
University of Denver University of Denver

Digital Commons @ DU Digital Commons @ DU

Electronic Theses and Dissertations Graduate Studies

1-1-2014

An Empirical Comparison of Reuse in Embedded and An Empirical Comparison of Reuse in Embedded and

Nonembedded Systems Nonembedded Systems

Julia F. Varnell-Sarjeant
University of Denver

Follow this and additional works at: https://digitalcommons.du.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Varnell-Sarjeant, Julia F., "An Empirical Comparison of Reuse in Embedded and Nonembedded Systems"
(2014). Electronic Theses and Dissertations. 1001.
https://digitalcommons.du.edu/etd/1001

This Dissertation is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It
has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital
Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu.

https://digitalcommons.du.edu/
https://digitalcommons.du.edu/etd
https://digitalcommons.du.edu/graduate
https://digitalcommons.du.edu/etd?utm_source=digitalcommons.du.edu%2Fetd%2F1001&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.du.edu%2Fetd%2F1001&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.du.edu/etd/1001?utm_source=digitalcommons.du.edu%2Fetd%2F1001&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jennifer.cox@du.edu,dig-commons@du.edu

An Empirical Comparison of Reuse in Embedded

and Nonembedded Systems

A Dissertation

Presented to the Faculty

of The Daniel Felix Ritchie School of Engineering and Computer Science

University of Denver

in Partial Fulfillment

of the Requirements for the Degree

of Doctor of Philosophy

by

Julia F. Varnell-Sarjeant

June, 2014

Advisor: Dr. Anneliese Andrews

© Copyright by Julia F. Varnell-Sarjeant, 2014.

All Rights Reserved

Author: Julia F. Varnell-Sarjeant
Title: An Empirical Comparison of Reuse in Embedded and Nonembedded Systems
Advisor: Dr. Anneliese Andrews
Degree Date: June, 2014

Abstract

High-quality software, delivered on time and budget, constitutes a critical part of most

products and services in modern society. Our government has invested billions of dollars to

develop software assets, often to redevelop the same capability many times. Recognizing

the waste involved in redeveloping these assets, in 1992 the Department of Defense issued

the Software Reuse Initiative.

The vision of the Software Reuse Initiative was "To drive the DoD software commu-

nity from its current "re-invent the software" cycle to a process-driven, domain-specific,

architecture-centric, library-based way of constructing software.” Twenty years after issu-

ing this initiative, there is evidence of this vision beginning to be realized in nonembedded

systems. However, virtually every large embedded system undertaken has incurred large

cost and schedule overruns. Investigations into the root cause of these overruns implicates

reuse. Why are we seeing improvements in the outcomes of these large scale nonembedded

systems and worse outcomes in embedded systems? This question is the foundation for

this research.

The experiences of the Aerospace industry have led to a number of questions about reuse

and how the industry is employing reuse in embedded systems. For example, does reuse in

embedded systems yield the same outcomes as in nonembedded systems? Are the outcomes

positive? If the outcomes are different, it may indicate that embedded systems should not

use data from nonembedded systems for estimation. Are embedded systems using the

same development approaches as nonembedded systems? Does the development approach

make a difference? If embedded systems develop software differently from nonembedded

systems, it may mean that the same processes do not apply to both types of systems.

ii

What about the reuse of different artifacts? Perhaps there are certain artifacts that, when

reused, contribute more or are more difficult to use in embedded systems. Finally, what

are the success factors and obstacles to reuse? Are they the same in embedded systems as

in nonembedded systems?

The research in this dissertation is comprised of a series of empirical studies using

professionals in the aerospace and defense industry as its subjects. The main focus has

been to investigate the reuse practices of embedded systems professionals and nonembedded

systems professionals and compare the methods and artifacts used against the outcomes.

The research has followed a combined qualitative and quantitative design approach. The

qualitative data were collected by surveying software and systems engineers, interviewing

senior developers, and reading numerous documents and other studies. Quantitative data

were derived from converting survey and interview respondents’ answers into coding that

could be counted and measured.

From the search of existing empirical literature, we learned that reuse in embedded

systems are in fact significantly different from nonembedded systems, particularly in effort

in model based development approach and quality where the development approach was

not specified.

The questionnaire showed differences in the development approach used in embedded

projects from nonembedded projects, in particular, embedded systems were significantly

more likely to use a heritage/legacy development approach. There was also a difference in

the artifacts used, with embedded systems more likely to reuse hardware, test products, and

test clusters. Nearly all the projects reported using code, but the questionnaire showed

that the reuse of code brought mixed results. One of the differences expressed by the

respondents to the questionnaire was the difficulty in reuse of code for embedded systems

when the platform changed.

The semistructured interviews were performed to tell us why the phenomena in the

review of literature and the questionnaire were observed. We asked respected industry

professionals, such as senior fellows, fellows and distinguished members of technical staff,

iii

about their experiences with reuse. We learned that many embedded systems used her-

itage/legacy development approaches because their systems had been around for many

years, before models and modeling tools became available. We learned that reuse of code

is beneficial primarily when the code does not require modification, but, especially in em-

bedded systems, once it has to be changed, reuse of code yields few benefits. Finally,

while platform independence is a goal for many in nonembedded systems, it is certainly

not a goal for the embedded systems professionals and in many cases it is a detriment.

However, both embedded and nonembedded systems professionals endorsed the idea of

platform standardization.

Finally, we conclude that while reuse in embedded systems and nonembedded systems

is different today, they are converging. As heritage embedded systems are phased out,

models become more robust and platforms are standardized, reuse in embedded systems

will become more like nonembedded systems.

iv

Acknowledgements

This research is dedicated to the women who made it possible. To Dr. Andrews for

her patient and tireless guidance. To Dorothy McKinney and Willa Pickering for their

inspiration, endless support and wise advice. These three women showed me that you are

never too old or too female to accomplish your dreams. To Dr. Andreas Stefik and Joe

Lucente for their contributions to the survey analysis. To my husband, who inspired and

supported me. And to my children, who have dreams of their own.

v

Contents

Acknowledgements . v
List of Tables . x
List of Figures . xii

1 Introduction 1
1.1 Problem Statement . 5

1.1.1 Research Context . 5
1.1.2 Research Questions . 6
1.1.3 Contributions and Papers . 8

1.2 Organization . 9

2 Background 11
2.1 History of Reuse . 11
2.2 Introduction . 11
2.3 Early Development Approaches and Reuse 12

2.3.1 Ad Hoc Reuse . 13
2.3.2 Structured Programming . 13
2.3.3 Libraries . 14
2.3.4 Legacy or Heritage Reuse . 15

2.4 New Technologies and Standards Affecting Reuse 15
2.4.1 Interface Standards. 16
2.4.2 Object-Oriented Languages. 16
2.4.3 Unified Modeling Language (UML) 17
2.4.4 Design Patterns. 18
2.4.5 Simple Object Access Protocol (SOAP), Software as a Service (SAAS)

and Extensible Markup Language (XML) 18
2.5 Government Initiatives Affecting Reuse . 18

2.5.1 The Software Reuse Initiative. 19
2.5.2 The Government Acquisition Process. 19
2.5.3 C4ISRAF/ Department of Defense Architecture Framework (DoDAF). 20
2.5.4 Joint Technical Architecture . 21
2.5.5 Modular Open Systems Approach (MOSA). 22

2.6 Success Factors for Early Reuse . 22
2.7 Reuse in More Recent Software Development Approaches 23

2.7.1 Component Based Systems Engineering (CBSE) 23
2.7.2 Product Lines . 23

vi

2.7.3 Model Based Systems Engineering (MBSE) 25
2.8 Historical Problems with Reuse . 25
2.9 The Future of Reuse in Embedded Systems 29
2.10 Conclusion . 31
2.11 Classifying System Types, Development Approaches, and Study Types . . . 33

2.11.1 Development Approaches . 33
2.11.2 Classification of System Types . 37
2.11.3 Empirical Study Types . 38

3 Review of Existing Literature 41
3.1 Introduction to Review of Existing Literature 41
3.2 Review Process and Inclusion Criteria . 43
3.3 Reuse and Development Approaches for Embedded vs. Nonembedded Sys-

tems . 46
3.3.1 Software Reuse in Embedded Systems 46
3.3.2 Software Reuse in Nonembedded Systems 48
3.3.3 Software Reuse in Embedded and Nonembedded Systems 50
3.3.4 Comparing Study Types . 52

3.4 Metrics Reported . 53
3.5 Analysis of Outcomes . 60
3.6 Threats to Validity . 69
3.7 Conclusion and Future Work . 73

4 Survey 76
4.1 Related Work . 76
4.2 The Survey . 80

4.2.1 Context, Research Questions, and Hypotheses 80
4.2.2 Procedure . 82
4.2.3 Focus of Study . 83
4.2.4 Sampling Plan . 84
4.2.5 Instrument Development . 85
4.2.6 Administration . 87
4.2.7 Data Validation . 88
4.2.8 Analysis Plan . 88

4.3 Results . 89
4.3.1 Descriptive Statistics . 89
4.3.2 Hypothesis Testing . 97
4.3.3 Principal Components Analysis . 100
4.3.4 Analysis of PCA Results . 105
4.3.5 Analysis of Pairs . 106
4.3.6 Summary of Results . 117
4.3.7 Discussion of Qualitative Results . 120

4.4 Discussion of Results . 125
4.4.1 Descriptive Statistics . 125
4.4.2 Quantitative Statistics . 126

vii

4.4.3 PCA . 126
4.5 Threats to Validity . 128

4.5.1 Quantitative Threats to Validity . 128
4.5.2 Qualitative threats to validity . 129

4.6 Conclusions and Future Work . 130

5 Semistructured Interview 133
5.1 Semistructured Interview Study Design . 134

5.1.1 Frame the research . 135
5.1.2 Sampling . 137
5.1.3 Designing the questions . 139
5.1.4 Developing the Protocol, Conducting the Interview and Data Collection141
5.1.5 Ethical Considerations . 142

5.2 Results . 143
5.2.1 Summary of Responses . 143
5.2.2 Coding the Answers for Quantitative Analysis 165
5.2.3 Results from Coding of Responses 166
5.2.4 Interpretation . 193

5.3 Threats to validity . 209
5.4 Conclusion, Lessons Learned and Future Work 211

6 Creating a New Framework to Enable Reuse 217
6.1 Summary of Existing Literature . 217
6.2 Summary of The Survey . 221
6.3 Summary of Results from Structured Interviews 227
6.4 Analysis of Results . 233

6.4.1 Differences and Similarities between Embedded and Nonembedded
Systems . 233

6.4.2 Summary of Benefits and Detriments of Development Approaches . 233
6.4.3 Summary of Benefits and Detriments of Artifacts Reuse 234
6.4.4 Summary of Success Factors . 235
6.4.5 Summary of Obstacles . 237
6.4.6 Developing a New Approach . 239

6.5 Threats to Validity . 244
6.5.1 Quantitative Threats to Validity . 244
6.5.2 Qualitative threats to validity . 245

6.6 Conclusions . 247

Bibliography 251

A Years of Publication 267

B The Survey 269

C The MANOVA Tables 274

viii

D Interview Letter 277

E Interview Questions 280

F Finding Convergence in Interview Responses 282

ix

List of Tables

2.1 Development approach-specific reuse strategies 34

3.1 Embedded Systems Study Types by Development Approach 47
3.2 Nonembedded Systems Study Types by Development Approach 48
3.3 Both Embedded and Nonembedded Systems Study Types by Development

Approach . 50
3.4 Metrics in Embedded Studies . 54
3.5 Metrics in Nonembedded Studies . 55
3.6 Metrics in Both Embedded and Nonembedded 57
3.7 Metrics Comparisons . 59
3.8 Projects by Development Type . 61
3.9 Size of Embedded Systems . 61
3.10 Size of Nonembedded Systems . 61
3.11 Frequencies of Outcomes . 65
3.12 Normalized of Frequencies Outcomes . 67
3.13 Chi Squared Values . 69

4.1 Survey Rationale . 82
4.2 Survey Plan . 83
4.3 Types of Systems and Applications . 90
4.4 Development Approach by System Type . 91
4.5 Development Approach Contained in Strategy 93
4.6 Reuse Artifacts Contained in Strategy . 94
4.7 Outcome Summary . 95
4.8 Survey Datatypes . 101
4.9 Scale of comparison for pairwise assignments 101
4.10 AHP Pairwise Selections Based on Relative Degree of Evolution of Reuse

Artifacts (normalized) (Q11a-e) . 102
4.11 AHP Pairwise Selections Based on Relative Frequency of Selection in Survey

Data (normalized) (Q11a-e) . 103
4.12 AHP Synthesis of Weights and Consistency Metrics for Evolution and Fre-

quency (Q11) . 103
4.13 AHP Synthesis of Weights and Consistency Metrics for Evolution and Fre-

quency (Q14a-i) . 104
4.14 PCA Tests Showing Survey Data Categories Included 105
4.15 Test All: PCA Factor Loadings - All Survey Questions 106

x

4.16 Test A: PCA Factor Loadings - All Survey Questions - less outcomes 107
4.17 Test G: PCA Factor Loadings - All Survey Questions - less reuse artifacts . 107
4.18 Test H: PCA Factor Loadings - All Survey Questions - less reuse approach . 109
4.19 Test F: PCA Factor Loadings - All Survey Questions - less input 110
4.20 Test B: PCA Factor Loadings - All Survey Questions - less reuse artifacts

less outcomes . 111
4.21 Test C: PCA Factor Loadings - All Survey Questions - less reuse approach

less outcomes . 111
4.22 Test D: PCA Factor Loadings - All Survey Questions - less system type less

outcomes . 113
4.23 Test E: PCA Factor Loadings - All Survey Questions - less system type less

reuse approach . 114
4.24 Test J: PCA Factor Loadings - All Survey Questions - less system type less

reuse artifacts . 114
4.25 Test I: PCA Factor Loadings - All Survey Questions - less reuse approach

less reuse artifacts . 116
4.26 Number of Principal Components Shared Between Test Pairs 117
4.27 Survey Response Relationships with Shared Principal Components 118
4.28 Survey Response Relationships with Single Principal Components 119

5.1 Approach Responses . 145
5.2 Artifact Responses . 146
5.3 Level of Reuse Responses . 147
5.4 Obstacles Responses . 149
5.5 Expert Comments on Obstacles . 152
5.6 Success and Failure Factors . 157
5.7 Respondent Comments on Success Factors 157
5.8 Models . 160
5.9 Nonfunctional Requirements . 163
5.10 Development Approach by System Type . 172
5.11 Artifact by System Type . 178
5.12 Technical Success Factors by System Type 184
5.13 Nontechnical Success Factors by System Type 185
5.14 Technical Obstacles by System Type . 186
5.15 Nontechnical Obstacles by System Type . 193
5.16 Ranking of Development Approach by System Type 198
5.17 Ranking of Artifacts by System Type . 200
5.18 Ranking of Technical Success Factors by System Type 203
5.19 Ranking of Nontechnical Success Factors by System Type 204
5.20 Ranking of Technical Obstacles by System Type 206
5.21 Ranking of Nontechnical Obstacles by System Type 208

xi

List of Figures

1.1 Goal Question Metric Diagram . 8
1.2 Structure of the Dissertation . 10

4.1 Demographic Information . 90
4.2 Outcomes . 95

6.1 Structure of the Ontology. 240
6.2 Process for Creating and Using the Ontology 241
6.3 Context of the Ontology . 244

A.1 Type of empirical study by year . 267
A.2 Empirical studies of reuse by development approach by year 268

C.1 MANOVA Tables System Type vs Development Approach 275
C.2 MANOVA Tables System Type vs Artifacts 276

D.1 Informed Consent Form . 279

F.1 Expert Responses . 283

xii

Chapter 1

Introduction

Reuse has been advocated as facilitating faster and cheaper development with higher

levels of quality. It is claimed to reduce effort, cost and to increase quality [4], improve

maintainability, reduce risk, shorten life cycle time, lower training costs, and achieve better

software interoperability [101]. "If a software package has been executing error-free in the

field for an extended period, under widely varying, perhaps stressful, operating conditions,

and it is then applied to a new situation, one strongly expects that it should work error

free in this new situation [4]." IEEE [65] states that the major benefits that systematic

reuse can deliver are:

• Increase software productivity

• Shorten software development and maintenance time

• Reduce duplication of effort

• Move personnel, tools, and methods more easily among projects

• Reduce software development and maintenance costs

• Produce higher quality software products

• Increase software and system dependability

• Improve software interoperability and reliability

1

Some interpret the IEEE Standard to be saying that benefits realized in nonembed-

ded systems are extensible to embedded systems. However, there may be some evidence

that several of these claims are not true. One particularly nagging question is whether

embedded systems benefit from reuse in the same ways that nonembedded systems do.

Some companies are establishing reuse processes and practices that are imposed on all sys-

tems [65]. IEEE has claimed in its reuse standard that “One major problem encountered

by organizations attempting to practice reuse is that reuse is simply missing from their life

cycle processes. To harness the benefits of reuse, an organization must incorporate reuse

throughout its system and software processes. An organization that creates systems and

software first and considers reuse second may not fully benefit from reuse practices [65].”

The US Aerospace Industry was an early advocate of reuse. In July of 1992, the DoD

released the DoD Reuse Initiative: Vision and Strategy [14]. This is why we started the

investigation with the studies from 1992 and later. The US government has invested heavily

in reuse, e.g. the Control Channel Toolkit (CCT) in 1997 and Global Broadcasting Service

(GBS) beginning in 1998. Hence, one would expect large scale planned reuse. Many

US government requests for proposal contain a reuse requirement including quantifying

expected savings from reuse.

Yet there are those who question whether successful reuse strategies work equally well

for all types of systems. Those supporting reuse cited the existence of working, already

developed assets that were performing similar capabilities. Those supporting new devel-

opment made the claim that when you ask a product to do what it was not designed to

do, the costs of modification and maintenance exceed the savings of reuse. Further, some

claim that embedded systems are fundamentally different from nonembedded systems, and

hence, successful reuse needs different strategies. Reasons include:

• Embedded systems are written and optimized directly to the target processors. If

the reused products are to be run on a different platform, much of the code will have

to be modified to accommodate the standard of the different platform.

2

• Throughput, processing, and timing of embedded systems are critical to system per-

formance, and thus to mission success.

• Much software available for reuse is old, sometimes obsolete. It may have been written

to processors that are no longer supported by the vendors. In order to make that

software work, it has to be reoptimized to newer processors.

• Platforms running the software are changing faster than the software.

• Embedded systems are not allowed to deploy with code that is not needed (many

reuse assets include more general solutions).

Others think that software is software, and the same reuse strategies can be used on

either type of system. It is, hence, unclear whether reuse is different for embedded versus

nonembedded systems.

The aerospace industry develops software for both embedded and nonembedded sys-

tems. However, in Aerospace, not all reuse experiences have been as successful as expected.

Some major projects experienced large overruns in time, budget, as well as inferior per-

formance, at least in part, due to the wide gap between reuse expectations and reuse

outcomes [115,132]. This seemed to be especially the case for embedded systems. In many

US government customer shops, reuse became a red flag when awarding contracts. Bidders

found that they could bid against reuse as successfully as for it.

Some engineers believed that one of the root causes of the disconnect between reuse

expectations and reuse realization was that too often estimated savings from reuse came

from projects that were not the same as the project being bid (c.f. Chapter 5). In particular,

the reuse estimates for nonembedded systems were applied to embedded systems. There

was an ongoing debate as to whether embedded systems and nonembedded systems were,

in fact, analogous. Many systems and software engineers, especially those who worked

on embedded systems, claimed that reuse could not be successfully used in their systems

because the code was optimized to particular processors which may not be used in the new

project. Many of the embedded systems software engineers claimed that reusing software

3

was more costly than building the system from scratch. Further, many claimed that, in

particular, trying to use model based development (derived from the Initiative) was more

costly than using other development approaches.

We undertook this investigation in an environment in which reuse was mandated in

bidding and implementation. However, bidding savings from reuse was difficult, in that we

could not locate metrics from similar embedded programs as justification for the claims of

expected savings. Given the likelihood that there might be a difference based on types of

systems, using savings metrics from nonembedded systems seemed unreliable. Once the

project was started, the absence of these metrics and processes in similar systems led to

importing processes from nonsimilar projects. The outcomes were often less than expected,

sometimes the outcomes were believed to be worse than if reuse had not been employed. So

the researcher wondered, are embedded systems truly different from nonembedded systems

when it comes to reuse? Specifically, does reuse effectiveness vary between embedded and

nonembedded software? Do embedded systems projects employ the same development and

reuse strategies? Are they reusing the same types of software and hardware artifacts? If

yes, can reuse be implemented in a way that is beneficial to embedded systems? If not,

why are the outcomes so often disappointing?

To shed light on these questions, a survey was designed to collect information on reuse

success and challenges for embedded vs nonembedded systems, and to compare reuse out-

comes for different development strategies and their related reuse artifacts.

This chapter describes the background (Section 1.1). the problem statement (Section

1.2) and the context for the research (Section 1.2). In addition, this chapter also presents

research questions (Section 1.2.2), the contributions (Section 1.2.3) and finally the thesis

oranization (Section 1.3).

4

1.1 Problem Statement

High-quality software, delivered on time and budget, constitutes a critical part of prod-

ucts and services in modern society. The Department of Defense has recognized that

developing and maintaining high quality systems is an expensive endeavor and has looked

for ways to curtail these costs. Looking to leverage existing assets, the DoD Software Reuse

Initiative developed a set of goals, priorities and processes to reuse existing assets. This

has worked well in a number of large nonembedded systems. However, embedded systems

have not fared as well. Almost every large DoD embedded system undertaken over the past

decade has experienced serious cost and schedule overruns. A major root cause of these

overruns has been identified as reuse practices [115]. This is a major concern as existing

assets are aging and need to be replaced. The difference in outcomes between embedded

and nonembedded systems suggests that perhaps embedded and nonembedded systems

are different, requiring different treatment. The questions are, is reuse only valuable in

nonembedded systems? Can we not reuse existing assets in embedded systems? Or do we

simply need to do embedded system reuse differently? If the answer to the last question is

yes, then what do we need to do differently to have success in reuse in embedded systems?

Do they need to use different development approaches? Do they need to reuse different

assets? Do they need different processes?

This thesis will investigate reuse in embedded and nonembedded systems. It will see

what research has already been done to compare the two types of systems looking for sim-

ilarities and differences. It will compare development methods and artifacts, and attempt

to identify the impact on the outcomes related to each.

1.1.1 Research Context

The research in this thesis relies on quantitative and qualitative empirical studies of

embedded and nonembedded systems, as well as surveys and interviews with professionals

in the defense and Aerospace industries.

5

The DoD and, by extension, the United States government, issued its reuse initiative in

1992. The researcher has observed that since that time, requests for proposals have required

a reuse program be included in any contractor offerings. Sufficient time has passed to be

able to judge the effectiveness of the initiative and identify weaknesses.

One noticeable weakness has been the disappointing performance of embedded systems.

Among the embedded systems that employed disappointing results were, SBIRS, GPS II

F, Presidential Helicopter, Global Broadcasting System, GOES N and Littoral Combat

System. There were many more. These projects were from all of the major defense con-

tractors, so the common element is not the company. They were a spectrum of types of

products (satellite, helicopter, underwater), as well as from different branches of govern-

ment, so the cause is not either in product or branch. In fact, the only element in common

is the embedded nature of the systems.

It is within this backdrop that we ask whether there is a difference in reuse between

embedded and nonembedded systems.

1.1.2 Research Questions

The overall research goal (RG) for all studies carried out as part of this thesis was to

investigate the advantages/disadvantages of software reuse and the reasons behind it, by

analyzing reuse in embedded and nonembedded systems. Then, based on these insights,

propose specific reuse guidelines (as an example of improvements) software practitioners

regarding the approaches and artifacts that bring about the best outcomes in each type of

system.

We performed empirical studies (i.e., survey and semi-structured interviews) in large

aerospace companies. The objective for this research was to investigate the commonalities

and differences between embedded and nonembedded systems software reuse. We pro-

pose that the differences we found should be considered in the development of company

processes and mandates. Studying software reuse increases our understanding of the rela-

tionship between reuse in embedded systems and reuse in nonembedded systems. It helps

6

us determine early in a project the best approaches to take and the products to reuse. This

benefits the research community, practitioners and customers. The former gains deeper in-

sight into benefits and challenges of software reuse with respect to the types of systems

being developed. The latter gain insight into how to implement software reuse in a way to

obtain better outcomes and encounter less frustration for both developers and managers.

Customers get better estimates of cost at the beginning to enable better budgeting, and

products developed on time and on schedule.

The thesis presents three studies, and we have formulated four research questions that

explore our overall goal. In order to go from our overall goal to specific studies and research

questions, we have formulated the following questions:

• RQ1: How do outcomes for reuse in embedded systems compare with the outcomes

for nonembedded systems?

• RQ2: How do development approaches for embedded systems compare with devel-

opment approaches for nonembedded systems?

• RQ3: Do embedded systems reuse the same artifacts as nonembedded systems, and

how do the outcomes for reuse of artifacts compare?

• RQ4: Are the success factors and obstacles the same for embedded systems the same

as for nonembedded systems?

The main types of research design included are document analysis; survey; and in-

terviews. In each case, qualitative data was collected and analyzed, then converted to

quantitative data for analysis.

Figure 1.1 shows the goals, questions and metrics used to guide the research.

We wanted to identify what reuse strategies work best (most successful) in large em-

bedded systems and software and how they compare between nonembedded systems and

7

Goal: Identify what reuse strategies work best (most successful) in large
embedded systems and software and how they compare between nonembedded

systems and software

What types of reuse are
currently used in what

types of programs

Type of Program

Type of Software

Development
Approaches

Artifacts/ Phase of
Reuse

What development
approaches are selected in
each system type and why?

What approaches
are used?

Approaches used
alone

Approaches used in
combination

What are the
outcomes?

What artifacts are
used in each system

type and why?

What artifacts are
used?

What are the
outcomes?

What artifacts bring
the best return on

investment?

What constitutes
success?

Lower risk

Lower cost (what is
lower cost?)

Less time

Easier Maintenance
(what is easier
maintenance?)

What factors enable
success? What are

the obstacles?

Organizational

Technical

Do they differ by
system type?

Figure 1.1: Goal Question Metric Diagram

software. To do this, we begin with an examination of existing literature to see if the

discipline at large has investigated whether embedded systems are the same or different in

their reuse practices and outcomes. The examination of literature is followed by a ques-

tionnaire for software and systems practitioners in the Aerospace industry to identify their

current practices. The questionnaire is followed by semistructured interviews to see if we

can identify success factors and obstacles to successful reuse. If, in fact, it turns out that

embedded systems are different from nonembedded systems, we will offer recommendations

of how embedded systems need to employ reuse differently.

1.1.3 Contributions and Papers

The main contributions of this research are:

• C1: Identification of differences/similarities between embedded and nonembedded

systems development approaches and their outcomes.

8

• C2: Identification of differences/similarities of reused artifacts by embedded and

nonembedded systems and the return on investment for each type of artifact .

• C3: Identification of differences/similarities between embedded and nonembedded

systems of the success factors and obstacles and ways to employ the success factors

better and overcome the obstacles

• C4: Identification of possible software reuse improvements.

Papers developed for submission to peer reviewed publications include:

• Reflections on the History of Software Reuse for Embedded Systems in the Defense

and Aerospace Industry

• Comparing Reuse in Different Development Approaches For Embedded vs Non-

Embedded Systems

• Comparing Development Approaches and Reuse Strategies: An Empirical Evaluation

of Developer Views

• Reuse Practices in Aerospace: Structured Interviews

1.2 Organization

Figure 1.2 shows the structure of this document.

Chapter one discusses the rationale for the research, the nature of the problem, the con-

text in which the research is performed, and contributions to the current body of knowledge.

Chapter two discusses the background of reuse in the aerospace industry Chapter three

discusses a review of existing literature. Chapter four covers information obtained through

a survey in a major aerospace corporation. Chapter five discusses results from semistruc-

tured interviews that reveal information about reasons for reuse success and failure and why

9

Figure 1.2: Structure of the Dissertation
,

the outcomes in embedded systems have differed from outcomes in nonembedded systems.

Chapter six discusses the results of this research and evaluates the results. It also presents

the conclusions, the future of software reuse in embedded systems and recommendations

for future work.

10

Chapter 2

Background

2.1 History of Reuse

Reuse has a long history in the defense and aerospace industry, spanning several gen-

erations of technology. Throughout this history, software engineers have tried different

ways to reuse their software to increase savings and efficiency. Sometimes these reuse

methods have kept up with the evolution of software development techniques, sometimes

they have not. One of the debates in the software community has been whether soft-

ware development strategies and corresponding reuse strategies are the same for embedded

systems and nonembedded systems. This chapter reflects on some of the success factors

and barriers to successful reuse in embedded systems. It covers early reuse, government

mandates and modern reuse technology like Component Based and Product Line develop-

ment approaches. It looks at different artifacts that are reused, and the future of reuse of

software and system products, and how that evolution may differ between embedded and

nonembedded systems.

2.2 Introduction

The aerospace industry was an early advocate of reuse. As reuse evolved, what was

being reused, how it was reused and why it could be reused should have evolved as well,

especially in light of government reuse mandates. The government invested heavily in

11

reuse, e.g. the Control Channel Toolkit (CCT) in 1997 and Global Broadcasting Service

(GBS) beginning in 1998. Hence, one would expect large scale planned reuse. This section

explores the history of reuse in aerospace and attempts to shed light on reuse evolution via

published reports, interviews, internal documents and summary results from an internal

survey.

For decades, managers and software developers have looked at the volume of existing

code and been convinced that we could save a lot of money if we could reuse it [40]. The

industry has studied and experimented with ways to reuse software products, including:

requirements, architecture, design, and test products. However, the expected savings in

productivity and reliability simply haven’t been realized ([4], [111], [47], [7]).

Intuitively, reusing existing assets should save money. After all, they don’t have to be

created. However, they often have to be modified, so the question becomes: is it faster

to create from scratch or to re-create from existing products? In many situations, the

software products cannot be reused intact. “Even when the components are in hand,

significant problems often remain, because the chosen parts do not fit well together [47].”

“The cultural shift required by management to understand the issues and

culture of the software engineers was our greatest challenge. Management ex-

pectations were originally high that software engineers could possess the same

domain knowledge as systems engineers, and this was simply not the case. The

mindset of someone with a master’s degree in mechanical or electrical engineer-

ing, especially if that degree was granted more than 10 years ago, is fundamen-

tally different from the mindset of a contemporary software engineer [24].”

2.3 Early Development Approaches and Reuse

The development approaches and reuse discussed here reflect the authors’ personal

experiences.

12

2.3.1 Ad Hoc Reuse

The first software development approach using reuse in embedded systems was ad hoc

reuse, i.e. the reuse of tidbits of code that happened to be available. Reuse in ad hoc

development is “Unplanned and opportunistic reuse that fails to meet the full potential of

reuse. It is performed with little or no planning or commitments to produce, broker or

consume assets [88].” Every software developer comes out of school with a set of routines

he has already implemented. “Individuals and small groups have always practiced ad hoc

software reuse [40].” This code was not designed to be reused, but it satisfied a requirement

for a given capability. This is known as “ad hoc” reuse - software salvaging from existing

applications or products. This first development process with software reuse has existed

as long as software has existed. A similar type of “reuse” was the code the developer had

created before. In the early days of programming, when developers had to punch cards

and enter them into the card reader, most of the reuse was contained in the head of the

developer. He knew how to implement the solution because he had implemented it before.

However, it was easier to simply rewrite the code from memory than to search through a

stack of cards to pull out the cards that contained the code he needed. These routines were

largely undocumented, or their documentation was in hard copy and not readily available.

2.3.2 Structured Programming

One of the early deterrents to reuse was unstructured code. In his letter to the Editor of

the Communications of the ACM in March of 1968, Edsger Dijkstra stated that “the go to

statement has such disastrous effects ... that the go to statement should be abolished from

all ‘higher level’ programming languages [31].” He goes on to say, “it becomes terribly hard

to find a meaningful set of coordinates in which to describe the process progress. Values

of variables can only be known in the context of that process and are hard to trace when

the program thread is continually jumping from one context to another.” If a function had

to be changed, the developer had to trace through a tangle of “spaghetti code” to find

13

all lines affected by the change. This letter has been cited as the beginning of structured

programming. Structured programming is an element of imperative programming, with its

major contribution being the reduction in the reliance on the “go-to” statement. Instead,

the functions are combined in three ways, sequencing, selection and iteration. With the

introduction of structured programming, the developer could contain all references to a

behavior within a function. The context of the variables could be maintained and easily

traced. Changes could be found and made more easily, and it was easier for another

developer to receive the code and understand what was happening. The increased ability

for code to be passed from developer to developer enhanced its reusability.

2.3.3 Libraries

Once it became easier for developers to use and reuse each others’ code, it became clear

that there was a need to collect and make available commonly used routines. These collec-

tions were stored on a server that could be accessed by every developer in the environment,

and became known as libraries. Reusing routines from these libraries had dual benefits:

often performed functions did not have to be recreated for every software program, and

use of these functions ensured a level of commonality across a project.

In the 70’s and 80’s, the aerospace industry produced a number of compartmentalized

systems and constellations, each with its own culture and development approach. These

were isolated, and did not interact with each other. In many cases, they solved the same

problems with different solutions. There was no cross-pollinization of requirements, design

or code. When the government wanted to use the information gathered from these con-

stellations together and operate them from a common ground station, the constellations

could not easily integrate with each other.

Initially libraries consisted of basic capabilities, such as frequently used mathematical

algorithms. Each constellation had its own library. When the Naval Weapons Laboratory

computed precise satellite ephemerides for Navy navigation satellites, these became part

of the libraries. In the 90’s, a major aerospace company concluded that there were vast

14

volumes of good code hidden away that could be used on many programs across the cor-

poration. It initiated an effort to collect this code into a corporate library, catalog it, and

encourage developers on new programs to consider it in their bid and development. Several

years later, this library closed down due to inactivity [91].

2.3.4 Legacy or Heritage Reuse

Soon libraries contained a large numger of routines commonly used by a variety of

projects. These routines began to be used en masse as foundations for projects, leading to

legacy or heritage reuse. Legacy, or Heritage software development is defined by NASA as:

“software products (architecture, code, requirements) written specifically for one project

and then, without prior planning during its initial development, found to be useful on

other projects [96].” Booch et al [13] added: “We refer to a legacy system as one for which

there is a large capital investment that cannot economically or safely be abandoned.” As

companies were awarded contracts that were follow-on efforts to existing projects, they

realized that many capabilities existed. Not only was the code useful, but much of it had

already been integrated and tested together.

Heritage software began to consist of large clusters of functions, sometimes to the

subsystem level, e.g., in satellite command and control, the capabilities required to guide

the satellite did not change significantly even though the payload was completely different.

Legacy code became the mainstay of many constellations of satellites, ground systems,

signal processing, etc. The new capabilities were known as “one-offs” and only required

modification to include changes necessary to achieve the new capabilities. Heritage reuse

continues to be widely used today.

2.4 New Technologies and Standards Affecting Reuse

Reuse strategies in embedded systems were also affected by new technologies and stan-

dards which were not necessarily developed to encourage higher levels of reuse:

15

2.4.1 Interface Standards.

One of the difficulties with integrating the routines in the libraries and migrating these

routines to other projects was the difference in the interfaces, or the way these routines com-

municated with each other. The International Organization for Standardization and the

International Electrotechnical Commission ISO/IEC 11404:1996 [67], updated in 2006 [68],

developed a common set of information technology standards and guidelines to be used in

all new and upgraded acquisitions across the Department of Defense (DoD) for sending and

receiving information (information transfer standards), for understanding the information

(information content and format standards) and for processing that information.

Other standards were provided by Comite Consultatif International Telephonique et

Telegraphique (CCITT now known as Telecommunication Standardization Sector of the

International Telecommunications Union (ITU-T)(e.g. CCITT v.28) and Aeronautical Ra-

dio, Incorporated (ARINC)(e.g.ARINC 653). These standards allowed the developers to

produce “black box” products that theoretically would work smoothly with other products

with little or no adjustment as long as the appropriate standard was observed.

2.4.2 Object-Oriented Languages.

About the time when libraries and interface standards were being developed, some

computer professionals were noticing that these routines were themselves components, or

objects, similar to components in hardware. The idea of objects had been around for a

while. Computer professionals determined that development of software should use objects

as the foundation of their programs. This would come to be known as “object oriented

development.”

Simula 67, in the 1960’s, was the first object-oriented language, developed to create

simulations [49, p. 47]. It describes behavior and data. These elements became what was

known as a “class.” Classes had the ability to encapsulate behavior and define a way for

that behavior to communicate with other components.

16

In 1983, the DoD introduced Ada which targeted large embedded and real-time systems.

In 1995, Ada95 added object-oriented features. In 1987 programs were required to use Ada,

including Military Strategic and Tactical Relay (MILSTAR), Global Positioning System

(GPS) and a number of classified programs. Eventually the C language adopted objects,

and C++, introduced in 1982, became the predominant object-oriented language. While

in large embedded systems so often developed in aerospace, many of the features of C++

were not useable, such as dynamic memory and stereotypes, the object-oriented nature of

C++ was adopted. The resulting language was called Embedded C++, or EC++.

Converting functions from structured programming to Object Oriented programming

was expected to be pretty simple. While structured programming consisted of a series

of functions, Object Oriented programming consisted of a number of classes made up

of attributes and methods. The difference between functions and methods is subtle but

important. A function is a piece of code that is called by name and can be passed data

to operate on (ie. the parameters) and can optionally return data (the return value). All

data that is passed to a function is explicitly passed. A method is a piece of code that is

called by name that is associated with an object. A method is implicitly passed the object

for which it was called. It is able to operate on data contained within the class. It was

argued that functions should be easily converted to methods. However, we are finding that

because of these subtle differences, often this conversion can take longer than redeveloping

the software from scratch.

2.4.3 Unified Modeling Language (UML)

Once object oriented programming became the state of the art, software engineers began

to develop software counterparts to the hardware Computer Aided Design (CAD) programs.

UML’s roots are Object-oriented Analysis and Design (OOAD), The Object Modeling

Technique (OMT) and The Object-oriented Software Engineering method (OOSE) [13]. By

modeling interfaces and treating components as actors, UML makes model reuse not only

possible but useful for its structural and behavioral models. Further, specific performance

17

and platform information can be added to these models to allow selection or modification

of components based on these criteria.

2.4.4 Design Patterns.

Once large systems could be modeled, it became clear that the same elements were

occurring over and over. These recurring elements became recognized as Design Patterns

[15]. Design patterns were developed for the purpose of reuse. An example is the Adapter

Design pattern. The adapter creates an intermediary abstraction between the reuse code

and the system it interfaces with. The clients call a method on the adapter object, which

calls the legacy component with the interface required by that component. Thus, one

pattern opens reusability to many heritage components. There are other design patterns

that also facilitate reuse of existing software components.

2.4.5 Simple Object Access Protocol (SOAP), Software as a Service

(SAAS) and Extensible Markup Language (XML)

SOAP and SAAS began to be used widely in nonembedded systems to facilitate reuse,

however, they were not frequently used in embedded systems. The use of open source

software (FOSS), also popular in nonembedded systems, was limited in embedded systems

due to legal issues (warranty, security) and lack of provenance.

2.5 Government Initiatives Affecting Reuse

After the Gulf War, the DoD started initiatives to leverage the large quantities of

existing software products acquired during the cold war, in the hope that these products

could be reused resulting in significant cost and schedule savings. At the same time, the

Gulf War had made it painfully obvious that the military systems were stovepiped, making

communication and sharing of information difficult, leading to multiple redundant systems

and information collection activities.

18

2.5.1 The Software Reuse Initiative.

In 1992, the DoD published its Software Reuse Initiative, Vision and Strategy [14].

It outlined reuse principles to be used in the acquisition practices of new government-

sponsored development. The initiative specified four goals:

• Improve the quality and reliability of software-intensive systems,

• Provide earlier identification and improved management of software technical risk,

• Shorten system development and maintenance time,

• Increase effective productivity through better utilization and leverage of the software

industry.

The vision was “drive the DoD software community from its current “re-invent the software

cycle to a process-driven, domain-specific, architecture-centric, library-based way of con-

structing software [14].” The initiative outlined four concepts in which families of related

systems would be designed to share a common structure, and therefore allow the reuse

of assets already created. Based on the 10 step strategy the initiative proposed, software

reuse was expected to “bring about the cultural change necessary to make software reuse

effective for the DoD.”

2.5.2 The Government Acquisition Process.

Pursuant to the release of the Software Reuse Initiative, in 1993, The Acquisition Hand-

book required reuse in new acquisitions. Metrics were established to support the Defense

Information Systems Agency (DISA)/Center for Information Management (CIM) software

Reuse Program and DISA mandated that all new acquisitions have reuse requirements.

Dikel drafted key elements of DOD’s plan for its Software Reuse Initiative (SRI), submit-

ted to Congress in April 1994. This initiative became part of the acquisition process [32].

19

2.5.3 C4ISRAF/ Department of Defense Architecture Framework (DoDAF).

The C4ISRAF is an architecture framework developed by the DoD C4ISR (Command,

Control, Communications, Intelligence, Surveillance, and Reconnaissance) Architecture

Working Group (AWG) to provide guidance for describing architectures. Originally pub-

lished in 1996, it migrated to the DoD and became known as DoDAF in 2002.

“The C4ISR Architecture Framework is intended to ensure that the architecture de-

scriptions developed by the Commands, Services, and Agencies are interrelatable between

and among each organization’s operational, systems, and technical architecture views,

and are comparable and integratable across Joint and combined organizational bound-

aries [28].” Its intended impact was the increased development and implementation of

reusable models, components, standardized interfaces to encourage more non-proprietary

Commercial Off the Shelf (COTS) products and ensuring compatibility among reusable

products. C4ISRAF, and then DoDAF started with four “views:” the Operational View,

the System View, the Technical View and the All View. These views included 22 products,

eight of which were mandatory.

In 2011, DoDAF 2.0 was released. The number of views (in 2.0 called “viewpoints”)

increased to eight: All Viewpoint, Capability Viewpoint, Data and Information Viewpoint,

Operational Viewpoint, Project Viewpoint, Services Viewpoint, Standards Viewpoint, Sys-

tems Viewpoint. These viewpoints were now referred to as models, and were intended to

be an integrated set creating a fairly comprehensive architecture. In DoDAF 2.0, none of

the products were considered mandatory, the number of defined products increased to 40

(several of these 40 had sub-products, for example, the OV6 has OV6a, OV6b, OV6c). In

DoDAF 2.0, the focus shifted: “DoDAF V2.0 focuses on architectural ‘data,’ rather than

on developing individual ‘products’ as described in previous versions [29].”

20

2.5.4 Joint Technical Architecture

As computer systems used “in the field” became more sophisticated, the DoD deter-

mined that they should have access to reuse software artifacts from a number of projects.

However, many of these software programs had the same names, but performed differ-

ent functions. To prevent newly acquired software from overwriting existing programs,

the DoD Joint Technical Architecture (JTA, updated in 2003) required that all systems

adhere to open standards that facilitate interoperability, as the warfighter could be us-

ing any of several different platforms. “The standards and specifications identified in the

JTA are entirely consistent with and support the DoD Standards and Acquisition Reform

initiatives. The DoD standards policy recognizes the need for DoD to specify interface

standards that are required for interoperability. The standards in the JTA are almost

entirely performance-based interface standards. Most are commercial standards. None of

the military standards require a waiver to use [33].”

The updated version in 2003 was focused on integrating systems with the Global In-

formation Grid (GIG). “Integration of these systems into the GIG will require that they

adhere to open standards that facilitate their interoperability. Transformation of DoD’s

capabilities, in the broadest sense, requires that existing systems are transformed in such

a manner that they can share their information easily and promptly. It also requires that

the GIG provide the services that allow the discovery of and collaborative use of this infor-

mation for the purpose of effective and efficient business or battle-space management [34].”

While many embedded systems are not part of the GIG, their products are included in

information sent to the GIG. Thus, the outputs from these embedded systems needed an

interface that complied with JTA. JTA also mandates platform independence (while JTA

has been superceded by MOSA and is not commonly required now, it had a significant

impact on reuse and many heritage programs are still contractually bound to JTA). A

product developed to the standards could be used with any system that required that

capability - component-based reuse was easier.

21

2.5.5 Modular Open Systems Approach (MOSA).

Around the same time, the Department of Defense wanted to allow payload products

from one family of systems to be used in others, and accommodate products from many

vendors. The hope was to eventually develop the ability to have cross-payload systems

at reduced cost. MOSA was mandated as an enabler to, among other things, “enhance

commonality [31] and reuse of components among systems ... [and] enhance commonality

and reuse of components among systems [100].” With MOSA, proprietary interfaces were

eliminated or wrapped with standardized interfaces easily accessible to other development

teams. The goal was the development of models that would identify reusable or off the

shelf components. MOSA eventually replaced JTA.

2.6 Success Factors for Early Reuse

Some projects had more success with reuse than others. While many efforts were re-

porting significant savings from reusing assets, others were not only reporting minimal

success and some were even costing more than development from the beginning. To better

understand this phenomenon, Applied Expertise, with contributions from WPL Laborato-

ries, published a reuse case study [32]. The study found six principles that contributed to

Nortel architecture success, namely:

• Maintaining a clear architecture vision across the enterprise

• Focusing on simplification, minimization and clarification

• Establishing a consistent and pervasive architectural rhythm

• Discovering and adapting the architecture to future customer needs, technology, com-

petition and business goals

• Partnering and broadening relations with stakeholders

• Proactively managing software risks (and opportunities).

22

This case study found that the consequences of not applying the principles were severe,

but that applying the principles yielded positive results. Many of these reuse strategies are

still widely used, and the success factors apply to both the early strategies and the modern

strategies.

2.7 Reuse in More Recent Software Development Approaches

2.7.1 Component Based Systems Engineering (CBSE)

CBSE is the process of developing trusted components and using those components as

the basis of a system design. It involves the use of existing components either developed for

the purpose of reuse or already in use as components or both. “Component-based software

engineering (CBSE) is a process that emphasizes the design and construction of computer-

based systems using reusable software ‘components’ ([19]).” CBSE recognizes that the same

capabilities are required in many different situations. The components are intended to be

stand alone service providers, or, encapsulated black boxes. The implementation within

the component is hidden and accessed through well-defined interfaces. An expectation of

CBSE was that when a system was needed, the desired components could be aggregated

with little to no modification into that system.

In 1997, Goddard Space Flight Center conducted a study of the use of a domain asset

library and the processes involved. The goal was to develop a configurable flight dynamics

attitude support system. The result of this study was a shift from developing applications

to configuring applications from reusable assets [23]. The CCT program is an example of

component based systems engineering.

2.7.2 Product Lines

“A software product line (SPL) is a set of software-intensive systems that share a com-

mon, managed set of features satisfying the specific needs of a particular market segment or

23

mission and that are developed from a common set of core assets in a prescribed way [21].”

Product lines allow a development organization to reuse most of the functionality of a pre-

defined system, while allowing some customization to nuances requested by a customer.

In 2001, the C-130J military transport aircraft program included product line reuse for

an assembly line production. The C-130J project has built over 2000 aircraft for countries

across the globe. Customers can select a number of variations of this aircraft. While

product line reuse on this project has been beneficial, there have been some challenges.

Key lessons from that project were [24]:

• Objectives and requirements must be nailed down from the beginning. It is never

possible to get the requirements right the first time if the problem is of any signifi-

cant degree of complexity. Requirements traceability and requirements grading are

required. Conduct software product evaluations on requirements as intensely as you

would review the code.

• You can never have too many simulations or laboratory resources.

• Software engineering capability maturity alone is not enough to assure the quality of

an integrated system like an aircraft. Systems engineering and management capabil-

ity maturity are also required.

• Driving a product by schedule is unavoidable. Be prepared to deal with it. Define

all processes and measure their performance. The last process in the sequence is not

necessarily the source of the problem when a schedule slips.

• Automate testing. Always plan on running a test again. Base test cases on require-

ments, trace test cases to those requirements, employ automated tools.

• Successful reuse requires a significant up-front cost and an effective, compelling pro-

ducer/consumer model that makes it economically viable. Management must see

reuse values and accept both costs and benefits.

24

• Measurement comes with capability maturity, but no measurements can replace the

in-depth, detailed knowledge of the people on the development line. Management

must journey to the (software) factory floor before they can really understand the

issues

In other words, as with other strategies, having a product line does not preclude the need

for solid systems engineering.

Lockheed’s A2100 Bus, developed around the same time, is an example of a satellite

product line. First launched in September 1996 as a geostationary earth orbit (GEO) com-

munications bus, it is offered in several GEO configurations and will be flying in medium

earth orbit (MEO) for GPS III.

2.7.3 Model Based Systems Engineering (MBSE)

MBSE involves reuse of preexisting models or prototypes. A MBSE methodology can

be characterized as “the collection of related processes, methods, and tools used to support

the discipline of systems engineering in a ‘model-based’ or ‘model-driven’ context....Model-

based engineering (MBE) is about elevating models in the engineering process to a central

and governing role in the specification, design, integration, validation, and operation of a

system ([37]). Today, many systems, especially nonembedded systems, use MBSE as their

development approach.

2.8 Historical Problems with Reuse

Many of the published surveys ([86], [89], [111], [109], [40]) indicate reuse success,

if certain success factors are present. However, they often do not distinguish in their

analyses between embedded systems and nonembedded systems. Some surveys do not

include projects with mixed or negative results. In addition to the author’s own experience

with reuse, we have conducted a survey and found the following barriers to successful reuse:

25

Developer comfort with the reused products: In the early days, reuse within

a program consisting of a single constellation was applied by either the developer or an

associate. The developer was familiar with the reused code, its application and the culture

under which it was developed. When software products were made available from outside

the program, developers did not trust them or feel comfortable with them. This was cited

by half of our subjects. See also McKinney [91].

Developer attitudes toward reuse: Related to the discomfort with reused products,

many developers do not want to reuse software. Recent interviews with many software

experts indicated that their developers prefer to create a solution over trying to fit an

existing solution to their problem. When they look at the candidate reuse product, they

find things that they would do differently, and decide they would rather redevelop it than

adapt it. Again, over half of our respondents indicated that they or their developers were

reluctant to use a product developed elsewhere.

Reuse Dictating the Product Rather than Objectives: One of the objections

many customers had with large volumes of reuse is that in order to effectively import the

reuse, the requirements were derived from the reused products and not from the customer

objectives. Either the customer accepts a product that does not meet its objectives or

reworking the requirements forces changes to the reuse products that make those products

more expensive to reuse than if they had they been built from scratch. Several of our

subjects reported this obstacle to successful reuse.

Architectural Mismatch: Architectural Mismatch occurs when components are

costly and time consuming to integrate [47]. Often, when the reused software product

is a component, the design has to be created bottom up, rather top down, defining ca-

pabilities and selecting components that best meet needed capabilities. When too many

components from various sources are reused, the architecture that would be ideal for the

project is hard to fit to the reused components. This can also result in a brittle final

product. See also Leveson et. al. [85].

26

Cost: A reusable component can cost three to five times more to develop than con-

ventional software because the component cannot make simplifying assumptions about its

environment [1]. Unless the product will be reused enough to recover costs, it may not be

worth the investment. See also Leveson et. al. [85].

Obsolescence: When few products are procured over a period of time, the reused

products may need to be reengineered due to obsolescence before their development cost

is recovered. In a NASA study [23], products had to be ported from the IBM Mainframe

to UNIX workstations. Since FORmula TRANslation (FORTRAN) reuse libraries only

resided on the IBM, they had to be rewritten for UNIX. Further, as software products

age, and as they are modified from project to project, they become brittle and hard to

maintain. Often they are written in a language that is rarely used any more and require

special skills to read and update. See also Leveson et. al. [85].

Lack of adequate documentation: Many candidate reuse products have not been

adequately documented through the development cycle. If documentation exists, it is often

the build-to documentation rather than the as-built documentation. As a result, the reuse

products do not behave as expected or to the performance levels advertised. In addition,

sometimes it is harder to understand the software from the documentation than it would

be to simply build new software.

Platform dependence: Many embedded software products are written and optimized

to their platforms. Many of these platforms are proprietary. If a project moves to a different

platform, possibly because a different vendor offers capabilities not existing in the original

platform, possibly because the original vendor stops supporting the platform, the software

has to be reoptimized to the new platform. In many cases, hardware is evolving faster than

software, and keeping up with the hardware changes is challenging.

Lack of management/customer support: While companies and the DoD have

endorsed reuse, often neither the government nor the corporation have been willing to pay

for developing products for reuse. In addition, many contracts are written with limitations

on sharing artifacts developed on the contract funding.

27

Lack of metrics to estimate and manage reuse: One of the most intractable

barriers to quality reuse is the lack of metrics to estimate and manage reuse. Most projects

do not have separate line items to measure and monitor reuse during any of the phases of

development. This makes separating the costs and savings of reuse from new development

difficult. Some projects have tried to use metrics that have been collected from nonem-

bedded systems to estimate their embedded systems. These estimates have been less than

accurate, often being off more than 100%.

Mandates: Programs cited “acquisition reform with significant unintended conse-

quences [132].” In the mid 1990s a classified contract required heavy use of COTS, GOTS

and reused software to perform a large defense mission. After significant overruns and

delays, a tiger team was brought in to study the problem. The conclusion was that “when

you ask a product to do what it was not designed to do, the cost in modification and

maintenance exceeds any savings that may have been gotten from reuse.”

Nunn McCurdy findings related to reuse problems: Senator Nunn and Con-

gressman McCurdy introduced the 1982 Defense Authorization Act. The Nunn-McCurdy

act requires that US Congress be notified if cost per unit for acquisitions exceed 15% of

the original estimates and the contract be terminated if the acquisition exceeds 25% of the

original estimate unless the Secretary of Defense determines that the program is necessary

to national security, the cost increases are reasonable, and the management structure is

adequate to constrain costs.

By March of 2011, there had been 74 breaches of this act. The Government Account-

ability Office (GAO) studied the reason for these breaches. "Our analysis of DoD data

and SARs [sic] showed that the primary reasons for the unit cost growth that led to

Nunn-McCurdy breaches were engineering and design issues, schedule issues, and quantity

changes. Cost increases resulting from engineering and design issues may indicate that

those programs started without adequate knowledge about their requirements and the re-

sources needed to fulfill them [115]." Specifically, they found an inability to predict costs

and benefits of reusing software artifacts. A prime example of this was the Space-Based In-

28

frared System (SBIRS) High program, which had breached 4 times. SBIRS High “was too

immature to enter the system design and development phase and was based on faulty and

overly optimistic assumptions about software reuse and productivity levels [115].” Thus,

while reuse was mandated, the prediction of cost and savings was unrealistic.

2.9 The Future of Reuse in Embedded Systems

Over the past several decades, we have seen how software system development prac-

tices have changed. The industry has moved from one-time single application, stovepiped

solutions to multi-use solutions that easily integrate with other systems.

Today, embedded systems are slowly reengineering their existing systems and develop-

ing new systems with frameworks and models. This is an important development, since the

architecture and design phases and integration and test phases of the lifecycle are much

longer and costlier than efforts in the implementation phase. Thus the architecture and

design phases, and the test phases, offer more opportunities for savings. Many of these

models have the capability to automatically generate code (autogen or autocode).

In a series of semistructured interviews conducted in May - July of 2013, many inter-

viewees indicated that, while earlier, when reuse was mentioned, they had only considered

code, today they are reusing many different artifacts. These artifacts include requirements,

architecture, design and design products, models, documentation, and test products. When

asked to rate these artifacts in terms of reuse effectiveness (defined as a series of desired

outcomes), some put test products first, others put architecture first. However, all but

two placed code last. One progressive embedded software subject matter expert (SME)

indicated that, over time, he expected most code to be generated automatically, and the

only code that would be hand written would be code that needs to be optimized to the

platform.

The move to standardize platforms is having a major positive impact on software reuse.

Design models are able to include the platform parameters in the model itself, and then

29

generate the code appropriate to the platform. Tweaking the code generator in the model

allows the model to optimize the generated code to the platform, with less need for modifi-

cation. Many programs today in this author’s experience are reusing the tweaked autogen-

erator and regenerating the code for each build. The aforementioned SME predicts that,

in time, the only coders will be those who specialize in optimizing very specialized code.

As more and more assets are designed to be reusable, companies are investing in ref-

erence architectures and searchable libraries. We envision these to become ontologies,

which attach objectives to capabilities, the capabilities to requirements, the requirements

to models, designs, test cases, and so on. These ontologies will include the documenta-

tion. A developer could select the objectives of his project, and with it select from various

reusable solutions. The selected solution would be available to the developer, and the de-

veloper would only have to fill in the gaps. In many cases, large portions of these solutions

will have already been tested and deployed.

So the future of software reuse in embedded systems will include:

• An increase in the reuse of architecture models and design models with code gener-

ation capabilities.

• An increase in the reuse of test products.

• A significant decrease in the reuse of code.

• An increased emphasis on parameter driven models to select from standardized plat-

forms.

• An increased emphasis on full documentation from build to specifications to as built

documents.

• Design for reuse as the norm rather than the exception, as well as reusable architec-

tures and designs.

• An increase in reuse of test products (test drivers, test data, test seeding) and clusters

of components that are already tested together.

30

• Infrastructures for supporting tools, techniques, methods, policies, and incentives for

integrating reusable artifacts.

• A new way of thinking, with emphasis on objectives and outcomes rather than on

development.

This has implications for universities, corporations and anyone who wishes to enter

the software field. Universities will need to prepare students more with architecture and

design skills and less with coding skills. Corporations will want to hire individuals with

these skills rather than focusing on coders. The software engineering marketplace will be

placing a higher premium on modeling and design and less on code.

2.10 Conclusion

Reuse approaches for over 20 years have promised lower costs for higher quality products

with shorter time to deliver [4]. Customers have increasingly required reuse, management

hoped to reap its promised benefits, researchers tried to demonstrate them. The Infor-

mation Technology Management Reform Act of 1996, also known as the Clinger-Cohen

act [26], practically mandates reuse through the Performance- And Results-Based Man-

agement initiative. However, benefits of reuse are in no way assured, even with the best of

intentions. This paper tried to chronicle some of the experiences with reuse.

We saw how, in the early days of software development, developers wrote code to satisfy

an immediate requirement or problem. As similar requirements or problems appeared,

reuse consisted of resurrecting code the developer himself had written previously. This

practice grew to creating libraries of code written by several programmers to benefit the

entire team. However, there was little consideration of the practice of developing code

consistently. We saw that over time, a more formal development process was implemented

through structured programming. The benefit was readable code that could be more easily

understood, and modified.

31

The next step was reusing entire components and subsystems based on similarities of

new projects to the ones previously deployed. Eventually, as similar deliverable products

were required, the practices evolved to include product lines. With product lines, the

customers were able to select variations customized to their needs without the need to

develop an entire new system.

As systems began to rely on products from outside the development teams, standards

defined interfaces to facilitate integration. With the implementation of these published

standards, organizations could specilize in developing commonly used components, and

systems developers could procure these components rather than developing them them-

selves. This enabled larger systems to be developed with less effort from the system devel-

opment team. Object Oriented languages enabled these components to be encapsulated.

Since the interfaces to classes were well defined, outside organizations could develop their

components without knowing the intricacies of the system outside of their components.

UML introduced a common way to create models of systems. The benefit of the model

is that, being graphical, it was easier for many developers to understand the system and its

interfaces. Design patterns allowed reuse of portions of the architecture. Using UML and

design patterns, developers could import large segments of a system design without having

to redo the work (sometimes with some modification, however). These became reusable

assets.

Efforts by the US government and other organizations have helped make these assets

more interchangeable. Focusing on architecture, models, and integration, the goal of these

efforts is to encapsulate capability and eventually integrate entire systems of systems, for

example the entire defense system or communication grids.

Once enough organizations were using these architectures and models to create sufficient

demand, it was only natural that vendors would add code generation to their models.

Nuances in the design could be included in the models and the automatically generated

code would include those nuances. Many UML tools have this automatic code generation

capability. As a result, requirements, architectures and models can be reused effectively.

32

We found that there are some key elements to successful reuse. First, reuse has to be

paired with good engineering practices. Second, technical factors can be instrumental in

success vs. failure, such as common platforms or environments. Third, in the defense and

aerospace industry, bespoke systems may not be able to recoup reuse investment cost [85].

Fourth, a reuse mandate does not guarantee its successful execution.

While there are a large number of development approaches that reuse artifacts, legacy

system reuse still dominates in embedded systems. As these heritage projects either age

out or are refactored, more effort should be focused on architecture and design models.

This will facilitate reuse, less reuse of code, but more reuse of the other artifacts that

are more expensive to develop. We propose an ontology approach, combining objectives,

requirements, architectures, models, components, source code, design artifacts, use cases,

test cases and test products to make reusable products available, easy to find and easy to

use (integrate).

Some studies [94] have tried to summarize reuse experiences in industry, but with

limited success due to the lack of quantitative data. We recommend further research about

reuse using different development approaches and the reuse of different artifacts to clarify

which development approaches work best with which type of system and which artifacts

bring the best return on the reuse investment. We also recommend pairing reuse with

detailed measurement so that evaluating reuse success is no longer a matter of opinion.

2.11 Classifying System Types, Development Approaches,

and Study Types

2.11.1 Development Approaches

Mohagheghi et al [93] define software reuse as "the systematic use of existing software

assets to construct new or modified assets. Software assets in this view may be source code

or executables, design templates, free standing Commercial-Off-The-Shelf (COTS) or Open

Source Software (OSS) components, or entire software architectures and their components

33

forming a product line or product family. Knowledge may also be reused and knowledge

reuse is partly reflected in the reuse of architectures, templates or processes." To simplify

comparison, the Mohagheghi definition is used in this paper. However, we are specifically

interested in what we call "Modern Software Reuse", that is: ad hoc reuse, component

based reuse, model based reuse, product line based reuse, and ontology based reuse. We

also look at combinations of these approaches. The selection of the approaches used either

alone or in combination becomes, for purposes of this analysis, the reuse strategy. Table

2.1 summarizes the approaches.

Table 2.1: Development approach-specific reuse strategies

Develop-
ment Ap-
proach

Definition Reuse Arti-
facts

Ad Hoc/
Heritage/
Legacy

Ad hoc reuse is defined as “Unplanned and opportunistic
reuse ... performed with little or no planning or com-
mitments to produce, broker or consume assets ([88]).”
Legacy, or Heritage software is defined by NASA as
“software products (architecture, code, requirements)
written specifically for one project and then, without
prior planning during its initial development, found to
be useful on other projects ([96]).” Grady Booch adds:
“We refer to a legacy system as one for which there is
a large capital investment that cannot economically or
safely be abandoned([13]).”

Code fragments
or routines;
requirements,
use cases, archi-
tecture, models,
drawings, test
products and
code.

Component Involves the use of existing components either developed
for the purpose of reuse or already in use as compo-
nents or both. “Component-based software engineering
(CBSE) is a process that emphasizes the design and con-
struction of computer-based systems using reusable soft-
ware ‘components’ ([19]).” Component Based Software
Engineering (CBSE) is a process that aims to design and
construct software systems using reusable software com-
ponents. CBSE recognizes that the same capabilities are
required in many different situations.

Code rou-
tines, functions,
methods or
other snippets
contained in
libraries or ex-
isting projects.

Continued on next page

34

Table 2.1 – continued from previous page
Develop-

ment Ap-
proach

Definition Reuse Arti-
facts

Model
based

Reuse of preexisting models or prototypes. A MBSE
methodology can be characterized as “the collection
of related processes, methods, and tools used to sup-
port the discipline of systems engineering in a ‘model-
based’ or ‘model-driven’ context....Model-based engi-
neering (MBE) is about elevating models in the engi-
neering process to a central and governing role in the
specification, design, integration, validation, and opera-
tion of a system ([37]).”

Architectures
or design mod-
els, use cases,
performance
models and
simulations.

Product
line

Basic capabilities determined in advance and the archi-
tecture, design and code generated to map to the generic
elements of the product line. Software Engineering Insti-
tute (SEI) defines a product line as “a set of software-
reliant systems that share a common, managed set of
features satisfying a particular market or mission area,
and are built from a common set of core assets in a
prescribed way ([116]).” It can also be described as a
family of systems sharing “a common set of core techni-
cal assets, with preplanned extensions and variations to
address the needs of specific customers or market seg-
ments ([21]).”

Basic require-
ments, core
products, in-
cluding archi-
tecture, re-
quirements, use
cases, compo-
nents, models,
test products
and code reused,
with some level
of customiza-
tion.

Ontology A catalog of the basic capabilities that an organization is
confident of delivering cross referenced to the locations
of those capabilities. An ontology is a description of
concepts and their relationships. “Ontology is the term
referring to the shared understanding of some domains
of interest, which is often conceived as a set of classes
(concepts), relations, functions, axioms and instances.
Ontology organizes terms with a type of hierarchy and
can be drawn upon to describe the different facets with
domain-specific terms...([104]).” Or, “An ontology is a
formal, explicit specification of a shared conceptualisa-
tion ([119])”.

Retrieval in-
formation,
documentation,
Libraries, code
clusters, require-
ments banks,
use cases, links
to models,
test products
and some code
artifacts.

COTS/
GOTS

Commercial or Government Off The Shelf products.
COTS is “Commercial-Off-The-Shelf (COTS) software
components that are procured for integration into soft-
ware systems ([109])”.

Components,
pre-integrated
hardware and
software, modifi-
able source code,
specifications.

35

Ad Hoc Development Approach Ad hoc reuse is defined as "Unplanned and op-

portunistic reuse that fails to meet the full potential of reuse. It is performed with little or

no planning or commitments to produce, broker or consume assets [88] ." Ad Hoc reuse is

opportunistic. It is based on software products that have been previously developed and

fit or approximate the need of the current work. Software was not developed with the

intention of reusing it, and it is not part of a repeatable process. It is unlike "systematic

reuse," when assets are developed with the expectation of being reused. While our experi-

ence indicates that it is a very common type of reuse, we found no literature based on ad

hoc reuse as a reuse approach or strategy.

Product Line Based Development Approach The Software Engineering Insti-

tute (SEI) defines a product line as "a set of software-reliant systems that share a common,

managed set of features satisfying a particular market or mission area, and are built from

a common set of core assets in a prescribed way [116]." A software product line can also

be described as a family of systems sharing "a common set of core technical assets, with

preplanned extensions and variations to address the needs of specific customers or mar-

ket segments [21]." In product line based reuse, the core products, including architecture,

requirements, components and models, are reused, with some level of customization.

Component Based (CBSE) Development Approach Component Based Soft-

ware Engineering (CBSE) aims to design and construct software systems using reusable

software components [19]. CBSE recognizes that the same capabilities are required in

many different situations. There is no value in developing these same capabilities from

scratch multiple times. In fact, nearly every developer has, in the process of developing

software, remembered doing the same routines before and incorporated his or her own or

a colleague’s previous work rather than going through the full development process again.

CBSE formalizes this approach by defining a method to create off-the-shelf components

and an accompanying, well-defined architecture. This allows software engineers to develop

large systems by incorporating previously developed or existing components. It is claimed

36

to cause a significant reduction in development and testing time and cost [59]. It is also

expected to reduce risk, in that, once validated, the components should behave the same

in subsequent products as in the original. Further, there is an expectation of reduced

maintenance costs associated with the upgrading of large systems.

Model Based (MBSE) Development Approach A MBSE methodology can be

characterized as "the collection of related processes, methods, and tools used to support

the discipline of systems engineering in a ’model-based’ or ’model-driven’ context....Model-

based engineering (MBE) is about elevating models in the engineering process to a central

and governing role in the specification, design, integration, validation, and operation of a

system. For many organizations, this is a paradigm shift from traditional document-based

and acquisition lifecycle model approaches, many of which follow a "pure" waterfall model

of system definition, system design, and design qualification [37] ."

Ontology Based Development Approach An ontology is a description of concepts

and their relationships. "Ontology is the term referring to the shared understanding of

some domains of interest, which is often conceived as a set of classes (concepts), relations,

functions, axioms and instances. Ontology organizes terms with a type of hierarchy and

can be drawn upon to describe the different facets with domain-specific terms... [104]." In

other words, an ontology is similar to a catalog, where items are cross-classified based on

different sets of relationships. In software engineering, the ontology becomes a catalog of

software artifacts (capabilities, requirements, services and components) that an architecture

or developer can use in product development.

2.11.2 Classification of System Types

This analysis distinguishes between embedded software systems and nonembedded soft-

ware systems.

37

Embedded Software Systems The terms embedded systems and cyber-physical

systems are used interchangeably. ISO defines embedded systems as "a program which

functions as part of a device. Often the software is burned into firmware instead of loaded

from a storage device. It is usually a freestanding implementation rather than a hosted

one with an operating system [68] ." They are further defined as "CyberPhysical Systems

(CPS)... integrations of computation with physical processes. Embedded computers and

networks monitor and control the physical processes, usually with feedback loops where

physical processes affect computations and vice versa [83]." Examples of embedded software

include avionics, consumer electronics, motors, automobile safety systems and robotics.

Non-embedded Software Systems For lack of another definition, non-embedded

software is defined as software which is not embedded, that is, software not tied to the

processors or inherently integrated with the physical system. Examples of non-embedded

software include web applications, desktop applications, some video games, financial sys-

tems, etc.

Some of the empirical results on reuse either include both types of systems or do not

specify the types of systems. These are classified as "Both Embedded and Nonembedded"

and "Unknown" respectively.

2.11.3 Empirical Study Types

To identify, catalogue and analyze empirical work assessing reuse, we follow Wohlin et

al [129], Yin [131], Kitchenham [77] and Zannier et al [133]. We classified empirical studies

of reuse into the following categories:

Controlled experiment Controlled experiments are experiments with random as-

signment of treatment to subjects, sufficient sample size, well-formulated hypotheses, con-

trol of factor level, dependent and independent variables. Because we found no examples

of controlled experiments in our research, controlled experiments are not discussed further.

38

Quasi-Experiment In a quasi-experiment, one or more characteristics of a controlled

experiment are missing. In a quasi-experiment strict experimental control and/or random-

ization of treatments and subject selection are missing. This is typical in industrial set-

tings [44]. The researcher has to enumerate alternative explanations for observed effects

one by one, decide which are plausible, and then use logic, design, and measurement to

assess whether that might explain any observed effect [129].

Case study A case study is an empirical inquiry that investigates a contemporary

phenomenon within its real-life context, especially when the boundaries between phe-

nomenon and context are not clearly evident. In a case study all of the following exist:

research questions, propositions (hypotheses), units of analysis, logic linking the data to

the propositions and criteria for interpreting the findings [131]. A sister-project case study

refers to comparing two almost similar projects in the same company, one with and the

other without a treatment [131], such as ad hoc reuse vs model based reuse. Observational

studies are either case studies or field studies. Case studies focus on a single project, while

multiple projects are monitored in a field study, maybe with less depth . Case studies

are observational studies with less controllable exposure to treatments, and may involve a

control group or not, or being done at one time or involve analysis of historical data [77].

Survey A survey consists of structured or unstructured questions given to partici-

pants. The primary means of gathering qualitative or quantitative data in surveys are

interviews or questionnaires [129]. Structured interviews (qualitative surveys) with an

interview guide, investigate rather open and qualitative research questions with some gen-

eralization potential. Quantitative surveys with a questionnaire, contain mostly closed

questions. Typical ways to fill in a questionnaire are by paper copy via post or possibly

fax, by phone or site interviews, and by email or web [70]. For purposes of this paper,

surveys are questions asked of individuals, such as engineers, rather than companies, the

surveys of companies in industry are included under reviews of industry practice.

39

Review of Industry Practice Similar to a survey, a review of industry practice

consists of discovering and analyzing the ways different companies in the industry perform

their tasks. Often they share the same data collection techniques with a survey, but the

questions focus on company practice.

Meta Analysis A meta analysis consists of analyzing multiple studies on the topic

in question. Meta analysis covers a range of methods to generalize and compare results of

a group of studies.

Experience Report An experience report is similar to a case study, but it does not

have the same level of controls or measures. It is retrospective, generally lacks propositions,

may not answer how or why phenomena occured, and often includes lessons learned [133].

In this paper we combine example applications with experience reports because most pa-

pers had features of both types of studies. An example application consists of "authors

describing an application and providing an example to assist in the description, but the

example is ’used to validate’ or ’evaluate’ as far as the authors suggest [133]" but without

the rigor of a formal case study.

Expert Opinion An expert opinion provides some qualitative, textual, opinion-

oriented evaluation. It is "based on theory, laboratory research or consensus [77]." These

expert opinions assess processes, strategies, approaches, theoretical models, policies, cur-

riculum or technology, that may or may not allude to full-scale evaluation or empirical

studies. Often such articles are based on experience, observations, and ideas proposed by

the author(s).

40

Chapter 3

Review of Existing Literature

There is a debate in the aerospace industry whether lessons from reuse successes and

failures in nonembedded software can be applied to embedded software. This chapter an-

alyzes and compares reuse success and failures in embedded versus nonembedded systems.

A survey of the literature identifies empirical studies of reuse that can be used to com-

pare reuse outcomes in embedded versus nonembedded systems. Reuse outcomes include

amount of reuse, effort, quality, performance and overall success. We also differentiate

between types of development approaches to determine whether and how they influence

reuse success or failure. In particular, for some development approaches, quality improve-

ments and effort reduction are low for embedded systems. This is particularly relevant to

the Aerospace industry as it has been subject to reuse mandates for its many embedded

systems.

3.1 Introduction to Review of Existing Literature

Reuse supposedly reduces development time and errors. “If a software package has

been executing error-free in the field for an extended period, under widely varying, per-

haps stressful, operating conditions, and it is then applied to a new situation, one strongly

expects that it should work error free in this new situation [4]” and “In theory, reuse

can lower development cost, increase productivity, improve maintainability, boost quality,

reduce risk, shorten life cycle time, lower training costs, and achieve better software in-

41

teroperability [101].” The Aerospace Industry was an early advocate of reuse. Chapter 8

of Anderson and Dorfman [4] discusses reuse in aerospace, including potential savings in

quality, cost and productivity. In July of 1992, the DoD released the DoD Reuse Initia-

tive: Vision and Strategy [14]. The government invested heavily in reuse, e.g. the Control

Channel Toolkit (CCT) in 1997 and Global Broadcasting Service (GBS) beginning in 1998.

Hence, one would expect large scale planned reuse. Many government requests for propos-

als contain a requirement for quantifying expected savings from reuse.

However, from the beginning, there has been a debate on reuse success. In Aerospace,

not all reuse experiences have been as successful as expected. Some major projects experi-

enced large overruns in time, budget, as well as inferior performance, at least in part, due

to the wide gap between reuse expectations and reuse outcomes [115, 132]. This seemed

to be especially the case for embedded systems. In many US government customer shops,

reuse became a red flag when awarding contracts.

Many engineers believed that one of the root causes of the disconnect between reuse

expectations and reuse realization was that too often estimated savings from reuse came

from projects that differed from the target project. In particular, the reuse estimates for

nonembedded systems were applied to embedded systems. There was an ongoing debate

as to whether embedded systems and nonembedded systems were similar as far as reuse

was concerned. Many systems and software engineers, especially those who worked on

embedded systems, claimed that reuse could not be successfully used in their systems

because the code was optimized to particular processors which may not be used in the new

project. Many of the embedded systems software engineers claimed that reusing software

was more costly than building the system from scratch. Further, many claimed that, in

particular, trying to use model based development (derived from the Initiative) was more

costly than using other development approaches. Our major motivation was to investigate

whether empirical studies exist that either support or contradict these opinions.

42

Our research questions are:

• Are embedded systems different with respect to reuse?

• Do embedded systems employ different development approaches?

• Does the development approach have an impact on reuse outcomes?

• What types of empirical studies exist that analyze and/or compare reuse in embedded

and nonembedded systems? Given that empirical studies can vary greatly in their

rigor, this should indicate how “hard” the evidence is.

• To what extent is there solid quantitative data paired with appropriate analysis?

• Are there studies that either deal with aerospace projects or can reasonably be gen-

eralized for this domain?

• What are the limitations of the current empirical evidence related to reuse?

In 2007, Mohagheghi and Conradi [93] conducted a survey assessing reuse in industrial

settings. They studied the effects of software reuse in industrial contexts by analyzing peer

reviewed journals and major conferences between 1994 and 2005. Their paper’s guiding

question was “To what extent do we have evidence that software reuse leads to significant

quality, productivity or economic benefits in industry?” Mohagheghi and Conradi [93] is a

major step forward in identifying and measuring reuse effectiveness. Unfortunately, their

work does not distinguish embedded vs non embedded systems. By contrast, this chapter

• Compares reuse effectiveness in embedded vs nonembedded systems

• Compares reuse effectiveness for different development strategies

3.2 Review Process and Inclusion Criteria

The search considered studies published in peer-reviewed journals and conferences,

industry forums such as SEI, industry seminars, symposia and conferences, and industry

43

and government-funded studies. Industry sources were especially useful for Product Line

development, since academic sources rarely have the need or ability to develop a product

line for evaluation purposes. Additional sources were monographs and technical reports

(for example, Hall et al [60]).

We searched the ACM digital library and IEEE Xplore, Empirical Software Engineering

Journal, Journal of Systems and Software, Journal of Information Science, MIS Quarterly

(MISQ), IEEE Transactions of Software Engineering (TSE), IT Professional, ACM Com-

puting Surveys (CSUR), the Journal of Research and Practice in Information Technology,

Springer Verlag, and Google Scholar. Keywords included “reuse,” “reuse benefits,” “reuse

case study,” “reuse empirical study,” “product line,” “component based,” and “model-

based.”

The articles were filtered by relevance based on titles. From relevance of titles alone, we

reduced the search to about 400. Reading the abstract and conclusion reduced the number

to 126, which were finally cut to 55 after reading the full article.

Once we had selected an initial set of articles, we considered works cited by the 55

papers, adding about 12. We also included newer works by researchers whose papers were

relevant, adding 7. In addition, we added from grey literature articles such as case studies

in industry published by the Software Engineering Institute (SEI). The final set of articles

about development approaches and strategies came to 83. (This does not include basic

background information about software development, research methods, etc.) Due to our

primary interest on the impact of reuse mandates since the Software Reuse Initiative, we

only considered papers published between 1992 and 2013.

The papers were classified by study type (Section 4.1, 4.2, 4.4), system type (Section

4.1, 4.2) and development approach (Section 4.3). Once the papers were classified, it

became clear that many reported on a particular reuse strategy or method, but were

not discussing the value of reuse per se, nor were they performing a comparison against

other methods or between types of systems. Because these did not add to the analysis,

a threshold was established requiring that at least 20 per cent of the paper be devoted

44

to a discussion of the merits of reuse itself or comparison with other methods. While

[124] find that only papers that devote at least 30% of their content to empirical results

contain adequate experimentation, we determined that setting the threshold this high

would exclude important data. This criterion resulted in the removal of sixteen papers

since they discussed (similar to Henninger [62]) empirical results only peripherally. The

removed papers, ([12,27,54,55,63,64,66,70,73,78,82,104,126,127,134,135]) were from the

experience report and expert opinion categories. We also excluded textbooks (e.g. [74]),

since their major purpose is to teach a methodology rather than to evaluate reuse success.

Finally, in 24 papers we could not determine whether the systems were embedded or

nonembedded. This was disappointing, because highly regarded papers about reuse did not

identify the system type, and thus could not be used in our analysis. We had to exclude the

following papers: [11,26,30,36,38,41,45,59,70–72,76,92,93,97,97,106–108,110,111,117,130],

and [9]). This was particularly unfortunate, since they contain some highly regarded work.

The final paper count for analysis was 43.

Seventeen articles evaluated reuse in embedded systems only, 17 evaluated reuse in

nonembedded systems only, and nine dealt with empirical results for reuse in both em-

bedded and nonembedded software systems. We found 10 discussions of case studies, one

quasi-experiment, three surveys, two meta-analyses, four reviews of practice, nine expert

opinions, and 14 experience reports.

While some papers discussed various development strategies, and embedded systems

and nonembedded systems, none compared development approaches with each other and

none compared reuse in embedded systems against reuse in nonembedded systems. This

study compares reuse outcomes from studies using different development strategies, and

outcomes from studies using embedded and nonembedded systems. In the studies that

covered both embedded and nonembedded systems, we collected the data from each for

comparison.

45

3.3 Reuse and Development Approaches for Embedded vs.

Nonembedded Systems

We classified papers by type of system (embedded and nonembedded), development

approach, and type of empirical research. Some empirical studies covered combinations

of two or more approaches. While the academic definitions of some approaches subsume

other approaches, it was not clear that this was happening. One argument against is that

embedded systems tend to include performance and reliability models, MATLAB models

etc. Further, over time, some parts of the system may have switched development ap-

proaches. Additionally, some studies reported on multiple projects. If their development

approaches were not the same, the study was classified in more than one category. There-

fore, we counted each development approach separately. An example of multiple classifica-

tion is [39]. We distinguished studies by whether they provided qualitative data (e.g. the

paper reported success as high, medium, low or reuse outcomes as better, worse, or reuse

satisfaction as satisfied, dissatisfied) or quantitative data (e.g. per cent improvements, or

r-values, p-values in statistical analysis results).

3.3.1 Software Reuse in Embedded Systems

Seventeen empirical studies covered reuse in embedded software. These included em-

pirical studies of reuse in industry and at government agencies. When more than one reuse

development approach was involved, the study was counted in multiple categories. Table

3.1 shows the data by development approach and study type.

Of the four case studies covering development strategies in embedded systems exclu-

sively, one was a combination of ontology and model based reuse [102], two were product

line reuse [84], [58], and one did not specify development approach [10]. The empirical

study evaluating the combination of ontology and model based reuse involved an Ericsson

product. It was based on interviews of Ericsson senior modelers. The particular object

of study was a subproject within the company focused on developing embedded software

46

Table 3.1: Empirical Studies of Embedded Systems Studies Reuse by Development
Approach

Embedded Systems Case
Study

Quasi-
Experiment

Survey Review of
Practice

Meta-
Analysis

Experience
Report

Expert
Opinion

Total

Ontology 1 1
Product Line 2 1 2 5
Model Based 1 1 3 2 7
Component Based 2 2
Unspecified 1 1 2 4
* Some studies included more than one development approach due to reporting on multiple
projects, hence 19, rather than 17 studies.
** There were no surveys, reviews of practice or meta-analyses that dealt with reuse in
embedded systems.

for part of a mobile-communications-network product. The study identified 26 areas for

improvement in modeling content, activities and management for large projects [102].

The one quasi-experiment on reuse in embedded systems studied both component-based

and model-based development approaches [17]. They developed a method (MARMOT) to

analyze performance of model-based, component-oriented development in a small system.

The system was a control system for an exterior car mirror.

Four expert opinion papers covered reuse in embedded software. Dos Santos and Cunha

discussed an embedded satellite system [35]. One discussed modeling interacting hybrid

systems [2]. The other two examined reuse trends in embedded software in real time

signal processing systems: one considered application and architecture trends, the other

considered design technologies [53,103]. These articles dealt with architecting and designing

a very large scale integrated (VLSI) chip.

Eight experience reports evaluated reuse in embedded systems. For example, one was

a DARPA analysis from model-based designers working with robotics, including tools and

techniques ([118]). The combination product line/component based reuse study involved

digital audio and video projects [75]. They developed a process for platform development,

found core assets in the digital AV domain and legacy assets, designed a common archi-

tecture and reported their experience with this approach. The report on component based

reuse involved field devices, such as temperature, pressure and flow sensors, actuators and

47

positioners, in other words, small, real-time embedded systems ([128]). Two of the stud-

ies on model based reuse were about the TechSat21 program, and appear to be the same

study [114, 121]. They created an agent-based software architecture for autonomous dis-

tributed systems. Through Matlab, they were able to model clusters in a way that enabled

operators to command the cluster as a virtual satellite by decomposing goals into specific

satellite commands.

3.3.2 Software Reuse in Nonembedded Systems

Seventeen studies involved reuse in nonembedded software in industry and at govern-

ment agencies. Table 3.2 shows the studies by development approach and study type.

Table 3.2: Empirical Studies of Nonembedded Systems Studies Reuse by Develop-
ment Approach

Nonmbedded Systems Case
Study

Quasi-
Experiment

SurveyReview of
Practice

Meta-
Analysis

Experience
Report

Expert
Opinion

Total

Ontology 1 1 1 3
Product Line 1 1 2
Model Based 2 1 1 4
Component Based 3 2 1 6
Unspecified 2 3 5
* Some studies included more than one development approach due to reporting on multiple
projects, hence 20, rather than 17 studies.
** There were no quasi-experiments or meta-analyses that dealt with reuse in nonembedded
systems.

Seven reuse case studies addressed reuse in nonembedded software (since one covered

two development strategies, it is reported twice). Two studies addressed model based reuse,

two studies addressed component based reuse, one studied a combination of product line

and component based reuse. Two did not specify the development approach. The follow-

ing are examples of case studies in nonembedded systems. One study of a model based

approach involved reducing interface incompatibilities via feature models [80]. The study

on a combination of product line and component based reuse involved large telecommu-

nications products. The components were built in house and shared across product lines.

Standardized processes and architectures enabled the reuse [94]. One study on component

48

based reuse reported on an industrial case study in a large Norwegian Oil and Gas com-

pany, involving a reused Java class framework and two applications. It analyzes reasons

for differences in defect profiles [57]. The other involved research performed by the Na-

tional Aeronautics and Space Administration (NASA) Earth Science Data Systems (ESDS)

Software Reuse Working Group (WG) that was “established in 2004 to promote the reuse

of software and related artifacts among members of the ESDS data product and software

development community.” Artifacts were shared via a web portal [50].

There were two surveys that specifically addressed a component-based development

approach in nonembedded software [86]. A questionnaire (answered by 26 developers)

covered areas dealing with the practice and challenges for what they called “development

with reuse in the IT industry.” They studied company reuse levels and factors leading to

reuse of in-house components. The other addressed success factors in reuse investment

[108].

One review of practice studied the use of ontologies [20], including ontology mapping

categories and their characteristics. This included four different ways of merging ontologies

into a single ontology from multiple sources.

Four expert opinion papers discussed nonembedded systems. One expert opinion paper

on development strategies covered ontology, product line and model based reuse [39]. It

analysed developing an ontology of models into a product line in the insurance domain.

One discussed the difficulties of architectural mismatch ([48]). One investigated reuse

libraries and their contributions to reuse ([92]). One discussed success factors across

business domains [107].

Three experience reports addressed reuse in nonembedded systems. The ontology ex-

perience report addressed processes and product development using an ontology for the

budget domain of the Public Sector in Australia [15]. The experience report on model

based reuse covered domain-specific modeling [16]. It discussed stock trading tasks such

as buying and selling stock, and creating user account details. The experience report on

component based reuse discussed the SMC satellite ground system framework [120].

49

Clearly, compared to embedded systems, we find more case studies, most of which are

dealing with CBSE. All empirical studies relating to ontologies are qualitative (review of

practice„ expert opinion and experience report), maybe reflecting that ontologies are still

somewhat novel in industry. Reuse in product line development shows predominantly qual-

itative data as well (3:1). Even reuse in model-based development shows more qualitative

(expert opinion and experience report) than quantitative analysis (case study). Reuse in

CBSE has more quantitative results in its case studies. This is matched by 4 qualitative

studies (survey, review of practice, experience reports). Empirical studies of reuse that

do not identify the development approach are also predominantly qualitative (4:1) with

three expert opinion studies compared to one case study and a survey. Clearly, the goal to

analyze and compare reuse outcomes in embedded vx nonembedded systems for different

development approaches would have been helped greatly with more “hard” data.

3.3.3 Software Reuse in Embedded and Nonembedded Systems

Nine studies covered development strategies in both embedded and nonembedded sys-

tems. Table 3.3 shows the type of data collected by development approach and study

type.

Table 3.3: Empirical Studies of Embedded and Nonembedded Systems Studies
Reuse by Development Approach

Both Embedded and
Nonembedded Systems

Case
Study

Quasi-
Experiment

SurveyReview of
Practice

Meta-
Analysis

Experience
Report

Expert
Opinion

Total

Ontology
Product Line 1 2 1 4
Model Based 1 1 1 3
Component Based 1 1
Unspecified 1 2 1 4
* Some studies included more than one development approach due to reporting on multiple
projects, hence 12, rather than 10 studies..
** There were no quasi-experiments that dealt with reuse in both types of systems.

Two case studies examined both embedded and nonembedded software systems. It was

is a side-by-side comparison of two very different systems, a pump controller vs web mail.

([125]) It did not specifically address reuse characteristics that may be different between

50

embedded vs nonembedded system . The other case study examined data from two reuse

projects at Hewlett Packard (HP), one an embedded system that developed, enhanced and

maintained firmware for printers and plotters. The other is a nonembedded system that

produces large application software for manufacturing resource planning [87].

The reuse survey covering both embedded and nonembedded systems addressed product

line/model based reuse for both types of systems. Its purpose was to identify some of

the key factors in adopting or running a company-wide software reuse program. The key

factors were derived from information gained from structured interviews dealing with reuse

practices, based on projects for the introduction of reuse in European companies. Twenty

four projects from 1994 to 1997 were analyzed. The projects were from both large and

small companies, a variety of business domains, using both object-oriented and procedural

development [109].

The two meta-analyses studied reuse (without clearly specifying the development ap-

proach). One was a study of reuse literature published between 1994 to 2005 covering

benefits derived from software developed for reuse and software developed with reuse [93].

The other discussed factors that could lead to reuse success [43].

Two expert opinion papers discussed reuse in both embedded and nonembedded soft-

ware systems. One expert opinion dealt with adding a model based reuse to a product

line reuse development approach, thus developing and documenting the product via a

model [79]. It discussed the creation of a model that would allow firms to develop related

lines on a common product platform. Thus the purpose of this study was model building,

rather than a development approach assessment.

There were two experience reports. One report on product line reuse compared two case

studies producing very different products (factory automation and medical information)

using the configurable software product family approach [106].

Similar to the previous two categories of analysis, qualitative studies outnumber quan-

titative ones (6:3). More recent development approaches either have no empirical studies

(ontology) or the studies are more in the expert opinion or experience categories (product

51

line). Reuse in Model Based development shows quantitative data through a case study

and a survey. The most extensive analysis of reuse with meta-analysis was performed on

systems for which the development approach was not specified. This does not help in

evaluating where and how the development approach may or may not have contributed to

success.

As can be expected, empirical studies of reuse with specific development approaches

start with experience reports and expert opinions, progressing to more in-depth case stud-

ies, quasi-experiments and finally meta-analysis over time.

3.3.4 Comparing Study Types

In total, seven types of empirical studies were represented in our review. Of these,

three were of the more rigorous type (case study, quasi-experiment, survey), two were a

less rigorous type (review of practice and meta-analysis) and two were the least rigorous

(expert opinion and experience report). When we look at the numbers of papers in these

catagories, five studies of embedded systems, nine studies of nonembedded systems and

three of both embedded and nonembedded systems were of the most rigorous types. No

studies of embedded systems, one of nonembedded systems and two studies of both embed-

ded and nonembedded systems were of the less rigorous types. Twelve studies of embedded

systems, seven studies of nonembedded systems and four studies of both embedded and

nonembedded systems were of the least rigorous type of study.

Case studies, quasi-experiments, surveys, reviews of practice and meta-analyses pro-

vided quantitative data. The expert opinion and experience reports offered mostly quali-

tative information. One experience report offered quantitative data.

Reuse with an ontology approach was only evaluated once with a case study including

only qualitative data. Reuse in product line reported quantitative data in two studies (a

case study and a quasi-experiment), the rest included qualitative data (a case study and

experience reports). Reuse in model based development had quantitative data in three

studies (a case study, a quasi-experiment and an experience report), but there were four

52

less rigorous expert opinions and experience reports (all with qualitative data). Reuse

in CBSE only reported qualitative data in experience reports. The studies that did not

identify the development approach also were predominantly qualitative.

3.4 Metrics Reported

Next we turn to the papers’ reporting of metrics. The types of metrics included size,

reuse levels, quality, effort, performance and programmatic (such as staff, institutionalized

process, or schedule). We noticed that, while all of the metrics reported fit into these

categories, the way the metrics were collected and reported differed. For example, size

could mean the size of the project, the software size, the model size, the size of the system,

the size of the software staff or the size of the project. Reuse level could refer to reused

elements (total number or per cent of the project), frequency in which certain components

were reused, phase of reused assets, and reused requirements. Quality referred to defects,

faults, severity of defects, reliability, and aspects of errors. Effort was reported in terms of

phase (development, design, simulation), productivity, and rework. Programmatic reported

schedule, staff, process and time to market.

Table 3.4 shows metrics reported in studies of reuse of embedded systems. They in-

clude size, amount of reuse, quality, effort and performance. Only one study reported

performance metrics, which was somewhat surprising, since many embedded systems have

to meet real-time performance requirements or deal with limited storage capacity. Reuse

studies on embedded systems did not report metrics related to process or programmatics.

All size metrics were ratio, as were quality and effort. Reuse metrics were ratio except for

needs vs needs met, which was ordinal.

53

Table 3.4: Metrics Used in Studies of Reuse of Embedded Software Systems 1

Attribute Definition Scale Explanation Source
Size
Model Size
- Absolute

“The numbers of ele-
ments: the number of
classes, the number of
use cases, the number
of sequence diagrams, or
the number of classes in
a diagram.”

Ratio “Absolute Size ‘Length’ can be
measured by source code, it is
organized as a sequence of char-
acters and lines. UML mod-
els are not sequences and there
exists no meaningful notion of
length. So we replace ‘length’
by ‘absolute size’. Metrics that
measure a model’s absolute size
are the numbers of elements.”

[17],
[81]

Model Size -
Relative

“Ratios between abso-
lute size metrics, such as
number of sequence Di-
agrams, number of ob-
jects; number of use
cases, number of vlasses;
number of state charts/
number of classes”

Ratio “These metrics enable to com-
pare the relative size (or propor-
tions) of different models with
each other and they give an
indication about the complete-
ness of models.”

[17],
[81]

System size. KBytes of the binary
code

Ratio Executable [17],

Size Terminal semicolons, De-
livered source instruc-
tions

Ratio Source Code [10]

Reuse
The amount
of reused el-
ements

“The proportion of the
system which can be
reused without any
changes or with small
adaptations.”

Ratio Measures taken at model and
code level.

[17],

Reusable
Require-
ments

Reusable requirement
unit

Ratio Any prominent and distinctive
concepts or characteristics that
are visible to various stakehold-
ers.

[84]

Needs vs
needs met

Direct needs expressed
by the informants, indi-
rect needs inferred from
descriptions of situations
or problems

OrdinalAs defined by surveyed engi-
neers

[102]

Quality
Defect den-
sity

Defects per 100 LOC Ratio “Collected via inspection and
testing activities.”

[17]

Reliability Reliability of the soft-
ware

Assumed to be 100per cent [114]

Effort
Continued on next page

1*Performance metrics reported only in embedded systems.

54

Table 3.4 – continued from previous page
Attribute Definition Scale Explanation Source
Development
effort

Development time
(hours)

Ratio Collected by daily effort sheets. [17]

Simulation
Effort

Person weeks Ratio Time to develop simulation en-
vironment

[85]

Performance
Performance On board fuel consump-

tion and time to perform
simulation

“Because time for communica-
tion has greatest impact, only
communication time included.”

[114]

Computation Current CPU workload
and total workload

Ratio Per cent of maximum compu-
tational rate (comp/sec) or per
cent of CPU time dedicated to
a task

[114]

Table 3.5 shows metrics reported in studies of reuse of nonembedded systems. Except

for performance metrics, the same categories of outcomes are reported, but there is a

larger variety of measures for several of the categories. We notice, for example, that

nonembedded systems report the frequency with which assets were reused as a measure of

reuse, not reported by embedded systems. In quality, nonembedded systems report severity

of defects, changes to software products, and component understanding, which are also not

reported by embedded systems. Nonembedded systems report on productivity, an effort

metric not mentioned by embedded systems.

Nonembedded systems also had a greater division of the metric scale. While all of the

size metrics were ratio, in reuse level four were ratio and three were ordinal. In quality,

four were ratio to two ordinal, and in effort three were ratio and one ordinal. This limited

the types of analysis that we could perform.

Table 3.5: Metrics Used in Studies of Reuse of Nonembedded Software Systems 2

Attribute Definition Scale Explanation Source
Size

Software
Size

Non Commented Source
Lines of Code

Ratio Source Code [57]

Module Size KLOC Ratio Source Code [69]
Size KSLOC Ratio Source Code [94]
Reuse

Continued on next page

2*Performance metrics reported only in embedded systems.

55

Table 3.5 – continued from previous page
Attribute Definition Scale Explanation Source
Reuse Level Ratio of different lower

level items reused in
higher level items to
total lower level items
used.

Ratio RL is based on counting item
types rather than item tokens.

[44]

Developers assessments
of reuse levels

OrdinalDevelopers assessments of reuse
levels

[86]

Reuse Fre-
quency

Frequency of references
to reused items.

Ratio Percentage of references to
lower level items reused verba-
tim inside a higher level item
versus the total number of ref-
erences.

[44]

Frequency of module
reuse

Ratio Ratio of the yearly sum of reuse
frequencies to number of mod-
ules stored in the library

[69]

Active Mod-
ule Ratio

Ratio of active modules Ratio Ratio of number of modules
reused at least once each year
to number of modules stored in
the library

[69]

Component
require-
ments
(re)negotiation

Developers Assess-
ments of Component
related requirements
(re)negotiation

Ordinal [86]

Repository
Value

Developers assessments
of Value of component
repository

Ordinal [86]

Quality
Defect Den-
sity

The NSLOC of each sys-
tem divided by the num-
ber of defects based on
trouble reports

Ratio [57]

Fault den-
sity

The number of faults di-
vided by the software
size

Ratio An error correction may affect
more than one module. Each
module affected is counted as
having a fault.

[94]

Severity The number of defects
of different severities di-
vided by the NSLOC

Ratio [57]

Number
of module
deltas

A change to a software
work product such as
code

Ratio Either an enhancement or a
repair, and since they corre-
late well with faults, deltas are
sometimes used for estimating
error rates

[44]

Component
Under-
standing

Developers assessments
of component under-
standing

Ordinal [86]

Continued on next page

56

Table 3.5 – continued from previous page
Attribute Definition Scale Explanation Source
Quality
Attributes
of Compo-
nents

Developers assessments
of component attribute
definitions

Ordinal [86],
[44]

Effort
Time to De-
velop

Staff Months Ratio Staff Months

Productivity Number of NCSLs pro-
duced per person day

Ratio Relies on the effectiveness of
NCSL as a measure of product
size.

[44]

Effort in person days
spent per module

Ratio Effort to develop unit of com-
pilation and deployment. A
higher Effort/ Module, means
lower productivity

[44]

Developer
Attitudes

How developers felt reuse
process affected produc-
tivity and quality

Ordinal [56]

Table 3.6 shows metrics reported in studies of reuse in both embedded and nonem-

bedded systems. Unlike studies of only embedded or only nonembedded systems, we see

metrics related to programmatics. Also unlike studies of only embedded or only nonembed-

ded systems, the only reuse metric was the phase of reuse, and only this category measured

rework.

Table 3.6: Metrics Used in Studies of Reuse of Both Embedded and Nonembedded Systems3

Attribute Definition Scale Explanation Source
Size
Team size. Persons Ratio Number of persons on the reuse

team
[109]

Program Size KSLOC Ratio Source Code [109]
Reuse
Phase of
Reuse

Phase in which artifacts
are reused

Nominal [109]

Quality
Defect Den-
sity

Defects per KSLOC Ratio [101]

Error Source Source of error Nominal Where did the error originate [93]
Continued on next page

3*There were no performance metrics reported in studies of both embedded and nonembedded systems.

57

Table 3.6 – continued from previous page
Attribute Definition Scale Explanation Source
Type of Er-
ror

Error Type Nominal Level of severity of error [93]

Error Slip-
page

Error Slippage Ratio Error Slippage from Unit Test [93]

Effort
Development
Effort

Effort in person hours Ratio Effort per module, asset or
product in person hours, days
or months

[93]

Design Effort Per cent of total effort Ratio Per cent of development time
spent in design

[93]

Effort Person Months Ratio [93]
Productivity LOC/time Ratio Apparent and actual LOC per

time unit, size of application di-
vided by development effort

[93]

Rework Person Months Ratio Effort spent in isolating and
correcting problems, difficulty
in error isolation or correction

[93]

Programmatic
Schedule Months Ratio Calendar time to complete [101]
Time to Mar-
ket

Per Cent Ratio Reduction in Time to Market [93]

Months Ratio Months to Deliver [109]
Staff Persons Ratio Overall staff size, software staff

size
[95]

Years Ratio Overall staff experience, soft-
ware staff experience

[95]

Process Software Process Nominal Presence of reuse process in-
tegrated into organization soft-
ware development process

[109]

Table 3.7 summerizes the commonalities and differences of metrics collected for embed-

ded systems and nonembedded systems as well as the metrics collected when both types

of system were studied. It shows that in the subattributes, there was little commonality in

the metrics reported. It is only at the generalized outcome level that the reported metrics

become comparable.

In summary, metrics varied widely, ranging from nominal to ratio level of measurement,

and metrics for the same attribute varied quite a bit among studies. This makes direct

comparison difficult.

58

Table 3.7: Comparing Metrics Used for Embedded Systems, Nonembedded Systems and
Both Types of Systems4

Attribute Embedded Nonembedded Both Types
Size
Software Size X
Model Size - Absolute X X
Model Size - Relative X
System size. X
Size X X
Team size X
Program size X
Reuse
The amount of reused elements X
Reusable Requirements X
Needs vs needs met X
Reuse Level X
Reuse Frequency X
Active Module Ratio X
Component Requirements
R(e)negotiation

X

Repository Value X
Phase of Reuse X
Quality
Defect density X X X
Fault density X
Severity X
Number of Module Deltas X
Reliability X
Component Understanding X
Quality Attributes of Components X
Error Source X
Type of Error X
Error Slippage X
Effort
Development effort X X
Design Effort X
Simulation Effort X
Time to Develop X
Productivity
Effort X
Rework X
Developer Attitudes X
Performance
Performance X
Computation X

Continued on next page

4*Note that the types of attributes studied were more programmatic when both embedded and nonem-
bedded systems were studied.

59

Table 3.7 – continued from previous page
Attribute Embedded Nonembedded Both Types
Programmatic
Schedule X
Time to Market X
Staff X
Process X

3.5 Analysis of Outcomes

Unlike other studies that analyzed papers reporting on multiple studies, but reported

results as a single data point per paper (e.g. [93]), we scored each project individually.

For example, one study included 27 different projects with different results for different

projects ([109]). These are scored as 27 individual data points. When a study reported

on reuse in both embedded and nonembedded systems, we included the individual projects

in both catagories, as appropriate. The remainder of this chapter reports on analyzing

empirical evidence of reuse by project rather than by paper (or study). in both embedded

and nonembedded systems ([109]).

Comparing Development Approaches. Table 3.8 shows how many projects used a

particular development approach. In comparison, there were fewer studies investigating

reuse with a product-line approach for embedded systems than for nonembedded systems

(20 vs 23). Embedded system reuse was studied for model-based development approaches

19 times, compared to 24 times for nonembedded systems. CBSE was studied more fre-

quently for reuse in nonembedded systems than embedded systems (14 vs 7). It appears

that across the board, reuse was studied in fewer projects in embedded systems than

nonembedded systems.

60

Table 3.8: Number of Projects by Development Type

Ontology Product Model Component Unspecified Total
Line Based Based

Embedded 0 20 19 7 10 56
Nonembedded 3 23 24 14 15 79
Total 3 43 43 21 25 135

Comparing software size. We measured software size as in ([95]): (size of the soft-

ware project on which reuse was applied): Small = less than 10 KLOC and 10 person-

months effort; Medium = 10-100 KLOC and 10-100 person-months; Large = more than

100 KLOC, more than 100 person months. Table 3.9 compares the sizes of the embedded

systems projects by development approach. For each development approach,“NR” states

the number of such projects reported and % compares the percentage of projects in each

size category. Table 3.10 does the same for nonembedded systems. Where possible, we

also used synonyms of the sizes reported in Table 3.7. Because many empirical studies did

not report system size, the numbers in the tables do not add up to the total number of

projects.

Table 3.9: Size of Embedded Systems

Embeddeda Product Line Model Based Component Based Unspecified Reuse
Project Sizes NR % NR % NR % NR %
Large 4 40 2 14 2 67
Medium 6 50 3 21
Small 1 10 9 65 1 33 2 100
a]Note many papers did not report size

Table 3.10: Size of Nonembedded Systems

Nonembeddeda Product Line Model Based Component Based Unspecified Reuse
Project Sizes NR % NR % NR % NR %
Large 1 50 6 60
Medium
Small 1 50 4 40
a]Note many papers did not report size

61

Empirical studies of both Product Line and Component Based development strategies

use a larger proportion of medium and large systems, while studies of model-based and

unspecified development strategies tend to study small systems. Given that embedded

systems cover small, medium and large systems, this represents a reasonable cross section.

Comparing outcomes. Let us turn to outcomes next.

Given the diverse ways in which various system attributes and reuse variables were

measured, as well as the lack of effect size in most studies, it was not possible to perform

a meta-analysis that could quantitatively assess and compare similarities and differences

between outcomes. In an effort to quantitify and analyze the data, we include as “charac-

teristics of events” the concepts of “better or worse.” "Better" meant that the reuse outcome

under study was considered to be an improvement over not reusing. Conversely, "worse"

meant that the reuse outcome had negative results. We use the term "mixed" when there

was in improvement in some aspects of the outcome and other aspects of the outcome were

negative, or when there was no noticeable difference between reusing and not reusing assets.

Thus we are able to assign an ordinal measure to outcomes, i.e. 1 for better outcomes, -1

for worse outcomes and 0 for either no change in outcomes or mixed results. We use the

same outcome categories as in Table 3.4. Tables 3.11 and 3.12 list development approach

as major column headers like Tables 3.9 and 3.10. For each development approach we list

number of projects for embedded (E) and nonembedded (N) systems. Rows list outcome

scores within each outcome category. While three nonembedded systems projects report

using an ontology approach, there were no embedded system projects using an ontology.

Hence we could not compare them and left them out of Tables 3.11 and 3.12.

A relatively large number of papers only reported very high level results rather than

results for specific attributes of reuse outcomes. These are scored similarly and shown

in Tables 3.11 and 3.12 under “general.” The “general” category reflects the developers’

reported overall reuse experience.

62

Embedded Systems

For reuse level in embedded systems, most of the studies reported positive reuse results

for product line, model based, and component based development. This was not the case

for the two studies that did not specify development approach. One of them reported

mixed, the other negative results. For product line reuse in embedded software systems,

we identified three reasons for reuse failure: complex reuse repository, lack of management

commitment and changing of the hardware. With a model based development approach,

the failure may have been due to lack of experience in modeling. Under unspecified de-

velopment approach, we found that for embedded systems, the results were no better and

possibly worse than if no reuse had been employed. However there is no explanation in the

studies as to why that would be the case.

While effort was reduced in all projects with product line development that reported

effort, this was not the case for model-based development, where the majority of studies

reported negative (7) or mixed (6) results. Each of the three projects using component

based development reported a different outcome with regard to effort. Finally, when devel-

opment approach was not specified, two projects reported positive, one a mixed outcome.

It appears that while the majority of projects report positive outcomes with regard to

effort, some development approaches show more mixed and negative results. This would

indicate that the type of development approach matters.

Improvements for quality do not always materialize, as 8 negative results indicate.

They are related to model-based and unspecified development approaches. By contrast, all

four projects (that reported quality outcomes) that used a product line approach report

positive outcomes for quality, as opposed to 2 for model based development (compared to

five negative and six mixed results) and only 1 for component based development reported

a positive outcome. Again, development approach matters.

Projects that only report overall reuse success are generally favorable (19), but again,

model based development projects reported one negative result, six mixed results and only

two positive ones. In the model based reuse projects that reported mixed results, while

63

problems were identified, only the factors leading to the success of the successful projects

were discussed. In the model based reuse project that failed, it appeared that the model

was incomplete. “Our implementation was not carried out through widespread modeling,

and there are a few reasons for this:

• the diverse team of experts in robotics, computer vision, software, and control were

not all familiar with software modeling techniques;

• the operating environment of real-time behaviors required many components to run

on a real-time operating system with limited tool support;

• the behavior of many components is best specified using general-purpose techniques,

especially the advanced control algorithms used.

Whether a more experienced modeling team could have been successful is not clear. It

appears that reuse with model based development poses challenges for embedded systems.

Under Product Line development, three projects report a failure. In one, the analyst

found that the reuse structure was too complex to encourage reuse of software. “Not

modifying nonreuse processes, and insufficiently publicizing the repository and the reuse

initiative, were the immediate causes of failure.” In the other two, the analyst found that

the management was not committed to reuse and that a change in hardware made the

software reuse unsuccessful. “As a result, reusable assets were produced, but could never

be reused because of changes to requirements, both in functionality and hardware [95] pp.

349-351.”

Reuse in embedded systems was successful for both component-based and unspecified

development approaches. Overall, 19 successful projects compare to 4 failures and 6 mixed

results.

Nonembedded Systems Table 3.11 also shows the reuse outcomes for non-embedded systems.

Outcomes related to reuse level are overwhelmingly positive: 35 projects report success

vs 10 negative and three mixed outcomes. Lack of success was attributed to a loose

development approach, only reusing design and code, no domain analysis, no configuration

64

Table 3.11: Frequencies of Outcomes

Product Line Model Based Component Based Unspecified Total
Outcome E N E N E N E N E N
Reuse Level
1 7 15 10 13 1 6 0 1 18 35
-1 4 2 0 4 0 0 1 4 5 10
0 0 0 3 3 0 0 1 0 4 3
Effort
1 7 5 3 10 1 4 2 9 13 28
-1 0 0 7 2 1 0 0 0 8 2
0 0 0 6 7 1 2 1 0 8 9
Quality
1 4 2 2 4 1 6 0 9 7 21
-1 0 0 5 1 0 1 3 0 8 2
0 0 0 6 7 1 2 1 0 8 9
General
1 13 3 2 8 2 4 2 10 19 25
-1 3 0 1 1 0 0 0 0 4 1
0 0 0 6 6 0 0 0 0 6 6
* Number of projects reporting the outcome
** Note that not all projects reported all outcomes

management, no top management commitment, lack of reuse processes and key roles.

In the successful projects, reuse processes, modifying nonreuse processes, management

commitment and human factors were all “important for a successful reuse program ([95,

p.347]).”

Similarly, effort reduction was judged positive by 28 projects. Only two reported a

negative outcome and nine reported mixed outcomes. Two negative outcomes were for

model based development, as were seven of the mixed outcomes. Two of the mixed outcomes

were in component based development. No reasons were given for the negative or mixed

outcomes.

Quality also improved for most nonembedded systems with 21 reporting positive results,

nine mixed results and only 2 negative results. However, as for embedded systems, using

a model based development approach had more negative and mixed results (1 + 7 = 8)

than positive ones (4).

65

Nonembedded system projects that report overall reuse success dominate with positive

outcomes (25) vs one with negative and six with mixed outcomes. There also were three

positive results using an ontology based approach. Table 3.11 does not list outcomes of

projects using an ontology development approach, since embedded systems do not use this

approach and hence a comparison is not possible.

The results for nonembedded systems showed predominantly improvement in all out-

comes areas, except quality in model based reuse, where the majority of outcomes is mixed

or negative.

It appears that positive outcomes are more frequent for nonembedded systems, but

negative outcomes for all types of outcome variables still occur for model based develop-

ment. Note also that product line development is not immune to negative reuse outcomes,

specifically, two projects report negative outcomes for reuse level.

The data in Table 3.11 indicate that reuse in nonembedded systems is more likely to

be successful for some outcomes, like effort and quality. Overall outcome variables tend

to be more positive for nonembedded systems. Particularly there is a smaller proportion

of negative outcomes for model based development for reuse level and effort. This is also

true for product line development for all outcome variables. Table 3.11 shows that reuse

success differs some between embedded systems, not only overall (last columns) but also

with regard to successful development approach.

Table 3.12 shows reuse outcomes as percentages for product line (PL), Model Based(MB),

Component Based (CB) and unspecified development approaches (UA). For product line

development, the reuse level improved in 88% of the projects in nonembedded systems, but

only for 64% in embedded systems. 36% of the embedded systems reported lower reuse

levels as opposed to only 12% of the nonembedded systems. For both types of systems,

100% of the projects reported improvements in effort and quality. However, in the gen-

eral impression of reuse experience, 100% of the nonembedded systems projects reported

improvement, but only 81% of the embedded systems projects reported improvement and

19% reported negative results. While the reasons for these results were not reported, we

66

posit that platform dependence and the performance requirements of the embedded sys-

tems may have precluded some reuse, and that the reuse level and the general impressions

may be related.

Table 3.12: Normalized of Frequencies Outcomes

PL MB CB UA Total
Outcome E N E N E N E N E N
Reuse Level
Total 11 17 13 20 1 6 2 5 27 48
+ 64% 88% 77% 65% 100% 100% 0% 20% 67% 73%
- 36% 12% 0% 20% 0% 0% 50% 80% 19% 21%
M 0% 0% 23% 15% 0% 0% 50% 0% 15% 6%
Effort
Total 7 5 16 19 3 6 3 9 29 39
1 100% 100% 19% 53% 33% 67% 67% 100% 45% 72%
-1 0% 0% 44% 11% 33% 0% 0% 0% 28% 5%
0 0% 0% 38% 37% 33% 33% 33% 0% 28% 23%
Quality
Total 4 2 13 12 2 9 4 9 23 32
1 100% 100% 15% 33% 50% 67% 0% 100% 30% 66%
-1 0% 0% 38% 8% 0% 11% 75% 0% 35% 6%
0 0% 0% 46% 58% 50% 22% 25% 0% 35% 28%
General
Total 16 3 9 15 2 4 2 10 29 32
1 81% 100% 22% 53% 100% 100% 100% 100% 66% 78%
-1 19% 0% 11% 7% 0% 0% 0% 0% 14% 3%
0 0% 0% 67% 40% 0% 0% 0% 0% 21% 19%
* Per cent of projects reporting the outcome

In model based development, we see that 77% of the embedded systems projects re-

ported improved outcomes. There were no reports of negative outcomes and 23% of the

outcomes were mixed. In nonembedded systems, 65% reported improved outcomes, 15%

reported mixed outcomes, and 20% reported negative outcomes. However, we find that in

effort and quality, the embedded systems projects reported far worse results than nonem-

bedded systems (effort:19% vs 53% positive, 44% vs 11% negative, 38% vs 37% mixed;

quality: 15% vs 33% positive, 38% vs 8% negative and 46% vs 58% mixed). The general

impression of reuse using model based development was also different, with only 22% pos-

itive results for embedded systems compared to 53% positive outcomes for nonembedded

67

systems. 11% negative outcomes compare to 7% for nonembedded systems; 67% mixed re-

sponses for embedded systems compared to 40% mixed responses for nonembedded systems.

These appear to be important differences in reuse outcomes for model based development

in embedded vs nonembedded systems.

The outcomes for component based development also differed for effort and quality, but

the number of observations was too small to draw conclusions.

The overall outcomes regardless of development method is also telling. Overall, the

percentage of projects experiencing an increase in reuse level was similar between embed-

ded and nonembedded systems. However, the savings in effort were quite different. While

the positive effort outcomes were nearly the same (20% to 21%), the difference in negative

effort outcomes was sizeable (40% vs. 14%) as well as in mixed outcomes (40% vs 64%).

The difference in quality outcomes was also striking, with nonembedded systems report-

ing positive outcomes twice as often as embedded systems (66% vs. 30%) and embedded

systems reporting negative outcomes nearly six times as much as nonembedded systems

(35% vs 6%). General reuse experience was also noticeably different between embedded

systems and nonembedded systems, with embedded systems reporting a positive outcome

for 66% of the projects and nonembedded systems reporting a positive outcome for 78% of

the projects, while embedded systems reported negative outcomes in 14% of the projects.

Nonembedded systems reported negative outcomes for only 3% of the projects. The rea-

sons for this cumulative difference are not clear. However, one study reported one failure in

quality differences between the ground system (nonembedded) and the flight system (em-

bedded) that was related to the size, reliability and complexity of the software. While there

was no discussion about which, if any, of these contributed to the failure, the conclusion

was, “We found that development strategies in general performed as well or better than

drastic change strategies on ground software, but did worse than adopting no strategy in

the case of flight software systems ([101]).”

68

Testing for significance. Our next question was whether the differences we observed

and analyzed above are strong enough to be statistically significant. We performed a Chi-

Square test on the outcome scores. Table 3.13 shows the results. This indicates that the

differences in reuse success described above are strong enough to be statistically significant

for two situations:

1. savings in effort are less likely to be successful for embedded systems when a model

based approach to reuse is employed

2. quality improvements are less likely to be realized in embedded systems (in studies

that did not report on the development approach used).

Unfortunately, the papers do not provide a solid chain of evidence to identify reasons.

Table 3.13: Chi Squared P-Values Embedded Systems vs Nonembedded Systems

Outcome Product Line Model Based Component
Based

Unspecified
Approach

Reuse Level 0.1213 .2291 N/A N/A
Effort 0.2609 0.0292 .3779 0.0704
Quality N/A 0.2138 .2062 0.0005
General 0.3059 0.2583 N/A N/A

Since we did not have performance scores for nonembedded systems, we had to eliminate

this success factor from the analysis. For some combinations of criteria and development

strategies, the sample size was too small, hence the corresponding table entries are marked

N/A.

3.6 Threats to Validity

Since much of the analysis is better classified as qualitative, we assess the following types

of validity: descriptive validity, interpretive validity, theoretical validity, generalizability,

and evaluative validity [90].

69

Descriptive Validity Descriptive validity relates to the quality of what the researcher

reports having seen, heard or observed. Because observations are important, we needed to

include grey literature. Since these are not always peer reviewed, the rigor of data collection

or reporting is uncertain. To alleviate this threat to validity, we used SEI sources. While

not peer reviewed, it is highly respected in industry. However, even in peer reviewed

material, the reporting might be subject to mis-interpretation of what was observed.

We investigated how the researchers handled information, including their presentation

of data, method, hypothesis, analysis, threats to validity and significance. Of the 84 initial

papers, half of the studies did not include the data that was claimed to be analyzed.

Only five had a hypothesis. Only nine discussed threats to validity. Many studies are

reports on reuse efforts undertaken by industry in specific approaches or products they

were marketing. Many of these studies contained few or no metrics and they did not

use hypothesis tests, analysis of their results or clues about validity issues that might have

affected outcomes. There was a great deal of expert opinion not backed up by metrics. Even

in the very complete discussions of developers’ attitudes to reuse, there was no discussion

as to whether the way the developers felt about their reuse experience was backed up by

quantitative results.

An important weakness is the failure of many studies to include enough metrics of

outcomes, leading, by necessity, to few projects that could be reported on in section 6.

Another weakness is the failure to include performance metrics in studies of nonembedded

systems. As a result of this, some of the key differences may not be discovered. While the

absence of stringent performance requirements may not affect reuse success in nonembedded

systems, it makes it difficult to study embedded systems vs nonembedded systems in terms

of reuse.

Interpretive Validity The second threat to validity is concerned with what objects,

events, and observations mean to the experimenters.

70

The first challenge in conducting this research was understanding development strate-

gies and system types as variables. It was important to identify where system types and

development approaches overlapped. For instance, a system as an end product could

be embedded, but the simulation software and many subsystems could be nonembedded

software. This required the ability to determine if the empirical study focused on the em-

bedded portion of the system or on a nonembedded portion. In addition, the development

strategies overlapped. Where more than one development approach appeared to exist, a

determination had to be made as to whether the development approach was truly a com-

bination or if one or another development approach dominated or even if one development

approach subsumed others.

We found no studies whose major focus was comparing reuse in embedded systems vs

nonembedded systems. Even when reuse in both types of systems is studied, the authors

aggregate the results. This may have skewed the results reported in these studies. To

alleviate this threat, we analyze each project individually.

Another interpretive threat to validity is the lack of common, consistent definitions.

This is especially true with model-based development strategies. While there are many

types of models, the empirical studies are not clear what types of models are being used,

whether they are architectural models, design models or behavioral/performance models.

It is also unclear, in empirical studies of component based reuse, whether the term com-

ponent means the software with the platform or the software alone. In the grey literature

mentioned above, the impartiality of the reporting is also uncertain. The mitigation, again,

was to use respected industry sources, even though they are not peer reviewed.

In order to analyze the data, it was important to find a way to convert opinions into

analyzable data. This was because quantitative data was scarce. It was also important to

determine reuse outcome categories, since every paper had its own perspective and thus

identified its own metrics (insofar as they used metrics). Categorizing metrics based on

similarity required careful reading of each paper. The different viewpoints of different

studies may have affected data interpretation (lack of clarity for our purposes).

71

Due to lack of information about system types, we had to exclude a series of studies.

Had we known the system type in the studies, we could have had more data.

Finally, there was the question of the validity of subjective opinion as data. In many

experience reports and expert opinions, the objectivity of the author may come into ques-

tion. A few were possibly marketing. Setting the threshold for inclusion at 20% empirical

content may have led us to include too many empirical papers that lack rigor, but setting

it higher would have further reduced available data.

Theoretical Validity Theoretical validity refers to an account’s validity as a theory of

some phenomenon. It depends on the validity of the construct of the experiment and on

the validity of the interpretation or explanation of the observations. It also depends on

whether there is consensus within the community about terms used to describe context,

events and outcomes. With the number of similar but not identical metrics presented, and

ways of measuring success, there is a threat to the validity concerning the similarity or

difference of the perceived value of reuse. This was mitigated by using a common scoring

system, resulting in ordinal rather than ratio metrics.

Generalizability ”Generalizability refers to the extent to which one can extend the

account of a particular situation or population to other persons, times, or settings than

those directly studied [90].” It is comparable to external validity used in quantitative

studies. In this situation, the threat to validity consists of the access to research that has

been performed. Corporations may be performing studies that they choose not to release to

the public. This could be because of the proprietary nature of the information, or because

publication is not a corporate focus. The information in those studies could reveal factors

not uncovered in the published material. There is a tendency to publish successes and to

keep working on or terminate efforts that have failed, leading to overreporting of success.

This also leads to the low numbers of projects available for comparison.

In some cases, the reuse process was being applied for the first time. This could have

been one reason there was so much evidence of success through reuse. In these cases, it is

72

fair to ask how much of the improvement is because there is SOME process being followed

as opposed to none at all (in other words, was reuse the reason for improvement or was it

the existence of a process?)

Evaluative Validity Evaluative validity refers to the evaluative framework in deciding

whether the reuse was, in fact, successful or not, and if so how much. The frameworks were

likely to have differed in the different studies because the contexts were different. This was

mitigated by considering both the researchers’ evaluation of reuse and the observations

upon which the evaluations are based.

3.7 Conclusion and Future Work

We analyzed empirical studies of reuse dating from the time of DoD’s release of the DoD

Software Reuse Initiative (1992). We considered five development approaches to reusing

software in both embedded and nonembedded types of software systems: ontology, product

line, model based, component based and unspecified approach (where the development

approach was unknown). We considered eight different study types. Out of 84 candidate

papers, only 43 had enough usable empirical content to enable a comparison of reuse

outcomes in embedded vs. nonembedded systems.

Reported studies (experiments, case studies, surveys, etc) from industry as well as

academia are surprisingly few. While we found a wealth of papers describing reuse, we

found few with hard evidence either to the benefits or lack of benefits from reuse addressing

or distinguishing between reuse in embedded vs nonembedded systems. We also found a

number of papers questioning whether the benefits exist.

We divided the reuse studies into categories of embedded, nonembedded, and both

embedded and nonembedded systems. We grouped these into subcategories based on

development approach. Finally, we grouped them by type of empirical study.

73

Having catalogued the empirical studies, we proceded to analyze individual projects in

these studies. This allowed a first set of comparative analyses. We analyzed what reuse

outcomes were reported and how they were measured. We mapped reported outcomes into

a three point Likert scale as success, failure or mixed result for reuse outcomes related to

amount of reuse, effort, quality, performance (where available) and general reuse success.

We compared embedded and nonembedded systems with regard to the proportion of posi-

tive, negative and mixed reuse outcomes for each of the different development approaches.

We also performed an overall comparison between reuse in embedded and nonembedded

systems.

We found that results from reuse studies of nonembedded systems were not necessarily

extendable to embedded systems. For example, in a model based development approach,

effort outcomes were significantly more positive for nonembedded projects than for em-

bedded projects. In order to suggest that a development approach or method is generally

effective, it needs to be studied in both types of software systems. This research casts

doubt on whether it is wise to extend findings from reuse studies of nonembedded systems

to embedded systems.

Limitations of existing studies point to a lack of solid metrics to underpin the many

opinions about reuse. While we were able to translate qualitative responses to ordinal data

for comparative analysis, the power of nonparametric tests is lower than for parametric ones

and may have prevented us from finding more differences that are statistically significant.

It would be helpful to have research with reuse outcome measures that allow statistical

tests with a higher power against which to test the hypotheses.

In embedded systems, where the source code is optimized against a processor, the reuse

of source code may not generate much savings, because when the processor is changed, the

code must be reoptimized. We saw symptoms of this in reports of unsuccessful reuse levels

(i.e. less reuse than expected) in some of our data.This could contribute to the lack of

success of reuse as reported in the reuse outcomes for model-based development.

74

Another weakness in existing studies is the failure to include performance metrics.

While the absence of stringent performance requirements may not affect success in nonem-

bedded systems, it is difficult to compare embedded systems with nonembedded systems

in terms of reuse when performance requirements must be met.

Based on our analysis, we have the following recommendations:

• If a company is interested in reusing embedded software, the existing empirical evi-

dence suggests that it would be prudent to proceed carefully, and treat initial reuse

attempts as pilot studies, rather than presuming that reuse benefits are a foregone

conclusion.

• The tight connection between hardware and software in embedded systems, taken

with the lack of performance metrics in existing reuse studies relating to embedded

systems, suggests that embedded software reuse is less risky when the hardware is

identical, or has characteristics which will yield improved performance when hard-

ware and software are taken together (for instance, faster processor speeds with fully

instruction-compatible processors).

An area for potential research would be to study whether an ontology-based approach

would be of value in embedded systems. More research on combinations of approaches is

also useful. Yet another potential area of research could be which types of models work

best for model-based development strategies, and whether they are the same for embedded

and nonembedded systems.

75

Chapter 4

Survey

Having analyzed the empirical literature, we found no work that compared embedded

to nonembedded systems. We decided to do a survey of practitioners to see if they could

shed some light on these questions.

Software reuse has been the subject of empirical studies for decades. There have been

studies of reuse methods, success factors, approaches and tools. However, while modern

reuse strategies have been studied, these reuse strategies have not been compared with each

other. Similarly, reuse in embedded and nonembedded systems have been studied, but they

not compared to each other. This chapter describes the results from a survey taken at a

major aerospace corporation, in order to characterize developers’ views on software reuse.

A total of 78 developers participated in the survey. The questions focused on modern reuse

strategies and their effectiveness, whether they were used alone or in combination. It also

analyzes reuse when developing embedded systems vs. nonembedded systems.

4.1 Related Work

An extensive survey of literature dating back to 1992 [7] found 84 empirical studies

focusing on software reuse including five surveys (based on questionnaires or structured

interviews). The important findings of the surveys were:

76

Li et al. [86] investigate the state of practice and industry-wide trends in reuse of

in-house built components with respect to requirements (re)negotiation, component repos-

itory, component understanding and component quality. They also study the relationship

between the companies’ reuse level and these factors. A 12 question survey was given to

30 software developers in three companies. 17 developers responded. There were six re-

search questions: Does requirements (re)negotiation for in-house components really work

as efficiently as people assume? Does the efficiency of component related requirements

(re)negotiation increase with more in-house built components available? Does the value

of component repository increase with more reusable components available? How can a

component user acquire sufficient information about relevant components? Does the diffi-

culty of component documentation and component knowledge management increase with

increasing reuse level? Do developers trust the quality specification of their in-house built

components? If the answer is no, how can they solve this problem? Each research question

was addressed by one or more survey questions. After a summary the answers related

to of each research question (three via tabulation, one using bar charts, two summarized

the information). Ordinal values were assigned to the responses, and a Spearman Rank

Correlation Coefficient analysis was used to determine significance. Renegotiation of re-

quirements was important, but will probably not increase efficiency with increased reuse

level. A component repository was not a key factor in successful reuse. Most developers

were not happy with existing documentation and encouraged more attention be placed on

informal channels for information about components being reused. This was a study of

component based reuse in nonembedded systems. No qualitative data were collected.

Rothenberger et al. [111] explores practices for code reuse. Their goal is to identify prac-

tices in reuse that can be proactively used in formulating a well-thought-out reuse strategy.

The study uses survey data from software development groups working with software reuse

to reduce numerous reuse success factors identified in earlier studies to a set of six reuse

dimensions: planning and improvement, formalized process, management support, project

similarity, and object technologies. The survey consisted of 20 questions linked to 8 reuse

77

practice categories: Project similarity, reuse planning, measurement, process improvement,

formalized process, management support, education, object technologies, common archi-

tecture and commonality of architecture. 71 survey responses from 67 projects were used

in the analysis. The responses were analyzed by grouping co-occurring practices into single

constructs using Principle Component Analysis (PCA). PCA reduced the six dimensions

to five. Object technologies did not explain enough variance to be included. System types

and development strategies were not discussed. There were no qualitative questions to

explain causes for the observed behavior.

Morisio et al. [95] identified some of the key success factors in adopting or running a

company-wide software reuse program. 24 projects between 1994 and 1997 were analyzed

using structured interviews from 32 Process Improvement Experiments, usually with the

project manager. The answers were tabulated for observation. They looked for a correla-

tion between independent variables (state variables, like staff experience, size of baseline,

domain, etc. and high- level control variables, like human factors, mamagement com-

mitment, etc.) and the dependent variable (success or failure). The interviews consisted

mostly of closed questions. Data were coded and organized into categories of success and

failure and then analyzed using correlation tree analysis. Top management commitment

was “a prerequisite for successfully designing and enacting process change.” Of the state

variables, only “type of software production” had impact. Three main causes of failure

were not introducing reuse-specific processes, not modifying nonreuse processes, and not

considering human factors. Based on these results, Morisio et al. suggest a process of

how to introduce reuse in an organization. While both embedded and nonembedded sys-

tems were identified in this paper, the results were analyzed together, but they were not

compared against each other.

Frakes and Fox [41] used results of a survey to predict the likelihood of certain reuse

levels of later life cycle objects from earlier ones, and reuse levels of life cycle objects

given reuse levels of other life cycle objects, whether from a preceding phase or not. 113

software practioners from 29 projects answered questions about their own and their organi-

78

zations’ reuse practices and policies. The companies’ primary businesses included software,

aerospace, manufacturing, telecommunications, as well as universities. Respondents rated

reuse levels of requirements, design, code, test plans, test cases and documentation. Reuse

levels were measured on a 10 point Likert scale for each artifact. The data were analyzed

using Pearson’s correlation coefficient for reuse levels of different artifacts. The data shows

strong, significant positive correlations between reuse levels of all life cycle objects. From

the Pearson’s Correlation Coefficients, Frakes et al. concluded that reuse of artifacts early

in the life cycle was predictive of reuse of artifacts later in the life cycle. There was no

discussion of whether the projects used embedded or nonembedded systems, nor were the

development approaches discussed. No qualitative data were collected to explain causes

for observed behavior.

Rine and Sonnemann [108] developed a nine question survey to identify which factors

are predictive of reuse success. This survey was used to measure software reuse capability,

productivity, quality and the set of software reuse success factors (management approach,

software architecture, availability of components, and quality of components). The ques-

tionnaire was conducted as a mail survey. It generated 109 responses from 99 projects in

83 organizations. Software reuse was measured as a percentage, or frequency, of the com-

ponents reused. The researchers chose to use F-tests to further analyze the data. From the

survey results, researchers identified eleven factors predictive of reuse success. A product

line development approach, common architecture, including data formats were important

to success. The data also showed a strong relationship between software reuse success and

productivity. Based on these results, they suggested ways to invest in reuse capabilities.

While one survey did include both embedded and nonembedded systems, none com-

pared reuse success between them. Similarly, while some studies considered development

approaches, they did not compare reuse success for them.

79

4.2 The Survey

4.2.1 Context, Research Questions, and Hypotheses

In our research, we have studied the history of reuse in the Aerospace industry in terms

of how reuse came into being, how it has evolved and trends in how reuse is now used.

We reviewed existing empirical studies about reuse and compared the reuse outcomes for

embedded systems against nonembedded systems using different development approaches.

We discovered in the review of existing literature that reuse in embedded systems leads to

significantly less positive outcomes than in nonembedded systems when the development

approach is model based engineering, and that, overall, reuse in embedded systems is less

successful than reuse in nonembedded systems.

There were also some indications that some of the difference in outcomes could be

related to the artifacts reused, but few of the empirical studies focused on artifacts and

their impact on reuse. In fact, while not explicitly stated, it appeared that most of the

projects studied in the literature were reusing code. When other artifacts were considered,

their impact on the success of the reuse was not studied.

Our search of existing literature left several questions that we felt needed to be answered

in order to understand and implement successful reuse. First was whether industry prac-

titioners share the same reuse experience as the research for embedded and nonembedded

systems. Second is the question of what artifacts can be reused for successful outcomes.

Third is the whether there is a difference between embedded systems and nonembedded

systems in outcomes. We also wondered whether the size of the project influences reuse

outcomes and whether the developer expectations influence the outcomes in reuse. Thus,

we established our research questions:

RQ-1 Do embedded systems use different development approaches than nonembedded

systems? This question tries to identify what development approaches are being used on

embedded systems vs nonembedded systems projects and how effective they are with re-

gard to reuse. We also want to discover whether reuse strategies are used in combination.

80

Reuse in various development approaches have been studied singly, but are there addi-

tional benefits of using the development methods in combination? The null hypothesis

assumes that the same development approaches are used whether the system is embedded

or nonembedded.

RQ-2 Do embedded systems reuse different artifacts than nonembedded systems? What

artifacts are being reused on what types of projects? Are there artifacts more commonly

reused in embedded systems than in nonembedded systems? The null hypothesis assumes

that embedded and nonembedded systems reuse the same artifacts at the same level with

comparable outcomes.

RQ-3 Do reuse outcomes vary between embedded systems and nonembedded systems?

This question is central to our research. It is designed to determine whether there is a

difference in reuse effectiveness or preferred development approaches based on project type.

Positive outcomes are measured by: fewer labor hours, fewer defects, less test time, fewer

items to be tested, and less risk. While many aspects of software reuse have been studied

deeply, our literature review did not surface this specific comparison. The null hypothesis

assumes that there is no significant difference in the effectiveness of reuse whether the

project is an embedded or a nonembedded system.

RQ-4 Does reuse effectiveness vary with project size? This question tries to identify

whether the size of a project makes a difference in the reuse strategy best suited to it. It

also tries to determine whether there is a point at either end of the size range where reuse

does not confer benefits such as higher efficiency and quality. Our null hypothesis is that

reuse is equally effective across the size spectrum.

According to [131], the survey is the research method best suited for answering questions

whose form is who, what, where, how many and how much. It focuses on contemporary

events and does not require control of behavioral events. Surveys are “are also well suited

to gathering demographic data that describe the composition of the sample. Surveys

are inclusive in the types and number of variables that can be studied, require minimal

investment to develop and administer, and are relatively easy for making generalizations.

81

Table 4.1: Survey Rationale

Purpose Rationale Questions
Respondent Infor-
mation

RQ-1 The purpose of these questions is to correlate
reuse experience with the type of engineer (i.e. hard-
ware, software, systems), the company (which corre-
sponds to the types of programs and the culture), and
the experience level of the engineer.

SQ1-4

Project/ Applica-
tion Information

RQ-2, RQ-3 The purpose of these questions is to cor-
relate the size of the program, the nature of the sys-
tem/program, the software type. This should offer in-
sight into whether embedded and non-embedded use
the same strategies and whether successful strategies
are similar.

SQ 5-9

Reuse Information RQ-4, This set of questions helps identify the type of
reuse strategy employed, whether success is improved
with being part of the decision, and which products
are reused (details of the strategy) and whether the
program is far enough along to measure factors that
occur late in the program. We are able to compare de-
velopment strategies and artifacts used on embedded
systems vs. nonembedded systems.

SQ 10-14

Reuse Effectiveness
Information

RQ-4 This set of questions will help correlate the
effectiveness of the strategy against the strategy by
identifying and scoring the change in outcomes at-
tributed to reuse.

SQ 15-20

Reuse Experience RQ-5 This set of questions will help analyze the user
the experience of the reuse approach

SQ 21-22

Surveys can also elicit information about attitudes that are otherwise difficult to measure

using observational techniques [52].”

4.2.2 Procedure

Our first step was to identify the type of empirical study to answer the research ques-

tions. We determined that a survey would be best suited for our purposes. Surveys “are

advantageous when the research goal is to describe the incidence or prevalence of a phe-

nomenon or when it is said to be predictive about certain outcomes [131].” The form of the

questions best suited for surveys matched our own questions, we are looking for current

reuse experiences, and we want to know what is happening in practice without inserting

controls.

82

Table 4.2: Survey Plan

Step Our Approach
Rationale Determine whether reuse strategies and approaches were the same

for embedded and nonembedded systems
Focus of Study Aerospace Engineering Practitioners, System Type, Development

Methods Used, Artifacts Used, Outcomes
Sampling Plan Subject Selection - Members of Listserves

Medium - Survey Hosted on Corporate Website
Variables to Measure - Development Approach, Artifacts, Outcomes
Resource Limitations - Access to subjects

Instrument Survey Questions
Development Introduction to Questionnaire

Evaluation, Review by Experts, Pilot
Administration Web based questionnaire

One Month for answers
Tabulate Answers

Data Review responses for reliability
Validation Group as required
Analysis Plan Frequency Tables, Box Plots, MANOVA, PCA, Free-form response

analysis
Reporting Plan Dissertation, publication
* Survey plan elements derived from [52], [112] and [129]

Responses to quantitative questions in the survey can be analyzed with statistical anal-

ysis techniques. Answers to qualitative questions are sources for potential explanations

for statistical results. The qualitative responses in our survey are used to obtain potential

explanations for the quantitative answers. Glasgow [52] points out that “survey instrument

development must be preceded by certain prerequisites. First, the focus of the study must

be carefully defined. Second, the study objectives must be translated into measurable fac-

tors that contribute to that focus. Finally, the survey must be consistently administered.”

Based on the research questions discussed above we developed a survey to collect both

qualitative and quantitative information, leading to a mixed method survey. It was devel-

oped in accordance with [52], [112] and [129], shown in Table 4.2.

4.2.3 Focus of Study

In order to answer the questions, we decided to focus our study on aerospace and defense

engineering practitioners. We wanted to learn about the differences and similarities in reuse

83

outcomes for embedded vs. nonembedded systems. In particular, we wanted to know about

the use and impacts of development methods they are currently using in their reuse efforts

and of artifacts they were reusing.

We selected a corporation in the aerospace and defense industry that was composed of

multiple companies dispersed across the United States, with a variety of technologies and

projects for a number of different government agencies. The projects in this corporation

offer a cross section of large development efforts in the industry and research to support

these large efforts.

4.2.4 Sampling Plan

Having decided on a survey as our next study, we needed to determine who we should

survey and how the survey should be conducted. We developed a sampling plan to describe

the approach used to select the sample and the choice of media through which the survey

will be administered. The sampling plan is the methodology that will be used to select the

sample from the population [52].

This sampling plan identified the desired sample of engineers based on the variables

we wanted to measure (system type, development approach, artifacts used and outcomes),

the estimates required, the reliability and validity needed to ensure the usefulness of the

estimates, and our resource limitations related to the conduct of the survey.

A major consideration in the sampling plan involved access to sufficient subjects work-

ing a variety of project types and the ability to generate enough samples to aggregate

responses for meaningful analysis. Other considerations included the ease of administering

the survey for the researcher, convenience of taking the survey for the subjects, anonymity

and comfort. These considerations led us to select a written questionnaire, as the appropri-

ate method. This questionnaire could be delivered via an easily accessible web site using

a web-based survey tool. It is hosted online at a site used by the corporation to share

information. All engineers in the company can access this website. Once the survey was

approved and released, emails were sent to systems and software engineers via listserves

84

requesting their participation. Since the number of participants on these listserves is un-

known and may have some overlap, the total number of requests and hence the response

rate is unknown. This survey uses non-probability sampling, based on convenience and self

selection.

While the disadvantages of written surveys include their subjectivity to certain types of

error such as coverage error (where the response rate is not balanced or the questionnaire

does not reach certain areas), nonresponse error (where some candidate subjects do not

participate), bias and item nonresponse (where some questions may be inadvertently or

intentionally skipped), we felt the advantages outweighed these types of errors.

4.2.5 Instrument Development

We identified the types of information needed, shown in the first column of Table 4.1.

These types of information are Respondent Information, Program/ Application Informa-

tion, Reuse Information, and Reuse Effectiveness Information. The second column of the

table explains the reason for seeking the information. From this, we developed survey

questions, tailoring each survey question to study one of the research questions.

The questionnaire (Appendix A) consists of a combination of check boxes and short

answers, giving subjects the opportunity to contribute their own qualitative input as well as

easily measured responses. Based on the research questions discussed above we developed

a survey that could collect both qualitative and quantitative information. The survey was

developed in accordance with [88] and [129]. The qualitative responses in the survey are

used to identify correlations across the data. This research method allows the opportunity

to obtain satisfactory amount of information from each respondent with the help of a

structured survey. The quantitative questions in the survey give us the ability to analyze

data with statistical tools and analysis techniques.

Each respondent was asked about their most recent reuse project. The questionnaire

started with collecting information about the respondents, the project they were reporting

on, how their project was employing reuse, their perceptions of the effectiveness of that

85

reuse and their overall experience with reuse. An initial set of survey questions was devel-

oped to translate those objectives into measurable factors. As recommended in [52], careful

attention was paid to the structure of the questions:

• Wording - The wording of the questions had to be clear, understandable to the

respondents. Wherever there could be ambiguity, the question explained what the

researcher meant in the question. For example, in question 4, the question “What

type of program are you working on?” was elaborated with “(i.e. what is the final

product?).” In addition, the questions should be asked in a way that does not lead

the subject or his responses. The questions should not include a predisposition for or

against any particular perspective. This avoids the threat to validity called “biased

wording.”

• Feasibility - The questions should not seek information the mid level engineer would

not have the ability to answer, such as management data.

• Ethical - The questions should not involve disclosure of proprietary information or

personal information or information the engineer may feel uncomfortable discussing.

Questions about the demographics of the respondent (for example, type of engineer,

type of project, years of experience) and seeking information about the projects (for ex-

ample, system type, development approach, artifacts used) were answered on a nominal

scale. Some of these questions would only accept a single answer (years of experience),

while others allowed the respondent to select as many answers as applied (artifacts used).

Questions about outcomes (for example, improvement in labor hours used, reduction of

defects) were answered on an interval scale These quantitative questions in the survey give

us the ability to analyze data with statistical tools and analysis techniques.

There were also some open ended questions in the form of questions asking for free form

answers (text fields) that could provide insight into the reasons for the responses. This gives

the subjects the opportunity to contribute their own qualitative input in addition to the

easily measured responses. Table 4.1 shows the general information we wanted to collect

86

in column 1, column 2 explains why we were collecting the information, and column 3

identifies the questions in the survey developed to obtain this information. The questions

in the survey are tied to the research questions as shown in the table. The qualitative

responses to these questions are used to identify causal relationships.

The questionnaire was reviewed by 4 colleagues to obtain comments and to ensure

that the questions were understandable and would obtain the desired information. These

colleagues are fellows and distinguished engineers from different divisions and locations

throughout the corporation. They suggested some modifications, which were implemented.

This enhanced accomplishing the third Mitre requirement of ensuring the questions were

developed by those versed in the topic. The survey was entered into the survey tool on

the web site and a few individuals piloted the survey, as recommended by [52]. From

the experiences of the pilot subjects, a few changes were made to make the survey more

understandable.

Next, an introduction was created explaining the purpose of the survey and its proposed

uses. Ethical considerations were also addressed: The introduction stated that the survey

was anonymous and voluntary, and that responses could be deleted at any time. Finally,

the introduction defined terms used in the questionnaire.

4.2.6 Administration

The medium for delivery that we selected consisted of a web site used by the corporation

to share information across companies, divisions and locations, with an embedded survey

tool. All engineers in the company have permission to access this website. This web site

was accessible by all engineers in the corporation. The sampling approach would be self

selection, in that all engineers would be informed of the existence of the questionnaire and

any engineer who chose to participate could do so. This conforms to the Mitre requirement

that the survey be consistently administered.

Once the questionnaire and introduction were approved and released, emails were sent

to systems and software engineers requesting their participation. This survey is a non-

87

probability sampling, based on convenience and self-selection. The engineers that partic-

ipated in the survey were employees in various companies and locations, reusing assets

developed by the various sites for various projects. The questionnaire was available for a

month. Responses were collected in an Excel spreadsheet, one line per respondent.

4.2.7 Data Validation

Once the responses were downloaded in the spreadsheet, they were reviewed. We

counted the respondents from embedded systems and from nonembedded systems, as well

as across domains and areas of expertise, to ensure we had enough in each catagory for

comparison. In cases where the answers were very specific but could be generalized to

a higher grouping, they were generalized. For example, when asked what domain they

worked in, several respondents replied with very specific specialties within domains (i.e.

orbital analysis). These answers were then allocated to a higher level domain (Guidance,

Navigation and Control). Because of the limitations of the tool, some answers were written

in a text field rather than selecting from a predefined answer. These were converted to the

appropriate predefined answer. In one case, the question “How large is your program in

KLOC” it was apparent that some had answered in LOC. Since we could neither be sure

at this point which were correctly in KLOC and could not return to the respondents, we

had to throw this question out due to questionable reliability.

4.2.8 Analysis Plan

We first perform descriptive analysis, using spreadsheets, bar charts, pie charts and box

plots. The frequencies of answers were normalized to percentages for direct comparison.

In preparation for quantitative analysis, the questions were coded. For yes/no questions,

the coding recorded a 1 when the item was selected and a 0 when it was not. For example,

for development approach used, if the respondent indicated product line, component based

development and ad hoc reuse were all used, product line, component based development

and ad hoc would each receive a 1, where model based and ontology based development

88

would receive a 0. The questions with Likert scale measures used a scale of 1-6.

Next, free-form answers were studied to provide reasons for the quantitative findings.

Comments were studied for common words, phrases, and concepts and grouped into cate-

gories that might offer insight into those findings.

Finally, we performed a Principle Component Analysis. The reason for using PCA was

to identify if there were any development approaches or reuse artifacts that tended to be

used together.

4.3 Results

First, answers to quantitative questions are analyzed via descriptive statistics. Then we

test our null hypotheses (i.e. there is no difference in reuse practices and success between

embedded and nonembedded systems) using MANOVAs. A Principal Components Anal-

ysis was performed to analyze for commonalities and differences in attributes. Qualitative

information provided by our respondents helps explain some of our results and provides

reasons why reuse was or was not successful.

4.3.1 Descriptive Statistics

78 engineers responded to the survey. Demographic questions included: What is the

experience level of the survey respondents? What type of engineer is responding? What

type of system is it? The first question is whether experience in the industry affects how

an engineer looks at reuse. This includes years of experience, the kind of work, and the

type of system.

The respondents’ experience ranged from less than a year to over 30 years. Over 75 %

of the respondents had more than ten years of experience (62). 10 had 6-10 years of expe-

rience and 11 had five years or less. The respondents were software engineers(39), systems

engineers(11), software systems engineers(14), both systems and software engineers(5),

planners, managers and business development engineers (9). We thus had a majority of

89

Figure 4.1: Demographic Information

(a) Respondents by Discipline (b) Years Of Experience

very experienced professionals, most of whom had technical expertise.

Table 4.3: Systems and Applications

System Type No Application No
Satellites 22 C3, Comm, GNC 18
Aircraft/Helicopter/Avionics 17 Data, Information 9
Missiles, Rockets 10 Simulation, Test 9
Ground Station/Support 9 Mission 8
Data Collection 5 Algorithm Devt 7
Non Satellite Space 4 Hardware 7
Other 12 Web-Based 7

Other 18

The subjects reported on embedded and nonembedded systems, ranging from heli-

copters to logistics. The distribution is shown in Table 4.3. The applications range from

algorithm development to domains such as Guidance, Navigation and Control, Communi-

cations and Command, to web based applications. The “other” catagory includes applica-

tion types receiving three or fewer responses, including architecture, graphics and business.

This shows a good cross-section of application types with some emphasis on satellites and

avionics. The latter heavily emphasizes embedded systems.

RQ-1 Do embedded systems use different development approaches than nonembedded

systems? The survey asked about reuse in the development approaches or combinations of

those approaches being used. Each respondent reported on one project. The respondents

90

were given the option of choosing as many of the development approaches as applied. Sur-

prisingly, four projects, three nonembedded software systems and one embedded software

system, said they were employing reuse but without a specific approach, not even ad hoc.

Maybe their approach was not in the list. We removed these responses from further con-

sideration. Of the 78 subjects, 41 reported on embedded systems, while 37 reported on

reuse in nonembedded systems.

Table 4.4: Development Approach by System Type

Development Approach E N
Ad Hoc 8 8
Component based 3 0
Component based+Ad Hoc 4 2
Component based+COTS 0 1
Component based+Ad Hoc + COTS 1 0
Component based+Product Line 1 2
Component based+Product Line +COTS +Ad Hoc 3 0
COTS 1 4
COTS+Ad Hoc 2 3
Model based 1 2
Model based+Component based 0 1
Model based+Component based+Ad Hoc+COTS 2 3
Model based+Component based+Product Line 2 0
Model based+Component based+Product Line +Ad Hoc 3 1
Model based+Component based +Product Line +Ad Hoc +COTS 3 1
Model based+Ad Hoc 1 0
Model based+Ad Hoc+COTS 1 0
Model based+Product Line+COTS+Ad Hoc 0 1
None 1 3
Product Line 4 2
Product Line+Ad Hoc 0 1
Product Line+COTS+Ad Hoc 2 3
* E = Embedded, N = Nonembedded
** Ad Hoc=Ad Hoc/Legacy/Heritage, COTS=COTS/GOTS

As shown in Table 4.4, 33 projects used only one development approach, not including

the four that used none at all. Of these, 17 were embedded systems, 16 were nonembedded

systems. The rest used a combination of approaches. While nonembedded systems were

more likely to use ad hoc, COTS/GOTS, and even no approach, embedded systems were

more likely to use component based, ad hoc and product line development approaches. This

91

was also true when those development approaches were included in the combinations of

approaches. There were 22 different combinations of approaches, and no one combination

approach was used by more than four projects. It is particularly interesting to note that

most of the composite approaches were used by only one or two projects. No ontologies

were reported.

What is interesting to see is that so many respondents reported employing more than

one development approach during reuse (recall, they report on a single project). This is not

common when developing systems from scratch. What needs to be considered is that in

the aerospace industry, some systems evolve over decades, development approaches change

and new functionality and enhancements may follow more modern development approaches.

Even with a single project, lack of standardization, diversity of divisions contributing to

a project and the large size of some of the projects can also lead to this phenomenon.

Further, different subsystems (e.g. guidance, navigation and control vs power control) may

find different approaches more useful, e.g. performance models and autogeneration of code

vs. COTS. Note also that both embedded and nonembedded systems appear to employ ad

hoc reuse to the same degree, this is not the case for other (combinations of) approaches.

Next, Table 4.5 summarizes how often a specific development approach was used (alone

or in combination with others). Column 1 lists the development approach. Columns 2 and

3 list the frequency of each development approach for embedded (E) and nonembedded

(N) system projects. Columns 4 and 5 report the proportion of projects using a given

development approach, either alone or in combination with others.

The most commonly used development approach for embedded systems is component

based development, while nonembedded systems included Ad Hoc reuse and a Product

Line approach most frequently. Embedded systems projects used component based, model

based and product line approaches more frequently than nonembedded systems, while

nonembedded systems used Ad Hoc reuse and a COTS/GOTS approach to reuse more

than embedded systems. Interestingly, the most commonly used approaches in embedded

system projects are not the most commonly used in nonembedded system projects and vice

92

Table 4.5: Development Approach Contained in Strat-
egy

Development Approach Frequency Relative Frequency
E N E N

Ad Hoc 11 15 0.27 0.41
Component Based 22 11 0.54 0.30
Model Based 13 9 0.32 0.24
COTS/GOTS 12 15 0.29 0.41
Product Line 18 11 0.44 0.30
* E = Embedded, N = Nonembedded

versa. We will investigate in the next section whether these differences are statistically

significant.

RQ-2 Do embedded systems reuse different artifacts than nonembedded systems?

Next we turn to the artifacts used by embedded and nonembedded systems projects.

The artifacts we selected to study are requirements (shall statements in specifications),

architecture (allocation of capabilities to configuration items), models (including perfor-

mance models, architecture models, environmental models, simulations, and test models),

use cases (sometimes called scenarios), code, drawings (like schematics, blueprints, wiring

diagrams), hardware (like processors, sensors, platforms), test products (like test drivers,

test data, seeded test data), and test clusters (components, whether software, hardware or

hardware and software, that have previously been integrated and tested together).

Table 4.6 shows the number of times these artifacts were reused in embedded and

nonembedded system projects (columns 2 (E) and 3 (N)) respectively. Respondents checked

as many artifact types as they reused on their project. Since the number of respondents

is different for embedded (41) and nonembedded (37) systems, we report the proportion

of projects reusing a given artifact (reuse level). The most often reused artifact is code,

followed by requirements, and architecture. This is also the most commonly reported

combination.

Most strikingly, reuse levels for all artifacts is higher in embedded systems projects

than nonembedded ones. Sometimes the difference is small (reuse of models, drawings),

93

Table 4.6: Reuse Artifacts Contained in Strategy

Reuse Artifacts Frequency Relative Frequency
E N E N

Requirements 29 19 0.71 0.51
Architecture 29 18 0.71 0.49
Models 17 13 0.41 0.35
Use Cases 16 6 0.39 0.16
Code 36 26 0.88 0.70
Drawings 9 7 0.22 0.19
Hardware 22 10 0.54 0.27
Test Products 21 10 0.51 0.27
Tested Clusters 4 0 0.1 0.0
* E = Embedded, N = Nonembedded

but often reuse levels in embedded systems are at least 10% higher higher than in nonem-

bedded systems (e.g. requirements, architecture, use cases, hardware, test products and

test clusters). This may point to a reluctance in embedded systems to embark on large-

scale change, since systems are tightly coupled to hardware. It may also point to longeevity

of products (i.e. avionics) with only incremental rather than sweeping changes. This does

not necessarily mean that reuse is easier, just that it is different. The question is whether

these differences are statistically significant. We investigate this in the next section.

RQ-3 Do reuse outcomes vary between embedded systems and nonembedded systems?

Table 4.7 shows the savings or costs respondents reported in labor (columns 3 and 4),

defect reduction (columns 5 and 6) reduced test time (columns 8 and 9) and reduction

in items to test (columns 10 and 11). A reason for not answering questions, particularly

about test time, is that several of the projects had not yet reached the test phase and hence

it was difficult to report on defects and test time.

Outcomes for embedded and nonembedded systems were similar. Respondents for

both system types reported noticeable savings in labor hours, however, both also had some

projects that required more labor, as expected from existing literature. However, for both

types of system most projects did not realize savings in the number of defects or in the

time required to test the systems, contradicting expectations from existing literature.

94

Table 4.7: Outcome Summary

Category Labor Defects Test Time Test Items
Savings/Cost T E N T E N T E N T E N
>20% Savings 31 18 13 10 6 4 5 2 3 7 5 2
10-20% Savings 23 10 13 4 3 1 9 7 2 10 5 5
0-10% Savings 5 3 2 7 2 5 19 9 10 20 8 12
No Savings 9 5 4 32 17 15 23 9 14 33 19 14
0-10% Added Cost 1 1 0 5 1 4 0 0 0 0 0 0
10-20% Added Cost 0 0 0 0 0 0 3 1 2 4 1 3
>20% Added Cost 3 1 2 0 0 0 0 0 0 0 0 0
No Answer 6 3 3 20 12 8 19 13 6 4 3 1
Total 78 41 37 78 41 37 78 41 37 78 41 37
* E = Embedded, N = Nonembedded

Figure 4.2: Outcomes

We then removed the responses "outcome unknown" and "no answer" and mapped the

remaining answers onto a 7 point Likert scale for further box plot analysis. Figure 1 shows

these box plots, comparing outcomes. The dashed line at point 3 (no savings) represents

the break-even point.

Comparing the medians of outcomes for embedded and nonembedded systems shows

that they are identical for all outcomes, but vary by outcome type. Labor savings has

the most favorable outcome (a median of 10-20% savings) for both embedded and nonem-

bedded systems. The median for defect reduction and test item reduction points to no

95

savings, while the median for test time reduction shows a 0 - 10% reduction. Generally,

the variability of outcomes is higher for embedded systems as indicated by the size of the

boxes.

When considering labor savings, nonembedded systems projects do a little better, since

they don’t show the negative results that embedded systems have (whiskers in box plot).

The situation is reversed when considering defect reduction, test time and test items.

Overall, though, 75% of the projects have positive outcomes or at least break even (all the

boxes start at or above the break even line).

While the median outcomes did not differ between embedded and nonembedded sys-

tems, the spread in each outcome did show differences. Nonembedded systems showed a

greater spread than embedded systems for labor and defects. There were, however, no

outliers in nonembedded systems in any of the outcomes, whereas test time reduction and

test item reduction showed outliers in both directions for nonembedded systems.

The visual results offered by the box plots suggest that reuse success may not be greatly

impacted by whether a system is embedded or nonembedded. However, the variability in

outcomes is much greater when the system is embedded. Larger variability in outcomes

might be due to differences in project contexts that can vary more in embedded systems

compared to nonembedded systems. An example of this would be hardware changes with

large impacts on the software (e.g. going from 8 bit to 32 bit processors) versus changes

that do not require large modifications for software (similar hardware). We will explore

this more when we analyze free-form answers.

One major consideration in the decision to reuse a product is the risk that is either

introduced or mitigated by use of the product. The risk is increased if there is a possibility of

latent defects in the reused products. The risk is mitigated by the confidence that the reused

product has already been proven. There did not appear to be much difference between

respondents working on embedded systems from nonembedded systems when asked about

whether reuse reduced risk. 31 of the subjects reporting on embedded systems projects

thought reuse reduced risk, nine did not, and one did not respond. Conversely, 29 of the

96

subjects reporting on nonembedded system projects thought reuse reduced risk, while eight

thought it did not. In addition, respondents were asked why they felt risk was or was not

reduced. We will also address this when we analyze free-form answers.

RQ-4 Does reuse effectiveness vary with project size?

Finally, we attempted to determine whether the size of the project had an impact on

reuse strategy or reuse success. However, as we analyzed the responses, it became clear

that some respondents had reported their size in KLOC as requested in the survey, while

others had reported size in LOC. There was no way to accurately determine which metric

had been reported, thus this question could not be analyzed.

4.3.2 Hypothesis Testing

As the observations obtained from descriptive statistics were quite interesting, the ques-

tion is whether they are statistically significant. We ran a MANOVA (Multivariate Analysis

of Variance) test using SPSS for Surveys by IBM for questions 1, 2 and 3 in this section. 1

We report these results using the standard specified in [3]. MANOVA differs from ANOVA

in that there are multiple dependent variables under consideration simultaneously. We

report the F ratio, the significance p (we assume α = 0.5) and η2for the effect size (it in-

dicates the approximate percentage of the variance accounted for with difference between

the samples).

Statistical Analysis for RQ-1 - development approach variation based on the

system type First we look at Wilks’ λ. λ is a measure of whether the group means are

equal across all dependent variables, here, the development approaches, not explained by

differences in the level of the independent variable measures as a whole (i.e. embedded

and nonembedded systems). In our case, Wilks’ λ = .924, with an associated F of 1.179,

whose p = .328, which is not significant at p <.05. We find that the partial η2 associated

with the main effect is .076 and the power to detect the main effect is only .396. Thus, we
1Our thanks to Dr. Andreas Stefik for performing the MANOVA calculations for this work.

97

have insufficient evidence to determine whether our main effects are different across the

board. The MANOVA revealed a non-significant multivariate main effect for development

approach. We cannot conclude that a system type is a major factor in determining the

development approach overall.

We continue by looking at the specifics of the analysis, that is the impact on selection

of development approaches based on whether the system is embedded or nonembedded,

by looking at the Tests of Between-Subjects Effects. These tests behave like ANOVA, in

that they test the effect of system type on the individual development approaches. These

results are:

• AdHoc F(2, 76)=.112, p=.738, η2 = .001

• Model based F(2, 76) = .993, p = .322, η2 = .013

• Component based F(2, 76) = 3.798, p = .055, η2 = .048

• COTS/GOTS F(2,76) = .631, p = .429, η2 = .008

• Product Line F(2, 76) = 1.665, p = .201, η2 = .021

We could not reject the Null hypothesis (i.e. no significant differences in development

approaches in embedded vs nonembedded systems) for any of these measures, which is

not surprising given the multivariate test previously reported. Since all the p-values are

greater than .05, none of the p-values indicates significance. With that said, Component

Based Development approaches significance (p=.055), but even if this result is significant, it

accounts for less than 5% of the variance. None of the other development approaches show

signs of being used by one system type more than the other. Hence while our descriptive

statistics of Table 6 indicated differences, they are not statistically significant.

Statistical Analysis for RQ-2 - artifact variation based on the system type

We now look at the differences between embedded systems and nonembedded systems

in the artifacts they select for reuse using MANOVA. These artifacts are requirements,

98

code, architecture, models, drawings, hardware, use cases, test products and already tested

clusters, that is, groups of components that have been previously integrated and tested and

shown to work together. MANOVA revealed a non-significant multivariate main effect for

artifacts used, Wilks’ λ = .847, F (2,76) = 1.365, p =.221, η2 = .153. Power to detect the

effect was .610. The null hypothesis cannot be rejected.

Looking at the Tests of Between Subjects Effects, we find:

• Requirements F(2, 76) = 3.131 p = .081, η2 = .040

• Code F(2, 76) = 2.621 p = .110, η2 = .033

• Architecture F(2, 76) = 4.065 p = .047, η2 = .051

• Models F(2, 76) = .668 p = .416, η2 = .009

• Drawings F(2, 76) = .107 p = .744, η2 = .001

• Hardware F(2, 76) = 5.184 p = .026, η2 = .064

• Use Cases F(2, 76) = 4.218 p = .043, η2 = .053

• Test Products F(2, 76) = 6.269 p = .014, η2 = .076

• Tested Clusters F(2, 76) = 3.897 p = .052, η2 = .049

While our multivariate main effect for artifacts was not significant, some of the artifacts

individually show significant results. Architecture, hardware, use cases and test products

were significantly more likely to be used by embedded systems, with p values less than

.05. Already tested clusters approached significance with the p value at .052 , in each case

accounting for approximately 7.6% of the variance or less. This confirms our observations

in Section 5.1.

Statistical Analysis for RQ-3 - outcome variation based on the system type

Based on our analysis of box plots, no significant differences can be expected, hence there

was no point in running a MANOVA.

99

4.3.3 Principal Components Analysis

To augment our statistical analysis, we performed multiple Principal Components Anal-

ysis (PCA) to the survey response data of the survey questions listed in Table 4.8. The

intent was to determine whether there were survey questions that tended to vary together,

particularly questions related to project attributes and outcomes. 2

PCA remains a popular method in software engineering to achieve reduction in large

variable sets and to group variables into similarly-behaving subsets ([98, 99, 122, 123]).

The predictors of software development project success factors based on project similarities

in [18] use PCA to group projects with similarly varying characteristics. Project attributes

and success indicators are evaluated to predict project outcome. For questions Q11 and

Q14, the respondents were permitted to make multiple selections from fixed lists. The

selections are identified as Q11a through Q11e, and Q14a through Q14i. The AHP approach

for Q11 and Q14 follows [113]. We apply AHP to Q11 and Q14 independently. Table 4.9

shows our rubric for the assignment of integer values to survey response pairs for Q11 and

Q14.

We first construct a decision hierarchy in which the possible selections are compared

using criteria which we believe appropriately contribute to the ranking of the relative im-

portance of the possible responses. We apply AHP to Q11 and Q14 separately, starting

with Q11 then proceeding to Q14. Our goal in using AHP is to estimate the relative differ-

ences among reuse approaches in Q11, and to separately estimate the relative differences

among reuse artifacts in Q14. Using AHP we determine a vector of five weights to be

applied to the five parts to Q11, and a separate vector of nine weights to be applied to the

nine parts of Q14. We then apply the weights to the response data for Q11 and Q14.

We choose AHP to prioritize answers to Q11 and Q14. Q11 addresses reuse strategies

and includes five possible approaches from which the respondents may make one or more

selections. Q14 addresses the reuse of nine different artifacts. Our experience in reuse

strategies and artifacts suggests a relative order on the basis of their evolution. Similarly,
2Our thanks to Joe Lucente for performing the Principle Components Analysis section of this work.

100

Table 4.8: Survey Questions Used in PCA

Abbreviated description Basis for Inclusion in PCA
Q1 Embedded vs. Non-embedded relates to RQ1 (relationship between embed-

ded vs non embedded in reuse)

Q11

Development approach
Q11a Component Based (cmp_bsd)
Q11b Model Based (mod_bsd)
Q11c Product Line Based (pl_bsd)
Q11d COTS/GOTS Based (cg_bsd)
Q11e Heritage Based* (her_ad)
Q11f Ad hoc based

relates to RQ3 (relationship between devel-
opment approachs and there effectiveness in
embedded vs non embedded systems)

Q14

Product(s) reused
Q14a Requirements (rqts)
Q14b Code (code)
Q14c Architecture (arch)
Q14d Models (mod)
Q14e Drawings (dwgs)
Q14f Hardware (hdwr)
Q14g Use Cases (ucs)
Q14h Test products (testpr)
Q14i Tested clusters (testdcl)

relates to RQ4 (relationship between artifacts
and ease of reuse in embedded vs non embed-
ded systems)

Q15 Reuse save labor? (sv_lb) observable outcome of reuse in embedded vs
non embedded systems

Q16 Fewer defects with reuse?
(red_def)

observable outcome of reuse in embedded vs
non embedded systems

Q17 Reuse reduce test time? (red_tm) observable outcome of reuse in embedded vs
non embedded systems

Q18 Reuse reduce items tested?
(red_itms)

observable outcome of reuse in embedded vs
non embedded systems

Q19 Reuse reduce risk? (red_rsk) observable outcome of reuse in embedded vs
non embedded systems

* responses for Heritage (Q11e) and Ad Hoc (Q11.f) were combined as Q11e Heritage/Ad
Hoc in the PCA

Table 4.9: Scale of comparison for pairwise assignments

Relative Magnitude Description
1 Equal
2 Weak
3 Slightly moderate
4 Moderate
5 Somewhat strong
6 Strong
7 Very strong
8 Exceptionally strong
9 Extreme

101

we observe differences in the level to which reuse artifacts have evolved. Using AHP, we

derive a set of weights which we apply to the five possible responses in Q11 so that selections

associated with a greater level of evolution are assigned a higher weight. We take the same

approach to Q14. Our decision hierarchy for Q11 and Q14 contains response frequency as

a second basis of comparison. We again assign numbers to relative differences between pair

elements in the survey responses to Q11 and Q14, but this time we use frequency as the

basis of comparison. In order to apply the sets of weights to achieve an overall relative

prioritization reflective of our estimations on the basis of both evolution and frequency, we

must assign weights to the two comparison parameters. We conclude a slight bias toward

frequency is appropriate, and assign 60% of the weight to frequency and 40% to evolution.

We refer to the comparison scale defined in Table 4.9 when making selections for each

pairwise comparison ([113]).

Tables 4.10 and 4.11 show the results of our pairwise comparison of Q11 responses,

evaluated on the basis of the relative difference in how evolved each reuse approach is in

each pairwise comparison and on relative frequency of selection. Table 4.12 shows the

weight vector for Q11 for both evolution and frequency.

Table 4.10: AHP Pairwise Selections Based on Relative Degree of Evolution of Reuse
Artifacts (normalized) (Q11a-e)

Q11.a Q11.b Q11.c Q11.d Q11.e Row
sum

Weights WEQ11
(row avg.)

CM

Q11.a 0.490 0.511 0.516 0.444 0.381 2.342 0.468 5.096
Q11.b 0.245 0.255 0.258 0.296 0.286 1.340 0.268 5.065
Q11.c 0.122 0.128 0.129 0.148 0.190 0.718 0.144 5.036
Q11.d 0.082 0.064 0.065 0.074 0.095 0.379 0.076 5.022
Q11.e 0.061 0.043 0.032 0.037 0.048 0.221 0.044 5.011
Sum 1 1 1 1 1 1

To obtain a weight vector for Q14, we repeat our AHP as described above. Table 4.13

shows the results for Q14. WQ11 and WQ14 were applied to survey responses for Q11 and

Q14 respectively.

We conduct PCA on eleven different datasets from the survey data. Each dataset is

comprised of a combination of two or more categories of survey response data. Recall,

102

Table 4.11: AHP Pairwise Selections Based on Relative Frequency of Selection in Survey
Data (normalized) (Q11a-e)

Q11a Q11b Q11c Q11d Q11e Row
sum

Weights WEQ11
(row avg.)

CM

Q11a 0.077 0.067 0.059 0.077 0.088 0.367 0.073 5.015
Q11b 0.154 0.133 0.118 0.115 0.146 0.666 0.133 5.012
Q11c 0.154 0.133 0.118 0.115 0.109 0.630 0.126 5.018
Q11d 0.231 0.267 0.235 0.231 0.219 1.182 0.236 5.034
Q11e 0.385 0.4 0.471 0.462 0.438 2.155 0.431 5.046
Sum 1 1 1 1 1 1

Table 4.12: AHP Synthesis of Weights and Consistency Metrics for Evolution and
Frequency (Q11)

Evolution ωE = 0.4 Frequency ωF = 0.6
Total Weights

WEQ11

Consistency
Metric
(CM)

Total Weights
WFQ11

Consistency
Metric
(CM)

Resulting
weight
vector*

Q11a comp
based

2.342 0.468 5.096 0.367 0.073 5.015 0.231

Q11b model
based

1.340 0.268 5.065 0.666 0.133 5.012 0.187

Q11c product
line

0.718 0.144 5.036 0.630 0.126 5.018 0.133

Q11d
COTS/GOTS

0.379 0.076 5.022 1.182 0.236 5.034 0.172

Q11e heritage/
ad hoc

0.211 0.044 5.011 2.155 0.431 5.046 0.276

* WQ11 = (WEQ11 × ωE) + (WFQ11 × ωF)

the survey questions can be placed into four categories: 1) input (embedded vs. non-

embedded), 2) reuse approach, 3) reuse artifacts, and 4) outcomes. We can construct

datasets consisting of data from these categories, with the constraint that the dataset

must include survey response data from at least two categories. The four categories result

in 24 = 16 unique combinations of categories. We define our eleven tests by eliminating

the trivial case of no categories, and discard the four cases in which exactly one category

appears. This leaves the eleven tests shown in Table 4.14, where a check mark in a column

indicates inclusion of survey results from the category, in the test data.

We apply a separate PCA for each test pair. We note that test pairs can be selected such

that exactly one category can be included and excluded between the two tests, while the

103

Table 4.13: AHP Synthesis of Weights and Consistency Metrics for Evolution and
Frequency (Q14a-i)

Evolution ωE = 0.4 Frequency ωF = 0.6
Total Weights

WEQ14

Consistency
Metric
(CM)

Total Weights
WFQ14

Consistency
Metric
(CM)

Resulting
weight
vector*

Q14a requirements 0.279 0.033 9.152 1.639 0.182 9.432 0.122
Q14b code 0.179 0.020 9.154 2.643 0.294 9.474 0.184
Q14c architecture 2.242 0.249 10.24 1.558 0.173 9.501 0.203
Q14d models 1.025 0.114 10.254 0.726 0.081 9.207 0.094
Q14e drawings 0.399 0.044 9.454 0.337 0.037 9.149 0.040
Q14f hardware 0.244 0.027 9.207 0.687 0.076 9.242 0.056
Q14g use cases 0.813 0.090 9.422 0.462 0.051 9.088 0.067
Q14h tested prod-
ucts

1.617 0.180 10.350 0.726 0.081 9.207 0.120

Q14i tested clus-
ters

2.184 0.243 9.999 0.222 0.025 9.200 0.112

* WQ14 = (WEQ14 × ωE) + (WFQ14 × ωF)

remaining categories are fixed. For example, test pair (All, A) differs only by outcomes;

Test All includes all four categories but test A includes all categories except outcomes.

Selection of test pairs which differ by exactly one category allows us to investigate the

effect of resulting principal components in the presence and absence of the single category

by which the two tests differ. Through this analysis we draw conclusions about the influence

of the variable category on the covariance of the survey response data. The covariance is

formally investigated through PCA. Table 4.14 shows the composition of data in Tests All

through J, in terms of survey question categories.

We interpret results under the following assumptions::

1. If survey response relationships are found to exist in both tests in a test pair which

differ by exactly one survey response category, we conclude that the presence of the

category by which the tests differ has a diminishing effect on the survey response

relationships (the principal components), the magnitude of which depends on the

number of shared relationships between the tests. In other words, the greater the

number of shared relationships, the smaller the effect of the single included/excluded

category on the variance of the survey response relationships.

104

2. If the survey response relationships in one test are different than those in the other

test (within the test pair), we conclude the effect the included/excluded category has

on the survey response relationships is greater.

Each row ri in M corresponds to survey question ai in the original dataset. Each

column cj in M contains the vector of loadings for PCj . As in [25], the Kaiser criterion

is applied by selecting components with an eigenvalue (of the correlation matrix) greater

than one and loadings of |0.32|. Table 4.15 shows the PCA loadings from the test in which

survey data from all four categories is included. Tables 4.16 through 4.24 present the PCA

loadings from tests A through J as defined in Table 4.14. The principal component loadings

identified through the PCA loadings analysis described earlier are shown in bold in Tables

4.16 through 4.24. We develop survey response relationships directly from the flagged PCA

loadings.

4.3.4 Analysis of PCA Results

First, we describe each test pair and include the results obtained from the PCAs in

terms of the shared relationships (if there are any) between the test pairs. We then state

the conclusions we draw from an analysis of the test results.

Table 4.14: PCA Tests Showing Survey Data Categories In-
cluded

System Type Reuse Approach Reuse Artifact Outcomes
All X X X X
A X X X
B X X
C X X
D X X
E X X
F X X X
G X X X
H X X X
I X X
J X X

]

105

4.3.5 Analysis of Pairs

Test pair (All, A): We compare Tables 4.15 and 4.16. This test pair investigates the

effects on survey response relationships between system type (embedded/non-embedded),

reuse approaches and reuse artifacts, when outcomes are included in the PCA vs. when

outcomes are excluded. Test All includes data from all four categories. Test A includes

data from all categories except outcomes.

Table 4.15: Test All: PCA Factor Loadings - All Survey Questions

Question PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
emb_non -0.1319 -0.0602 0.2953 -0.2436 0.3052 -0.1856 0.3406 -0.1704
cmp_bsd -0.1962 0.1329 -0.0934 -0.4031 -0.1455 0.3032 0.3361 -0.1083
mod_bsd -0.2394 0.0497 -0.2143 -0.4620 -0.2334 0.1158 -0.0918 0.0983
pl_bsd -0.2931 -0.1363 0.0642 -0.0765 0.163 0.0121 -0.2436 0.0593
cg_bsd 0.0091 -0.1803 -0.2144 -0.0657 -0.1818 0.4718 -0.3811 -0.4161
her_ad -0.0046 -0.0477 -0.4507 0.1836 0.2115 0.1208 0.2773 -0.3124
rqts -0.1676 -0.4705 0.0542 -0.0139 0.1618 0.0221 -0.1749 0.0444
code -0.283 -0.0098 -0.0548 0.0581 0.5013 0.2761 0.0504 -0.0656
arch -0.2514 -0.2696 -0.0427 0.0335 0.2278 0.0275 -0.3376 0.2735
mod -0.2347 0.0413 -0.3899 -0.1815 -0.1134 -0.3751 0.0193 0.118
dwgs -0.021 -0.2564 -0.0853 0.3437 -0.3841 0.1464 0.1747 0.329
hdwr -0.1882 -0.2969 0.1827 0.0961 -0.2019 0.2908 0.3629 0.0382
ucs -0.139 -0.2913 -0.3888 -0.1467 -0.0443 -0.3936 0.1347 -0.0109
tstpr -0.1553 -0.3965 0.1701 0.1502 -0.1206 -0.1778 0.2427 -0.1958
tstdcl -0.2072 0.0611 0.3672 -0.2855 -0.1369 0.0924 -0.0356 0.2632
sv_lb -0.2904 0.3083 -0.0777 0.1917 0.2497 0.1093 0.1417 0.2254
red_def -0.287 0.1417 0.0131 0.286 -0.1828 -0.2108 -0.2136 -0.0842
red_tm -0.3302 0.1849 0.1303 0.1534 -0.1121 -0.1559 -0.1359 -0.4096
red_itms -0.3425 0.1448 0.1773 0.1127 -0.2233 -0.0384 -0.0161 -0.2648
red_rsk -0.243 0.2387 -0.1869 0.2747 -0.0538 0.1463 0.0935 0.2592

Results: Inclusion and exclusion of outcomes results in zero shared survey

response relationships. All relationships belong to either test All or test A.

Conclusions: Since the relationships between reuse system type, approach and

reuse artifacts vary, and none are shared between the two tests, we conclude

outcomes is influential in survey response variance.

106

Table 4.16: Test A: PCA Factor Loadings - All Survey Questions - less outcomes

Question PC1 PC2 PC3 PC4 PC5 PC6
emb_non 0.2616 0.0054 -0.2507 0.0251 -0.2588 0.4624
cmp_bsd 0.1264 0.4701 -0.0463 -0.1234 -0.4480 0.1819
mod_bsd 0.2270 0.4333 0.1519 0.3578 -0.1637 -0.2540
pl_bsd 0.2029 0.2371 -0.2430 -0.2345 -0.0878 -0.1600
cg_bsd 0.0590 0.1281 0.4341 -0.3216 -0.2392 -0.4724
her_ad 0.1268 0.0854 0.5499 -0.1678 0.0943 0.4671
rqts 0.3771 -0.0337 -0.0608 -0.1471 0.3050 -0.2044
code 0.2801 0.2081 -0.1055 -0.3826 0.2813 0.2451
arch 0.3929 -0.0046 -0.0487 -0.1559 0.3297 -0.2599
mod 0.2429 0.1715 0.2473 0.5193 0.1317 0.0765
dwgs 0.1345 -0.4519 0.2327 0.0226 -0.2859 -0.0994
hdwr 0.2949 -0.2699 -0.0003 -0.1462 -0.4785 -0.0160
ucs 0.3460 -0.1645 0.2544 0.2525 0.1141 0.1047
testpr 0.3211 -0.3648 -0.1175 -0.0149 -0.0516 0.0582
testdcl 0.2035 0.0162 -0.3886 0.3488 -0.0846 -0.1478

Test pair (All, G): We compare Tables 4.15 and 4.17. This test pair investigates the

effects on survey response relationships between system type (embedded/non-embedded),

reuse approaches and outcomes, when reuse artifacts are included in the PCA vs. when

reuse artifacts are excluded. Test All includes data from all four categories. Test G includes

data from all categories except reuse artifacts.

Table 4.17: Test G: PCA Factor Loadings - All Survey Questions - less reuse artifacts

Question PC1 PC2 PC3 PC4
emb_non -0.1165 -0.1005 -0.6392 0.2551
cmp_bsd -0.2303 -0.5318 -0.0095 0.3868
mod_bsd -0.2523 -0.5819 0.0628 0.0652
pl_bsd -0.2874 -0.1537 -0.2320 -0.2239
cg_bsd 0.0417 -0.4388 0.4032 -0.4680
her_ad 0.0103 0.0136 0.4444 0.2854
sv_lb -0.3764 0.2282 0.1558 0.3993
red_def -0.3862 0.2183 0.0305 -0.3059
red_tm -0.4353 0.1367 -0.0277 -0.2662
red_itms -0.4416 0.0410 -0.0775 -0.2014
red_rsk -0.3315 0.1788 0.3762 0.2570

107

Results: Inclusion and exclusion of reuse artifacts results in one shared survey

response relationships.

• Survey responses which do not include a component-based reuse approach

tend to also not indicate a model-based reuse approach.

Conclusions: Survey response relationships among system type, reuse ap-

proaches and outcomes does vary differently, for the most part, based on reuse

artifacts. We conclude reuse artifacts in the survey responses is influential in

survey response variance.

Test pair (All, H): We compare Tables 4.15 and 4.18. This test pair investigates the

effects on survey response relationships between system type (embedded/non-embedded),

reuse artifacts and outcomes, when reuse approach is included in the PCA vs. when reuse

approach is excluded. Test All includes data from all four categories. Test H includes data

from all categories except reuse approach.

Results: Inclusion and exclusion of reuse approach results in two shared survey

response relationships.

• Survey responses which do not specify requirements as reuse artifacts also

tend to not specify selection of tested products as reuse artifacts.

• Survey responses which do not specify models as reuse artifacts tend to

specify tested clusters as reuse artifacts.

Conclusions: Since two out of five relationships in test H are also found in test

All, we conclude that system type (embedded/non-embedded), reuse artifacts

and outcomes are somewhat independent of reuse approach.

Test pair (All, F): We compare Tables 4.15 and 4.19. This test pair investigates

the effects on survey response relationships between reuse approach, reuse artifacts and

108

Table 4.18: Test H: PCA Factor Loadings - All Survey Questions - less reuse approach

Question PC1 PC2 PC3 PC4 PC5
emb_non -0.1250 -0.1141 0.3539 -0.3449 0.2045
rqts -0.1798 -0.4649 0.0337 -0.1657 -0.1240
code -0.3053 0.0067 0.0855 -0.3533 -0.4443
arch -0.2706 -0.2465 -0.1034 -0.2219 -0.2700
mod -0.2305 0.0206 -0.4988 -0.1834 0.2924
dwgs -0.0395 -0.2541 -0.1773 0.5929 -0.2241
hdwr -0.2056 -0.3264 0.2409 0.3190 -0.1277
ucs -0.1336 -0.3154 -0.4876 -0.1896 0.2735
tstpr -0.2004 -0.4335 0.0929 0.1489 0.1493
tstdcl -0.1997 0.0136 0.4147 -0.0338 0.1475
sv_lb -0.3300 0.3134 -0.0487 -0.0931 -0.3375
red_def -0.3312 0.1712 -0.1064 0.2380 0.1884
red_tm -0.3794 0.1987 0.1201 0.0788 0.3253
red_itms -0.3827 0.1384 0.1483 0.1852 0.2337
red_rsk -0.2861 0.2543 -0.2211 0.1659 -0.3029

outcomes, when system type (embedded/non-embedded) is included in the PCA vs. when

system type is excluded. Test All includes data from all four categories. Test F includes

data from all categories except system type.

Results: Inclusion and exclusion of system type results in zero shared survey

response relationships between Test All and Test F.

Conclusions: Since there are no shared relationships between the two tests,

we conclude system type influences variance in the survey responses.

Test pair (A, B): We compare Tables 4.16 and 4.20.This test pair investigates the

difference in survey response relationships with and without the specification of reuse arti-

facts, but independent of outcomes. Test A includes data from system type, reuse approach

and reuse artifacts. Test B includes data from system type and reuse approach. Neither

test contains data from outcomes.

Results: Inclusion and exclusion of reuse artifacts results in one shared survey

response relationships between Test A and Test B.

109

Table 4.19: Test F: PCA Factor Loadings - All Survey Questions - less input

Question PC1 PC2 PC3 PC4 PC5 PC6 PC7
cmp_bsd 0.1935 -0.1363 0.2452 -0.3382 0.1163 -0.4311 0.0887
mod_bsd 0.2439 -0.0443 0.3422 -0.4269 0.0879 -0.0710 -0.0987
pl_bsd 0.2908 0.1347 -0.0302 -0.0837 -0.2487 0.1255 -0.1224
cg_bsd -0.0005 0.1929 0.1660 -0.1119 -0.0897 -0.2653 -0.7408
her_ad 0.0094 0.0590 0.3738 0.4176 -0.0252 -0.2416 -0.0313
rqts 0.1668 0.4716 -0.0602 -0.0452 -0.2459 0.0929 0.0543
code 0.2812 0.0094 0.0644 0.1826 -0.4900 -0.2139 0.1050
arch 0.2541 0.2750 0.0119 0.0370 -0.3363 0.1644 -0.0544
mod 0.2408 -0.0310 0.4254 -0.0275 0.2332 0.3040 0.1311
dwgs 0.0279 0.2686 -0.0963 0.2420 0.4094 -0.2674 -0.0968
hdwr 0.1870 0.2964 -0.2277 -0.0313 0.1888 -0.4383 0.1807
ucs 0.1398 0.2983 0.4237 0.0397 0.2300 0.2697 0.1840
tstpr 0.1504 0.3933 -0.2165 0.0738 0.2378 0.0306 0.1761
tstdcl 0.2033 -0.0709 -0.2508 -0.4570 -0.0343 -0.0455 0.2056
sv_lb 0.2958 -0.3025 0.0173 0.2624 -0.1792 -0.1381 0.2466
red_def 0.2939 -0.1328 -0.1455 0.1986 0.1977 0.2499 -0.3118
red_tm 0.3336 -0.1820 -0.1923 0.0579 0.1092 0.1832 -0.2422
red_itms 0.3467 -0.1419 -0.2330 -0.0296 0.1889 0.0197 -0.1310
red_rsk 0.2538 -0.2247 0.0516 0.2900 0.0867 -0.1897 0.0233

• Survey responses which indicate a component-based reuse approach also

tend to specify a model-based reuse approach (independent of outcome)

Conclusions: Survey response relationships generally vary amongst inputs

and reuse approaches (independent of outcome). Only one shared relationship

does not allow us to conclude inputs and reuse approaches vary independent of

reuse artifacts.

Test pair (A, C): We compare Tables 4.16 and 4.21. This test pair investigates

the difference in survey response relationships with and without the specification of reuse

artifacts, but independent of outcomes. Test A includes data from system type, reuse

approach and reuse artifacts. Test B includes data from system type and reuse approach.

Neither test contains data from outcomes.

110

Table 4.20: Test B: PCA Factor Loadings - All Survey Questions - less reuse artifacts less
outcomes

Question PC1 PC2
emb_non 0.3183 -0.4443
cmp_bsd 0.5757 -0.0849
mod_bsd 0.5502 0.0801
pl_bsd 0.3868 -0.3404
cg_bsd 0.2689 0.6308
her_ad 0.2063 0.5246

Table 4.21: Test C: PCA Factor Loadings - All Survey Questions - less reuse approaches
less outcomes

Question PC1 PC2 PC3 PC4
emb_non 0.2739 0.0235 0.1095 -0.5531
rqts 0.3960 0.2461 0.1321 0.2293
code 0.2653 0.5030 0.2582 0.0917
arch 0.4113 0.2925 0.0767 0.2797
mod 0.2154 0.0551 -0.7673 0.0167
dwgs 0.1882 -0.5981 0.0714 0.2274
hdwr 0.3292 -0.3928 0.2792 -0.1024
ucs 0.3762 -0.1334 -0.4310 0.1548
testpr 0.3851 -0.2470 0.1672 0.0033
testdcl 0.2205 0.0804 -0.1117 -0.6844

Results: Inclusion and exclusion of reuse approach results in one shared survey

response relationships between Test A and Test C.

• Survey responses which indicate selection of code as a reuse artifact tend

to not specify a drawings as a reuse artifact (independent of outcome)

Conclusions: Survey response relationships generally vary amongst inputs

and reuse artifacts (independent of outcome). Only one shared relationship

does not allow us to conclude inputs and reuse artifacts vary independent of

reuse approaches.

111

Test pair (A, D): We compare Tables 4.16 and 4.22. This test pair is selected to

investigates the difference in survey response relationships with and without the specifica-

tion of system type (embedded vs. non-embedded), but independent of outcomes. Test A

includes data from system type, reuse approach and reuse artifacts. Test D includes data

from reuse approach and reuse approach. Neither test contains data from outcomes.

Results: This test pair exposed the greatest number of shared relationships be-

tween survey responses. Nine shared survey response relationships are observed

between Test A and Test D.

• Survey responses which specify a component-based reuse approach

– also tend to specify a model-based reuse approach.

– tend to not specify drawings as a reuse artifact

– tend to not specify tested products as a reuse artifact

• Survey responses which specify a model-based reuse approach

– tend to not specify drawings as a reuse artifact

– tend to not specify tested products as a reuse artifact

• Survey responses which do not specify drawings as a reuse artifact also

tend to not specify tested products as a reuse artifact

• Survey responses which specify a heritage/ad hoc reuse approach tend to

not specify tested clusters as a reuse artifact

• Survey responses which do not specify code as a reuse artifact tend to

specify models as a reuse artifact

• Survey responses which do not specify hardware as a reuse artifact tend to

vary independently (i.e., hardware appears as a single factor in a principal

component)

Conclusions: Because of the relatively large number of shared relationships

between Test A and Test D, we conclude that system type has very little in-

112

fluence on the relationships between reuse approach and reuse artifacts, in the

absence of outcome data. System type does not appear in any of the shared

relationships in Test A. A comparison of the results of test pair (All, F) is of

interest, since that test pair includes outcomes where test pair (A, D) does not.

In the reuslts from (All, F) we concluded system type does matter in the vari-

ance of relationships between reuse approach, reuse artifacts and outcomes. In

(A, D), where the absence of outcomes is the only difference compared to (All,

F), system type does not influence the shared relationships. For this reason, we

further conclude that outcomes must be considered when analysing the survey

data.

Table 4.22: Test D: PCA Factor Loadings - All Survey Questions - less system type less
outcomes

Question PC1 PC2 PC3 PC4 PC5
cmp_bsd -0.1124 0.4783 -0.0677 0.1099 -0.4064
mod_bsd -0.2327 0.4600 0.2600 -0.2562 -0.1946
pl_bsd -0.2077 0.1925 -0.3876 0.0629 -0.1808
cg_bsd -0.0761 0.1710 0.2169 0.4753 -0.2658
her_ad -0.1405 0.1316 0.3927 0.4298 0.2657
rqts -0.3950 -0.0664 -0.2108 0.0510 0.2286
code -0.2912 0.1995 -0.3219 0.2598 0.2651
arch -0.4108 -0.0376 -0.2108 0.0616 0.2503
mod -0.2565 0.2117 0.4194 -0.3507 0.1602
dwgs -0.1489 -0.4327 0.2613 0.1072 -0.2877
hdwr -0.3012 -0.2681 -0.0135 0.1458 -0.5018
ucs -0.3625 -0.1428 0.3303 -0.1057 0.1777
tstpr -0.3239 -0.3256 -0.0250 -0.0372 -0.1004
tstdcl -0.1999 -0.0033 -0.1726 -0.5153 -0.1895

Test pair (F, E) and Test pair (F, J): We compare Tables 4.19, 4.23, and 4.24.

These two test pairs are selected to compare the difference in survey response relationships

with and without reuse approach (F, e), and with and without reuse artifacts (F, J), with

each test pair independent of system type.

113

Table 4.23: Test E: PCA Factor Loadings - All Survey Questions - less system type less
reuse approach

Question PC1 PC2 PC3 PC4 PC5
rqts -0.1879 0.4661 -0.0151 0.3034 -0.0909
code -0.2955 -0.0108 0.0664 0.5011 0.2170
arch -0.2790 0.2564 0.1252 0.3517 0.1008
mod -0.2175 -0.0048 0.5658 -0.1948 -0.1709
dwgs -0.0540 0.2872 -0.1591 -0.4458 0.5262
hdwr -0.2113 0.3331 -0.3895 -0.1027 0.1448
ucs -0.1360 0.3333 0.5353 -0.1515 -0.1278
tstpr -0.1840 0.4260 -0.1122 -0.1892 -0.1407
tstdcl -0.1991 -0.0351 -0.3508 0.1597 -0.3670
sv_lb -0.3282 -0.2852 0.0381 0.2123 0.3270
red_def -0.3432 -0.1680 0.0073 -0.3035 -0.0213
red_tm -0.3872 -0.2122 -0.1020 -0.1417 -0.3204
red_itms -0.3913 -0.1444 -0.1896 -0.1807 -0.2069
red_rsk -0.2900 -0.2329 0.1120 -0.1083 0.4287

Table 4.24: Test J: PCA Factor Loadings - All Survey Questions - less system type less
reuse artifacts

Question PC1 PC2 PC3 PC4
cmp_bsd 0.2250 -0.5236 0.2437 -0.3471
mod_bsd 0.2543 -0.5878 0.0152 -0.1747
pl_bsd 0.2811 -0.1284 -0.2970 0.1939
cg_bsd -0.0315 -0.4854 -0.1069 0.5790
her_ad -0.0051 -0.0272 0.5978 0.5962
sv_lb 0.3808 0.2124 0.4058 -0.1555
red_def 0.3918 0.2085 -0.2048 0.2407
red_tm 0.4375 0.1351 -0.2087 0.1893
red_itms 0.4443 0.0439 -0.2329 -0.0480
red_rsk 0.3426 0.1365 0.4231 -0.0212

Results: Test pair (F, E) results in two shared survey response relationships.

• The selection of requirements for reuse varies with the selection of tested

products

• The selection of models as a reuse artifact varies with the selection of use

cases.

114

Results: Test pair (F, J) results in one shared survey response relationship.

• A reduction of items to be tested results in a reduction of test time.

Conclusions: Although there are some shared survey response relationships in

test pairs (F, E) and (F, J), there is still general indication from the relatively

small number of shared relationships that reuse approach and reuse artifacts

do contribute to variance in the survey responses.

Test pair (F, D) and Test pair (H, C): We compare Tables 4.19, 4.22, 4.18,and 4.21.

These two test pair are selected to compare the difference in survey response relationships

with and without outcomes, independent of system type in (F, D), and independent of

reuse approach (H, C).

Results: Test pair (F, D) results in one shared survey response relationship.

• Survey responses which specify a heritage/ad hoc reuse approach tend to

not specify tested clusters as a reuse artifact.

Results: Test pair (H, C) results in one shared survey response relationship.

• Survey responses which do not indicate reuse of models also tend to not

specify the reuse of use cases.

Conclusions: There is general indication from the small number of shared

relationships in both Test (F, D) and (H, C) that inclusion/exclusion of out-

come data in the PCA for (F, D) does influence variance in the relationships

between reuse approach and reuse artifacts. Similarly, inclusion and exclusion

of outcomes also influences variance between system type and reuse approaches.

Test pair (H, I): We compare Tables 4.18 and 4.25. This test pair compares the

difference in survey response relationships with and without reuse artifacts, independent

115

of reuse approach. Test H includes data from system type, reuse artifacts and outcomes.

Test I contains system type and outcomes.

Table 4.25: Test I: PCA Factor Loadings - All Survey Questions - less reuse approach less
reuse artifacts

Question PC1 PC2
emb_non -0.0742 0.7513
sv_lb -0.4208 -0.2818
red_def -0.4413 0.0722
red_tm -0.4921 0.2530
red_itms -0.4789 0.2062
red_rsk -0.3888 -0.4944

Results: Test pair (H, I) results in three shared survey response relationships.

• Outcomes resulting in a reduction of defects vary with a reduction in test

time.

• Outcomes resulting in a reduction of defects vary with a reduction in the

number of items to be tested.

• Outcomes resulting in a reduction of test time vary with a reduction in

the number of items to be tested.

Conclusions: Although system type is included in both test H and test I,

none of the three shared relationships include system type. In fact, all three

components in all relationships are outcomes. This suggests outputs vary with

one another 1) independent of inputs, and 2) independent of reuse artifact.

Test pair (H, E): We compare Tables 4.18 and 4.23. This test pair compares the

difference in survey response relationships with and without system type, independent of

reuse approach. Test H includes data from system type, reuse artifacts and outcomes. Test

E contains data from reuse artifact outcomes.

116

Results: Test pair (H, E) results in three shared survey response relationships.

These are the same three as were found in test (H, I).

• Outcomes resulting in a reduction of defects vary with a reduction in test

time.

• Outcomes resulting in a reduction of defects vary with a reduction in the

number of items to be tested.

• Outcomes resulting in a reduction of test time vary with a reduction in

the number of items to be tested.

Conclusions: Some evidence exists that system type does not influence the

relationship between the specification of reuse artifacts and outcome, in the

absence of reuse approach.

Table 4.26: Number of Principal Components Shared Between Test Pairs

All A B C D E F G H I J
All - 1 1 1 1
A - 1 1 9 1 1
B - 2 1
C - 1 1 1
D - 1
E - 2 3 3
F - 1
G - 3 3 1
H -
I -
J -

4.3.6 Summary of Results

The PCA applied to the survey data produced relationships between survey responses as

shown in Tables 4.27 and 4.28. For each relationship we show a symbolic representation of

117

Table 4.27: Survey Response Relationships with Shared Principal Components

Relationship All Test
A

Test
B

Test
C

Test
D

Test
E

Test
F

Test
G

Test
H

Test
I

Test
J

rqts ↓↔ tstpr ↓ PC2 PC2
mod ↓↔ tstdcl ↑ PC3 PC3

cmp_bsd ↓↔mod_bsd ↓ PC4 PC2 PC2
code ↑↔ dwgs ↓ PC5 PC2
rqts ↑↔ arch ↑ PC1 PC1

cmp_bsd ↑↔mod_bsd ↑ PC2 PC1 PC2
cmp_bsd ↑↔ dwgs ↓ PC2 PC2
cmp_bsd ↑↔ tstpr ↓ PC2 PC2
mod_bsd ↑↔ dwgs ↓ PC2 PC2
mod_bsd ↑↔ tstpr ↓ PC2 PC2

dwgs ↓↔ tstpr ↓ PC2 PC2
her_ad ↑↔ tstdcl ↓ PC3 PC4 PC4

code ↓↔ mod ↑ PC4 PC3
hdwr ↓ PC5 PC5

emb_non ↓↔ her_ad ↑ PC2 PC3
cg_bsd ↑↔ her_ad ↑ PC2 PC4

rqts ↑↔ tstpr ↑ PC1 PC2 PC2
mod ↓↔ ucs ↓ PC3 PC3

sv_lb ↓↔ red_def ↓ PC1 PC1
sv_lb ↓↔ red_tm ↓ PC1 PC1
sv_lb ↓↔ red_itms ↓ PC1 PC1

red_def ↓↔ red_tm ↓ PC1 PC1 PC1 PC1
red_def ↓↔ red_itms ↓ PC1 PC1 PC1 PC1
red_tm ↓↔ red_itms ↓ PC1 PC1 PC1 PC1

mod ↑↔ ucs ↑ PC3 PC3
red_tm ↑↔ red_itms ↑ PC1 PC1

the relationship to supplement the contextual interpretations listed in the results section

of each test pair described earlier. The following symbolic notation is used to describe

behavioral relationships between survey response pairs:

qu{↑ | ↓} ⇒ qv{↑ | ↓} (4.3.1)

118

The notation is interpreted as “in survey response pair (qu, qv) for u 6= v, as qu {increases

↑ or decreases ↓}, qv {increases ↑ or decreases ↓}. The attribute relationship

her_adhoc ↑ ⇒ mod ↓ (4.3.2)

means “survey responses which indicate a reuse approach is heritage/adhoc tend to not

indicate models are reused.” Relationships are interpreted in the context of the behavioral

tendency of all survey responses included in the analysis. All survey response pairs for

each factor in our PCA are annotated in this manner.

Table 4.28: Survey Response Relationships with Single Principal Components

Relationship All Test
A

Test
B

Test
C

Test
D

Test
E

Test
F

Test
G

Test
H

Test
I

Test
J

red_itms ↓ PC1
her_ad ↓↔ mod ↓PC3
her_ad ↓↔ tstdcl ↑PC3
cg_bsd ↑↔ ucs ↓PC6

emb_non ↑↔ arch ↓PC7
emb_non ↑↔ hdwr ↑PC7

arch ↓↔ hdwr ↓PC7
red_tm ↓ PC8

rqts ↑↔ ucs ↑ PC1
arch ↑↔ ucs ↑ PC1

emb_non ↑↔ cg_bsd ↓ PC6
cmp_bsd ↑↔ pl_bsd ↑ PC1
mod_bsd ↑↔ pl_bsd ↑ PC1
emb_non ↓↔ cg_bsd ↑ PC2

arch ↑↔ tstpr ↑ PC1
code ↑↔ hdwr ↓ PC2
dwgs ↓↔ hdwr ↓ PC2

emb_non ↓↔ tstdcl ↓ PC4
rqts ↓↔ arch ↓ PC1
rqts ↓↔ ucs ↓ PC1
arch ↓↔ ucs ↓ PC1

pl_bsd ↓↔ code ↓ PC3
pl_bsd ↓↔ mod ↑ PC3
cg_bsd ↑↔ tstdcl ↓ PC4

mod ↑↔ hdwr ↓ PC3
hdwr ↓↔ ucs ↑ PC3
code ↑↔ arch ↑ PC4

Continued on next page

119

Table 4.28 – continued from previous page
Relationship All Test

A
Test
B

Test
C

Test
D

Test
E

Test
F

Test
G

Test
H

Test
I

Test
J

dwgs ↑↔ tstdcl ↓ PC5
dwgs ↑↔ red_rsk ↑ PC5
tstdcl ↓↔ red_rsk ↑ PC5

mod_bsd ↓↔ her_ad ↑ PC4
mod_bsd ↓↔ tstdcl ↓ PC4

code ↓↔ arch ↓ PC5
code ↓↔ dwgs ↑ PC5
arch ↓↔ dwgs ↑ PC5

cmp_bsd ↓↔ hdwr ↓ PC6
cg_bsd ↓ PC7

emb_non ↓↔ red_rsk ↑ PC3
her_ad ↑↔ red_rsk ↑ PC3
cg_bsd ↓↔ sv_lb ↑ PC4

rqts ↓↔ hdwr ↓ PC2
hdwr ↓↔ tstpr ↓ PC2

emb_non ↑↔ mod ↓ PC3
emb_non ↑↔ ucs ↓ PC3
emb_non ↑↔ tstdcl ↑ PC3

ucs ↓↔ tstdcl ↑ PC3
dwgs ↑ PC4
code ↓↔ sv_lb ↓ PC5

emb_non ↑↔ red_rsk ↓ PC2
red_def ↑↔ red_tm ↑ PC1
red_def ↑↔red_itms ↑ PC1
her_ad ↑↔ sv_lb ↑ PC3
her_ad ↑↔ red_rsk ↑ PC3
sv_lb ↑↔ red_rsk ↑ PC3

cg_bsd ↑ PC4

4.3.7 Discussion of Qualitative Results

We turn to the free form comments to look for reasons for the differences and com-

monalities in embedded and nonembedded system projects that employed reuse. For this

discussion, comments by survey respondents (referred to as R followed by their id number)

try to shed light on reasons for success and failure.

Development Approach Developers of embedded systems cited benefits from using

component based reuse. One benefit was not having to reengineer or rewrite the test sets

120

(R58). The fact that the technical solution was clear and already deployed in a prior project

was cited by four (R15, R38, R50 and R74). Experience of the engineer and pedigree of

the products (R24), reuse of a proven methodology (R28), and developer confidence in

the products (R28) were mentioned. Not touching common code or infrastructure was

important to embedded systems developers using component based development as part

of their solution (R34, R66). This could explain the fact that over half of the embedded

systems used a component based development approach, as shown in Table 4.5.

Reasons for a model-based approach include that models had been used in other projects

that reduce their risk (R48). These comments were echoed by respondents reporting on

nonembedded systems. For both component based and ad hoc reuse, prior deployment

and pedigree of the products (R69, R70, R37, R48, R34, R24) and developer confidence

in trusted library components (R79) was cited. Reasons in favor of product line reuse in

nonembedded systems included risk reduction (R71), a good match of the reused software

with the new project (R23), and, over time, the development of reusable expertise (R52).

No reasons were provided for the benefits in reuse of COTS/GOTS.

Artifact Reuse The quantitative analysis showed differences in the artifacts used be-

tween developers of embedded and nonembedded systems. From the respondent comments,

we can see that both embedded and nonembedded systems practitioners mentioned soft-

ware, code, components and test. However, while hardware was a major consideration for

embedded systems, it was not mentioned by nonembedded systems developers.

Presumably, reuse in embedded systems is facilitated when code does not have to be

adapted to new hardware. This is echoed in comments by respondent (R58) as a reason

for success and a reason for reuse failure when hardware does change. Well known and

documented circuits (R33), stable hardware (R8), and running the software on known

platforms (R43, R72), not having to reengineer or rewrite test sets (R58) reduced risk as

well. Again, this supports the conclusion that changes to the platform impact reusability,

accounting for the high reuse of both code and hardware shown in Table 4.6. (R51) cites

121

reuse of code and architecture artifacts together as the reason for reuse success in embedded

systems (with regard to development and testing costs), which is also supported by (R31)

and (R33). (R56) points out that in cases where code reuse is feasible for embedded

systems, this allows for higher efficiency and lower risk. (R62), (R83) and (R57) report

reuse of code, component interfaces, components, requirements and test procedures as

reasons for reuse success related to quality. Risk was believed to be reduced by reuse of

code because it had been tested multiple times and the fact that a large percentage of the

code was already integrated (R68), (R25), and because the of the use of proven equipment,

designs and requirements (R71). Note that if the code is already tested, it must not

have been changed, because if it was changed it would have to be tested again. Proven

equipment, designs and requirements also imply minimal change. Proven models, design

and code elements (R42), and already deployed projects based on the reused models (R42,

R64, R81) were also mentioned. This could explain both the fact that all artifacts were

reused in embedded systems at a higher rate than in nonembedded systems and the high

reuse rate of requirements, architecture, code, hardware and test products by embedded

systems, both shown in Table 4.6.

Unsuccessful reuse in embedded systems was explained by not being able to use or

"fit” the reuse artifact: architecture mismatch with third party code (R51), code or reuse

plan mismatch (R15), lack of availability or obsolete test products (R32), overly com-

plex software artifacts (R9), (R12),(R57), (R32), (R51), and problematic legacy software

(R58). The close coupling between hardware platforms and software is one important rea-

son given. Another reason is that the technical solution was proven in an environment

where performance and timing are critical. The fact that the hardware and software had

proven themselves and the likelihood of introducing new defects was reduced was an im-

portant consideration. Developers knew that these products worked well together. While

these were also cited by developers of nonembedded systems developers, embedded systems

developers clearly relied on the past success of their components for new efforts.

122

Reasons for Success/Failure In nonembedded systems, respondent comments related

to successful artifact reuse cited good documentation (R25), (R69), a good fit of the reused

software to the new use (R23), and availability of product-line artifacts (R71).

By contrast, mismatches of reused software with needs for the new project ((R23),

(R82)), poor quality of code or design ((R23), (R52)), poor documentation of reusable

artifacts ((R79), (R69), (R14), (R82)), and complexity of the code base (R69) were cited

as reasons for increased cost or failure. Undocumented or latent problems were cited by

((R82), (R5)) as reasons for much higher testing efforts.

While all were likely to reuse code, the reuse of use cases, hardware, test products and

tested clusters (where no nonembedded systems developers cited use) was much greater in

embedded systems. In fact, there may be a link in the reuse of hardware, test products and

test clusters. This makes sense, because the test products would have been written to test

the software on the hardware, and the resulting tested product groupings would be trusted

in the new system. Test products could use parameters for any new requirements rather

than developing an entire new test suite, a benefit cited by embedded systems developers.

This observation is consistent with the quantitative analysis results in Table 4.6.

For embedded systems, successful reuse resulted in fewer defects, as mistakes were

seldom repeated (R78), successes led to 4 times productivity and 10 times quality (R38).

The increase in productivity is reflected in Table 4.7 and the box plots. However, outcomes

for quality in terms of defects are less supported by the data in that table and the box

plots. The reasons for the difference in the comments and the data are not clear. (R31)

points out risk reduction due to proven artifacts. (R62), (R83) and (R57) comment on

reduced testing as a benefit of reuse. (R56) points out that successful reuse allows for a

corporate knowledge base that facilitates training new hires. These comments are similar

to what is known in existing literature.

For unsuccessful reuse in embedded systems, some of the reasons given include lack

of software comprehension (R70), complexity of resulting software and associated mainte-

nance and testong costs ((R9), (R12), (R57), (R32), (R51)) and obsolescence or decay

123

in legacy systems (R21), unrealistic expectations (R58) and lack of management sup-

port(R16).

Respondent comments related to successful reuse in nonembedded systems reported

savings in effort ((R4), (R35)), reduced risk ((R4), (R35)), easier training of new hires

(R35), reduced team size (R71), lower cost (R34), increased quality ((R34), (R79)). Over-

all, the reasons cited for success and failure of reuse in embedded vs nonembedded systems

are similar.

Risk Reduction In embedded systems, developers stated that risk was considered re-

duced in software because of application stability (R8), software maturity, (R16), and

trusted components, software and systems (R19). The respondents cited limiting the num-

ber of variants leading to less unique code (R12), and already tested items with little

adaptation, (R54, R57, R62, R70) as reasons. Finally, in terms of overall risk reduction

with regard to reuse, the fact that the technical solution was clear and already deployed in a

prior project (R15, R38, R50, R74) was a major consideration. Maturity of existing library

items (R67), and previously corrected defects in functional and interface requirements,

component design and coding (R83) were also mentioned.

For nonembedded systems, risk reduction in the area of software and code (including

data) included experience of the engineer and pedigree of the software products (R24),

reuse of a proven methodology (R28) maturity of the code base (R45), and developer

confidence (R82). Not touching common code or infrastructure was also mentioned (R34,

R66). For test, developers cited the need to only perform regression tests (R13), only

having to test for usability (R14), proven functionality (R20) and use of a common core

for all test set software (R63). Schedule risk was also believed to be reduced. The risk of

not completing the project on time was reduced by reusing software (R23) and an entire

development effort was eliminated (R53, R75) General comments about reuse reducing

risk included reduction in uncertainty (R52). Hence the reasons for risk reduction echo the

benefits reported above.

124

4.4 Discussion of Results

4.4.1 Descriptive Statistics

The descriptive statistics indicated an observable difference in the development ap-

proach between embedded and nonembedded systems, with embedded systems more likely

to use CBSE, and product line development, and nonembedded systems more likely to use

ad hoc and COTS/GOTS. We notice that those development approaches favored by embed-

ded systems were the ones not favored by nonembedded systems and vice versa. Reasons

respondents gave for this difference included the reuse of existing code already written to

hardware, tests already written for those hardware/software components and the frequency

in which clusters of hardware/software components had already been integrated and tested

together. Nonembedded systems indicated a preference for MBSE because the fact that

models were already proven in earlier projects, thus reducing risk.

The differences in artifacts reused seem to reflect the preference of development ap-

proach. Reuse levels for all artifacts was observably higher in embedded systems than in

nonembedded systems. This was especially true for reuse of requirements, architecture, use

cases, hardware, test products and test clusters. In the statistical analysis, this difference

was significant for architecture, hardware, use cases, and test products, and nearly signif-

icant for already tested clusters. Again, this was explained by requirements stability, the

benefit of running software on a known platform, hardware stability, and the fact that the

components had been integrated, tested and deployed successfully on earlier projects, re-

ducing risk. Because the hardware/software components did not change, the test products

were still valid.

The box plots showed no observable difference in the median of outcomes between

embedded systems and nonembedded systems. So, while there was difference in the devel-

opment approaches and reuse artifacts, there was not a difference in the success of reuse

itself. It is also interesting to notice that in terms of items to be tested and in defects,

the median responses indicated no savings. It is also interesting to observe how many re-

125

sponses indicated additional cost attributed to reuse, sometimes that cost was surprisingly

high. Only savings in labor showed a median of over 10%. Some of the observations of the

respondents suggested that either the reuse was not as reusable as had been expected or

that the reuse required developers experienced with the products in order to be effective.

It was suggested that, in an embedded system, changing the hardware made it necessary to

substantially change the software. This is supported by the respondents’ comments about

reasons for reuse success that the hardware and software had already been successfully

integrated and tested.

4.4.2 Quantitative Statistics

Based on the MANOVA, there was little difference in the outcomes between embedded

systems and nonembedded systems. So, while there was a difference in the development

approaches and reuse artifacts, there was not a difference in the success of reuse itself.

The MANOVA indicated that there was a difference in the development approaches in

embedded systems vs the development approaches in nonembedded systems. Embedded

systems were significantly more likely than nonembedded systems to use a heritage/legacy

approach. There was also a significantly higher likelihood to reuse the hardware, test

products and test clusters in embedded systems, and to use them together. It makes

sense that hardware, test products and test clusters would be reused in embedded systems,

because embedded software is often optimized to the processor. We noticed that several

subjects commented that the greatest benefit of reuse in embedded systems was that the

software was already tested against the hardware. This begs the question: Is it useful to

reuse code in embedded systems if the hardware changes?

4.4.3 PCA

We found that a reduction in the number of items that requires testing through reuse

varies independently from system type, reuse approach and reuse artifact. In fact, reuse

in general reduces items to be tested, regardless of system type, reuse approach or reuse

126

artifact. We also found that reuse results in a reduction in test time regardless of reuse

approach or artifact. We found that the use of heritage/ad hoc reuse approach results in

less use of models as reuse artifacts, and greater use of tested clusters. Less selection of

models as reuse artifacts would then be expected with less heritage/ad hoc. We found that

a COTG/GOTS reuse approach leads to less reuse of use cases. Through our knowledge of

system reuse, a selection of COTS/GOTS usually would concentrate more on the reuse of

more developed artifacts such as tested products and less on existing use cases. Two inter-

esting relationships exist between system type, architecture and hardware. We observed

a three-way relationship where an embedded system type leads to less architecture reuse

and more hardware reuse.

A summary of the significant findings from all tests is:

• A reduction of items to be tested is not associated with any particular system type,

reuse artifact or reuse approach when outcomes are excluded.

• A reduction of test time is not associated with any particular system type, reuse

artifact or reuse approach.

• Experience with embedded systems tends to avoid a COTS/GOTS as a reuse ap-

proach.

• Risk is reduced for nonembedded systems.

• Risk is reduced through a heritage/ad hoc reuse approach.

• Avoidance of a COTS/GOTS based reuse approach saves labor.

• More often than not, reuse approach and reuse artifact vary together but independent

of both system type and outcome.

• Embedded systems reuse fewer models and use cases, but more tested clusters when

analyzed without reuse approaches.

127

4.5 Threats to Validity

Because this is a mixed methods study, we need to look at threats to validity both from

a quantitative and qualitative perspective.

4.5.1 Quantitative Threats to Validity

Wohlin et al [129] name four quantitative threats to validity: conclusion validity, inter-

nal validity, construct validity and external validity.

Conclusion Validity is concerned with the relationship between the treatment and the

outcome. One of our threats to conclusion validity is the low statistical power of these

tests. This is the result of a fairly low sampling and the large number of variables. We

recommend repeating this study with more observations and the removal of the variables

that indicated little impact on the treatments.

Internal Validity is concerned with whether there is in fact a causal relationship and

not influenced by a factor that has not been measured. A threat to conclusion validity in

this study is the self selection in this survey. Subjects may have chosen to take the survey

because they had an agenda related to reuse. This has been mitigated by the observation

that the answers indicate a nearly equal number of those who have issues with reuse and

those who are enthusiastic about reuse.

Construct Validity is concerned with whether the treatment is in fact related to the

cause, and that the outcome does in fact reflect the construct. One construct threat to

validity in this experiment is the interaction of the different variables. For example, while

we were intending to study the differences between embedded and nonembedded systems,

the dependent variables of development approach may have had an impact on the artifacts

selected. We mitigate this threat by studying the variable types separately.

128

External Validity is concerned with the ability to extend conclusions outside of the

experiment. One major consideration is that many of the projects reported on have been

ongoing for many years. Another is that the projects are either very large systems them-

selves, or research and development to be inserted into very large systems. Whether smaller

projects would experience different results is not clear. Finally, these systems are from one

domain. Whether different domains would experience the same phenomenon is not clear.

4.5.2 Qualitative threats to validity

Since some of the information collected is qualitative, we assess our approach with

respect to: descriptive validity, interpretive validity, theoretical validity, generalizability,

and evaluative validity [90].

Descriptive Validity relates to the quality of what the subject reports having seen,

heard or observed. Here, not only are these observations subjective, since the projects are

so large the respondents may see only a small part of the effort. Their observations may

not reflect the whole project.

Interpretive Validity is concerned with what objects, events, and observations mean

to the subjects. In our case, impartiality of reporting is uncertain.

Theoretical Validity refers to an account’s validity as a theory of some phenomenon.

It depends on the validity of the construct of the experiment and on the validity of the

interpretation or explanation of the observations. It also depends on whether there is con-

sensus within the community about terms used to describe context, events and outcomes.

With the number of similar but not identical metrics presented, and ways of measuring

success, there is a threat to validity concerning the similarity or difference of the perceived

value of reuse. This was mitigated by using a common scoring system, resulting in ordinal

rather than ratio metrics.

129

Generalizability “refers to the extent to which one can extend the account of a par-

ticular situation or population to other persons, times, or settings than those directly

studied [90].” Here, the threat to validity consists of the fact that the research was per-

formed within the confines of one corporation. While the corporation consists of several

companies and cultures, there may also be an influence of the corporation itself. There

also could be proprietary information that was not discussed. In addition, there may be a

tendency to report successes and to keep working on or terminate efforts that have failed,

success may be overreported. On the other hand, there might also be a tendency to report

failures and the failures may be overreported. There may be an underreporting of results

that were neither great successes nor failures. However, the results we obtained do not

seem to indicate either situation. Once again, this study focused on large projects in the

aerospace domain, and may not reflect smaller projects or other domains.

Evaluative Validity refers to the evaluative framework in deciding whether the reuse

was, in fact, successful or not, and if so how much. The frameworks were likely to have

differed in the different projects because the contexts were different. This was mitigated

by considering the subjects’ report of both reuse and the subjects’ descriptive observations

upon which the reports are based.

4.6 Conclusions and Future Work

This study investigated differences in approaches and developer experiences with vari-

ous reuse strategies comparing embedded vs. nonembedded software systems. It considered

reuse in development approaches such as ad hoc, model based, component based, product

line, and COTS/GOTS reuse, as well as the artifacts that are reused. In a sense, this study

is an update, since the oldest of these studies would not have been able to report on reuse in

development approaches such as product line and component based software development

([42], [41]). We could determine that some results on reuse persist in the face of changes

in system development technology. Results that persist include the preponderance of code

130

and requirements reuse and much less frequent architecture and design model reuse. There

is extensive reporting of ad hoc reuse. Differences also presented themselves: reuse of mod-

els, test products and test clusters (the latter two especially in embedded systems) and

the frequent reporting of product lines and model based development approaches coupled

with reuse. As seen in the box plots, median outcomes did not differ between embedded

and nonembedded systems but the variance was greater for embedded systems.

We began our analysis by recognizing an inherent bias in reuse approaches and reuse

artifacts in terms of the frequency of their selection and how evolved the candidate artifacts

and approaches are in systems with which we have experience. We further recognize a rank

order exists among reusable artifacts and reuse approaches, again in terms of frequency and

evolution. We formalize an identification of the relative ranking of these items which appear

in our survey questions as multi-part responses. Through application of the Analytical

Hierarchy Process, we derive the rank order of reuse components and reuse artifacts on the

basis of frequency and evolution in a decision hierarchy. The order is expresses as numerical

weights on a ratio scale. With these weights, we transform binary survey response data

into ratio scale data upon which PCA operates.

Our selection of PCA in the analysis of the survey response data is motivated by our

interest in relationships between survey responses which are not easily discovered through

conventional analytical methods. Additionally, we are interested in comparing the outcome

of MANOVA with that of PCA. Both MANOVA and PCA have their basis in statistical

variance, so the analysis methods are mutually complimentary. PCA allows us to under-

stand the survey data in terms of the relative variance in the responses to each survey

question. These principal components express relationships between survey responses as

discussed in the analysis of our results. Our strategy of selecting combinations of response

categories which differ by one category allowed us to discover survey response relationships

in the presence and absence of the variable category.

In general, our PCA confirmed that the selection of embedded vs nonembedded system

type does not always relate to outcomes such as an increase or reduction in risk, or an

131

increase or reduction in test time. Some test pairs showed an independence in the relation-

ship between reuse approaches and reuse artifacts, from system type. We draw conclusions

cautiously from these results while recognizing opportunities for future research in which

a greater volume of survey data is sought for a replicated study.

Some of the research questions were answered. For example, reuse effectiveness did not

vary with project type (RQ 3), however, nuances of the development approaches did vary

(RQ1). There was a significant difference in what artifacts were reused (RQ2). There is

no statistical difference in reuse success based on the reporting of the outcome variables.

Embedded systems were significantly more likely to reuse hardware, test products and test

clusters. However, the reasons for this were not clear. However, respondents’ comments

imply that the tight coupling between hardware and software and the complexity of the

performance requirements leads to a desire to reuse hardware/software components and

their test suites once they have been proven.

132

Chapter 5

Semistructured Interview

The survey left us with more questions. We used a semistructured interview to see

if those questions could be answered. In this chapter, we present the results of a set

of semistructured interviews of experts in aerospace companies. These experts were asked

about reuse practices, successes and failures, and the reasons why these happened. We were

particularly interested in learning about differences and similarities in reuse approaches for

embedded vs. nonembedded systems. In addition, since modern development approaches

enable reuse of a wide variety of artifacts, we wanted to know whether artifact reuse was

different between embedded and nonembedded systems and whether the experts thought

certain development strategies worked better for one type of system than another, and why.

Experts were from a variety of corporate cultures. Results indicate that there are important

differences. For example, unlike nonembedded systems experts, embedded systems experts

preferred platform standardization over platform independence. This is because of the need

to optimize to a platform, important to embedded systems, whereas most nonembedded

systems run in virtual environments and need to be platform neutral. Embedded systems

experts prefer to use code already developed for the platform intact due to the difficulty

of modifying optimized code.

133

5.1 Semistructured Interview Study Design

The results of this study, expected to be descriptive, are intended to add to a foundation

to The results of this study, expected to be descriptive, are intended to explain reasons

for quantitative results found in earlier study. Therefore, this study is designed to provide

indicators of the direction needed for future research [5–7] .

Having learned from our previous research about the apparent different reuse outcomes

between embedded and nonembedded systems in terms of development approaches and

reused artifacts, we wanted to uncover the reasons for these differences. If we knew why

these differences exist, it might be possible to identify practices that would improve reuse

outcomes for both types of systems. To identify reasons for these differences, we decided

to conduct semi-structured interviews of experts in both embedded and nonembedded sys-

tems. According to Rand [61], interviews “can be used as a primary data gathering method

to collect information from individuals about their own practices, beliefs, or opinions. They

can be used to gather information on past or present behaviors or experiences.” These be-

liefs or opinions would be guided by their own experiences, both good and bad, with reusing

software products. Rand [61] goes on to say that interviews “can further be used to gather

background information or to tap into the expert knowledge of an individual. These inter-

views will likely gather factual material and data, such as descriptions of processes.” From

these experts, we can understand what is actually happening in industry, both in terms

of what they are doing and what the outcomes are. Finally, Rand [61] points out that

“semi-structured interviews are often used when the researcher wants to delve deeply into

a topic and to understand thoroughly the answers provided.” Since our goal is to under-

stand the differences between embedded and nonembedded systems in reuse experience,

as well as to understand differences in success using different development methods and

reusing different artifacts, the semi-structured interview is the tool of choice.

134

According to Rand [61]. the process is:

• Frame the research

• Determine the sampling

• Design the questions

• Develop the protocol

• Prepare for the interview

• Conduct the interview

• Capture the data

The process we used for each of these steps is discussed below.

5.1.1 Frame the research

The context of this study is software engineering experiences within a corporation with

many companies in the Aerospace industry. The study aims to understand software reuse

practices and results in embedded and nonembedded systems and reasons for failure and

success.

Theoretical Frame of Reference

There is a general belief that reuse is beneficial, in fact, it is required in many Gov-

ernment Requests for Proposal (RFP). In 1992, the Department of Defense published a

Software Reuse Initiative requiring reuse. There is also a general assumption that reuse

results in non-embedded systems are extensible to non-embedded systems [65].

Our theoretical framework is based on the two studies we conducted [5–7], the review of

literature and the survey. We theorize that there are differences in reuse practices between

embedded and nonembedded systems, and that while these lead to different reuse strategies

and reused artifacts, both have similar outcomes.

135

As a result of this gap, we performed a survey of reuse practices across a large cor-

poration, focusing on similarities and differences between embedded and nonembedded

systems [6]. We asked about reuse success in each type of system to see if reuse worked

comparably. We also asked about reuse strategies and artifacts to determine similarities

and differences of reuse practices in embedded and nonembedded systems. This survey did

find that, while reuse success between the types of systems were comparable, there was a

significant difference both in the reuse strategies used and the artifacts reused. However,

we were not able to determine exactly why this was the case.

Thus our theoretical framework is based on the two studies we conducted, the review of

literature and the survey. We theorize that there are differences in reuse practices between

embedded and nonembedded systems, and that while these lead to different reuse strategies

and reused artifacts, both have similar outcomes.

Research Questions

Our first step was to identify the main research questions, what we hope to learn from

the research. These are distinct from the questions we ask in the interviews. From the

above theoretical framework and the results of our previous studies, we were left with the

following questions:

• RQ-1 Is reuse really beneficial?

• RQ-2 Is reuse equally beneficial in embedded systems as non-embedded systems

• RQ-3 Do embedded systems use the same approaches as non-embedded systems

• RQ-4 Should embedded systems use the same approaches as non-embedded systems

• RQ-5 Does reuse effectiveness vary with project type (specifically embedded vs non-

embedded systems)?

• RQ-6 Which reuse strategies are used?

136

• RQ-7 Which reuse artifacts are used?

• RQ-8 What is the reason for the difference in reuse strategies and reuse artifacts?

While some of these questions were answered by Andrews et. al. [6], we wanted to know

why.

5.1.2 Sampling

There are nine different methods used to create a sample of subjects: Random, Sys-

tematic, Stratified, Structured, Cluster, Judgment, Convenience, Opportunity, and Snow-

ball [61]. We selected the judgment method because “judgment sampling reflects some

knowledge of the topic, so that people whose opinion will be important to the research,

because of what you already know about them, will be selected [61].” While this method

offers little ability to generalize, it does provide the best insight into reasons for outcomes

in each of the areas of our research. Our goal is to understand reasons, not necessarily to

generalize, which we have already done.

Candidate Selection

Once it was determined that the best method was judgment, we needed to develop a

process for selecting the candidate subjects. To identify the best candidates, we obtained a

list of fellows and distinguished technical staff from five companies, along with their areas

of expertise and specific specialties. This list consisted of 134 individuals. From this list,

we selected those individuals (54) who were either software or software systems experts.

We grouped the remaining 54 experts into three categories based on the company they

worked for and their particular expertise. Group 1 consisted of the individuals most likely to

have the most reuse outcome experience, balanced by the company type and type of system

(embedded vs. nonembedded). 21 individuals were in this group. Group 2 was individuals

less likely to have reuse outcome experience but still have significant important knowledge,

or from companies with extensive reuse expertise. Group 2 consisted of 12 experts. Group

137

3 was those from whom we would expect less information or from companies with many

experts. Group 3 consisted of 21 candidates. The grouping process involved the researcher

and two colleagues, one from each of two companies, who knew all of the candidates.

Securing the Interviews

Once the candidates were identified, a letter was prepared to introduce the research and

request the candidates’ participation. The colleagues created cover letters requesting that

the candidates agree to be interviewed. The letter of introduction and the questions were

sent to the first 21 individuals, along with the letter from the researcher shown in Appendix

A. From this correspondence, one candidate subject declined, six did not respond and 14

were willing to participate.

Confirming Sample Size

The next step was to determine sample size. We use the concept of data saturation

discussed in Francis et. al. [46] to determine our sample size. Data saturation occurs at

the point of data collection when no new additional information is found in relation to the

research [51]. This is the point where, for the purpose of the study at hand, the appropriate

sample size is a function of the range and distribution of the experiences rather than a need

for statistical evaluation. In this study, while it is important to have an adequate sample

size to explore the topic, the time of the candidate subjects is valuable and not to be taken

lightly.

Francis et. al [46] recommends determining a number of interviews for a first round

of analysis as an initial analysis sample. In their first example, the number was 10. We

decided to use the 14 willing subjects as our initial sample. At this point we needed to

determine a stopping criterion. Our approach was that after 14 interviews, if there had

been no new information in answers to the main questions in the questionnaire for two

consecutive interviews, we would conclude that data saturation had been reached. If, after

the first 14 interviews data saturation had not been reached, the remainder of group 1

138

would be contacted again to see if they were willing to participate, then group 2, and

finally, if necessary, group 3. As it turned out, data saturation was reached within the first

14 interviews.

5.1.3 Designing the questions

The questions were designed for the interviews to be open, in the sense that they allow

the subject to privide his/her own answer, rather than closed, where the subject would

select from a number of preselected answers. The open question method was selected

because it does not limit the scope of the answer and thus offers the subject the opportunity

to explain the phenomena s/he is reporting.

Developing the questions for our semistructured interviews required us to offer topics

and questions to the subjects. These questions were carefully designed to elicit the subjects’

ideas and opinions about their experiences with reuse, as opposed to leading the interviewee

toward preconceived choices. The questions needed to allow the interviewer to follow

predetermined questions with probes to get in-depth information on the topics. The two

underlying principles were (1) to avoid leading the interview or imposing meanings, and

(2) to create relaxed, comfortable conversation. In the process of developing the questions,

the following elements were considered:

• Carefully plan the interview, with questions to ask and various ways of arranging

them.

• Provide an overview of the purpose, your intended uses for the interview data, and the

measures taken to protect confidentiality and anonymity. Discuss and get permission

for tape recording.

• Ask a few background questions first, such as the subject’s job title and responsi-

bilities, time with the organisation, time in the industry, time working with reused

products. These often provide necessary information create a comfortable interview-

ing environment.

139

• The questions should be broad, open-ended questions allowing the subject latitude

in constructing an answer.

• Prepare, and save until later in the interview, questions on specific facts or other

items of interest.

• Follow up questions should ask about statements without leading in the questioning.

• Use probes carefully to get more in-depth answers or to follow up on points of interest.

Multiplicity (triangulation) is obtained via selection of interviewees in different compa-

nies in different parts of the country working on a wide variety of systems. Preparation for

the interviews consisted of

1. Craft questions in advance. We drafted an initial set of questions derived from the

results of the questionnaire [8] using the above guidelines. The set of questions was

presented to a focus group consisting of computer science doctoral candidates. The

focus group recommended some refinement, which was implemented.

2. Conduct practice interview. This interview was conducted with a professional subject

matter expert. Any confusion with the questions was noted, as well as any questions

the interviewee felt were not asked. The practice subject and the interviewer discussed

that it would be difficult to ask about all aspects of reuse the subjects might want to

discuss.

3. Refine question. Based on the responses during the practice interview, it seemed

some of the questions needed further explanation. One question was added, where

the subject could make statements that the subject felt were important but not

covered in the other questions. This was used to answer the problem that surfaced

during the practice interview.

4. Prepare subjects with description of interview and consent forms. We emailed a

letter of introduction to the subjects including a description of the interview and its

140

purpose, the list of questions, an explanation of the consent form and the consent

form itself.

5.1.4 Developing the Protocol, Conducting the Interview and Data Col-

lection

Our next step was to develop the protocol for conducting the interviews. A consistent

protocol is important for reliable results. The protocol consisted of five segments: pre-

interview, introduction, questions, wrap up and follow up.

In the pre-interview segment, the interviewer thanked the subject for his/her willingness

to participate and arranged a mutually convenient one hour session over the telephone. The

subject was reminded that the interview would be recorded and that s/he had been provided

with the interview questions and the consent form. A calendar appointment confirmed the

time and subject’s phone number.

Once the appointment began and the subject contacted, the interviewer again thanked

the subject for participating and again stated that the interview was being conducted

over a speaker phone so it could be recorded and verified permission to record. The

interviewer also asked if the subject had had an opportunity to review the questions and

felt comfortable with them, stated that if the subject was uncomfortable with any question

s/he was free to pass on the question, and restated that proprietary information whould not

be discussed. The interviewer confirmed that the consent form was in her possession. The

subject was encouraged to expand on his/her answers with opinions and anecdotes. The

interviewer also informed the subject that once the interview was transcribed, it would be

returned to the subject for review and corrections, and that if the subject had corrections

or changes s/he could make them to the transcript and return to the interviewer. The

returned transcript would become the transcript of record. Then the recorder was turned

on. The interviewer stated the subject’s name and asked for background information on

the subject, such as years in software engineering, experience with reuse, etc.

141

The questions phase consisted of asking the questions in the survey, discussing the

answers with probing questions and anecdotes. The final question was whether there was

any additional information about reuse experience that had not been addressed by the

questions in the survey.

The wrap-up phase consisted of the interviewer again thanking the subject for his/her

time and thoughtful comments and a restatement that the transcript would be sent to

the subject as soon as it was ready. The follow up segment consisted of transcribing the

interview verbatim and sending the transcript to the subject.

5.1.5 Ethical Considerations

It is important to ensure the confidentiality of the interviews, both the records and the

transcripts. In this study, the names of the interviewees were translated into a code, which

is retained separate from the interviews. This was done prior to the data analysis, so there

could be no leakage. The files are stored on a privately held USB flash drive that is not

available to outsiders. Prior to the interview, the subjects were asked to sign consent forms

detailing the nature of the research, the process and the promise of confidentiality. Each

of the subjects signed the consent form, indicating faith in the ethics of the researcher.

The following ethical considerations were considered important and were discussed prior

to the interviews:

• Do not give away proprietary information,

• Include consent form.

• Be sure subjects know they are being recorded.

• Remove names from answers (Person A, Person B, etc).

• Ensure conclusions about the company cannot be drawn from the information pre-

sented.

• Allow subjects to read transcripts for accuracy, and make any changes.

142

5.2 Results

Every subject responded with extensive anecdotal material and personal observations.

Eight subjects returned transcripts, three had comments, and the other five were un-

changed. The rest indicated that they accepted the transcripts as they were. The changes

from the three with comments were made to the relevant transcripts, and these became

the transcripts of record.

5.2.1 Summary of Responses

Question 1: What is your background in reuse?

Experience, both in terms of years and projects worked on, was of particular interest,

in that it could offer an evolving picture of software development and reuse. The range

of experience in embedded systems was from eight to 30 years, with an average of 22.3

years. For nonembedded systems it was 10 to 35 years with an average of 23.3 years. We

concluded that the years of experience was comparable.

Question 2: What types of systems have you used reused products on - em-

bedded vs nonembedded?

The responses were grouped into subjects who had worked primarily in embedded

systems and those who had worked primarily in nonembedded systems. Seven subjects

were primarily involved in embedded systems, six primarily nonembedded systems, one

had worked in both embedded and nonembedded systems equally. The one who had

worked in both embedded systems and nonembedded systems was especially interesting

for the comparisons and was asked to identify whether his answer referred to embedded or

nonembedded systems when there was a difference. These responses are included in both

embedded and nonembedded system categories unless specified otherwise. Seven subjects

were primarily involved in embedded systems, six primarily nonembedded systems, one

worked on both.

143

Embedded systems experts interviewed worked on projects such as satellites, missiles,

and aircraft. Specialties included Field Programmable Gate Arrays (FPGAs), Application-

Specific Integrated Circuits (ASICs), Guidance, Navigation and Control (GNC), Command

and Data Handling (CDH), Communications, sensors, Power Distribution Units (PDUs)

and Health and Status. Nonembedded systems experts worked on projects such as ground

control systems, web-based distribution systems, information systems, enterprise systems

and big data. Applications included satellite and missile ground control, air traffic control,

postal services, health information services, logistics, data processing, and information

distribution services.

Question 3: What reuse strategies have you used?

Reuse strategies in this case referred to development approach. The responses to the

development approach were somewhat more varied. In embedded systems, four used ad

hoc reuse, three used model based development, one used component based software devel-

opment, three used product line and one used ontology. The ad hoc reuse was explained by

embedded systems experts as being the result of having developed similar systems repeat-

edly, and reusing these software products was the normal approach. While many embedded

systems experts cited model based development as one of their reuse strategies, their defini-

tion of model based development included the use of any models, and the models they were

reusing were performance models and simulations. One used what he called mega reuse,

that is, he took the software intact and did not modify it, and one described his develop-

ment approach as a framework. Some subjects used multiple approaches. Three subjects

used ad hoc reuse and model based development, two used ad hoc reuse and product line

development, one used model based development and ontology. In nonembedded systems,

four used ad hoc reuse, one used component based software development, one used model

based development, one used the mega reuse discussed above, one used a framework and

one described his development approach as SOA (a type of model based developement).

Nonembedded systems experts explained their use of ad hoc development in that many of

144

the capabilities they needed were readily available in either freeware websites or available

from prior projects. The one using component based software development had inherited

the architecture and components and was upgrading an existing system. Again, some sub-

jects used multiple approaches. One used ad hoc reuse and model based development and

one used ad hoc reuse and model based development. Much of the ad hoc reuse can be

attributed to the fact that many of these projects have been ongoing for a long time.

Table 5.1 shows the frequency of development approaches used by these software ex-

perts. The first column identifies the development approach, the second shows the number

of embedded systems experts who identified that development approach as part of their

development strategy, the third column is the per cent of the embedded systems experts

using that development approach (number of embedded systems experts citing use of the

approach divided by total number of embedded systems experts), the fourth column shows

the number of nonembedded systems experts using that approach, the fifth column shows

the per cent of nonembedded experts using the approach, and the final column is the

difference in the per cent of embedded systems experts using the approach and the nonem-

bedded systems experts using that approach. The same analysis was performed on Tables

5.2, 5.4 and 5.6. The reasons the experts gave for their use of development approaches are

discussed in subsection 5.3.1.

Table 5.1: Responses to Development Approach Used

Approach Embedded Nonembedded Total
Ad Hoc 4 50% 4 57% 8 53%
Component 1 13% 1 14% 2 13%
Model 3 38% 1 14% 4 27%
Product Line 3 38% 0 0% 3 20%
Ontology 1 13% 0 0% 1 7%
Mega 1 13% 1 14% 2 13%
Framework 1 13% 1 14% 2 13%
SOA 0 0% 1 14% 1 7%
* Note: Subject who worked both embedded and nonembedded systems counted
twice

145

Question 4 What artifacts have you reused?

Table 5.2: Responses to Artifacts Used

Artifact Embedded Nonembedded Total
Algorithms 1 13% 1 14% 2 13%
Architecture 2 25% 5 71% 7 47%
ArchitectureModels 2 25% 1 14% 3 20%
Code 8 100% 7 100% 15 100%
Components 5 63% 0 0% 5 33%
COTS 3 38% 2 29% 5 33%
Data,database 1 13% 2 29% 3 20%
Design 8 100% 7 100% 15 100%
Design Models 5 63% 5 71% 10 67%
Design Patterns 1 13% 2 29% 3 20%
Design Products 0 0% 5 71% 5 33%
Documentation 4 50% 2 29% 6 40%
Hardware 4 50% 3 43% 7 47%
Interfaces 3 38% 3 43% 6 40%
Models 2 25% 0 0% 2 13%
Performance Models 4 50% 2 29% 6 40%
Requirements 8 100% 7 100% 15 100%
Services 0 0% 1 14% 1 7%
Simulations 3 38% 2 29% 5 33%
Service Level Agreements 0 0% 3 43% 3 20%
Test Clusters 4 50% 2 29% 6 40%
Test Environment 0 0% 1 14% 1 7%
Test Products 6 75% 4 57% 10 67%
Tool Suite 0 0% 1 14% 1 7%
Use Cases 2 25% 1 14% 1 7%
* Note: Subject who worked both embedded and nonembedded systems counted twice

The responses to the question about artifacts used is shown in Table 5.2. As we can see

from the responses, every subject reused code, requirements and design. Several experts

explained that these were reused because they could be used intact, and had already been

proven on previous projects. However, we begin to see differences between embedded and

nonembedded systems in other artifacts. For example, nonembedded systems experts were

far more likely to report reusing architecture (71%) than embedded systems experts (25%).

The architectures were easy to modify and could import exactly the services they intended

to use. 63% of embedded systems experts reported reusing components, compared to

zero for nonembedded systems. Embedded systems experts explained that reusing existing

146

components provided known performance and reduced risk. No embedded systems experts

reported use of SOA, but 43% of nonembedded systems experts did. Test Products reported

use by 75% of embedded systems experts, compared with only 57% of nonembedded systems

experts. Embedded systems experts explained that the test products, such as test drivers

and test data had been developed specifically for the components they were reusing and

tested the reused requirements. No reuse of design products was reported by embedded

systems experts, while 71% of nonembedded systems experts did use them. Embedded

systems experts stated that in many cases, the designs had been used for so long, the

design products did not exist. The rest of the artifacts reported similar levels of reuse.

Question 5 What was the level of reuse?

The level of reuse is measured in percentages, and ranges from 5% to 90% in embedded,

15% to 90% in nonembedded systems. Table 5.3 shows the levels of reuse reported. In

cases where the reuse level was 80-90%, the reuse was a modification to an existing system.

In these cases, the reported reuse was the portion of the system that was not changed in

the modification, but a new contractor would have to develop if they were awarded the

contract.

Table 5.3: Responses to Level of Reuse

% Embedded Nonembedded
80-90 3 4
70 0 1
50 2 1
30 1 1
20 3 1
15 0 1
5 1 0
* Note: Note that some experts reported
reuse levels on more than one project

147

Question 6 Have you encountered any obstacles?

Most commonly mentioned obstacles to successful reuse are shown in Table 5.4. Selected

responses to obstacles to reuse are shown in Table 5.5. Please note that some respondents

had more than one comment for certain obstacles.

We see that every expert interviewed cited modification and understanding as major

obstacles, difficulty, whether perceived or real was cited by all but 2, fit was cited by 11,

platform dependence cited by 10, and the loss of flexibility or freedom, obsolescence and

culture cited by nine. All experts in embedded systems found "fit" to be an obstacle, as

did four in nonembedded systems. Platform dependence was also a major obstacle.

Commitment was the obstacle cited most by embedded systems experts compared with

nonembedded systems experts (46% difference). Existing culture was next, with a dif-

ference of 34%, then culture at 32%, fit at 30%, lack of trust of the inherited products

was cited by 25% more embedded systems experts than by nonembedded systems experts.

On the other end of the scale, the certification process was cited 45% more by nonem-

bedded systems experts than embedded systems experts, followed by maintenance (30%),

the risk of inserting new defects (29%), and difficulties, real or perceived (25%). Out of

24 obstacles cited, eight were cited at least 20% more often by embedded systems ex-

perts than nonembedded systems experts, and seven were cited at least 20% more often

by nonembedded systems experts than embedded systems experts. Only nine were within

10% difference. Clearly, the greatest obstacles to reuse are different between embedded

systems and nonembedded systems.

It is interesting to observe the obstacles and their relationship to various artifacts. For

this analysis, we remove commitment, culture, lack of trust, lack of metrics, contracts and

individualism, as comments about those obstacles did not address artifacts or development

method. We look at existing defects, fit, easier to build from scratch, obsolescence/age,

modification, understanding, complexity, lack of documentation, forking, platform depen-

dence, performance goals, difficulty, insert defects, maintenance and certification process

148

Table 5.4: Responses to Obstacles Encountered

Obstacles/Type Embedded Nonembedded Total Delta
Commitment 6 75% 2 29% 8 53% 46%
Existing Defects 5 63% 2 29% 7 47% 34%
Culture 6 75% 3 43% 9 60% 32%
Fit 7 88% 4 57% 11 73% 30%
Lack of trust 2 25% 0 0% 2 13% 25%
Lack of Metrics 5 63% 3 43% 8 53% 20%
Contracts 5 63% 3 43% 8 53% 20%
Individualism 5 63% 3 43% 8 53% 20%
Easier to build from
scratch

4 50% 3 43% 7 47% 7%

Obsolescence, age 5 63% 4 57% 9 60% 5%
Loss of flexibility or
freedom

5 63% 4 57% 9 60% 5%

Modification 8 100% 7 100% 14 93% 0%
Understanding 8 100% 7 100% 14 93% 0%
Complexity 2 25% 2 29% 4 27% -4%
Lack of Documenta-
tion

4 50% 4 57% 8 53% -7%

Forking 4 50% 4 57% 8 53% -7%
Platform Depen-
dence

5 63% 5 71% 10 67% -9%

Unintended Conse-
quences

3 38% 4 57% 7 47% -20%

Missed Opportuni-
ties

3 38% 4 57% 7 47% -20%

Performance Goals 3 38% 4 57% 7 47% -20%
Difficulty - real or
perceived

6 75% 7 100% 13 87% -25%

Insert defects 0 0% 2 29% 2 13% -29%
Maintenance 1 13% 3 43% 4 27% -30%
Certification Process 1 13% 4 57% 5 33% -45%
* Note: Subject who worked both embedded and nonembedded systems counted twice

to see which of these obstacles are associated with certain artifacts. We find that artifacts

associated with:

• Existing Defects mentions problems with code three times, and no other artifacts are

mentioned. The experts indicated that has already been deployed is expected to be

defect free, but may not have been tested for a circumstance that is exposed by the

new system. Once a test indicates a defect in the code, the defect is often be difficult

to find and correct.

149

• Fit mentions problems with code three times, requirements two times, components

once and design once. Sometimes, the documentation on code selected for reuse in-

dicates that it satisfies the needs of the project, however, once the project attempts

to use that code, it does not integrate into the rest of the code (because of incom-

patible interfaces, coding conventions, approach). Sometimes the requirements being

reused are different from the goals of the customer. Sometimes the design approach

is different from the approach taken by the reusing project.

• Easier to build from scratch mentions problems with code five times, and no other

artifacts are mentioned. Each expert who mentioned this obstacle indicated that

when the code needs modification, the time and effort needed to identify the changes,

make the changes, and then trace their impact on the rest of the code is greater than

would be needed to write new code.

• Obsolescence/age mentions problems with hardware four times and code three times.

Experts mentioned that often the hardware the code was developed for is no longer

available, and that adapting code for new hardware was more difficult than writing

new code. They mentioned that often code is written in an obsolete language.

• Loss of flexibility or freedom mentions components once. When a component is

controlled and has to be used intact, that dictates that portion of the solution.

• Modification mentions problems with code 14 times, requirements twice, and compo-

nents, design and architecture each once. Every system expert indicated that once

code needs to be modified, unexpected problems surface.

• Understanding mentions problems with code four times and documentation once.

Several experts stated that it is difficult to understand code written by another

developer, especially when that developer was writing to a different set of coding

practices.

150

• Complexity mentions problems with code four times, components two times, and

COTS and requirements once each. The experts discussed the difficulty of following

threads through complex code to know exactly what was happening.

• Lack of documentation mentions problems with documentation eight times, code and

requirements twice each, and design once.

• Forking mentions problems with code nine times and software components once.

The experts explain this as creating several copies of the same artifact with minor

variations, which requires separate control and maintenance, negating the benefits of

reuse.

• Platform dependence mentions problems with code 12 times, hardware eleven times

and design once. Experts cite the difficulties of reusing code when the platform

changes.

• Performance goals mention code five times, requirements three times, components

once and design once. Experts discuss the idea that often these performance re-

quirements are hard coded and difficult to modify for a different set of performance

goals.

• Difficulty mentions code three times and components twice.

• Certification mentions code twice. According to the experts, the certification stan-

dards differ across projects, and the code needs to be modified to accommodate the

differences in these standards.

We did not find any mention of development methods mentioned in the statements

about obstacles. It is interesting how many of these obstacles, other than documentation,

appear to be based on reuse of code more often than any other artifact.

151

Table 5.5: Expert Comments on Obstacles.

Obstacle Select Expert Comments
Commitment It’s pushed to the back burner and not accepted by the program. Until we

do that on a big scale, multiple programs, no one will listen. Nobody in
the business areas felt ownership. It’s too easy not to bother. You’ve got
to be committed to a certain mindset to try to find it and see if you can
make it work.

Existing De-
fects

There could be defects that were undiscovered from the previous use be-
cause they never went through that condition. Some of the problems you
might be inheriting as well. You run into problems that were in the code.
You may be inheriting software that doesn’t have the quality you need.
You inherit software irregularities or inconsistencies, if it’s got defects.

Culture Anything that is successful develops either a set of supporters or set of
opponents. It’s a not invented here kind of attitude. They don’t care
about the next program down the pipe. The biggest obstacle to software
reuse is more cultural and people driven, not technical driven. There is a
lack of collaboration.

Fit We didn’t understand the context of the reuse, or what we were going
to have to develop and underestimated the amount of change necessary
to make the reuse useful in the new program. When you’re matching a
component to your needs, you often exceed some design parameter. You
assume reusability without checking to see if there’s a match. It’s not
always a clean fit for the application that you’re working on. The existing
requirements aren’t appropriate. The people who chose the reuse didn’t
dig deep enough to understand how much the design and the requirements,
and then the code, would have to change. You’re fitting existing software
into a system that’s not a perfect fit.

Lack of Trust Finding things wasn’t the biggest challenge, it was deciding whether they
could be trusted. They wouldn’t use something they found unless they
could satisfy themselves about its pedigree. Developers don’t trust work
other people have done, especially it was developed for a different purpose.

Lack of Met-
rics

You have to know how long it takes, across the life cycle. You have to know
how bad you’re doing to be able to do things differently. We don’t have
metrics. I don’t know if anybody has collected any metrics, I don’t know
of any available out there. We rely too heavily on ELOC or SLOC counts.
I’m not sure SLOC counts make sense as a basis for cost estimation.

Contracts The way the contract is written doesn’t really enable reuse. If customers
don’t dictate reuse they won’t pay for developing things for reuse. Cus-
tomers put clauses and constraints on the reuse between their programs
and other programs. They often require customer approval. That kills a
lot of reuse from the gate.

Individualism
“Not In-
vented Here”

They think they can do a better job even though they know that they’re
going to spend a similar amount of time doing it. “Not invented here” is
often the most significant barrier. Engineers like to invent stuff and reuse
means that you get someone else’s hand me downs, instead of something
new. When it becomes custom everyone’s got a different way of doing
something, and their way is always the best.

Continued on next page

152

Table 5.5 – continued from previous page
Obstacle Select Respondent Comments
Easier to
Build from
Scratch

If it costs you more than 30%, you might as well rewrite it. In some cases
it took longer to reuse code because of all the issues with it, then it would
have been to just do it from scratch. When you are modifying about 2/3
of it, you‚Äôre losing money, you would have been better off to start from
scratch. Why would a software developer spend 10 minutes looking for
something he could easily write in a day or two? It’s an inferior solution to
what it would have been if you had just done it from scratch. It’s less risk
if I schedule to build it myself.

Obsolescence,
age

The people that were the go to people before aren’t producing the same
parts anymore. Can you imagine trying to reuse 30-40 year old assembly
code? What can be a problem is if the sensor technology changes radically,
then the existing requirements are not appropriate. Often I’ve got some
obsolete stuff, I’ve got to move stuff from one platform to another platform,
or from one language which we consider obsolete, to another language. We
are bridging technologies across a decade or more and the technology in
hardware and software is evolving so rapidly that who would want to reuse
something that’s 10 years old?

Loss of Flex-
ibility or
Freedom

The more people that you have reusing a component the less freedom of
movement you have for any individual stakeholder in that reuse. When
you share something you don’t get 100% say in what that something is
any more. Reuse constrains innovation to a degree. It won’t give the best
performance or the most eloquent design for that particular situation. The
shortcomings of reuse is that often you’re taking a sub optimal design for
the problem at hand.

Modification If it’s very dissimilar you will probably have to make so many modifications
that it’s not worthwhile. If the reuse is doesn’t meet performance require-
ments, you have to evaluate what you have to do to that reused software. If
I have to redesign and rebuild it it may not be worth the reuse. When you
try to match a component to the needs, and exceed some design parameter,
you need to determine whether you can adapt or adopt it. When they tried
to do a slight modification, the whole thing fell down, it was all patched
together, and we had to well throw it away and start over. If you want
to modify it, and the code is not written in a readable, modifiable manner
you get into all kinds of trouble. The more you modify, the more chance
that you’re going to lose money. There were unique requirements for our
program that required changes we didn’t anticipate. Code reuse is almost
always a recipe for failure. I get into the code and decide to use this and not
that, and modify this, picking code apart at that level of granularity, I’ve
never seen it succeed. In something as simple as the way you name variables
involves rewrite of all the variables and how you do entry points, and how
you send commands and collect telemetry, it ends up being not reusable,
because of the significant modification necessary to go be compatible with
the software architecture.

Continued on next page

153

Table 5.5 – continued from previous page
Obstacle Select Respondent Comments
Understanding Either we didn’t understand the exact context of the reuse, we didn’t un-

derstand what we were getting or we didn’t accurately understand what we
were going to have to develop and underestimated the amount of change
that would become necessary to make the reuse actually useful in the new
program. How do I interface it? Part of the up front cost is learning what
the other guy did. Sometimes they’ve named things in ways that aren’t
immediately obvious. If you cram something in there that isn’t a right fit
because you didn’t understand what the reuse did, or what the system you
want to put it in had to do, you’re going to fail.

Complexity It has all these various COTS packages. Each line of code takes a longer to
write, but one line of code contains so much more complexity raw software
that’s coded it’s very difficult to do analysis. People get a pile of code they
have to slog through and develop their own mental image or mental model
of it. As the lowest level of detail components get aggregated together
and as those aggregations get larger and larger the ability to juggle those
individual components mentally requires some abstraction, so you need
models to be able to make sense of it. The requirements base can be fairly
large.

Lack of Doc-
umentation

They found out that the requirements document didn‚Äôt match what the
design was, and the design description didn‚Äôt match either one. What
would make it easier is higher quality documentation for the as built sys-
tems. We need a reusable description of what the software does, so that
whoever reuses that service has an idea of exactly what they’re getting
rather than having to just dive into the code to figure it out. It requires a
lot of thought and documentation. Is the documentation adequate, do we
understand it enough that we can modify it? We find poor requirements,
lack of documentation, nothing seems to work correctly.

Forking That new system takes over, modifying it into a variant of that baseline
and duplicated the total life cycle cost of maintaining what becomes unique
software. Failure is if you fork the baseline and then run with a different
version. Now you have 2 copies of the code. You’re trying to maintain
one managed control code set, and they copy it and go off and fork it.
You never know what they do. People will run into problems in the code,
but since they’ve forked, they don’t have the benefit of getting the fixes
for the problems that were in the code, they don’t get advances when you
update the design and add more features to the design and implementation,
they lose those as well. I want a consistent, stable, core group of software
components.

Continued on next page

154

Table 5.5 – continued from previous page
Obstacle Select Respondent Comments
Platform De-
pendence

You have software you know runs on a certain server and operating sys-
tem, you‚Äôre confined to using that. The machine architecture you‚Äôre
using is going to influence what is and isn’t reusable. Low level coding
is a misnomer when you say portable, given the complexity of the cur-
rent generations of hardware. If the next embedded system had a different
processor, we may not have used a lot in the way of designs. It may not
have the same computer language and differences with compilers, develop-
ment environments, means you had to mess with the code. If you change
the underlying hardware including the CPU, processor, and hardware that
interfaces to the digital hardware, you might have to redo 80% of your
code even if the functionality is identical. If you change the hardware,
typically different hardware has different control and status interfaces and
messages and response requirements. We have a lot of flux in the processor
world. Anytime we’re changing hardware we are also changing operating
systems. For scientific algorithms if we move from one type of the proces-
sor to another, all the underlying mathematical libraries changed. Platform
independence causes a problem.

Unintended
Conse-
quences

Our customer is coming to grips with some of the collateral aspects of
unintended consequences of reuse. Both the company and the customer
are discovering that that‚Äôs the unintended consequences.

Missed Op-
portunities

It’s more common not to even try to reuse. It’s more often we discover
missed opportunities for reuse, where we didn’t know that somebody on
another program had built something similar that we could have reused.
We need access to the information to know what there is to reuse and where
it is, what requirements it matches, and the design.

Performance
Goals

We defined timelines based on the requirements, and how the component
supports that performance. If the reuse doesn’t meet your performance
requirements, then you have to evaluate what you have to do to that reused
software so that it will meet performance requirements, and if I have to
redesign it then it may not be worth the reuse. Getting that algorithm to
meet timelines and work repeatedly in an operational sense is a big deal.
When we have to do the science to ops transformations, we’ve been off by
100%. Performance aspects increase risk.

Difficulty
- real or
perceived

There is the feeling that it’s going to be more effort than to just start out
from scratch. There are borderline cases, where you say let’s just try to
reuse it just make a few changes that end up being terrible experiences. You
are wasting your time and its more frustration than it’s worth. It never
goes quite as smoothly as we thought it would. When people build software
components, it becomes very difficult to reuse. In something as simple as
the way you name the variables. I don’t know it, I don’t understand it,
I would have to make too many changes, it would take me too long to
understand what it did.

Insert De-
fects

You can introduce problems. You introduce errors in the product that you
didn’t expect. We rarely understand how it’s going to ripple through the
software and impact all the COTS packages.

Continued on next page

155

Table 5.5 – continued from previous page
Obstacle Select Respondent Comments
Maintenance We duplicated the total life cycle cost of maintaining what now becomes

somewhat unique software. While you did reduce some of your up front
development cost, you negated most of the savings on the back side of the
life cycle. For systems that live more than a couple of years, the Operations
and Maintenance tail is the expensive piece.

Certification
Process

You have to go through the certification process if you haven’t done it. As
we move into the new standard environment, less of what we have can be
reused and the cost is significant. Depending on where that software is
going to operate, it can restrict you from any reuse.

Question 7 How do you define success/failure?

Almost all of the respondents shared a definition of success as improvement in cost and

schedule, both in embedded and nonembedded systems. Similarly, there was agreement

that the ability to estimate cost and schedule savings were part of the success in reuse.

Question 8 How successful were you?

When asked how successful they were, experts working on nonembedded systems re-

ported slightly better results, with one reporting consistent success, two reporting being

mostly successful, one reporting “hit and miss” and one reporting mostly not. One expert

working on embedded systems reported mostly successful, two reported “hit and miss,”

one reported missing estimates 35% of the time and two reported that they were unable

to tell because they had no metrics.

Question 9 What drove the success or failure?

Summaries of the reasons for success of reuse are reported in Table 5.6. (The failure

factors tended to reflect the obstacles listed above.) However, in the coding process, we

were able to identify several other factors for success based on statements made in answer

to other questions.

156

Table 5.6: Success Factors for Softare Reuse

Success Factor E E % N N % T T % Delta
Planning up front 4 50% 2 29% 6 40% 21%
Control (authoritarian) 2 25% 3 43% 5 33% -18%
Design for Reuse 3 38% 1 14% 4 27% 23%
Documentation 3 38% 1 14% 4 27% 23%
Experience 2 25% 2 29% 4 27% -4%
Similar Product or Environment 2 25% 1 14% 3 20% 11%
Consistent baseline 1 13% 1 14% 2 13% -2%
Automated testing 0% 1 14% 1 7% -14%
Culture 0% 1 14% 1 7% -14%
Forecast future demand 1 13% 0% 1 7% 13%
Graphical Representation 1 13% 0% 1 7% 13%
Metrics 1 13% 0% 1 7% 13%
Product Line 1 13% 0% 1 7% 13%
Service Oriented Architecture 0% 1 14% 1 7% -14%
* Note: Subject who worked both embedded and nonembedded systems
counted twice

Both embedded systems experts and nonembedded systems experts reported planning

up front, control, documentation and experience as keys to successful reuse. Table 5.7

provides insight into how respondents explained these success factors and how they added

to reuse success. It is interesting to notice how many more comments were made about

obstacles than success factors. It is also interesting that the development approach was

mentioned as a success factor twice (product line and SOA), where it was not mentioned in

the obstacles. It is also worth noting that automated tests and models (graphical represen-

tation) are the only artifacts mentioned in the discussion of success factors. Interestingly,

code reuse was not mentioned as a success factor.

Table 5.7: Respondent Comments on Success Factors.

Success
Factor

Select Respondent Comments

Planning Up
Front

I did a survey of the things that cause the most issues for people. Up
front you spend some time looking, evaluating the current design of
what we are going to try to reuse. You have to do up front work. You
spend a little up front to save a lot on the back end. What drives
success is the degree to which we follow our guidance for evaluating the
reuse that we are going to inherit.

Continued on next page

157

Table 5.7 – continued from previous page
Success
Factor

Select Respondent Comments

Control (au-
thoritarian)

It works well when they control it. When I do reuse, I am very au-
thoritarian about how it’s done. I am much more authoritarian about
tracking reuse than new development. That’s how you calculate your
latencies and throughputs. You lose control of those when you lose
control of the component.

Design for
Reuse

Unless products are built for reuse, reuse becomes extremely problem-
atic. If you don’t plan and design for reuse you won’t really be able to
do it. We’re doing better with trying to design for reuse.

Documentation We have to have the documentation of the requirements for the software
that you want to reuse. We need a reusable description of what the
software does, so that whoever reuses it has an idea of what they’re
getting rather than having to dive into the code to figure it out. The key
is to capture enough metadata about the reuse artifact that a person
can determine in a reasonable amount of time whether that component
is one you want to invest in. One of the problems we have with software
reuse is that we haven’t carefully documented after CDR the changes
that occurred.

Experience We had meeting after meeting with all the experts to make these de-
cisions. The code that we reuse is internal, we have access to it, we
know the people who wrote it, they can tell us the worms about it
upfront so we can say at this is good with this is not good. We really
need some expertise. We bring in what I would call algorithm-smart
software engineers who understand the algorithm science. You hope
that the person is a person who had worked on the stuff in the past
and had a good understanding of what’s going to need to be changed.
If that isn’t true, all bets are off. So either you built it and know how
to use it or you practiced under someone who knows how to use it, or
you’ve learned through tribal knowledge how to use it.

Similar
Product or
Environment

Success is driven by how similar the new environment is, how similar
the use is. If it’s very dissimilar you’d better be careful. Your software
may function a certain way in your environment but when you move
it to another environment there are environmental impacts and it may
perform differently. I’m looking at similar code or artifacts in similar
projects and adapting them for my use. I think that reuse and com-
monality go together. You get some inherent ability to reuse because
of the commonality of the underlying system. If you come along with
a system that has something different, then of course they don’t have
much in terms of reuse.

Consistent
baseline

We maintain the discipline of having one baseline across multiple pro-
grams and maintaining that one baseline. I have a common layer of
utilities that we all use. We make sure it’s appropriately registered
and baselined. When we reuse, it’s not as though we’re changing the
development environment or the operational environment.

Continued on next page

158

Table 5.7 – continued from previous page
Success
Factor

Select Respondent Comments

Automated
testing

Automated tests are becoming more prolific. I have standardized design
products and performance models and self testing software. What has
really been liberating in the last few years for us has been automated
testing. Automated testing has probably been the most significant
piece. Auto testing, the result is automatically tested so you don’t
have to manually look at it but it can be run as a regression test.

Culture The whole concept of reuse becomes something that’s just a natural
part of your design methodology. It’s been a cultural shift for us as we
try to position ourselves to align with the marketplace. You have to
have the culture for it. You need the mindset and the commitment to
do it. It may be more of a factor of the environment and the people
and the tools than it is the actual amount of code they are reusing.

Forecast fu-
ture demand

The biggest thing is the ability to correctly forecast future demand.
If you’re doing reuse in a product family, you need to forecast market
demand for products in your product family.

Graphical
Representa-
tion

One strength of the human species is the ability to grasp complex con-
cepts via graphical representations like models. We inherited a software
design that was graphical. We were able to quickly understand the ca-
pabilities of the reuse code, it was documented very well and graphical,
and we understood what it did, and it actually executed.

Metrics So the metrics are something we’re pushing right now. Metrics is the
basis for all process improvement.

Product Line There’s a big bang for the buck there if you’re working product lines
or a domain. If we’ve got something within a product line and we’re
creating new versions of the product line, very little is not reusable.
You get benefits across the board with a product line

Service Ori-
ented Archi-
tecture

Service Oriented Architecture is liberating in that the original compo-
nent is designed to be a reusable service rather than a point solution
for a particular application, that has been revolutionary. By moving to
service oriented architectures we’ve had a greater emphasis on reusing
COTS software. By having a service oriented architecture, we could
modularize and define the interfaces, we could also make a nice interface
between the workflow control and the scientific algorithms.

Question 10 How do you define component? Model?

The respondents had a variety of definitions for components and models. To describe

componens, embedded systems developers used expressions like a physical entity (3), per-

forms a discrete function (3), decoupled (2), interfaces (2) and domain (1). Three said

it was software only, one said it was hardware and software together, three said it was

159

software during development and hardware and software together during integration and

test. Thus, the last group could either be reusing a software component or a component

comprised of both hardware and software. Three respondents did not like to use the word

component because its meaning is too ambiguous. One said a component was whatever

the customer said it is. Developers of nonembedded systems described components as in-

terfaces (2), a discrete capability (2), inputs and outputs (1), representation of physical

thing (1), cohesive, loosely coupled thing (1), service (1) and code plus documentation (1).

Models were also described in a variety of ways. Developers of embedded systems

described models as a representation (2), and in particular a design representation (3), an

architecture representation (3), or a graphical representation (1). Five said a model was a

simulation. Four said it was a gauge of performance (4). One said it was a way to capture

the essence of a system or software. One did not like the term. Developers of nonembedded

systems used terms such as performance (2), design patterns (2), a representation (2), UML

(1), development process (1), framework (1), simulation (1), and a representation of how

components interact (1).

The experts’ statements made it clear that the respondents were talking about different

types of models. We separated the types of models into four categories, architecture models,

design models, performance models and simulations. Table 5.8 shows the different models

and the number of comments about those models made by the respondents.

Table 5.8: Type ∩ Rating ∩ Models

Positive Negative Information
Artifact Embedded NonembeddedEmbedded NonembeddedEmbedded Nonembedded
Models 70 35 9 6 13 13
Architecture
Models

16 13 2 1 6 2

Design Models 21 15 2 3 9 3
Performance
Models

13 14 1 1 4 8

Simulations 16 4 0 1 8 4

* Models listed in the order of phase.

160

The table shows us that the models reused by embedded systems experts are different

from the models reused by nonembedded systems experts. Even the definitions of model

based differ. When embedded systems experts say they are using a model based approach,

often they mean that their approach uses models, referring to design models, performance

models and simulations. Nonembedded systems experts often use a more rigorous definition

of model based development. Person K said, “I think something that’s model based, the

model based engineering (MBE) approach, I think incorporates all those together in an

integrated set of models. It would be your design model, your performance models, your

simulation models, your architecture models, it’s everything linked together.” Person E

said, “I think that a fully model-based development would include not only models of the

system and software development but also models of the environment and aspects of the

environment that are pertinent.” Even their design models differ from the design models of

nonembedded systems. Embedded systems are more likely to use Simulink as both a design

modeling tool and a performance modeling tool. Person D said, “We know the tools that

enable SySML and Simulink, where you develop a model of the device, either as you are

trying to develop the lower level entities or you develop your algorithm application." They

also generate their code from that model. Nonembedded systems are more likely to use

a UML or SySML modeling tool like Rhapsody or Rational Rose for their design models,

simultaneously creating integrated architecture models. So on the one extreme, model

based development is a totally integrated set of models,with an entire suite of modeling

artifacts reused. On the other extreme it is anything that uses models. These different

definition of what artifacts imply model based development could cause the model based

development reuse approach to either be overcounted or undercounted.

Question 11 What were the benefits of reuse? Non-benefits?

Benefits of reuse turned out to be very much like success factors. The ones most

often mentioned by embedded systems developers were cost reduction(4), time or schedule

reducrion (5), cleaner development (2), reduction in defects (2) and reduction in risk (2).

161

Developers of nonembedded systems mentioned cost reduction(4), time reduction (2), and

reduced complexity (1). Nonbenefits of reuse were much the same as reasons for failure.

When asked about the benefits of reuse in terms of outcomes, every subject inter-

viewed agreed that reuse reduced cost. However, every embedded systems expert and four

nonembedded systems experts expressed concerns that reuse could also increase costs. In

embedded systems, poor documentation, latent defects, needed modifications, platform de-

pendence, different performance goals and different nonfunctional requirements were cited

as reasons reusing existing code would cost more than rewriting it. Embedded systems

experts cited maintenance, obsolescence, platform dependence, modification and recertifi-

cation as reasons reusing could cost more. These explanations were often related to code

reuse. Neither embedded nor nonembedded systems experts cited any negative impacts

with reusing any other artifacts.

Four embedded systems experts said that reuse saves hours in development and test,

as did three nonembedded systems experts. The time savings for both types of systems

were attributed to having a similar environment, a consistent or controlled baseline, and

processes and procedures. Three embedded systems experts found that reuse can wind

up taking more time than developing the software. The additional time to reuse was the

result of poor documentation and having to fix existing defects. Five embedded systems

experts mentioned performance as a positive reason for reuse, as did three nonembedded

systems experts. For embedded systems experts, the reuse of high performance algorithms

was a major savings over trying to redevelop them. Nonembedded systems experts reused

performance models. They asserted that it was easier to modify these models to meet

performance requirements than to build new models. The one embedded systems expert

who felt that reuse could hurt performance cited a lack of understanding of the code and

poor fit into the new system.

162

Question 12 What about reuse and nonfunctional requirements?

Nonfunctional requirements offered the greatest variation of opinion, with many factors

figuring into reusability as shown in Table 5.9. Overall, nonfunctional requirements inter-

fered with successful reuse. Nonfunctional requirements were often different from project to

project, requiring code modification as the reused code was ported. This was particularly

true with performance requirements. Changing standards, particularly in security, meant

that previously accepted software had to be reworked. Experts also cited the difficulty of

selling off (obtaining customer aggreement that the requirements were met) the nonfunc-

tional requirements of reused code. However, when the nonfunctional requirements were

the same across the projects, reusing existing artifacts was useful.

Table 5.9: Reuse and Nonfunctional Requirements

Embedded Nonembedded

Reuse
makes
it easier

If standards are used in reused
product
Nonfunctional requirements that
persist across programs
Design patterns help reuse

If the reuse meets requirements
Design patterns help reuse
Nonfunctional requirements that
persist across programs

Reuse
makes it
harder

Unique nonfunctional
requirements interfere
Hard to track to requirements
Security requirements inhibit reuse
Force changes in architecture and
design
Hard to recertify
Quicker to build from scratch

Unique nonfunctional
requirements interfere
Hard capturing metadata about
artifacts
New security requirements make it
hard
Desirements
Hard to sell off
Product latency
Changing standards
Harder or impossible if
requirements are different

163

Question 13 In your opinion does reusing the hardware make a difference?

Why or why not?

All embedded system developers and all but one nonembedded system developer agreed

that using the hardware makes a difference in software reuse success. However, they di-

verged on the question of platform independence. Three embedded systems developers

said that platform independence was a detriment to successful reuse, two said it was not a

goal. Instead, three favored platform standardization and two favored platform portabil-

ity enabled by standardization. One prefered platform independent models that could be

reused, and that had the capability to autogenerate the code. In nonembedded systems,

four favored platform independence, and two favored platform standardization. One was

concerned about porting costs.

Findings from the answers to the questions The most used artifacts regardless of

system type were code and requirements, with 12 each, design models and test products

with 10 each, architecture, designs, hardware with seven each, and test clusters and per-

formance with six each. The rest had five or fewer responses. In embedded systems, all

respondents used code and requirements, six used test products, five used components and

design models the rest were cited by four or less. In nonembedded systems, architecture,

code, design models, design products and requirements were used by five, test products

were cited by four and the rest were cited by three or fewer respondents. Thus almost ev-

erybody is reusing code and requirements, but after that point they begin to diverge. Not

one embedded system cited services or service level agreements, while half of the nonem-

bedded systems did. While none of the nonembedded systems developers cited reuse of

design itself, they did cite reuse of the design models, design patterns and design products.

All of the nonembedded systems practitioners cited reuse of the design, five cited reuse of

the design patterns, but only one embedded systems expert cited reuse of design patterns

and none cited reuse of design products. This is an interesting difference. Reasons for

these findings are discussed in section 5.3.

164

5.2.2 Coding the Answers for Quantitative Analysis

At this point, the responses were coded in an excel spreadsheet. To create the codes,

an initial set of attributes had been created based on the questions, with an initial set of

terms under each attribute.

The transcripts of the interviews were entered into an Excel spreadsheet sentence by

sentence, ending with a total of 3462 sentences. It turned out that many sentences were

further explanations of prior sentences or anecdotes to support prior sentences. These

were joined to their base sentence to avoid double counting of code terms. Other sentences

were about the subject’s background, these were combined into a single sentence for each

respondent. This left a total of 1657 codable statements.

Each statement was classified as coming from a respondent specializing in embedded

systems or nonembedded systems. The one who specialized in both types of systems was

coded as both embedded and nonembedded. The statements were then coded as being

positive, negative or informative (P, N, I). Informative meant that the respondent was

describing a concept without making a valuation of the concept. The comments were

346 positive, 285 negative, and 142 informative for embedded systems, 302 positive, 200

negative and 142 informative for nonembedded systems. 250 statements were statements

about software development, many important, but not directly about reuse. Many of these

statements provide insight into the reasons for some of the observations. We notice that

the frequency of comments made by the respondents is not necessarily the same as the

order in which they answered the direct questions. For example, while there were easily

the most comments made by the respondents about components, only 63% of the respon-

dents reported using components, whereas 100% reported reusing code, design models and

requirements.

Other keywords emerged as the coding progressed. The final set of keywords is shown

in the leftmost columns in Tables 5.10, 5.11, 5.12, and 5.14.

165

Especially in the area of success factors and obstacles, key words that did not sur-

face in the respondents’ direct answers to the questions about the attribute showed up in

comments, hinting at being important. These key words were added to the appropriate

attributes. One attribute that had several key words added was Technical Success Factors.

We added SOA, as it was cited in 21 comments. Other key words added to Success Factors

include Autogen, Similar Environment or Project, Trade off, Make fit, Parameter Driven,

Comprehension, Standardization, Consistent or Controlled Baseline, Testing, Autotesting,

Maintenance, Portability, Platform Independence, Platform Standardization, Searchable

Library, and Documentation.

The coded responses were categorized into comments about embedded and nonembed-

ded systems, and further into positive, negative and informational comments. The purpose

was to ascertain whether the keyword was viewed positively, negatively or neutrally by em-

bedded and nonembedded systems. From these categories, we could compare the keywords

and their similarities or differences between the types of systems.

5.2.3 Results from Coding of Responses

One important element in the analysis of the coding is that the frequency with which a

keyword is mentioned by the respondents, as it is an indicator of what concerns the respon-

dent when talking about reuse. The frequencies reported below when seen in combination

give us one insight into how these keywords impact the reuse experience. For example, a

keyword in a positive comment can indicate that that keyword is helpful in reuse, whereas

a keyword in a negative context can indicate a problem associated with that keyword.

Another element of the analysis is the context in which the comments are made, which

may reveal why the reuse experience is either successful or challenging.

Development Approach by System Type and Rating

Table 5.10, summarizes the number of comments about each development approach.

The leftmost column contains the name of the development approach, the second and

166

third columns the number of positive comments made by embedded and nonembedded

system respondents respectively, the third and fourth columns the number of negative

comments made by the embedded and nonembedded system respondents respectively, and

the final two comments show the number of informative comments made by embedded and

nonembedded systems respondents.

Embedded Systems Experts in embedded systems mention a model based development

approach in a positive way most frequently (16 times), product line second (10), and ad

hoc third (6). These experts are positive about model based development because models

are platform independent, easy to understand, easy to modify and serve as documentation.

They like product lines because the systems can be implemented with minor modifications.

The benefit they cite for ad hoc development is that the code is already known, understood

and proven. Only one respondent mentioned an ontology approach, in a positive way. The

embedded systems experts mention ad hoc negatively most frequently (11 times), with few

negative comments about product line (2) and model based development (1). The problem

they cite with ad hoc is that it often lacks provenance and it may have not have been

developed to acceptable standards. The problem with product line development is that it

can limit solution options. They did not have negative comments about component based

development or ontology, and had no mention at all of SOA. Embedded systems experts

gave information about model based development most often (7 times), with ad hoc second

(6 times), product line (4 times) and component based development(2). They did not offer

informative statements for SOA or Ontology.

It is interesting that, while more embedded systems experts report using an ad hoc

development approach, that approach only ranks third in their positive comments. The

reasons they give for success using the ad hoc approach are that they are reusing their

own architecture (Person G), they are using a known function intact and exposing it to an

interface (Person J) and the individual has produced the code before and knows it (Person

K). The negative comments about ad hoc reuse include concerns that “the heritage is the

167

real issue, because much of the heritage is ad hoc” (Person D), “it wasn’t finding things

that was the biggest challenge, it was deciding whether they could be trusted” (Person

E), and “ad hoc reuse you might get lucky and find something, but for the most part

you’re not going to find anything. The problem is you inherit the software irregularities

or inconsistencies, if it’s got defects” (Person M). According to the embedded systems

developers, they are using this development approach because the project has been around

a long time, and redesigning into a different development approach at this time does not

make economic sense. However, for new projects, they would use a different approach,

because often the older software products are obsolete, have latent defects and otherwise

cannot be trusted.

Although only three of the embedded systems developers reported using model based

development, the responses about model based development were all positive but one.

Person D, an expert in FPGAs said, “model based actually helps portability because you’re

letting the model change your target.” He went on to explain that the differences in

platforms were built into the model, and the model could be used to generate the code.

Person L was especially interested in using model based development. He pointed out that

“Models are usually capturing information in a metamodel format, compared to raw coding

statements... but certainly (models offer) the ability to define use cases, which helps you to

understand the requirements. .. Then use case reuse, certainly things like diagram reuse,

where a product was built to be potentially reused then the models are useful.” He went

on to discuss the benefits of a graphical representation over verbal descriptions and code to

help a developer understand what was happening in that part of the system. His negative

comment about reusing via model based development was not about technical challenges

but nontechnical issues: “You can’t just go and tell a program manager hey, I guarantee

you will have 50% less bugs and errors if you do it this way, but it is going to cost you 30%

up front. And that’s what these modeling techniques do. You have to do up front work.

You’re spending a little up front to save a lot on the back end, but the program manager

doesn’t see it.” There was also a large difference of opinion in what constitutes model

168

based development. While some contend that the use of models makes the development

approach model based, others insist that to be considered model based, the development

approach must include a complete set of integrated models, to include architecture models,

UML and design models, performance models and simulation models. As Person K said,

“I would say that model-based is all those things integrated together into some cohesive

set of integrated models.” Others were somewhere in the continuum.

The benefits of using a product line for embedded systems, according to our respondents,

included, “within our product lines, basically, we started finding ways of creating framework

pieces for running in the simulation environment, for running on top of hardware, for

generating a common set of utilities and forcing the systems guys who were writing our

requirements to reuse these pieces... there are reference architectures for these product

lines, and you can do reuse along with the reference architectures” (Person G). Person M

added. “When we are talking about within a product line, one of the main benefits is cost,

but we also get quality and schedule, because if we are using about 90% of the build and

we only need to change about 10% of the build for this new version then we are getting all

of that schedule and cost reduction and we’re not creating new defects in the other 90%.”

The product line for Person M’s project is stable, and has been for many years. They

deliver their products in blocks (incremental upgrade groupings), and only add a few new

capabilities for each block.

Finally, one embedded systems expert indicated he was using a component based devel-

opment approach, but said nothing further about it.

Nonembedded Systems By contrast, nonembedded systems experts mentioned posi-

tively ad hoc reuse (8 times), SOA second most often (4 times), component based develop-

ment (2) with model based and product line development each mentioned positively only

twice. (It should be noted that those who mentioned SOA were, in every case, using a

model based approach.) The benefits cited for ad hoc reuse were that many assets exist

that have already solved a requirement. The benefits of SOA are that the services are

169

contained and do not require developer attention. The benefits with model based are that

the models are easily understood and easily modified. Nonembedded systems experts men-

tioned ad hoc in a negative way most (9 times), with model based and product line second

(only once each). Again, the problem with ad hoc reuse is the uncertainty of the quality of

the product being reused. They did not mention component based, SOA or ontology in a

negative way at all. Nonembedded systems experts offered informative statements for ad

hoc 13 times, model based 3 times, and product line once with no informational statements

about component based, SOA or ontology.

Nonembedded systems experts again reported using ad hoc reuse most frequently. Per-

son B explained the reason as, “You can inherit the software and you can actually verify

that its doing what you expect it to do in the new environment. Those kinds of things

drastically change the reuse factor and the ability to reuse something out of the box.”

Person C pointed out that “I think like almost everyone I know, my main success stories

on reuse are from scavenging reuse.” In other words, identifying a function or routine that

would serve his purpose and developing an interface to it helped him most. This usually

meant not modifying the code itself. Person H indicated that there were some standards

involved in selecting the reuse product, that made the reuse beneficial: “We would under-

stand what process did the person or organization that developed this apply to determine

what was the right classification for this tool , and we would go through then and make

sure it’s appropriately registered and baselined.” The ad hoc reuse approach worked best

when the code had been properly developed and when modifications were minimal. This

development approach was focused on code reuse.

Ad Hoc reuse presented some problems as well. Person B points out that “reuse has

been a troubling issue in that nearly all of the models that I have seen, have used what

I would describe as a “cut and run” strategy, where a piece of code or a snapshot of a

particular software baseline is inherited on another system, and then that system ends

up taking over, modifying it and essentially becoming responsible for a variant of that

baseline and really duplicated the total life cycle cost of maintaining what now becomes

170

somewhat unique software.” This is what the experts call “forking,” which will be discussed

later. However, the problem in terms of the development method used here is that of

code modification. Person H mentioned that on one program he worked on using a legacy

approach the software worked fine, but when they ported it to a new platform, the software

broke. The code would not run properly on the new platform.

All of the experts specializing in nonembedded systems with positive comments about

model based development approaches cited Service Oriented Architecture (SOA) as a factor

in their success while none of the embedded systems experts had mentioned SOA. Person

B stated the reasons most clearly: “Service Oriented Architecture is fairly liberating in

that the original component itself is designed to be a reusable service rather than a point

solution for a particular application, and that really has been what has been revolution-

ary.” He went on to say, “The Service Oriented Architecture and the cloud architecture,

its really the loose coupling techniques that are the enablers.” Many nonembedded sys-

tems are now web based developments using a cloud architecture. The services allow the

developers to treat components as black boxes. The only negative comment about the

model based development approach among the nonembedded systems experts was, “So I

go over to <program> and, of course, they tout model-based development, reuse there, like

everything else I’ve looked at it appears that is an advertisement not an adopted culturally

sound process.” So the only negative words about model based development were that the

process was not being implemented. The emphasis in this development approach is in the

architecture and on the design patterns.

Product line development and component based development approach were not dis-

cussed by the experts in nonembedded systems.

Artifacts by System Type and Rating

Table 5.11 shows the comments made by the experts about artifacts. The leftmost

column contains the name of the artifact, the second and third columns the number of

positive comments made by embedded and nonembedded system experts respectively, the

171

Table 5.10: Development Approach ∩ System Type ∩ Rating

Positive Negative Information
Development
Type

Embedded NonembeddedEmbedded NonembeddedEmbedded Nonembedded

Ad Hoc 6 8 11 9 6 13
Component
Based

0 2 1 0 2 0

Model Based 16 1 0 1 7 3
SOA 0 4 0 0 0 0
Product Line 10 1 2 1 4 1
Ontology 1 0 0 0 0 0

third and fourth columns the number of negative comments made by the embedded and

nonembedded system experts respectively, and the final two comments show the numbers

of informative comments made by embedded and nonembedded systems respondents.

Embedded Systems Reuse of components and models received the most positive com-

ments from embedded developers (70), with architecture second (60), code third (57),

design fourth (51) and requirements fifth (42). Hardware, design patterns, and interfaces

were mentioned positively 24, 23 and 22 times respectively, test products 18 times, nonfunc-

tional requirements 13 times, documentation 11 times, algorithms 8 times, test clusters and

concepts each 5 times, and services once. Service level agreements and data products were

not mentioned. Reasons for positive comments about components and models reflect the

positive comments about component based and model based: the components were already

developed, proven and optimized to the hardware; the models are easy to understand and

accommodate modification easily. The reason for positive comments about architecture,

design and requirements reuse is that the solution is ready to be implemented. Positive

comments about documentation reuse indicate that it is easy to edit an existing, already

formatted document that merely needs particulars about the system added or changed.

Benefits of reusing nonfunctional requirements and interfaces are that when the artifacts

being reused were developed to the same standards as the new system, the standards are

already satisfied.

172

The most negative mentions by embedded systems developers were code (42 times)

and requirements (24 times). Nonfunctional requirements and design each had negative

comments 14 times, followed by architecture and hardware with 13, interfaces with 11,

components and models (9each), documentation (8), design patterns (3), algorithms, and

test products (2 each), COTS and test products (1 each). Services and service level agree-

ments were not mentioned by embedded developers. Code and requirements reuse received

negative comments because of problems with the code, difficulty of understanding the code,

and the fact that the reused requirements (and hence, code) may not satisfy the objectives

for the new system. The difficulty with nonfunctional requirements is that if the standards

required by the new system differ from the old system, the artifacts need to be redone to

satisfy the different standards. The problem with documentation was that it may be of

low quality or missing altogether.

Informational statements about code were made most often (20 times), followed by

hardware (17 times), components and models (13 each), architecture (9), requirements

(8), interfaces and data products (5), nonfunctional requirements (4), design and test

products (2), and concepts, COTS, algorithms, test clusters and documentation each got

one informational comment. Service level agreements, services and design patterns were

not the subject of any informational comments from embedded systems developers.

When directly answering the question about the artifacts used, as discussed in Section

4.1, embedded systems experts cited code, design and requirements as the artifacts used

most often. However, as noted above, these were not the artifacts they talked about the

most. Code and requirements were artifacts from the legacy systems they were migrating

for reuse. Person D, developing FPGA’s explained his reuse of code “Basically say I’ll use

the same device, I’ll use the same code and then that’s it.” Person E added, “Require-

ments specifications, design specifications, was in all embedded code, the test cases, and

test scripts got reused, and especially the requirements specification.” So the requirements

had already been implemented in code. Since the requirements were essentially unchanged,

the rest of the assets could be reused. Time and money were saved in requirements devel-

173

opment, architecture, design, implementation, test and maintenance. According to person

G, “We see a lot more reuse in the system-level design requirements, therefore we reuse

the software components that were developed for those requirements. If you talk about af-

fordability, it comes down to how many lines of code are you going to have to develop, and

so the larger the item is, the more value it’s going to pull forward for affordability.” There

were some factors that needed to be present for requirements and code to be successfully

reused. According to Person K, “One (key) is to understand existing code, obviously, and

software, and requirements and how its implemented in the architecture, that kind of stuff,

you have to know that fairly well.” Finally, Person N stated that, “I don’t know that I’ve

ever been on a program that just said let me reuse requirements or design. Typically it

started as code reuse, and flexibility of that code applicability of that code being utilized

in full or some modification to it for your project, then the documentation, so to speak, the

design and the requirements, come with it.” So the embedded systems experts start with

an understanding of existing code and import the artifacts they need along with that code

to develop their systems. However, as person D pointed out, as automatic code generation

becomes more robust, the need to reuse code will decline.

Negative comments about requirements, design and especially code offer a great deal

of insight as to why code reuse often fails. According to Person D, “most people do not

write reusable code because they’re in such pressure to get designs out and they also write

in low level languages like assembly code. Once you start low level assembly language

coding, you can’t rearchitect, you’re just basically patching. And so this is what we see

over and over again, and is the primary reason we can’t reuse or I have great reluctance

to reuse any of these previous codes written. The first thing I do when I go look at it

is run it through some of my analysis tools and that will tell me there’s no architecture

to this. People absolutely just started coding and it’s a big ball of mud, so why would

I waste my time with it? So it’s the lack of doing a high level preparation just like the

lack of documenting the requirements or making sure the requirements are comprehensive,

complete, accurate, lack of testing it correctly. So that is actually probably the number

174

one issue to low level coding is antiarchitecture.” Much of the older code was not subjected

to the correct development processes, and is therefore brittle. Many practitioners would

rather redevelop than try to correct these problems. Person J adds, “For me, code reuse is

almost always a recipe for failure, because, for me, what code reuse says is I go in and I use

some modules and I don’t use other modules, in other words I’m getting into the code and

I’m deciding I’m going to use this and I’m not going to use that, and modified this, and

modify that I think when you start picking code apart at that level of granularity, reuse is

probably, I’ve never seen it succeed.” If the code needs significant modification, it is almost

never effective to reuse it. Person L points out that, “Even with software practitioners, it

takes a while to build a mental image from a bunch of lines of code. And if that’s what you

are presented with, you say to yourself while I know what I’ve got to build, and it’s easier

to build it myself.” Without solid documentation, including graphical representations, it is

easier to recreate the module than to try to understand the candidate reuse artifact.

In the embedded systems, the reuse of models was particularly interesting. While all

of the respondents use models, it is the types of models that differ. For the embedded

systems experts, the performance models and simulations were the most useful. In fact,

some regenerated their code anew with each instantiation from the performance models.

In many cases, their design models and their performance models were one and the same.

Person D points out, “They might not use the same tools. At the high level that starts

decompositioning these models into synthesizeable models. That means it can be placed

into FPGA type of circuits using, give examples, it is called ESL (Electronic System Level)

and it is also called HLS (High Level Synthesis). These are the techniques where you

use these high level models and you use a tool to convert it directly to the FPGA code.

It’s based on model based engineering principles, where you stay at a high level, relative

to autocoding techniques that software has been using where they develop a model and

then use something that converts it to C code or that targets their processor.” Person

G says that, “so for embedded systems I think what you might call emulation models

are absolutely critical.” According to Person M, “In other cases, we actually create a

175

simulation of the entire module or even a set of modules to simulate how they are going

to react and operate and do that for testing as well as training purposes.” All of the

embedded systems experts mentioned using performance models to ensure their system

would meet performance requirements before moving to implementation. These models

would be reused from instantiation to instantiation, with the performance models adapted

to reflect any new performance requirements.

There were also a few negative comments about model reuse. Person A indicated that,

“Models don’t always follow the same discipline and the same elements, the same structure

as the ones that you’re using, so it depends on the artifact, but in each one of those, the

obstacle is to make it adaptable to the particular environment.” Person D said, “So some

of the reused code we see is at the modeling level, at the higher level such as the Simulink

blocks, that they may reuse the algorithm, the application, but we’re still in the issue of

how do you get that into the VHDL, into the low level code. To the FPGA.” The challenge

is translating the model into code for the core processor. There is also the question of

whether the cost of developing a model is justified. According to Person L, “The overhead

of creating a model, the overhead and the time of creating the context, the construct of

the model would not be cost-effective for a small component.”

Nonembedded Systems Unlike the embedded system experts, nonembedded systems

experts mentioned architecture positively most (54 times), followed by code (43 times),

components and models (35 times each), requirements (34 times), and design(32 times)

Less frequent positive mentions went to test products and interfaces (22 times each), design

patterns and algorithms (18 times each), hardware and documentation (2 times each), data

products (12 times), and services and COTS (11 times each). Also positively mentioned

were nonfunctional requirements (9 times), service level agreements (5 times), test clusters

(3 times) and objectives (2 times).

As with embedded systems experts, nonembedded systems experts commented nega-

tively about code (22 times), requirements (19 times), and nonfunctional requirements (14)

176

most often. In nonembedded systems, hardware received more negative (11) comments

than design (8), and algorithms(8). Components, models and documentation received 4

negative comments each, data products had 3, test products 2 and objectives 1.

Nonembedded systems developers made informative comments about code, component

and models most often (13 times), interfaces (9 times), and requirements (8 times). They

also made informational comments about hardware, documentation, and data products (6

times each), algorithms, test products, and services (5 times each), design and architecture

(4 times each), nonfunctional requirements and objectives (three times each) and test

clusters (once).

Architecture was a primary consideration for nonembedded systems. Person B stated

that “It (architecture) greatly impacts the reuse factor, because again you are standardizing

the architecture and you are abstracting away a lot of the variabilities that affect reuse. So

that has been a big deal to us.” According to Person C, “Composeable compliance applies

at all levels of our architectures, it’s not a code concept it is a design concept. That kind of

reuse is one in which I see a lot of promise.” He went on to point out that the architecture

is the foundation of this composable compliance. Nonembedded systems experts especially

mentioned reference architectures as a facilitator for successful reuse. For example, Person

F said, “I’m sure those reference architectures saved us a boat load of money, though we

never took credit for it.” Person K addressed the benefits of reusing an architecture as

“When we do design we would do things to show how the components relate, what are the

dependencies between the components? So we have some kind of an architecture diagram,

that shows dependencies, we try to make sure that any of the designs we have do not

introduce circular dependencies, we show, also, layers in the sense of what’s at the top,

the application level if you will, versus where’s the middleware. It’s just another way of

showing how the applications relate, or the components relate to each other.”

The only negative comments nonembedded systems experts had about reusing an ar-

chitecture involved problems when architecture is inadequate.

177

Table 5.11: Artifact ∩ System Type ∩ Rating

Positive Negative Information
Artifact Embedded NonembeddedEmbedded NonembeddedEmbedded Nonembedded
Concepts/ Ob-
jectives

5 2 1 1 1 3

Requirements 42 34 24 19 8 8
Nonfunctional
Requirements

13 9 14 14 4 3

Interfaces 22 22 11 4 5 9
Services 1 11 0 0 0 5
SLA 0 5 0 0 0 0
Architecture 60 54 13 4 9 4
Component 70 35 9 6 13 13
COTS 8 11 1 4 1 0
Data Sets,
Databases, Data

0 12 5 3 5 6

Models 70 35 9 6 13 13
Design 51 32 14 8 2 4
Design Patterns 23 18 3 0 0 0
Hardware 24 16 13 11 17 6
Algorithm 8 18 2 8 1 5
Code 57 43 42 22 20 13
Test Products 18 22 2 2 2 5
Test Clusters 5 3 1 0 1 1
Documentation 11 16 8 6 1 6
* Artifacts listed in the order of phase baselined

Success Factors by System Type and Rating

The comments about success factors and obstacles were classified as technical factors

and nontechnical factors and evaluated separately. In the analysis of success factors and

obstacles, there were very few informative comments, so the information columns have not

been included.

Table 5.12 shows the comments about the technical success factors affecting reuse.

Positive comments indicate that the factor helped accomplish the reuse. Negative factors

indicate either the absence or poor implementation of that factor.

Embedded Systems The most positive comments in embedded systems were about a

similar environment or project (29). Standardization was second (22), with a consistent or

178

controlled baseline third (20). Products designed for reuse and experience were next (15),

followed by test products (14), trade offs and autogeneration (13), testing (11) and a search-

able library (9). Comprehension and the ability to make the products fit the system were

next (8). Encapsulation, portability and platform standardization had 6 positive comments

each, object orientation, platform independence and documentation had 5. Maintenance

was a success factor for 3 comments. The similar environment or project means that the

reused artifacts migrate smoothly to the new system with little modification. Standardiza-

tion of platforms allows reused code to easily port to the new platform. Products designed

for reuse are often parameter driven, so modifications are made to data and parameters

and not to the underlying code. With experience, especially with the reused artifacts,

the developers know where and how to make needed modifications. With encapsulation,

changes made to one artifact do not affect the rest of the system.

Factors impairing reuse included a lack of design for reuse (15), lack of a searchable li-

brary (or a badly implemented library) was cited in 14 comments, failure to do quality trade

off received 9 negative comments, while eight commented negatively about platform inde-

pendence. Lack of a similar environment or product and lack of experience accounted for 7

negative comments each. There were five negative comments about both standardization

and a consistent or controlled baseline. When products are not designed for reuse, needed

modifications are difficult to make, and often lead to the insertion of new defects. The

attempt to make products platform independent has a negative impact on performance.

For embedded systems, the similar environment was the most important success fac-

tor. According to person A, “I would say the success is driven by how similar the new

environment is. If you were doing manufacturing or cookie cutter things, where you could

just pick up a something and reuse it, then you would be very successful.” The less the

product needed to be adapted, the easier it is to reuse. Person D added, “I think that

reuse and commonality go together.” According to Person E, the similar environment is

especially important in terms of platforms and interfaces: “Things like, especially for an

embedded system, processor hardware and interfaces. To see if they are at least simple,

179

if not identical.” According to person G, “a piece of software will use somewhat the same

utilities, will use somewhat the same way of communicating, and somewhat the same way

of attaching into the system...And then if you can choose a receiver that is similar to a

receiver that we’ve already used, an exact one or one that uses a similar protocol, you

can get even more reuse out of it.” Person J points out that “the use cases don’t change,

the fundamental architectures don‚Äôt change, requirements don’t change at a very high

level, they do at a very fine-grained level, the basic requirements are there, the basic test

patterns are there, the basic architecture is there, so what you end up doing is fine tuning

down at the code level.”

When there was not a similar environment, Person A said, “I think that if it (the

environment) is very dissimilar you’d better be careful.” In the words of Person D, “The

reason we don’t have commonality is because everybody redesigns everything over again.

Same issues with reuse. It’s (similar environment) extremely important.” Person G suggests

that lack of a common environment almost prevents reuse. “If you come along with a system

that has something different, then of course they don’t have much in terms of reuse.” He

also points out that one of the problems with a company or corporate reuse mandate is

that environments are not the same. “In fact it’s that part of the problem that anyone

wants to start up a reuse workgroup or try to make a business unit reuse strategy, what

they want to do is have a one size fits all. And that’s impossible. And so it basically

starts off as something where they are going to collect a certain set of artifacts and force

everybody to use them, and you get all the different types of products that we developed

together they all absolutely refuse. So it falls down pretty quickly. You have to recognize

the with the business unit this size is that it’s not a one-size-fits-all. So any centralized

reuse, then, would have to take that into account.” Person N adds, “where you are trying

to apply some other ones baseline into your program, that reuse didn’t work out too well,

particularly in my case, where reuse was very low, around 5%.” These comments indicate

that in embedded systems, reuse does not migrate well across technologies.

180

Standardization was of great concern to embedded systems experts. While platform

standardization was universally a concern, they also mentioned standardized interfaces,

standard reference architectures, verification techniques, documentation and modeling tech-

niques. According to Person L, “ My reuse, quickly formed on where you have something

that is built to a standard, or a commercial product that has live utility, that’s where I’ve

seen reuse... when I have seen it (successful reuse) on projects it’s been through the stuff

that has a well-defined commercial or GOTS product built to a standard, because then,

the thing about a standard is you know what the inputs are and what the outputs are, you

know what the functionality is, and then you’re using it as a whole and then interfacing

to it and the goes intos and the goes outofs and following the rules, that’s where it has

succeeded.” About standardized modeling techniques, he said, “Wouldn’t it be so much

faster if I had this in a modeling format that I could assimilate and then change the model

to accommodate what it is I’m trying to do? Or take, then, the assurance case, and I

have an assurance case for my real time operating system in combination with a messaging

protocol, in combination with whatever else and build the aggregate of the models together

to layer up and build my assurance case and aggregate that for the entire system.” Person

N added, “if we develop this under these standards now, we can save half to two thirds of

the money in 5, 6, 7, 8 years. If that’s done in a standard way, interrupts are all happening

the same way across single board computers, the operating systems do it that way and we

start doing real-time middleware, and we provide APIs to applications, and this and that,

there might be details in the kind of data that is passed, but in general the methodology to

go do that then you could see some standardization across stovepiped programs and maybe

across industry in the way that happens.” By building products to standards, developers

could adapt the APIs and leave the code untouched, or modify the models with the details

of platform and use the models to generate the code.

Nonfunctional requirements were especially cited for lack of standardization, requir-

ing significant redesigning and rewriting of code. Nonfunctional requirements are further

discussed under “obstacles” below.

181

A common and/or controlled baseline was also cited as an important factor in success.

According to Person L, “you want to keep everything as consistent and common as possible

and do an architecture and evolve the architecture based on the fact that these changes

will occur.” Controlling the baseline allows modifications to occur in an ordery fashion, and

developers will know what those changes are and how their own development is impacted.

Design for reuse was considered an important success factor in embedded systems.

According to Person D, “Number one thing is reuse is only as good as the original design

and that means to do the reuse the design had to be developed originally for reuse.” Person

E recalls, “On one program we made the upfront investment, to design for reuse, it was an

embedded system, and we sold three follow-on jobs based on reusing much of the software.

The software cost in the three jobs were in the same ballpark, so net we saved ourselves

and the customers money.” The negative comments about design for reuse revolved around

reason software is not designed for reuse. Person D says, “most people do not write reusable

code because they’re in such pressure to get designs out.” According to Person G, “It does

cost more to develop for reuse than not, with all artifacts and things. And things go

beyond what your program’s actual need is.” Several embedded systems experts indicated

that design for reuse costs around 30% more than regular single use design. To justify this

extra expense, there needs to be a business case that the resulting artifacts will be reused

enough to justify this added expense. In the rapidly changing technical environment, there

is often doubt about sufficient reuse of a given artifact. In addition, there is a question

about paying for that extra investment. In bespoke projects, the customer does not want

to pay extra in order for the next customer to benefit. We note that design for reuse is

almost always discussed in terms of code.

Nonembedded Systems By far, the most common positively mentioned success fac-

tor for nonembedded systems was a consistent or controlled baseline (29). Second was

SOA (18), and test products/autotesting was third (17). Standardization had 15 positive

comments, testing and platform standardization each had 14. A searchable library had

182

12, encapsulation had 11 and platform independence had 10. Comprehension and design

for reuse each had 8. Documentation (7), similar environment or project (6), project (6),

ability to make it fit (6), and experience (5) came next. Autogeneration of code had 2 men-

tions, as did maintenance, and object orientation only had 1. As with embedded systems

experts, nonembedded systems experts cite the consistent baseline because developers knew

the baseline they were working with, and did not have to keep up with constant changes.

SOA was considered a success factor because the modules were self contained, and only the

interfaces needed to be accommodated. Nonembedded systems experts cited a searchable

library because often they found it difficult to locate and understand products that they

could reuse.

The most negative comments about success factors in nomembedded systems were

about platform independence, and a searchable library, with 6 apiece. Design for reuse

and a consistent or controlled baseline each had 4 negative comments. SOA, standardiza-

tion, maintenance, portability and experience each had 2. Autogeneration of code, similar

environment or project, trade offs, making the product fit, object oriented development,

test products, and platform standardization each had 1. The rest of the factors were not

mentioned. As with embedded systems, attempting to attain platform independence was

seen in a negative light because the disparity of platforms made abstracting the interface to

accommodate multiple platforms difficult, and often the interface impacted performance.

Nonembedded systems experts were most concerned about a consistent or controlled

baseline. Person B points out that “ We have one example within our domain of essentially

a cloud, elastic cloud, that we have maintained the discipline of having one baseline across

multiple programs and maintaining that one baseline. And so when another variant, when

another program uses it they have the responsibility (sort of like the open source model)

they have the responsibility of migrating those changes back into the single controlled

baseline Now, of course, that’s easier these days as the environments themselves get more

and more standardized. You can wrap all of the configurations, all of the setup into a

virtual machine image that really is just a bundle of all the operating system, the COTS

183

software, and then the applications running on top of that stack.” A consistent, controlled

baselines that is properly encapsulated allows components to be changed or added without

impacting other components. Another success factor for nonembedded systems was the

use of a SOA, which was discussed earlier.

Table 5.12: Technical Success Factors ∩ System Type ∩ Rating

Positive Negative
Development Type Embedded Nonembedded Embedded Nonembedded
Autogen 13 2 0 1
SOA 1 18 0 2
Similar Environment or Project 29 6 7 1
Trade off 13 2 9 1
Make fit 8 6 2 1
Object Oriented 5 1 0 0
Parameter Driven 4 3 0 0
Comprehension 8 8 2 0
Design for Reuse 15 8 15 4
Encapsulation 6 11 0 0
Graphical Design 1 0 0 0
Test Products/ Autotesting 14 17 2 1
Standardization 22 15 5 2
Consistent or Controlled Baseline 20 29 5 4
Testing 11 14 2 1
Autotesting 2 3 0 0
Maintenance 3 2 0 2
Portability 6 8 2 2
Platform Independence 5 10 8 6
Platform Standardization 6 14 0 1
Searchable Library 9 12 14 6
Documentation 5 7 1 3
Experience 15 5 7 2
* Negative comments about success factors indicates that that factor was missing and led
to problems with the reuse.

Nontechnical success factors, shown in 5.13 were analyzed separately from technical

success factors, because they require a different type of solution.

Process and control/discipline were nontechnical success factors mentioned most by

embedded systems (25 and 20). Other factors were planning at 10, management com-

mitment at 7, culture at 2 and estimation at 1. The most negative comments concerned

process (16), management commitment (14), and cost/schedule estimation (11). Negative

comments were also made about control/discipline (6), culture (3) and planning (4).

184

For nonembedded systems, the most commonly mentioned nontechnical success factors

were process (21), planning (16) and control/discipline (15). Culture accounted for 10,

management commitment for 6 and estimation for 3. By far, the most negative comments

in nonembedded systems were made about etimation (15). Process (9), control/discipline

(8), and management commitment (7) were close. Culture was mentioned twice. Planning

was not mentioned negatively.

Table 5.13: Nontechnical Success Factors ∩ System Type ∩ Rating

Positive Negative
Success Factor Embedded Nonembedded Embedded Nonembedded
Management commitment 7 6 14 7
Process 25 21 16 9
Control/ Discipline 20 15 6 8
Culture 2 10 3 2
Planning 10 16 4 0
Estimation 1 3 11 15

One interesting negative success factor comment was when management mandates reuse

but does not provide the necessary tools to identify and analyze the candidate products.

Person C said, “So for instance, there was a time when we had to use the reuse repository,

or explain why we didn’t use anything. That, to me, it’s like government taxation. You

are encouraging certain behavior and discouraging other behavior but ultimately, what it

did to me is make everything more expensive. That was a non-benefit of reuse. When it

came in mandated to me, it was going to cost money whether I reused it or not, and if the

repository had been at that time in the shape I really could have saved money every time

I used it it would’ve been a good application of the tax, right? It would’ve encouraged

me to perform the behavior that was beneficial to the company. Since the intent was to

encourage me to do it that was fine, but in fact the repository was not in good enough

shape at that time to benefit more often than simply have to prepare a report that would

take some number of hours of a senior engineer’s time. So it ended up being a tax.”

185

Obstacles by System Type and Rating

As with success factors, obstacles were classified into two categories, technical and

nontechnical. Table 5.14 shows the technical obstacles to reuse success, Table 5.15 shows

the nontechnical obstacles.

We discuss the obstacles to reuse in the opposite direction from the success factors,

negative before positive. In situations where the obstacles have positive comments, the

obstacles were overcome, usually by a success factor.

Table 5.14: Technical Obstacles ∩ System Type ∩ Rating

Positive Negative
Obstacle Embedded Nonembedded Embedded Nonembedded
Fit 5 1 22 13
Modification 10 6 26 33
Understanding 13 3 27 15
Complexity 6 2 3 9
Lack of trust 1 0 4 0
Lack of Documentation 0 1 10 3
Lack of Metrics 2 2 9 4
Obsolescence, age 2 1 8 7
Easier to build from scratch 0 0 13 5
Platform Dependence 3 0 17 10
Loss of flexibility or freedom 0 0 6 8
Difficulty - real or perceived 0 0 14 11
Unintended Consequences 0 0 4 10
Missed Opportunities 0 0 11 7
Existing Defects 1 0 13 3
Insert defects 0 0 0 3
Performance Goals 2 5 5 6
Maintenance 0 4 2 11
Certification Process 0 4 3 3
Forking 1 0 5 8
* Positive comments about obstacles are coments in which the obstacles were overcome.

Embedded Systems Understanding was the greatest obstacle to successful reuse in

embedded systems (27), followed closely by the need for modification (26). Embedded

systems experts cite obscure code and poor or no documentation as reasons for the obstacle

of understanding. Twenty-two comments indicated that reuse candidates turned out to not

fit the system they were being integrated into. Here, the experts explain that the artifacts

186

appeared to be a fit until they were to be integrated into the system, and the interfaces or

approach were incompatible with the new system. Platform dependence was considered an

obstacle in 17 coments, again reflecting on the difficulty of moving code optimized for one

platform to a platform for which it had to be reoptimized. Real or perceived difficulties

were seen as obstacles in 14 comments. Thirteen negative comments indicated that it was

easier to build from scratch, the same number found that existing defects were a detriment

to reuse. Experts indicated that in the time and effort required to become familiar with

the reuse product and/or identify and correct existing defects they could create a new

product. Failure to reuse because of missed opportunities were cited in 11 comments.

Embedded systems experts indicated that they did not reuse some products they could

have reused because they either did not know they existed or did not trust the artifacts.

Lack of documentation (10), lack of metrics (9) and obsolescence (8) were also problematic

in embedded systems. Loss of flexibilitly was a problem mentioned in 6 embedded systems

comments, meeting performance goals and “forking”1. Lack of trust of the reuse candidate

and/or its developers and unintended consequences were cited four times as obstacles,

complexity and the certification process were cited by three.

Several embedded systems respondents mentioned overcoming obstacles. Overcoming

the obstacle understanding was mentioned in 13 comments and modification was mentioned

in 10 comments. Six comments mention overcoming complexity and 5 the problem of bad

fit.

For embedded systems experts, the biggest obstacle was understanding the reuse arti-

facts. This happened most frequently with code. Person D describes his response when

given a code reuse product as, “How do I interface it? Am I sure that the verification that

came with it adequate? Is the documentation adequate, do we understand it enough that

we can modify it?” If the answers are not in the documentation, even if in the end the code

would not require modification, he states that it often takes longer to figure out these issues
1“Forking” is defined as taking a reuse product from one project and modifying it for another without

coordinating the modifications with the original project. This is different from lack of configuration man-
agement in that the new project will keep the forked artifacts under their own configuration control. The
problems with forking are discussed in the analysis.

187

than to simply develop from scratch. According to Person K, “A lot of times it’s a misfit

when people who quoted the reuse maybe did not really dig deep enough to understand how

much the design and the requirements, and of course, then the code, would have to change.

Then one of the biggest problems is incorrectly reusing things that aren’t quite right, and

being too optimistic in thinking you didn’t have to change anything, when you actually

did have to change it. That is a major hurdle.” So accepting this reuse product and trying

to work with it when it was not quite right ends up costing more than new development.

Often projects struggle with a reuse product until they have invested a great deal of effort

in it, only to have to discard that work and start over. Person K adds that, in addition

to knowing the product being reused, “you have to fairly well know the system that you

are actually trying to put it into, what that needs to do, and what those requirements are,

and key aspects of that system.... I would say the barriers are pretty much, there’s a few

other reasons, but those are the key things that, if you cram something in there that isn’t

a right fit because you didn’t understand either what the reuse did, or what the system

you want to put it in had to do, then you’re going to fail.” Finally, Person N points out

that often a reuse candidate is rejected because, “I don’t know it, I don’t understand it,

I would have to make too many changes, it would take me too long to understand what

it did, all of those reasons.” So for embedded systems, either reuse is not attempted or it

fails because of lack of understanding of the reuse artifact.

The need for modification was another obstacle to reuse. Person A describes failure in

reuse as, “software that doesn’t work picking it up and using it in your environment and

you cannot modify it cheaper or faster than you could have developed it from scratch. If the

reuse is not going to meet your performance requirements, then you have to, again evaluate

well what do I have to do to that reused software so that it will meet my performance

requirements, and if that means I have to go in and redesign it and rebuild it then it may

not be worth the reuse.” Person D’s experience with inheriting a product was, “As soon as

they tried to do a slight modification to this (code), the whole thing fell down. It’s like all

of a sudden we found out it was all patched together, we found out that you might as well

188

throw it all away and start over.” Having undergone this experience, he became reluctant

to attempt to reuse code if it required any modification: “if you want to do changes, you

want to modify it, the code is not written in a readable, modifiable manner and you get

in all kinds of trouble.” Person J adds, “So for me, code reuse is almost always a recipe

for failure, because, what code reuse says is I go in and I use some modules and I don’t

use other modules, in other words I’m getting into the code and I’m deciding I’m going to

use this and I’m not going to use that, and modified this, and modify that I think when

you start picking code apart at that level of granularity, I’ve never seen it succeed.” The

reasons for fit being a major obstacle are similar.

Platform dependence was a major obstacle for embedded systems. Every embedded

systems expert stated that code reuse becomes a problem when the platform changes.

FPGAs have a particular challenge with platform portability according to Person D: “That

is you can write code to be portable between platforms but because each of the platforms

we’re using is a system on a chip now. That means they have DSP functions in them,

high performance mathematic devices, they have so many structures of memory, dual port,

quad port you name it. Inside you have gigabit serial links. If you are trying to write

portability from one device to another device, it may not work because each device has

its own set, its own difference. So you can write to be generic and portable for some but

when you get to the main elements of a chip, for example, the new Xilinxs chips, zinc,

have an arm 7 or is it an arm 9, a very high speed processor inside it. So there’s obviously

no portability there, so the portability is kind of a dog chasing its tail.” Person J added,

about FPGA platform dependence, “I’ll give you an example, one that was not in the too

far distant past, we had a whole bunch of FPGA code for reuse So a lot of the VHDL

that’s written for one family of FPGA versus another and we end up rewriting a lot of

the VHDL as we move from one family of chips to another. So VHDL does not equal

VHDL. It has to do with the libraries for those particular chipsets. So that’s one of the

considerations.” Again, this issue is with code. Person G also had issues with changing

platforms. He pointed out that, “if the next embedded system had a different processor,

189

we may not have ended up using a lot in the way of designs, we may or may not even

have the same computer language so even if you did have the same computer language,

differences with compilers, development environments, sometimes meant that you had to

mess with the code. Especially for systems that are doing primarily control and status

of hardware, for some of those systems if you change the underlying hardware including

the CPU, processor, and hardware that interfaces to the digital hardware, you might have

to redo 80% of your code even if the functionality is totally identical, if you change the

hardware.” Person G has another reason for platform dependence being an obstacle to

reuse, and that is in the speed at which hardware is changing. He says, “because right

now what we have in the embedded world especially is were having a lot of flux in the

processor world.” He goes on to say that the hardware is changing faster than the software.

Obviously, reused software is going to be older than the new hardware.

Several embedded systems experts cited their lack of awareness or inability to find

artifacts as an obstacle to reuse. As Person A pointed out, if you don’t know they are

there or can’t find them, you can’t use them. Person K stated, “one problem is the access

to the information to know what there is to reuse and where it is. What actual requirements

it matches, and what the design is, and the problem with information sharing is huge.”

Person L added, “how do you quantify, how do you find, how do you locate, then how do you

really determine that this thing out there has the capabilities and the functionality and the

attributes that you need to truly solve your problem? It’s really not that the stuff’s not out

there, it’s just the ability to somehow properly catalog and put together some standardized

meta-model.” All suggested that a searchable library with full documentation would be

useful.

Finally, the embedded systems experts were concerned about the lack of metrics for

reuse. In the words of Person D, “Hardware has none. FPGA has none. They don’t want to

know how bad they’re doing. They know. The only way you can find out how bad they’re

doing is to they all say, yeah, it was all done in 6 months, you go back to the software

person they say, yeah, we debugged that for 2 years in circuit. We had to write software

190

to work around that glitch that we could never find. So it wasn’t designed in 6 months.

So there are no metrics. I think they have to know deep down it’s pretty poor. You know,

assembly language. So the metrics are something we’re pushing right now. Metrics is the

basis for all process improvement.” According to Person G, “I don’t know that anybody

has collected any metrics here, I don’t know of any available out there. I think the defects

go down but I don’t think we’ve ever measured any that would quantitatively show that

reused code is less defective than regular code.”

Nonembedded Systems By far, the largest number of negative comments about ob-

stacles to nonembedded systems was modification (33). Understanding was next (15).

The challenge of fitting the artifact into the system was mentioned 13 times. Difficulty,

real or perceived, and maintenance were mentioned 11 times, platform dependence and

unintended consequences 10 times, complexity 9, forking and loss of flexibility were each

mentioned 8 times, obsolescence and miss opportunities 7 times, and meeting performance

goals 6 times. Five times, the comment was that it would be easier to build the product

from scratch.

Modification was a major obstacle for nonembedded systems reuse. The nonembedded

systems encountered two different challenges for modifying software. One challenge was

the actual modification and the other challenge was the fact that the modification they

could do was limited by restraints on modification given the desire to maintain a common

baseline. In the former case, Person C states, “I guess the third piece of this I’ve run

into from time to time is how easy is it for me to try to reuse an artifact and potentially

then to bail on it if my initial trial, say 90 days or whatever, does not prove satisfactory.

Then I’m stuck. I will need to invest in maintaining that artifact or adapting it. As

you know, the costs of any project are driven by the decisions you make in the first few

months. Therefore you have to make good enough decisions, so that you can live with the

consequences.” Person F adds, “So you get to a point where almost certainly when you are

modifying about 2/3 of it, you’re losing money, you would have been better off to start

191

from scratch.” Person H states, “there were some unique requirements for our program

that caused us to have to maybe do additional changes that we maybe didn’t anticipate

upfront.” The artifact here is usually code. In the latter case, according to Person B, “the

more people that you have reusing a component the less freedom of movement you have

for any individual stakeholder in that reuse.” In this case, any artifact could be involved.

Understanding was also an obstacle for nonembedded systems reuse. Most of the con-

cerns were the same as for embedded systems. As Person B points out, “part of the up

front cost is learning what the other guy did.” However, nonembedded systems were also

concerned with making their products useful for more than their own projects. Person B

states that, “I would like to say that reuse in our domain is black and white, but there’s

always shades of gray in there where you thought you were designing something that was

general purpose, but you hadn’t considered a particular use case that would then need to

be accounted for when it’s used on another program.”

As with embedded systems, nonembedded systems reuse was impacted by platform

dependence. Person G offers an example: “One experience I can cite is I adopted an entire

application. That application was produced for and ran very well on Intel CPUs and ran

on AMD CPUs, however the application underlying the physics of the application was

poorly adapted to an AMD. It would have required significant investment.” According to

Person H, “We’ve had issues with platform independence and how independent everything

can really be. About anytime we’re changing hardware we are also changing operating

systems. Most recently, obviously, we had the Linux port to deal with. Not everything

was perfectly, at least as it relates to the operating system. We had to make a fair number

of changes to address differences between Solaris and Linux.” Person I found that, “One

of the problems we ran into in the past with scientific algorithms is if we move from one

type of the processor to another, all the underlying mathematical libraries changed. And

so the porting cost was high. But if we all agree on using Intel X 86 and the associated

libraries that come with it then porting is much simpler.” While most of the nonembedded

systems were attempting to develop platform independent software, in some cases this was

192

difficult. As with embedded systems, all agreed that platform standardization would solve

many of these issues.

Metrics was also an issue for nonembedded systems. As Person I put it, “We still

depend too heavily on SLOC counts. In the days when everything was written in Fortran

or C, SLOC counts maybe made some sense, but now that you are doing stuff in C++ and

you are using commercial products, and you are using Java, I’m not so sure those SLOC

counts make a lot of sense as a basis for cost estimation.” Person H said, “We need to look

at how we could maybe more effectively measure whether reuse really helped us or not.

Because I don’t have any numbers to back it up.”

Table 5.15: Nontechnical Obstacles ∩ System Type ∩ Rating

Positive Negative
Obstacle Embedded Nonembedded Embedded Nonembedded
Commitment 3 0 5 3
Contracts 0 0 11 3
Individualism 0 0 10 6
Culture 1 0 18 6

Fewer nontechnical obstacles to reuse success were identified, but they were often more

intractable. Embedded systems negatively mentioned culture most often (18), followed by

the way the contracts were written (11), developer individualism 10 times and management

commitment 5 times.

Both individualism and culture were seen as problems for nonembedded systems, men-

tioned negatively 6 times each. Management and contracts each received three negative

comments.

5.2.4 Interpretation

Here we look at the answers to see if there are differences between embedded and

nonembedded systems. As mentioned earlier, the number of times the experts mention

particular key words appears to be related to the importance of those key words. We

193

conclude this because when a key word is mentioned over the course of several questions,

that key word is related to many aspects of reuse. In other words, if, when asked about

practices, success factors and obstacles, the respondent uses “code” in the answer, then we

conclude that code is an important element of practices, success factors and obstacles.

Similarities and differences between embedded and nonembedded systems over-

all in terms of reuse Both embedded and nonembedded systems had more positive

comments than negative comments about reuse, however, the ratio of positive vs negative

was much less for embedded systems by a 6:5 ratio, whereas nonembedded systems was by

a 3:2 ratio. All respondents reported reusing code and requirements, regardless of system

type, except for one nonembedded system developer. All but 2 of both the embedded and

nonembedded systems used test products, which include such things as test drivers, test

scripts, and test cases.

All embedded systems experts reported reusing design, whereas none of the nonembed-

ded systems experts reported reusing design. Rather, the nonembedded systems experts

were more granular in reporting reuse in the design phase. All but one of the nonembedded

systems experts reported using design models. None of the embedded systems experts re-

ported using design products, whereas all of the nonembedded systems experts did report

using them. Design products for nonembedded systems include such things as architecture

framework diagrams and flow diagrams, with UML or SySML as their design models. Five

embedded systems experts reported using Simulink models as their design models. All

but one of the nonembedded systems experts reported reusing the architecture, but only

two of the embedded systems experts did. Whether this difference was cultural, in that

nonembedded systems developers think of design in terms of a set of artifacts, whereas the

embedded systems developers consider design to be a whole is not clear. It may be that in

their reuse process, the embedded systems developers import the code as predesigned, pre-

developed units. None of the nonembedded systems reported using components, whereas

194

five of the embedded systems used components. A deeper look at the artifacts reused shows

that embedded systems reported reusing components such as interrupt controllers, clock

domain processing, and IPCore. These components would be used intact. None of the

nonembedded systems experts reported reusing such components.

Differences and similarities in development approach A challenge in comparing

development approach is in the wide variation of the definitions of the approaches. As

mentioned earlier, defining what constituted model based development differed from a

complete set of integrated models across the life cycle to the use of models in some phase

or aspect. As a result of this ambiguity, the use of model based development may be

overstated or understated.

A similar challenge exists in the definition of a product line. Person F stated that

to be a product line, the company needs to build large quantities of the product, which

doesn’t happen with very large systems: “but how often do we in <company> build 200

almost identical copies with slight and continuous variations of a product?” Yet Person M

says that to productize a system, a project will “start at requirements and make whatever

modifications needed to that to add functionality, and then of course modify a little bit of

the design and the code and whatever else, and add new test procedures. But we also do

regression testing and make sure that all of those things still work.” Person G says, “So

if you are doing a product line, you really want someone in control, you really do want

some central piece that is designing the system and forcing the splinters to line up along

with the product line.” In other words, it is the baseline control that differentiates ad hoc

reuse from product line development. Again, these differences in definition could cause

overcounting or undercounting of the use of product line development approach depending

on the definition used.

While over half of the embedded systems developers were using an ad hoc reuse ap-

proach, the negative comments about this approach exceeded the positive comments by

almost double. Two thirds of the nonembedded systems were using an ad hoc reuse ap-

195

proach, yet there was only one more negative comment about this approach than positive.

This could indicate that the development approach was selected for reasons other than

reuse and was the better approach. However, it is difficult to think of a reason other than

reuse to use this type of approach. Another explanation could be that while there are dif-

ficulties with the reuse in this approach, the difficulties are outweighed by the alternative

of starting anew with a different approach. The fact that many of these projects have been

ongoing for many years would lend credibility to this explanation.

The common use of component based development in embedded systems as opposed to

the lack of component based development in nonembedded systems could be the result of

the artifacts reused. As mentioned earlier, many items identified as reused artifacts are

components reused intact. Code for these components often comes with the purchased

platforms and is optimized to these platforms. It is difficult to tell whether the require-

ments were dictating the code and platform or the other way around, which, from the

comments, seemed more likely. Nonembedded systems did not report reusing components

with purchased pre-optimized platforms.

While only three embedded systems experts described using model based or product line

development approaches, the positive comments for model based were 16, compared to only

one negative comment, and positive comments for product line were 10 compared to only

two negative comments. This would indicate that when they can either begin their projects

with model based development or convert their inherited systems to models they have a

more positive experience. Person B said, “If we were starting from scratch, especially with

modern techniques, we would probably do a lot more model based architecture and design,

but right now, most of the significant changes are understood changes to an understood

system.” Thus, this expert expected that if the project was to be started today, the

development approach would be different. However, the cost of changing over now would

be higher than the benefits realized. Similarly, when they can productize their inherited

systems, the experience is more positive. In nonembedded systems, other than the product

line, none used the same development approaches. However, it could be argued that the

196

one reporting a SOA approach was also using both component based development and

model based development.

Table 5.16 shows the ranking the comments of development approaches comparing

embedded to nonembedded systems. We see that model based development receives the

most positive comments for embedded systems, whereas ad hoc reuse receives the most

positive comments for nonembedded systems. This is particularly interesting, given that

when asked what development approach they were using, four of the embedded systems

experts were using ad hoc development, and three were using model based development.

We also notice that ad hoc reuse had the highest incidence of negative comments for

both embedded and nonembedded systems. This, coupled with their statements reported

earlier, suggests that some of the embedded systems professionals were not using the de-

velopment approach of choice. Person G had some important things to say about this: “So

when we create software here there is no strategy for creating reusable pieces only for when

the program starts off and for going off and examining whether reuse is available.” and

Person L said, “So when we create software here there is no strategy for creating reusable

pieces only for when the program starts off and for going off an examining whether reuse

is available. Yes, ad hoc reuse in that you might get lucky and find something, but for the

most part you’re not going to find anything. But I’d say the kind of reuse we get here is

more or less ad hoc because there isn’t anything driving it. It is done by the people putting

together the system going off and seeing what they can grab, and it is ad hoc. There’s no

catalog, there’s no help, there’s no guidance, other than thou shalt do some reuse.” Person

L pointed out that “It’s more of an ad hoc, we’ve got something we can reuse, those tend

to be less successfully reused.” Person L also said, “Plus we would be bridging technologies

across a decade or more and the technology in hardware and software is evolving so rapidly

that who would want to reuse something that’s 10 years old? Why would you want to try

to reuse a desktop that’s an Intel Pentium 66 MHz machine or would you rather go by the

latest one out there? That’s part of the problem. In avionics and electronics, who wants

to reuse something that was designed 18 to 20 years ago¿‘ Yet many of these projects have

197

to do this because they have been ongoing for several years. As mentioned earlier, if they

were to start their projects today, several suggested that they would use a model based

approach.

So why were they using ad hoc reuse if they would prefer to use something else? The

projects using ad hoc reuse have been around for decades. The systems are not being

developed as much as they are being enhanced for subsequent iterations. The cost of

refactoring the systems into a different development approach, most likely model based,

could not be justified. As mentioned earlier, if they were to start their projects today,

several suggested that they would use a model based development approach.

Table 5.16: Ranking of Development Approach by System Type

Positive Negative Informative
Rank Embedded NonembeddedEmbedded NonembeddedEmbedded Nonembedded
1 Model Based Ad Hoc Ad Hoc Ad Hoc Model Based Ad Hoc
2 Product Line SOA Product Line Product Line Ad Hoc Model Based
3 Ad Hoc Component

Based
Component
Based

Model Based Product Line Product Line

4 Ontology Product Line Component
Based

5 Model Based

As we look at the actual comments from the respondents, we find that they were not

very interested in what their development approach was called. As they were able, they

incorporated whatever portions of the approaches that would work for them and didn’t

bother to give it a name. As one respondent said, “it is whatever the customer wants to

call it.”

Differences and similarities in reused artifacts Table 5.17 shows that there are

similarities between embedded and nonembedded systems. Four of the five artifacts that

get reused are the same. The only difference is small, design is fifth with embedded systems

and sixth with nonembedded systems. Differences occur for less reused artifacts. Hardware

is the seventh most commonly used artifact in embedded systems, whereas it is 11th for

198

nonembedded systems. Nonfunctional requirements are eleventh for embedded systems,

but 16th for nonembedded systems. Service level agreements were not mentioned at all

in embedded systems, they were 17th in nonembedded systems. Data products were 13th

for nonembedded systems and not mentioned at all in embedded systems. Clearly, the

artifacts reused between the two types of systems after code, components, requirements,

design,models and architecture are different.

Code, requirements and nonfunctional requirements were first, second and third re-

spectively in negative comments for both embedded and nonembedded systems. Experts

from both types of systems indicated changes had a serious impact on modifying the code.

However, both embedded systems and nonembedded systems experts stated that when the

requirements were contained in models and the code generated from those models, the

changes were fairly easy to implement. We conclude that code and both functional and

nonfunctional requirements are problematic when trying to migrate code from one system

to another in either type of system. Yet code, requirements and nonfunctional require-

ments were all three in the top five of the reused artifacts. This may be one of the reasons

reuse has not lived up to expectations.

While embedded systems experts rarely commented on architecture, architecture was

the most prominent topic among nonembedded systems experts. Person E suggested that

early in the life cycle, certain components and code products were selected, and the archi-

tecture built around those items. We conclude from this that reuse of these artifacts are

to some degree dictating the solution.

The statements about models made it clear that the respondents were talking about dif-

ferent types of models. We separated the types of models into four categories, architecture

models, design models, performance models and simulations. Table 5.8 shows the different

models and the number of comments about those models made by the respondents.

The embedded systems experts made far more informative comments about models

than the nonembedded systems experts (92 vs 54). Embedded systems experts referred

most often to design models, and far more often than nonembedded systems (32 vs 21),

199

followed by architecture models (24 and 16) and performance models (18 and 23). One big

difference is the number of references to simulations for embedded systems vs nonembedded

systems (24 vs 9).

Table 5.17: Ranking of Artifacts by System Type

Positive Negative Information
RankEmbedded NonembeddedEmbedded NonembeddedEmbedded Nonembedded
1 Component Architecture Code Code Code Components
2 Models Code Requirements Requirements Hardware Models
3 Architecture Components Nonfunctional

Require-
ments

Nonfunctional
Require-
ments

Component Code

4 Code Models Design Hardware Models Interfaces
5 Design Requirements Hardware Design Architecture Requirements
6 Requirements Design Architecture Algorithm Requirements Data Prod-

ucts
7 Hardware Interfaces Interfaces Component Interfaces Hardware
8 Design Pat-

terns
Test Prod-
ucts

Component Models Data Prod-
ucts

Documentation

9 Interfaces Design Pat-
terns

Models DocumentationNonfunctional
Require-
ments

Services

10 Test Prod-
ucts

Algorithm DocumentationInterfaces Design Algorithm

11 Nonfunctional
Require-
ments

Hardware Data Prod-
ucts

Architecture Test Prod-
ucts

Test Prod-
ucts

12 DocumentationDocumentationDesign Pat-
terns

COTS Objectives Architecture

13 Algorithm Data Prod-
ucts

Algorithm Data Prod-
ucts

Algorithms Design

14 COTS Services Test Prod-
ucts

Test Prod-
ucts

COTS Objectives

15 Test Clusters COTS Objectives Objectives Test Clusters Nonfunctional
Require-
ments

16 Objectives Nonfunctional
Require-
ments

Test Clusters DocumentationTest Clusters

17 Services Service Level
Agreements

COTS

18 Test Clusters
19 Objectives

200

Differences and similarities in technical success factors Table 5.18 compares tech-

nical success factors between the types of systems. Positive comments mean that the factor

was present and a reason for successful reuse. Negative comments mean that the factor

was absent and as a result the reuse experience suffered. Here we find greater differences.

For embedded systems, the success factor with the most positive comments was a similar

environment or project. It was 14th for nonembedded systems. This implies that similarity

is not as critical for the nonembedded systems.

Experience ranked fifth for embedded systems, but only 16th for nonembedded systems.

From Person F, “I know in our image acquisition system the analysis, looking at the four

ways to do it, the trade-offs, we had meeting after meeting with all the experts, and we all

looked at each other at the end of the meetings and you know, there’s only one real choice

here, given our situation and constraints.” Having the experienced people there helped

make the right decisions. According to Person G, “The code that we reuse is internal, we

have access to it, we know the people who wrote it, they can tell us the worms about it

upfront and then we can say this is good or is not good, and so we don’t really have many

times were we picked up a piece of code and it turned out to be a disaster.” People familiar

with the systems protects against unsuccessful reuse situations.

Autogeneration of code was 7th for embedded systems, but only 19th in nonembedded

systems. This could be explained by, as mentioned above, embedded systems frequently

using a modeling tool that autogenerates code.

On the negative side, a lack of design for reuse and searchable libraries were both cited

in the top five for both embedded and nonembedded systems. In the case of design for

reuse, several experts said they experienced overruns because the products they were given

to reuse were not designed for reuse. This is particularly a problem, because, according to

two experts, designing for reuse costs 30% more than normal design and development. In

bespoke projects, the customer does not want to pay that extra amount so that some other

customer can benefit. On the other hand, the company needs a good business case that the

products will be reused enough for the company itself to underwrite the added expense.

201

This usually does not happen. There are two types of problems related to searchable

libraries. The first is that there is no searchable library to use. The second is that the

library is poorly organized, documentation is not included with the artifacts, leading to an

expectation of reusability in a given project that is subsequently proven false.

Lack of experience can create problems. According to Person D, “The problem we’ve

seen, is when I’m called in is after some program already made their decision and the poor

designer that had to inherit this, the guy that did it maybe 5 or 6 years ago was long gone

or won’t help or doesn’t remember anything. The people that were the go to people before

aren’t producing the same parts anymore.”

Differences and similarities in nontechnical success factors Table 5.19 shows the

ranking of the nontechnical success factors by system type. The positive comments for the

top three are the same, in a different order. Both show process as the most important,

with control/discipline and planning also mentioned.

It is when we get into the actual remarks that we find out how important the respon-

dents think control is. Person J says, “I am more authoritarian about tracking reuse. Much

more. I will never allow, well we’re going to do this percent of reuse and say hey guys we’re

going to reuse these things and then let the teams go off and do design. Never. Won’t do

it. Once I decide on a strategy, so if it’s a mega reuse strategy then I track that strategy

closely. If it’s a framework strategy I track the documentation part very closely. Any

changes architecturally. Any changes, while you’re at it, on these use cases. Oh, that’s

a real problem. Why do we add those use cases? That’s just going to chip away at the

framework approach. So once I figure out my strategy, then I monitor that strategy, how

do they say? Put all your eggs in one basket and monitor that basket carefully.” This was

echoed by several of the experts on both embedded and nonembedded systems. Person

J stated that this is how he controls throughput and latencies. Person D indicated that

this control is how he prevents inserting defects. Person E indicated that control is how he

controls the cost. Person B points out that if the reuse is not controlled, copies of the reuse

202

Table 5.18: Ranking of Technical Success Factors by System Type

Positive Negative
Rank Embedded Nonembedded Embedded Nonembedded
1 Similar Environ-

ment or Project
Consistent or Con-
trolled Baseline

Design for Reuse Searchable Library

2 Standardization SOA Searchable Library Platform Indepen-
dence

3 Consistent or Con-
trolled Baseline

Test Products/ Au-
totesting

Trade off Design for Reuse

4 Design for Reuse Standardization Platform Indepen-
dence

Consistent or Con-
trolled Baseline

5 Experience Testing Similar Environ-
ment or Project

Documentation

6 Test Products/ Au-
totesting

Platform Standard-
ization

Experience Experience

7 Autogen Searchable Library Consistent or Con-
trolled Baseline

Standardization

8 Trade off Encapsulation Standardization Portability
9 Testing Platform Indepen-

dence
Test Products/ Au-
totesting

SOA

10 Searchable Library Design for Reuse Testing Maintenance
11 Make fit Comprehension Comprehension Trade off
12 Comprehension Portability Portability Similar Environ-

ment or Project
13 Encapsulation Documentation Make fit Test Products/ Au-

totesting
14 Portability Similar Environ-

ment or Project
Documentation Testing

15 Platform Standard-
ization

Make fit Make fit

16 Object Oriented Experience Platform Standard-
ization

17 Platform Indepen-
dence

Parameter Driven Autogen

18 Documentation Autotesting
19 Parameter Driven Autogen
20 Maintenance Trade off
21 Autotesting Maintenance
22 Autotesting Autotesting
23 SOA Object Oriented

proliferate and the baseline is compromised. Control is closely linked to process. According

to the respondents, it is through defined processes that the control is maintained.

203

Table 5.19: Ranking of Nontechnical Success Factors by System Type

Positive Negative
Rank Embedded Nonembedded Embedded Nonembeded
1 Process Process Process Estimation
2 Control/ Discipline Planning Management com-

mitment
Process

3 Planning Control/ Discipline Estimation Control/ Discipline
4 Management com-

mitment
Culture Control/ Discipline Management com-

mitment
5 Culture Management com-

mitment
Planning Culture

6 Estimation Estimation Culture Planning

Differences and similarities in technical obstacles Interesting differences emerge

when the obstacles to reuse are studied. In this discussion, positive responses were situa-

tions in which the obstacle was overcome. Negative responses were situations in which the

obstacle caused a reduction in reuse effectiveness.

While both system types identify the same top three obstacles and comment on their

negative effect on reuse, the fourth item is different in an important way. Developers of

embedded systems mention platform dependence fourth most often as an obstacle, whereas

platform dependence is only 6th in mention for nonembedded systems. Further, many in

embedded systems do not see platform independence as a goal or even a good idea. Person

D says about platform independence, “We’re never going to get there and we may not want

to. Because you won’t get the performance out of the specific device. And the devices are

extraordinarily high performance right now.” All of the embedded systems experts, but

only two of the nonembedded systems experts prefered the idea of platform standardization

to platform independence.

Another noticable difference between embedded systems and nonembedded systems

developers was the mentioning of the obstacle that the software would be easier to build

from scratch. While it was sixth in embedded systems, in nonembedded systems it was

14th. Person D stated, “In some cases it took longer to reuse code because of all the issues

with it, and it would have been easier to just do it from scratch.” According to person K,

204

“Sometimes it costs the same, and it’s an inferior solution to what it would have been if

you had just done it from scratch.” Person L said, “When people are presented with a pile

of code they think that they have to slog through this and develop their own mental image

or mental model of it, they think, I’ll just write the stupid thing myself or build it in my

own model.” According to person L, “I think it is just the fear factor that it’s less risk if I

schedule to build it myself. Then I feel like I have control of the situation.” These were all

embedded systems experts.

Obsolescence is a big issue. Person C asks, “So, on the producing side, the challenge

is how do you produce a reusable artifact that stays useful? ” He continues, “There is

a concept that I think you’ve heard me talk about called bit rot, which is anything that

sits on the shelf becomes less useful over time. It’s a decay function.” From person I:

“What can be a problem is if the sensor technology changes radically, then in many cases

the existing requirements are not appropriate.” Person J: “That stuff that we have to deal

with all the time, where we say, okay I’ve got some obsolescent stuff, I’ve got to move stuff

from one platform to another platform, or from one language, which we consider obsolete,

to another language.” And Person L said, “Plus we would be bridging technologies across

a decade or more and the technology in hardware and software is evolving so rapidly that

who would want to reuse something that’s 10 years old? In avionics and electronics, who

wants to reuse something that was designed 18 to 20 years ago?”

Almost every expert in both types of systems cited a problem with what they call

forking. Forking occurs when a reuse product is migrated from one system to another, and

the new system places that product under its own configuration control and proceeds to

modify it. When the reusing system does not report the modifications to the originating

system along with rationale for modification and complete descriptions of the modifications,

the new application is considered to have “forked.” When another project is contemplating

reusing the product, it is not possible to know the differences between the first and second

versions and why they are different. Other problems are introduced by forking. As Person

K describes the problem, “The problem there is those people often will run into problems

205

that were in the code, but they’ve since kind of forked, they pretty much just copied from

somebody else, they don’t have the benefit of getting the fixes for most of the problems

that were put in the code, they also don’t get advances when you update the design and

add more features to the design and implementation, they lose those as well.”

Table 5.20: Ranking of Technical Obstacles by System Type

Positive Negative
Rank Embedded Nonembedded Embedded Nonembedded
1 Understanding Modification Understanding Modification
2 Modification Performance Goals Modification Understanding
3 Complexity Maintenance Fit Fit
4 Fit Certification Pro-

cess
Platform Depen-
dence

Difficulty - real or
perceived

5 Platform Depen-
dence

Understanding Difficulty - real or
perceived

Maintenance

6 Lack of Metrics Complexity Easier to build from
scratch

Platform Depen-
dence

7 Obsolescence, age Lack of Metrics Existing Defects Unintended Conse-
quences

8 Performance Goals Fit Missed Opportuni-
ties

Complexity

9 Lack of trust Obsolescence, age Lack of Documenta-
tion

Loss of flexibility or
freedom

10 Existing Defects Lack of Documenta-
tion

Lack of Metrics Forking

11 Forking Obsolescence, age Missed Opportuni-
ties

12 Loss of flexibility or
freedom

Obsolescence, age

13 Performance Goals Performance Goals
14 Forking Easier to build from

scratch
15 Lack of trust Lack of Metrics
16 Unintended Conse-

quences
Existing Defects

17 Certification Pro-
cess

Lack of Documenta-
tion

18 Complexity Certification Pro-
cess

19 Maintenance Insert defects

206

Differences and similarities in nontechnical obstacles Table 5.21 ranks nontech-

nical obstacles. There are more similarities than differences in the nontechnical obstacles.

Culture was mentioned most often by experts in both types of systems. According to

Person L, “In my mind the biggest obstacle to software reuse is more cultural and people

driven, not technical.” The biggest cultural obstacle mentioned was the “not invented here”

attitude. This was cited by all but one respondent as a major obstacle to reuse. According

to Person E, “developers don’t trust work other people have done, especially if the other

people developed it for a different purpose. So the level of concern about not invented here

grows probably exponentially as it gets further and further from the developers.”

Individualism was another obstacle the types of systems shared. This is where the

individual developers prefer to build their own products rather than reuse. Person G

explains, “But when we have programs that are staffed by younger software engineers,

they really view everything that previously exists as having been old-fashioned. And so

regardless of how good it was before, they’d rather write it again. They’d rather write it

anew. If they look at it and see one thing that they don’t like, they’re willing to pulse

out the whole thing.” According to person K, “So many people, it’s just their mentality.

So many people, they just don’t want to reuse, they think they can do a better job even

though they know that they’re going to spend a similar amount of time doing it. So it’s the

human factor. Somebody saying I’d rather redo it myself than use someone else’s Because

it isn’t exactly right, I think I can do a better job.”

One of the surprising findings in the comments from experts in both types of systems

was the impact contracts and the way they are written are having on reuse. Person A

said, “Some of it (lack of reuse) may also come from the way the contract is written, it

says you will do such and such and it doesn’t really enable reuse.” According to Person I,

“One of the problems we have is getting the government to spend the time and money to

really do an item by item evaluation of the existing requirements to see if they are truly

applicable for the new technology. When they don’t do that, we tend to run into some

problems.” While the DoD Software Reuse Initiative promotes reuse, Person K said, “I’ll

207

be honest with you, one of the biggest hurdles of reuse is really our customers. They tend

to put clauses and constraints on the reuse between their programs and other programs.

They will often require customer approval. That often kills a lot of reuse from the gate,

unfortunately.” He goes on to say that it is easier to develop the products from scratch

than to get the approval from those customers, and this is costing our government overall a

lot of money. This is supported by Person M: “When we talk about our top-level product

lines, those are funded by completely separate types of money, budgets, contracts and we

can’t mix those. If we have created a model under one contract we would not be legally

able to use that model in another. So a lot of times it’s driven that way. I would say that

the major obstacle goes back to that contractual restriction of not being able to use them

across major programs.”

Finally, commitment was cited as a nontechnical obstacle to successful reuse. Often,

while management requires the projects to “do reuse,” they are unwilling to commit re-

sources, such as time, money, and staff, to creating an environment that encourages reuse.

The result is that, as person D pointed out, the requirement to reuse “becomes a tax,”

that is, an added burden to the staff.

Nontechnical obstacles are serious impediments to successful reuse, but they cannot

be overcome by technical staff. It would require efforts on the part of management to

overcome these obstacles.

Table 5.21: Ranking of Nontechnical Obstacles by System Type

Positive Negative
Rank Embedded Nonembedded Embedded Nonembedded
1 Commitment Culture Culture
2 Culture Contracts Individualism
3 Individualism Contracts
4 Commitment Commitment

208

5.3 Threats to validity

Because semistructured interviews are based on qualitative opinion rather than numer-

ical data, we use the Maxwell threats to validity tailored to qualitative research [90]. These

threats fall under the catagories of Descriptive validity, Interpretive Validity, Theoretical

Validity, Generalizability, and Evaluative Validity .

Descriptive Validity There is a concern about the factual accuracy of the account of

the subjects. The account could be colored by the subjects’ opinions or points of view.

There may have been enough elapsed time that the subject may not remember as clearly

as if he had been interviewed immediately after the event. This threat had to be accepted.

There is also a concern that the interviewer may be mistaken in what the subject

actually said. This concern is addressed by having recorded interviews and reviewing the

transcripts against the recordings, and by having the respondents review the transcripts.

As mentioned earlier, the differences in definitions of approaches, and to some extent,

the artifacts, could have led to overcounting and undercounting.

One difficulty for those wishing to replicate this experiment is having access to many

subject matter experts in this many different companies and working on this many different

kinds of projects.

Interpretive Validity There is a concern that even if the account of the events is

correct, its meaning could be misinterpreted. First, there could be basic differences in

the way important terms are used, such as “model” and “component.” There could be

cultural overloading of words and phrases that cause the interviewer to understand the

events differently from how the subject meant them, the “emic” interpretation vs the

“etic” interpretation. Often emic interpretations are heavily influenced by the culture ,

its customs and beliefs. Thus, the subject’s analysis of the events could be colored by

beliefs widely held in his organization or location. On the other hand, the interviewer

could be making an “etic” interpretation, that is, interpreting the events in a cross-cultural

209

mannerand not understanding the impact of the local or organizational culture on the

reporting of the event. In our case the interviewer, as a former employee, understands the

termnology as well as the culture.

In addition, the email that asked for participation defined the key terms used by the

interviewer. If there was ambiguity in a term used, the subject was asked for a definition.

While this did not remove the ambiguity introduced by culture and beliefs, it helped with

the linguistically introduced ambiguity. The definition the subject used was then applied

to the subjects’ reports on their events.

Theoretical Validity “Theoretical validity goes beyond concrete description and inter-

pretation and explicitly addresses the theoretical constructions that the researcher brings

to, or develops during, the study [90].” We have not identified theoretical threats to validity.

Generalizability “Generalizability refers to the extent to which one can extend the

account of a particular situation or population to other persons, times, or settings than

those directly studied [90] p.293.” The main threat to validity here is whether this research

can be extended to other industries, or to organizations with different processes, procedures

and training. This threat is mitigated to some extent by the variety of sites and projects

studied. In addition, there is doubt as to whether these results can be extended to smaller

projects. However, the generalizability of a study where the judgment method is used to

select the candidates is limited. Generalizability was not a goal of this study, rather, it was

to understand the reasons for differences.

One major threat to validity is the size of the projects studied. All of these projects are

extremely large. The embedded systems are very large government acquisitions with mul-

tiple subsystems and highly refined performance requirements. Most of the nonembedded

systems involve big data, with high requirements for processing and throughput. Even the

the smaller Independent Research and Development (IRAD) are intended to be migrated

to very large systems. Many of the obstacles for these large systems may not exist for

smaller or less controlled systems.

210

Evaluative Validity Evaluative Validityis the question as to whether the researchers

were able to describe and understand the events without being evaluative or judgmental.

It involves the researchers removing their own biases and grouping and decomposing reports

of the events. This threat is compounded by the fact that the respondents were being asked

to give their own opinions on the topics, that is, they were asked to be evaluative about

the subject. To alleviate this threat, the researcher took great pains to ask questions that

were neutral, and to limit responses to indications that the respondent had been heard

(without further comment).

5.4 Conclusion, Lessons Learned and Future Work

One of the original questions was, Is reuse truly beneficial? While the interviews do

indicate that reuse is often of great benefit, they also indicate that reuse is not always

a good solution to a problem, and that it comes with cost. Reuse requires research into

available products and thorough analysis of the candidates selected. Failure to understand

the design, interfaces, performance and other aspects of the reuse can cause the outcomes to

be poor. While most respondents cited design for reuse as an important factor in making

reuse work, there is added cost to developing for reuse. The project managers need to

determine whether the artifacts will be reused enough to recuperate the added cost before

the artifact becomes obsolete. Most of the respondents discussed design for reuse and code

together - designing the code to be reused. However, as person L pointed out, "code is

especially difficult to understand, because it is not visual, and sometimes it is hard to

follow."

Most respondents indicated that if a candidate artifact is not well documented, if any

modifications need to be made, the artifact is not reusable. This comment was especially

made in reference to code. Person L points out that "models are graphical, and therefore

much easier to understand. Models become their own documentation."

211

Locating potential reuse products was cited as a difficulty by nearly every respondent,

both embedded systems and nonembedded systems. Most had tried libraries of some sort,

but the libraries had significant problems. They were not easy to use, they did not carry

documentation, they were not often populated by projects who had developed similar

products.

The way contracts are written was another issue that inhibits reuse. While on the one

hand, the government is mandating reuse through the software reuse initiative, many of

the contracts have clauses that make porting artifacts from project to project too difficult.

Rather than go through the process, the developers consider it easier to just redevelop.

Management needs to address reuse and the way contracts are written to overcome this

issue.

While all of the respondents indicated that they are reusing code and requirements,

those were not the artifacts that provided the highest return on investment. Every re-

spondent except one placed code and requirements somewhere between the middle and

the bottom of the list. For ten respondents, architecture and design artifacts offered the

greatest return, for four, test products. Interestingly, the four who ranked test products

highest were all from embedded systems.

The semistructured interviews did indicate that embedded systems and nonembedded

systems, while in many ways similar, are different in important ways. Embedded sys-

tems experts endorsed platform standardization but did not favor platform independence.

Nonembedded systems experts favored platform independence. The ability and need to

optimize to a platform is important to embedded systems. Most of the nonembedded sys-

tems are in virtual environments and need to be platform neutral. One could reasonably

claim that the virtual environment is their platform, as Person B suggested. Embedded

systems reuse certain artifacts, in particular, code and requirements, because they were

already developed for the platform. Embedded systems experts found that a similar envor-

inment was important, nonembedded systems experts found it much less important. This

may be because the nonembedded systems were being built in a web-based environment,

212

so the similar environment was already established. Most of the embedded systems experts

felt that it was easier to build products from scratch, whereas the nonembedded systems

experts felt less so.

Having identified these differences, it is important to understand why the difference?

The difference in model reuse is particularly interesting. The embedded systems were,

for the most part, much older systems. The first instantiation of many of them predated

modeling tools. Two of the embedded systems respondents indicated that if they were to

start today, they would use architecture models and design models. However, migrating and

reengineering at this point is too expensive, the systems are working, and the technology

insertion is achievable. Over time, these systems may phase out and more embedded

systems will use more models up front. In fact, three of the nonembedded systems had been

reengineered and were using SOA, and two of the embedded systems had been reengineered

into product lines with a reference architecture as the center. All of the reengineered

systems were reusing models extensively, the embedded systems that had been reengineered

were also reusing many components.

The difference involving platform independence may be more intractable. Especially

in core software, that is, software written directly to the processor as is an FPGA or an

ASIC, the software is optimized to the platform. Once it is coded, it is very hard to rehost.

However, as performance modeling tools and design modeling tools have been used more

often, each with autogenerating capabilities, the platform specifics can become attributes

in the model. Platform standardization allows the models to carry the specifics of the

different platforms. This allows the models to be reused and the code to be specifically

generated for each instantiation. Over time, we see code being regenerated for each use,

with the reused products migrating away from code and requirements and to the models.

This will enable more reuse and more successful reuse, as was the experience of person G.

The question of a similar environment is somewhat related to the platform indepen-

dence. Embedded systems are difficult to port to different environments. It may be that

in fact, the same is true for nonembedded systems, but the virtual environment is in fact

213

the same even if the application does very different things. However, changing that envi-

ronment is problematic. We found this to be the case when Person I discussed migrating

a ground based nonembedded algorithm into an airborn embedded algorithm. “I think

platform independence can cause a problem. Let me give you an example. For the ground

data processing systems, because we standardized on X 86, and VMware and whatever

else, we have these highly tuned algorithms that can be moved from X 86 system to X

86 system. But then they say to us, those algorithms are great. We want him to run on

an embedded system in an airborne platform. I say, well that’s great. Are you running

X 86 systems in your embedded? Well, we’ve got these GPU’s that we are using to save

size, power, and weight, and blah blah blah. All of the sudden now it’s a totally different

platform. To make these algorithms work on the embedded platform is a huge cost.”

Given these differences, these interviews suggest that it is unwise to assume embedded

systems are the same as nonembedded systems, or that they should be handled in the

same way. For now, they should have different sets of processes and different metrics.

Some research is being done on developing metrics already [105], but more needs to be

done.

However, these interviews also suggest that the two may be converging. Many of the

older systems have been modified to the point where they have become brittle. They will

have to be reengineered or phased out. If the aforementioned projects are an indication,

the embedded systems will move to product lines, and the nonembedded to SOA. A closer

look at the reengineered projects shows a great deal of similarity in the SOA and product

line solutions. Both use reference architectures, based on models. The services mentioned

in nonembedded systems differ from the components in the embedded systems only in that

embedded systems components include the specific hardware. Both embedded systems and

nonembedded systems developers are using models to autogenerate code. So, while code

has been the most frequently reused artifact in the past, with the increased use of models

with autogeneration, it may become less and less common in the future. In fact, Person N

said, “Essentially a coder is going to, in the future, be a software technician, rather than a

214

software engineer. My hope is that we don’t need software coders any more, because we’ll

develop robust graphical software tools that will allow us to unambiguously auto generate

the code.”

Lessons Learned These interviews provided a number of lessons.

1. Reuse is not always a good solution to affordability. Both embedded systems experts

and nonembedded systems experts cited examples where reuse was not beneficial.

2. Work needs to be done up front to identify and understand reusable products. As

several of the experts pointed out, the decisions made in early stages of development

impact the success of the reuse for the rest of the life cycle.

3. There are subtle but important differences between embedded and nonembedded

systems. These differences tend to be related to reuse of code.

4. if management is going to mandate reuse, they need to provide the developers with

a searchable library of well developed products and complete documentation.

5. If reuse is to be feasible, contracts need to be written to accommodate reuse.

6. While most frequently reused, code offers the lowest return on investment.

Future Work There appear to be benefits to reuse in each development approach. Many

of these benefits in development approach appear to be complementary. For example,

model based development overcomes the problem of platform dependence, while compo-

nent based development enables reuse of unmodified code to specific platforms. By putting

specifics of different platforms into a model and allowing the developer to select the plat-

form, the model can help the developer select the best component already developed for

his requirements. Then the developer would only have to develop artifacts for the system

that have not yet been developed for the platform. A product line could collect both mod-

els and components, allowing a developer to quickly assemble the needed artifacts for the

215

system. A topic for further study would be to identify the strengths and weaknesses of

each development approach and use this information to formulate an approach that takes

advantage of the strengths and minimizes the impacts of the weaknesses. This is discussed

in the next chapter.

216

Chapter 6

Creating a New Framework to Enable Reuse

In our research, we have sought to identify what reuse strategies or combinations of

strategies are most (and least) effective for various types of projects, and which artifacts are

most effectively reused. We have identified success factors for reuse effectiveness and obsta-

cles. We performed a review of existing literature for clues to reuse practice and impacts.

We conducted a survey of software practitioners to identify the development approaches

they actually use and the artifacts they reuse. We performed a series of semistructured

interviews to gain insights into the factors that enable success and the obstacles they en-

counter. We synthesized the information obtained in these studies to posit a framework

for reuse that maximizes the success factors and neutralizes the obstacles.

6.1 Summary of Existing Literature

To begin our research into reuse practices in embedded and nonembedded systems, we

looked at extant literature [7]. While we found many, many articles discussing reuse, some

in embedded systems and some in nonembedded systems, we found none that directly

compared the two types of systems. We found many articles discussing reuse in different

development types, but we found none comparing reuse in different development types.

We found seventeen empirical studies covering reuse in embedded software. Seventeen

other studies involved reuse in nonembedded software. Nine studies covered development

strategies in both embedded and nonembedded systems, however, these studies did not

217

compare embedded systems to nonembedded systems. Seven types of empirical studies

were represented in our review, three were of the more rigorous type (case study, quasi-

experiment, survey), two were a less rigorous type (review of practice and meta-analysis)

and two were the least rigorous (expert opinion and experience report). In these catagories

there were five studies of embedded systems, nine studies of nonembedded systems and

three of both embedded and nonembedded systems were of the most rigorous types. No

studies of embedded systems, one of nonembedded systems and two studies of both embed-

ded and nonembedded systems were of the less rigorous types. Twelve studies of embedded

systems, seven studies of nonembedded systems and four studies of both embedded and

nonembedded systems were of the least rigorous type of study.

Of the aforementioned studies, only those we refer to as rigorous or less rigorous offered

quantitative data. Qualitative data was available for product line (two studies), and model

based development (three studies). There were no quantitative data for computer based

development, and the studies that did not specify their development approach also did not

include quantitative data. All studies did offer qualitative data. This classification was

used to identify and compare outcomes based on the metrics discussed in the papers.

We found that when we searched the papers to determine how success was measured,

the metrics fell under five basic categories: size, reuse levels, quality, effort, performance

and programmatic (such as staff, institutionalized process, or schedule). We catalogued

the specific metrics used under these categories for comparison. That comparison showed

that while both embedded systems and nonembedded systems reported size, reuse levels,

quality and effort measures, their lower-level metrics were different (for example, in qual-

ity, both reported on defect density, while only embedded systems reported on reliability,

and only nonembedded systems reported on severity, and only studies of both embedded

and nonembedded systems reported on source of error). Only embedded systems reported

on performance measures, and only studies of both embedded and nonembedded systems

reported on programmatic measures. Already, we were noticing differences between em-

bedded and nonembedded systems.

218

We next turned to outcomes. Given the diverse ways in which various system attributes

and reuse variables were measured, as well as the lack of effect size in most studies, we could

not perform a metaanalysis that could quantitatively assess and compare similarities and

differences between outcomes. In an effort to quantitify and analyze the data, we include

as “characteristics of events” the concepts of “better, worse or mixed.” and assigned an

ordinal measure to outcomes. A relatively large number of papers only reported very

high level results rather than results for specific attributes of reuse outcomes. These are

scored similarly, classified under “general.” In the narrative that follows, we report in

parentheses the embedded systems normalized scores followed by the normalized scores for

nonembedded systems.

Once the scores were normalized to account for differences in the numbers of projects

reported on, and the normalized scores were compared, and we noted that in every case,

nonembedded systems projects reported higher positive reuse experience than did embed-

ded systems projects. On the other hand, more embedded systems projects reported nega-

tive reuse experience than did nonembedded systems. In particular, the measure of quality

was reported as worse more than seven times as often as for nonembedded systems (35%

to 6%), and effort was reported as negative more than five times as often for embedded

systems as for nonembedded systems (28% to 5%). The overall experience for embedded

systems projects was reported negative at nearly 5 times the rate of nonembedded sys-

tems (14% to 3%). This is an important difference between embedded and nonembedded

systems.

As we moved into the development approaches, we found that for product line, the

reported measures were the same for embedded systems and nonembedded systems, except

for the reuse levels (64% vs 88% positive, 36% positive vs 12% negative) and general reuse

(81% vs 19% positive, 19% vs 0% negative). There was a large difference between embedded

and nonembedded systems in model based development in all metrics. While reuse level

was higher for embedded systems in model based development (77% to 65%), effort, quality

and general results were all worse for embedded systems (effort 19% vs 53% positive, 44%

219

vs 11% negative; quality 15% vs 33% positive, 33% vs 8% negative; general 22% vs 53%

positive, 11% vs 7% negative, 67% vs 40% mixed). In component based development,

while both embedded and nonembedded systems reported higher reuse levels and a general

positive reuse experience, there were again important differences with the other measures,

with embedded systems reporting less positive and more negative results (effort 33% vs

67% positive, 33% vs 0% negative; quality 0% vs 100% positive, 75% vs 0% negative).

We note that there were too few observations in component based development projects to

draw conclusions about these numbers. Results were interestingly mixed when development

approach was not identified: while nonembedded systems projects reported worse results

in terms of reuse levels (0% vs 20% positive, 50% vs 80% negative), nonembedded systems

projects reported much better results in terms of effort and quality (effort 67% vs 100%

positive; quality 0% vs 100% positive, 75% vs 0% negative). In both embedded and

nonembedded systems projects 100% reported positive experiences.

We tested the hypotheses for significance using Chi-Square. We found a significant

difference between embedded and nonembedded systems when measuring effort in model

based development and measuring quality when the approach is not specified (p-values of

.0292 and .0005 respectively). This tells us that:

1. Savings in effort are less likely to be successful for embedded systems when a model

based approach to reuse is employed.

2. Quality improvements are less likely to be realized in embedded systems (in studies

that did not report on the development approach used).

We searched the analysis portion of the appropriate papers to see if we could identify

reasons for these results. Since the studies were not comparing development methods,

the closest explanation we found was in the DARPA project [118], wherein the researcher

explained, “Our implementation was not carried out through widespread modeling, and

there are a few reasons for this:

220

• the diverse team of experts in robotics, computer vision, software, and control were

not all familiar with software modeling techniques;

• the operating environment of real-time behaviors required many components to run

on a real-time operating system with limited tool support;

• the behavior of many components is best specified using general-purpose techniques,

especially the advanced control algorithms used.”

We concluded that, indeed, there were differences between reuse in embedded and

nonembedded systems. While inexperience with the modeling tools may account for some

of the negative reuse experience, we were not convinced that this inexperience sufficiently

explained the significant differences. It seemed that there had to be more reasons for these

differences than inexperience with tools. In order to further understand these reasons,

we decided to perform a survey of practitioners. This survey would identify actual reuse

practices in an aerospace environment and inquire into the reuse experiences.

6.2 Summary of The Survey

The review of existing empirical studies about reuse comparing the reuse outcomes for

embedded systems against nonembedded systems using different development approaches

revealed that reuse in embedded systems leads to significantly less positive outcomes than

in nonembedded systems when the development approach is model based engineering, and

that, overall, reuse in embedded systems is less successful than reuse in nonembedded

systems. There were also some indications that some of the difference in outcomes could

be related to the artifacts reused, but few of the empirical studies focused on artifacts and

their impact on reuse. In fact, while not explicitly stated, it appeared that most of the

projects studied in the literature were reusing code. When other artifacts were considered,

their impact on the success of the reuse was not studied.

221

Our search of existing literature left several questions that we felt needed to be answered

in order to understand and implement successful reuse. First was whether industry prac-

titioners share the same reuse experience as the research for embedded and nonembedded

systems. Second is the question of what artifacts can be reused for successful outcomes.

Third is the whether there is a difference between embedded systems and nonembedded

systems in outcomes.

Because our questions were of the form described by Yin [?], we decided to use a

survey to pursue these questions. To answer these questions, we conducted a survey of

aerospace professionals. Eighty-two subjects responded to the questionnaire. Since four

did not identify their system type, we discarded their answers, and proceeded with the

answers from 78 respondents. Of the 78 subjects, 41 reported on embedded systems, while

37 reported on reuse in nonembedded systems.

To answer our first question, we asked about development approaches used. 33 projects

used only one development approach, excluding four that did not report using any devel-

opment approach. Of these, 17 were embedded systems, 16 were nonembedded systems.

The rest used a combination of approaches. While nonembedded systems were more likely

to use ad hoc, COTS/GOTS, and even no approach, embedded systems were more likely

to use component based, ad hoc and product line development approaches. This was also

true when considering combinations of approaches. There were 22 different combinations of

approaches, and no one combination approach was used by more than four projects. Most

of the composite approaches were used by only one or two projects. The most commonly

used development approach for embedded systems included component based development,

while nonembedded systems included Ad Hoc reuse and a Product Line approach most fre-

quently. Embedded systems projects used component based, model based and product line

approaches more frequently than nonembedded systems, while nonembedded systems used

Ad Hoc reuse and a COTS/GOTS approach to reuse more than embedded systems. In-

terestingly, the most commonly used approaches in embedded system projects are not the

most commonly used in nonembedded system projects and vice versa.

222

To answer our second question, we asked about artifacts reused. We found that reuse

levels for all artifacts is higher in embedded systems projects than nonembedded ones.

Sometimes the difference is small (reuse of models, drawings), but often reuse levels in

embedded systems are at least 10% higher higher than in nonembedded systems (e.g.

requirements, architecture, use cases, hardware, test products and test clusters). Again,

we found a difference between embedded and nonembedded systems.

We asked about outcomes from reuse. Outcomes would include savings in labor costs,

fewer defects, less time for testing and fewer items to test. Because many of the projects

had not yet reached implement, integration, and/or test, many of the respondents were

not able to provide information on outcomes for defects (usually found in test) or test

time. Box plots of the responses to the outcomes questions showed us the medians and

spreads of the answers comparing embedded systems to nonembedded systems. We were

surprised to see that the medians of each of the outcomes were equal for embedded and

nonembedded systems, although the spreads were very different. The medians also varied

by outcome type, with labor savings being the highest (10-20% savings), and defects and

items tested showing no savings. Nonembedded systems showed a greater spread than

embedded systems for labor and defects. There were, however, no outliers in nonembedded

systems in any of the outcomes, whereas test time reduction and test item reduction showed

outliers in both directions for nonembedded systems.

Next, we asked about whether risk was mitigated or introduced by reuse. This yes or no

question indicated little difference between respondents working on embedded systems from

nonembedded systems when asked about whether reuse reduced risk. 31 of the subjects

reporting on embedded systems projects thought reuse reduced risk, nine did not, and one

did not respond. Conversely, 29 of the subjects reporting on nonembedded system projects

thought reuse reduced risk, while eight thought it did not.

We tested the hypothesis via MANOVA and found that there was no significant differ-

ence (p<-.05) between embedded and nonembedded systems in the development approaches

selected. We could not reject the null hypothesis that the development approaches did not

223

differ between embedded and nonembedded systems, although use of component based

development was close to significant at p=.055. However, in artifacts used, we did find

significant differences. Requirements (.040), code (.033), models (.009), drawings (.001)

and already tested clusters (.049) were all significantly more likely to be reused by embed-

ded systems to the .05 level, and architecture (.051) was close to significant. Based on our

observations from the box plots, we did not perceive a value in comparing outcomes with

MANOVA.

Because of the findings about artifacts, we decided we needed to run PCA using AHP.

Our question was whether the reuse of the artifacts more commonly used by embedded

systems were used together, and whether system type or development approach led to

greater use of certain artifacts.

When we perform PCA on all variable responses, we observe several survey response

relationships which are unique. Selection of a heritage/ad hoc reuse approach results in less

use of models as reuse artifacts, and greater use of tested clusters. The selection of models

as reuse artifacts indicated less heritage/ad hoc reuse. However, more tested clusters

indicates surprising less heritage/ad hoc reuse. We confirmed that a COTG/GOTS reuse

approach leads to less reuse of use cases. Two interesting relationships are between system

type, architecture and hardware in that a three-way relationship in which an embedded

system type leads to less architecture reuse and more hardware reuse. We conclude in

general that reuse results in a reduction in test time. Our PCA results, however, do not

allow us to correlate test time reduction with any particular reuse approach or artifact.

We found that system type does contribute to variance such that reuse approach, reuse

artifacts and outcomes are influenced by system type. I.e., their variance in terms of

inter-relationships is affected by which system type is used.

A summary of the significant PCA findings from survey response relationships are listed

below:

• A reduction of items to be tested is not associated with any particular system type,

reuse artifact or reuse approach when outcomes are excluded

224

• A reduction of test time is not associated with any particular system type, reuse

artifact or reuse approach

• Experience with embedded systems tends to avoid a COTS/GOTS as a reuse ap-

proach

• More often than not, development approach and reuse artifact vary together but

independent of both system type and outcome

• Embedded systems reuse fewer models and use cases, but more tested clusters when

reuse approaches when analyzed without reuse approaches

In general, our PCA confirmed that the selection of embedded vs non-embedded sys-

tem type does not always relate to outcomes such as an increase or reduction in risk, or an

increase or reduction in test time. Some test pairs showed an independence in the relation-

ship between reuse approaches and reuse artifacts, from system type. A notable exception

is that when reuse artifacts are excluded, risk is reduced through a non-embedded sys-

tem type and through the selection of a heritage/ad hoc reuse approach, in isolation of

responses for reuse artifacts.

From the survey, we found that there are differences between embedded systems and

nonembedded systems in development approach and reuse artifacts, although not in out-

comes, but we did not know why. For example, are requirements driving reuse of use

cases, architecture, code and already tested clusters? Or is the selection of certain reused

components driving these artifacts including requirements? What is driving the selection

of development approach and reuse artifacts? To answer these questions, we decided to

interview experts in the field.

Finally, we looked at the free-form answers in our survey to see if we could identify

reasons for the similarities and differences we found above. Developers of embedded systems

cited benefits from using component based reuse: not having to reengineer or rewrite the

test sets; the technical solution was clear and already deployed; pedigree of the products;

reuse of a proven methodology; developer confidence in the products and not touching

225

common code or infrastructure. Reasons for a model-based approach (for both embedded

and nonembedded systems developers) include that models had been used in other projects.

Reasons in favor of product line reuse in nonembedded systems included risk reduction, a

good match of the reused software with the new project, and the development of reusable

expertise. No reasons were provided for the benefits in reuse of COTS/GOTS.

There were also differences observed in the artifacts used between developers of embed-

ded and nonembedded systems. Both embedded and nonembedded systems practitioners

mentioned software, code, components and test. However, while hardware was a major

consideration for embedded systems, it was not mentioned by nonembedded systems.

Presumably, reuse in embedded systems is facilitated when code does not have to

be adapted to new hardware. This is cited as a reason for success and a reason for reuse

failure when hardware does change. Well known and documented circuits, stable hardware,

and running the software on known platforms, not having to reengineer or rewrite test sets

reduced risk. In cases where code reuse is feasible for embedded systems, it allows for higher

efficiency, lower risk. Risk was also reduced by reuse of code because it had been tested

multiple times and the fact that a large percentage of the code was already integrated, and

because the of the use of proven equipment, designs and requirements.

Unsuccessful reuse in embedded systems was explained by not being able to use or

“fit” the reuse artifact: architecture mismatch with third party code, code or reuse plan

mismatch, lack of availability or obsolete test products, overly complex software artifacts,

and problematic legacy software.

The close coupling between hardware platforms and software is cited as a reason for

successful reuse when the platform is unchanged. The technical solution was proven in

an environment where performance and timing are critical. The fact that the hardware

and software had proven themselves and the likelihood of introducing new defects was

reduced was an important consideration. Developers knew that these products worked well

together. While these were also cited by developers of nonembedded systems, embedded

systems developers clearly relied on the past success of their components for new efforts.

226

In nonembedded systems, respondent comments related to successful reuse cited good

documentation, a good fit of the reused software to the new use, and availability of product-

line artifacts. The platform was not mentioned.

By contrast, mismatches of reused software with needs for the new project, poor quality

of code or design, poor documentation of reusable artifacts, and complexity of the code

base were cited as reasons for increased cost or failure. Undocumented or latent problems

were cited as reasons for much higher testing efforts.

6.3 Summary of Results from Structured Interviews

To gain understanding of the findings from our review of existing literature and our

survey of systems practitioners, we decided to conduct a series of semistructured interviews

of recognized fellows and distinguished staff. Of the fourteen interviews, seven experts were

primarily involved in embedded systems, six were primarily involved in nonembedded sys-

tems, and one was involved in both embedded and nonembedded systems. We asked them

about the development approaches they used, the artifacts they reused, the level of reuse,

obstacles they encountered, success factors, impats of nonfunctional requirements, and the

need for reusing the hardware along with the software. Then we compared the answers

between embedded systems experts and nonembedded systems to identify commonalities

and differences. We also examined their free-form comments for clues as to why these

commonalities and differences existed and for insight into reasons for reuse success and

failure.

Results of direct answers to questions

First we asked about development approach. In embedded systems, four experts used

ad hoc reuse, three used model based development, one used component based software

development, three used product line and one used ontology. One used what he called mega

reuse, that is, he took the software intact and did not modify it, and one described his

development approach as a framework. This number adds up to more than the number of

227

subjects because three used a combination of ad hoc reuse and model based development,

two used a combination of ad hoc reuse and product line, one used a combination of model

based development and ontology. In nonembedded systems, four used ad hocreuse, one used

component based software development, one used model based development, one used the

mega reuse discussed above, one used a framework and one described his development

approach as SOA (probably most like model based). This differed from the total number

because one used a combination of ad hoc reuse and model based development and one

used a combination of ad hoc reuse and model based development. Other than product

line, which was reported used 21% of the time in embedded systems and not at all in

nonembedded systems, and ad hoc, which was used 44% of the time in nonembedded

systems and only 29% in embedded systems, the development approaches did not differ

substantially between embedded and nonembedded systems.

Our second question was about artifacts used. every subject reused code, requirements

and design. However, we begin to see differences between embedded and nonembedded sys-

tems in other artifacts. For example, nonembedded systems experts were far more likely

to report reusing architecture (71%) than embedded systems experts (25%). 63% of em-

bedded systems experts reported reusing components, compared to zero for nonembedded

systems. No embedded systems experts reported use of SOA, but 43% of nonembedded

systems experts did. Test Products reported use by 75% of embedded systems experts,

compared with only 57% of nonembedded systems experts No reuse of design products was

reported by embedded systems experts, while 71% of nonembedded systems experts did

use them. The rest of the artifacts reported similar levels of reuse.

We asked about the obstacles to successful reuse. We found that, of the 24 obstacles

named by the experts, eight were mentioned by at least 20% more embedded systems

experts than nonembedded systems experts, and seven were mentioned by at least 20%

more nonembedded systems experts than embedded systems experts. Only nine had less

than a 10% difference. We concluded that the obstacles to reuse were different between

embedded and nonembedded systems.

228

Results of coded freeform comments

At this point, the responses were coded in an excel spreadsheet. Each statement was

classified as coming from a respondent specializing in embedded systems or nonembedded

systems, and then coded as being positive, negative or informative (P, N, I). Informa-

tional was where the respondent was describing a concept without making a valuation of

the concept. Many of these statements provide insight into the reasons for some of the

observations.

Development Approach

We noticed that, while most embedded systems experts used ad hoc as their devel-

opment approach, there were only six positive comments about that approach and 11

negative. Conversely, while three were using a model based approach, positive statements

about model based development exceeded negative comments by 16 to one. Embedded

systems experts also had positive comments about product line 10 times against only one

negative comment. It is clear that many embedded systems experts were not using their

preferred development approach. Reasons for this ranged from knowing the code and know-

ing the architecture to the fact that the projects they were working on had been around

for many years and were using the old code. If they were starting a new project, or if the

existing project were to be reengineered, they would prefer to use a model based approach.

A surprising difference in the nonembedded experts is that the development positively

mentioned most often wasad hoc (8 times), although it was also mentioned in a negative

way nine times. It appears that it is easier to import scavanged code into new systems for

nonembedded systems, whereas embedded systems require more tailoring. Since several

nonembedded systems experts mentioned SOA, whereas no embedded systems experts did

so, perhaps the code nonembedded systems experts are importing are more easily treated

as services, which are not optimized to a platform.

Artifacts

Reuse of components and models received the most positive comments from embedded

systems experts (70), with architecture second (60), code third (57), design fourth (51)

229

and requirements fifth (42). Hardware, design patterns, and interfaces were mentioned

positively 24, 23 and 22 times respectively, test products 18 times, nonfunctional require-

ments 13 times, documentation 11 times,algorithms 8 times, test clusters and concepts

each 5 times, and services once. Service level agreements and data products were not men-

tioned. The most negative mentions by embedded systems experts were code (42 times)

and requirements (24 times). Nonfunctional requirements and design each had negative

comments 14 times, followed by architecture and hardware with 13, interfaces with 11,

components and models (9each), documentation (8), design patterns (3), algorithms, and

test products (2 each), COTS and test products (1 each). Services and service level agree-

ments were not mentioned by embedded developers. Informational statements about code

were made most often (20 times), followed by hardware (17 times), components and models

(13 each), architecture (9), requirements (8), interfaces and data products (5), non- func-

tional requirements (4), design and test products (2), and concepts, COTS, algorithms,

test clusters and documentation each got one informational comment. Service level agree-

ments, services and design patterns were not the subject of any informational comments

from embedded systems developers.

While embedded systems experts cited code, design and requirements as the artifacts

used most often, these were not the artifacts they talked about the most. Code and

requirements were artifacts from legacy systems, and the requirements had already been

implemented in code. Since the requirements were essentially unchanged, the rest of the

assets could be reused. Interestingly, one expert stated that, “I don’t know that I’ve ever

been on a program that just said let me reuse requirements or design. Typically it started

a code reuse, and flexibility of that code applicability of that code being utilized in full or

some modification to it for your project, then the documentation, and the design and the

requirements, come with it.” So the embedded systems experts start with an understanding

of existing code and import the artifacts they need along with that code to develop their

systems. However, as one pointed out, as autogen becomes more robust, the need to reuse

code will decline.

230

Negative comments by embedded systems experts about requirements, design and es-

pecially code offer a great deal of insight as to why code reuse often fails: people do not

write reusable code because they’re in a hurry to get designs out; they write in low level

languages like assembly code; the lack of doing a high level preparation; the lack of docu-

menting the requirements or making sure the requirements are comprehensive, complete,

accurate; and lack of testing correctly. Much older code was not subjected to the correct

development processes, and is brittle. Many indicated that If the code needs modification,

it is almost never effective to reuse it. One pointed out that it is hard to build a mental

image from a bunch of lines of code, and if that’s what you are given, it’s easier to build

it from scratch. Without solid documentation, including graphical representations, it is

easier to create the module than to try to understand the candidate reuse artifact.

In the embedded systems, the reuse of models was particularly interesting. While all of

the respondents use models, embedded systems experts found the performance models and

simulations the most useful. In fact, some regenerated their code anew with each instan-

tiation from the performance models. In many cases, their design models and their per-

formance models were one and the same. All of the embedded systems experts mentioned

using performance models to ensure their system would meet performance requirements

before moving to implementation. These models were reused from instantiation to instan-

tiation, with the performance models modified to reflect new performance requirements.

There were also a few negative comments about model reuse. The challenge is translating

the model into code for the core processor. There is also the question of whether the cost

of developing a model is justified.

Unlike embedded systems experts, nonembedded systems experts positively mention

reuse of architecture most. They pointed out that architecture, particularly a reference

architecture, enhances reuse success because architectures abstract away many of the vari-

abilities that affect reuse. Abstracting away the specifics of the implementation allowed the

developers to reuse an abstract architecture and add in the particulars during development.

231

While nonembedded systems experts did make many positive comments about reusing

code, they also believed reuse of code introduced problems, especially if the code needed

modification. They pointed out that the reused code could force the requirements and

architecture and result in a less than optimal solution. In addition, they noted that if the

code had to be modified, defects were frequently introduced.

Success Factors

Embedded systems experts named a similar environment or project as the most impor-

tant technical reuse success factor, followed by standardization and a controlled or common

baseline. Lack of design for reuse and a searchable library were most frequently cited as

success inhibitors. Nonembedded systems experts cited a controlled or common baseline

as the most important success factor, followed by use of SOA and autotesting. While both

types of systems considered the baseline as one of the top reuse success factors, their next

two top choices differed. We note that standardization (i.e. data standards, platform stan-

dards, interface standards) and similarity of project are important to reuse success in an

embedded system. This is attributed to the fact that the software is written directly to

the processors and must adhere to strict I/O and timing requirements.

Obstacles

Both embedded and nonembedded systems experts point to the same three top technical

obstacles to reuse: fit, understanding and modification. Experts of both systems types

reported these obstacles as being related to code: whenever the code has to be “broken

open,” problems arise. It becomes difficult to trace changes through all of the code modules,

defects are introduced, the code has to be retested in the system and against the platform.

Embedded and nonembedded systems experts also found that platform dependence was

another major obstacle to reuse. This is interesting, because only code is specific to the

deployed platform.

232

6.4 Analysis of Results

6.4.1 Differences and Similarities between Embedded and Nonembedded

Systems

Differences From the review of literature, we found that there are significant differences

between embedded and nonembedded systems in the outcomes for quality in model-based

development and general development. We found from the survey that important differ-

ences in the development approaches in that embedded systems developers tended to reuse

component based development, product line, and model based development most often as

a part of their development strategy, where nonembedded systems developers tended to

prefer ad hoc and COTS/GOTS development approaches.

It was surprising to find in the survey that embedded systems developers reused all of

the artifacts more frequently than did nonembedded systems developers. We found that in

embedded systems, requirements, architecture, code, hardware and test products tended

to be used together. We wondered whether that is because large portions of a system were

imported for reuse together. We also wondered whether advances in technoloty were being

missed because of the cost to redevelop certain capabilities and therefore affordability was

hampering the technology.

Similarities We found that average outcomes were the same for embedded and nonem-

bedded systems. Both were realizing good improvements in labor, but improvements in

quality, testing time and items to be tested were disappointing. These are areas that need

attention.

6.4.2 Summary of Benefits and Detriments of Development Approaches

Benefits of component based reuse include not having to reengineer or rewrite the test

sets, a clear and deployed (proven) technical solution, pedigree of the products, and devel-

oper confidence in the products (R28). Not touching common code or infrastructure was

233

important to embedded systems developers. Benefits of a model-based approach include

that models had been used in other projects that reduce their risk. Benefits of product line

reuse included risk reduction, a good match of the reused software with the new project,

and, over time, the development of reusable expertise. The benefit to ad hoc development

is that code already exists that realizes the requirement(s).

Detriments of component based reuse include aging or obsolescence of existing products,

difficult and/or proprietary interfaces to the components (including hardware interfaces,

differences in the platform libraries and components that don’t exactly match requirements.

Detriments of model based reuse include poor fit of models to the new system. Detriments

to product line development include limitations on the systems built into the product line.

Detriments to ad hoc reuse include an imperfect fit into the system or requirements and

uncertainty of their development process and pedigree.

6.4.3 Summary of Benefits and Detriments of Artifacts Reuse

A benefit of code reuse is that it does not have to be adapted to the hardware, i.e.

well known and documented circuits, stable hardware, and running the software on known

platforms, and not having to reengineer or rewrite test sets, leading to higher productivity

and fewer defects. When reuse of code is accompanied by reuse of component interfaces,

components, requirements and test procedures, quality is increased and risk is reduced.

We note that many reported that a benefit to the reuse of code is that it has already been

tested. This would imply that it was not changed, because modifications would require

retesting. A benefit to the reuse of requirements and design and is that the solution is

already available.

A benefit to the reuse of models is that they are graphical, self documenting and easy

to modify for the new system. Models are also independent of the platform to be deployed

in the system, and can contain the specifics of multiple platforms, allowing the developer

to select the target platform. Many modeling tools have the ability to autogenerate code

and documentation.

234

A benefit to the reuse of simulations is that many are already adapted to the envi-

ronment in which the system will be deployed (i.e. big data applications, spacecraft and

aircraft) and require only a change in parameters to produce the analysis.

Benefits to the reuse of COTS and components is that they are already available and

often inexpenisive.

Detriments to the reuse of code include aging and obsolescence. If the code requires

modification, it can be more difficult to trace the impacts of those modifications through

the code, especially if the code is tightly coupled, resulting in the insertion of defects. Reuse

of existing code can dictate the architecture and the requirements to force a suboptimal

solution. It can force the selection of outdated hardware. Often, the code can be hard

to read, understand, and analyze for fit and function or to identify how difficult it will

be to modify. It can be complex. The same detriments apply to the reuse of COTS and

components.

Detriments to hardware reuse include the close coupling between hardware platforms

and software. Differences in the platform libraries and performance and timing when

porting code from one platform to another is another problem.

6.4.4 Summary of Success Factors

From the semistructured interviews, we were able to identify a number of technical

success factors:

Planning up front Both the embedded and nonembedded systems experts stated that

the time spent in planning the system up front was time well spent. When the developers

started developing a system without up front planning, they almost invariably wound up

selecting inappropriate products for reuse and needing to correct defects throughout the

life cycle. When the planning was done, the products selected were more likely to fit into

the new system and realize cost and schedule benefits.

235

Control (authoritarian) Several of the systems and software experts indicated that

when they were employing reuse they had to be even more authoritarian in how the prod-

ucts were handled and how the system was developed than if the project was developing

new products. The software architects had to ensure that the developers did not rework

the software (i.e. divide one component into two components or change the way they in-

terface). One mentioned that the way that reuse was designed was how he calculated his

latencies and througput budgets. When the reuse was tightly controlled, it almost always

provided benefit.

Design for Reuse While designing code for reuse is usually 30% more expensive than

for a single implementation, selecting code for reuse that was not designed for reuse would

usually lead to increased cost and schedule to modify that code to be suitable for the

new system. When code was designed to reuse, it was much easier to insert into a new

implementation.

Documentation Several experts mentioned the need to have good documentation on the

products they plan to use. This documentation must include information about what the

software does, so the developer knows what it is. This avoids having to dive into the code to

figure it out. The documentation must capture enough metadata about the reuse artifact

that a developer can determine in a reasonable amount of time whether that component is

one worth investing in. The documentation must include changes made after design review

and after tests, so that is an as built document rather than a build to document.

Experience Much code is so obscure, it requires individuals who have used that code to

understand what it does, and if it needs to be changed, where it needs modification.

Similar Product or Environment Several experts mentioned how success is deter-

mined by the similarity of the new deployed environment is. Reuse products may behave

differently in a new environment.

236

Consistent baseline A consistent baseline helps control the development process and

avoids churn that can occur when the baseline is constantly changing.

Automated testing The automated tests can be conducted without the developer. Not

only does this free the developer to do more development, it allows the tests to be rerun

in a consistent manner so results are comparable.

Graphical Representation The graphical representation allows the developer to quickly

understand the capabilities of the code, the context, and visualize the differences for his

own system. A good model can add or remove specific elements without impacting the

rest of the model.

Product Line Much of the system can be reused. The product line has procedures to

add or remove to satisfy unique customer requirements.

Service Oriented Architecture A service-oriented architecture can modularize and

define the interfaces, and support a nice interface between software applications and sci-

entific algorithms.

6.4.5 Summary of Obstacles

From the semistructured interviews, we were also able to identify a number of technical

obstacles to successful reuse:

Understanding Experts found that they often did not understand the reuse products

they were inheriting or how much they would have to be modified to work in the new

system. They often did not understand the limitations the new software would place on

their solution. They requently did not understand the interfaces,the coding standards or

the naming conventions. Often reuse products that appeared to be a good fit to their new

system were, in fact, not well suited.

237

Complexity Often the imported reuse products were extremely complex. It was difficult

to understand what was happening in the code and to trace the impacts of modification,

especially in closely coupled code. It was difficult to get a mental picture of how the code

worked.

Lack of Documentation The flip side of the success factor of good documentation was

the obstacle of poor or no documentation. Many imported products came with little or no

documentation, so the developers could not figure out what the code was doing, what the

required interfaces were to other applications or the hardware, or how the threads traced

through the software.

Forking When a new system takes over a reuse product and modifies it into a variant

of that baseline, it duplicates the total life cycle cost of maintaining what becomes unique

software. Then there are two copies of the code. When developers run into problems in

the code, since they’ve forked, they miss the benefit of getting the fixes for the problems

that were in the code, they miss advances when the design is updated. Thus, benefits of a

common set of software are lost.

Platform Dependence If software runs on a certain server and operating system, the

developer is confined to using that server and operating system, limiting solution choices.

The machine architecture influences what is and isn’t reusable. The new platform may not

have the same computer language and differences with compilers, development environ-

ments, means the code has to change. Typically different hardware has different control

and status interfaces and messages and response requirements. For scientific algorithms,

when they are moved from one type of the processor to another, all the underlying math-

ematical libraries changed.

Missed Opportunities Often, developers don’t even try to reuse. they often discover

missed opportunities for reuse, not knowing that somebody on another program had built

238

something similar they could have reused. They need access to the information to know

what there is to reuse and where it is, what requirements it matches, and the design.

Performance Goals Timelines are based on the requirements, and how the component

supports that performance. When the reuse doesn’t meet performance requirements, de-

velopers have to evaluate what has to be done to that reused software so that it will meet

performance requirements, and if they have to redesign it, it may not be worth the reuse.

Difficulty Developers often think thatreuse is going to be more effort than to just start

out from scratch, that they are wasting time and it’s more frustration than it’s worth. It

never goes quite as smoothly as expected. It can be something as simple as the way they

name the variables. The code can be more trouble than it’s worth.

Insert Defects Sometimes the process of modifying can insert defects.

Certification Process Sometimes code is not certified, or is certified to an obsolete

or different standard. the code has to be rewritten to meet the requirements in the new

standard.

Maintenance Maintaining old but modified code can be difficult. If the code is in an

older language, it may be hard to find people who are familiar with that code. It may be

difficult to identify insertion points, especially if the code is not well documented.

6.4.6 Developing a New Approach

We noticed that the biggest differences between reuse embedded and nonembedded sys-

tems lay in the reuse of code. Embedded systems developers in particular found that mod-

ifying code or living with its limitations caused the most trouble. We wondered whether,

if this problem was removed, we could develop an approach that would work for both

embedded and nonembedded systems to maximize the benefits of reuse.

239

To realize the full benefit of reuse and minimize the obstacles, we suggest a different

approach, an ontology. This ontology considers the benefits of each development approach

and the artifacts and minimizes the detriments. It also applies the technical success factors

while minimizing the technical obstacles. The structure of the ontology and the process

are contained in Figures 6.1 and 6.2, respectively.

Figure 6.1: Structure of the Ontology.

The first obstacle that needs to be addressed is the problem of the solution not an-

swering the objectives or providing a suboptimal solution, i.e. fit. To answer this obstacle,

we develop a dataset of operational objectives for which solutions are already developed.

These objectives include the operating environment, behaviors and nonfunctional require-

ments, such as security, safety and performance. If a developer has an objective to meet,

the developer will have to develop a solution to that objective, however, many objectives

will already have an answer. Those objectives will be linked to a database of operational

capabilities that meet those objectives. Operational capabilities are linked to operational

use cases to help identify operational requirements. These use cases lead to to a database of

operational requirements that satisfy those capabilities as described in the use cases. The

240

Figure 6.2: Process for Creating and Using the Ontology

operational requirements are linked to operational models that include operational rules,

operational state models and operational activity diagrams or operational sequence dia-

grams. Thus we have the operational views and capabilities views called out in architecture

frameworks.

The next step is to identify systems objectives to satisfy the operational objectives.

These systems objectives are linked to the operational objectives mentioned above. The

developer will be able to select among various systems solutions to satisfy his operational

objectives originally selected. Again, these systems objectives include the system environ-

ment, systems behaviors and nonfunctional requirements. These systems objectives are

then, as with the operational objectives, linked to systems capabilities, systems use cases,

systems requirements and systems models. Thus, we have the systems views identified in

architecture frameworks. The ontology can realize the benefits offered by the success factor

of using a product line by storing all potential options for the product line that could be

selected by a customer and generating most, if not all, of the system through selection of

the customer preferences. By applying this approach, we remove many of the obstacles,

such as “fit,” understanding, and complexity (the complexity is hidden from the developer).

241

At this point, we create three databases, one containing components, one containing a

catalog of services that satisfy specific system requirements and one containing interfaces to

allow integration. The center of these is the services database, which identifies services to

satisfy system requirements. The services are linked to any components that provide a given

service as well as to any interfaces the service uses to integrate to a system. This imports

the success factor of the service oriented architecture. The components database includes

both COT/GOTS products and existing code modules that perform various functions.

For COTS products, the database contains the name of the provider, any documentation

about functional specifics, nonfunctional requirements satisfied, certifications, interfaces

available and information about anticipated upgrades. Code products include appropriate

documentation as well as the platforms it can run on. They can also include test drivers,

automated tests, data files and any other associated test products. Interfaces include the

interface specifications, whether proprietary or open, the year of issue, and if they have

been superceded. As COTS and components are developed or modified, they are added

to the database to provide the developers with the ability to select new products or the

older products, if they prefer. Through this, we access the success factors of control, good

documentation, a consistent baseline, and automated testing. This mitigates the obstacle

of poor fit, poor documentation, inserting defects, missed opportunities, and performance

goals.

Finally, we create a database of models that satisfy requirements. These models contain

any diagrams, the services from the services database, the components from the components

database and the interfaces from the interface database. These models can be modified

as needed to tailor the new development to actual requirements, or new ones can be cre-

ated if no similar model is available. The new and modified models are also stored in the

database, to offer the developer more options for his/her solution. The models include plat-

form specific information with the ability to select the target platform. They also include

information about nonfunctional requirements and the ability to select/add nonfunctional

requirements in the model. The models are able to generate new code if it is needed, as

242

well as generate documentation. In cases where existing code needs modification, it is rec-

ommended that instead it be modeled and autogenerated and automatically tested. This

mitigates the obstacle of modification to fit the solution. This brings in the success factor

of a graphical representation and good documentation. It mitigates the obstacle of com-

plexity, understanding, being easier to build from scratch, obsolescence and forking. It also

mitigates the problem of having to redevelop software products to satisfy nonfunctional

requirements.

The developer enters the ontology through a wizard. This wizard allows the developer

to select his operational objectives. The database uses the operational objectives to identify

operational and systems capabilities and requirements, and return to the developer options

in models, services and components, as well as identifying the objectives for which the tool

has no solution. The wizard allows the developer to select artifacts from the options

identified by the wizard to import into his/her new system, or to reject them and create

new ones if the available artifacts are not suitable. The developer would turn to the

models database to create new models or to modify existing models tailored to the system

nuances. The models database could then autogenerate new code and enter it into the

components and services database with accompanying documentation. If the new code

needs optimizing, the developer can optimize in the components database. This way, the

developer can concentrate his/her efforts on those objectives that have not already been

solved. When new solutions are developed, they can be added to this central database

and made available for use in other systems. The wizard can also be accessed by product

providers who wish to add their products into the appropriate databases and make them

available to the developers, as shown in Figure 6.3.

For future work, we propose a project that implements this ontology. We would develop

metrics to determine the success of the ontology against the cost of its development and

maintenance. From this, the hope is that the expectations of savings through reuse could

be realized.

243

Figure 6.3: Context of the Ontology

6.5 Threats to Validity

Because this is a mixed methods study, we need to look at threats to validity both from

a quantitative and qualitative perspective.

6.5.1 Quantitative Threats to Validity

Wohlin et. al. [129] name four quantitative threats to validity: conclusion validity,

internal validity, construct validity and external validity.

Conclusion Validity is concerned with the relationship between the treatment and the

outcome. One of our threats to conclusion validity is the low statistical power of these

tests. This is the result of a fairly low sampling and the large number of variables. We

recommend repeating this study with more observations and the removal of the variables

that indicated little impact on the treatments.

244

Internal Validity is concerned with whether there is in fact a causal relationship and

not influenced by a factor that has not been measured. A threat to conclusion validity in

this study is the self selection in the survey and, to some degree, in the semistructured

interviews. Subjects may have chosen to take the survey because they had an agenda related

to reuse. This has been mitigated by the observation that the answers indicate a nearly

equal number of those who have issues with reuse and those who are enthusiastic about

reuse. Experts may have agreed to be interviewed because they have some frustrations

with reuse they are anxious to share.

Construct Validity is concerned with whether the treatment is in fact related to the

cause, and that the outcome does in fact reflect the construct. One construct threat to

validity in this experiment is the interaction of the different variables. For example, while

we were intending to study the differences between embedded and nonembedded systems,

the dependent variables of development approach may have had an impact on the artifacts

selected. We mitigate this threat by studying the variable types separately.

External Validity is concerned with the ability to extend conclusions outside of the

experiment. One major consideration is that many of the projects reported on have been

ongoing for many years. Another is that the projects are either very large systems them-

selves, or research and development to be inserted into very large systems. Whether smaller

projects would experience different results is not clear.

6.5.2 Qualitative threats to validity

Since some of the information collected is qualitative, we assess our approach with

respect to: descriptive validity, interpretive validity, theoretical validity, generalizability,

and evaluative validity [90].

Descriptive Validity relates to the quality of what the subject reports having seen,

heard or observed. Here, not only are these observations subjective, since the projects are

245

so large the respondents may see only a small part of the effort. Their observations may

not reflect the whole project.

Interpretive Validity is concerned with what objects, events, and observations mean

to the subjects. In our case, impartiality of reporting is uncertain.

Theoretical Validity refers to an account’s validity as a theory of some phenomenon.

It depends on the validity of the construct of the experiment and on the validity of the

interpretation or explanation of the observations. It also depends on whether there is con-

sensus within the community about terms used to describe context, events and outcomes.

With the number of similar but not identical metrics presented, and ways of measuring

success, there is a threat to validity concerning the similarity or difference of the perceived

value of reuse. This was mitigated by using a common scoring system, resulting in ordinal

rather than ratio metrics.

Generalizability “refers to the extent to which one can extend the account of a par-

ticular situation or population to other persons, times, or settings than those directly

studied [90].” Here, the threat to validity consists of the fact that the research was per-

formed within the confines of one corporation. While the corporation consists of several

companies and cultures, there may also be an influence of the corporation itself. There

also could be proprietary information that was not discussed. In addition, there may be a

tendency to report successes and to keep working on or terminate efforts that have failed,

success may be overreported. On the other hand, there might also be a tendency to report

failures and the failures may be overreported. There may be an underreporting of results

that were neither great successes nor failures. However, the results we obtained do not

seem to indicate either situation.

Evaluative Validity refers to the evaluative framework in deciding whether the reuse

was, in fact, successful or not, and if so how much. The frameworks were likely to have

246

differed in the different projects because the contexts were different. This was mitigated

by considering the subjects’ report of both reuse and the subjects’ descriptive observations

upon which the reports are based.

One final threat to validity in this research is the ability to replicate the studies. In the

case of both the survey and the semistructured interviews, most researchers would have

difficulty gaining access to the subjects and obtaining frank responses.

6.6 Conclusions

Today, embedded systems are slowly reengineering their existing systems and develop-

ing new systems with frameworks and models. This is an important development, since the

architecture and design phases of the lifecycle are much longer than the implementation

phase. Thus the architecture and design phases offer more opportunities for savings. Many

of the architecture models have the capability to automatically generate code (autogen or

autocode).

In the series of semistructured interviews, many interviewees indicated that while ear-

lier, when reuse was mentioned, they had only considered code, today they are reusing

many different artifacts. These artifacts include requirements, architecture, design and

design products, models, documentation, and test products. When asked to rate these

artifacts in terms of reuse effectiveness (defined as a series of desired outcomes), some put

test products first, others put architecture first. However, all but two placed code last.

One progressive embedded software subject matter expert (SME) indicated that over time,

he expected most code to be generated automatically, and the only code that would be

hand written would be code that needs to be optimized to the platform.

The move to standardize platforms is having a major positive impact on software reuse.

Design models are able to include the platform parameters in the model itself, and then

generate the code appropriate to the platform. Tweaking the code generator in the model

allows the model to optimize the generated code to the platform, with less need for modi-

247

fication. One expert predicts that in time, the only coders will be those who specialize in

optimizing very specialized code.

As more and more assets are designed to be reusable, companies are investing in refer-

ence architectures and searchable libraries. We envision these to become ontologies, which

attach objectives to capabilities, the capabilities to requirements, the requirements to mod-

els, designs, test cases, and so on. These ontologies include the documentation A developer

could select the objectives of his project, and with it select from various reusable solutions.

The selected solution would be available to the developer, and the developer would only

have to fill in the holes. So the future of software reuse in embedded systems will include:

• An increase in the reuse of architecture models and design models with code gener-

ation capabilities.

• An increase in the reuse of test products.

• A significant decrease in the reuse, or even the development, of code.

• An increased emphasis on parameter driven models to select from standardized plat-

forms.

• An increased emphasis on full documentation from build to specifications to as built

documents.

• Design for reuse as the norm rather than the exception.

• Infrastructures for supporting reuse integrating tools, techniques, methods, policies,

and incentives.

• A new way of thinking, with emphasis on objectives and outcomes rather than on

development.

Reuse approaches for over 20 years have promised lower costs for higher quality products

with shorter time to deliver [4]. Customers have increasingly required reuse, management

248

hoped to reap its promised benefits, researchers tried to demonstrate them. The Infor-

mation Technology Management Reform Act of 1996, also known as the Clinger-Cohen

act [22], practically mandates reuse through the Performance- And Results-Based Man-

agement initiative. However, benefits of reuse are in no way assured, even with the best

of intentions. This paper tried to chronicle some of the experiences with reuse. First,

reuse has to be paired with good engineering practices. Second, technical factors can be

instrumental in success vs. failure. Third, in the defense and aerospace industry, bespoke

systems may not be able to recoup reuse investment cost [85]. Fourth, a reuse mandate

does not guarantee its successful execution.

As older projects either age out or are refactored, more should be architecture and

design focused. This will facilitate reuse, not as much in code, but in the other artifacts

that are more expensive to develop.

Some studies [93] have tried to summarize reuse experiences in industry, but with

limited success due to the lack of quantitative data. We recommend pairing reuse with

detailed measurement so that evaluating reuse success is no longer a matter of opinion.

We conclude that in today’s environment, reuse in embedded systems does differ from

reuse in nonembedded systems. However, we do not believe this will continue to be the case.

As older systems are phased out and upgraded, and as platforms become standardized,

embedded systems can move to more model based development and test. The importance

of code reuse will decline, and eventually become a specialty rather than a fundamental

part of reuse.

Reuse has an impact not only on the government, but also on universities and students,

contractors, and vendors. The changing focus of reuse will change the focus of a developer’s

activites and needed skills. While it will always be important for universities to teach and

students to learn coding and coding techniques, students will need to master modeling

and architecture, of both systems and testing. Contractors will need to focus on hiring

employees who are versed in modeling, as well as develop a set of model based metrics to aid

in estimating. Vendors will need to develop products that interface with the standardized

249

platforms. There is an added benefit for vendors, because the standardized platforms open

the market to new products.

In answer to the findings, we proposed the development of a framework of framework,

an ontology. This ontology would contain, in a searchable library, objectives, use cases,

requirements, architecture patterns, design patterns, models, interfaces, and test cases. It

would also include components: encapsulated algorithms, platforms, and hardware with

software (Off the Shelf(OTS)), source code (to be used unmodified) to make reusable

products available, easy to find and easy to use. These elements would all be linked, so

that when a developer searches on an objective, the appropriate requirements, architecture,

design, models, interfaces and components would be recommended. Code not included in

OTS or encapsulated algorithms would be generated by the models. By creating such an

ontology, developers could take advantage of the benefits of each development approach

and select the artifacts most suited to his project.

250

Bibliography

[1] S. Adolph. Whatever Happened to Reuse? Dr. Dobbs.com, November 1 1999.

http://www.drdobbs.com/architect/184415752.

[2] R. Alur, T Dang, J. Esposito, Y Hur, F. Ivancic, V. Kumar, P. Mishra, G.J. Pap-

pas, and O. Sokolsky. Hierarchical Modeling and Analysis of Embedded Systems.

Proceedings of the IEEE, 91(1):11 – 28, Jan 2003.

[3] American Psychological Association, Washington, DC. Publication Manual of the

American Psychological Association, sixth edition, 2010.

[4] C Anderson and M Dorfman. Aerospace Software Engineering: A Collection of Con-

cepts. Progress in Astronautics and Aeronautics. American Institute of Aeronautics

and Astronautics, 1991.

[5] A Andrews, A Stefik, and J Varnell-Sarjeant. Comparing Reuse Strategies: An

Empirical Evaluation of Developer Views. In Computer Software and Applications

Conference Workshops (COMPSACW), 2014 IEEE 38th Annual, July 2014.

[6] A Andrews and J Varnell-Sarjeant. Comparing Development Approaches and Reuse

Strategies: An Empirical Evaluation of Developer Views from the Aerospace Indus-

try. submitted.

[7] A Andrews and J Varnell-Sarjeant. Comparing Reuse in Different Development

Approaches For Embedded vs Non-Embedded Systems. Accepted by Advances in

Computing.

251

[8] A Andrews and J Varnell-Sarjeant. Reflections on the History of Software Reuse for

Embedded Systems in the Defense and Aerospace Industry. submitted, 2013.

[9] R. Anguswamy and W. B. Frakes. A Study of Reusability, Complexity, and Reuse

design Principles. In Proceedings of the ACM-IEEE international symposium on

Empirical Software Engineering and Measurement, ESEM ’12, pages 161–164, New

York, NY, USA, 2012. ACM.

[10] B. Barlin and J. M. Lawler. Effective Software Reuse in an Embedded Real-time

System. In TRI-Ada ’92: Proceedings of the Conference on TRI-Ada ’92, pages

281–287. ACM, 1992.

[11] V. R. Basili, M. V. Zelkowitz, D. I. Sjoberg, and A. J. Johnson, P.and Cowling.

Protocols in the Use of Empirical Software Engineering Artifacts. Empirical Software

Engineering, 12(1):107–119, 2007.

[12] S. Bhatia, C. Consel, and C. Pu. Remote Specialization for Efficient Embedded

Operating Systems. ACM Transactions Programming Language Systems, 30(4):1–

32, 2008.

[13] G. Booch, R. A. Maksimchuk, M. W. Engle, B. J. Young, J. Conallen, and K. A.

Houston. Object-Oriented Analysis and Design with Applications. Pearson Education,

Inc, third edition, 2007.

[14] L Brown. DoD Software Reuse Initiative: Vision and Strategy. Technical report,

Department of Defense, 1225 Jefferson Davis Highway, Suite 910, Arlington, VA

22202-4301, July 1992.

[15] G. Brusa, Ma. L. Caliusco, and O. Chiotti. A Process for Building a Domain Ontol-

ogy: An Experience in Developing a Government Budgetary Ontology. In AOW ’06:

Proceedings of the Second Australasian Workshop on Advances in Ontologies, pages

7–15. Australian Computer Society, Inc., 2006.

252

[16] N.B. Bui, L. Zhu, I. Gorton, and Y. Liu. Benchmark Generation Using Domain Spe-

cific Modeling. In 18th Australian Software Engineering Conference, 2007. ASWEC

2007., pages 169 –180, 10-13 2007.

[17] C. Bunse, H. Gross, and C. Peper. Embedded System Construction — Evaluation

of Model-Driven and Component-Based Development Approaches. In MichelR.V.

Chaudron, editor, Models in Software Engineering: Workshops and Symposia at

MODELS 2008, Toulouse, France, September 28 - October 3, 2008. Reports and

Revised Selected Papers, volume 5421 of Lecture Notes in Computer Science, pages

66–77. Springer Berlin Heidelberg, 2009.

[18] C. Wohlin and A. Amschler Andrews. Evaluation of three methods to predict

project success: A case study. In Proceedings of International Conference on Product

Focused Software Process Improvement (PROFES05) LNCS-series, pages 385–398,

Oulu,Finland, 2005.

[19] X. Cai, M.R. Lyu, K. Wong, and R. Ko. Component-based Software Engineering:

Technologies, Development Frameworks, and Quality Assurance Schemes. In Pro-

ceedings of the Seventh Asia-Pacific APSEC 2000., pages 372 –379, 2000.

[20] N. Choi, I. Song, and H. Han. A Survey on Ontology Mapping. SIGMOD Rec.,

35(3):34–41, 2006.

[21] P. C. Clements and L. Northrop. Software Product Lines: Practices and Patterns.

SEI Series in Software Engineering. Addison-Wesley, August 2001.

[22] W. Clinger and W. Cohen. Information technology management reform act of 1996.

[23] CS Condon, S Seaman, S Kraft, V Basili, and Y Kim. Evolving the Reuse Process

at the Flight Dynamics Division (FDD) of Goddard Space Flight Center. Technical

report, NASA, 1997.

253

[24] R. Conn, S. Traub, and S. Chung. Avionics Modernization and the C-130J Soft-

ware Factory. Crosstalk:The Journal of Defense Software Engineering, September

2001. http://www.crosstalkonline.org/storage/issue-archives/2001/200109/200109-

0-Issue.pdf.

[25] J. W. Costello, A. B.and Osborne. Best practices in exploratory factor analysis: Four

recommendations for getting the most from your analysis. Practical Assessment,

Research and Evaluation, 10(7):1–9, 2005.

[26] E.S. de Almeida, A. Alvaro, D. Lucredio, V.C. Garcia, and S.R. de Lemos Meira. A

Survey on Software Reuse Processes. In IEEE International Conference on Informa-

tion Reuse and Integration, Conference, 2005., pages 66 – 71, Aug. 2005.

[27] A.M. de Cima, C.M.L. Werner, and A.A.C. Cerqueira. The Design of Object-oriented

Software With Domain Architecture Reuse. In Proceedings of theThird International

Conference on Software Reuse: Advances in Software Reusability, 1994, pages 178

–187, 1-4 1994.

[28] Department of Defense. C4ISR Architecture Framework. Technical report, Depart-

ment of Defense, 1996.

[29] Department of Defense. Department of Defense Architecture Framework 2.0. Tech-

nical report, Department of Defense, 2011.

[30] P. Devanbu, S. Karstu, W. Melo, and W. Thomas. Analytical and Empirical Evalu-

ation of Software Reuse Metrics. In ICSE ’96: Proceedings of the 18th International

Conference on Software Engineering, pages 189–199. IEEE Computer Society, 1996.

[31] E. W. Dijkstra. Letters to the Editor: Go To Statement Considered Harmful. Com-

munications of the ACM, 1968.

[32] D. Dikel, D. Kane, and B. Loftus. A Case Study of Software Architecture Organiza-

tional Success Factors. In Reuse’96. Applied Expertise, July 1996.

254

[33] DoD Joint Technical Architecture. Department of Defense Joint Technical Architec-

ture. Technical report, Department of Defense, 1996.

[34] DoD Joint Technical Architecture. Department of Defense Joint Technical Architec-

ture. Technical report, Department of Defense, 2003.

[35] W.A Dos Santos and A. M da Cunha. An MDA Approach for a Multi-Layered

Satellite On-Board Software Architecture. In 5th Working IEEE/IFIP Conference

on Software Architecture, 2005., pages 253 –256, 2005.

[36] D. Eichmann. Factors in Reuse and Reengineering of Legacy Software. Techni-

cal report, Repository Based Software Engineering Program Research Institute for

Computing and Information Systems, University of Houston, 1997.

[37] J. Estefan. Survey of Candidate Model-Based Engineering (MBSE) Methodologies.

In INCOSE Survey of MBSE Methodologies, pages 1–70. International Council on

Systems Engineering (INCOSE), 2008.

[38] M. Ezran, M. Morisio, and C Tully. Failure and Success Factors in Reuse Programs:

A Synthesis of Industrial Experiences. In ICSE ’99: Proceedings of the 21st Interna-

tional Conference on Software Engineering, pages 681–682. ACM, 1999.

[39] N Ferreira, R J. Machado, and D Gasevic. An Ontology-Based Approach to Model-

Driven Software Product Lines. In ICSEA ’09: Proceedings of the 2009 Fourth

International Conference on Software Engineering Advances, pages 559–564. IEEE

Computer Society, 2009.

[40] W. Frakes and S. Isoda. Success Factors in Systematic Reuse. IEEE Software, 1994.

[41] W. B. Frakes and C. J. Fox. Modeling Reuse Across the Software Life Cycle. J. of

Systems and Software, 30(3):295–301, 1995.

[42] W. B. Frakes and C. J. Fox. Sixteen Questions about Software Reuse. Commun.

ACM, 38(6):75–ff., June 1995.

255

[43] W. B. Frakes and S. Isoda. Success Factors of Systematic Reuse. IEEE Software.,

11(5):14–19, 1994.

[44] W. B. Frakes and G. Succi. An Industrial Study of Reuse, Quality, and Productivity.

Journal of Systems and Software, 57(2):99–106, 2001.

[45] W.B. Frakes. A Case Study of a Reusable Component Collection. In Proceedings

of 3rd IEEE Symposium on Application-Specific Systems and Software Engineering

Technology, 2000, pages 79–84, 2000.

[46] JJ Francis, M Johnston, C Robertson, L Glidewell, V Entwistle, MP Eccles, and

JM Grimshaw. What is an Adequate Sample Size? Operationalising Data Saturation

for Theory-Based Interview Studies. Psychology and Health, 25:1229–1245, December

2010.

[47] D. Garlan, R. Allen, and J. Ockerbloom. Architectural Mismatch: Why Reuse is so

Hard. IEEE Software, 12(6):17 –26, Nov 1995.

[48] D. Garlan, R. Allen, and J.M. Ockerbloom. Architectural Mismatch: Why Reuse is

Still So Hard. IEEE Software, 26(4):66–69, 2009.

[49] J.M. Garrido. Object Oriented Simulation: A Modeling and Programming Perspec-

tive. Springer, 2009.

[50] R. Gerard, R.R. Downs, J.J. Marshall, and R.E. Wolfe. The Software Reuse Working

Group: A Case Study in Fostering Reuse. In IEEE International Conference on

Information Reuse and Integration, 2007, pages 24 –29, 13-15 2007.

[51] B G Glaser and A L Strauss. The Discovery of Grounded Theory: Strategies for

Qualitative Research. Observations (Chicago, Ill.). Aldine, 1967.

[52] P. A. Glasgow. Fundamentals of Survey Research Methodology. Technical report,

Mitre Corporaton, Washington C3 Center, McLean, Virginia, April 2005.

256

[53] G. Goossens, J. Van Praet, D. Lanneer, W. Geurts, A. Kifli, C. Liem, and P. G.

Paulin. Embedded Software in Real-time Signal Processing Systems: Design Tech-

nologies, pages 433–451. Kluwer Academic Publishers, Norwell, MA, USA, 1997.

[54] B. Graaf and H. Van Dijk. Evaluating an Embedded Software Reference Architecture

- Industrial Experience Report. In In Proc. 9th European Conf. Software Maintenance

and Reengineering (CSMR 2005). IEEE CS, pages 354–363, 2005.

[55] J. Guojie, Y Baolin, and Z. Qiyang. Enhancing Software Reuse through Application-

level Component Approach. Journal of Software, 6(3):374 – 385, 2011.

[56] A. Gupta. The Profile of Software Changes in Reused vs. Non-Reused Industrial

Software Systems. PhD thesis, Norwegian University of Science and Technology,

2009.

[57] A Gupta, J Li, R Conradi, H Ronneberg, and E Landre. A Case Study Comparing

Defect Profiles of a Reused Framework and of Applications Reusing It. Empirical

Software Engineering, 14(2):227–255, 2009.

[58] W Ha, H Sun, and M Xie. Reuse of Embedded Software in Small and Medium

Enterprises. In 2012 IEEE International Conference on Management of Innovation

and Technology (ICMIT) , pages 394–399, 2012.

[59] P. A. V. Hall. Architecture-driven Component Reuse. Information and Software

Technology, 41(14):963 – 968, 1999.

[60] S. Hallsteinsen and M. Paci. Experiences in Software Evolution and Reuse: Twelve

Real World Projects, volume 1. Springer, 1997.

[61] M.C. Harrell, M.A. Bradley, Rand Corporation, and National Defense Research Insti-

tute (U.S.). Data Collection Methods: Semi-Structured Interviews and Focus Groups:

Training Manual. Technical report (Rand Corporation). RAND Corporation, 2009.

257

[62] E Heinz, P Lukowicz, W. F. Tichy, and L Prechelt. Experimental Evaluation in

Computer Science: A Quantitative Study. In Journal of Systems and Software,

volume 28-1, pages 9–18, Jan 1995.

[63] S. Henninger. An Evolutionary Approach to Constructing Effective Software Reuse

Repositories. ACM Transactions Software Engineering Methodology, 6(2):111–140,

1997.

[64] R. Holmes and R. J. Walker. Systematizing Pragmatic Software Reuse. ACM Trans.

Softw. Eng. Methodol., 21(4):20:1–20:44, February 2013.

[65] IEEE Computer Society. IEEE 1517 - 2010 Standard for Information Technology -

System and Software Lifecycle Processes - Reuse Processes. Technical report, Soft-

ware and Systems Engineering Standards Committee, 2010.

[66] N. Ilk, J. Zhao, P. Goes, and P. Hofmann. Semantic Enrichment Process: An Ap-

proach to Software Component Reuse in Modernizing Enterprise Systems. Informa-

tion Systems Frontiers, 13:359–370, 2011.

[67] International Organization for Standardization. Information Technology - Program-

ming Languages, Their Environments and System Software Interfaces - Language-

Independent Datatypes 1996. Technical report, ISO/IEC TR 18015:1996(E), 1996.

[68] International Organization for Standardization. Information Technology - Program-

ming Languages, Their Environments and System Software Interfaces - Language-

Independent Datatypes Technical Report on C++ Performance 2006. Technical re-

port, ISO/IEC TR 18015:2006(E), 2006.

[69] S. Isoda. Experiences of a Software Reuse Project. Journal of Systems and Software,

30(3):171–186, 1995.

258

[70] E. K. Jackson and J. Sztipanovits. Towards a Formal Foundation for Domain Spe-

cific Modeling Languages. In EMSOFT ’06: Proceedings of the 6th ACM & IEEE

International Conference on Embedded Software, pages 53–62. ACM, 2006.

[71] I. Jacobson, M. Griss, and P. Jonsson. Making the Reuse Business Work. Computer,

30(10):36–42, 1997.

[72] J Jiao, T Simpson, and Z Siddique. Product Family Design and Platform-based Prod-

uct Development: a State-of-the-art Review. Journal of Intelligent Manufacturing,

18:5–29, 2007.

[73] R. Kamalraj, Dr. Kannan A. R., and P. Ranjani. Stability-based Component Clus-

tering for Designing Software Reuse Repository. International Journal of Computer

Applications, 27(3):33–36, August 2011. Published by Foundation of Computer Sci-

ence, New York, USA.

[74] E. A. Karlsson, editor. Software reuse: a holistic approach. John Wiley & Sons, Inc.,

New York, NY, USA, 1995.

[75] K Kim, H Kim, and W Kim. Building Software Product Line from the Legacy

Systems: Experience in the Digital Audio and Video Domain. In 11th International

Software Product Line Conference, 2007, pages 171 –180, Oct 2007.

[76] Y. Kim and E. A. Stohr. Software Reuse: Survey and Research Directions. Journal

of Management Information Systems, 14(4):113–147, 1998.

[77] B. A. Kitchenham. Procedures for Performing Systematic Reviews. Technical Report

TR/SE-0401, Software Engineering Group, Department of Computer Science, Keele

University, NSW 1430, 2004.

[78] V Koppen, N Siegmund, M Soffner, and G Saake. An Architecture for Interoperability

of Embedded Systems and Virtual Reality. IETE Technical Review, 26:350–6, 2009.

259

[79] V. Krishnan, R. Singh, and D. Tirupati. A Model-Based Approach for Planning and

Developing A Family of Technology-Based Products. Manufacturing and Operations

Management, 1(2):132–156, Spring 1999.

[80] M. Kuhlemann, D. Batory, and S. Apel. Refactoring Feature Modules. In Proceedings

of the 11th International Conference on Software Reuse: Formal Foundations of

Reuse and Domain Engineering, ICSR ’09, pages 106–115, Berlin, Heidelberg, 2009.

Springer-Verlag.

[81] C. F. J. Lange. Model Size Matters. In Proceedings of the 2006 international con-

ference on Models in software engineering, MoDELS’06, pages 211–216, Berlin, Hei-

delberg, 2006. Springer-Verlag.

[82] E. A. Lee. Embedded Software. In Advances in Computers, pages 1–34. Academic

Press, 2002.

[83] E. A. Lee. CPS Foundations. In DAC ’10: Proceedings of the 47th Design Automation

Conference, pages 737–742. ACM, 2010.

[84] S. Lee, H. Ko, M. Han, D. Jo, and K. Jeong, J.and Kim. Reusable Software Require-

ments Development Process: Embedded Software Industry Experiences. In ASWEC

’07: Proceedings of the 2007 Australian Software Engineering Conference, pages 147–

158. IEEE Computer Society, 2007.

[85] N. G. Leveson and K. A. Weiss. Making Embedded Software Reuse Practical and

Safe. SIGSOFT Software Engineering Notes, 29(6):171–178, 2004.

[86] J. Li, R. Conradi, P. Mohagheghi, O. A. Saehle, O. Wang, E. Naalsund, and O. A.

Walseth. A Study of Developer Attitudes to Component Reuse in Three IT Com-

panies. In Product Focused Software Process Improvement, volume 3009 of Lecture

Notes in Computer Science, pages 538–552. Springer Berlin / Heidelberg, 2004.

260

[87] W. C. Lim. Effects of reuse on quality, productivity, and economics. IEEE Softw.,

11(5):23–30, September 1994.

[88] W. C Lim. Managing Software Reuse: a Comprehensive Guide to Strategically

Reengineering the Organization for Reusable Components. Prentice Hall, 1998.

[89] D Lucredio, E Santana de Almeida, and R Fortes. An Investigation on the Impact of

MDE on Software Reuse. 2012 Sixth Brazilian Symposium on Software Components,

Architectures and Reuse, pages 101–110, 2012.

[90] J. A Maxwell. Understanding and Validity in Qualitative Research. Harvard Educa-

tional Review, 62(3):279–300, 1992.

[91] Dorothy McKinney. A quick history of reuse in xxx corporation. Internal Corporate

Document.

[92] A. Mili, R. Mili, and R. T. Mittermeir. A Survey of Software Reuse Libraries. Annals

of Software Engineering, 5:349–414, 1998.

[93] P. Mohagheghi and R. Conradi. Quality, Productivity and Economic Benefits of

Software Reuse: a Review of Industrial Studies. Empirical Software Engineering.,

12(5):471–516, 2007.

[94] P. Mohagheghi and R. Conradi. An Empirical Investigation of Software Reuse Ben-

efits in a Large Telecom Product. ACM Transactions Software Engineering Method-

ology, 17(3):1–31, 2008.

[95] M. Morisio, M. Ezran, and C. Tully. Success and Failure Factors in Software Reuse.

IEEE Transactions on Software Engineering, 28(4):340–357, 2002.

[96] NASA. NASA Software Engineering Requirements Appendix B. NASA Procedures

and Guidelines, NASA, 2004.

[97] D. L. Nazareth and M. A. Rothenberger. Assessing the Cost-effectiveness of Software

Reuse: A Model for Planned Reuse. Journal of System Software, 73(2):245–255, 2004.

261

[98] M. C. Ohlsson, A. Von Mayrhauser, B.McGuire, and C. Wohlin. Code decay analysis

of legacy software through successive releases. In Proceedings of the IEEE Aerospace

Conference, pages 69–81, 1999.

[99] M.C. Ohlsson and C. Wohlin. Identification of green, yellow, and red legacy com-

ponents. In Procs. International Conference on Software Maintenance, pages 6–15,

1998.

[100] Open Systems Joint Task Force. A modular open systems approach (mosa) to weapon

system acquisition executive summary. Technical report, Department of Defense,

2004.

[101] A. Orrego, T. Menzies, and O. El-Rawas. On the Relative Merits of Software Reuse.

In ICSP ’09: Proceedings of the International Conference on Software Process, pages

186–197. Springer-Verlag, 2009.

[102] L. Pareto, M. Staron, and P. Eriksson. Ontology Guided Evolution of Complex

Embedded Systems Projects in the Direction of MDA. In Model Driven Engineering

Languages and Systems, volume 5301 of Lecture Notes in Computer Science, pages

874–888. Springer Berlin / Heidelberg, 2010.

[103] P. G. Paulin, C. Liem, M. Cornero, F. Nacabal, and G. Goossens. Embedded Software

in Real-Time Signal Processing Systems: Application and Architecture Trends. In

Proceedings of the IEEE, volume 85, pages 419–435, 1997.

[104] Y. Peng, C. Peng, J. Huang, and K. Huang. An Ontology-Driven Paradigm for

Component Representation and Retrieval. In Ninth IEEE International Conference

on Computer and Information Technology, 2009. CIT ’09., volume 2, pages 187 –192,

11-14 2009.

[105] J. S. Poulin. The Business Case for Software Reuse: Reuse Metrics, Economic Models,

Organizational Issues, and Case Studies. In Maurizio Morisio, editor, Reuse of Off-

262

the-Shelf Components, volume 4039 of Lecture Notes in Computer Science, pages

439–439. Springer Berlin Heidelberg, 2006.

[106] M. Raatikainen, T. Soininen, T . Mannisto, and A. Mattila. A Case Study of Two

Configurable Software Product Families. In Frank van der Linden, editor, Software

Product-Family Engineering, volume 3014 of Lecture Notes in Computer Science,

pages 403–421. Springer Berlin / Heidelberg, 2004.

[107] D. C. Rine. Supporting Reuse with Object Technology. Computer, 30(10):43–45,

1997.

[108] D. C. Rine and R. M. Sonnemann. Investments in Reusable Software. A Study of

Software Reuse Investment Success Factors. Journal of System Software, 41(1):17–32,

1998.

[109] D.C.; Nada N Rine. An Empirical Study of a Software Reuse Reference Model.

Information and Software Technology, 42(1):47–65, Jan 2000.

[110] M. A Rothenberger. Systems Development with Systematic Software Reuse: An

Empirical Analysis of Project Success Factors, 1999.

[111] M. A. Rothenberger, K. J. Dooley, U. R. Kulkarni, and N. Nada. Strategies for Soft-

ware Reuse: A Principal Component Analysis of Reuse Practices. IEEE Transactions

in Software Eng., 29(9):825–837, 2003.

[112] P Runeson, M Höst, A Rainer, and B Regnell. Case Study Research in Software

Engineering: Guidelines and Examples. John Wiley and Sons, 2012.

[113] Thomas L. Saaty. Priority setting in complex problems. Engineering Management,

IEEE Transactions on, EM-30(3):140–155, 1983.

[114] T. Schetter, M. Campbell, and D. Surka. Comparison of Multiple Agent-Based

Organisations for Satellite Constellations (TechSat21). Artificial Intelligence, 145(1-

2):147 – 180, 2003.

263

[115] M. Schwartz. The Nunn-McCurdy act: Background, Analysis, and Issues for

Congress. Technical report, Congressional Research Service, 2010.

[116] SEI. Software Product Lines. Technical report, Software Engineering Institute (SEI),

http://www.sei.cmu.edu/productlines/, 2010.

[117] S. G. Shiva and L. A. Shala. Software Reuse: Research and Practice. In Fourth

International Conference on Information Technology, 2007. ITNG ’07, pages 603

–609. IEEE, Apr. 2007.

[118] J Sprinkleand, J. M Eklund, H Gonzalez, E I Groetli, B Upcroft, A Makarenko,

W Uther, M Moser, R Fitch, H Durrant-Whyte, and S. S Sastry. Model-Based

Design: a Report from the Trenches of the DARPA Urban Challenge. Software and

Systems Modeling, 8:551–566, 2009.

[119] R Studer, V R Benjamins, and D Fensel. Knowledge Engineering: Principles and

Methods. IEEE Transactions on Data and Knowledge Engineering, 25, 1998.

[120] T Sullivan, D Sather, and R Nishinaga. A Flexible Satellite Command and Control

Framework, Oct 27, 2009.

[121] D.M. Surka, M.C. Brito, and C.G. Harvey. The Real-time ObjectAgent Software

Architecture for Distributed Satellite Systems. In IEEE Proceedings of the Aerospace

Conference, 2001, volume 6, pages 2731 –2741, 2001.

[122] T. M. Khoshgoftaar and D. L. Lanning . Are the principal components of software

complexity stable across software products? In Procs. International Symposium on

Software Metrics, pages 61–72, October 1994.

[123] T. M. Khoshgoftaar and E.B. Allen and N. Goel and A. Nandi and J. McMullan .

Detection of software modules with high code debug churn in a very large legacy sys-

tem. In Procs. International Symposium on Software Reliability Engineering, pages

364–371, October 1996.

264

[124] Walter F. Tichy, Paul Lukowicz, Lutz Prechelt, and Ernst A. Heinz. Experimental

Evaluation in Computer Science: A Quantitative Study. Journal of Systems and

Software, 28(1):9–18, 1995.

[125] S. Uchitel, G. Brunet, and M. Chechik. Synthesis of Partial Behavior Models from

Properties and Scenarios. IEEE Transactions on Software Engineering, 35(3):384

–406, May-June 2009.

[126] C.A. Welty and D.A. Ferrucci. A Formal Ontology for Re-use of Software Archi-

tecture Documents. In 14th IEEE International Conference on Automated Software

Engineering, 1999, pages 259 –262, Oct 1999.

[127] S. Winkler and J. Pilgrim. A Survey of Traceability in Requirements Engineering

and Model-Driven Development. Software System Modeling, 9(4):529–565, 2010.

[128] M. Winter, T. Genler, A. Christoph, O. Nierstrasz, S. Ducasse, R. Wuyts, G. Arevalo,

P. Moeller, C. Stich, and B. Schoenhage. Components for Embedded Software - The

PECOS Approach. In CASES ’02 Proceedings of the 2002 International Conference

on Compilers, Architecture, and Synthesis for Embedded Systems, pages 19–25. ACM

Press, 2002.

[129] C Wohlin, P Runeson, M Höst, M. C. Ohlsson, B Regnell, and A. Wesslén. Experi-

mentation in Software Engineering. Springer, 2012.

[130] H Yan, W Zhang, H Zhao, and H Mei. An Optimization Strategy to Feature Mod-

els‚Äô Verification by Eliminating Verification-Irrelevant Features and Constraints.

In S H. Edwards and G Kulczycki, editors, Formal Foundations of Reuse and Do-

main Engineering, volume 5791 of Lecture Notes in Computer Science, pages 65–75.

Springer Berlin Heidelberg, 2009.

[131] R. K Yin. Case Study Research Design and Methods. SAGE Publications, 4th edition,

October 2008.

265

[132] T. Young. Report of the Defense Science Board/ Air Force Scientific Advisory Board

Joint Task Force on Acquisition of National Security Space Programs. Technical

report, Office of the Under Secretary of Defense For Acquisition, Technology, and

Logistics, Washington, D.C. 20301-3140, May 2003.

[133] C. Zannier, G. Melnik, and F. Maurer. On the Success of Empirical Studies in

the International Conference on Software Engineering. In Proceedings of the 28th

International Conference on Software Engineering, pages 341–350, New York, NY,

USA, 2006. ACM.

[134] D.H. Zhang, Jing B. Z., M Luo, Y Tang, and L. Q Zhuang. A Reference Architecture

and Functional Model for Monitoring and Diagnosis of Large Automated Systems.

In Proceedings of the IEEE Conference on Emerging Technologies and Factory Au-

tomation, 2003., volume 2, pages 516 – 523 vol.2, 16-19 2003.

[135] G. L. Zuniga. Ontology: Its Transformation from Philosophy to Information Systems.

In FOIS ’01: Proceedings of the International Conference on Formal Ontology in

Information Systems, pages 187–197, New York, NY, USA, 2001. ACM.

266

Appendix A

Years of Publication

Figure A.1: Type of empirical study by year

One question was how empirical results on development strategies was evolving over

time. Our study collected research since 1992. Empirical research on reuse increased since

2001 after a short spike in the late 1990s. Nineteen of the 24 case studies were conducted

since 2002, as well as three of the five surveys. While in 1997 all of the empirical papers

on development strategies were expert opinion, in 2007 and 2009 (the years with the most

empirical papers on reuse) the types of studies were fairly well divided among case studies,

experience reports and expert opinion with one each of review of practice, metaanalysis,

and quasi-experiment. Even in 2010 and 2012, the studies were case studies and review of

267

practice, with only one experience report and no expert opinions. The empirical studies

have become more focused on data and less on opinion. Figure A.1 illustrates this trend.

Another question was whether the development approaches using reuse were changing,

or at least whether studies of development strategies were evolving. Empirical studies on

product line reuse has been steady at one or two papers a year since 2003. However, the

number of papers analyzing component based and model based reuse increased to a total of

nine in 2009. Research on product lines has been fairly steady since 2002. There have also

been a number of studies that investigated multiple development approaches. Ontologies

have begun to get attention lately as well. On the other hand, the number of empirical

papers written on reuse whose approach is unspecified has decreased to only one in each

of 2008, 2009 and 2010. This shows that empirical research on reuse is beginning to focus

on specific development strategies. Figure A.2 shows empirical studies by reuse in the

development approaches by year.

Figure A.2: Empirical studies of reuse by development approach by year

268

Appendix B

The Survey

The Survey The introduction:

This is an anonymous survey for all company systems and software engineers

to determine various experiences we have had with different types of reuse. This

information can be used to help analyze and apply best practices for reuse. It

can also be used as data to include in proposals, for research papers such as

doctoral dissertations and masters theses.

For purposes of this survey:

• A strategy is the choice of approach or combination of approaches the

program makes to employ reuse

• An approach is the one of the development methods that allows for reuse

(such as those four listed below):

– Model-based reuse is reuse that is based on reusing models created on

other programs or components.

– Component-based is reuse based on already developed components or

designed for reuse on a component basis.

– Product line reuse is reuse based on a standardized but tailorable

product line.

– Ad Hoc is reuse that the engineer is familiar with, that happens to

meet a requirement but was not designed for reuse.

269

If you have been involved in more than one project that employed reuse and had

different experiences you would like to share, please respond once per program.

In these cases please respond from the standpoint of that program and your

experiences there. Summary results (and the resulting papers) will be posted

here. We hope the results provide guidance in our future practices and help

identify the best strategies and approaches for different types of programs We

hope this survey can be used as a first step to assess what works and what does

not work in reuse. All surveys used for academic research need to make the

following disclaimer: Participation is voluntary. You can delete your response

at any time. You can respond without identifying yourself.

Respondent Information

RQ-1 The purpose of these questions is to

correlate reuse experience with the type of

engineer (ie hardware, software, systems),

the company (which corresponds to the

types of programs and the culture), and the

experience level of the engineer.

• 1. What type of engineer are you?

– a. Systems

– b. Software

– c. Software Systems

– d. Specify your own answer

• 2. What company and location do you

work for?

• 3. How many years of experience do

you have with system or software de-

velopment?

– a. 0-5 years

– b. 6-10 years

– c. More than 10 years

• 4. How many years of experience do

you have with incorporating reuse into

programs

– a. 0-5 years

– b. 6-10 years

– c. More than 10 years

Program/Application Information

RQ-2, RQ-3 The purpose of these questions

is to correlate the size of the program, the

nature of the system/program, the software

type. This should offer insight into whether

embedded and non-embedded use the same

strategies and whether successful strategies

are similar.

270

• 5. Is the system you are working

on or reporting on embedded or non-

embedded?

– a. Embedded

– b. Non-embedded

• 6. It is possible for a system to be

embedded and the software to be non

embedded (for example, database soft-

ware may be part of a flight system but

not itself embedded). Conversely, it is

possible to work on embedded software

for a non-embedded system (for ex-

ample, embedded flight software com-

ponents for a desktop simulator). Is

the software you are working with or

on or reporting on embedded or non-

embedded?

– a. Embedded

– b. Non-embedded

– c. Both

• 7. What type program are you work-

ing on (i.e. what is the final product)?

– a. Satellite

– b. Ground Station

– c. Missile/Rocket

– d. Helicopter

– e. Submarine

– f. Deep Space (probe or lander)

– g. Logistics

– h. Data Collection

– i. Other (describe)

• 8. How large is the software ef-

fort on your program, or the program

you are reporting on (approximately)

(KSLOC)?

• 9. What type of application is the

focus of the work product you are

producing? i.e. graphics, GNC, al-

gorithm, web-based, business, data

mining, hardware components, archi-

tecture etc?

Reuse Information

RQ-4, This set of questions helps identify

the type of reuse strategy employed, whether

success is improved with being part of the

decision, and whether the program is far

enough along to measure factors that occur

late in the program. We are able to com-

pare development strategies and artifacts

used on embedded systems vs. nonembed-

ded systems.

271

• 10. Is your program employing prod-

uct reuse? (artifacts, models, etc)

– a. Yes (Branch to 11)

– b. No

• 11. What approach to reuse did your

program take? Check all that apply

– a. Component based

– b. Model based

– c. Product Line

– d. COTS/GOTS

– e. Heritage/legacy

– f. Ad Hoc (using already devel-

oped code that you happen to

have around)

– g. Other

• 12. Did you have input in the reuse

decisions?

• 13. What phase has your program

reached?

– a. Capture

– b. Requirements

– c. Architecture

– d. Design

– e. Implementation

– f. Integration and Test

– g. Deployment

– h. Maintenance/Operations and

Maintenance

• 14. What product(s) is/are being

reused? (i.e. requirements, architec-

ture, models (what type?), use cases,

code, drawings, hardware, test prod-

ucts, already tested clusters)

– a. Requirements

– b. Code

– c. Architecture

– d. Models

– e. Drawings

– f. Hardware

– g. Use Cases

– h. Test Products

– i. Already tested clusters

– j. Other (fill in)

Reuse Effectiveness Information

RQ-4 This set of questions will help corre-

late the effectiveness of the strategy against

the strategy by identifying and scoring the

change in outcomes attributed to reuse.

• 15. Did the reuse save labor hours?

– a. No

– b. Yes, from 10 to 20 per cent

272

– c. Yes, from 20-30 per cent

– d. Yes, more than 30 per cent

– e. It cost us time (10-20 per cent

)

– f. It cost us time (more than 20

per cent)

– i. * How much of the time savings

to you attribute to reuse? Please

explain how it saved time

– i. * Please explain how the reuse

cost you labor hours

• 16. Did you notice fewer defects than

when reuse was not employed?

– a. No

– b. Yes, 0-10 per cent fewer

– c. Yes, 10-30 per cent fewer

– d. Yes, more than 30 per cent

fewer

– e. No, we observed more defects

• 17. Did it reduce testing labor hours?

– a. No

– b. Yes, 0-10 per cent reduction

– c. Yes, 10-30 per cent reduction

– d. Yes, more than 30 per cent re-

duction

– e. No, we had to test more than

10 per cent more

• 18. Did it reduce items that needed to

be tested?

– a. No

– b. Yes, 0-10 per cent reduction

– c. Yes, 10-30 per cent reduction

– d. Yes, more than 30 per cent re-

duction

– e. No, we had to test more than

10 per cent more

• 19. Did you feel risk (cost, schedule,

technical) was reduced? yes/no

• 20. * If you felt risk was reduced,

please explain how. If not, please ex-

plain.

273

Appendix C

The MANOVA Tables

274

System Type vs Development Method

|------------------|-----|-----|---------------------|----------|-----|---|
|Dependent Variable|(I) a|(J) a|Mean Difference (I-J)|Std. Error|Sig.a|95% Confidence Interval for Difference |
| | | | | | |---------------------------------------|-----------|
						Lower Bound	Upper Bound
Component Based	0	1	-.215	.110	.055	-.435	.005
	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
	1	0	.215	.110	.055	-.005	.435
------------------	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
Model Based	0	1	-.101	.101	.322	-.302	.101
	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
	1	0	.101	.101	.322	-.101	.302
------------------	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
Product Line	0	1	-.142	.110	.201	-.360	.077
	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
	1	0	.142	.110	.201	-.077	.360
------------------	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
COTS/GOTS	0	1	.086	.108	.429	-.129	.300
	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
	1	0	-.086	.108	.429	-.300	.129
------------------	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
Ad Hoc/Legacy/	0	1	-.037	.110	.738	-.256	.182
Heritage	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
	1	0	.037	.110	.738	-.182	.256

Based on estimated marginal means
 a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Multivariate Tests
|------------------|-----|------|-------------|--------|----|-------------------|------------------|---------------|
	Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Powerb
Pillai's trace	.076	1.179a	5.000	72.000	.328	.076	5.894	.396
------------------	-----	------	-------------	--------	----	-------------------	------------------	---------------
Wilks' lambda	.924	1.179a	5.000	72.000	.328	.076	5.894	.396
------------------	-----	------	-------------	--------	----	-------------------	------------------	---------------
Hotelling's trace	.082	1.179a	5.000	72.000	.328	.076	5.894	.396
------------------	-----	------	-------------	--------	----	-------------------	------------------	---------------
Roy's largest root	.082	1.179a	5.000	72.000	.328	.076	5.894	.396
--								
Each F tests the multivariate effect of a. These tests are based on the linearly independent pairwise comparisons among the estimated marginal means.
 a Exact statistic
 b Computed using alpha =

Univariate Tests
|---------------------------|--------------|--|-----------|-----|----|-------------------|------------------|---------------|
Dependent Variable	Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Powera	
Component Based	Contrast	.898	1	.898	3.798	.055	.048	3.798	.486
	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
	Error	17.974	76	.236					
------------------	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
Model Based	Contrast	.198	1	.198	.993	.322	.013	.993	.166
	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
	Error	15.148	76	.199					
------------------	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
Product Line	Contrast	.391	1	.391	1.665	.201	.021	1.665	.247
	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
	Error	17.827	76	.235					
------------------	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
COTS/GOTS	Contrast	.143	1	.143	.631	.429	.008	.631	.123
	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
	Error	17.191	76	.226					
------------------	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
Ad Hoc/Legacy/	Contrast	.027	1	.027	.112	.738	.001	.112	.063
Heritage	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
	Error	17.922	76	.236					

The F tests the effect of a. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.
 a Computed using alpha =

Figure C.1: MANOVA Tables System Type vs Development Approach

275

System Type vs Artifacts

Pairwise Comparisons
|------------------|-----|-----|---------------------|----------|-----|---|
|Dependent Variable|(I) a|(J) a|Mean Difference (I-J)|Std. Error|Sig.b|95% Confidence Interval for Differenceb |
| | | | | | |---------------------------------------|-----------|
						Lower Bound	Upper Bound
Requirements	0	1	-.194	.110	.081	-.412	.024
	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
	1	0	.194	.110	.081	-.024	.412
------------------	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
Code	0	1	-.151	.093	.110	-.337	.035
	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
	1	0	.151	.093	.110	-.035	.337
------------------	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
Architecture	0	1	-.221*	.110	.047	-.439	-.003
	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
	1	0	.221*	.110	.047	.003	.439
------------------	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
Models	0	1	-.090	.111	.416	-.310	.130
	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
	1	0	.090	.111	.416	-.130	.310
------------------	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
Drawings	0	1	-.030	.093	.744	-.215	.154
	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
	1	0	.030	.093	.744	-.154	.215
------------------	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
Hardware	0	1	-.245*	.107	.026	-.458	-.031
	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
	1	0	.245*	.107	.026	.031	.458
------------------	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
Use Cases	0	1	-.204*	.099	.043	-.401	-.006
	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
	1	0	.204*	.099	.043	.006	.401
------------------	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
Test Products	0	1	-.269*	.107	.014	-.483	-.055
	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
	1	0	.269*	.107	.014	.055	.483
------------------	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
Tested Clusters	0	1	-.098	.049	.052	-.196	.001
	-----	-----	---------------------	----------	-----	---------------------------------------	-----------
	1	0	.098	.049	.052	-.001	.196

Based on estimated marginal means
 * The mean difference is significant at the
 b Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Multivariate Tests
|------------------|-----|------|-------------|--------|----|-------------------|------------------|---------------|
	Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Powerb
Pillai's trace	.153	1.365a	9.000	68.000	.221	.153	12.289	.610
------------------	-----	------	-------------	--------	----	-------------------	------------------	---------------
Wilks' lambda	.847	1.365a	9.000	68.000	.221	.153	12.289	.610
------------------	-----	------	-------------	--------	----	-------------------	------------------	---------------
Hotelling's trace	.181	1.365a	9.000	68.000	.221	.153	12.289	.610
------------------	-----	------	-------------	--------	----	-------------------	------------------	---------------
Roy's largest root	.181	1.365a	9.000	68.000	.221	.153	12.289	.610
--								
Each F tests the multivariate effect of a. These tests are based on the linearly independent pairwise comparisons among the estimated marginal means.
 a Exact statistic
 b Computed using alpha =

Univariate Tests
|---------------------------|--------------|--|-----------|-----|----|-------------------|------------------|---------------|
Dependent Variable	Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Powera	
Requirements	Contrast	.730	1	.730	3.131	.081	.040	3.131	.416
	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
	Error	17.731	76	.233					
------------------	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
Code	Contrast	.443	1	.443	2.621	.110	.033	2.621	.359
	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
	Error	12.852	76	.169					
------------------	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
Architecture	Contrast	.948	1	.948	4.065	.047	.051	4.065	.512
	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
	Error	17.731	76	.233					
------------------	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
Models	Contrast	.159	1	.159	.668	.416	.009	.668	.127
	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
	Error	18.059	76	.238					
------------------	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
Drawings	Contrast	.018	1	.018	.107	.744	.001	.107	.062
	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
	Error	12.700	76	.167					
------------------	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
Hardware	Contrast	1.163	1	1.163	5.184	.026	.064	5.184	.613
	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
	Error	17.055	76	.224					
------------------	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
Use Cases	Contrast	.807	1	.807	4.218	.043	.053	4.218	.527
	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
	Error	14.539	76	.191					
------------------	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
Test Products	Contrast	1.407	1	1.407	6.269	.014	.076	6.269	.696
	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
	Error	17.055	76	.224					
------------------	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
Tested Clusters	Contrast	.185	1	.185	3.897	.052	.049	3.897	.496
	--------	--------------	--	-----------	-----	----	-------------------	------------------	---------------
	Error	3.610	76	.047					

The F tests the effect of a. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.
 a Computed using alpha =

Figure C.2: MANOVA Tables System Type vs Artifacts

276

Appendix D

Interview Letter

Candidate Email I am doing research for my PhD on reuse effectiveness. In particular,

I am comparing reuse effectiveness between embedded and nonembedded systems, and

among various strategies for reuse (and which strategies work best for which types of

systems). I was wondering whether you would be willing to participate.

The interview will take about one hour. This is not a company affiliated study. Your

participation and answers will be kept confidential, with the information aggregated and

coded so it will not be possible to attribute comments to a particular individual.

I am looking at reuse strategies (i.e. product line, component-based, model-based,

legacy/heritage, ad hoc, ontology and any other strategy you may have worked with as

well as any combination of the strategies) and which artifacts are reused within these

strategies (i.e. requirements, architecture, design, models, source code, test drivers and

other test products, test clusters (items already tested together) and any other artifacts

you reused). I would like to know the outcomes, positive and negative, for effort, quality,

time to market and other variables you consider important.

If you agree, I will be sending you a consent form to sign before the interview as per

University of Denver interview protocol. As I said, this is not a company affiliated research

project, so you will be signing it as an individual rather than as a representative of the

company. The company will be masked so nobody can identify it, however, of course you

don‚Äôt want to divulge any proprietary information. The interview will be recorded and

277

transcribed. You will be given the opportunity to review and edit your responses to remove

anything that may be company proprietary and to ensure the accuracy of the transcription

or to clear up anything you choose.

If you choose to participate, I thank you. If you would like a copy of the final paper, I

will be happy to provide it to you.

Please respond to jfvarnellsarj@me.com. Thank you.

278

INFORMED CONSENT FORM

ATTACHMENT B

(Title of Research Project)

You are invited to participate in a study that will (purpose statement). In addition, this study is being conducted to fulfill the
requirements of a class in (name of class). The study is conducted by (student name). Results will be used to (purpose) and to
receive a grade in the course. (Student) can be reached at (phone/e-mail). This project is supervised by the course instructor, Dr.
Anneliese Andrews, Department of Computer Science, University of Denver, Denver, CO 80208, (phone number, e-mail address).

Participation in this study should take about 60 minutes of your time. Participation will involve responding to (#) questions about
(question content). Participation in this project is strictly voluntary. The risks associated with this project are minimal. If, however,
you experience discomfort you may discontinue the interview at any time. We respect your right to choose not to answer any
questions that may make you feel uncomfortable. Refusal to participate or withdrawal from participation will involve no penalty or
loss of benefits to which you are otherwise entitled.

Your responses will be identified by code number only and will be kept separate from information that could identify you. This is
done to protect the confidentiality of your responses. Only the researcher will have access to your individual data and any reports
generated as a result of this study will use only group averages and paraphrased wording. However, should any information
contained in this study be the subject of a court order or lawful subpoena, the University of Denver might not be able to avoid
compliance with the order or subpoena. Although no questions in this interview address it, we are required by law to tell you that if
information is revealed concerning suicide, homicide, or child abuse and neglect, it is required by law that this be reported to the
proper authorities.

If you have any concerns or complaints about how you were treated during the interview, please contact Paul Olk, Chair,
Institutional Review Board for the Protection of Human Subjects, at 303-871-4531, or you may email du-irb@du.edu, Office of
Research and Sponsored Programs or call 303-871-4050 or write to either at the University of Denver, Office of Research and
Sponsored Programs, 2199 S. University Blvd., Denver, CO 80208-2121.

You may keep this page for your records. Please sign the next page if you understand and agree to the above. If you do not
understand any part of the above statement, please ask the researcher any questions you have.

I have read and understood the foregoing descriptions of the study called (name). I have asked for and received a satisfactory
explanation of any language that I did not fully understand. I agree to participate in this study, and I understand that I may withdraw
my consent at any time. I have received a copy of this consent form.

Signature _____________________ Date _________________

(If appropriate, the following must be added.)

___ I agree to be audiotaped.
___ I do not agree to be audiotaped.
___ I agree to be videotaped.
___ I do not agree to videotaped.

Signature _____________________ Date _________________

___________ I would like a summary of the results of this study to be mailed to me at the following postal or e-mail address:

Figure D.1: Informed Consent Form

279

Appendix E

Interview Questions

Questions The following questions were created to guide the semistructured interviews.

As interviews progress, some may be modified somewhat, others may not be asked, either

due to time constraints or irrelevance in terms of the particular interview.

• What is your background in reuse? This question is meant to provide insight into

the viewpoint of the subject. If the subject has worked on multiple projects involving

reuse, it will allow the interviewers to pursue comparisons.

• What types of systems have you used reused products on - embedded vs non-embedded?

If the subject has worked on both embedded and non-embedded systems, it will al-

low the interviewers to look for the differences and similarities. If the subject has

primarily worked on one or the other, it will allow the interviewers to pursue more

detail on the type the expert is most familiar with. [RQ2,3]

• What reuse strategies have you used? Why? What were the outcomes? Because the

survey observed significant differences in the strategies used between embedded and

non-embedded systems, this will allow the interviewer to validate the survey results

and seek reasons for the difference.[RQ3,4,6]

• What artifacts have you reused? Because the survey observed significant differences

in the artifacts used between embedded and non-embedded systems, this will allow

the interviewer to validate the survey results and seek reasons for the difference.[RQ7]

280

• What was the level of reuse? This question should help the researchers determine

whether reuse is used more or less given factors such as type, strategy and artifacts.

[RQ1,2,4,5]

• Have you encountered any obstacles? This question is used to elicit the types of

obstacles encountered by each type of reuse. It should hopefully show whether the

obstacles are the same or different between embedded and non-embedded systems.

[RQ1,2,4,5]

• How do you define success/failure? Success criteria may differ, this should give us an

idea of the differences or similarities. [RQ1, 2, 5]

• How successful were you? This should help indicate whether there are differences in

success levels between embedded and non-embedded systems. [RQ1, 2, 5]

• What drove the success or failure? This should give us the reasons for success or

failure. [RQ1, 2, 5, 8]

• How do you define component? Model? If there is a difference in how embedded

systems and non-embedded systems define these terms, there could be greater or

fewer differences between the types than previously thought. [RQ4, 5]

• What were the benefits of reuse? Non-benefits? This should provide us reasons for

any differences in reuse experiences. [RQ1, 2, 5]

• What about reuse and nonfunctional requirements? Do these types of requirements

impact reusability? [RQ1, 2, 5]

• In your opinion does reusing the hardware make a difference? Why or why not? This

could tell us the reason for reuse strategy and artifacts. [RQ5]

281

Appendix F

Finding Convergence in Interview Responses

The following spreadsheet was used to check for convergence. Responses are in boldface

type the first time they are heard, in normal type face thereafter. Note that after twelve

interviews, there are no more bold comments.

282

Person A B C D
What is your
background in
reuse?

35 years 7 years chief architect a few
years as developer

22 years 8 years FPGA, 20 years software
development

What types of
systems have you
used reused
products on‚
embedded vs non-
embedded?

Non Non Non Emb

What reuse
strategies have you
used? Why?

heritage/ legacy; model
based

cut and run; one baseline
across multiple programs;
Heritage; Component; take an
snapshot of someone else’s
code and then I would modify;
Service Oriented Architecture

scavenging reuse; similar code
or artifacts in similar projects
and adapting for use; I have
never worked on a reuse project or
program which provided me
anything in reuse that I could
actually adopt with low cost; design
patterns; three attempts at
repositories; they tout model-based
development, reuse there, like
everything else I've looked at it
appears that is an advertisement
not an adopted culturally sound
process

much of the heritage is ad hoc;

What artifacts have
you reused? Why?

software applications; not
so much models;
database; data sets;
software applications;
models as in models and
simulation; components;
test drivers; test
products; test clusters

software code; design artifacts,
the interface specifications,
requirements themselves;
service level agreement;
automated testing;
architectures; COTS;
infrastructure

reuse libraries; UML designs;
Design patterns; reused
requirements

library for reuse; components;
interrupt controllers, clock
domain processing, multiple
resets, cross clock domains,
DMA bus drivers; auto testing;
requirements; verification
methodology based on industry
standards; IPcore; performance
models; you use a tool to
convert it directly to the FPGA
code

Figure F.1: Expert Responses

Person
What is your
background in
reuse?
What types of
systems have you
used reused
products on‚
embedded vs non-
embedded?
What reuse
strategies have you
used? Why?

What artifacts have
you reused? Why?

E F G H
34 years 26 Years 25 years 16 years

Emb Non Emb Non

Libraries; designed for reuse;
ontology

Copying and pasting; black
box reuse; Component Reuse;
model based

Product Line; no strategy for
creating reusable pieces;
library; ontology

Adding capability into
existing baseline

requirements specifications, design
specifications, code reuse, the test
cases, and test scripts; test clusters

code artifacts; system
models; reference
architectures; Requirements;
test procedures

Code; Framework; Utilities;
Requirements; Simulation
framework; Design
requirements; Architecture; test
drivers; test products; test
clusters; standards;
algorighms; design; reference
architecture

Data; Documentation;
Requirements; Design;
Scenarios; FOSS

283

Person
What is your
background in
reuse?
What types of
systems have you
used reused
products on‚
embedded vs non-
embedded?
What reuse
strategies have you
used? Why?

What artifacts have
you reused? Why?

I J K L
25 yrs 20 years 20 years 16 Years

Non Both Emb Emb

Legacy; service oriented
architectures

mega reuse strategy;
framework

opportunistic reuse, I did project
A, now I'm working on project B, I
did something on A, I'm going to
clone copy and reuse on B, that's
kind of the lowest form that relies
on just that the human knows that
he's done something before, uses
it for the next thing; Sometimes no
modification, sometimes
modification; infrastructure
middleware code is basically
reusing without change, but some
stuff is actually copied and
modified

Model-based

scientific algorithms;
workflow control; COTS; test
environment; requirements;
Components; Data; Design;
Interfaces; performance
models

Requirements; Models;
Architecture; Components

Code, COTS, build
infrastructure, requirements,
design, design documents, test
documents, test, test products,
higher-level architecture
components, reference
architecture to go into particular
domains or disciplines

the UML stuff, requirements,
diagram reuse

Person
What is your
background in
reuse?
What types of
systems have you
used reused
products on‚
embedded vs non-
embedded?
What reuse
strategies have you
used? Why?

What artifacts have
you reused? Why?

M N
30 years 28 years

Emb Emb

Productized the system;
COTS/GOTS

Legacy

reused the design, reusable,
rehostable operating system;
requirements, architecture,
components, test products, test
clusters; models as well simulation
models, performance models,
UML, documentation

code fragments, design and
requirements artifacts a code
reuse, documentation,
environment, testbeds

284

Person A B C D
What were the
outcomes?

What was the level of
reuse?

70% it is in some instances it is
very specialized for a
particular problem and the
reuse is low; algorithm is 80-
90%; our software baseline is
not really reusable at all

project A: 65%. Project B: 20%,
project C: 15%. Project D: 20%.
Project E: 28%.

Have you
encountered any
obstacles?

If the software has to be
modified; don’t always
follow the same discipline
and the same elements,
the same structure; make
it adaptable to the
particular environment

Cultural; Not invented here;
biggest barrier to reuse is the
cut and run strategy; forking;
reuse was way overstated;
missed opportunities

No way to check that what was
done actually represented reuse;
fudging a lot of things to make
numbers come out right over the
years; how to produce a
reusable artifact that stays
useful?; bit rot, (anything that
sits on the shelf becomes less
useful over time. It's a decay
function); understanding the
business case is what's going to
keep them up-to-date; capturing
enough metadata, the time to do
a make versus buy trade,
whether that component is the
one you want to invest in; how
easy is it to try to reuse an
artifact and then bail on it if my
initial trial, does not prove
satisfactory; the costs of any
project are driven by the
decisions you make in the first
few months.

many senior engineers, tech
leads, design managers, don’t
want anything to do with it;
level of pushback from
technical leads, principle
engineers, and senior
management; malicious
compliance; the way we do
architecture development;
Once you start low level
assembly language coding, you
can’t rearchitect, you’re just
basically patching; big ball of
mud; lack of high level
preparation, lack of
documenting requirements or
making sure requirements are
comprehensive, complete,
accurate, lack of testing it
correctly; So that is actually
probably the number one issue
to low level coding is
antiarchitecture

285

Person
What is your
background in
reuse?

What were the
outcomes?

What was the level of
reuse?

Have you
encountered any
obstacles?

E F G H
Definitely mixed we satisfy 92% of the

requirements, right out of the
box, I also have all the test
plans done, all the test results
done; I can show compliance
and prove it

15-20% Some systems 60 to 70%; But
other systems it's more like 20
to 30% reuse.

they wouldn't use something they
found unless they could satisfy
themselves about its pedigree.;
biggest obstacle is lack of design
for reuse; second biggest
obstacle is the not invented here
syndrome

The obstacle to reuse is if
you don’t have that (chief
architect in control) kind of
setup then it’s not going to
happen; “Why would a
software developer spend 10
minutes looking for
something he could easily
write in a day or two?”

we don't have an actual
strategy for reuse from the
business unit; younger
software engineers view
everything that previously
exists as old-fashioned If
they look at it and see one
thing that they don't like,
they're willing to pulse out
the whole thing; anyone
wants to start up a reuse
workgroup or try to make a
business unit reuse strategy,
what they want to do is have
a one size fits all. And that's
impossible.

account for it when we
estimate effort for a job

286

Person
What is your
background in
reuse?

What were the
outcomes?

What was the level of
reuse?

Have you
encountered any
obstacles?

I J K L
It's rare that it's so bad that you
wind up costing more, maybe 90,
95% of the time it doesn't cost
more. But if failure is costing
significantly more than what you
thought, that probably happens not
half the time, butabout 30, 35% of
the time

rule of thumb is if the software
reuse is over 20% you need to
be suspicious.; If you are
reusing an existing scientific
algorithm 80% reuse is I think
reasonable

over 20% is rare I can see reuse in the 80% or
higher area

dependence upon so many
vendors; We always
underestimate our software
costs; documenting

Misfit; the people who quoted the
reuse did not understand how
much the design and the
requirements, and then the code,
would have to change; incorrectly
reusing things that aren't quite
right, being too optimistic
thinking you didn't have to change
anything, when you actually did
have to change it; customers
tend to put clauses and
constraints on the reuse
between their programs and
other programs; a not invented
here kind of attitude " I'd rather
redo it myself than use someone
else's;" forking of the products

what I call the human elements;
, find that it's easier to build or
they would rather build than
seek somebody else's work and
figure out how to morph it; a not
invented here; if you don't plan
to build it for reuse it becomes
very difficult to reuse;
understanding someone
else's code is harder than
just doing it yourself; when
they fork they maintain the
separate baselines rather than
make them common

Person
What is your
background in
reuse?

What were the
outcomes?

What was the level of
reuse?

Have you
encountered any
obstacles?

M N
it works pretty well for us Very high if just updating an existing

system, much lower if omporting
from IRAD

If we were able to use 75%, I
would say we exceeded our
expectations

In creating those models, we need
experts to make sure that the
model is doing what it's supposed
to, but we also need newer people
coming out of college who are
experienced with modeling and the
modeling languages and
techniques and mesh these two
together that the major obstacle
goes back to that contractual
restriction of not being able to use
them across major programs

In my mind the biggest obstacle to
software reuse is more cultural and
people driven, not technical driven I
have seen it fail many times when
the code itself and all the other
products was just flat out given to
another team who, and there's not a
real good technology transfer
methodology, meaning in certain
people under that team or
collaborating with what needs to be
done and stuff like that So that has
seemed to fail many times and I
don't know if it's because it was not
invented here, or another is that
there are technical incompatibilities
also

287

Person A B C D
How do you define
success/failure?

Success if you can make it
fit in your environment
and it passes all the tests,
unit testing, and if you can
validate and verify it works
in the new environment;
Failure is software that it
doesn’t work picking it up
and using it in your
environment and you
cannot modify it cheaper
or faster than you could
have developed it from
scratch

satisfy the requirements within
cost and schedule constraints;
build a reusable solution and
to build the artifacts around it;
failure, you don’t satisfy your
requirements and your system
doesn’t execute as expected;
you fork the baseline; if you
save money at the beginning
only to cost more money at the
end

if I can deliver my product and
have either shortened the
delivery time, or had a reduction
in the number of staff needed for
that particular function, then I've
been successful; Failure is
having to select an alternative,
having to invest my own
additional resources, that would
exceed what it would've taken me
to do the job from scratch

Did it save time and schedule by
doing reuse? Defects; Failure:
some cases it took longer to
reuse code because of all the
issues with it, it would have been
to just do it from scratch, so did it
save you time and schedule?;
Sometimes you don’t find out until
integration and test at a
subsystem level and all of the
sudden you start having issues;
And then you find out the code
wasn’t as good as you thought
it was, and particularly when
software tries to interface with it it
has some glitches in it,
unidentified bugs in it, so
sometimes it you have to wait
until the end of the program to
judge whether or not it was a
success for reuse

How successful were
you?.

more common that it
doesn’t work

I've suffered two significant
failures. But the number of
successes are between five and
10 times that number

I did a survey of the things that
cause the most issues for people.
And those things, everyone used
them and not a single person had
a bug in any of those circuits, so I
eliminated some of the major
sources of bugs; So that’s one
point where we had a pretty
good return on investment, and
that was demonstrable

Person
What is your
background in
reuse?

How do you define
success/failure?

How successful were
you?.

E F G H
success if you decrease the
problems over what you would have
had in the way of cost and schedule;
the perhaps more sophisticated
measure would be if you actually
improve product quality without
any significant increase in cost
and schedule by trying to do the
reuse;; failures of expectations; we
have made a commitment to
customers in terms of cost and
schedule based on what we
believed we could achieve with
reuse and the reuse didn't pan out
as planned and therefore we had
cost and schedule above the
commitments to the customer

count up your per cent reuse; ,
we saved the program 6 million
bucks.

I guess it's a success when you
can reuse; I guess a failure
would be, pull a piece in and it
was totally not applicable to
your job.; If I was able to reuse
the code, but it cost me twice
as much as I anticipated, than
that would have to be viewed
as a failure; So if we
underestimated, that's where I
think the failure comes in,
where you fail to estimate the
actual cost of doing that
particular module.

success is probably
related to cost and
schedule.;; Failure we
just didn't get the level of
reuse that we had hoped
out of this other piece.

very slightly successful I haven’t failed yet on big
projects

We've been able to generate
a lot of new systems, and
because these three programs
were using similar electrical
designs and similar missions
and similar requirements and
similar software frameworks we
were able to pull the necessary
pieces to create an entirely
new system, field it and fly it
successfully in six months.

Most cases have been
pretty successful.

288

Person
What is your
background in
reuse?

How do you define
success/failure?

How successful were
you?.

I J K L
cost and schedule success is that in the end the

reuse actually costs less than it
would have cost to rewrite it, and
have a high percentage of the
performance you would have
gotten if you had written it from
scratch; it costs less, and is
performing near what would be if
you designed and wrote it; Failure
is that you didn't know what was
needed so you're taking a sub
optimal design for the problem.
People rewrite because it's
actually a better fit; people are
over optimistic before
requirements decomposition from
the higher level results in a set of
requirements from the systems
engineering that's a mismatch

Success - if an individual is
willing to take the time to look
for and find the component that
can be reused, knowing that in
all likelihood, that will save time
in the long run; failure occurs
when they give up too soon,
and don't allow the time to do
that and recognize that the
payoffs can be quite beneficial

It was a nightmare partially
because it was our first full
implementation of the service
oriented architecture.; In the
most recent delivery, which we
are getting ready to promote,
has gone remarkably well, and
it's because we have learned
lessons about how to properly
structure integration and test.

Person
What is your
background in
reuse?

How do you define
success/failure?

How successful were
you?.

M N
Success: To be able to reuse
software artifacts, and I'm going to
say, as expected or planned;
Failure: If we were not able to
reuse the amount of software that
we thought we would, and as a
result cause cost or schedule of
the project to fail, in other words to
not be able to meet cost of
schedule

Success is, contractually, if you go
into a bid baseline and you say I'm
going to bid some 40% reuse based
on some technical assessment you
did on where you would be reusing
code, and then you would achieve
significantly less than that, then I
would say was a failure; most of
the failures are non-technical, it
might be a technically solid portion
of code that really works fine, but
then when you take that little piece
of code and put it into a larger
architecture that has different
coding and other standards, there
could be a technical incompatibility,
but it's typically driven by people
making decisions about deciding
not to reuse that code for one of
those reasons

289

Person A B C D
What drove the
success or failure?

So success is determined
by how similar the use is;
not designed to be reused;
if it is very dissimilar you’d
better be careful

Well, I'd like to think experience;
I've reduced my expectations.

How do you define
component?

it depends on what you are
talking about, a
component supports the
subsystem capability, in
other words you have a
capability within a software
set that will fit on that
component and the purpose
of that component

component is essentially
equivalent to a service and a
service is really just a piece of
software and perhaps the
underlying hardware that
performs a particular discrete
function with a well defined
interface and either a service
level expression or a set of
requirements that describe
what that service is

an artifact with a well-defined
inputs, outputs and behavior.

Component to me, speaking from
the hardware end, is a physical
entity, such as the FPGA is a
component. At a deliverable
level, the assembly code is
included. I do not use the term
component based engineering
because between the hardware
and software it is confusing

Person
What is your
background in
reuse?

What drove the
success or failure?

How do you define
component?

E F G H
Well, the biggest thing, I think is the
ability to correctly forecast future
demand; The biggest failure factor
is the assumption of reusability
without making any investment in
reusability upfront, or be
checking to see if there's a
match.

What made it successful was
having the processes and
the management and
everybody participating at
the front

There are reference
architectures for these
product lines, and you can do
reuse along with the reference
architectures, but doing reuse
without taking those into
consideration is a failure.

Success is the degree to
which we really follow
our guidance for
evaluating the reuse
that we are going to
inherit; expertise

a software unit to a C SCI; if you're
reusing the hardware and
software as a unit, well obviously
you could call that a system
complement, or hardware
component

software components - a piece
of code with its associated
documentation that you use
without changing it.; We did
talk about test cases as a
type of component.

component would be the CSC,
which is basically something in
your system that performs a
function given to a single
developer and is decoupled
from the system, it's a place
where you can minimize the
couplings to the system.;
Hardware is independent.

Component, I think, for
me, is I tend to think of it
more along the lines of a
class or a capability,
some strongly cohesive,
loosely coupled thing

290

Person
What is your
background in
reuse?

What drove the
success or failure?

How do you define
component?

I J K L
Our ability to manage
integration and test to find
all of the defects before we
go to site acceptance test, I
think people around here
would say that's been our
greatest contributor to
recent success.

people willing to really consider
the reuse and look for it and be
open to taking something that
maybe they don't think is the
optimal or the best design or
implementation, but it will work
understand existing code,
obviously, and software, and
requirements and how its
implemented in the architecture,
that kind of stuff, you have to know
that fairly well

component is a term I usually
don't use because it is so
vague. a component is a thing I
want to try to reuse, it tends to
be a set of implementation
classes it might be four, eight, 16,
maybe, that could come together
to do a useful function; sometimes
your component's hardware and
software together There are
situations where we have a set of
multiple classes on a set of
hardware and it's actually a
component if we put it in the
system to reuse

A component is an individually
discernible minimalist thing that
does a particular function. a
component to me is a small
thing that can be aggregated to
the larger; It's where you sit and
how you are drawing your
boundary; at the lowest level of
detail components get
aggregated together and as
those aggregations get larger
and larger the ability to juggle
those individual components
mentally requires some
abstraction

Person
What is your
background in
reuse?

What drove the
success or failure?

How do you define
component?

M N
having it within a product line was
a big one

Where I have seen success it’s
almost always been same team
leveraging what they have written
before. If the people have written
the code, or understood it, I've seen
that reuse work very often. I have
seen it fail many times when the
code itself and all the other
products was just flat out given to
another team and there's not a real
good technology transfer
methodology. On reason is not
invented here, another is technical
incompatibilities

A software component, in my
experience, can be anything from
a software module all the way up
to a CSCI. If you are talking about
a subsystem component or system
component, yes, it includes the
hardware. If you are talking about
a software component, no

I'm used to decomposing the
software item for the embedded into
loosely weaved, often grouped into
domains, like a particular set of
cohesive functionality tightly
coupled technically with each other
but loosely coupled to the rest of it,
and within that domain you have
software components which are a
group of functionality tightly coupled
within that component but loosely
coupled with some other
components associated with it.

291

Person A B C D
How do you define
Model?

 Models can be like
models and simulation,
using physics to emulate,
or simulate the actual
hardware, functioning of
hardware and the software
and making it work, a
simulation of the hardware
that you could run the
software against; And
then, you go into what we
call model based
engineering, where you
find a model ia totally
different - a model would
be in Rhapsody and could
use SySML or UML and all
the artifacts that are
associated with that, it
could include activity
diagrams, data flow
diagrams, needlines; It
has multiple meanings,
and it depends on how
you use the word

we mostly focus on the
performance model; focused on
the performance rather than
necessarily the functional
performance of the system;
predominantly latency and
throughput; System
bandwidth, and really
understanding where the
performance bottlenecks are; If
we were starting from scratch,
especially with modern
techniques, we would probably
do a lot more model based
architecture and design, but right
now, most of the significant
changes are understood changes
to an understood system

a capture of either a physical
thing or a set of components
that are already constructed to
interact a certain way, models are
also I suppose, thought of as
hierarchical; Design patterns
and design artifacts

but we know the tools that enable
SySML, Simulink, where you
develop a model of the device,
either as you are trying to develop
the lower level entities or as you
develop your algorithm
application; Modeling and
simulation fall under model based
engineering.

What were the
benefits of reuse?

if it is successful you save
money and time; So you
are saving your resources,
you are saving your funding

its in not only the development
costs, but the integration and
test savings and the
repeatability; nightly builds,
nightly integration testing, and
that has actually been a cultural
benefit to the quality of life for
the software developer

the efforts at making easy to find
things that will save me time and
money are good; I think of the
different forms of reuse, that design
patterns are one of the most
promising

Well the benefits for reuse, that is
for good reuse, is again, you can
save a lot of effort and a lot of
time, it can produce a better
circuits as far as what I do at the
low level; Its easier on the
designer because they don’t
have to worry about how to
implement some of the tougher
parts of their design. They can
concentrate on what they need to.

292

Person
What is your
background in
reuse?

How do you define
Model?

What were the
benefits of reuse?

E F G H
there has not been one uniform
definition of model, model-based
systems engineering is a basis for
software reuse; a model is a way to
capture the essence of a system
and/or software design so it can be
viewed to get insights into different
aspects of the design model;
performance model such as Matlab
and Simulink; a fully model-based
development includes models of the
system and software development,
models of the environment and
aspects of environment that are
pertinent; for embedded systems
development models or emulation
models are critical; Having one
monolithic definition of model-based
makes no sense, implementation
models, which emulation and
simulation of systems; system
models, and models of the
environment.

models are a representation of
reality, where you mean the
system, so anything based on
that is a model,; document the
architecture this way using
views, and each view has a
certain type of diagram or
diagrams to capture what you
want and those are in fact the
models

a model is a thing in the
simulation that encapsulates
some part of the system that is
not in software. So you can
encapsulate environmental
things, physical things like
wind, you can encapsulate a
device. A sensor.

Model, for us, then,
would be essentially how
those
(components)interact.

probably the biggest benefit is up at
the meta level. That is it focuses
the business attention on what
you have to do to get value out of
the engineering that you're doing
or how you might get more value
out of the engineering you're
doing.

affordability, that's been the
primary benefit. The other
benefit is the ability to
accelerate schedule; we
reuse the patterns more they
get refined,; It reduces the
risk from building something
else.; It's the knowledge that
this thing has worked over
time.; I would say it's less
defects for a piece of reuse.

Well for me the benefit is
always productivity,
potentially reducing
complexity

293

Person
What is your
background in
reuse?

How do you define
Model?

What were the
benefits of reuse?

I J K L
One model would be this thing
I call the template, which is our
structure for the way we are
going to do the development
all the way from the time we
are defining our requirements
to the time we deliver to the
customer.; The other model
that we worry about is like the
discrete event simulation types
of model.

We have lots of different models.
A model is essentially the
architecture and the design
artifacts; Simulations are models,
we have system architecture
models, static performance
models, a whole set of different
models, and those do fall within
my definition, but specific to just
software, when I talk about a
software model, I'm talking about
UML models of the architecture,
design and implementation;
something that's model based, the
model-based engineering
approach, I think incorporates all
those together in an integrated set
of models It would be your design
model, your performance models,
your simulation models, your
architecture models, it's everything
linked together

a model is probably an
aggregation of multiple things.
If the thing is so simple it can
be modeled with one rectangle
or, how should I say it? I think
it's the size

if it works, it's reducing your cost,
it's reducing your schedule and it's
reducing your technical risk

Well I think the benefits are, the
obvious one everybody goes to,
there's a tremendous cost
savings in the reuse and a big
benefit if you can find the thing,
and we use that phrase system
boundary that defines what it is
and have a good understanding
of what it does and how it can
be used and how it can benefit
you and your larger system

294

Person
What is your
background in
reuse?

How do you define
Model?

What were the
benefits of reuse?

M N
software simulation or software
emulation of some system or
subsystem

I'm trying not to use the term model
anymore because I think it's
extremely overused; I've seen
model used many ways. It's some
kind of representation of the real
thing that could be a simulation
model or an abstract representation
of the software; I think the word
model works very well when you put
it in light of a simulation of
something that's real, I'm going to
model this from a simulation, but
when you talk about your
embedded end product and you
start saying it's a model you ask will
it elicit the real thing or is it a model
because people think of a model is
something I've built on my desk, a
scale model of something that's real
and so it's really a representation of
it

one of the main benefits is cost,
but we also get quality and
schedule, because if we are using
about 90% of the build and we only
need to change about 10% of the
build for this new version then we
are getting all of that schedule and
cost reduction and we're not
creating new defects in the other
90%

it saves redoing the same thing just
a different way. you could save the
time, which is not only developing it,
but debugging it and working out all
the latent defects

Person A B C D
What were the Non-
benefits?

If the reuse is not going to
meet your performance
requirements, then you
have to evaluate what do I
have to do to that reused
software so it will meet my
performance requirements,
and if that means I have to
go in and redesign it and
rebuild it then it may not
be worth the reuse

collateral aspects of
unintended consequences of
reuse; The more people that you
have reusing a component the
less freedom of movement you
have for any individual
stakeholder in that reuse

When it came in mandated to me, it
was going to cost money whether I
reused it or not, in fact the
repository was not in good enough
shape at that time to benefit more
often than simply have to prepare a
report that would take me some
number of hours of a senior
engineer's time. So it ended up
being a tax

What about reuse
and nonfunctional
requirements? Do
these types of
requirements impact
reusability?

it could make it easier if it
is already met IA
requirements, for instance,

the entire system is behind the
curve on that front; security
requirements, that’s a prolific
problem right now. DNI has
instituted a different security
accreditation methodology and
that’s filtering through all of
the programs and so any reuse
model, a component reused
across multiple programs and
the security requirements
around that component should
be sold off by definition, there
should be a level of trust there
that I don’t have to resell those
security requirements across
the enterprise over and over
and over again, but that’s not
where we are

the challenges you have
capturing metadata about reuse
artifacts those are some of the
more critical ones; and often, when
you're trying to match a component
to your needs, you've exceeded
some design parameter of the
reuse artifact producer and that is
what you end up needing to
evaluate to determine whether you
can adapt or adopt it; building upon
reusable patterns will make that
problem tractable especially in the
face of potentially changing
regulations or standards

I think reuse particularly code that
has been through a development
that included some DO specs,
some security specs is very
important because you don’t
want to keep doing the same
thing wrong over and over
again.

295

Person
What is your
background in
reuse?

What were the Non-
benefits?

What about reuse
and nonfunctional
requirements? Do
these types of
requirements impact
reusability?

E F G H
I guess the only disadvantages I've
seen are when business units or
companies undertake reuse
without understanding what it
takes to be reused successfully
and then encounter business
failure,.

sometimes when you
pull in something, you
pull in additional things
and features you don't
need, which can be extra
work to go and tie off
these functions.

nonfunctional requirements reuse
was as useful or more so, so
things like robustness
requirements.; the level of the
security risk rose over time, so
that systems we developed in the
early 1990s, for instance, by the
time we were reusing elements or
entire systems of those by the
late 1990s the security risk had
gotten way up

the non-functional
requirements are probably
on a system by system basis

Yes. I think the expense of
modifying for the ilities and
stuff like that a lot of times they
relate directly to how the
architecture was done.; There's
not a lot of ilities the flow
directly within a single
component only, normally the
ilities flow through the
architecture.

All those things, we've
kind of had an ongoing
discussion about how do
we handle security.

Person
What is your
background in
reuse?

What were the Non-
benefits?

What about reuse
and nonfunctional
requirements? Do
these types of
requirements impact
reusability?

I J K L
it typically is not a perfect fit; It
won't give the best performance
or the most eloquent design for
that particular situation so you are
often, I don't want to say
shoehorning, but you are often
fitting it into something that is not
quite a perfect fit; That affects
performance aspects, and it
increases risk

The downside is how do you quantify, how do you find, how do you locate, then how do you really determine that this thing out there has the capabilities and the functionality and the attributes that you need to truly solve your problem?

So with nonfunctional
requirements, we’re always
worried about how we’re
going to sell those off and
there is always a certain
amount of negotiation up front
about how we are going to
show that we've met those
requirements.; I'm always
concerned about the reliability
requirement. The reliability
requirements really are
mathematical models.
generally speaking, reuse
helps us meet the
nonfunctional requirements.

Especially security requirements
are actually a detriment to
reuse; makes it so sometimes you
would have to reject some
products

296

Person
What is your
background in
reuse?

What were the Non-
benefits?

What about reuse
and nonfunctional
requirements? Do
these types of
requirements impact
reusability?

M N
The non benefit is you inherit the
software irregularities or
inconsistencies, if it's got defects.
But you also inherit the software
and the artifacts of which your
team doesn't have any
experience

Reusing the requirements or the
requirements statements is a
common thing that we do on a
program, so the nonfunctional
requirements can actually cause
you to have to either not reuse, or
modify more than you'd like; We
have some security issues that,
depending on where that CSCI is
going to operate, can restrict you
from any reuse Because the
security restrictions of that new
product may need, while part of
satisfying the security and the
safety concerns comes from how
you developed that piece of
software

well I'm on the fence with that,
because I'm not sure that all those,
in all the programs that I've worked
those have typically been levied by
design, so I haven't seen someone
explicitly take that requirement for
security or reliability or whatever
and actually map it to a feature in
their code

Person A B C D
In your opinion does
reusing the hardware
make a difference?
Why or why not?

Yes, because if you know it
is already compatible with
the particular server or
whatever the hardware is,
then it is easier to do
because you have already
worked out any problems

yeah, absolutely. The whole
transition to commodity hardware
has been liberating in our domain
because we develop content for
our system. We take content
from other providers, so
standardization of the
hardware architectures has
leveled the playing field and
made it so when we get an
algorithm from a lab or another
contractor there’s much less
development work now to
integrate that into our system
and harden it for operation;
Platform independence - yes
I’m a zealot in that particular
argument

certainly the kind of machine
architecture your using is going to
influence what is and isn't reusable;
my ability to actually take this
application and try it out gave me a
very different picture of sizing of
that application on the directed
hardware so my choices were to
say gosh I need to either invest in
an adapting in that application or I
need to re-specify the hardware;
The problem with platform
independence is the same
problem with what we call
portability. If you are trying to
write portability from one device to
another device, it may not work
because each device has its own
set of differences. We’re never
going to get there and we may
not want to. Because you won’t
get the performance out of the
specific device.

Reusing well documented, well
designed, well tested hardware is
an extraordinary method of not
only preventing errors later on
but for affordability concepts,
everyone’s pushing affordability;
And I think that reuse and
commonality go together.

297

Person
What is your
background in
reuse?

In your opinion does
reusing the hardware
make a difference?
Why or why not?

E F G H
well, for embedded systems, it
makes a huge difference. Especially for systems that are doing primarily control and status of hardware, for some of those systems if you change the underlying hardware including the CPU, processor, and hardware that interfaces to the digital hardware, you might have to redo 80% of your code even if the functionality is totally identical. If you change the hardware.; you probably can divide the kinds of functions that you do in a system and for the functions that are
closest to the hardware platform
independence may be more costly
than it's worth; For other things,
algorithms, for instance, it probably
pays off enough that it's well worth
developing it in a platform-
independent way

Platform independence Its
what we do

Well, certainly. If you are
reusing the same hardware,
there's a lot of pieces that you
can reuse but in some sense
we try to abstract away from
the hardware a lot both to give
us the capability of running in a
simulation environment and for
being able to port it,; because
right now what we have in the
embedded world especially is
were having a lot of flux in the
processor world.; But in the
embedded world, we have all
kinds of DSPs and devices and
Intel for higher end embedded
stuff is becoming much more
popular but for the low
powered stuff like tools, Intel is
still a hard fit.

We've had issues with
platform independence
and how independent
everything can really
be.; There are things that
we inherited, that we
hadn't touched, we hadn't
intended for there to be
any design change to
them, however they
broke with the move to
Linux..

Person
What is your
background in
reuse?

In your opinion does
reusing the hardware
make a difference?
Why or why not?

I J K L
Yeah it does. One of the
problems we ran into in the
past with scientific algorithms is
if we move from one type of the
processor to another, all the
underlying mathematical
libraries changed. And so the
porting cost was high.

in a well architected and
designed software, it's less of
an impact; Often we are changing
the hardware without changing the
software and as long as the
software was designed in a way to
be portable for the hardware and
you have used isolation layers, it's
not that big of a deal; Obviously
you make it easier if you are using
the same software and hardware
on a program, but what we find is
hardware moves way too fast
these days, and as soon as you
are reusing the software, the
hardware it is running on is
already obsolete; Going forward I
think that that is something that we
are not counting on, we are not
counting on having the same
hardware there, we are designing
the software architecture to be
tolerant of it changing

298

Person
What is your
background in
reuse?

In your opinion does
reusing the hardware
make a difference?
Why or why not?

M N
For us, it would, because if we've
got software working on a
particular computer, and its
hardware, if we can reuse that
same computer CPU, board,
whatever you want to call it, in
another system, we can reuse the
operating system, we can reuse
bus interface handling software,
things like that, that otherwise we
might have to go develop.
Platform independence we don't
bother much with that, because of
the specific systems that we are
creating. I don't think platform
independence would drive it any

Significantly, yeah. I believe that
both the reuse of the processes that
it runs on, and whatever avionics
systems that you are connected to
through the I/O paths, to the
sensors, the actuators, whatever
happens to be there, everything that
taps into what flight software needs
to do, the reuse of that would
significantly drive the benefit of
reuse of the software that already
supports that hardware platform;
the stuff in the middle, infrastructure
code, executive, whatever you call
it, is independent of the platform
and independent of the application;
But below that architecture, below
that element you would have to
have platform dependent modules
that dealt with the particular type of
platform.

299

	An Empirical Comparison of Reuse in Embedded and Nonembedded Systems
	Recommended Citation

	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Research Context
	Research Questions
	Contributions and Papers

	Organization

	Background
	History of Reuse
	Introduction
	Early Development Approaches and Reuse
	Ad Hoc Reuse
	Structured Programming
	Libraries
	Legacy or Heritage Reuse

	New Technologies and Standards Affecting Reuse
	Interface Standards.
	Object-Oriented Languages.
	Unified Modeling Language (UML)
	Design Patterns.
	Simple Object Access Protocol (SOAP), Software as a Service (SAAS) and Extensible Markup Language (XML)

	Government Initiatives Affecting Reuse
	The Software Reuse Initiative.
	The Government Acquisition Process.
	C4ISRAF/ Department of Defense Architecture Framework (DoDAF).
	Joint Technical Architecture
	Modular Open Systems Approach (MOSA).

	Success Factors for Early Reuse
	Reuse in More Recent Software Development Approaches
	Component Based Systems Engineering (CBSE)
	Product Lines
	Model Based Systems Engineering (MBSE)

	Historical Problems with Reuse
	The Future of Reuse in Embedded Systems
	Conclusion
	Classifying System Types, Development Approaches, and Study Types
	Development Approaches
	Classification of System Types
	Empirical Study Types

	Review of Existing Literature
	Introduction to Review of Existing Literature
	Review Process and Inclusion Criteria
	Reuse and Development Approaches for Embedded vs. Nonembedded Systems
	Software Reuse in Embedded Systems
	Software Reuse in Nonembedded Systems
	Software Reuse in Embedded and Nonembedded Systems
	Comparing Study Types

	Metrics Reported
	Analysis of Outcomes
	Threats to Validity
	Conclusion and Future Work

	Survey
	Related Work
	The Survey
	Context, Research Questions, and Hypotheses
	Procedure
	Focus of Study
	Sampling Plan
	Instrument Development
	Administration
	Data Validation
	Analysis Plan

	 Results
	Descriptive Statistics
	Hypothesis Testing
	Principal Components Analysis
	Analysis of PCA Results
	Analysis of Pairs
	Summary of Results
	Discussion of Qualitative Results

	Discussion of Results
	Descriptive Statistics
	Quantitative Statistics
	PCA

	Threats to Validity
	Quantitative Threats to Validity
	Qualitative threats to validity

	Conclusions and Future Work

	Semistructured Interview
	 Semistructured Interview Study Design
	Frame the research
	Sampling
	Designing the questions
	Developing the Protocol, Conducting the Interview and Data Collection
	Ethical Considerations

	Results
	Summary of Responses
	Coding the Answers for Quantitative Analysis
	Results from Coding of Responses
	Interpretation

	Threats to validity
	Conclusion, Lessons Learned and Future Work

	Creating a New Framework to Enable Reuse
	Summary of Existing Literature
	Summary of The Survey
	Summary of Results from Structured Interviews
	Analysis of Results
	Differences and Similarities between Embedded and Nonembedded Systems
	Summary of Benefits and Detriments of Development Approaches
	Summary of Benefits and Detriments of Artifacts Reuse
	Summary of Success Factors
	Summary of Obstacles
	Developing a New Approach

	Threats to Validity
	Quantitative Threats to Validity
	Qualitative threats to validity

	Conclusions

	Bibliography
	 Years of Publication
	The Survey
	The MANOVA Tables
	 Interview Letter
	Interview Questions
	Finding Convergence in Interview Responses

