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ABSTRACT 

 We surveyed four plant communities along an elevational gradient in the Front 

Range of the Colorado Rocky Mountains for long-term overstory and understory 

changes.  Our results were compared to those found in 1981 and 1996.  We evaluated 

changes in succession, elevational species migration and range expansion, community 

diversity, and composition.  We related temporal floristic shifts to prior literature on 

disturbance history at each site.  Over time, all communities changed significantly, 

though in different manners.  This analysis shows that plant communities are changing in 

dynamic and idiosyncratic ways that correspond to individualistic distribution shifts.  

Moreover, we exhibit the necessity of comprehensively investigating long-term 

community change using multiple approaches, incorporating plant guild relationships, 

and concentrating efforts to further understand the interplay between climate effects and 

disturbance.  
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CHAPTER ONE: LITERATURE REVIEW 

Introduction 

 Plant communities can be transient systems that may change with elevational 

gradients.  Community composition is dictated by a complex suite of biotic and abiotic 

interactions and the stochastic events that act upon them (Botkin 1980).  Ecological 

research has elucidated many of the underlying mechanisms driving these relationships 

but predictive power has been only loosely applicable to specific communities (McCook 

1994, Van Bogaert et al. 2011).  It is imperative that our understanding of floristic 

dynamics continues to progress because ecosystem services, the benefits provided by the 

ecosystem that enable humanity to thrive and persist, are directly affected by the 

function, structure, and diversity of these interactions and the communities that they 

comprise (Díaz et al. 2006). 

 Not only are plant communities remarkably interconnected, but many of them are 

differentially sensitive to abiotic and biotic change (Körner 2003, Lesica and McCune 

2004).  Small compositional changes can have extensive effects on community function 

(Parmesan 2003).  Reductions in species richness and functional groups can affect 

ecological processes such as primary production, nutrient cycling, and decomposition, 

and can alter community organization and ecosystem function (Díaz et al. 2006, 

Cardinale et al. 2012).  Species range expansions or contractions can disrupt niche 
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stability and can change the natural trajectory of post-disturbance processes and 

successional pathways (le Roux and McGeoch 2008, Kullman 2010).                      

 In the last four decades, increased anthropogenic stressors have altered plant 

community composition and diversity across the world (Butchart et al. 2010).  During 

this time, global biodiversity has been reduced with little evidence of slowing, while 

pressures on biodiversity, such as non-native organismal invasion, atmospheric nitrogen 

deposition, and resource exploitation by humans have increased (Butchart et al. 2010). 

These pressures, in concert with increased climatic warming and disturbance regime 

changes, have had synergistic effects (Folke et al. 2004) that are thought to be responsible 

for a multitude of landscape mosaic and species interaction changes (Vitousek et al. 

1997, Hooper et al. 2005).  In fact, a meta-study by Root et al. (2003) found an increase 

in geographic range for 80% of the species surveyed over a span of 30 years. 

 Tracking these changes in community composition is optimized by integrating 

accurate spatio-temporal modeling with long-term floristic survey data analysis (Ferrier 

and Guisan 2006).  The need for long-term data is especially important in high-elevation 

systems, unique with plant species that are highly sensitive to weather and perturbation 

(Körner 1999).  Though long-term studies have elucidated plant community shifts in 

recent years (Ebersole 2002, Klanderud and Birks 2003, Smith and Smith 2005, le Roux 

and McGeoch 2008, Coop et al. 2010, Johnson et al. 2011), most experiments occur over 

shorter timespans that offer only snapshots of community change (Connell and Slatyer 

1977, Drake 1991).  Lengthier studies can limit confounding environmental factors 

(Whipple and Dix 1979, MacMahon 1980, Klanderud and Birks 2003) and can more 
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comprehensively evaluate community organization (Drake 1991) and temporal stability 

(Hooper et al. 2005). 

 Secondary successional patterns and processes, in particular, are best 

demonstrated and interpreted via long-term resurveys on historical plots.  The secondary 

successional pathway or temporal pattern of change in a disturbed community (Pickett et 

al. 1987) can be traced through fluxes in biomass, productivity, and composition (O’Neill 

and Riechle 1980).  Each pathway consists of a continuum of indeterminate states 

(Gleason 1926, Tansley 1935) that reflect the stability and composition of the system 

relative to its previous forms (Holling 1973, O’Neill and Reichle 1980).  Long-term data 

can provide more accurate accounts of these stressors responses.   Studies of dynamics 

in secondary succession forests (Billings 1969, Whipple and Dix 1979, Peet 1981, 

Veblen 1986, Whitmore 1989, Hadley 1994, Smith and Smith 2005, Johnson et al. 2011, 

Worrall et al. 2013) can be especially useful for forest management, conservation 

assessment, and theoretical modeling.  They provide site-specific floristic data, 

evaluating community resilience and response to disturbance regimes shifts and 

anthropogenic pressures, such as human resource exploitation, pollution, and land-use 

change that ultimately affect ecosystem services, including plant biomass production, soil 

formation, water quality regulation, pollination and seed dispersal of highly-valued 

plants, community resistance to invasive species, and climate and disease regulation 

(Folke et al. 2004, Díaz et al. 2006). 

 Geographic range expansion along elevational gradients is another measure of 

community change that can be elucidated through long-term floristic analysis.  
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Geographic ranges for arctic plants have contracted (Lesica and McCune 2004), while 

lowland and mid-elevation plants have expanded upward in elevation and have shown 

phenological shifts precipitated by global climate change (Parmesan and Yohe 2003).  

Models suggest that alpine tree-lines will likely move to higher elevations (Chauchard et 

al. 2010), decoupling certain species from their known communities (Iverson and Prasad 

1998).  Though the specific environmental drivers facilitating geographic expansion have 

often been generalized (Stephenson 1990, Stephenson 1998, Woodward and Beerling 

2013), it is clear that climatic/weather and edaphic changes affect floristic distribution 

(Dolezal and Srutek 2002, Root et al. 2003, Parmesan and Yohe 2003, Lesica and 

McCune 2004).   

 Long-term assessments of elevational range shifts in floristics are important 

because they can describe changes in community resilience and biodiversity (Klanderud 

and Birks 2003) that may have far-reaching effects on community function, productivity, 

and ecosystem services (Folke et al. 2004).  Rates and ranges of elevational migration 

differ from species to species and from guild to guild (Huntley 1996, le Roux and 

McGeoch 2008) due to disparities in response to abiotic factors such as solar radiation, 

soil moisture and structure, and ambient air temperature, and biotic factors such as 

competition, predation, and symbiosis (Gleason 1926, Tansley 1935, MacMahon 1980, 

Huntley 1996, Dolezal and Srutek 2002, le Roux and McGeoch 2008).  Therefore, a 

firmer understanding of geographic range shifts may assist ecologists and 

conservationists in determining which species and community configurations are most 

likely to impact ecosystem processes and function (Root et al. 2003).     



5 

 

Succession 

Historical Perspective 

 First conceived in 1825 (Dureau de la Malle) and formally demonstrated in 1899 

(Cowles), ecological succession is broadly characterized as the continual sequence of 

compositional changes in plant communities (Tansley 1935) that occur over a wide range 

of spatial and temporal scales (MacMahon 1980, McCook 1994).  It is a process 

measured through time (Davis 1899).  Nearly all communities are considered to be in 

secondary successional phases, having been altered previously by some form of 

disturbance.   

 Early ecologists, including Cowles (1899) and Clements (1916, 1928, 1936), 

viewed succession patterns as deterministic and directional, climaxing in single stable, or 

unchanging, climate-driven community states.  This idea, coined as the ‘Monoclimax 

Theory,’ relates to the community as a whole, ostensibly proving plant communities to be 

autonomous ‘superorganisms’ that behave as units unto themselves (Clements 1928).  

Though these seminal concepts would come under heavy assault (Gleason 1926, 

Whittaker 1953), they provided an empirical framework for successional theory. 

 Gleason’s individualistic concept of succession (1926) and Tansley’s ecosystem 

equilibrium concepts (1935) viewed plant association as a continuum of plastic species 

interactions largely governed by stochastic environmental events.  Their studies provided 

ample evidence for the existence of multiple secondary successional “climax” states 

alternative to those relating to climate/weather, such as edaphic, physiographic, and biotic 

climaxes—an idea commonly known as the ‘Polyclimax Theory.’  Theories on secondary 
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successional pattern and community association evolved in myriad trajectories in the 

decades that followed.  Watt (1947) provided a context for community pattern as a 

measurable unit in a space-time mosaic of species and proposed the concept of cyclical 

succession that refuted the notion of stable state climax communities.  Egler (1954) 

attributed “vegetation development,” a term he preferred over succession (McCook 

1994), to floristic growth rate differences.    

 Theories relating to monoclimax and polyclimax communities came under 

scrutiny as being too subjective and abstract in Whittaker’s ‘Pattern Climax Hypothesis’ 

(1953).  Whittaker argued that plant communities have no inherent fixed endpoint or 

overarching rules.  This concept was further expanded by Horn (1974), who focused on 

diversity in secondary succession and the limitless potential of climax patterns, and by 

Lewontin’s ‘Alternative Stable State Hypothesis’ (1969), which questioned previous 

ideas of stability and equilibrium, and described community composition states as 

derivatives of ecosystem change.  Sutherland’s (1974) work on multiple stable points in 

the context of historical events aligned with Lewontin’s (1969) ideas on analyzing 

community succession from a historical perspective, and provided a theoretical basis for 

modeling autogenic secondary successional pathways (Connell and Slatyer 1977, Picket 

1987), alternative stable states (May 1977, Law and Morton 1993), and life history traits 

of species as predictors of successional pattern (Grime 1977, Chapin et al. 1994). 

 Plant community resilience, or the degree to which plant systems can withstand 

short-term environmental perturbations without having long-term changes in process or 

structure, was first demonstrated in the context of ecological succession by Holling 
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(1973).  Holling expanded on this concept in his ‘Ball-in-cup’ model of resistance, which 

now serves as a heuristic explanation of community thresholds and state shifts (Holling et 

al. 1995). 

 In more recent times, secondary successional research has focused on disturbance 

hypotheses (Roxburgh et al. 2004, Fox 2013) and regime shifts in the context of 

biodiversity, resilience, and hysteresis, the condition of physical property lags in response 

to perturbation (Scheffer et al. 2001, Scheffer and Carpenter 2003, Beisner et al. 2003, 

Folke et al. 2004, Schmitz 2004).  These factors are thought to have synergistic effects on 

ecosystem function (Folke et al. 2004).  Gradual environmental changes may abruptly 

shift communities to alternative stable states (Schmitz 2004, Folke et al. 2004), causing 

large ecological and economic losses (Scheffer et al. 2001).  Much of the terminology 

surrounding these ideas has been scrutinized (McCook 1994, Grimm and Wissel 1997, 

Beisner et al. 2003) in hopes of clarifying ambiguities and controversies that persist.   

 Ecological theory can be further convoluted by differing perspectives– an issue 

intrinsically difficult to assess (Beisner et al. 2003).  Most successional theory can be 

separated into two paradigms: the ecosystem perspective and the community perspective.  

The ecosystem perspective is a school of thought, focused on the effects of environmental 

change on community states, that views ecological resilience as dynamic (Scheffer et al. 

2001).  The community perspective is concerned with community configurations and 

interactions, regarding the environment as somewhat fixed and ecological resilience as 

static (Drake 1991, Law and Morton 1993).  Though both perspectives are widely valued, 

a comprehensive synthesis of approaches will be required to advance our understanding 
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of the complex continuum of plant community state shifts, patterns, and drivers amidst 

continued anthropogenic disturbance (Beisner et al. 2003).   

High-altitude Temperate Forest as a Model System 

 Though the first physiological characterization of alpine systems was not 

published until 1968 (Billings and Mooney), alpine experimentation can be traced back to 

Kerner’s reciprocal transplant work in the Tyrol (1869), and perhaps even farther back to 

work performed in the Alps by Naegli in the mid-19
th

 century (Körner 1999).  Since then, 

alpine research has been largely focused on temperate zone forest interactions, thought to 

be governed by a combination of adaptive traits and climatic limitations (Körner 1999).  

The unique compression of life zones in mountain forest communities (Körner 1999), 

categorized by elevation (Ramaley 1907), are useful models for describing the interplay 

between environmental gradients and plant community dynamics (Whittaker 1953). 

 In North America, John Marr’s secondary succession research in the Central 

Rocky Mountains of Colorado (1961) paved the way for field studies associating floristic 

dynamics with climatic variables.  His work included detailed descriptions of elevational 

ecosystem types and floristic indicators of terrestrial ecological units (Marr 1961).  

Whittaker (1967) and Peet (1981) advanced the study of forest succession gradient 

analysis by classifying vegetation types as distinct entities within an environment, 

defined by elevation and exposure.  Peet’s research on post-disturbance floristic patterns 

(1981) remains a cornerstone of alpine secondary succession pattern theory.   

 Other contributions to temperate forest secondary succession research in North 

America include Daly and Shankman’s tree-line work (Daly and Shankman 1985) that 
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showed exposure to wind to be a big determinant of local ranges of plants.  This was 

supplemented by Whipple and Dix’s study using age structures of populations to 

delineate successional phases (1979), Veblen’s subalpine age and size structure work 

(1986), Hadley’s post-disturbance successional research demonstrating the importance of 

aspect, elevation, and topography in determining landscape mosaics (1994), and 

Whitmore’s canopy studies that differentiated pioneer from climax species (1989). 

 In the Rocky Mountains in particular, large-scale periodic disturbance has always 

been an important driver of community health and maintenance (Billings 1969).  

However, over the past century anthropogenic fires, logging, and mining have altered 

disturbance regimes and have influenced successional pathways in most forest 

communities in this region (Peet 1981).  Such changes are known to have profound 

effects on ecologic processes such as nutrient cycling, evapotranspiration, ecologic 

resistance, resilience, and primary and secondary productivity (Díaz et al. 2006).  Fire 

regime shifts (Billings 1969, Hadley 1994, Veblen et al. 2000, Coop et al. 2010, Keith et 

al. 2010, Williams and Baker 2012,), logging (Marr 1961, Peet 1981), insect infestation 

(Merrill and Hawksworth 1987, Hadley 1994, Robertson et al. 2009), herbivory (Sherrod 

and Seastedt 2001, Worrall et al. 2013), human recreation (Willard et al. 2007), 

anthropogenic nitrogen deposition (Bowman et al. 2006), nonnative invasions (Byrne et 

al. 2010), and increased atmospheric warming (Villalba et al. 1994, McGuire et al. 2012) 

have influenced secondary successional trajectories in these forests (Körner 1999).   

 Though some anthropogenic stressors, such as climate warming, nitrogen 

deposition, herbivory, and recreation may expedite secondary successional rates by 
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increasing resource availability and nutrient cycling (Körner 1999, Klanderud and Birks 

2003), alterations to any disturbance regime can ultimately decrease community 

resilience. This may cause irreversible alternative states, or dynamic regime shifts 

(Scheffer et al. 2001, Folke et al. 2004, Schmitz 2004).   

 Research conducted in high-elevation temperate forests is especially relevant to 

understanding general successional patterns and processes.  Long-term studies on post-

disturbance recovery, a process known in high-elevation systems to progress at slower 

rates (Ives 1941, Körner 1999, Ebersole 2002) and show less distinguished secondary 

successional states (MacMahon 1980), provide land managers and conservationists with 

valuable resilience and diversity data that may rely on the transformation of undesirable 

community states into more amenable configurations (Folke et al. 2004).  Furthermore, 

these studies can be analyzed in combination with floristic models as a means of 

assessing predictive accuracy (Ferrier and Guisan 2006) and ecologic theory, such as 

alternative stable states (Scheffer and Carpenter 2003).  Lastly, since high-altitude 

communities are especially sensitive to environmental change, such as increased 

warming or decreased precipitation (Lesica and Steele 1996), changes in the composition, 

diversity, and function of these systems can serve as proxies for anthropogenic 

disturbance effects that should be more apparent at high elevations (Price and Waser 

2000). 

Geographic Range Expansion 

Mechanisms of Control and Evidence of Elevational Shifts 
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 Most plant species are distributed along environmental gradients.  Their ranges 

are bounded by relative environmental tolerance (Gleason 1926) and biotic interactions 

(Dobzhansky 1950, MacArthur 1972, Dolezal and Srutek 2002, le Roux et al. 2012).  

Biogeographic research investigates the spatio-temporal processes that determine the 

shape, size, and boundary of these distributions (Brown et al. 1996).  Species are 

generally most fit in the centers of their geographic range, and become increasingly 

stressed as they reach their outer boundaries (Angert and Schemske 2005).  However, as 

species respond to environmental changes, invasions into new communities can cause 

wholesale shifts in community assemblage (le Roux and McGeoch 2008).     

 Though most historical studies have focused on associating elevational range 

boundaries with environmental factors, it was Dobzhansky (1950) and MacArthur (1972) 

who first differentiated the effects of abiotic and biotic factors in relation to elevational 

range limitations (Brown et al. 1996).  They posited that biotic factors tend to limit 

distribution in lower elevations whereas abiotic factors are more likely to limit 

distribution in higher elevations.  It has also been shown that higher elevation species 

generally have broader elevational ranges than lower elevation species (Brown et al. 

1996).  In the case of higher-elevation systems, abiotic limitations can include climatic 

factors of temperature and precipitation, as well as physiographic factors such as 

topography, edaphic agents, evapotranspiration, freezing and melting regimes, and 

erosion (Nichols 1923).  If abiotic restrictions are prolonged, susceptibility to invasion 

from lower-elevation communities can ensue, increasing stress on species native to those 

ranges (Körner 1999).  Migration in response to abiotic change has clear-cut winners and 
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losers in the community context, with species richness increasing at higher elevations 

(Grabherr 1994, Klanderud and Birks 2003) at the expense of alpine plants (Lesica and 

McCune 2004, Pauli et al. 2007, Kullman 2010). 

 The specific abiotic predictor variables of range expansion are still contested.  

Traditional climatic controls are often loosely correlated to floristic distribution 

(Stephenson 1990).  In North America for instance, the best indicator of geographic range 

capacity is water balance, or the interaction between energy and water in plants 

(Stephenson 1990).  Though some ecologists have shown correlations between 

elevational range expansion and abiotic parameters, such as wind exposure (Daly and 

Shankman 1985), temperature, nitrogen deposition (Johnson et al. 2011), snow duration, 

soil, and humidity (Dolezal and Srutek 2002), others have expressed concern in 

attributing species distributions to common meteorological variables, such as temperature 

(Stephenson 1998, Körner 1999, Woodward and Beerling 2013). 

 Regardless of the specific mechanisms driving elevational range distributions, 

empirical evidence points to upward elevational expansion in plant communities (Iverson 

and Prasad 1998, Parmesan and Yohe 2003, Root et al. 2003, Klanderud and Birks 2003, 

Pauli et al. 2007, le Roux and McGeoch 2008, Chauchard et al. 2010, Kullman 2010).  

Tree-lines (Iverson and Prasad 1998, Van Bogaert et al. 2011) and lower-elevation 

species (Root et al. 2003, Klanderud and Birks 2003, Pauli et al. 2007, Kullman 2010) 

have shown upward advancements, while most cold-adapted species have declined in 

abundance (Lesica and McCune 2004, Pauli et al. 2007).  This trend is further illustrated 

by Parmesan and Yohe’s global meta-analysis of 1,700 species, showing an average 
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upward range shift of 6.1 km per decade in conjunction with a 2.3 day advancement of 

spring phenology.  The underlying causes of this shift are attributed to anthropogenic 

stressors, such as global warming (Iverson and Prasad 1998, Parmesan and Yohe 2003, 

Root et al. 2003, le Roux and McGeoch 2008, Kullman 2010), increased nitrogen 

deposition (Korb and Ranker 2001, Klanderud and Birks 2003, Bowman et al. 2006, 

Johnson et al. 2011), disturbance regime alteration (Van Bogaert et al. 2011), and 

changing biotic interactions (le Roux et al. 2012).  These factors should be viewed 

synergistically (Peet 1978) and their effects should be gauged over long periods to 

account for hysteresis (Woodward 1987, Scheffer et al. 2001). 

Individual Species Migration vs. Community Migration 

 The concept of community migration is nested in the work of Cowles (1899) but 

was championed most rigorously by Clements (1928, 1936), who viewed communities as 

autonomous units of vegetation that he termed ‘superorganisms.’  Though this concept is 

much more sophisticated than was originally interpreted (MacMahon 1980, McCook 

1994), inspiring valuable works on ecosystem changes over time (Watt 1947, Odum 

1969), it was diametrically opposed by individual species migration theorists, beginning 

with Gleason (1926).  Gleason viewed plant communities as relics of species distribution 

configurations and range boundaries as dynamic continua.  In the years that followed, 

community migration theory came under much scrutiny and was generally thought to 

have been disproven (Tansley 1935, Horn 1974, Picket 1976, Connell and Slatyer 1977, 

Grime 1977). 
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 More recently, individual species migration has been further demonstrated by 

studies relating community response to anthropogenic stressors.  Models have been 

developed to evaluate individual tree species shifts (Iverson and Prasad 1998).  Huntley’s 

work in quaternary paleoecology (1996) showed differing migration rates among species, 

predicating new community compositions, and Dolezal and Srutek’s (2002) case study in 

the Carpathians, involving altitudinal species migration, suggested no evidence of species 

aggregations at elevational boundary limits and instead demonstrated unique composite 

assemblages along elevational gradients.  Le Roux and McGeoch’s work (2008) also 

showed Gleasonian migration patterns, evidenced by shifts in plant species richness and 

composition that contrasted with migration rates, as did Kullman (2010) in his review of 

plant cover change correlating to warming in the Scandes, and Johnson et al. (2011) in 

their floristic resurvey along Niwot Ridge in Colorado that illustrated a decoupling of 

high-altitude mesic and xeric species. 

 Individual species’ migration rates must be accounted for when examining 

community composition and species richness alterations.  In mountain systems in 

particular, where diversity is enhanced by small-scale microclimates and perturbations 

coinciding with relief-influenced edaphic patterns such as slope and aspect, altitudinal 

migration can cause significant changes in community composition and diversity that 

greatly influence ecosystem function (Körner 1999).  As anthropogenic pressures 

continue to build and global warming rates persist (Butchart et al. 2010), individual 

species migration rate studies will be of paramount significance in evaluating community 
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change because they provide tangible evidence of anthropogenic influence and can 

improve the capacity to manage ecosystems in the future (Root et al. 2003). 

Gaps in Research  

 Many plant community patterns have been elucidated along elevational gradients 

over the past century, but few sites have been subjected to long-term observation.  Long-

term floristic analyses provide unique data on community patterns and processes 

(Woodward and Beerling 2013).  Such studies offer rare glimpses into the continua of 

change that are often confounded by short-lived experiments that require bold 

extrapolation (Connell and Slatyer 1977, Drake 1991).  Continuous processes, such as 

secondary succession and range expansion, merit prolonged observation that most studies 

cannot afford (Whipple and Dix 1979).  Alternative state shifts and other dynamic 

successional patterns correlating to anthropogenic pressures may have nonlinear or lag 

responses that warrant extended analysis (Woodward 1987, Scheffer et al. 2001).  

Moreover, a firmer understanding of long-term plant community change can increase 

predictive modeling accuracy in the fields of restoration and conservation (Sardinero 

2000, Ferrier and Guisan 2006).  With this knowledge, future conservation and 

restoration projects relating to post-disturbance succession and species range expansion 

will be better informed (Parmesan and Yohe 2003, Root et al. 2003, Butchart et al. 2010). 

Plan of Study 

 Using data from floristic surveys dating back 17, 32, and 60 years, I analyzed the 

long-term distributional, compositional, and secondary successional patterns of four plant 
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communities (lower montane, upper montane, subalpine, and alpine) along an elevational 

gradient.  Tree communities were surveyed for density, basal area, and dominance to 

evaluate long-term secondary successional changes.  Herbaceous communities were 

surveyed for species richness, composition, frequency, diversity, and species 

presence/absence to track long-term compositional changes and elevational range 

expansions/contractions.  These community changes were compared and correlated to 

one another, as were survey variables, to show relative extents and rates of change.  

Results were analyzed from the context of disturbance and climate to elucidate 

correlations between human-induced influences and community changes. 

 This research built upon data from resurveys performed in 1981 (Kooiman and 

Linhart) and 1996 (Korb and Ranker) on plots first established in 1953 by John Marr 

(1961).  In 1951, John Marr established a weather station in each life zone (lower 

montane, upper montane, subalpine, and alpine) along an elevational gradient on Niwot 

Ridge, northwest of Boulder, Colorado.  In 1953, he performed detailed tree stand and 

herbaceous understory surveys at plots near his weather stations (Marr 1961).  His work 

was intended to assess plant community composition and to set a baseline for future 

environmental query.  Marr’s sites were resurveyed in 1981 for changes in plant species 

richness, composition, frequency, and community diversity, using different transects and 

sampling techniques (Kooiman and Linhart 1986).  Observed shifts in tree dominance 

and in the herbaceous understory community were linked to secondary successional 

changes caused by disturbances, such as logging and fire suppression, that had reshaped 

the canopy (Kooiman and Linhart 1986).  Kooiman and Linhart’s transects were 
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reassessed in 1996 for changes in community composition and richness, and for 

successional shifts in relative tree density and species dominance (Korb and Ranker 

2001).  This study provided a third temporal reference point for data relating to the 

herbaceous community at each site, as well as an additional tree abundance analysis that 

could be quantitatively compared to Marr’s observations in 1953.   

 My investigation elucidated long-term spatial and temporal plant community 

shifts along an elevational gradient.  It revealed patterns in floristic community dynamics 

and linked these changes to anthropogenic influence.  By tracking various types of 

community change (distributional, compositional, and successional) in juxtaposed life 

zones, I determined the rate and manner in which communities have changed over a long 

period.  These data indicated which community types and configurations are most 

susceptible to change, which species/genera/families are migrating upward in elevation, 

and which compositional changes and distributional shifts correlate to increased local 

temperatures and disturbance. 

 

 

 

 

 

 

 

 

 

 



18 

 

 

 

 

 

CHAPTER TWO: LONG-TERM SUCCESSIONAL TREE CHANGES 

Introduction 

 Succession is a complex, continuous or intermittent process influenced by myriad 

biotic and abiotic factors (Tansley 1935, Whittaker 1953, Horn 1974).  Secondary 

successional processes and patterns are thus most accurately evaluated from a long-term 

perspective, one that encompasses a series of community ‘snapshots’ across a temporal 

continuum.  This method of analysis can better evaluate confounding variables, such as 

shifts in disturbance regimes and isolated stochastic events that alter successional 

trajectories and create idiosyncratic community organization.  It can provide more robust 

insights into the environmental factors that drive succession (Drake 1991) and the 

magnitude of change within a system (Knapp et al. 2012).  Elevational gradient analysis 

facilitates a study of spatial patterns in vegetation (Marr 1961, Whittaker 1967).  It has 

revealed community-level response to elevation-driven physiological stressors and 

abiotic climatic changes (Sundqvist et al. 2013).   

 In forest systems, a variety of methods can be used to assess successional change, 

such as indirect and direct environmental gradient analysis and ordination (Whittaker 

1967), age and size structure analysis (Veblen 1986), and canopy gap examination 

(Whitmore 1989).  Here, in three previously disturbed communities along an elevational 

gradient, we used tree size structure and age demographic metrics to survey for changes 

in density, basal area per tree, and dominance. 
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 This research was based on previous work by Marr, 1961 (“Ecosystems of the 

east slope of the Front Range in Colorado”) and Korb and Ranker, 2001 (“Changes in 

stand composition and structure between 1981 and 1996 in four Front Range plant 

communities in Colorado”) to examine long-term community changes in the lower 

montane, upper montane, and subalpine life zones.  Our objective was to evaluate the 

extent and manner of successional change at each of 3 sites over a 17-year span, from 

1996 to 2013.  Our results were compared to predictions made by Marr in 1953 and 

Korb/Ranker in 1996 regarding future successional trajectories in each plant community. 

 The majority of long-term research experiments across the Long Term Ecological 

Research (LTER) Network were established less than 30 years ago (Knapp et al. 2012).  

The temporal scope of our analysis (60 years) is unique and elucidates community 

dynamics that most long-term studies cannot.  Our investigation is useful for 

understanding long-term successional tree patterns in post-disturbance communities, and 

linking them to disturbance events.  Additionally, it provides a third temporal reference 

point at these sites, for future inquiry into long-term plant community shifts in the Central 

Rockies.                    

Study Area 

 The study area is a field laboratory of the University of Colorado, Boulder, CO, 

and is comprised of three sites located along an elevational gradient at 40° N.  This slope 

has an eastern aspect, and rises to Niwot Ridge, between the drainage basins of North 

Boulder Creek and Left Hand Creek in Boulder County, CO (Marr 1961).  Each site was 

located on relatively flat terrain in a distinctly different vegetation zone.  The term site 
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refers to a particular tree stand and its environment.  Lower montane, upper montane, and 

subalpine vegetation zones were surveyed in this study (Figure 1).  Sites were selected to 

represent an altitudinal transect that followed one ridge system (from the Plains to the 

Continental Divide).  Transects were situated at intermediate elevations within each 

vegetation zone, to accurately depict typical tree communities in each zone (Marr 1961).  

Approximately 850 m in elevation (and 14.5 km in distance) separated the uppermost site 

from the lowermost site (Figure 2). 

 Our sites were originally established by John Marr in 1951, where weather 

stations were erected to measure variables including temperature and precipitation (Marr 

1961).  Sites were: A1 (lower montane), B1 (upper montane), and C1 (subalpine).  In 

1953, Marr performed detailed tree stand surveys at each site, to document vegetation 

and purposefully to create a baseline for future comparison (Marr 1961).  Each site was 

resurveyed in 1996 by Julie Korb and Tom Ranker (Korb 1997, Korb and Ranker 2001). 

 Site A1 (40.015 N, -105.377 W) is located at an elevation of 2200 m in the lower 

montane zone on a ridge south of Bummer’s Gulch (Appendix 1A).  Site B1 (40.023 N, -

105.430 W) is located at an elevation of 2600 m in the upper montane zone on the crest 

of a hill west of Sugarloaf Mountain, near the Switzerland Trail (Appendix 1B).  Site C1 

(40.036 N, -105.547 W) is located at an elevation of 3050 m in the subalpine zone on 

Hill’s Mill Ridge near Four Mile Creek (Appendix 1C). 

Stands 

Site A1 (2200 m) 
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 After a period of logging and wildfires in the 1870s, the stand at this site began 

reassembling (Marr 1961, Kooiman Halford 1983, Kooiman and Linhart 1986).  In 1953, 

Marr recorded many young trees and relatively few mature trees in his plots, which 

suggested an early successional state (Marr 1961).  Marr predicted that this stand would 

‘climax’ in the form of an open park-like stand of ponderosa pine (Pinus ponderosa) with 

more space between trees (Marr 1961).  Marr’s predictions were based on his knowledge 

of the processes of succession, ecological publications that investigated similar stand 

types, and his own survey data.  However, shortly after his survey, many of the P. 

ponderosa died, most likely due to a pine beetle (Dendroctonus ponderosae) outbreak in 

1955 (Kooiman and Linhart 1986).  From 1977 to 1980, P. ponderosa trees at and around 

this site were also severely infested with dwarf mistletoe (Arceuthobium vaginatum) that 

killed 75% of the local population (Kooiman and Linhart 1986).  Trees that were 

unaffected by beetles remained susceptible to windthrow; a severe wind storm felled 

several mature trees in this area in 1982 (Kooiman Halford 1983, Kooiman and Linhart 

1986).   

 These disturbances, coupled with fire suppression, which greatly lowers P. 

ponderosa seedling and sapling establishment (Keane et al. 1990), left this stand 

dominated by Douglas fir (Pseudotsuga menziesii) as of 1996 (Korb and Ranker 2001).  

Korb and Ranker predicted that, if fire suppression persisted, their plot at this site would 

continue to be dominated by P. menziesii, owing to a lack of surface fires (Hadley 1994, 

Korb and Ranker 2001).  They also predicted that a crown fire could eradicate many of 
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the trees at this site, shifting the stand’s successional trajectory (Peet 1981, Korb 1997, 

Korb and Ranker 2001).         

Site B1 (2600 m) 

 Before logging in the 1870s, the stand at this site, which is somewhat exposed to 

wind, had an even distribution of P. ponderosa and P. menziesii (Kooiman Halford 1983, 

Kooiman and Linhart 1986).  In 1953, this stand had small clusters of individually 

dispersed P. ponderosa and P. menziesii (Marr 1961).  The oldest P. menziesii 

individuals in Marr’s plots were over 300 years old, while the oldest P. ponderosa 

individuals were 122 years old (Marr 1961).  Marr described this stand as mid-

successional, and he expected it to eventually return to a P. menziesii/P. ponderosa mixed 

stand.  From 1977 to 1980, P. ponderosa frequency dwindled by 30% due to another 

ponderosa pine bark beetle outbreak (Kooiman and Linhart 1986).  Continued fire 

suppression in the Central Rockies over the next few years caused many of the P. 

menziesii/P. ponderosa mixed stands in the region to become much more P. menziesii 

dominant, with P. menziesii saplings increasing in abundance and P. ponderosa saplings 

declining in abundance (Peet 1981, Hadley 1994).   

 As of 1996, this site was P. menziesii dominant, as was evidenced in Korb and 

Ranker’s plots (Korb and Ranker 2001).  Their survey results showed a low regeneration 

of P. ponderosa, most likely due to fire suppression and to dwarf mistletoe infestation.  If 

fire suppression continued, they predicted that their plots would continue to be dominated 

by P. menziesii with little occurrence of P. ponderosa or limber pine (Pinus flexilis) 

(Korb and Ranker 2001).  This stand may also be susceptible to a stand-clearing crown 
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fire due to a higher surface area of standing fuel loads (Korb 1997, Korb and Ranker 

2001).    

Site C1 (3050 m) 

 Prior to logging in the 1870s, the stand at this site was dominated by conifers 

(Marr 1961).  However, Quaking aspen (Populus tremuloides) began establishing after 

this period, and by 1953 the stand was dominated by P. tremuloides ranging between 20 

and 52 years of age (Marr 1961).  Though seedlings and saplings of Engelmann spruce 

(Picea englemannii), P. flexilis, and lodgepole pine (Pinus contorta) were recorded in 

Marr’s plots, their frequencies were comparatively low.  Marr considered this stand to be 

in an early secondary sere.  He predicted, in the absence of fire, that it would eventually 

become a mature P. engelmannii/subalpine fir (Abies lasiocarpa) stand (Marr 1961).  

Due to the site’s somewhat mesic soils, he hypothesized that the stand would have a 

larger proportion of A. lasiocarpa than that of an average subalpine ‘climax’ stand (Marr 

1961).  In 1981, Kooiman and Linhart noted a rise in the mortality of P. tremuloides, 

fewer P. tremuloides ramets, and many P. engelmannii and A. lasiocarpa saplings 

(Kooiman Halford 1983, Kooiman and Linhart 1986).   

 This trend continued through 1996, as P. engelmannii and A. lasiocarpa 

continued to regenerate and establish in Korb and Ranker’s plot, while early successional 

species, such as P. contorta and P. tremuloides senesced (Korb and Ranker 2001).  Korb 

and Ranker predicted that P. tremuloides and P. contorta trees would eventually die out 

and that P. engelmannii and A. lasiocarpa would continue to dominate the stand (Korb 

and Ranker 2001).           
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Methods 

Field Methods 

 The historical sites were resurveyed for temporal tree community changes along 

an elevational gradient in the Front Range of Colorado.  Resurveys were performed in 

study plots analyzed by Korb and Ranker (2001) to ensure accurate replication.  We used 

the count-plot sampling method (Mueller-Dombois and Ellenberg 1974) used by Korb 

and Ranker (2001) to evaluate changes in community structure, age demographics, 

density, and dominance over the 17 years since 1996.  This method required us to record 

all tree species and size classes of vegetation within a determined sample area, which was 

represented by our study plots (Mueller-Dombois and Ellenberg 1974).   

 Plots were located along sampling lines that were permanently marked with iron 

stakes during an earlier herbaceous resurvey (Kooiman and Linhart 1986).  Sites at each 

elevation measured 100 m x 1 m at each site.  Each 1 x 1m plot was located adjacent to 

the sampling line, at regular 2 m intervals.  Plots were not contiguous, but alternated on 

both sides of the lines. Plot width varied with the tree density at each site.  The two sites 

lowest in elevation (A1 and B1) had sparser tree community populations than did the 

highest elevation site (C1), and required larger plots to capture overall community 

composition and density.  Plots in A1 and B1 measured 1000 m
2
 (100 m x 10 m) and 

extended 5 m on either side of the sampling line; the C1 plot measured 400 m
2
 (100 m x 

4 m) and extended 2 m on either side of the sampling line.  Long narrow plots were 

chosen by Korb and Ranker (2001), as opposed to Whittaker plots, to most accurately 

depict successional dynamics and total species richness. 
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 We surveyed each established transect in these plant communities in June of 

2013.  We identified and counted every tree, sapling, seedling, and stump in each plot, 

and measured the diameter breast height (dbh) of each living tree over 4 cm dbh.  

Saplings were categorized as having diameters of less than 4 cm and heights of greater 

than 1 m.  Seedlings were categorized as having heights of < 1 m.  Dead and fallen trees 

were identified and counted but their diameters were not measured. 

 During our surveys, 1.27 cm by 91.44 cm rebar rods with surveyors’ caps were 

installed with a drilling hammer at both ends of each survey line, to mark plot locations 

for future work.   

Data Analyses 

 Age demographics were assessed by grouping dbh measurements for all trees into 

5 cm increments, to replicate the analysis procedure performed by Korb and Ranker 

(2001).  Basal area and dbh can be useful proxies for biomass (Quigley and Platt 2003).  

Survey data gathered at each site were used to calculate the absolute density, relative 

density, basal area, and relative dominance of each tree species present in each plot.  

Absolute density, the amount of trees/ha, was calculated by dividing tree counts for each 

species by the total area of the plot.  Relative density, the number of individuals for one 

species as a percentage of the total for all species in an area, was determined by dividing 

tree counts for each species by the total tree count in each plot.  Basal area (cm
2
), or ba, is 

the cross-sectional area of the tree trunk, and was computed as  

    (
 

 
)
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where d equals the diameter at breast height (Mueller-Dombois and Ellenberg 1974).  

Relative dominance, the basal area of a species as a percentage of the total basal area of 

all species, was similarly calculated by dividing the dominance for each species by the 

total dominance of all species in each plot.  Results were compared with those of Korb 

and Ranker (2001) to determine the extent of temporal change of species and biomass in 

each plot. 

 Spatial maps of the sites were created using 30 m resolution 2006 USGS land 

cover data (US Geological Survey, Gap Analysis Program 2006) and 10 m resolution 

digital elevation model data (US Geological Survey, National Elevation Dataset 1999).  

Land classes were separated by geo-referenced and classified configurations as 

determined by the USGS (2006).  Elevation classes were delineated by life zone 

classifications according to latitude (Kershaw et al. 1998).  ESRI’s ArcMap and 

ArcScene were used to compile GIS layer data into presentable formats (ESRI 2013).        

Results 

 Each site changed in different ways over the 17-year span from 1996 to 2013.  

Site A1 increased in absolute tree density, which was largely facilitated by growth in P. 

menziesii abundance.  Site B1 exhibited species loss (P. ponderosa) but increased in P. 

menziesii basal area.  Site C1 basal area increased for all species and shifted in relative 

density and relative dominance, from early successional P. tremuloides to late 

successional P. engelmannii.  Changes at sites A1 and B1 may be attributed to 

disturbance events (fire suppression and insect/pathogen infestation) that may have 

altered successional trajectories.  However, C1’s changes align with successional 
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pathways that are known to occur at similar sites and high elevations (Marr 1961, Peet 

1981).      

Site A1 (2200 m) 

 Though relative dominance shifts from 1996 to 2013 were small in this plot, with 

continued P. menziesii dominance (Figure 3), there were considerable changes in P. 

menziesii size class distribution (Appendix 2).  The abundance of mature P. menziesii 

individuals/ha more than doubled over this period (Figure 4).  The relative density of P. 

menziesii rose as well (Figure 5).  Absolute density for all trees rose by 81.2% (320 

trees/ha to 580 trees/ha); the largest absolute density change at any of the sites.  J. 

scopulorum basal area changed the most of any species at this site over the 17-year span, 

increasing 81.0%.  Mean basal area per tree for P. ponderosa increased 69.1%, while P. 

menziesii basal area per tree showed little change, declining by 2.5% (Figure 6).    

 In 2013, there were more mature trees and fewer young individuals, those 

categorized as saplings and seedlings, than in 1996 (Figure 7).  In general, both young 

and dead individual counts were much lower in 2013 than in 1996 (Appendix 3).  This 

lack of young individuals may suggest that the successional rate is slowing at this site; 

however, this could also be indicative of the short-term growing conditions at this site 

over the past few years. 

 These changes align with Korb and Ranker’s 1996 prediction that the plot would 

continue to be heavily P. menziesii dominant, with fewer P. ponderosa and J. scopulorum 

individuals (Korb and Ranker 2001).  However, the increased density and continued 

dominance of P. menziesii at the site does not fit Marr’s predictions of an open P. 
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ponderosa stand (Marr 1961).  The numerous P. menziesii individuals may partially 

reflect the saplings (7) and seedlings (7) that Korb and Ranker noted in 1996, which 

likely advanced to maturity.  Though several P. ponderosa and J. scopulorum individuals 

have persisted in Korb and Ranker’s plot, expanding in basal area, the growth of mature 

P. menziesii individuals may create new and difficult resource stresses for the 

reproductive success of these other species, particularly the shade-intolerant P. ponderosa 

(Peet 1981).  Given the increase of P. menziesii frequency in nearly every size class 

(Appendix 1), we expect P. menziesii relative dominance to remain high and overall tree 

density to level off as resource limitation dictates (Table 1).   

Site B1 (2600 m) 

 Site B1’s plot remained heavily P. menziesii dominant (Figure 3) with modest 

changes in absolute and relative density (Figure 4 and 5) and overall basal area per tree.  

However, P. menziesii basal area per tree rose 56.3% (Figure 6).  Though P. menziesii 

declined 25.0% in absolute density, it rose 7.1% in relative density due to such 

considerable increases in basal area (Figures 4 and 5).  No P. ponderosa individuals were 

observed in 2013, which contrasted with the seven living P. ponderosa individuals 

observed in 1996, indicating a loss of species.  Dbh tree class species data from 1996 and 

2013 showed no major changes in class distribution frequency for any of the observed 

species (Appendix 4). 

 Compared to 1996, in 2013 there were fewer mature and young trees but there 

were more dead individuals (Figure 7).  P. menziesii showed the greatest change in young 
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individuals, declining from 64 to 27.  Changes in the number of dead trees were more 

modest (Appendix 2). 

 In many cases, species loss can have myriad effects on a plant community (Diaz 

et al. 2006, Cardinale et al. 2012) and can promote state shifts.  However, it is possible 

that increased basal area per tree for P. menziesii may be a better metric of change than is 

loss of species at this site, due to the confounding effects of the dwarf mistletoe 

infestation of P. ponderosa that was noted in 1996 (Korb and Ranker).  Loss of P. 

ponderosa and this shift to a more open plot of larger, more dominant P. menziesii 

individuals fits with Korb and Ranker’s predictions (Korb and Ranker 2001).  The 

trajectory of this particular shift matches similar successional changes known to occur in 

this type of environment under conditions of fire suppression (Peet 1981, Hadley 1994).  

Marr’s prediction of an equal dominance P. menziesii/P. ponderosa stand remains 

unfulfilled, due to the effects of fire suppression and dwarf mistletoe infestation.  In the 

absence of a major disturbance event, or disturbance regime shift, we expect this stand to 

remain highly P. menziesii dominant as these individuals continue to grow (Table 1).  We 

also expect little change in absolute and relative density, due to a low total young 

individual count in 2013 as compared to 1996 (Appendix 3).      

Site C1 (3050 m) 

 This site showed the largest shift in relative tree dominance.  P. tremuloides 

dominance declined by 14.6%, while A. lasiocarpa rose by 8.6% and P. engelmannii rose 

by 6.1% (Figure 3).  P. engelmannii is now the dominant tree species in this plot.  Total 

basal area increase per tree was also highest at this site, with an increase of 58.4% (379.2 
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cm
2
 to 600.7 cm

2
).  A. lasiocarpa (179.6%) and P. contorta (90.0%) showed significant 

increases in basal area per tree, P. engelmannii (12.1%) and P. tremuloides (5.6%) rose 

only moderately in basal area per tree (Figure 6).  Furthermore, density data show a 

decline in P. tremuloides and P. contorta individuals/ha and an increase of A. 

lasiocarpa/ha and P. engelmannii/ha (Figures 4 and 5), which may reflect effects of 

resource competition.  P. tremuloides is shade intolerant and disturbance dependent; 

therefore a closing canopy coupled with an absence of disturbance may thwart seedling 

generation and development (Smith and Smith 2005).  Dbh class species data from 1996 

and 2013 showed no considerable differences in dbh class distribution for any of the 

observed species over time (Appendix 5). 

 In Site C, there were fewer mature and young trees, and nearly an equivalent 

amount of total dead individuals, in 2013 as compared to 1996 (Figure 7).  Each species 

had many more young individuals in 1996.  A. lasiocarpa showed the largest decline in 

young individuals, declining from 167 to 64.  Dead individual counts were somewhat 

similar; the greatest disparity was a decline in dead P. contorta (20 to 3).  Though the 

total number of young individuals has declined, as has the number of young individuals 

for each species (Appendix 3), such a change in young individuals favors P. engelmannii 

and A. lasiocarpa, which are known to attain larger trunk diameters per tree, once 

established in such successional communities (Peet 1981), and thus require fewer trees to 

dominate a community.   

 Shifts in relative tree dominance indicate successional change (Whittaker 1953, 

Marr 1961, Peet 1981).  Our results support Marr’s and Korb/Ranker’s predictions that 
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late successional species A. lasiocarpa and P. engelmannii would eventually outcompete 

and overtake early successional species P. tremuloides and P. contorta (Marr 1961, Korb 

and Ranker 2001).  This is a common successional trajectory for stands in similar high-

elevation subalpine environments (Marr 1961, Whipple and Dix 1979, Peet 1981), which 

are known to undergo state shifts at slower rates (Ives 1941, Körner 1999).  It is evident 

that this community is still shifting from P. tremuloides and P. contorta to A. lasiocarpa 

and P. engelmannii.  Shifts in relative density shown in our data reflect this transition 

(Figure 5).  In the absence of major disturbance events, or disturbance regime shifts, we 

expect this process to continue in the future (Table 1).    

Conclusion 

 Condensation of life zones in mountain forest communities (Körner 1999), 

categorized by relative elevation (Ramaley 1907), are useful models for analyzing the 

interplay between plant community dynamics and environmental gradients (Whittaker 

1953).  A comparison of our survey data to those from previous years shows that a tree 

community’s relative location along an elevational gradient can affect successional rates 

and trajectories.  We found multiple age demographic shifts in size structure that can be 

used for evaluating successional processes and state shifts along elevational gradients in 

montane and subalpine systems.  Over time, each site exhibited size structure and 

age/demographic community change in a disparate way, affecting future community 

structure, function, and composition.  Such long-term changes in tree density, dominance, 

basal area, and size-class distributions can elucidate community patterns that many short-

term studies cannot analyze robustly (Connell and Slatyer 1977, Whipple and Dix 1979).  
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They can also serve as artifacts for herbaceous community changes, which are often more 

rapid and dramatic, as was evidenced at these sites (Sproull unpublished data).   

 Major disturbance events and disturbance regime changes can play significant 

roles in community development and destruction, and may alter a community’s 

successional trajectory (Connell and Slatyer 1977, Peet 1981, Hadley 1994).  Short-term 

studies often cannot account for the scale, frequency, and intensity of these influences.  

Alternative state shifts and other dynamic successional patterns correlating to 

anthropogenic pressures may have nonlinear or lag responses that warrant extended 

analysis (Woodward 1987, Scheffer et al. 2001).  Our data show that successional 

pathways can be largely influenced by disturbance factors such as infestation, fire 

suppression, and stochastic weather events.  

 Successional change is an inherently continuous and dynamic process in nearly 

every plant community (Tansley 1935, Whittaker 1953).  Of importance are the extent, 

rate, and scope of change, from which we can reveal community patterns that improve 

our understanding of the intrinsic processes underlying nature’s vast framework.  By 

studying the manner and direction of long-term secondary successional pathways, we can 

better inform our scientists, land managers, and conservationists about what community 

types and configurations are most susceptible to change, how successional change rates 

can be accelerated or decelerated, and how the effects of rising anthropogenic disturbance 

can be mitigated. 
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CHAPTER THREE: LONG-TERM COMMUNITY HERBACEOUS CHANGES 

 

Introduction 

 In recent decades, communities and ecosystems across the globe have been 

altered by both the direct and indirect effects of rapid climate change (Root et al. 2003).  

These stresses, coupled with other anthropogenic disturbances, such as human resource 

exploitation, pollution, and land-use change, have had combinative effects on landscape 

compositions and biodiversity (Vitousek et al. 1997, Dale et al. 2000, Folke et al. 2004, 

Hooper et al. 2005).  Many studies on ecological response to anthropogenic influence 

have focused on deleterious effects at the individual or species level, however, the 

overlap of spatial and temporal species interactions at the community level may amplify 

human-induced impacts resulting in a dynamic rippling effect that cascades through 

ecological networks (Walther 2010). 

 Changes in community composition can be analyzed through myriad approaches 

that may serve as proxies for disturbance events and regime shifts (Hooper et al. 2005).  

Global reductions in biodiversity (Butchart et al. 2010, Pereira et al. 2010, Dawson et al. 

2011), upward elevational species migrations and range expansions (Root et al. 2003, 

Parmesan and Yohe 2003, Kelly and Goulden 2008, le Roux and McGeoch 2008), and 

vast changes in community composition and species frequencies (Parmesan and Yohe 

2003, Pauli et al. 2007, Walther 2010) have all correlated to environmental changes 
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facilitated by the direct and indirect effects of rapid climate change.  Such trends will 

likely persist since communities are often governed by a lag-response during periods of 

swift abiotic change (Woodward 1987, Scheffer et al. 2001).  These spatial and temporal 

community shifts may come with steep costs.  Ecosystem processes and services, 

including plant biomass production, soil formation, water quality regulation, pollination 

and seed dispersal of highly-valued plants, community resistance to invasive species, and 

disease regulation may be irreparably altered (Folke et al. 2004, Díaz et al. 2006). 

 In mid to high elevation forests, the effects of human influence have been 

particularly pronounced (Beniston et al. 1997, Lesica and McCune 2004, Pauli et al. 

2007, Randin et al. 2009).  At high elevations, heat tolerance thresholds are narrower, 

acclimation potential is small (Körner 1999), and productivity is limited to a snow-free 

growing season (Price and Waser 2000).  Disturbances such as increased drought, fire, 

wind storms, insect and pathogen infestations, and invasive species proliferation can 

often be traced back to increased climatic instability (Dale et al. 2000).  Under these 

environmental stresses, plant communities often change in dynamic ways.  Plant guilds in 

forest systems have complex, entangled relationships that are sensitive to unnatural 

environmental fluctuation (Villalba et al. 1994, Walther 2010).  Moreover, plant species 

respond dynamically and idiosyncratically to abiotic change (Gleason 1926, le Roux and 

McGeoch 2008), thus predicting the impact of human influence on plant composition in 

localized communities can be difficult, especially in the absence of site-specific weather 

data and disturbance history records (Ferrier and Guisan 2006). 
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 Comprehensive assessment of plant community dynamics requires a pointed long-

term approach that offers insight beyond a ‘snapshot’ perspective, or a singular analysis 

of a community’s structure and composition (Knapp et al. 2012).  Most studies cannot 

afford to observe or investigate long-term plant community changes in this manner.  

Furthermore, climate modeling may not accurately reflect actual weather shifts at 

particular sites (McGuire et al. 2012).   

 Site-specific bias can be minimized by comparing communities across 

environmental gradients, such as moisture or elevation.  Species response to 

environmental gradients, particularly elevation, is commonly driven by abiotic factors 

(Sundqvist et al. 2013).  Therefore, a robust assessment of plant community change 

should aim to integrate site-specific weather data and disturbance history records with 

multiple vegetation surveys performed in replication over time. 

 This study evaluates long-term plant changes in four communities along an 

elevational gradient in the Front Range of Colorado.  Here, we compare vegetation 

compositions in 2013 with those from 1981 and 1996 to assess the change that has 

occurred over both a 17 and 32-year span.  In our analysis, we examine shifts in species 

composition and frequency, alpha and beta diversity, and elevational species ranges.  In 

addition, we investigate the influence of overstory canopy changes and local disturbance 

events on community change.  The fundamental questions addressed by this work are: 

Have species expanded their ranges upward in elevation? Has local species alpha and 

beta diversity within each community increased over time?  And, have community 

compositions changed over time, and if so, which plant families are most responsible for 
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variation, and do these changes correspond to overstory shifts and disturbance events at 

each site?  

Methods 

Study Area 

 The study area comprised four sites located along an elevational gradient (the 40
th

 

parallel north), between the drainage basins of North Boulder Creek and Left Hand Creek 

in Boulder County, Colorado, USA (Marr 1961).  Sites were located on ridgetops, each in 

a different vegetation zone (lower montane, upper montane, subalpine, and alpine) 

(Figure 8).  Sites were originally selected by Marr (1961) to represent an altitudinal 

transect that followed one ridge system (from the Plains to the Continental Divide).  Sites 

were situated at intermediate elevations within each vegetation zone to accurately depict 

typical plant communities in each zone (Marr 1961).  Approximately 1,550 m in 

elevation (and 22 km in distance) separated the uppermost site from the lowermost site 

(Figure 9). 

 Marr (1961) performed a quantitative analysis of each plant community in 1953.  

Resurveys of the herbaceous communities at each site were conducted in 1981 (Kooiman 

and Linhart 1986) and in 1996 (Korb 1997, Korb and Ranker 2001) to determine the 

extent and manner of plant community changes (Appendix 6).  Sites were: A1 (lower 

montane), B1 (upper montane), C1 (subalpine), and D1 (alpine). 

 Site A1 (40.015 N, -105.377 W) is located at an elevation of 2200 m in the lower 

montane zone on a ridge south of Bummer’s Gulch.  Site B1 (40.023 N, -105.430 W) is 

located at an elevation of 2600 m in the upper montane zone on the crest of a hill west of 



37 

 

Sugarloaf Mountain, near the Switzerland Trail.  Site C1 (40.036 N, -105.547 W) is 

located at an elevation of 3050 m in the subalpine zone on Hill’s Mill Ridge near Four 

Mile Creek.  Site D1 (40.059 N, -105.617 W) is located at an elevation of 3750 m in the 

alpine zone on Niwot Ridge.     

Field Methods 

 The four historic sites were surveyed for species frequency, richness, and 

composition by sampling fifty plots at each site.  Each plot had an area of 85 x 100 cm.  

Each plot was divided into 10 cells using nylon string to delineate subplots within each 

plot.  All species that were rooted within the confines of the plot were recorded to 

determine richness and composition; subplot species presence/absence counts, ranging 

from 0 to 10, were totaled to determine frequency.   

 Each site contained a permanently marked survey line that was previously 

surveyed in 1981 (Kooiman and Linhart 1986) and in 1996 (Korb and Ranker 2001).  

Survey lines extended 100 x 2 m (200 m
2
) and comprised 50 plots.  Plots were 

systematically located every two meters alternating to the left and right of the survey line.  

Plot sizes, plot locations, and sampling methods were the same as those used in 1981 

(Kooiman and Linhart 1986) and in 1996 (Korb and Ranker 2001) to ensure accurate 

survey replication.  The sampling method is described as systematic sampling, which 

requires sampling points to be located at systematic intervals (Kent and Coker 1992).  

Though plot sizes were similar to those used in 1953 (Marr 1961), plot locations 

surveyed in 1953 were randomly selected at each site, thus comparisons with 1953 data 

were not warranted. 
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 Throughout the summer and fall of 2013, the three lower sites were surveyed 

three times and the alpine site was surveyed two times to account for species with 

differing life history characteristics (i.e. early bloomers and later bloomers).  

Progressively later start dates at high elevation sites were due to snow cover constraints.  

Survey line endpoints were permanently staked with rebar rods at the conclusion of our 

study to identify plot locations for future surveys.  Species composition was determined 

by identifying all species at each site.  Voucher specimens were collected for all species 

present and were identified by the Denver Botanic Gardens’ Herbarium in Denver, 

Colorado, USA.    

Data Analyses 

 Changes in herbaceous structure were investigated using the same parameters 

employed by Kooiman and Linhart (1986) and Korb and Ranker (2001) for comparison 

among the three years of data (1981, 1996, and 2013).  We evaluated changes in species 

richness, presence/absence, frequency, composition, and diversity over time.  Using 

previous species lists (Appendices 7-10), we analyzed species that expanded their ranges 

upward in elevation or migrated over this period and evaluated the number of new 

species and lost species that were recorded during each survey. 

 Species richness was assessed by totaling the number of species within each plant 

community.  Presence/absence was evaluated by recording whether a species was present 

in a plot.  Species frequency was determined by the percentage of subplots an individual 

was present in within each plot.  Frequencies were divided into 10% increments to further 

analyze species distribution.  Alpha species diversity shifts were measured with the 
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Shannon-Wiener diversity index (H') (Magurran 1988), the Simpson diversity index (D) 

(Simpson 1949), and the evenness index (J) (Pielou 1966).  Beta diversity was measured 

with Jaccard’s similarity index (Sj).    Species accumulation curves were used to estimate 

the validity of our sample sizes (50 samples per site). 

 Spatial maps of the sites were created using 30 m resolution 2006 USGS land 

cover data (US Geological Survey, Gap Analysis Program 2006) and 10 m resolution 

digital elevation model data (US Geological Survey, National Elevation Dataset 1999) to 

illustrate site locations and elevations.  Land classes were separated by geo-referenced 

and classified configurations as determined by the USGS (2006).  Elevation classes were 

delineated by life zone classifications according to latitude (Kershaw et al. 1998).  

ESRI’s ArcMap and ArcScene were used to compile GIS layer data into presentable 

formats (ESRI 2013).        

Statistical Analyses 

 We calculated bootstrap and Abundance Cover Estimator (ACE) values via the 

statistical software program EstimateS (Colwell 2005) using frequency data from 1996 

and 2013 to improve the estimation of the population statistic and more accurately gauge 

our sampling efforts (Gotelli and Ellison 2004).  Bootstrap and ACE values were plotted 

alongside one another to compare species accumulation at each site for 1996 and 2013 

survey data.  Diversity indices were calculated using EstimateS (Colwell 2005) to 

accurately compare indices between the 3 survey years.  The statistical significance of 

species composition change over time was established using the critical value of 

Jaccard’s similarity index at the 95% confidence level (Real 1999).  We also calculated 
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95% confidence intervals for individual species presence/absence values for species that 

were at least 20% present in any of the survey years to evaluate long-term changes 

(Appendix 11). 

 We performed a principal component analysis (PCA) using the vegan package 

(Oksanen et al. 2011) within the statistical software program R (version 2.14.0), to 

evaluate plant family composition change between 1996 and 2013 at each site and the 

relative influence of each plant family on community change (R Development Core Team 

2011).  Frequency data were Hellinger transformed to account for the presence of zeros 

(Legendre and Gallagher 2001).  A non-parametric Wilcoxon matched-pairs test, 

comparing PCA site scores for 1996 and 2013 data, was used to investigate the statistical 

significance (p < 0.05) of community change over time along the environmental gradients 

that emerged in the PCA (González et al. 2014).  Raw 1981 frequency data were not 

available, thus our analysis was limited to a 17-year comparison.       

Results 

Elevational Range Expansion and Migration 

 From 1996 to 2013, 6 species expanded their ranges upward in elevation to new 

sites and 2 species migrated upward entirely (Table 2).  Only 2 species expanded their 

ranges downward in elevation during that span, while no species migrated downward.  

Range expansion was most pronounced at B1, with 5 species moving from the lower 

montane to the upper montane.  Species that exhibited range expansion are broad-

distributed throughout North America, particularly those that expanded within the 

montane zone (USDA, NRCS 2014).   
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Shifts in Diversity 

 From 1996 to 2013, every community surveyed along the elevational gradient 

showed significant (p < 0.05) species turnover, evidenced by Jaccard indices (Table 3).  

This contrasts with the period between 1981 and 1996 when only site C1 (subalpine) 

changed significantly.  Simpson and evenness diversity indices showed negligible 

changes over time in every community.  Simpson indices ranged from (0.05 to 0.07) and 

evenness indices ranged from (0.83 to 0.90), indicating high levels of sample diversity 

and low levels of species dominance.   

 Species richness and Shannon-Wiener diversity indices were more idiosyncratic 

(Table 3).  Site A1 (lower montane) showed a slight Shannon-Wiener diversity increase 

from 1981 to 2013.  Site B1 (upper montane) exhibited consistent Shannon-Wiener 

diversity in 1981 and 1996 but increased dramatically in 2013.  Site C1 (subalpine) 

fluctuated in Shannon-Wiener diversity over time, as it showed a moderate decrease from 

1981 to 1996, followed by a moderate increase from 1996 to 2013.  Site D1 (alpine) 

displayed a moderate decrease in Shannon-Wiener diversity from 1981 to 1996. 

 The sample size (50) accurately represented the actual species richness of each 

community in both 1996 and 2013 (Figures 10-13).  Percentages of actual sample 

representation ranged between 89 and 95%. 

Community Composition Change  
 

 A preliminary PCA using all four sites showed high discrimination.  Therefore, in 

order to better identify vegetation gradients of variability at each site, four different PCAs 

were implemented; one for each site (Figures 14-17).  Wilcoxon tests showed significant 
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community change (p < 0.05) along the main gradient of vegetation variability (PC1) 

between 1996 and 2013 at each of the four sites.  The PC1 integrated a moderate portion 

of vegetation variability (A1- 32%; B1- 21%; C1- 15%; D1- 36%). Wilcoxon tests 

performed on PC2 scores displayed significant community change (p < 0.05) at sites A1 

and C1.  Vegetation variability was lower along the PC2 gradient for all sites.   

 The PC1 gradient of variability for A1, B1, and C1 is most likely shade-tolerance.  

Shade-tolerant plant families were clustered around the 2013 site score median and 

shade-intolerant families were clustered around the 1996 median.  Plant families that 

showed contradictory shade-tolerance characteristics at different sites are explained by 

their specific aggregation of species, which were unique in composition at each site.  Site 

D1’s PC1 gradient may either be related to nitrogen uptake capacity and/or growing 

season length requirements, since species from families clustered around the 2013 

median may gain a competitive advantage from the longer growing season conditions 

(McGuire 2012 et al.) and higher nitrogen levels in snowpack (Bowman 2006 et al.) that 

are occurring at this site.   

 Significant shifts in family composition at each site were attributed to increases in 

new species and lost species from 1996 to 2013 (Figure 18).  In general, there were many 

more new species found at each site in 2013 as compared to 1996, with site B1 exhibiting 

the most new species over this period.  Nearly all of the new species found at each site in 

2013 were also not present at those sites in 1981 (A1- 19 of 19; B1- 25 of 28; C1- 14 of 

15; D1- 5 of 7).  The number of species lost was relatively consistent at each site in 2013, 
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whereas the number of lost species was more site-dependent in 1996, with the greatest 

loss of species occurring at site C1.        

Discussion 

Overstory Influence on Understory Communities 

 Herbaceous communities are inexorably linked to canopy shifts in overstory 

communities.  Canopy shifts can influence regeneration dynamics that affect understory 

composition by changing critical abiotic cues such as light, temperature, and moisture 

(Quigley and Platt 2003).  Thus, herbaceous community change analysis must account for 

successional changes in tree density, dominance, and basal area in the overstory 

community. 

 Our sites showed evidence of compositional herbaceous shifts that reflected tree 

community changes driven by post-disturbance successional processes (Sproull 

unpublished).  In 2013, site A1 (lower montane) was much shadier than in 1996 due to a 

higher density of trees, particularly Douglas fir (Pseudotsuga menziesii).  Site B1 (upper 

montane) was also shadier, increasing in tree basal area over time.  Site C1 shifted in 

dominance from early successional Quaking aspen (Populus tremuloides) to late 

successional subalpine fir (Abies lasiocarpa) and Engelmann spruce (Picea engelmannii), 

which closed much of the canopy.  These changes in shade-tolerance altered herbaceous 

niches, and provided competitive advantages to select species and families in 2013.  This 

is exhibited by both our PCA on plant family composition changes over time and by the 

influx of new species, species range expansions, and significant species turnover and that 

occurred in each community. 
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Determining Human-induced Drivers of Change 

 Changes in herbaceous composition and distribution along the elevational 

gradient align with global trends influenced by climate change, such as upward 

elevational range expansion (particularly of broadly-distributed species), increased 

species turnover, and increased rates of compositional change over time (Parmesan and 

Yohe 2003, Root et al. 2003).  However, it is difficult to directly attribute local 

herbaceous composition or range shifts to climatic influence.  Long-term climate trends, 

using temperature data taken from environmental weather stations located at each site, 

show that climatic change has not been consistent along the elevational gradient 

(McGuire 2012 et al.).  Though long-term warming has occurred at each site, these 

changes have been site-specific, varying in intensity based on temporal scale and variable 

of measure. 

 Moreover, it is often difficult to extricate direct and indirect climatic influences, 

such as disturbance (Dale et al. 2000).  Our sites are no exception; as A1 and B1 

overstory communities have been altered by pathogenic and insect infestations (Kooiman 

and Linhart 1986) and D1 has been greatly affected by atmospheric nitrogen deposition 

found in snowpack (Bowman et al. 1993, Bowman et al. 2006).  Other anthropogenic 

disturbances, such as fire suppression (Korb and Ranker 2001) and logging in the 1870s 

(Marr 1961), have altered the successional trajectories of the overstory in these 

communities.  Thus it is often impractical to ascribe any human-induced influence as the 

singular driver of vegetation change.  Rather, assessments should incorporate the 

disturbance history and site-specific climatic pressures that have aggregated as one 
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combinative perturbation effect, and should analyze the probable weight of each 

component individually relative to the effect as a whole.      

Multiple Approaches in Long-term Studies 

 Long-term floristic analyses provide unique data on community patterns and 

processes (Woodward and Beerling 2013).  Though such analyses have elucidated plant 

community shifts in recent years (Ebersole 2002, Klanderud and Birks 2003, Smith and 

Smith 2005, le Roux and McGeoch 2008, Coop et al. 2010, Johnson et al. 2011), most 

experiments occur over shorter timespans that offer only snapshots of community change 

(Connell and Slatyer 1977, Drake 1991).  The majority of long-term research experiments 

across the Long Term Ecological Research (LTER) Network were established less than 

30 years ago (Knapp et al. 2012).  Lengthier studies limit confounding environmental 

factors (Whipple and Dix 1979, MacMahon 1980, Klanderud and Birks 2003) and can 

more comprehensively evaluate community organization (Drake 1991) and temporal 

stability (Hooper et al. 2005).  

 To further minimize bias, studies should include various methods of approach.  In 

our analysis, species richness and Shannon-Wiener diversity changes over time did not 

always reflect significant community change.  This underscores the importance of 

analyzing community change from multiple perspectives (Hooper et al. 2005).  By 

incorporating multiple techniques and variables of measure, community insight is more 

dynamic and robust, and therefore more accurately representative of the manner and 

extent of change.  

Conclusion 
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 Understanding the causal effects and impacts of climate change and 

anthropogenic disturbance has become a topic of paramount importance over the past 

several decades (Parmesan and Yohe 2003, Root et al. 2003).  In plant communities, the 

impacts of climate and disturbance have been pronounced, facilitating increased 

compositional change rates (Klanderud and Birks 2003, Root et al. 2003), elevational 

species migrations and range expansions (Parmesan and Yohe 2003, Root et al. 2003, 

Kelly and Goulden 2008, le Roux and McGeoch 2008), and shifts in diversity and 

composition (Pauli et al. 2007, Walther 2010).  Long-term evaluation of these changes, 

analyzed along environmental gradients, can elucidate patterns in community 

organization and composition that may correlate to climatic influence and disturbance.  

As anthropogenic pressures continue to drive landscape composition in new and dynamic 

trajectories, such studies can link environmental stressors to biotic response, better 

informing scientists, land managers, and conservationists of the repercussions of 

ecosystem alteration. 

 Our study offers a compelling glimpse of various aspects of community change 

over a broad temporal scale.  Over time, each community transformed idiosyncratically 

and showed significant compositional and diversity shifts.  Large shifts in distribution 

and upward species range expansions were also seen.  In some communities, these trends 

were more obviously indicative of disturbance pressures, such as high levels of nitrogen 

deposition, while others were more likely driven by overstory canopy changes (some of 

which may be related to post-disturbance successional processes).  Nevertheless, these 
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changes paralleled global compositional and distributional rate change patterns 

(Parmesan and Yohe 2003, Root et al. 2003).   

 Though it is often difficult to disentangle the direct and indirect effects of climate, 

such as disturbance (Dale et al. 2000), this interplay merits detailed analysis.  These 

results suggest the importance of understanding interactions between climate change and 

anthropogenic disturbance, and also between different plant guilds within communities, 

such as trees and herbs, when evaluating community change.  Our comprehension of 

these relationships requires improvement if we wish to mitigate the fingerprint of 

anthropogenic perturbation on both local and global scales. 
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Table 1. Comparison of historical successional predictions with current compositional 

states of three long-term research sites along an elevational gradient in the Front Range of 

Colorado 

Site 
Elevation 

(m) 

Vegetation 

Zone 

Historical 

Successional 

Predictions 

Validity of 

Predictions in 

2013 

Future 

Predictions 

A1 2,200 
Lower 

montane 

Marr (1961): open 

stand of Ponderosa 

pine 

 

Korb/Ranker 

(2001): Douglas-fir 

steady-state stand 

with few 

Ponderosa pines 

and Rocky 

Mountain junipers 

Marr (1961): 
False, due to 

disturbance 

impacts (fire 

suppression; 

dwarf 

mistletoe/bark 

beetle infestation 

of Ponderosa 

pines) 

 

Korb/Ranker 

(2001): True 

Continued 

Douglas-fir 

dominance; 

tree density 

stabilization 

as resource 

limitation 

dictates 

B1 2,600 
Upper 

montane 

Marr (1961): 

equal dominance 

Ponderosa 

pine/Douglas-fir 

stand 

 

Korb/Ranker 

(2001): Douglas-fir 

steady-state stand 

with few or no 

Ponderosa pines 

Marr (1961): 

False, due to 

disturbance 

impacts (fire 

suppression; 

dwarf 

mistletoe/bark 

beetle infestation 

of Ponderosa 

pines) 

 

Korb/Ranker 

(2001): True 

Continued 

Douglas-fir 

dominance; 

few changes 

in density; 

no  new 

establishme

nt of 

Ponderosa 

pines 

C1 3,050 Subalpine 

Marr (1961): 
steady-state 

Engelmann 

spruce/subalpine 

fir stand 

 

Korb/Ranker 

(2001): steady-

state Engelmann 

spruce/subalpine 

fir stand 

Marr (1961): 

True 

 

Korb/Ranker 

(2001): True 

Continued 

state shift to 

a spruce and 

subalpine fir 

stand; 

continued 

loss of 

quaking 

aspen and 

lodgepole 

pines 
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Table 2. Elevational species range expansion from 1996 to 2013.  Presence/absence 

values (%) for each species are displayed in parentheses.  Species are listed in the new 

life zone that they have expanded to since 1996.  The superscript M denotes species that 

migrated to new life zones. 

Study Site Downward Elevational Expansion 

Upward Elevational 

Expansion 

A1           (lower 

montane) 

Astragalus tenellus (22)   

Pseudocymopterus montanus (12)   

    

B1           (upper 

montane) 

Pseudocymopterus montanus (64) Artemesia frigida (2) 

  Elymus canadensis (20)
M

 

  Solidago missouriensis (34) 

  Tragopogon dubius (2) 

  Verbascum thapsus (4) 

C1 (subalpine) 
  Geranium caespitosum (12) 

  

Muhlenbergia montana 

(6)
M

 

D1 (alpine)   Antennaria microphylla (2) 
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Table 3. Species richness and diversity indices for study sites in 1981, 1996, and 2013 

were calculated from presence/absence survey data.  Jaccard’s beta diversity index reflects 

changes that have occurred since the previous survey year; asterisks denote statistically 

significant (p < 0.05) compositional change, which is represented by a Jaccard index value 

of less than 0.2 for a sample size of 50.  Raw presence/absence data from 1996 were taken 

from Korb 1997 with permission.  Summary data from 1981 were taken from Kooiman 

and Linhart 1986 with permission. 

Location Year 

Species 

richness (Q) 

Shannon-Wiener 

Diversity (H') 

H' 

min 

H' 

max 

Jaccard 

Diversity 

(Sj) 

Site A1 

(lower 

montane) 

1981 36 3.05 2.14 3.58   

1996 38 3.17 2.22 3.64 0.25 

2013 40 3.16 2.29 3.69 0.13* 

Site B1 

(upper 

montane) 

1981 40 3.24 2.29 3.69   

1996 41 3.28 2.30 3.71 0.21 

2013 62 3.53 2.95 4.13 0.13* 

Site C1 

(subalpine) 

1981 45 3.25 2.46 3.81   

1996 29 2.93 1.85 3.37 0.18* 

2013 38 3.17 2.22 3.64 0.13* 

Site D1 

(alpine) 

1981 41 3.29 2.30 3.71   

1996 35 3.20 2.10 3.56 0.23 

2013 31 2.84 1.94 3.43 0.19* 
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Fig. 1 Land cover at sites A1 (lower montane), B1 (upper montane), and C1 (subalpine) 

in Boulder County, CO (US Geological Survey, Gap Analysis Program 2006) 
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Fig. 2 Digital elevation model (DEM) map of the greater Niwot Ridge area in Boulder 

County, CO depicting vegetation life zones (US Geological Survey, National Elevation 

Dataset 1999) 
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Fig. 3 Relative dominance (%) of tree species in 1996 versus 2013 at sites A1 (lower 

montane), B1 (upper montane), and C1 (subalpine) (1996 data taken from Korb 1997 

with permission) 
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Fig. 4 Absolute density (trees/ha) of tree species in 1996 versus 2013 at sites A1 (lower 

montane), B1 (upper montane), and C1 (subalpine) (1996 data taken from Korb 1997 

with permission) 
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Fig. 5 Relative density (%) of tree species in 1996 versus 2013 at sites A1 (lower 

montane), B1 (upper montane), C1 (subalpine) (1996 data taken from Korb 1997 with 

permission) 
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Fig. 6 Basal area/tree (cm

2
) of tree species in 1996 versus 2013 at sites A1 (lower 

montane), B1 (upper montane), and C1 (subalpine) (1996 data taken from Korb 1997 

with permission) 
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Fig. 7 USGS land cover map of Boulder County, CO comparing total tree counts and 

young individuals (seedlings and saplings) at each site in 1996 and 2013 (US Geological 

Survey, Gap Analysis Program 2006) 
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Fig. 8 Land cover at sites A1 (lower montane), B1 (upper montane), C1 (subalpine), and 

D1 (alpine) in Boulder County, CO, USA (US Geological Survey, Gap Analysis Program 

2006) 
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Fig. 9 Digital elevation model (DEM) map of the greater Niwot Ridge area in Boulder 

County, CO depicting vegetation life zones (US Geological Survey, National Elevation 

Dataset 1999) 
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Fig. 10 Site A1 species accumulation curve showing bootstrap and ACE values for 1996 

and 2013 survey data (1996 data taken from Korb 1997 with permission) 
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Fig. 11 Site B1 species accumulation curve showing bootstrap and ACE values for 1996 

and 2013 survey data (1996 data taken from Korb 1997 with permission) 
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Fig. 12 Site C1 species accumulation curve showing bootstrap and ACE values for 1996 

and 2013 survey data (1996 data taken from Korb 1997 with permission) 
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Fig. 13 Site D1 species accumulation curve showing bootstrap and ACE values for 1996 

and 2013 survey data (1996 data taken from Korb 1997 with permission) 
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Fig. 14 Principal component analysis (PCA) for site A1 with PC1 and PC2 site and 

family scores (scaling = 1).  To improve the visual clarity of the diagram, only the 

median site scores and interquartile ranges (1
st
 to 3

rd
 quartiles) for each survey year (filled 

circles = 1996 and open circles = 2013) were used.  Arrows were drawn to link the two 

survey medians.  Percentages corresponding to each axis represent the proportion of data 

explained by each axis.  In the upper left-hand corner, the number 1 denotes a statistically 

significant (p < 0.05) difference between the two years using a Wilcoxon test on PC1 

scores; the number 2 denotes a statistically significant (p < 0.05) difference between the 

two years using a Wilcoxon test on PC2 scores.  Family scores were scaled by dividing 

by 3.  For simplicity, only the 10 highest family scores are shown on each diagram.  

Families with the highest scores have the most biological meaning in terms of community 

change over time. (1996 data taken from Korb 1997 with permission) 
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Fig. 15 Principal component analysis (PCA) for site B1 with PC1 and PC2 site and 

family scores (scaling = 1).  To improve the visual clarity of the diagram, only the 

median site scores and interquartile ranges (1
st
 to 3

rd
 quartiles) for each survey year (filled 

circles = 1996 and open circles = 2013) were used.  Arrows were drawn to link the two 

survey medians.  Percentages corresponding to each axis represent the proportion of data 

explained by each axis.  In the upper left-hand corner, the number 1 denotes a statistically 

significant (p < 0.05) difference between the two years using a Wilcoxon test on PC1 

scores; PC2 scores showed no significant difference.  Family scores were scaled by 

dividing by 3.  For simplicity, only the 10 highest family scores are shown on each 

diagram.  Families with the highest scores have the most biological meaning in terms of 

community change over time. (1996 data taken from Korb 1997 with permission) 
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Fig. 16 Principal component analysis (PCA) for site C1 with PC1 and PC2 site and 

family scores (scaling = 1).  To improve the visual clarity of the diagram, only the 

median site scores and the interquartile ranges (1
st
 to 3

rd
 quartiles) for each survey year 

(filled circles = 1996 and open circles = 2013) were used.  Arrows were drawn to link the 

two survey medians.  Percentages corresponding to each axis represent the proportion of 

data explained by each axis.  In the upper left-hand corner, the number 1 denotes a 

statistically significant (p < 0.05) difference between the two years using a Wilcoxon test 

on PC1 scores; the number 2 denotes a statistically significant (p < 0.05) difference 

between the two years using a Wilcoxon test on PC2 scores.  Family scores were scaled 

by dividing by 3.  For simplicity, only the 10 highest family scores are shown on each 

diagram.  Families with the highest scores have the most biological meaning in terms of 

community change over time. (1996 data taken from Korb 1997 with permission) 

  



67 

 

 
Fig. 17 Principal component analysis (PCA) for site D1 with PC1 and PC2 site and 

family scores (scaling = 1).  To improve the visual clarity of the diagram, only the 

median site scores and interquartile ranges (1
st
 to 3

rd
 quartiles) for each survey year (filled 

circles = 1996 and open circles = 2013) were used.  Arrows were drawn to link the two 

survey medians.  Percentages corresponding to each axis represent the proportion of data 

explained by each axis.  In the upper left-hand corner, the number 1 denotes a statistically 

significant (p < 0.05) difference between the two years using a Wilcoxon test on PC1 

scores; PC2 scores showed no significant difference.  Family scores were scaled by 

dividing by 3.  For simplicity, only the 10 highest family scores are shown on each 

diagram.  Families with the highest scores have the most biological meaning in terms of 

community change over time. (1996 data taken from Korb 1997 with permission) 
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Fig. 18 New and lost species counts for each site in 1996 (compared to 1981) and 2013 

(compared to 1996). (1996 data taken from Korb 1997 with permission) 
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APPENDICES 

Appendix 1 Location of stands (Korb 1997, Korb and Ranker 2001) and survey plots 

(Kooiman Halford 1983, Kooiman and Linhart 1986) 

 

Site A1 (2200 m) 

 

Take Highway 119 (Canyon Drive) west from Boulder.  Follow the road approximately 

11.0 km until you reach the Sugarloaf Road turnoff on the right.  Take Sugarloaf Road 

approximately 3.2 km, passing the Sugarloaf District Fire Station.  Turn left at the first 

group of mailboxes on an unnamed dirt road just past Millionaire Road.  Take this road 

approximately 1.5 km, going up and then down a hill. Pull off to the right side of the road 

on the downslope of the hill where there is an overgrown jeep trail leading uphill to the 

right.  Walk up this trail approximately 0.3 km and take a right through the woods (no 

trail) until you reach the ridge-top, where there will be a fenced-in weather station.  This 

is the A-1 weather station.  The sampling line (Appendix 1A) is marked with 1.27 cm by 

91.44 cm rebar rods at either end. 
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Appendix 1A This is the survey line at site A-1 in Boulder County, CO (taken from 

Kooiman Halford, 1983 with permission).  This line is 100 m long and marks the middle 

of the survey transect, which extends 5 m on either side of the line to form a 1000 m
2
 

sample area (100 m x 10 m).  Tick marks intended to represent spots where iron stakes 

were placed in 1983 are not entirely accurate, as many of the stakes have been uprooted, 

buried, or moved.  Letters representing trees are obsolete.    

 

Site B1 (2600 m) 

 

Follow directions to Site A-1 but instead of turning left at the first group of mailboxes 

near Millionaire Road continue driving on Sugarloaf Road for an additional 2.4 km.  Turn 

right onto an unnamed gravel road that has a sign pointing towards the Switzerland Trail. 

Follow this road uphill until you reach an open trailhead parking lot.  The road forks 

directly before the parking lot, where you can continue straight into the parking lot or 

turn left onto an unnamed dirt jeep road; take this road west approximately 0.8 km until 

you reach the first jeep trail on your left, which directs you southward.  Park in the open 
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area on the right shortly after the turn (0.1 km).  These roads are not well maintained and 

may require a four-wheel drive vehicle, depending on the conditions.  Almost directly 

across from the small open area is another jeep trail that has been abandoned.  Walk up 

this trail approximately 0.3 km.  Near the ridge-top, veer slightly right until you reach the 

fenced-in B-1 weather station.  The sampling line (Appendix 1B) is marked with 1.27 cm 

by 91.44 cm rebar rods at either end. 

 

 
Appendix 1B This is the survey line at site B-1 in Boulder County, CO (taken from 

Kooiman Halford, 1983 with permission).  This line is 100 m long and marks the middle 

of the survey transect, which extends 5 m on either side of the line to form a 1000 m
2
 

sample area (100 m x 10 m).  This transect is divided by a jeep trail.  The first 20 meters 

of the survey line are north of the trail and the second 80 m are south of the trail.  These 
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survey areas were treated as two different transects that were totaled together as one.  

Tick marks intended to represent spots where iron stakes were placed in 1983 are not 

entirely accurate, as many of the stakes have been uprooted, buried, or moved.  Letters 

representing trees are obsolete. 

 

Site C1 (3050 m)  

 

Follow directions to Site A-1 but instead of turning right onto Sugarloaf Road stay on 

Highway 119 (Canyon Drive) heading west to Nederland.  In Nederland, take Highway 

72 (Peak to Peak Highway) north until you see signs for the University of Colorado 

Boulder’s Rocky Mountain Research Station.  Turn left on this gravel road and park at 

the station’s headquarters cabin, where a gate blocks a jeep trail heading north.  This gate 

may be locked, and therefore it may be necessary to coordinate with research station 

employees to acquire keys to the gates on this trail prior to surveying.  Take this uphill 

trail until you reach another gate that will most likely require keys to unlock.  Continue 

driving past the former C-1 weather station on the right until you reach the current C-1 

weather station, which should be approximately 2.7 km from the beginning of the trail.  

Park next to the current weather station and walk approximately 10 m down the trail to 

the first jeep trail on the left.  There are many trails that fork in this area; however, this is 

the only jeep trail.  Follow this trail approximately 150.0 m until you reach an 

intermittent stream.  This stream divides the transect; one part of the transect is on one 

side of the stream and the second part of the transect is on the other side.  The sampling 

line (Appendix 1C) is marked with 1.27 cm by 91.44 cm rebar rods at either end. 
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Appendix 1C This is the survey line at site C-1 in Boulder County, CO (taken from 

Kooiman Halford, 1983 with permission).  This line is 100 m long and marks the middle 

of the survey transect, which extends 2 m on either side of the line to form a 400 m
2
 

sample area (100 m x 4 m).  This transect is divided by an intermittent creek.  The first 40 

meters of the survey line are located south of the creek and the second 60 m are north of 

the creek.  These survey areas were treated as two different transects that were totaled 

together as one.  Tick marks intended to represent spots where iron stakes were placed in 

1983 are not entirely accurate, as many of the stakes have been uprooted, buried, or 

moved.  Letters representing trees are obsolete. 
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 Appendix 2 Site A1: diameter at breast height (dbh) class distribution frequency counts 

 (1996 data taken from Korb, 1997 with permission) 

Mean diameter at 

breast height (cm) 5 10 15 20 25 30 35 40 45 50 

Range (cm) 4-7 

8-

12 

13-

17 

18-

22 

23-

27 

28-

32 

33-

37 

38-

42 

43-

47 

48-

52 

P. ponderosa 

1996 0 2 3 1 0 0 0 0 0 0 

P. ponderosa 

2013 0 2 1 3 2 0 0 0 0 0 

P. menziesii 1996 3 3 1 2 5 1 3 0 0 1 

P. menziesii 2013 4 11 3 7 6 5 1 5 2 0 

J. scopulorum 

1996 1 4 0 2 0 0 0 0 0 0 

J. scopulorum 

2013 0 2 2 0 2 0 0 0 0 0 
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Appendix 3 Survey comparison of the number of seedlings (height < 1 m), saplings 

(height > 1 m & < 4 cm dbh), stumps, dead trees, total young individuals (seedling + 

sapling counts), and total dead individuals (stump + dead tree counts) for each species at 

each of the three survey sites over a 17-year span (1996 data taken from Korb, 1997 with 

permission) 

 

  

Seedlings Saplings Stumps Dead trees Total young trees Total dead trees

P. ponderosa  1996 2 0 22 3 2 25

P. ponderosa  2013 0 0 0 0 0 0

P. menziesii  1996 7 7 2 1 14 3

P. menziesii  2013 0 6 0 0 6 0

J. scopulorum  1996 5 1 0 0 6 0

J. scopulorum  2013 0 3 0 0 3 0

Total 1996 14 8 24 4 22 28

Total 2013 0 9 0 0 9 0

P. flexilis  1996 0 0 0 0 0 0

P. flexilis  2013 0 0 1 0 0 1

P. ponderosa  1996 2 2 0 0 4 0

P. ponderosa  2013 0 0 0 2 0 2

P. menziesii  1996 56 8 2 0 64 2

P. menziesii  2013 23 4 2 2 27 4

Total 1996 58 10 2 0 68 2

Total 2013 23 4 3 4 27 7

A. lasiocarpa  1996 101 66 0 0 167 0

A. lasiocarpa  2013 31 33 0 1 64 1

P. engelmanii  1996 95 50 0 0 145 0

P. engelmanii  2013 55 47 0 5 102 5

P. contorta  1996 28 20 2 18 48 20

P. contorta  2013 12 1 0 3 13 3

P. tremuloides  1996 5 31 0 55 36 55

P. tremuloides  2013 3 11 0 56 14 56

Total 1996 229 167 2 73 396 75

Total 2013 101 92 0 65 193 65

Site A1

Site B1

Site C1
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Appendix 4 Site B1: diameter at breast height (dbh) class distribution frequency counts 

(1996 data taken from Korb, 1997 with permission) 

Mean 

diameter at 

breast height 

(cm) 5 10 15 20 25 30 35 40 45 50 55 60 65 

Range (cm) 

4

- 

7 

8-

12 

13-

17 

18-

22 

23-

27 

28-

32 

33-

37 

38-

42 

43-

47 

48-

52 

53-

57 

58-

62 

63

-

65 

P. flexilis 

1996 0 0 1 0 1 0 0 0 0 0 0 0 0 

P. flexilis 

2013 0 1 1 1 1 0 0 0 0 0 0 0 0 

P. menziesii 

1996 2 4 5 3 11 6 1 2 1 0 0 0 1 

P. menziesii 

2013 0 0 1 6 5 3 6 2 1 1 1 1 0 

P. ponderosa 

1996 4 1 0 1 1 0 0 0 0 0 0 0 0 

P. ponderosa 

2013 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Appendix 5 Site C1: diameter at breast height (dbh) class distribution frequency counts 

(1996 data taken from Korb, 1997 with permission) 

Mean diameter at breast height 

(cm) 5 10 15 20 25 30 35 

Range (cm) 4-7 8-12 13-17 18-22 23-27 28-32 33-37 

A. lasiocarpa 1996 21 3 0 0 0 0 0 

A. lasiocarpa 2013 17 5 3 0 0 1 0 

P. engelmannii 1996 21 4 4 2 3 1 0 

P. engelmannii 2013 22 9 1 2 2 2 1 

P. contorta 1996 9 3 5 1 3 1 0 

P. contorta 2013 2 2 2 0 4 2 0 

P. tremuloides 1996 56 33 13 0 0 0 0 

P. tremuloides 2013 28 30 6 0 0 0 0 
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Appendix 6.  Comparison of study approaches for all four survey years at sites A1, B1, 

C1 and D1. 

 

1953 1981 1996 2013 

Plots locations 

replicated? 
No Yes Yes Yes 

Field Methods 

Quadrat Method 

(random 

sampling); 12 

plots (91 cm x 

91 cm) 

Systematic 

Sampling; 50 

plots (85 cm x 

100 cm) 

Same as 

1981 

Same as 

1981/1996 

Available 

Data 

Summary data 

(limited) 
Summary data Raw data Raw data 

Data Analysis 

Parameters 

 -Presence and 

absence 

-Richness                                        

-Diversity using 

presence/absenc

e data 

(Shannon-

Wiener index)                                                             

-Frequency                                    

-Distribution of 

frequency 

classes     -

Composition 

Same as 

1981 

-Richness                                        

-Diversity using 

presence/absence 

data (Shannon-

Wiener index, 

Simpson index, 

Evenness index, 

Jaccard index)                                                             

-Frequency                                    

-Composition                           

-New vs. lost 

species 

comparison                                                           

-Species 

migration/range 

expansion   

-Species 

accumulation 

using frequency 

data 

Statistical 

Analyses 

None Kendall's tau 

and Spearman's 

rank correlation 

coefficent 

analysis 

(analyzing 

frequency shifts 

from 1953 to 

1981 for species 

with frequency 

Same as 

1981 

(analyzing 

frequency 

shifts 

from 1981 

to 1996 

for species 

frequency 

Principal 

component 

analysis (PCA) 

(analyzing 

frequency shifts 

from 1996 to 2013 

with raw 

frequency data 

from survey plots) 
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Appendix 7. Species lists for all three survey years at site A1 (lower montane).  Species 

with asterisks were treated as shrubs in 1981 and 1996 and were not included in the PCA.  

Species with + symbols were new species at A1 in 2013 (not found in 1981 or 1996).   

Site A1 2013 Site A1 1996 Site A1 1981 

Achillea millefolium var. 

occidentalis (Achillea lanulosa) Achillea lanulosa Achillea lanulosa 

Agropyron cristatum+ Aletes acaulis Amelanchier alnifolia* 

Antennaria alpina+ Allium cernuum 

Anisantha tectorum 

(Bromus tectorum) 

Antennaria parvifolia 

Anisantha 

tectorum(Bromus 

tectorum) Antennaria parvifolia 

Antennaria pulcherrima+ Antennaria parvifolia 

Arctostaphylos uva-

ursi* 

Apiaceae sp. 1 

Arctostaphylos uva-

ursi* Artemesia ludoviciana 

Arctostaphylos uva-ursi* Artemesia frigida Aster porter 

Artemesia frigida Artemesia ludoviciana 

Campanula 

rotundifolia 

Astragalus tenellus+ Boechera drummondii 

Carex pensylvanica 

ssp. heliophila 

Boraginaceae sp. 1 Boechera divaricarpa 

Chenopodium 

atrovirens 

Bouteloua gracilis+ Campanula rotundifolia Collinsia parviflora 

Bromus tectorum 

Carex pensylvanica ssp. 

heliophila 

Delphinium 

nuttallianum 

Carex pensylvanica ssp. heliophila Cerastium strictum Drymocallis fissa 

Caryophyllaceae sp. 1 Chenopodium fremontii Elymus longifolius 

Ceanothus fendleri*+ Collinsia parviflora 

Eriogonum 

umbellatum 

Cerastium strictum 

Delphinium 

nuttallianum Gaillardia aristata 

Critesion brachyantherum+ Draba streptocarpa Gayophytum nuttalli 

Delphinium nuttallianum Drymocallis fissa Geranium caespitosum 

Elymus elymoides (Elymus 

longifolius) Elymus canadensis 

Harbouria 

trachypleura 

Eriogonum umbellatum Elymus longifolius Heterotheca villosa 

Geranium caespitosum Eriogonum umbellatum Juniperus communis* 

Geum rossi+ Gaillardia aristata Lesquerella montana 

Hesperostipa comata+ Gayophytum sp. 

Leucocrinum 

montanum 
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Heterotheca villosa Geranium caespitosum Leucopoa kingii 

Holodiscus dumosus+ 

Harbouria 

trachypyleura Liatris punctata 

Jamesia americana* Heterotheca villosa Mertensia lanceolata 

Juniperus communis* Jamesia americana* 

Muhlenbergia 

montana 

Linum usitatissimum+ Juniperus communis* Penstemon virens 

Lomatium dissectum var. 

multifidum+ Leucopoa kingii Phacelia heterophylla 

Mertensia lanceolata Liatris punctata Poa agassizensis 

Pascopyrum smithii+ Mertensia lanceolata Poa fendleriana 

 

Penstemon sp. 1 
 

Muhlenbergia montana 
 

Ribes cereum* 

Poa compressa Penstemon virens Scutellaria brittonii 

Poaceae sp. 1 Phacelia heterophylla Senecio fendleri 

Potentilla pensylvanica var. 

paucijuga+ Poa compressa Senecio integerrimus 

Psathrostachys juncea+ Ribes cereum* Solidago missouriensis 

Pseudocymopterus montanus+ Scutellaria brittonii Stipa comate 

Ribes cereum* Senecio integerrimus 

Tithymalus 

brachyceras 

Rubus parviflorus+ Solidago missouriensis Tragopogon dubius 

Salvia sp. 1 Tithymalus brachyceras Verbascum thapsus 

Solidago missouriensis Tragopogon dubius   

Stanleya pinnata+ Verbascum thapsus   

Symphyotrichum porter+     

Tragopogon dubius     

Verbascum thapsus     
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Appendix 8. Species lists for all three survey years at site B1 (upper montane).  Species 

with asterisks were treated as shrubs in 1981 and 1996 and were not included in the PCA.  

Species with + symbols were new species at B1 in 2013 (not found in 1981 or 1996). 

Site B1 2013 Site B1 1996 Site B1 1981 

Achillea millefolium 

var. occidentalis 

(Achillea lanulosa) Achillea lanulosa Achillea lanulosa 

Allium cernuum Aletes acaulis Aletes acaulis 

Antennaria parvifolia Amerosedum lanceolatum Allium cernuum 

Arctostaphylos uva-

ursi* Androsace septentrionalis Arabis fendleri 

Artemesia frigida+ 

Anisantha tectorum (Bromus 

tectorum) Arctostaphylos uva-ursi* 

Artemesia ludoviciana Antennaria parvifolia Artemesia ludoviciana 

Artemesia sp. 1 Arctostaphylos uva-ursi* Aster porteri 

Artemesia sp. 2 Artemisia ludoviciana 

Astragalus adsurgens var. 

robustior 

Asteraceae sp. 2 

Astragalus adsurgens var. 

robustior Astragalus shortianus 

Astragalus adsurgens 

var. robustior Astragalus tenellus Astragalus tenellus 

Astragalus alpinus+ Boechera sp. Bahia dissecta 

Astragalus tenellus 

Carex pensylvanica ssp. 

heliophila 

Carex pensylvanica ssp. 

heliophila 

Bouteloua gracilis+ Collinsia parviflora Chenopodium fremontii 

Bromus japonicus+ Delphinium nuttallianum Collinsia parviflora 

Bromus tectorum Draba streptocarpa Delphinium sp. 

Carex concinna+ Drymocallis fissa Drymocallis fissa 

Carex pensylvanica 

ssp. heliophila Elymus longifolius Erigeron compositus 

Caryophyllaceae sp. 1 Erigeron colo-mexicanus Eriogonum umbellatum 

Chenopodium 

fremontii Eriogonum umbellatum Erysimum asperum 

Critesion 

brachyantherum+ Erysimum capitatum Gaillardia aristata 

Delphinium 

nuttallianum Frasera speciosa Gayophytum nuttalli 

Dryopteris expansa+ Gaillardia aristata Geranium caespitosum 

Elymus canadensis+ Gayophytum sp. Gilia pinnatifida 

Elymus elymoides 

(Elymus longifolius) Geranium caespitosum Harbouria trachypleura 
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Epilobium 

branchycarpum+ Gilia pinnatifida Heterotheca fulcrata 

Erigeron colo-

mexicanus Harbouria trachyplerura Koeleria macrantha 

Erigeron compositus Heterotheca villosa Lesquerella montana 

Eriogonum 

umbellatum Juniperus communis* Leucopoa kingii 

Erysimum capitatum Koeleria macrantha Lupinus argenteus 

Geranium 

caespitosum Lesquerella montana Mertensia lanceolata 

Gymnosteris parvula+ Leucopoa kingii Muhlenbergia montana 

Heterotheca villosa Lupinus argenteus Packera fendleri 

 

Juniperus communis* 
 

Mertensia lanceolata 
 

Penstemon virens 

Linum usitatissimum+ Oreocarya virgata Phacelia heterophylla 

Lomatium dissectum 

var. multifidum+ Oxytropis multiceps Poa fendleriana 

Lupinus argenteus Packera fendleri 

Pulsatilla patens ssp. 

multifida 

Machaeranthera 

pattersonii+ Penstemon glaber Ribes cereum* 

Mertensia lanceolata Penstemon virens Scutellaria brittonii 

Packera fendleri Phacelia heterophylla Sedum lanceolatum 

Pascopyrum smithii+ Poa compressa Selaginella densa 

Penstemon sp. 1 Ribes cereum* Solidago multiradiata 

Penstemon sp. 2 Scutellaria brittonii Stipa lettermanii 

Phacelia heterophylla Selaginella densa   

Plantago major+ Solidago multiradiata   

Poa compressa     

Poaceae sp. 1     

Polygonaceae sp. 1     

Psathrostachys 

juncea+     

Pseudocymopterus 

montanus+     

Pteridophyta sp. 1     

Ribes cereum*     

Salvia sp. 1     

Sedum lanceolatum     

Solidago     
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missouriensis+ 

Solidago multiradiata     

Solidago sp. 1     

Stanleya pinnata+     

Symphyotrichum 

porter+     

Tragopogon dubius+     

Unknown species 1     

Unknown species 2     

Unknown species 3     

Verbascum thapsus+     

Veronica scutellata+     

Woodsia oregana+     

Wyethia 

amplexicaulis+     
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Appendix 9. Species lists for all three survey years at site C1 (subalpine).  Species with 

asterisks were treated as shrubs in 1981 and 1996 and were not included in the PCA.  

Species with + symbols were new species at C1 in 2013 (not found in 1981 or 1996). 

Site C1 2013 Site C1 1996 Site C1 1981 

Achillea millefolium var. 

occidentalis (Achillea lanulosa) Achillea lanulosa Achillea lanulosa 

Allium sp. 1 

Amerosedum 

lanceolatum Aletes acaulis 

Antennaria microphylla 

(Antennaria rosea) Antennaria rosea 

Androsace 

septentrionalis 

Anticlea elegans Anticlea elegans Antennaria parvifolia 

Asteraceae sp. 3 

Calamagrostis 

canadensis Antennaria rosea 

Campanula rotundifolia Campanula rotundifolia Anticlea elegans 

Carex concinna+ Cardamine cordifolia Aster foliaceus 

Carex foenea Carex foenea Bistorta sp. 

Chamerion danielsii Chamerion danielsii Boechera drummondii 

Cornus sericea ssp. sericea+ Distegia involucrata* 

Calamagrostis 

canadensis 

Delphinium barbeyi+ 

Dodecatheon 

pulchellum Caltha leptosepala 

Distegia involucrata* Erigeron eximius 

Campanula 

rotundifolia 

Fragaria virginiana ssp. glauca 

Fragaria virginiana 

ssp. glauca Carex occidentalis 

Geranium caespitosum+ Hydrophyllum fendleri Chamerion danielsii 

Juncus arcticus ssp. ater 

Juncus arcticus ssp. 

ater Chenopodium sp. 

Lomatium dissectum var. 

multifidum+ Juniperus communis* Clementsia rhodantha 

Mertensia ciliata Lupinus argenteus Cystopteris fragilis 

Muhlenbergia montana+ 

Maianthemum 

amplexicaule Danthonia parryi 

Paxistma myrsinites+ 

Orthilla secunda ssp. 

obtusata Distegia involucrata 

Pedicularis racemosa ssp. alba+ Osmorhiza depauperata 

Dodecatheon 

pulchellum 

Penstemon whippleanus Oxypolis fendleri Draba streptocarpa 

Poaceae sp. 2 Penstemon glaber Elymus sp. 

Potentilla pulcherrima Penstemon whippleanus Fragaria ovalis 

Pseudocymopterus montanus Pentaphylloides Gayophytum nuttalli 
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floribunda* 

Pyrola chlorantha+ Potentilla pulcherrima 

Harbouria 

trachypleura 

Rosa woodsii 

Pseudocymopteris 

montanus Juncus arcticus 

Rubus idaeus ssp. melanolasius+ Pyrola minor Juniperus communis* 

Salix planifolia+ Rosa woodsii Lupinus argenteus 

Salix reticulata+ Selaginella densa Mertensia ciliata 

Senecio fremontii var. blitoides+ 

 

Senecio triangularis  

 

Orthilia secunda  

 

Taraxacum officinale Solidago multiradiata Oxypolis fendleri 

Unknown species 10 Taraxacum officinale Rosa acicularis 

Unknown species 4 

Vaccinium myrtillus 

ssp. oreophilium* 

Penstemon 

whippleanus 

Unknown species 5   
Pentaphylloides 

floribunda* 

Unknown species 6   

Poa nemoralis ssp. 

interior 

Unknown species 7   

Potentilla 

pulcherrima 

Unknown species 8   

Pseudocymopterus 

montanus 

Unknown species 9   Pyrola minor 

Wyethia amplexicaulis+   Sedum lanceolatum 

    Selaginella densa 

    Senecio triangularis 

    
Silene scouleri ssp. 

hallii 

    Smilacina sp. 

    Solidago multiradiata 

    Taraxacum officinale 

    
Thermopsis 

divaricarpa 

    Trisetum spicatum 

    
Vaccinium myrtillus 

ssp. oreophilum* 

    
Veronica 

wormskjoldii 
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Appendix 10. Species lists for all three survey years at site D1 (alpine).  Species with + 

symbols were new species at D1 in 2013 (not found in 1981 or 1996). 

Site D1 2013 Site D1 1996 Site D1 1981 

Acomastylis rossii ssp. 

turbinate Acetosella vulgaris Acetosella vulgaris 

Antennaria microphylla+ 

Acomastylis rossi ssp. 

turbinata 

Acomastylis rossii ssp. 

turbinata 

Anticlea elegans Artemesia scopulorum Anticlea elegans 

Bistorta bistortoides Besseya alpine Arenaria fendleri 

Bistorta vivipara Bistorta bistortoides Artemesia scopulorum 

Campanula uniflora Campanula uniflora Besseya alpina 

Carex albonigra Carex albonigra Bistorta bistortoides 

Castilleja occidentalis+ 

Carex rupestris ssp. 

drummondiana Bistorta vivipara 

Erigeron simplex+ Carex scopulorum 

Calamagrostis 

purpurascens 

Eritrichum aretoides 

Cerastium beeringianum 

ssp. earlei Campanula uniflora 

Erysimum capitatum Cystopteris fragilis Carex albonigra 

Fabaceae sp. 1 Eremogone fendleri Carex arapahoensis 

Fabaceae sp. 2 Eritrichum aretioides Carex norvegica 

Fabaceae sp. 3 Erysimum capitatum 

Carex norvegica ssp. 

norvegica 

Gentian pneumonanthe+ Helicotrichon mortonianum Carex rupestris 

Kobresia myosuroides Kobresia myosuroides 

Cerastium beeringianum 

ssp. earlei 

Lidia obtusiloba Lidia obtusiloba Cystopteris fragilis 

Lloydia serotina Lloydia serotina Danthonia intermedia 

Mertensia lanceolata Mertensia lanceolata Eritrichium aretoides 

Oreoxis alpina Oreoxis alpina Erysimum capitatum 

Poa glauca ssp. rupicola Phlox sibirica ssp. pulvinata 

Helicotrichon 

mortonianum 

Potentilla nivea Poa glauca ssp. rupicola Kobresia myosuroides 

Potentilla rubricaulis Polemonium viscosum Lewisia pygmaeae 

Rydbergia grandiflora Potentilla nivea Lloydia serotina 

Stellaria longipes+ Potentilla ovina Mertensia viridis 

Taraxacum ceratophorum Potentilla rubricaulis Lidia obtusiloba 

Trifolium dasyphyllum Rhodiola integrifolia Oreoxis alpina 

Trisetum spicatum ssp. 

congdonii Rydbergia grandiflora 

Phlox sibirica ssp. 

pulvinata 
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Unknown species 11 Selaginella densa Poa glauca 

Unknown species 12 

Silene acaulis ssp. 

subacaulescens Polemonium viscosum 

Unknown species 13 Taraxcum ceratophorum Potentilla nivea 

 
 Tonestus pygmaeus Potentilla rubricaulis 

  
Trisetum spicatum ssp. 

congdonii Rydbergia grandiflora 

  Trifolium dasyphyllum Saxifraga rhomboidea 

  Trifolium nanum Selaginella densa 

    

Silene acaulis ssp. 

subacaulescens 

    Taraxacum ceratophorum 

    Thlaspi montanum 

    Tonestus pygmaeus 

    Trifolium dasyphyllum 

    Trifolium nanum 
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Appendix 11. Presence/absence percentages for species having >20% presence in 1981, 

1996, or 2013.  95% confidence intervals for binomial distribution are provided in 

parentheses.  Double asterisks refer to species that were present but their frequencies are 

unknown due to a lack of raw data.  Bolded values represent the highest presence values 

for each site during each year. 

Sit

e 
Species 1981 1996 2013 

A1 

Antennaria alpine 0 0 30 (17–43) 

Artemisia ludoviciana 18 (9–31) 28 (16–42) 0 

Artemesia frigida 0 10 (2-18) 44 (30–58) 

Astragalus tenellus 0 0 22 (10–34) 

Bromus tectorum 10 (3–22) 62 (47–75) 14 (4–24) 

Carex pensylvanica ssp. 

heliophila 
72 (58–84) 82 (69–91) 86 (76–96) 

Collinsia parviflora 30 (18–45) 30 (18–45) 0 

Critesion brachyantherum 0 0 20 (9–31) 

Drymocallis fissa 22 (12–36) 16 (7–29) 0 

Elymus elymoides ** 16 (6-26) 62 (48–76) 

Gayophytum nuttallii 30 (18–45) 32 (20–47) 0 

Leucopoa kingie 22 (12–36) 34 (21–49) 0 

Mertensia lanceolatum 16 (7–29) 28 (16–42) 12 (3–21) 

Phacelia heterophylla 24 (13–38) 14 (6–27) 0 

Poa compressa 0 20 (10–34) 38 (24–52) 

Scutellaria brittonii 38 (25–53) 42 (28–57) 0 

Senecio integerrimus 28 (16–42) 34 (21–49) 0 

Solidago missouriensis 30 (18–45) 40 (26–55) 38 (24–52) 

 

B1 

Achillea millefolium var. 

occidentalis 
20 (10–36) 34 (21–49) 56 (42–70) 

Aletes acaulis 36 (23–51) 32 (20–47) 0 

Artemisia ludoviciana 54 (39–68) 68 (54–80) 74 (62–86) 

Astragalus adsurgens var. 

robustior 
** 6 (0-13) 30 (17–43) 

Astragalus tenellus 18 (9–31) 28 (15–40) 60 (46–74) 

Boechera sp. 22 (12–36) 4 (0–14) 0 

Carex pensylvanica ssp. 

heliophila 
76 (62–87) 82 (69–91) 96 (91–100) 

Critesion brachyantherum 0 0 52 (38–66) 

Drymocallis fissa 36 (23–51) 34 (21–49) 0 



96 

 

Elymus Canadensis 0 0 20 (9–31) 

Elymus elymoides 0 4 (0-9) 80 (69–91) 

Eriogonum umbellatum ** 10 (2-18) 68 (55–81) 

Gayophytum sp. 24 (13–38) 18 (9–31) 0 

Geranium caespitosum ** 14 (4-24) 40 (26–54) 

Gilia pinnatifida 12 (5–24) 20 (10–36) 0 

Harbouria trachypleura 34 (21–49) 24 (13–38) 0 

Heterotheca villosa 0 8 (0-16) 32 (19–45) 

Koeleria macrantha 16 (7–29) 28 (16–42) 0 

Leucopoa kingie 50 (36–64) 44 (30–59) 0 

Lupinus argenteus 2 (0–11) 34 (21–49) 12 (3–21) 

Mertensia lanceolatum ** 14 (4-24) 26 (14–38) 

Packera fendleri 28 (16–42) 44 (30–59) 0 

Penstemon virens 72 (58–84) 76 (62–87) 0 

Phacelia heterophylla 24 (13–38) 16 (7–29) 6 (0–13) 

Poa compressa 0 8 (0-16) 28 (15–41) 

Pseudocymopteris montanus 0 0 64 (51–77) 

Scutellaria brittonii 14 (6–27) 28 (16–42) 0 

Sedum lanceolatum 34 (21–49) 54 (39–68) 18 (7–29) 

Solidago missouriensis 0 0 34 (21–47) 

Solidago multiradiata 20 (10–36) 52 (37–66) 54 (40–68) 

C1 

Achillea millefolium var. 

occidentalis 
74 (60–85) 38 (25–53) 24 (12–36) 

Anticlea elegans 16 (7–29) 20 (10–34) 4 (0–9) 

Antennaria parvifolia 24 (13–38) 2 (0–11) 0 

Aster foliaceus 20 (10–34) 0 0 

Calamagrostis canadensis 6 (1–14) 32 (20–47) 0 

Campanula rotundifolia 28 (16–42) 24 (13–38) 10 (2–18) 

Carex foenea 0 44 (30–59) 32 (19–45) 

Chamerion danielsii 90 (78–97) 78 (65–88) 74 (62–86) 

Fragaria virginiana ssp. glauca 86 (73–94) 84 (72–93) 62 (48–76) 

Juncus arcticus ssp. ater 34 (21–49) 16 (7–29) 18 (7–29) 

Lupinus argenteus 52 (37–66) 6 (0–13) 0 

Mertensia ciliate 0 0 34 (21–47) 

Orthilia secunda ssp. obtusata 18 (9–31) 22 (12–36) 0 

Potentilla pulcherrima 50 (36–64) 36 (23–51) 30 (17–43) 
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Pseudocymopteris montanus 34 (20–47) 34 (20–47) 6 (0–13) 

Pyrola chlorantha 0 0 30 (17–43) 

Rosa woodsii 28 (16–42) 14 (6–27) 42 (28–56) 

Salix reticulate 0 0 24 (12–36) 

Selaginella densa 34 (21–49) 28 (16–42) 0 

Solidago multiradiata 32 (20–47) 22 (12–36) 0 

Taraxacum officinale 64 (49–77) 18 (9–31) 14 (4–24) 

Thermopsis divaricarpa 26 (15–40) 0 0 

D1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D1 

Acomastylis rossii ssp. turbinata 
98 (89–

100) 

98 (89–

100) 
98 (94–100) 

Bistorta bistortoides 90 (78–97) 
98 (89–

100) 
94 (87–100) 

Bistorta vivipara 26 (15–40) 0 20 (9–31) 

Campanula uniflora 
98 (89–

100) 
90 (78–97) 52 (38–66) 

Carex albonigra 12 (5–24) 58 (43–66) 16 (6–26) 

Carex rupestris ssp. 

drummondiana 
4 (0–14) 24 (13–38) 0 

Eremogone fendleri 34 (21–49) 52 (37–66) 0 

Eritrichum aretiodes 42 (28–57) 12 (5–24) 12 (3–21) 

Erysimum capitatum 38 (25–53) 46 (32–61) 10 (2–18) 

Helicotrichon mortonianum 52 (37–66) 54 (39–68) 0 

Kobresia myosurioides 92 (81–99) 
94 (83–

100) 
70 (57–83) 

Lidia obtusiloba 58 (43–66) 54 (39–68) 76 (64–88) 

Lloydia serotina 92 (81–99) 86 (73–94) 44 (30–58) 

Mertensia lanceolatum 40 (26–55) 56 (41–70) 78 (66–90) 

Oreoxis alpina 
98 (89–

100) 

98 (89–

100) 
22 (10–34) 

Phlox sibirica ssp. pulvinata 90 (78–97) 86 (73–94) 0 

Poa glauca ssp. rupicola 66 (51–79) 92 (81–99) 
100 (100–

100) 

Polemonium viscosum 34 (21–49) 32 (20–47) 0 

Potentilla nivea 40 (26–55) 54 (39–68) 4 (0–9) 

Potentilla ovina 0 24 (13–38) 0 

Potentilla rubricaulis 38 (25–53) 14 (6-27) 2 (0–6) 

Rydbergia grandiflora 8 (2–19) 20 (10–34) 6 (0–13) 

Selaginella densa 88 (76–95) 70 (56–82) 0 
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Silene acaulis 26 (15–40) 6 (1–17) 0 

Taraxacum ceratophorum 52 (37–66) 60 (49–77) 28 (15–41) 

Thlaspi montanum 22 (12–36) 0 0 

Trifolium dasyphyllum 88 (76–95) 
98 (89–

100) 
96 (91–100) 

Trifolium nanum 40 (26–55) 6 (1–17) 0 

Trisetum spicatum ssp. congdonii 0 0 46 (32–60) 
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