is the temperature of hot air that is
produced by the microturbine. However in a nonlinear system, which is always the case, the input is the volume flow rate of the hot

air that is coming from the microturbine as well as the volume flow rate of glycol that is coming from glycol main loop.

L el —x) = ey S ) 5 o0 ) dabion) ) Bt
ot R, ot picViR,, eV, Vi
%= = (ky o + (k, )%"'MW
ot |
Yir=Xxi

(x1 _xz)

+ u2C4(X4—X2)=p202V2 axZ > axz _ (xl_xz) +uzc4(x4—x2)= (kz)xl— (kz)xz_'_(_xz +x4)

R, ot oa P26, VoR, P1c,V, 2 ’
ox (—x, +x,)
a_tz: (kz)xl‘ (kz)xz"'#”z
Y2=Xx2
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Glycol Loop

Glycol main loop is the system that distributes the thermal energy that is produced by the microturbines to the load in the building.
Glycol is the fluid that is used for the system. In this system, it is assumed that the thermal property of the glycol stays constant all
through the process. Equations 3 through 6 are the differential equations of the glycol main loop, which is based on the law of
conservation of energy. Equation 3 and 4 represent the dynamic of the glycol at the microturbine plant or in this case is called primary

loop. Equation 5 and 6 represent the dynamic of the glycol at the load level or in this case is called secondary loop.

ox; N ox; _ tiye, (v, —x,) + tiy¢; (o, = x3) (xz_x3)u + (=x, +x,)

3. e \x, —x;) + th,c, X, —x3) = picsV _ _
o) )= pe J ot psc;V; J NS V, ’ V, 3
Y3 =X3
) ) — _
4. l"t4cﬁ(-x6_-x4) = ,04C4V4 azl -> Y4 = u4c6(x6 .X'4) - ('xﬁ x4)u4
ot ot PV, V,
ox, _ (xs x4)u
ot v, 4
Y4 =X4
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tiyey (x; = x5) = psesVs
0x; _ (x3_x5)u

ot v, °
Y5 =Xs5

0x; N 0x;

3 L't4c5(x3 —xs) 3

(x3 _xs)

ot ot

PscsVs

Vs

U,
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Water Heater

There are two 1000 gallon water tanks that its temperature is required to maintain at 145°F at all times. Equations 7 through 10 are the
differential equations to govern the dynamic of these two water tanks. Equations 7 and 8 represent the system for tank 1 and equations
9 and 10 represent the system for tank 2. There are two operation modes for each tank namely charging and not-charging. Charging
occurs when the temperature of the water inside the tank is less than 145°F. When the temperature of the water in the tanks is equal or

greater than 145°F, the flow from the hot glycol to the hot water heat exchanger is shut down.

. ox (x, —x,) ox (x, =xg)  tijeq(oxs —x
7(9). I/t765(x5—x7)=p7c7v7 7 + 7 8 S 7 _ 7 8 + 7 5(5 7):
ot R ot P7¢;ViR, 4 P¢;V;
3 _ _
1 _ ! X, + ! x8+(x5 x7)u7= —k7x7+k7xg+—(x5 x7)u7
o pic;ViR P7¢7V3R, Vi v
o - o - tgcs\b, —
8(10) l/'lgcg (b2 _-xg) — pgcgvg g + ('x8 x7) S Xg - ()C7 x8) + uSCS( 2 T X ) —
ot Ry 4 ot PscsViRy PscsVy
) b, — b, -
Xy _ 1 X+ 1 X (2 xS)I/tg:—kgx7+k8x8+(2 xg)ug
ot PsCsVs Ry PycsViRy Vs Vs

Y7(9) = X7(9) and Y8(10) = X8(10)
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Hydronic (11, 12, 13, 14)

Hydronic Radiant Floor heating system is one of the building equipment that is used to maintain the temperature of building interior at
the comfortable level during winter. Hydronic system consists of circuits of tubular pipe that is embedded under the floor. The pipe
carries heated glycol from the glycol main loop, which has a function to heat the floor through conduction and convection. The heated
floor then would radiate the heat to the interior of the building. Equations 11 through 14 are the differential equations of the hydronic
system, which is based on the law of conservation of energy. In the case of this project, the hydronic system is controlled by regulating
the flow rate of the glycol underneath the floor in order to maintain its temperature at 105°F during winter and 85°F during summer.
This is achieved by mixing the glycol supply and its return. This process is represented by Equation 11 and 12. The load side of the
hydronic system, which is at the building level, is represented by Equation 13 and 14 which shows the interaction that occurs in the
building zone between the heated floor (hydronic system) and the building load, as well as additional heating system that is

contributed by conventional HVAC system.
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ox,, N ox,, _ (x5 —x,,) + tigCyy (by —x,4) _

14.

X, —X .
( - 14) T UgCyy (b4 _x14) = PucCuVy p) P
Ry, s t t PV Ry 13 P14V

o 1 1 b, — -x, +b
314 B X3 — x14+( . XM)%: (k14 )x13+_(k14 )x14+wu6
o PuCViuR ;s P1aCaViu Ry s Vi Vi

Yi4=X14

The state space form of the nonlinear large scale model of BCHP follows the following equation:

State Equation: X =f(-x) + g(-x) =f(X) + z gi(-x) = ATransfer(-x) + Z Ni(-x) + B(i)Convection

i=1 i=1

Output Equation: yi(t) =hi(x(®),j=1,....p
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, where [ is a 14x14matrix identity
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Appendix 3

Controllability of a Nonlinear System: A Proof
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EO;, EO, EO3 | x; El,, El,
EO;;  EO0y  EOs; | x5 El,; El,,

The system is No Input Connectable System, that is, the system with

It is automatic that the system is not controllable.

El;,
El,,
El,,

X
X2

X3

Proof:
0x; +0x, +0x5 +0
A, =span{g;} = span| Ox, +0x, +0x; +0| = has dimension of 0
0x; +0x, +0x5 +0
A, = A, + [f(x), Ay]
= span{g;(x), [f(x).g:(0)]}
where
0 0 0EO,
) )
(0,g1001 =251 19 2 = 1o 0 0] 0y,
0 0 0fE0,
A, = A, + [f(x), Ay]

span{0, 0}-> has dimension of 0

Thus system is not locally controllable.

Theory: If the system is not input connectable, the system will never be controllable.
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Necessary Condition:

For a system to be locally controllable the system must input connectable. This implies the existence the input function g(x) function which builds the initial controllable distribution A, .

Proof:

Supposed there is one input to the system which enter through state x;, thatis, g;(x)=| 0 0 0| x, [+| O
0 0 Ofxy| | O

Ay = span{g;} = span 0 - has dimension of 1
0

It is not sufficient, thus

A = Ay + [f(0), Ay]

m@@SAWNCmv, quv,%NARVH w

where
3¢ (+) 9 () 'El;, 0 O[EO,, EO0, EO5 | x EO,, EO,, EOy [El, 0 Ofx [E0,, EO0, EO, | Bl
X X
CA&Y%NC«&H wa \Axvl \mx %HQVH 0 0 O)EO, EO,, EO; |x,||—||EO0, EO, EO; 0 0 Oflxy||—||EO;, EOy, EO; | O
| 0 0 0] EO0;; EO, EOs | x; EO;; EO, EOy; || O 0 Ofxs |EO;; EOy EOs | O
[El,,E0,, EIl, E0, El, EOs | x, | E0,El;, 0 0] x EO0,,Bl, 0 El,,EO,, El,,EO0; [ x| EO,,Bl,
= 0 0 0 X, | |-||EO,El;; 0 Ofx, ||-||EO,BL ||=||-EO0,EL, 0 0 x, | |-|| EOy, Bl,

-AE:MONLXN +Am_: MOwwa —-E0,,Bl,
= |Qm05 m_:vx_ —-E0,, B,
|Amo$ E:vu: —E0,3Bl,

El,, x, +Bl, | [(El,, EO,, )x, +(E1,, EO3, )x; — EO,, BI,
A, = span{g;(x), [f(x),g:(x)]} = 0 , —(EO0,, E1,, )x, — EO,, BI, - has dimension of 2

It is not sufficient, thus

A,

D_ + qﬂkvu DHH + _HWN Cnv, DHH

m@@SAWNCmv, quv,%NARVH s qﬂkvu_ﬂ\ﬂkv,ﬁmNAkv:u _HWNA.Xv,qﬂkquNCnv:w
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where

feliy gl fglsy | xy JgBl, AE:MON_VRN+AE:MOM_V§|~8:E_ 0 AE:MONL Cﬁ:ﬁom_v X1 - E0,,Bl, 0 fely Jfgls || ¢ fgBl1,
[f0.8:1(0)] = | fely,  fely  felsy | xp [+| f2Bl, | = |§o:§:vflm9wmr = |Am9~§:v 0 0 X, |[+|—EO0, Bl | =] fgly, 0 0 X, |+| fgBl,
felis fglys felys | %3 JgBl; |Am9m Ely, v: - E03 Bl |Qm0$ E:v 0 0 X3 - E03Bl, J8lis 0 0 X3 fgBl;
| flx), g (x of (x
. [.g i = L0l g Ty
ox o0x
0 felyy fglsy | EOyy  EOy  EO5 | x; EO,; EO, EO5 0 fely fgls || ¢ EO,, EO, EO5 | fgBl,
=|| fgl, 0 0 EO\, EOy EOs || x, ||=||EO0;, EO, EOs | fgl), 0 0 X, ||| | EO;, EO, EOs | fgBl,
Jglis 0 0 EOi; EOy  EOs3 | x3 EO;; EOy  EO5 | fglys 0 0 X3 EO\; EO,; EOs; || f8Bl;

Rowl:

Qo+ /815 EOpp + \%_Emomvl Ao+ EQ,, fel, + mou_\%_;vy + Qo+ /815 EO, + \%_Emomuvl Amo:\%_m_ + o+ovvxm + QO+ /81, EO5, + \%Hu_momvl Amo:gs%g +0 +ovvxm - @o:%%wr + E0,, fgBl, + mou_\%w_mv

Row2:

ACwLEmo: +0+0)—-(0+ EQ,, fgl;, + mox\wrwvv& + :\%:Nmoﬁ +0+0)- Amo_N\w_B +0+ ovvxw + :\%rwmoﬁ +0+0)- Amos fgl3 +0+ ovvxm - Amos fgBl, + EO,, fgBl, + EOs, \%va

Row3:

ACW_amo: +0+ ovl Ao+ EQy fgly + mowu%%ruvvx_ + Q\%_amoﬁ +0+ ovl Amoa%ﬁﬁ +0+ ovva + AQ%HENOB +0+ ovl @o;\%_: +0+ ovvxw - Amoa\%wr + E0y; fgB1, + mouw%%wﬂuv

Thus,

ACW_BNO_N + \ww_mO;vl @oﬁ\%rw + MQENW_;VF + AA\%HBMQR + \%Hw_mﬁvmvl @o:\wgvvxw + ACW_BMOWN + \m_w_mﬁvmvl ﬁc:\mgvvx - Amo:\%wr +E0,, fgBl, + MQS\WEWV
ACWHBMO:VI AMOB\%H_N + mo&\%rwvvﬁ + ACW_BNOBOVI ANO_N\%_BVF + AA\%H_NNOEVI Ampwﬂwgvvx - Amosxwmr + EO,, fgBl, + mowN\%va
((fe113E0y,)— (EO0,; foly, + EOs3 folis ) + ((fg1,3E0,,)— (EOy3 folyy ), + (81,3 E05; +)— (EOy5 fo 13y )xs — (EOy5 fgBl, + EO fgBl, + EOx; f2Bl3)

[0, [fx).8:(0)]] =
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@ gieon = Wl o 20 o

)
0 fgly Jfgls | El; 0 Of x 0 fely  fgls || BY El;, 00 0 fely Jfgls || % El, 0 O} fgBl,
fgl; 0 0 0 0 Ofx; felys 0 0 0 0 0 0f fgl; 0 0 X3 0 0 Of fgBl;

Rowl:

(0)x, +(0—(E1,, fg1,, +0+0))x, +(0—(EL,, fgls, +0+0))xs +(0)-(EL,, fgB1, +0+0)

Row2:

((fg1,,E1,; +0+0)=(0+0+0))x; + ((0+0+0)= (0+0+0))x, +((0+0+0) = (0+0+0))x; + (fg1,, Bl, +0+0)— (0+0+0)

Row3:

((fe1,5E1;, +0+0)=(0+0+0))x; +((0+0+0)=(0+0+0))x, +((0+0+0)=(0+0+0))x; +(fg1,;B1, +0+0)—(0+0+0)
Thus

|Am_: \w_ﬁvxw |Cﬂ:\%_3v§ |A§:\%m:v
[g1(x),[f(x),g:(0)]] = erw E:va_ +CW_B w__v
Cw_a E:vx_ +Cw_; mrv

A, =span{g;(x), [fx),g:(0)] , [f(x),[f(x),8:(0)]], [8:(x),[f(x),8:(x)]]}

El,, x, +Bl, | [(El,, EO,, )x, +(E1,, EO3, )x; — EO,, BI,
0 , —(EO0,, E1,, )x, — EO,, BI,

[((f215, EOy, + f213, EO3 )= (EOy, fgly, + EO5, fol3))x, +((f21y EOo + fol5, EO43 )—(EOy, foly, ))x, + (g1, EOsy + fgl5) EOs3 )—(EO,, f215,))xs —(EO,, fgBl, + EO,, fgBl, + EO3, fgBl5)
(/21,2 E0,, )~ (EO,, f211, + EO3, foly5))x, +((f211, E0,,0)— (EO,, f21y, ))x, +((fg1,, EO5, )= (EOy, fol3,))xs = (EO,, feB1, + EO,, fgBl, + EO5, fgBl5)

L AQ%HG MQ:YAMQS f8li, +EO33 f31;3 vvﬁ +ACWH; moﬁvlﬁmo; \w_ﬁvvxw +ACWH; EO0, il@oa \%_&vvﬁ |Amo$ J&Bl, + EO 3 fgBl, + EO5; \%m_wv

[—(E1,, fgly )x, —(E1y, fols, x5 —(E1,, f2BI,)

(fely, ENyy )x, +(f2l11, B1,)

(fgl,5 ELy )x, + (21,5 B1,)

- Dimension = 3
Thus, the system is locally controllable.

Therefore, Necessary and sufficient is analytically satisfied.
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Sufficient:

Input connectable and at least there is n path to all state from the input state which implies that it is equivalent to n rank of controllability distribution.

Proof:
Given: flx) =] 0 EO0,, 0 |x|;8(X)=1]ElL, 0 Ofx,[+| O
Ay =span{g;} =span| El,x —> Dimension = 1
Eljzx,
DH = m_,uNS“%NA.X.vw _H\,A.XvwWNA.x\.vuw
where
El, 0 O[E0,, © 0 x EO,, 0O 0 TEL,, 0 0fx EO,, 0 0 By
— mm_?v _ m\?v _ _ _
[f(x),g:(x)] = A flx) P alx)=||El,, 0 0 0 EO,, 0 |[x, 0 EO, 0 [El, 0 0fx, 0 EO, 0 |0
N * El; 0 0] 0 0 EOy|x 0 0 EOy|Els; 0 0]x 0 0 EOu| 0
El,EO, O Ofx,||-||EOnEL, O Ofx,||-|| O =|(El,, EO,; — E0,, E1,5 )x,
E1,E0;, 0 Of x; E03;El; 0 0| xy 0, (E1,3E0,, — E03; El,3)x,
El, x, +Bl, —E0,, Bl,
A, = span El,x, || (El,EO0, —E0,El,)x, |- = Dimension = 2

Elj3x, AE; EO,; —EO33 E;F
It is not sufficient, thus

A,

D_ + qﬂkvu DHH + _H%N Cnv, DHH

span{g(x), [fix).g:(x)] , [f(x),[f(x).g:(0)]1], [g:(x),[f(x).g:(0)11}
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where

felyy fely fglsy | xy fgBl, - E0,,Bl, 0 0 0fx —-EO0,,Bl, 0 0 0 x /8B,
00,8101 = | felyy  fely  felsy | Xy |+| f2Bl, |= AESMO:lmﬁUBm:NF = Amrwmmv:lmswmrwv 0 Of x|+ 0 = fgli, 0 Ofx, +| O
felis felys  felss | x5 JgBl; Am_;mﬁv:lmfwmrwvﬁ AEGMO:lmfwm_av 0 0] x3 0 felis 0 0] x3 0
d|flx), g (x of (x
.. g o) = @0 ) T
ox ox
[0 0 0| EOy, 0 0 X EO0, 0 0 0 0 0f x EO, 0 0 JfgBl,
| feli; 0 0] O 0 EOQs; | x5 0 0 EOs; || felis 0 Of xs 0 0 EQ4; 0
0 0 0fx 0 0 0fx EO,, fgBl, EO,, feBl,
=||f8112E0y 0 0fxy | 1= | EOp fgl1; O Of x| = 0 =| | (fgl12 EOyy = EOy, fgly ),
| feli3E0; 0 0] x5 EO3; felis 0 0 x5 0 Q%ruMO:lmmv&gw:uvﬁ
El;, 0 0fx | [B],
d|flx) g (x dg, (x
(800,00 .gr00m = L8 ) 3 01e) 0 (] S 0= | E12 0 0] |+ 0
El;; 0 Of x| 0
[0 0 OJEL, 0 0fx 0 0 o]By, [El,, 0 O] 0 0 Ofx El,, 0 O] feB1,
| feliz 0 OfEl, 0 O] x5 fglis 0 Of O | 0 0 Of fgliz 0 Ofx; El, 0 O 0
0 0 0fx 0 0 0 Of x| El,, fgBl, | El,, fgBl,
=|| /8l Elyy O Ofxy | (+]| felnBLy [|=[{0 O Ofxy||—||EL,f8BL ||= A\%_:E:vf+\%_Ewr|55\wwr
-\%:um_: 0 0 x5 -\%rwwr 000 X3 | mrm\%wr- GwrumH:F+\%rumrlmrw\%wr
El,, x; +Bl, —-EO0,,B], EO,, fgBl, El,, fgBl,
A, =span{| El,x, |,|(El,,EO0,, —E0y El,)x, || (fgl,, EOy — EO,, f2l, )x, || (fgl,, ELy, )x, + fgl,, Bl, —El,, fgBl1, |¢ = Dimension = 3. Therefore the system is locally controllable

Elj3x, Cﬂ; EO,; —EO33 m_avﬁ Cw:w EO,; —EO33 \mrwvs erw m_:vﬁ + fgli3 Bl — Ely5 fgBl,
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If B matrix does not exist, A, yields to the following:

El) x 0 0 0
A, = span+| El;, x, |,| (El;, EOy = E0y, Ely x, |J| (fgly, EOyy = EOy, foly )x, || (/2112 E1yy vy | = Dimension = 3
Eljzx Am_a E0,; —EO3; E;F Q%:w E0;; —E03; fgly; Vf erw E:Vf

This is the proof that given n=3 and m=1, where its diagraph model is input connectable, that is represented by 3 edges that its final vertex is each of the system states this equivalent to the lie algebra rank
condition of the controllability distribution. It is shows that given n=3 and m=1, the number of column that resulted from the controllability distribution is 4. Therefore given the free parameter of the column,
there must be at least n column that is linearly independent which implies the rank of the controllability distribution.

El, 0 0fx] [B],
Now, what happened if the system is being disturbed by eliminating the path to state x;3, that is, g;(x)=|E1,, 0 0| x, |+| 0 |.Graphically this means there is only 2 paths.
0 0 Ofxs| | O

Will it still be controllable?

El,,x; + Bl,
A, =span{g;} =span| El,x, - Dimension = 1
0

ImAHwH.xUH +mHHI i |mO~Hw~— i
A, =span<| El,x, || (El,,EO0; —E0,, Ely, )x, || = Dimension = 2

L O 4 L O —

[Ely,x, +B1, | [ - EO0,, Bl, | EO,, fgBl, El,, fgB1,
A, = Span Elx; || (E1,EOy —EOy Ely )x || (fel), EOyy — EOy, flyy Jxy |1| (felio ELyy )x, + fely, Bl — Ely, feBl, | = Dimension =2

0 0 0 0

Thus the dimension will never increase.

Which implies, the system is not going to be fully controllable
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More examples:

EOQy, 0 0 X El;;, 0 Of x B1,
Given: flx) =|E0, EO,, O |x[;8()=| 0 0 Ofx,|+| O
EO,;, 0  EOy | x 0 0 0fx;| |0
El,,x; + B,
A, =span{g;} = span 0 - Dimension = 1
0
DH = mHum.SAWNA.Xvw _“\‘A.XvwWNA.HVH_w
El,;, 0 O EO 0 0 | x EO, 0 0 ||EL,; O Ofx EOQ, 0 0 | B
— mw_?v _ m\?v _ _ _
[f(x),8:(0)] = o f(x) o g x) = 0 0 OFEOQ, EOp 0 |x; EOQ), EOp O 0 0 0fx, EO;, EOy, 0 0
0 0 O|EO,; O EOs |x, EO;; 0 EOy| O 0 0ux EO;; 0  EOy| 0
0 0 Ofx,||-||E0LEL, O Ofx,]||- 0, =|-(E0, E1}) )x,
El,x, +Bl, ][ -E0, Bl
A, = span 0 .| -(E0,,E1,,)x, |} = Dimension = 2
0 |Cmo$m_:vx_

It is not sufficient, thus

Ay = A+, AT+ g1 (), A]
= span{g;(x), [f(x),g:(0)] , [f(2).[f(x).g:(0)1], [g1(0),[f(x),g:()]11}
where
felyy gl fglsy | xy JgBl, - EOy, B, 0 0 0fx - EO0,,Bl, 0 0 0 x fgB1,
[f0.8:1(0)] = | fely,  fely  felsy | Xy |+| f2Bl, |= |Amo:mr_v3 = |Am9mm_:v 0 Offx; |+ 0 = fgli, 0 Ofx, +| O
felis felys felss | %3 JgBl; LumE:vx_ |§o55:v 0 0f x5 0 Jeliz 0 0] x5 0

[ gl = PRl py T o

ox
0 0 0fE0, 0 0 Jx EO, 0 0T 0o 0 0fx E0, 0 0 TreBl
=||fel, 0 O|E0, E0,, 0 |[x||-||E0, EOy 0 | fel, 0 Ofx,||-||E0, E0,, 0 | 0
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0 0 0 x 0 0 Of x; EO,, fgB1, EO,, fgB1,
=||felnEO0y; O O xy [|—||EOxpnfgliy O Ofx,||—||EOy fgBl ||= CWHBMO:|mo$\%_5v3|mos\wwr
f8li3EO0;p 0 O] x3 EOs3;fglis 0 0 x3 EO,; fgBl, A\%_GMC:|moww\%_$v§|m9w\wwr
El,, 0 Ofx | [B
| flx), g (x dg, lx
(210000, r0oT] = ke g 9y ] > gi00={ 0 0 0% |+] 0
ox ox
0 0 0f x| 0
[0 0 OfEl, 0 Ofx 0 0 o]B, [El,, 0 0] 0 0 0Ofx El,, 0 Of feBI,
=(|fgl, 0 Of O O Ofxy||{+||feli, O Of O 0 0 Offgl, 0 Ofx, (|- 0O 00 0
| fel;z 0 0 0 0 Ofx; fglis 0 0| O | 0 0 O0ffgliz 0 Ofx; 0O 0 0 0
[0 0 0] x| 0 000 Ely, fgBl, ]| [-El,, feBl,
10 0 0] x;3 | fgl;; Bl 0 00 0 ] fgl;3 Bl
Ay = 0 | = (B0 Elyy )xy || (fg11, Oy — EOy, fglyp Jvy —EOy, f2B1, |, felp Bly | = Dimension =3
0 |Amo; El, v3 Cw_a EO0;; —EO3; fgli3 vu: - EO0; fgB1, Jgli3 Bl

Therefore the system is locally controllable

EO, O 0
What happened if the system is being disturbed by eliminating the path to state x;3, that is, fix) = |E0,, EO0,, 0
0 0 EO0

X
x, |, Graphically this means there is only 2 paths.

X3

Will it still be controllable;

Ay =span{g;} = span 0 - Dimension = 1
0

El,x,+Bl,][ -EO0,Bl,

A, = span 0 | —=(E0,,E1,,)x, |} = Dimension = 2
0 0
El,x,+B1, ][ —EO, B, EO,, f3Bl, —El,, fgBl,

A, = 0 | =(E0, 1y )xy || (fel)2 EOyy — EOy, fglyy Jx —EOy, feBl, || felj, Bl | > Dimension = 2

0 0 0 0

Thus the dimension will never increase.

Which implies, the system is not going to be fully controllable
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Proof Controllability Test using Determinant:

EO,, EO, 0 |x A A 0 0 0fx] [o H ~
1. Given: \Cmv = | EO;,, EO,, EO3 |x, EOQ; = —— ,EOQy =-———; %NCQH 0 El,, Ofx,|+|0 Elyp=-— ,Eljp=—;
Py Py v, v,
0 EO0y EOy | xs 0 0 0fx| |0
0
Ay =span{g;} = span| Ely, x,
0

A, =A) + H\.A.va DOH

= span{g;(x), [f(x),g:(x)]}

where
0 0 OJE0, EO0O, 0 [x EO,, EO,, 0 JO 0 0fx
Imw_?v m\?v —
CA&Y%NC&HI o \Axvl F %HQVI 0 Ely O|EO0;, EO, EOs |x;||—||EO;, EOy EO03, |0 Ely Ofx,
0 0 off O EO0y; EO35 || x5 0 EO,; EO4 (|0 0 0] x5
= || E1,EO;, El,EOQy, ElynEOs | x,||-||0 E0,El, O|x,||=||El,E0, 0 Ely EOs, || X, | |=| (Ely EO )x; +(Ely, EO4, )x;
felyy fely fglsy | xy -\ww: 0 Jely 0 X 0
(0,101 = | felyy  fely  fgls | x5 |+| f2Bl, | = | f2l, 0 Jglsy || x5 |+]0
felis  fglys  fglss || x5 | | fgBl; 0 J8ly 0 X3 0

and,

(g1 = W2l pg T o

o x
0 fgly; 0 EO,, EO, 0 X EO0,, EO0,, 0 0 fgly 0 x|
=l fglp 0 J8ly | EOyy EOy  EOs || xp | |—| | EO)p,  EOy  EO5 | f814, 0 Jglsy || X2
0 fely 0 0 EOy EOs | x5 0 EO0y EO0s 0 J8ly 0 Jxs
where
Rowl:

:\m_ﬁmozvl Eoﬁ\mrwvy + :\w_ﬁmowmvl Qwo:\%gvvxm + AQw_EmPNvl Eoﬁ\m_mwvy
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Row2:

:\m_zmo:vl Amowm \%H_NVF + :\wrwmoﬁ + \%Hmwmoﬁvl Amos 181y + EO5, \%_vaxm + :\%Hmwmo&vl Eomﬁwwm vvxm

Row3:

ACW_NW mosvl Amom \%_BVVB + AQ%_& mowwvl Amo& J8ly vvxw + AQ%HNW mowwvl Amom J8ls, vvxw

also,

(gl = DN ) 20 o

0 Jely

=1\ fglp

0 J8ly

Rowl:

(fgl, Ely )x,

Row?2:

ox

0 Jo o ofx

fely |0 Ely, Ofx, | |-

0 |0 o ofux

(= (Ey, f21;5)x + (= (ELy, f2135)xs

Row3:

ACW_B Ely, vam

Therefore, A, yields to the following:

0 o 0 fel,, 0 Tx

0 Ely O fgly 0 J8ls | X,

0 0] 0 felys O | x

Column 1 Column 2 Column 3 Column 4
81(x) [f(x),81(x)] (), [/(x),8:1(x0)]] [81(),[f(x),81(x)]]
0 (- B0y Ely, )x, ((fe151E01)~(EOy, figli)x + ((fe 151 EOp )= (EOy, fglyy)xs + (f 11 EO3,) = (EO, felsy))xs (fela1 Ely )x,
El,, x, (E1,, EO )x; +(Ely EOy )xy | ((f21,E0,,)—(EOy, fe1y0))x + ((f2ly, EOy, + f2l30 EOyy )~ (EO,, fely, + EOsy faly)x, +((fel30 EO53)— (EO,, folsy )y | (= (Ely fely)x + (= (El,, f2ls,)xs
0 (- B0y Ely, )x, ((fe153E0,5) = (E0y3 faln)lx + (2123 E02 ) = (EOs; falys )y + (fe1o3EOs, )= (EO,5 figlsy ))xs ((fe123 1y ),
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Simplify the A,, yields to:

Column 1 Column 2 Column 3 Column 4
g1(x) [f(%).g:(x)] [0, [f(x).g1(0)]] [g:(x),[f(%),g:(x)]]
(fg15, EOy,) - (EO,, f21,,)
0 (= E0y, Ely, )x, (fg1,1E0,, ) - (EOy, f2ly) (x; + x, + x;) (fgly Elyy )x,
(fg1y E05,)— (EO,, fgls,)
(fg1,, E0y,) - (E0,, fel,,) —(EL,, fe1.,)
Ely x, (Ely, B0y Jx; + (Ely, EO3 Jxy (feli2 B0y, + felyy EOy) = (EOy, folyy + EOs, felys) (x, +x, + x3) B Am_mw,\%nmv (% +x3)
(fg13,E033) - (EO,, fgl3,) 2ien
(fg1,3E0,,)— (E0; fel,,)
0 (- EOy Ely )x, (fg153E0,,)— (EOs; fglys) () + x, + x3) ((fg153 E1, ))x,
A\%meoumvl Amo&\wﬁwv

Taking Determinant of A, :

Det =

Elyx, X

Elyx, X

A\%_Nwmﬁvsvlﬂmﬁvmw\wrmv Qﬁﬁ@ozvlﬂmﬁg\w:mv
(= E05 Ely )x, | (f2153EOp )~ (EOs; fg153) (6, + x5 + x3) | = | (= EO53 Elyy )x, | (fg1y1 EOyy )= (EOy, fgly) (3 + 2, + x3)
Qﬁmwmfmvl@omw\wwwv Qﬁﬁ@o%*@oﬁ\w_wwv
A\%_Nwmﬁv_wvl @omw\wrmv Cw_w_mpwvl AmoE\%_:v
(fely1)xy -| (fe13E0 ) = (EOs; folyy) (o + x5 + x3) | = | (fglps )xs - | (f215,EOy ) = (EOy, f21yy) [(x; + x, + x3)
CWHB MOwNvl AMOB \wwwv Qﬁﬁ@owwvl @oﬁ\%_wmv

CWF_ J8lp3 EOyy V - CW_B EO0y; &%HSV CWF_ S8l EOyy V - Q%Fu MONZWHEV
X Qﬁﬁ\ﬁ&@oﬁvlQﬁﬁ@oww\%_mv Ax_ + X +xwv —| X Qﬁﬁ\ﬁﬁ@oﬁvlQﬁmwmo:\mgv 0: + X +xwv
CWHB S8l EO5 V - CWHB EO0y; \w&wv CWF_ S8l EO5 V - Q%Fu MOE&%KNV

CWHB\%HS MOET AMONHEB EO0y; \%HSV GWHNZWHB MOET AMOB El,, MOB\WHSV
Xy A\%_N_\%_BMOSV+ @oﬁﬁﬁ@o&\%ﬁ& Om +x + xwv —| X A\%_N_\%HBMOSV+ @o:@oﬁm_ﬁhﬁmv Om +X + xwv
Q%_B\%Fumﬁvwwf AMONHEB EO0y; \%Hmwv Q%HE\%_SMOMNT AMOB El,, MOB\%KNV

To obtain Det QP c # 0, the following Edges must exist: Am_s ,EOQ,,, mosv
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Appendix 4

Observability of Nonlinear System: A proof
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EO,, EO0, EO04 |x El,, Ely, El, x| [BL

Given: f(x) = |EO0, EO,, EO, | x,|;g/(x)=|El, El,, Els |x,|+|Bl,
EO,; EO, EO4 | x El,, Ely, Elg | x| | Bl
and y; = hj(x),j =1, ..., p. where p is the number of output, that is, “measurable state”

For n = 3, hj(x) ranges from:

X EY}, 0 0 | x
hi(x) = [Ev,; 0 0] x, | for one measurable state to h(x)=| 0 EY,, 0 | x,| for completely measurable state;
X3 0 0  EYsy | x;

The system is No Output Connectable System, that is, if the system with: h;j(x) =0

It is automatic that the system is not observable.

Proof:

span{dh;, dh;, dh;} =span{o 0 0l[o 0 0L[0 0 0]} = has dimension of 0

L
Il

1
Q  =Q+) L, Q
i=0

span{ dhy, dhs, dhs, diy L any %1y PO g %10 gy, SO gy 8100y

X X X )

=span{lo 0 0Lfo 0 oljo o oljo o ol[o o oo o olfo 0o olfo o olfo 0 o}f > has dimension of 0

Thus system is not locally observable.

Theory: If the system is not output connectable, the system will never be observable.
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Necessary Condition:
For a system to be locally observable the system must output connectable. This implies the existence the output function £;(x) function which builds the initial observable distribution Q,, .

Proof:

Xy

Supposed there is one state is measurable, that is, x;. = hj(x) = TE\: 0 0] x,

X3
E0,, E0, EOy |x El,, 0 0fx] [Bl
EO;; EO,  EOs35 | x5 0 0 0] x; 0
Q, =span{dh;} =spanf{i 0 0]} has dimension of 1

It is not sufficient, thus

1
Q  =Q+) L, Q
i=0

— span{ dh;, dh; mw wv . dh wwmé )

@ m.o: MON_ mog
dh; \w@v =[l 0 0]|E0,, EO0, EO; |=[EO0, EO, EOy]
X mo_w m.ONw mOww

) El,, 00
§~w|€ =t o o] 0 o o|l=[E,, 0o 0
N 0 00
Q, =span{l 0 0][E0,, EO0, EO;][El,, 0 O]} > has dimension of 2

It is not sufficient, thus

1
Q, =9 +) L, Q
i=0

span{ dh;, dh; of (x) _dh, dg, (%) . (dh, Jf (x) ) of (x) (dh, of (x) ) dg; (x) . (dh, dg, (x) ) of (x) (dh; dg, (x) ) dg, (x) |
ox ox ox ox ox ox ox ox ox ox
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where

) - U ) EO,; EO, EOj
(dh; " ) " = Tud: EOy, MOS_. EO,, EO, EO3 |= —AMO:Mo: +E0,, EOy, +MOSmomv Amo:moﬁ +E0, EO0y, +MOSmoBV Amo:moz +E0,, EO3, + EO5 EO5; :
EO;; EO,; EO3

El, 0 0
) )
(@ L) B (g0, g0, £0,1 0 0 0|=[(E0, 1) 0 o]
0 0 0

[E0,, EO, EO5
I—NH: O OH‘ m.o_w m.ONN m.oum H—Am._:m.o:v Am:_moﬁv Am._:m.ow_ﬁ
| EO;; EO,; EOs;

dg,(x) | dg,(x)
(dh, ox ) ox

N N [El,;, 0 0
(@ ) B = [, 0 ob 0 0 o|=[(En,E1,) 0 0
0 0 0

E 0 o_u—mo: EOQ,; MOM_:E: 0 o_q:@d:@d:+MOBmos+MOSm9wV @o:@oﬁ+MOBMOB+MOM_MOBV @o:Moz+MOBMO$+MOSmo$v_,—AMO:E:V 0 o_q
..[(E1; E0,y) (E1,,E0,) (E1,E04)L[(EL, ELy) 0 Off

Q, = span

E 0 o_u—mo: EOQ,; MOM_:E: 0 o_q:@d:@d:+MOBmos+MOSm9wV @o:@oﬁ+MOBMOB+MOM_MOBV @o:Moz+MOBMO$+MOSmo$v_,—AMO:E:V 0 o_q

= Span
P ..[(E1; E0,y) (E1,,E0,) (E1,E04)L[(EL, ELy) 0 Off

Q, > dimension of 3

Thus, the system is locally observable.

Necessary and sufficient is analytically satisfied.
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Sufficient:

Output connectable and at least there is n path to all state from the output state which implies that it is equivalent to n rank of observability distribution.

Proof:
1. Given:

X1
Supposed there is one state is measurable, that is, x;. 2 hj(x) = [EY;; 0 0] x,

A3
E0,, EO, EOs x El,, 0 0fx] [B1
fx)=| 0 EO, 0 |x|;8/(x) =] 0 0 Ofx,|[+| O
0 0 EOy|x 0 0 0fxs| |0
Q, =span{dh;} =spanf{li 0 0]} has dimension of 1
It is not sufficient, thus
1
Q  =Q,+).L, Q
i=0
0
= span{ dhy, dh; LX) | g, 281
ox ox
EO,, EO, EOj
0 0 EO0,
) El,, 0 0
%:w|€u__ 00 o o ol=[E, 0 0]
* 0 00
Q, =span{l 0 0][E0,, EO0, EO;][El,, 0 O]} > has dimension of 2

It is not sufficient, thus

1
Q, =9 +Mf. Q,
i=0

span{ dh;, dh; f (x) _dh, dg, (%) . (dh, f (x) ) 9 (x) (dh, f (x) ) dg; (x) . (dh, dg (x) ) If (x) (dh; dg, (x) ) dg, (x) |
ox ox ox ox ox ox ox ox ox ox
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where

w\.ﬁ v w\.ﬁ v mO: mON_ mOwH
A&\\: a v a = —mO: N.ONH mOuL. 0 WONN 0 H—Amc:mc:v AWO_HWON_+NON_WONNV Am.O:m.OuH.TmOw_m.Ouwﬁ

ox ox
0 0  EOgy
I () | 98, (x) B
X
(dhy mxx vw|x = [E0,, E0, E0y]| 0o o o|=[(E0, E1,) 0 0]
0 00

3¢, () ¥ EO,, EO, EO5

X

§~w|xv @w [E1,, 0 o] 0 E0, 0 |=[(E1,E0,) (El,E0,) (El,E0;)
0 0  EO0;

) ) El,, 0 0
(@ ) B = [, 0 ob 0 0 o|=[(En,E1,) 0 0
0 0 0

Q, = mwmsﬁ 0 o_,—mo: EOQ,, mowL,—E: 0 oZ@o:Mo:v (EO,| EOy +E0,, EO,, ) @o:ho&+mow_mowwv_,:mo:mr_v 0 o_,:m_:mo:v (E1,, EO,,) Am_:mﬁuw_v:@_:m_:v 0 of
Q, > dimension of 3

Thus, the system is locally observable.

Necessary and sufficient is analytically satisfied, since there are n= 3 path to all state from the output EY;;, EO,;, EO3y,

2. Given:

X1
Supposed there is one state is measurable, that is, x;. 2 hi(x) = [EY;; 0 0] x,

X3

EO, 0 EOy|x El,, 0 0fx] [B]
0  E0y EOs | xs 0 0 0fx| |0
Q, =span{dh;} =span{ll 0 0]} has dimension of 1

It is not sufficient, thus
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1
Q  =Q,+).L, Q
i=0

= span{ dhy, di L) any %10 y

S EO0, 0  EOs
dh; w@ = oo} o E0, 0 |=[E0, 0 E0y]
* 0 EO, EOs

S El, 0 0
%:w|€ =t o o 0o o o|l=[E, 0 0
* 0 0 0
Q, =span{l 0 o0}[E0,, 0 EO0,][El,, 0 O]} > has dimension of 2

It is not sufficient, thus

1
Q, =9 +) L, Q
i=0

— m@mﬂ\l &\\NT &\\E w\@& , &\\E w%;kv , A&\\: m\@& v w\@& , A&\\: m\@& v w%;kv , A&\\:Ev w\@& , A&\\:Evg w
ox ox ox ox ox ox ox ox ox ox

where

E0,, 0 EO
”—mo: 0 mOmL‘ 0 mOwN 0 H—Amo:mo:v AmOuHmONmV Amo:mﬁum_+m0u~m©muﬁ

ox ox
0 EO0, EOy;
f (x) | g, (x) Pl 90
X
(dh; mw v|www. = [0, 0 E0y]| o o o|=[E0,E1,) 0 0]
0 0 0

EO, 0 EQ5,
TE: 0 o_. 0 E0y, 0 H—AE:E:V 0 AE:EM_V_
0 EQ,; EO34

dg; (x) | of (x)
(dh, ox ) ox

) ) El,, 0 0
(@ ) B = [, 0 ob 0 0 o|=[(En,E1,) 0 0
0 0 0

Q, = mwmsm_ 0 o:mﬁv: EO,, mowL,Tﬂ: 0 oZ@o:Mo:v (E0;, E0,;) @o:@ow_+MOSMO$V_,—§0:E:V 0 o:Cﬂ:m_:v 0 AE:EW_VZAE:E:V 0 of
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Q, > dimension of 3

Thus, the system is locally observable.

Necessary and sufficient is analytically satisfied, since there is n=3 paths to all state from the output EY;;, EO,3, EO3,

3. Given:

X

Supposed there is one state is measurable, that is, x;. = hi(x) = [EY;; 0 0] x,

Eo, 0 0 x El,, El,, 0 Tx] [B1
0 0 EOy|x 0 0 0 x| o
Q, =span{dh;} =span{i 0 0]} has dimension of 1

It is not sufficient, thus

1
Q, +M$ Q,
i=0

Q

span{ dh;, dh; mm @ gp, 981

X ox

S EO, 0 0
dh; wwé = oo} o E0, 0 |=[E0, 0 0]
0 0 E0s

) El,, El,, 0
dn 28— o ol 0o o B, |=[E1, ElL, 0]

X3

ox
0 0 0
Q, =span{l 0 0][E0,, 0 O][E1,, El,, 0]} = has dimension of 2
It is not sufficient, thus
1
Q, =9 +)L, Q
i=0
— m@mﬂ\l &\\NT &\\E m\@& , &\\: w%;kv , A&\\E m\@& v w\@& ,A&\\: w\@& v m%@& , A&\\: m%_CQ v w\@& , A&\\: w%;kv v m%_CQ
) ) ) ox ox ox ox ox ox ox

X X X

170

}



where

e EO, 0 0
@ L ZLED — (g0, 0 o} 0 E0n 0 |=[(E0,E0,) 0 0
0 0 EOy
) 2. (3) El;, El,, 0 |
X
@ L ED ~ g0, 0 0 0 0 Ely|=[E0,E1,) (£0,E1,) 0]
0o 0 0
9g,(x) | I (x) By 0 0]
X
A&>~w+v mxx HTE: Ely; o_. 0  EO0yp 0 H—Am:_mo:v QEBMONNV &
0 0 EOy
Se.(8) < 3g.(8) El;, El,, 0 |
X X
A&\:w|wi|x HTE: El,, o_. 0 0 Ely H—Am:_m:_v Am_:mHBv AMHBNKNV_
o 0 0
b.w — m_,umh\; m&\:u m&\: m.\m.wcmv , m&\: w%;kv , Am&\: m\ﬁkv v w\,ﬁkv ,Am&\: w\,ﬁkv v m%ﬁkv , Am&\: w%;kv v w\,ﬁkv , Aﬁ&\: w%;kv v w%;kv w
X ox ox ox ox ox ox ox ox o0x

Q, > dimension of 3

Thus, the system is locally observable.

span{ll 0 o][E0,, 0 Ol[El,, El, o0}[(E0, E0,,) 0 Ol[(E0, E1,,) (EO, El,) OL[(El,E0,) (El, E0,) Ol[(El,El,) (EL,Ely,) (El,Ely,)]}

Necessary and sufficient is analytically satisfied.

n path to all state from the output EY;;, El»;, El 3,
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4. Given:

X1
Supposed there is one state is measurable, that is, x;. 2 hj(x) = [EY;; 0 0] x,

X3
E0,, EO, 0 |x El,, 0 0 Tx] [B1
0 0 EOy|x 0 0 0 |x5]]0
Q, =span{dh;} =span{i 0 0]} has dimension of 1

It is not sufficient, thus

1
Q  =Q,+). L, Q
i=0

= span{ dhy, diy L an, %510 y

X ox

5 EO;; EOy O
dh, w@ =t oo} o E0, 0 |=[E0, E0, o0
x 0 0  EOs

§~w|€ =t 0 0} 0 0 Ely,|=[E1, 0 0
N 0 0 0
Q, =span{l 0 0}[E0,, EO0, Ol[El,, 0 O]} > has dimension of 2

It is not sufficient, thus

1
Q +Y L, @
i=0

Q,

X X X X ox

9 d
span{ dh;, dh; m&w@& dh, w?v . (dh, &”é ) &mev (dh, &W@v ) 0g(x) (dh; g, (x) )

ox

w\@& A&\\E w%H (x)
ox )

X
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where

S S E0,, EO, 0
A&\\: .\.Akvv .\,A.xv = —mo: N.ONH OH 0 mOwN 0 H—Amo:mo:v ANOENONH.TN.ONHNOMNV OH

ox ox
0 0 EO0
f (x) | g, (x) Flu 0 0
X
(dh; mxx vw|x HTuJo: E0y, o_. 0 0 Ely H:@o:m_:v 0 AMON_EMN:
0 0 0

30 () &Av EO;, EO, 0

X

§:w|xv @w [El, 0 o] 0 E0, 0 |=[E1,E0,) (E1,,E0,) 0]
0 0  EOs

30 (x) - 9g.(x) El,, 0 O

X X

A&*:w|wi|x = TE: 0 o_‘ 0 0 Els, H—AE:E:V 0 o_
O 0 O

Q)

span{ dh;, dh; of (x) _dh, dg, (%) . (dh, of (x) ) f (x) (dh, of (x) ) dg(x) (dh, dg; (%) ) of (x) (dh; dg, (x) ) dg,(x) )
0. ox 0. ox ) ox ox ox X

X X X ox 0.

Hm@mcﬁ 0 o:hd: E0, 0:5: 0 o:Amo:mo:v @;o:@oﬁ+ﬁo5@oﬁv o_u:mﬁu:mrb 0 AMONHMJNV:AE:MPL AE:MON_V o_,:m_:ﬁ:v 0 ow
Q, > dimension of 3

Thus, the system is locally observable.
Necessary and sufficient is analytically satisfied.

n path to all state from the output EY;;, EO,;, El 3,
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What happened if the system is being disturbed by eliminating the path to state x;3, that is, g;(x) =

X1
Supposed there is one state is measurable, that is, x;. = hi(x) = [EY;; 0 0] x,

X3
EO0,;, EO0, 0 X El;;, 0 Of x Bl,

fx)=| 0 EO, 0 |x|;8/(x) =] 0 0 Ofx,|[+| O
0 0  EOs | xs 0 0 0fxs| | 0

Q, =span{dh;} =spanf{li 0 0]} has dimension of 1

It is not sufficient, thus

1
Q  =Q,+). L, Q
i=0

= span{ dhy, di L) any %10 y

X ox

w mo: MON_ o
dh, &w@& — T 0 OH‘ 0 EO,, 0 H—MO: EQ,, o_
x 0 0  EO3

El, 0

%:Eu__ 0 o]l o

0
o|=[E1,, 0 0]
ox
0 0

0
0
Q, =span{l 0 0}[E0,, EO0, Ol[El,, 0 O]} > has dimension of 2

It is not sufficient, thus

1
Q, =9 +)L, Q
i=0

Ely,

0
0

0 Of x;

Bl

0 Ofjxy,|+| O
0 Of x;

X X X X X

m@mﬂ\l &\\NT &\\E w\@& , &\\E w%;kv , A&\\: m\@& v w\@& ,A&\\E w\@& v m%@& , A&\\E m%_CQ v w\@& , A&\\: w%;kv
%) ) %) ox ) ox %) ox )

X
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where

S S E0,, EO, 0
A&\\: .\.Akvv .\,A.xv = —mo: N.ONH OH 0 mONN 0 H—Amo:mo:v ANOENONH.TWONHNONNV OH

ox ox
0 0 EO0
f (x) | g, (x) Flu 90
X
(dh; @w vw+ = [E0,, E0, ©0]| 0 0 o|=[(E0,E1,;) 0 0]
0 00

30 () &Av EO;, EO, 0

X

§~w|xv mw [El, 0 o] 0 E0, 0 |=[E1,E0,) (E1,,E0,) 0]
0 0  EOs

) ) El,, 0 0
(@ ) B~ [, 0 ob 0 0 o|=[(En,E1,) 0 0
0 0 0

) 0 ) 9 9 ) 0 9 0 0
@, = span{ dh, diy 22 iy S (i L) LD (g, L) D (g R T (g 1) 061

X X X ) 0.

Hm@mcﬁ 0 o:hd: E0, o:m_: 0 o:Amo:mo:v @;o:@oﬁ+ﬁo§@owwv o_u:mo:mrb 0 o:?u:mo:v AE:MOBV o_,:m_:m_:v 0 ow
Q, > dimension of 2
Since Q, = Q,, Thus Distribution derivation stops here

Thus, the system is locally unobservable.

This is due to the lack of path to state x3, where there is only n=2 path to two state from the output EY;; and E0,;
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Proof Observability Test using Determinant:

EO,, EO0, EOy |x El,, El, Ely[x] [B1
Given: f(x) = |EO0, EO, EOy |x,|;gi/(x)=|El, El,, Els, |x,|+|Bl,
EO,;; EOy EO4 || x5 El,; Ely,, Ely | x| | Bl

X

hi(x) = [EY,, 0 0]x,

Q,

X3

=span{dh;} = span{l 0 0]} has dimension of 1

It is not sufficient, thus

Q

dh;

of

1
=Q,+) L, Q
i=0

= span{ dhy, diy L an, %510 y

X ox

w@@ = T 0 o_. EO0;; EOy EO3; H—mo: E0y MOWL
N EO;; EOy EOy

0
&\:%H|C® = T 0 o_. Elj, Ely Ely H—m_: Ely ES_

Q

ox

Hm@ﬁb% 0 o_q—mo: EO0,, mo&:mr_ Ely, 5&:.

In order to have a full rank, thus:

Q

=q/[l 0 o] +q2[E0,, E0, EO0;]+gqslEl, El, El;]=0

Det(Q,) # 0>

Therefore (EO»;.El3; — EO03;.E15) # 0

Q)

1
=Q +Y L, Q
i=0

X X

X

m@mﬂ\l &\\NT &\\E w\@& , &\\E w%;kv , A&\\: m\@& v w\@& ,A&\\E w\@& v m%@& , A&\\E m%_CQ v w\@& , A&\\: w%;kv
ox ox %) ox ) ox %) ox )

X
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where

EO,, EO, EO;
TS: EOQ,, MOmL. EO0;, EO, EO03;

ox ox
EO;; EO0, EO5
= —AMO:mo: +E0,, EOy, + MOZMoSV Qo:ﬁos +E0, EOp, + MOSMOSV @;o:ﬁoz +E0, EQ3, + EO3; EO53 V_
of (x) | 9g; (%)
(dh; wk v% = Eo: EQ,, MOWL. Ely, El,, Elj

= —AMO:E: +E0, Ely, + MOSESV Eo:mHB +E0, El,, + MOSESV Eo:ﬁm_ + EQ,, Els, + EO5 Eljy; :

—m_: Ely, m_wL. EO0;, EO, EO3

dg, (x) | of (x)
(dh, ox ) ox

—QS:MO: +E1, EOy, + ESMO_L AE:MOB +E1, EOy + ESMOSV Qﬂ:@om_ + Ely EO3, + El3 EO3; :

—m_: Ely m_wL. El,, Ely Elgy

w%;kv w%HC&
(dh, ox ) ox

= —Am_:m_: +El, El), + Ezmrwv Am_:m_ﬁ +Ely Ely + m_wlﬂmwv Am_:m_w_ + El, El;, + El3, Els; v_

1
Q, =9 +)L, Q
i=0

span{ dh;, dh; of (x) _dh, dg, () . (dh, of (x) ) f (x) (dh, Jf (x) ) dg(x) (dh, dg; (x) ) of (x) (dh; dg, (x) ) dg, (x) )
%) ) o) ox ) ox o) ox ) by

X X X X X X 0.

gl 0 0] +q2[E0,, EO0, EO;]+q;sl[El,, El, El]+...

... q4 [(EO, EO,, + E0,, EO,, + EO3,E0,3) (EO, EO,, + EOy EOy + E03 EOy;) (EO,; EO3; + EOy, EO4, + EO4 EOy; )] + .

... g5 [(EO,, E1,, + EO, El,, + EO;, El;;) (EO, El, + EOy El,, + EO3 Ely;) (EO,, Els, + EO, Ely, + EOy Els )] + .

... gs |(E1,,EO,, + E1,,EO,, + E15,EO;3) (El,,E0,, + El,  EO,, + El3 EOy;) (El,EOs + Ely EOy, + El3 EOs3 )] + .

... g7 [(EN,,E1,, + E1,  El,, + E15,El,;) (El, El,, +El, El,, + El; El,;) (El, Ely, + Ely, Ely, + El3 Ely; )] + ...
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Obviously, there cannot exist more that n = 3 independent vectors g;.

Let us note ¢q;, g» and ¢; the vectors such that span (q;, g2,... q7) <(q1, G2, 3).

All the vectors gy, ... g7 are linear combination of g;, g2, g;3.

As you can see from the combination of the determinant that must be greater than 0, the combination of the two following parameter must exist:

m.QmT N,QwT NNNT and N,N&.

Now, Given: flx) =|E0, EO0, EOs, |x,|;g/(x)=|El, Ely Ely, |x,|+|Bl,|; hx)=[EY,, 0 0]x,
Determinant Test 1:
dh; = 1 o 0]
of (x
dn 2L~ [E0,, EO0, EO,]

ox

A&\\E w\@& v w\@& —

o o :mo:hd: +E0,,EOy, +MOM_mo;v Eo:@oﬁ +E0, EOy, +mow_MOBv Eo:moﬁ +E0, EO3, + EO5, EO33 V_

H—MON_AMO: EO3, + EOy EO5, + EO3, EO 53 V_l :mo:hds +E0, EQy, + EO3 EO 3 vmouL
H:ﬁoﬁ@o: EO3, + E0y EOy EO5, + EO, EO5, EO53 v_l :mo:hds EOQ3; + E0y EOy, EO5; + EO5; EO,3 EO5 V_
H:ﬁoﬁhoﬁ EOQ5, + E0,; EO5, EO 53 zl:ﬁoﬁhoww EOQ5; + EO3 EO 3 moﬁv_

To obtain Det QDLV # 0, the following Edges must exist: (EY,,,(E0,,, E0,,)U(EO0,,,EO0,,))
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Determinant Test 2:

dh;= 1o 0]

&S%n [El,, E1, El]
X

dg,(x) | dg,(x)
AQ@:H|x )——= —AE:E: +El,, El, +Ezm_;v AE:EN_ +El, El,, +Ew_m_$v AE:EW_ +El, Ely, + Ely Elgs v_

) ox

H—EN_AE:EW_ +El, Ely, + Ely Elgs v_ - :E:EN_ +El, Ely +Ely Ely vm_&_
H:EN_E:EW_ +El,, Ely El3, + El,, El5, El g3 v_ - —Am_:m_ﬁm_z +El,, Ely, Elsy + El3 Ely3 Ely v_
HE&BEBES +El,, El5, Eljy; V_l—ﬁm_ﬁ Ely, El3 + El5, El g m_ﬁv_

To obtain Det ([Q,]) # 0, the following Edges must exist: (EY,,,(El,,, El,,)U(El,,, EL,,))

Determinant Test 3:

dh; = 1 o 0]
of (x)
&5 WR = —mo: EOQ,, mow__
of (x) | 9g;(x)
(dh; y )—— = —AMO:E:+moN_EB+MOW_E$V @o:m_ﬁ+moN_m_NN+mow_m§wv Amo:mﬂw_+MOBEWN+mozmewv_

ox ox

H—moN_Amo: El3 +EQy Els, + EO3 Els; v_l —Amo: Ely +EQ,, Ely, + EO3, El 3 vmoz_
H—Amoﬁmo: El3 +EQ, EOy Els, + E0y EO3 Elss v_l —Amo: El, EO3 +EQy, El,, EQ3 + EO3; El,; mo&v_
H:ﬁoﬁ@o: El3 + E0, EOQy Els, + EO0y EO5 Elsy :l:@o:@ﬁ EOQ3; + EOy Ely, EO5y + EO5 Elys MOS:

To obtain Det ([Q,]) # 0, the following Edges must exist: (EY,,,(EO0,,, El,,)U(E0,,, El,, )U(EO0,,, E0,, )U(EL,,, E0, )U(EL,,, El,,))
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Determinant Test 4:

dh;= 1o 0]

&S%n [El,, E1, El]
X

dg, (x) | of (x)
A&:%v \M&ﬂ = —AE:MO: +El, EOy, +m_zmo$v Q&:Moﬁ +El,, E0,, +m_w_momv Cﬂ:@ow_ +El, EO3, + El5, EO3; v_

—m_ﬁﬁm_:mow_ +El, EO3, + El3, EO33 v_- —Cﬂ:moﬁ +El, EO,, + El3 EOy; VEW__

= —Am_ﬁm_:mo& +El,, El, EO3, + El, E15, EO 33 v_- —AE:MOEEW_ +El, EO,, El3; + El3 EO 3 m_zv_

=0
E0,, E0, 0 Tx o 0 oTx]ToO
Now, given: flx) =|EO0, EO, EO; |x,|;81(X)=|El,, Ely, Elsy |x,|+|Bl,
0  EO0y EOsy |x 0 0 0 |x|]o
X1
A3
Q, =span{dh;} =spanfl0 1 0]} has dimension of 1

It is not sufficient, thus

1
Q, =Q, +Mf. Q,
i=0

— span{ dh;, dh; mw ) g, 98109

X ox

d
dh; \wwv = —o 1 o_. EO0;, EOy  EO3 HTwo: E0,, mowL
32,00 0 0 0
%:% =[0 1 0}|El, El, El,|=[El,, El, El,]
0 0 0
Q =spanfo 1 ol[E0,, E0, EO0yl[El, El, El,lt
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In order to have a full rank, thus:
Q =qi0 1 0] +qg2[E0,, E0, EO03,]+gqs[El, El, El;]=0
Det(Q,) # 0>

Therefore ANQNN.NN.WN — NNNN.NQ.WNV #0

1
Q, =9+ L, Q
i=0
x ox ox ox ox ox ox ox ox ox
where
[E0,, EO,, 0
(dhy L) T = [E0,, EO0, EO0y,]|E0, E0, EOs |= [(E0,EO0 +E0y,E0,) (E0,E0, +E0y,E0y,) (EO0, EOy, +E05, E0y )]
1 m.x w.x - 12 22 32 12 22 32 | — 12 11 22 12 12 21 22 22 22 32 32 33
| 0 EOy EO0y
3 (x) | g, (x) o0 0]
X
A&\\: m.x.x v %M.x = —WO_N mONN mOuNH‘ mrw mHNN N.Hmw = —AWONNW:NV ANONNWHNNV ANONNWJNVH
0 0 0

dg, (x) | of (%)
A&:%v . = [El, Ely, Ely,]|E0, E0, EOs, | = [(El,E0, +El,EO0,) (El,E0, +ElyE0y) (ElyEO0y, +Ely EOy )]

0 0 0
dg;(x) , dg(x)
A&\:wM|XVmM|x =[El,, Ely, Elyu||El, Ely Ely|=|[ElyEl,) (ElyEly) (ElyEl,)
0 0 0

Taking several determinant combinations, the following equations are obtained:

9 9 9
Detl = dhi. dh, \w@@ > (dhy \wCov \wwv =[0 1 o],[E0,, EO0, E0s], [(E0,,E0,, +E0, E0,,) (EO,EO, +E0, E0,,) (E0, EOy, +E05, E055)]

X X
= E012(E02EO03+ E03:E033) - (E012E0;1+E02,E0;2) EO3;

= (E0;2E03,E033) - (E0;2E0;1E032)

0 J )
Det2 = dhy, dhy L2 (@ L) B~ o 1 o), [m0,, E0n B0, (802 E1,) (B0 En) (B0 Ey)| = EO12(EO2E ) - (EOEI 1) EOs

X X )
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Uo&”&\\:v&\: &WMMQ va\: mmw_mxv vmwwv H—o_o_,—mosMONNMOS_v—Am_smo:+m_wwm9wvAm_BMOB+m_NMmo$VAm_BMOwN+m_wNMOSV_

= EO012(E1E03; + El3E033) - (E112E0; 1+ E12,E0;2) EO3;

= (E012E13E033) - (E112E0;1E037)

) ) )
Detd = dhy, dhy L2 (@, B0 1D o 1 o], [0, F0n O], (B E1) (BlnEl) (Bl = EO(EL2EL) - (EInEl ) EOs2 =0

X X

Simplify:

m m m
UOSH&\\F&\: mw_mxv va\: WMMQV WMM& H—o_o_,—m_sENNm_uLv—AMOEmo:+mo~NmoSvEosmoﬁ+mo“wmoﬁvEoﬁ@oww+mo$mouwv_

= E112(EO»EO03+ E03E033) - (E012E0;; + EO»E0;2) El 3

= (E112E0E03+ E11,E03E033) - (E012E0;1E1 3+ E02:E0,:E1 35)

Det2 = dh;, dh; 28 (an, L©
ox X

0
3 V%H|x€ = —o 1 o_,—m_s Ely, m_uLv —AMOSEBV AmoBmHNL Amowwm_uwv_ = El2(E0»2E132) - (EOx2El ) El3; =0

o

m m m
Uo&”&\\:v&\: ww_hxv;&\: ww_quvv WMM& H—o_o_,—m_sENNm_uLv—Am_smo:+m_wwm9wvAm_SMOB+m_NwmoSVAm_BMOwN+m_wNMO$V_

= El12(E1»E03;+ El32E033) - (E112EO0;;+ E1E0:2) El3;
=(E112E1E03; + E115E13,E033) - (E112E0;; El13+ E12E0;2 El 37)

=(E112E1E03; - E1:E0;; El3) + (El12E13:E033- E11:E13E0 )

0 0 0
Det4 = dh,, &Fw|x€ , A&F% vw|x€ =[0 1 ol,[El, El, Ely], [(E1,E1,) (ElyEly,) (El,Ely,)| = Elp(El»Els) - (E13El;) El;; =0

To obtain Det A—DLV # 0, the following Edges must exist: Am%s ,EOQ,, mowmv
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E0,, EO, 0 [x 0 0 ofx] o
0  EOy EOy |xs 0 0 0fxs| |0

X
hi(x) = [0 Evy, 0]x,
X3

Q, =span{dh;} =spanfl0 1 0]} has dimension of 1

It is not sufficient, thus

1
Q  =Q,+).L, Q
i=0

= span{ dhy, di L) any %10 y

X ox

E0,, EO0, 0

dh; &Wé = —o 1 o_‘ EO0), EOyp EOy H—MO_N E0y MOS_
" 0 EO0, EOs
3 0o 0 O
%:w|€ =0 1 o}lo El,, o|=[0 El, 0
’ 0 0 0
Q =spanfo 1 o}[E0,, E0, E0y,][El, El, El,]

In order to have a full rank, thus:

Q, =q0 1 0] +¢2[E0,, E0, E0,]+gsl0 E1, 0]=0
Det(Q,)=0
1
Q, =0 +M§ Q,
i=0
— w@mﬁ\; &\\:v &\\E m\w@& , &\\: w%;kv , A&\\E w\@& v w\@& ,A&\\E w\@& v m%@& , A&\\: m%_CQ v w\@& , A&\\E w%;kv v m%_CQ w
X ox ox ox ox ox ox ox ox ox
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where

[E0,, EO,, 0

) )
(dh,; %Ccv ) [E0,, EOy, EOs,]|EO0, EOy, EOs, |= [(E0y, E0,) (E0y,E0y) (E0y, EO5,)]

ox ox
| 0 EO0y EO0s
df (x) | dg;(x) o 0 o
X
(dh; @w vw+ = [E0,, EO0, EO0,]|0 El,, 0|=[0 (E0,El,) 0]
0 0 0

EO,, EO, 0
—O N.HNN OH N.O_w N.ONM N.Ouw = —ANHNNN.O_MV AN.HNNWOMNV Amwwmeuwﬁ
0 EO0y EOs |

dg,(x) | If (x)
(dh, ox ) ox

0 0 0
g, (x) . dg,(x)
A&\\:w|wi|x H—mrw Ely meL. Ely, Ely Ely H—AMHBMHSV (E1y, Ely,) Amﬂwwmﬁmwﬁ
0 0 0

Taking several determinant combinations, the following equations are obtained:

J J J
Detl = dh;, dh; m@v , (dh; m@v ) WWV =[0 1 o],[E0,, E0, EO4], [(E0,E0,) (E0,E0,) (EO0, EOs, )] = EO2(E02EO03,) - (E022E0;2) EO3; =0

X X

) J 0
Det2 = dh;, dh; m@v , (dh; w@vv 109 [0 1 0],[E0,, E0, EOy], [(E0,EL,) (E0y,Ely,) (E0, Ely,)] = E02(E02E]s,) - (EO2EI 12) EOs;

X X ox

0 0 0
Det3 = dhy, dhy L2, (@ B LD~ fo 1 0], [20,, B0n B0, [(E1E0,) (B E0n) (Bl E0)] = EO12(E1:2E0) - (E1E0;2) EOs2 = 0

X

) ) )
Det4 = dh;, dh, \WCQ , (dh; 8, (x) ) 8, (x) = —O 1 OH,—NOB EQ,, MOwLu —Am_mw NH_NV AMHNN m_mwv Am_mw Els, VH = FEO0;2(El1»E13) - (E13EL) EO3; =0

X ox ox

Simplify:

0 J )
Detl = dh;, &Fw|x€ , (dh; y ) ) RWV =0 1 ol,[El, El,, Ely], [(E0,E0,) (E0y,E0,) (E0,EO0s,)] = El(E02EO03) - (E022E02) El3;=0

ox )

o 9 9

ox ox ox
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) 0 )
Det3 = dhy, &Fw|x€ ’ A%:w|x€v MWV =0 1 ol,[E1, El, Ely], [(E1,E0,) (El,E0,) (ElyE0s, )| =El(El»E0s) - (E12E0;) Els;

w w w
U@R.H&}T &}.N%mw|x€ , AQ\:%@H|X€ v%mw|x€ H —O _ 2, —m:m MHNN m_wLu —Am_mw NH_NV AMHNN m_mwv Am_mw m_wm VH HNNNNAmNmNmewvuANNNNNNBVNNN.WNHO

To obtain Det QDLV # 0, the following Edges must exist: (EY,,, E0,,,E0.,)
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