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ABSTRACT 
 

Prior to this study, critical realignment theory, which presupposes eras of 

substantial and sustained swings in American political party dominance, had only 

been evaluated using the classical, frequentist approach to modeling. However, 

potential for more information concerning these electoral phenomena exists given 

a shift in the design and approach to realigning elections. This study sought to 

explore those options through one particular alternative to the classical approach 

to statistics—in this particular case, the Bayesian approach to statistics. 

Bayesian methods differ from the frequentist approach in three main ways: 

the treatment of probability, the treatment of parameters, and the treatment of 

prior information. This study sought to understand the effect of these differences 

as it applied to critical realignment theory:  namely, what contribution is made in 

understanding the occurrence of these eras from each statistical approach? Does 

the Bayesian approach provide any improvements over the classical approach in 

terms of understanding critical realignment theory? This first set of research 

questions was asked from a political viewpoint, but a second set of research 

questions was also posed from a methodological viewpoint: What methods exist 

to formally compare these two statistical approaches, and what is the relative 

strength of each method? Using the most efficient method of comparison, is any 
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further information gained concerning critical realignment theory, and is any 

further information gained concerning each statistical approach?  

Using multiple linear regression, results were similar across approaches. 

For the presidential data, critical elections were found in 1860 and 1932. This was 

replicated in the congressional models, with one additional realigning election 

found in 1996. As for additional information gained, Bayesian methods aided in 

understanding in some ways, but the classical approach also retained some 

benefit. Furthermore, these two statistical approaches were formally compared to 

one another, highlighting the comparison between credible intervals and 

confidence intervals. While these intervals are traditionally considered 

counterparts, this is not a direct comparison. These intervals represent different 

concepts, relating to underlying differences in the statistical approach. This, 

however, reiterates the strong role of correct interpretation as it pertains to results. 

Keywords: critical realignment theory, critical elections, Bayesian methods 

 
  



 iv 
 

 
TABLE OF CONTENTS 

 
Chapter One: Introduction ...................................................................................................1 

Background Information ..........................................................................................2 
Statement of the Problem .........................................................................................6 
Purpose of Study ......................................................................................................7 
Scope and Limitations of Study .............................................................................11 
Definition of Terms ................................................................................................12 
Organization of Study ............................................................................................13 
Critical Realignment Theory ..................................................................................14 
Bayesian Approach to Statistics .............................................................................29 
Misconceptions about Indicators of Statistical Significance .................................43 

 
Chapter Two: Method ........................................................................................................47 

Data ........................................................................................................................47 
Analysis Plan .........................................................................................................51 

 
Chapter Three: Results .......................................................................................................61 

Power Analysis ......................................................................................................61 
Classical Linear Regression Analysis ....................................................................62 
Bayesian Linear Regression Analysis ....................................................................70 
Formal Comparison ...............................................................................................89 

 
Chapter Four: Discussion .................................................................................................101 

Summary of Results .............................................................................................101 
Importance of Findings ........................................................................................104 
Implications for Theory and Practice ...................................................................108 
Study Limitations .................................................................................................110 
Avenues for Future Research ...............................................................................111 

 
Chapter Five: Conclusion ................................................................................................113 
 
Bibliography ....................................................................................................................124 
 
Appendices .......................................................................................................................135 

Appendix A ..........................................................................................................135 
Appendix B ..........................................................................................................142 
Appendix C ..........................................................................................................227 

 
 
 
 
 
 



 v 
  

 
LIST OF TABLES 

 
Table 1. Descriptive statistics for the presidential classical regression models ................65 
Table 2. Regression coefficients for the presidential classical regression models ............65 
Table 3. Descriptive statistics for the congressional classical regression models .............69 
Table 4. Regression coefficients for the congressional classical regression models .........69 
Table 5. Means and variances for the informative prior distributions for the 
presidential Bayesian models .............................................................................................71 
Table 6. Means and variances for the informative prior distributions for the 
congressional Bayesian models .........................................................................................71 
Table 7. Convergence diagnostics for the presidential Bayesian models using a 
non-informative prior distribution .....................................................................................73 
Table 8. Convergence diagnostics for the presidential Bayesian models using an 
informative prior distribution .............................................................................................74 
Table 9. Prior and posterior distribution information for the non-informative 
Bayesian presidential models, comparing the first and second eras ..................................77 
Table 10. Prior and posterior distribution information for the informative 
Bayesian presidential models, comparing the first and second eras ..................................78 
Table 11. Prior and posterior distribution information for the non-informative 
Bayesian presidential models, comparing the second and third eras .................................78 
Table 12. Prior and posterior distribution information for the informative 
Bayesian presidential models, comparing the second and third eras .................................78 
Table 13. Prior and posterior distribution information for the non-informative 
Bayesian presidential models, comparing the third and fourth eras ..................................79 
Table 14. Prior and posterior distribution information for the informative 
Bayesian presidential models, comparing the third and fourth eras ..................................79 
Table 15. Prior and posterior distribution information for the non-informative 
Bayesian presidential models, comparing the fourth and fifth eras ...................................80 
Table 16. Prior and posterior distribution information for the informative 
Bayesian presidential models, comparing the fourth and fifth eras ...................................80 
Table 17. Convergence diagnostics for the congressional Bayesian models using a 
non-informative prior distribution .....................................................................................81 
Table 18. Convergence diagnostics for the congressional Bayesian models using 
an informative prior distribution ........................................................................................82 
Table 19. Prior and posterior distribution information for the non-informative 
Bayesian congressional models, comparing the first and second eras ...............................85  
Table 20. Prior and posterior distribution information for the informative 
Bayesian congressional models, comparing the first and second eras ...............................85 
Table 21. Prior and posterior distribution information for the non-informative 
Bayesian congressional models, comparing the second and third eras .............................86 
Table 22. Prior and posterior distribution information for the informative 
Bayesian congressional models, comparing the second and third eras .............................86 
Table 23. Prior and posterior distribution information for the non-informative 
Bayesian congressional models, comparing the third and fourth eras ...............................87 



 vi 
 

Table 24. Prior and posterior distribution information for the informative 
Bayesian congressional models, comparing the third and fourth eras ...............................87 
Table 25. Prior and posterior distribution information for the non-informative 
Bayesian congressional models, comparing the fourth and fifth eras ...............................88 
Table 26. Prior and posterior distribution information for the informative 
Bayesian congressional models, comparing the fourth and fifth eras ...............................88 
Table 27. Ranking of comparison methods for comparisons between the classical 
and Bayesian statistical approaches ...................................................................................95 
Table 28. Differences in point estimates and frequentist confidence intervals and 
Bayesian credible intervals for the presidential models ....................................................98 
Table 29. Differences in point estimates and frequentist confidence intervals and 
Bayesian credible intervals for the congressional models .................................................98 
 
 



 1 
  

 
 
 
 
 
 

CHAPTER ONE: INTRODUCTION 
  

On May 4, 2016, the New York Daily News’ front page depicted a red, 

white, and blue elephant in a casket. The caption read: “Dearly beloved, we are 

gathered here today to mourn the GOP” (New York Daily News, 2016). This 

political cartoon referenced the previous day, where Republican candidate Donald 

Trump had won the Indiana primary. This win all but guaranteed Trump the party 

nomination, which led to a strong reaction by some Republican loyalists. Writing 

for the Atlantic, Ball commented that not only were conservatives lining up to 

hand in their Republican registrations, but with this nomination, the “old party 

establishment went into exile, perhaps never to return” (Ball, 2016). This scene 

clearly illustrates a shift of some kind in party systems. While future electorates 

and researchers will decide the outcome of the 2016 general election, historians 

and academics that study critical realignment theory may not be surprised by this 

turn of events. Critical realignment theory presupposes these kinds of shifts in 

party systems typically once a generation, practically occurring through the 

methods described above. The mobilization, conversion, or as illustrated here, the 

demobilization of partisan voters occur, initiating the change in party dominance.  

Despite critiques of the theory, the timeliness of these events illustrates the 

importance of continued study of these types of elections in the field. Empirical 

analyses of the theory to date have only taken a classical statistics approach, 
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evaluating national election returns, state and county election returns, and 

employing a variety of statistical modeling techniques. Prior to this study, the 

approach of Bayesian modeling had yet to be applied to this topic. Consequently, 

this study sought to fill that gap by applying Bayesian modeling to critical 

realignment theory, with the focus of trying to understand the unique contribution 

of Bayesian techniques to the question of critical elections.  

Background Information 

Before addressing this question, information concerning each concept is 

first presented.  The next section highlights the essential aspects of critical 

realignment theory and Bayesian methods. After providing a brief overview of 

critical realignment theory, particular attention is paid to mechanisms that cause 

these types of elections as well as critiques of the genre. In regard to Bayesian 

modeling, a brief introduction to the approach is presented, followed by a 

discussion of the main differences between the classical approach to statistics and 

the Bayesian approach to statistics. Lastly, a brief overview of the controversy 

concerning measures of statistical significance from the classical perspective is 

also introduced, illustrating the necessity for Bayesian modeling. 

  At its core, critical realignment theory presupposes different realignment 

eras or party systems within American electoral history. These realignment eras or 

party systems are demarcated and differentiated by the occurrence of a critical 

election. For many, critical realignment theory understands electoral history to be 

cyclical, with each cycle beginning with a critical election. Three main realigning 

elections, also referred to as the canon elections, have been hypothesized: 1860, 
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1896, and 1932 (Norpoth & Rusk, 2007). Other elections, such as 1964 and 2008, 

have been under consideration, but these have not been added to the main body of 

literature concerning realigning, or critical, elections. A consensus among 

researchers pertaining to the status of these hypothesized critical elections has not 

been reached due to results differing based on methods employed, data utilized, 

and perspectives taken. 

  Potential causal mechanisms for this group of elections fall into three 

categories: conversion of voters, referred to as the conversion thesis; 

demobilization of party supporters and party-affiliated voters, referred to as the 

demobilization thesis; and the mobilization of inactive or other new voters, 

referred to as the mobilization thesis. Conversion of voters relates to party 

identification, where, for a variety of reasons, individuals change their party 

attachment from one party to the opposing party. The mobilization thesis relates 

to the addition of new voters to the electorate, affecting the electoral makeup, and 

the demobilization thesis relates to the alienation of previous party supporters, as 

mentioned above (Darmofal & Nardulli, 2010). 

  Previous information presented illustrates support for the theory; however, 

not all researchers see value in critical realignment theory. Criticism of the genre 

can be grouped into three main points: first, the empirical validity of the theory; 

second, the addition of the genre to the body of political science literature; and 

third, the relevancy of the genre to the present day. Regarding empirical validity, 

critics of the genre find it difficult to replicate studies completed in the field, 

citing data availability and integrity concerns. Concerning the addition of the 
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genre to the field of political science, some critics find critical realignment theory 

to be limiting and narrow, forcing researchers and students of political science to 

unnecessarily see cyclical patterns in American electoral history. Moreover, they 

argue that this perspective then limits further exploration into other aspects of 

American elections. Lastly, critics argue that according to the traditional 

understanding of critical realignment theory, a critical election has not occurred 

since 1932, which begs the question of present-day relevance (Mayhew, 2002). 

For these reasons, not all researchers fully support the advancement of critical 

realignment theory. 

  Turning away from critical realignment theory, the next section of this 

discussion provides a brief introduction to Bayesian modeling. Beginning with its 

namesake, Thomas Bayes, an English minister in the early 1700s, understood 

rationality as a probabilistic matter:  one’s understanding approximates truth as 

more evidence is gathered. This understanding was greatly influenced by Isaac 

Newton’s work, which suggested that nature, after much observation, follows 

regular and predictable patterns (Silver, 2012). Richard Price, a friend and 

colleague of Bayes, published this concept of probability posthumously, although 

the concept lay dormant until rediscovered by French mathematician Pierre Simon 

Laplace (McGrayne, 2012).  

  With this understanding, Bayes’ theorem is based on conditional 

probability:  where the probability of one event is predicated on the occurrence of 

another event. Within this framework, classical statistics seeks to answer the 

question of the probability of a set of outcomes given a specified hypothesis, 
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whereas Bayesian modeling instead assumes the truth of the data and seeks to 

answer the question of the probability of the hypothesis given these outcomes. 

While more information pertaining to this discussion and a formal presentation of 

Bayes’ theorem is provided in the literature review, this is the main point of 

difference between the classical approach to statistics and the Bayesian approach 

to statistics. In the classical approach, probability is understood as a long-run 

sampling frequency of a certain event occurring, assuming constant conditions 

across samples. In the Bayesian approach, probability is understood more 

subjectively as a degree of uncertainty (van de Schoot et al., 2013). 

  The second main difference between the classical approach to statistics 

and the Bayesian approach to statistics concerns the treatment of prior 

information. In Bayesian modeling, prior information is included in the analysis, 

as the target parameter, or underlying parameter of interest, is assumed to be 

random. This is differentiated from the classical approach to statistics, where the 

underlying parameter of interest is assumed to be fixed and simply needs to be 

uncovered by repeated sampling. Thus, there is no need for the inclusion of prior 

information—the method will result in the ‘true’ parameter (Stokes, Chen, & 

Gunes, 2014). The mechanics of inclusion of prior information as well as the 

impact on results will be addressed in the literature review.  

  Stemming from the conceptual differences discussed above, a third 

difference between the classical approach to statistics and the Bayesian approach 

to statistics is the emphasis on p-values. Much controversy exists around p-values, 

but traditionally p-values are used as a measure to indicate statistical significance. 
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Issues regarding the use of this indicator arise as p-values are largely 

misunderstood from a definitional standpoint and are associated with a 

significance level, which is arbitrarily chosen and greatly influences researchers 

with regard to publication (Kirk, 1996). In Bayesian modeling, p-values lose 

significance as an indicator as Bayesian analyses approach the null hypothesis 

from a different perspective. Given the assumption that the parameter of interest 

is random, Bayesian analyses result in and utilize a posterior distribution. It is the 

location and the variance of this distribution that aids the researcher (van de 

Schoot et al., 2013).  

Statement of the Problem 

As discussed previously, one main difference between the Bayesian 

approach to statistics and the classical approach to statistics is the treatment of 

probability. As was mentioned, probability is treated as a long-term frequency of 

a particular event occurring in the classical approach to statistics, but is viewed as 

the degree of uncertainty concerning the occurrence of a particular event from the 

Bayesian viewpoint. To illustrate this difference, consider a coin toss. The 

classical perspective takes a very clinical approach to the coin toss: all conditions 

must be the same across every toss. Each coin toss is considered a random 

replicate of all other coin tosses. However, maintaining precisely the same 

conditions for each coin toss is an extremely difficult task, even in a completely 

controlled environment. More importantly, however, this requirement of precisely 

the same conditions rarely occurs in social science situations. Elections illustrate 

this point, as changes in voters, salient issues, and candidates occur at each 
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election. Consequently, the treatment of probability from the classical viewpoint 

does not adequately capture the social situation of and social dynamics inherent 

within elections. 

  The inadequacy concerning the treatment and application of probability 

from the classical perspective is only compounded by the controversy occurring 

over the use and application of p-values as they relate to study results. The lack of 

definitional understanding, the use of an arbitrary significance level, and the 

dichotomous nature in the application of significance of the p-value severely 

limits the practical significance and interpretation of results. This limited 

contribution of the p-value in a practical sense compounded with the conceptual 

differences in probability between the classical approach and the Bayesian 

approach to statistics is what called for a reevaluation of critical realignment 

theory from a new perspective. 

Purpose of Study 

Thus, the purpose of this study was three-fold: first, to evaluate critical 

realignment theory from a new perspective; second, to expand the application of 

Bayesian modeling to a new field; and third, to formalize an empirical method of 

comparison between classical statistics and Bayesian statistics. This resulted in 

two sets of research questions. The first set of research questions was concerned 

with the qualitative contribution of this study to the field of political science. 

These questions are given below:  
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1.   Viewed from a national perspective, what contribution does the classical 

approach to statistics make in terms of increasing understanding regarding 

the occurrence of critical elections? 

  

2.   Viewed from a national perspective, what contribution does the Bayesian 

approach to statistics make in terms of increasing understanding regarding 

the occurrence of critical elections? 

 

3.   With regards to the identification of critical elections, does Bayesian 

modeling provide improvements, and, if so, what improvements over the 

classical approach? 

 
While answering these research questions entailed empirical analysis, the focus of 

these questions was substantive in nature. The reason for addressing these 

questions from a qualitative viewpoint was because each approach conceptualizes 

probability, parameters, and prior information differently. The real intent of these 

questions was to understand how these different conceptualizations affect the 

practical result provided at the end of the analysis. In other words, the goal of 

these questions was to highlight qualitatively the difference in understanding 

gained surrounding critical realignment theory from the two different approaches. 

The answers to these particular research questions detail the contribution to the 

field of political science. 



 9 
  

 The second set of research questions was concerned with the quantitative 

contribution of this study to the field of research methods and statistics. In 

addition to applying Bayesian methods to a new field of study, this study also 

sought to formalize an empirical method of comparison between the classical 

approach to statistics and the Bayesian approach to statistics. This was done by 

first evaluating current methods of comparison for their relative strength, and then 

applying the most efficient method of comparison to the topic of critical 

realignment theory to see what additional information can be learned about the 

theory, but also about the two approaches. The most efficient method of 

comparison was defined as the method with the highest relative strength. This set 

of research questions is given below: 

 
1. Given different methods of comparison between the classical approach to 

statistics and the Bayesian approach to statistics, what are the relative 

strengths of each method?  

 

2. Using the most efficient method of comparison, is any further information 

gained in applying this method to critical realignment theory, and if so, 

what is that contribution? 

 

3. By applying the most efficient method of comparison to the example of 

critical realignment theory, is any further information gained regarding the 

two approaches, and if so, what is that contribution?  
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The focus of this set of questions was quantitative in nature and critical 

realignment theory is used as an example to illuminate differences in the two 

approaches. The goal of these questions was to provide a formal, empirical 

method of comparison between the two approaches, and through the process, 

highlight the relative strengths and weaknesses of each method. If, through a 

comparative lens, the implications for each approach can be realized, researchers 

would be better informed as to when to apply each approach appropriately. This 

details the contribution to the field of research methods and statistics.  

To answer the first set of questions, the occurrence of critical elections at 

the traditionally understood time intervals (1860, 1896, and 1932) with the 

addition of the 1964 election were first evaluated through multiple regression as 

applied from the classical approach. This was then replicated by applying multiple 

regression, but from the Bayesian perspective. Given the use of prior information 

in Bayesian modeling, sets of regressions both including and excluding prior 

information were run to assess the impact of this added knowledge. This process 

was applied to both presidential and congressional elections, accounting for the 

differences in realignment eras for Congress. Results from these models 

addressed the first set of research questions.  

To answer the second set of research questions, different methods of 

comparison were first evaluated conceptually for their relative strength. Then, the 

most efficient method was applied to critical realignment theory to see if any 

additional information can be gained regarding the theory. Using critical 
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realignment theory as an example, the most efficient method was again applied, 

but this time the focus was on information gained regarding the two approaches.  

Scope and Limitations of Study 

The scope of this study was limited to an evaluation of the traditional 

framework of critical realignment theory. This means that this study took a 

national, structural approach and was limited to an evaluation of the canon 

elections with the addition of the 1964 election. Given the national scope, this 

study only utilized national indicators: presidential election returns and share of 

U.S. House seats, spanning the period from 1828 to 2008. 

Limitations to this study also existed. The most impactful limitation was 

the conceptualization and operationalization of critical realignment theory from 

such a viewpoint as the structural one depicted here. As will be demonstrated in 

the literature review, the viewpoint of the researcher can affect the interpretation 

of the results. Tangentially, a second limitation was the conceptualization and 

rationale behind specifying the fourth critical election for congressional analysis 

at a different timepoint than the presidential analysis. This is based on the 

developments within the field and is supported by historical data; however, this 

conceptualization can affect study results. Thirdly, the use of national indicators, 

as opposed to sub-national indicators, can also bias results. Fourthly, utilizing 

U.S. election data, this study was reliant upon the accuracy of data gathered by 

published governmental data sources, such as the Office of the Clerk within the 

U.S. House of Representatives and the Guide to U.S. elections, published by the 

CQ Press.  
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Definition of Terms 

Within academic circles pertaining to critical realignment theory, different 

researchers use different vocabulary to describe different electoral phenomena. 

One example of this is the use of the term realignment, compared to realigning 

era, critical election, or even epoch. For clarity within this study, those terms are 

defined within this section. As demonstrated in Figure 1 below, a critical election 

is the specific election, either general or congressional, at which the change in 

party dominance is first seen. A realigning era is the political context or 

atmosphere in which the critical election occurs; thus it spans time both before 

and after the critical election. A realignment, then, is the span of time in which the 

change in party dominance is sustained. This encompasses the critical election, as 

that is when the change in party dominance is first realized. For the purposes of 

this study, realignment, era, and epoch are used interchangeably.   
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Figure 1. Illustration of terms pertaining to critical realignment theory.  
 

Although this may be self-evident, one other important differentiation 

pertains to the vocabulary surrounding the different approaches to statistics 

utilized in this study. References to the Bayesian approach to statistics will be 

referred to as such; however, the classical approach to statistics is also referred to 

as the frequentist approach. Presumably, this is due to the understanding of 

probability within this approach. 

Organization of Study 

As discussed above, Bayesian modeling had yet to be applied to the 

question of critical realignment theory. This study sought to fill that gap in 

knowledge, and by doing so, better reflect the social situations of and inherent 

1852 1856

1860 1864 1868 1872
A

B

C

Key:
A: denotes a critical election.
B: denotes a realigning era.
C: denotes a realignment, era, or epoch. 
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dynamics within elections. To reach this goal, two sets of models were run: one 

set of models from the classical approach to statistics, and a second set of models 

from the Bayesian perspective, across which comparisons were made. The 

importance of this study stems from exploration of the application of Bayesian 

modeling to the question of critical elections, but also by bringing Bayesian 

techniques into a new genre within political science. Limitations to this study 

exist, such as the accuracy of data and the operationalization of critical 

realignment theory. The next section of this study provides a review of the 

literature, including overview of the origins and current work in the arena of 

critical realignment theory. It also includes a description of Bayesian modeling 

and discusses differing perspectives on indicators of statistical significance in the 

classical approach. The literature review is followed by a methods section, which 

describes the data utilized in and analysis plan for this study. Results are then 

presented, followed by a discussion of the practical significance of such results 

and of the study as a whole.  

Critical Realignment Theory  
 

Critical realignment theory was first introduced to the arena of political 

science in the late 1950s, enjoying the height of its study through the 1970s. Many 

researchers today reference V.O. Key as providing the basis of the theory, with 

Schattschneider (1960), Burnham (1970), Sundquist (1973), and Kleppner (1987) 

as main contributors (Brunell, Grofman, & Merrill III, 2012; Bullock, Hoffman, 

& Gaddie, 2006; Campbell, 2006; Stonecash & Silina, 2005). Beginning with a 

theoretical summary, this section of the literature review starts with a discussion 
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of the theory from the perspective of these five writers before evaluating practical 

and current work being completed in this field. This section of the literature 

review closes by discussing those that disagree with the theory and their rationale 

for doing so. 

  The founding theorists conceptualized critical, or realigning, elections 

from different perspectives, resulting in similar but yet differentiated definitions. 

Starting from a framework of elections more broadly, Key (1955) perceived 

critical elections as stemming from a hypothetical typology of elections; thus, 

these elections were simply one of many types. He did not necessarily advocate 

for the full development of a typology, but his definition represents this 

framework. He defined elections as acts of “collective decision,” occurring in a 

timeline of previous and subsequent behavior. Realigning elections, then, are also 

acts of collective decision, but where the outcome of the election results in an 

alteration of party cleavages. Key went further, and stated that the true 

differentiating feature of realignments is that the sharp change in party lines 

persists for multiple succeeding elections. This second statement of sustaining 

new party cleavages within the electorate is seen as necessary, from a definitional 

standpoint, for all of the other major contributors (Burnham, 1970; Kleppner, 

1987; Schattschneider, 1960; Sundquist, 1973). 

  Kleppner (1987) continued to advocate for Key’s broad framework of a 

typology of elections, but also extended this perspective and began to link this 

definition to underlying causes. Following Key, Kleppner perceived critical 

realignments as partitioning electoral history into times of relative stability, but 
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also stated that critical realignments should be understood as aggregate-level 

phenomena that are shaped by any one, or a combination, of several possible 

patterns of individual behavior. Burnham moved this perspective one step further, 

shifting the focus from a broader framework of elections to a framework of 

collective social action. The shift in focus is evident in how Burnham defined 

critical realignments: “eras … marked by short, sharp reorganizations of the mass 

coalitional bases of the major parties which occur at periodic intervals on the 

national level” (Burnham, 1970, p. 10). He moved from Key and Kleppner’s 

national viewpoint to a grassroots, coalitional viewpoint, emphasizing the role of 

the individual in his or her party base. 

  As previously stated, Burnham retained the aggregated aspect present in 

Key and Kleppner’s perspectives, but shifted from viewing critical realignments 

in the macro context of electoral history to viewing critical realignments as 

movements of the social base of the parties. This shift is evident in Sundquist’s 

writings, where he also emphasized a grassroots and more humanistic approach to 

critical realignments. Sundquist (1973) defined critical realignments as an organic 

change in the party system, where the political norm shifts. Typically, this results 

in the relocation of the ‘line’ or cleavage between the two party bases, but 

Sundquist was careful to note that significant shifts in relative party strength can 

also occur even if the line were to remain fixed. Schattschneider (1960) presented 

a similar argument, seeing critical elections as changes in political cleavages. He 

referred to these changes as sectional alliances, but argued that sectionalism 

actually depresses party organization. This is because sectional alliances can cross 
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parties and draw new cleavages across the electorate. However, as is evident from 

this discussion, Schattschneider, Sundquist, Burnham, and to some degree 

Kleppner, focused on the coalitional, individual, and social aspect of critical 

realignments, which is differentiated from Key’s macro viewpoint of critical 

elections within the electoral history. 

  As discussed, slight differences exist in the perspectives of the main 

contributing writers to the theory of critical realignment. However, these main 

contributors tended to describe the characteristics of critical elections in the same 

way. Critical elections are characterized by deeply concerned and highly 

polarized voters (Key, 1955), where the ideological distance between parties 

increases (Burnham, 1970). Voter turnout increases and these elections redivide 

the electorate along new sets of cleavages at the national level (Key, 1955; 

Schattschneider, 1960), resulting in significant transformations of policy as voting 

patterns change (Burnham, 1970; Kleppner, 1987). However, this dynamic is also 

contingent on the size of the group or party, as well as the behavior of other 

groups or parties (Kleppner, 1987). Furthermore, these changes persist, and are 

not simply an interruption from the current political system or norm (Burnham, 

1970; Key, 1955; Kleppner, 1987; Schattschneider, 1960; Sundquist, 1973). 

Driving Factors behind Realignments. From this introduction, it is 

apparent that critical elections are worthy of study. As Darmofal and Nardulli 

(2010) state:  

The reason for this interest is clear: in contrast to normal voting eras, 
during critical realignments citizens reject their habitual voting behaviors 
to hold political elites accountable and forge non-incremental change in 
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policy outputs. As a consequence, a central concern regarding critical 
realignments is the identification of the particular changes in voting 
behavior through which citizens are exerting elite accountability. (p. 256) 

 

One reason for critical realignments is highlighted in this statement—that is, to 

hold political elites accountable. However, many other ideas have been formed 

about how realigning elections occur. In this next section, the discussion turns to 

these ideas: otherwise referred to as the conversion thesis, mobilization thesis, and 

demobilization thesis. 

Conversion Thesis. At its core, the conversion thesis relates to party 

identification. Committed individuals, for a variety of reasons, change their party 

attachment from one party to the opposing party (Darmofal & Nardulli, 2010). 

Such conversion will result in a critical election if it occurs for a large enough 

number of the electorate (Burnham, 1970; Darmofal & Nardulli, 2010; Kleppner, 

1987; Sundquist, 1973; Zingher, 2014). This occurs for the following three 

reasons: strength of local and state parties, group membership, and the rise of 

divisive issues. Firstly, the strength of the local and state parties can incite change 

in party identification (Darmofal & Nardulli, 2010). This is due to the level of 

activism present within the party at the local level. Secondly, membership in 

certain social groups can influence individual partisanship. This creates a 

restructuring of party coalitions whenever the voting behavior of these groups 

change, and as the ratio of these groups within the electorate change (Zingher, 

2014). Thirdly, the rise of divisive issues can also cause changes in party 

identification. As these polarizing issues enter the arena of political discourse, 
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tensions within the political system can arise, causing party leaders to become 

more dogmatic and rigid in party norms, party platforms, and party processes. The 

rigidity of the established party leadership causes these concepts of party norms, 

platforms, and processes to become more polarizing instead of integrative. This 

creates sometimes emotional, but almost always disaffected, voters, which can 

lead to individual conversion and a change in party identification (Burnham, 

1970). These ideas, related to the change in individual partisanship, are generally 

what constitute the conversion thesis.  

Mobilization Thesis. While the conversion thesis focuses on a change in 

party identification, one could conceptualize the mobilization thesis as individuals 

gaining a sense of party attachment. The mobilization thesis revolves around the 

idea of inciting previous non-voters to vote (Darmofal & Nardulli, 2010). The 

incitement of these previous non-voters is a reflection of the political climate at 

the time. The high intensity and frequent political stimuli within the current 

political climate affects these new voters differently than more experienced voters 

(Andersen, 1979; Beck, 1982; Wanat & Burke, 1982). The voting behavior of this 

group of voters changes the fabric of the electorate that ultimately can cause a 

critical election (Sundquist, 1973). These voters generally come from three main 

populations: the local immigrant population, coming-of-age voters, and inactive 

voters (Kleppner, 1987; Zingher, 2014). 

Demobilization Thesis. Differentiated from the mobilization thesis, the 

demobilization thesis focuses on the alienation of active, partisan voters. This 

alienation can occur through a couple of different avenues: firstly, intentionally by 
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the party system through new regulations on voter registration, such as the 

increased residency requirements in the late 1920s; or secondly, unintentionally 

through individual or group disillusionment with the party platform (Kleppner, 

1987). Either method results in the same conclusion: previous voters differentially 

abstain during an election cycle, which offsets the balance of the parties, shifts 

party cleavages, and results in a critical election. Demobilization, or differential 

abstention, explains more electoral change prior to the 1950s and 1960s, whereas 

conversion appears to be the main contributor of electoral change post the Civil 

Rights era (Shively, 1992).   

The conversion thesis, mobilization thesis, and demobilization thesis 

provide some insight into how critical elections occur. However, changes may not 

all occur within the same election cycle. The complexity of the American 

electoral system is too great to assume that the effect of grassroots movements or 

top-down approaches will be felt immediately within the electorate. Key (1955) 

realized this, denoting a difference between critical realignments and secular 

realignments, also referred to as the lingering ‘drift’ toward a different party 

identification.  These two types of realignments are not necessarily distinct; one 

can think of a secular realignment as the “aftershock” of a critical election 

(Sundquist, 1973). Furthermore, regions may shift at different points, and 

different indicators may be affected to varying degrees (Bullock, Hoffman, & 

Gaddie, 2006). However, given that the basis of critical realignments involves the 

transformation of the political norm or system, they should be thought of as 

national, macro events, and thus analyzed as such (Kleppner, 1987). 
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While these might be macro events, very real, sociological aspects 

accompany the occurrence of such events. As political cleavages shift or change, 

new groups of disaffected voters emerge. These are individuals who are 

dissatisfied with the current political climate, and sometimes so upset that they 

seek political avenues, such as activism, to have their voice heard (Schofield, 

Miller, & Martin, 2003). A lack of trust oftentimes undergirds the level of 

dissatisfaction, aimed at the governing party or the leading candidates in an 

election cycle (Brooks, 2016). This further cements the political divide, creating a 

highly polarized, divisive, and hot climate in which social trust must be rebuilt in 

order to overcome gridlock. 

Hypothesized Electoral Eras. Given this theoretical basis of critical 

realignment theory, the discussion now turns toward previous work completed on 

the topic. For most researchers, the main question is still whether a realigning 

election has occurred at specific timepoints, although the traditional “canon” 

elections are 1860, 1896, and 1932 (Norpoth & Rusk, 2007). The election of 1964 

has since been under evaluation as to whether it can be deemed part of the canon, 

and some researchers do consider it as such. However, this section will evaluate 

each proposed election in turn, paying particular attention to measurement, 

method, and results after providing some background information on the political 

climate at the time. 

Considered the first election of the canon (Norpoth & Rusk, 2007), the 

election of 1860 is considered a realignment for two main reasons: firstly, the 

electoral returns demonstrated a newly created division among the electorate 
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(Schofield, Miller, & Martin, 2003); and secondly, the outbreak of the Civil War 

provided evidence of political shifts internally (Hawley & Sagarzazu, 2012). 

Regarding the newly created division among the electorate, prior to 1852 

Democratic and Whig vote shares were comparable. Neither party dramatically 

outperformed the other party with reference to general elections. However, in the 

election of 1860, this dynamic changed. The Whig party candidate, Bell, only 

won three states, and the two Democratic party candidates took ten states in the 

South. Of course, the Republican contender, Abraham Lincoln, won a majority of 

the popular vote in 15 northern and western states, winning the presidency. 

However, this election illuminated the split between Whig and Democratic party 

vote shares, suggesting a realignment of electoral support (Schofield, Miller, & 

Martin, 2003). Current work on this topic, however, challenges this historical 

account. Using county-level data and analyzing vote transfers through ecological 

inference models, evidence for a realignment in 1860 is not found (Hawley & 

Sagarzazu, 2012). Taking a national perspective, some evidence is found in House 

seats; however, the durability of the realignment is questioned if one accounts for 

a potential realignment in 1874, if one excludes the South due to the advent of 

Civil War, and if one considers a realignment to be a shift in party dominance 

(Norpoth & Rusk, 2007). 

The second election of the canon (Norpoth & Rusk, 2007) continued to 

favor the Republicans. The economic panic during 1893 under Democratic 

control greatly aided the Republican party, allowing Republicans to propagate 

prosperity and place blame for unemployment on the Democrats. Such 
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propagation was highly effective, reducing the linkages between class affiliation 

(i.e., working class) and party affiliation. Consequently, net movement across at 

least the New England states was toward Republicans, and only wavered in 

degree (Key, 1955). Simultaneously, the Populist movement swept the South and 

threatened to overthrow the current political order. Conservatives within both 

parties were so concerned and reacted so strongly to this movement that the 

legacy and southern ties of the Reconstruction arose again, creating a 

noncompetitive, one-party, sectional ‘Solid South.’ A similar dynamic happened 

in the North among the conservative business community. Concerned with the 

nomination of William Jennings Bryan on a Populist platform, the northern 

business community sought to work against him (Schattschneider, 1956). In 

Schattschneider’s words, “the resulting alignment was one of the most sharply 

sectional political divisions in American history” (1956, p. 201). Empirical work 

on this election, however, provides mixed results. Burnham (1970) utilized 

regression residuals, systematically moving through comparison pairs of elections 

within ten-year spans. He compared the average mean difference in residuals over 

the ten-year spans, and his analysis resulted in the identification of a realignment 

between 1893-95 and 1927-31. However, replicating his analysis, Stonecash and 

Silina (2005) disagree with Burnham. They argue that the change was not abrupt, 

leading these authors to advocate for more evaluation of gradual change when 

considering realigning eras. Campbell (2006) utilized similar data sources as 

Burnham, although performed a series of multiple regressions instead of a 
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residual analysis. He concluded that the election did result in a change in party 

dominance. 

After a period of Republican hegemony in politics, the Democrats made 

gains in New England states with candidate Alfred E. Smith in the 1928 general 

election. This was largely due to the mobilization of the local immigrant 

population, namely low-income, urban Catholic voters. In 1932, Roosevelt 

retained these gains and sustained the realignment. Key (1955) evaluated the 

possibility of a realignment circa 1932 by comparing two cities in New England. 

He demonstrates that while this trend could have started in 1920, evidence for the 

realignment is most convincing in 1928. In 1920, the difference in Democratic 

percentage of presidential vote between these two cities was approximately 5 

percentage points. However, by 1924, the difference grew to approximately 26 

percentage points, and by 1928, the difference in Democratic percentage of the 

presidential vote measured at 42 percentage points. This illustrates that the 

campaign of Alfred Smith in the 1928 election created a new cleavage across the 

electorate, culminating in a critical election (Key, 1955). Looking qualitatively, 

the election of 1932 also signaled a shift in the conceptualization of party systems. 

Within the context of the Great Depression, voters used the only political 

instrument available to them--the Democratic party--to overthrow or cast out the 

Republican party. This action was not taken because the Democratic party was so 

well-prepared for the challenge of the Great Depression, but because the 

electorate was choosing to hold the Republican party responsible, bringing about 

the advent of the responsible party system (Schattschneider, 1960). This change 
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was so great that Schattschneider (1960) referred to it as the “revolution of 1932” 

(p. 206). More recent work on this election supports the conclusion of a critical 

realignment. Variations in method, such as multiple regression, geographically 

weighted regressions, ecological inference models, or simply bivariate tests 

between pairs of elections, do not change this result. Similarly, utilizing national, 

subnational, or county-level data on presidential vote returns or vote transfers also 

does not change this conclusion (Brunell, Grofman, & Merrill III, 2012; 

Campbell, 2006; Darmofal, 2008; Hawley & Sagarzazu, 2012; Kantor, Fishback, 

& Wallis, 2013). 

While the election of 1964 is not a part of the canon of critical 

realignments as traditionally understood, some have argued for its demarcation as 

such given the regional importance of the election and its effect on southern white 

voters (Black & Black, 1992; Carmines, Huckfeldt, & McCurley, 1995; Carmines 

& Stimson, 1989). At that time, the Republican party was not the favored party of 

most white southerners given the legacy of the Reconstruction. For the same 

reason, the Republican party had also attracted many black voters. However this 

alignment began to change in the 1960s. The Democratic party was becoming 

more liberal on racial issues as the Republican party was becoming more 

conservative. The outcome of these dynamics resulted in the Republican 

nomination of Barry Goldwater, and effectively instituting change in the positions 

of the two parties on race (Buchanan, 2002; Shelley, Zerr, & Proffer, 2007). One 

main requirement of a critical election is a change in party loyalties; racial issues 

of the time provided that impetus (Carmines & Stimson, 1989). 
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As one can see, the Civil Rights movement carried immense impact on 

political attitudes, and most researchers agree that a realignment occurred 

(Buchanan, 2002; Burnham, 1970; Carmines & Stimson, 1989; Feinstein & 

Schickler, 2008; Schofield, Miller, & Martin, 2003). However, explanations 

behind the occurrence of the realignment differ among researchers. Some take a 

more traditional view, arguing that U.S. politics necessitates two dimensions of 

policy. This means that whatever position presidential candidates adopt, there is 

always a group of disaffected voters. These voters may be mobilized by third 

parties, or absorbed into other dominant parties. Realignments are the result of 

these policy compromises, changes, or stances (Schofield, Miller, & Martin, 

2003). Others draw a more complex view, stating that political transformations 

emerge from the intersection of multiple policy trajectories. For example, the 

party system was reshaped in the 1930s as the Democrats embraced New Deal 

liberalism, which then intersected with a second trajectory of civil rights as 

grassroots activists pushed this issue onto the national scene (Feinstein & 

Schickler, 2008). A third explanation revolves around issue evolution. Issue 

evolution is a process by which party coalitions can change, as voting defections 

among partisans occur and links between citizen and party are broken. These are 

issues that arise from the old party system and introduce tension into a newly 

forming party system. These issues capture the public’s attention for a longer 

period of time, and tend to be salient in the minds of voters (Carmines & Stimson, 

1989). As is evident, all of these explanations could explain the election of 1964.  
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Up until this point in this discussion, the trends discussed are fairly 

consistent across presidential vote returns and congressional distributions of 

House seats. However, that dynamic changes around the 1960s. While the 

Republicans made inroads in presidential voting in the 1950s and 1960s as 

discussed above, this change was not immediately reflected in the distribution of 

House seats. Between 1954 and 1980, Democrats maintained the majority by 16 

percentage points, on average. However, this gap dwindled to 2 percentage points 

by 1984, and by 1994, Republicans regained majority status in the House for the 

first time in forty years (Campbell, 2006). Some perceived this delayed 

Republican victory as a reflection of a long-term shift in party loyalties within the 

electorate (Abramowitz & Saunders, 1998). Regardless, this is further evidence of 

how different indicators can yield different results. 

Critiques of the Genre. In spite of the discussion above, not all 

researchers agree with Key’s seminal proposal of critical elections. David 

Mayhew (2002) is a strong critic not only of the empirical work completed, but of 

the entire genre. His critique is based on three main points: firstly, the validity of 

the theory; secondly, the “illuminative power of the genre” (p. 35); and thirdly, 

the lack of relevancy of the theory to the present day. Concerning validity, some 

researchers, including Mayhew, have found it difficult to replicate and carry out 

previous work done on critical realignments. While some data are available and 

replication can be attempted, this is not always feasible (Lichtman, 1976; 

Mayhew, 2002). Concerning Mayhew’s second point, he argues that it has always 

been obvious that certain elections are more important than others. Consequently, 
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he is interested in the additive effect of this genre to arena of political science and 

its contribution to the study of elections. Other researchers agree, stating that 

periodization of American electoral history is helpful, although they find flaws in 

the realignment framework. While not the initial intent of Key (1955), many 

researchers see realignment theory as purely dichotomous: either an election is 

realigning, or it is not. This dichotomy creates dissonance when attempting to 

classify elections (Carmines & Stimson, 1989). Another flaw is the sole focus on 

realignments. Realignments are time-bound and geographically and 

chronologically constrained. Thus, while rhythms may exist within American 

electoral history, realignment theory has not given enough consideration to the 

constraints placed on elections (Shafer, 1991; Silbey, 1991). A third flaw is a 

gross oversimplification of party change, which has resulted in a constricted view 

of American political history and a demotivation among political researchers to 

more fully understand a potentially more intricate pattern of stability and change 

(Lichtman, 1976). 

Mayhew’s third point of relevancy also deserves some discussion. At the 

time of writing his critique, a critical election had not been identified in the last 60 

years. He argues that for a cyclical theory, this presents a problem. He 

hypothesizes that with more advanced survey techniques, parties are able to better 

understand their party base and supporters and pinpoint the median voter. This 

has reduced the amount of polarization in general elections, and thus realignments 

(Mayhew, 2002). However, Sundquist (1973), one of the main contributors, 

argues that the failure of a realignment in the 1960s was due to the lack of a 
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triggering event. Regardless, the relevancy of critical realignment theory is 

questioned as realignments have not occurred as predicted, or at all (Gans, 1985; 

Mayhew, 2002; Silbey, 1991).   

From a review of the literature, more insight is gained regarding the 

background of the 1860, 1896, 1932, and 1964 general elections. Controversy 

exists regarding the denotation of these elections as realigning, and current work 

in this field brings no resolution. Reasons for realignment are also discussed, as 

well as critiques to the genre and differences between presidential and 

congressional elections. However, in reviewing methods utilized in evaluating 

these elections, Bayesian techniques have yet to be applied. The next section 

provides an introduction to Bayesian modeling.  

Bayesian Approach to Statistics 

The next section provides an introduction to Bayesian modeling. It begins 

with some background regarding the origins of the theory, moves through a 

formal presentation of Bayes’ theorem, and discusses components of Bayesian 

inference and model fit procedures before ending with a comparison to a classical 

statistics approach. 

Origins of the Bayesian Approach. Thomas Bayes was an English 

minister in the late 1700s. He grew up in Hertfordshire, a southeastern county in 

England, but gained his education from the University of Edinburgh (Silver, 

2012). Despite few publications, Bayes was elected as a Fellow of the Royal 

Society on November 4, 1742 (The Royal Society, 2017), and likely served as a 

mediator of intellectual debates. Although published posthumously by friend and 
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colleague Richard Price in 1763, one of Bayes’ more famous works, “An Essay 

toward Solving a Problem in the Doctrine of Chances,” focused on the formation 

of probabilistic beliefs as new data are encountered. 

Bayes was greatly influenced by and a strong advocate of Isaac Newton’s 

work, which suggested that nature follows predictable patterns. Thus, the 

argument made by Bayes and Price is not that the world is naturally probabilistic, 

but that one’s knowledge is gained through probabilistic means. The example 

provided by Bayes and Price concerns a caveman: the caveman emerges from a 

cave, and sees the sun for the first time. He is unsure whether this is a typical 

occurrence, but as the sun rises each sequential morning, he gains confidence that 

this is a permanent fixture of nature. In the Bayesian viewpoint, then, learning is 

done through approximation:  as more evidence is gathered, it more clearly 

reflects truth (Silver, 2012).  

Although published by his friend in 1763, Bayes’ thoughts on the topic lay 

dormant for about a decade. Working a little after Bayes, Pierre-Simon Laplace, a 

French mathematician, independently rediscovered Bayes’ mechanism and 

published his work in 1774. However, due to Price and a visit to Paris, Laplace 

eventually learned of Bayes’ earlier work and credited him with the idea. 

Regardless, Laplace contributed substantially to the promulgation of Bayes’ 

theorem, as he derived the formal statement of the theory (McGrayne, 2012).   

Advancement of the theory persisted; however, concerns about the 

subjective nature of the prior probabilities led to debate regarding the entire 

approach. These conversations surrounding Bayesian methods continued, and 
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given the rise of the ‘classical’ approach promulgated by R.A. Fisher and Karl 

Popper in the 1920s, Bayesian methods were scarcely taught in universities and 

even then, it was more so to dismiss the approach. In recent times, however, there 

has been some return of the method to the university level (Howson & Urbach, 

2006). 

Mechanics of Bayesian Inference. Using Bayes’ ideas and Laplace’s 

formalization of the theory, this discussion turns toward an applied discussion of 

Bayes’ theory. At its core, Bayes’ theorem is a statement of conditional 

probability. Conditional probability is an expressed degree of uncertainty based 

on some prior knowledge (Downey, 2012). For example, suppose one is interested 

to know the probability of an incumbent maintaining his House seat. Using the 

results of the 2012 House races, an incumbent had a 90% chance of winning his 

race (Giroux, 2012). However, suppose boundary lines for House districts moved. 

Now, the probability cannot be appropriately estimated at 90% as districts have 

changed. Here, the question changes from the percent chance of an incumbent 

maintaining his seat to the percent chance of an incumbent maintaining his seat, 

given that district boundaries changed. This second probability is conditional, as it 

accounts for other factors that are unique to this race. The notation for this is 

particular probability is p(A|B), which is read as “the probability of A given that B 

is true” (Downey, 2012, p. 2), or in the context of the example, as the probability 

of the incumbent maintaining his House seat given that district boundaries 

changed.  
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With the concept of conditional probability now presented, Bayes’ 

theorem takes this form (Downey, 2012; Stokes, Chen, & Gunes, 2014): 

  

𝑝 𝜃 𝑦 =
% & % 𝑦 𝜃

% '
 (1) 

  
and where 𝑝 𝑦  is understood as:  
 
𝑝 𝜃 𝑝 𝑦 𝜃 𝑑 𝜃  (2) 

 
and where 𝜃	is understood as the unknown parameter of interest, and 𝑦 represents 

the observed data. This means that 𝑝 𝜃  represents the prior distribution, 𝑝(𝑦) 

represents the probability of the observed data, and 𝑝(𝜃|𝑦) represents the 

probability of the unknown parameter conditional on the observed data. These 

topics are addressed more fully in the next paragraph. This theorem is what forms 

the basis of Bayesian inference. It uses probabilities that are conditional on data to 

express beliefs about unknown quantities (Downey, 2012; StataCorp, 2015; 

Stokes, Chen, & Gunes, 2014). The conditional nature of Bayes’ theorem means 

that Bayesian inference has the ability to update beliefs about model parameters 

by accounting for additional data (Downey, 2012; StataCorp, 2015; Stokes, Chen, 

& Gunes, 2014; van de Schoot et al., 2013), as model parameters are assumed to 

be random. It is because of this assumption of the randomness of model 

parameters that prior knowledge can be incorporated (StataCorp, 2015). If it were 

assumed that model parameters were fixed—as in the frequentist approach—the 

addition of prior knowledge would not carry an effect on the parameters or on the 

analysis. This is a main point of difference between the classical and Bayesian 

approaches and relates back to the Bayesian understanding of probability. Instead 
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of understanding probability as a long-run frequency, probability is understood as 

an expressed degree of uncertainty. Treating probability this way implies that 

parameters are random, which brings about the necessity or the opportunity for 

the use of prior distributions. It is the fundamental difference in the understanding 

of probability that allows for these effects to be seen. 

  Thus, Bayesian inference has three main components: the prior 

distribution, the evidence at hand (also referred to as the likelihood), and the 

posterior distribution. The prior distribution is combined with the evidence at 

hand to create the posterior distribution (StataCorp, 2015; Stokes, Chen, & Gunes, 

2014). The evidence at hand represents the data collected or gathered for the 

current analysis, whereas the prior distribution is a reflection of prior knowledge 

about the topic. More specifically, since a prior distribution must be chosen for 

each model parameter, the variance of the prior distribution reflects the level of 

uncertainty regarding the population value of that parameter. The larger the 

variance of the prior distribution, the higher the level of uncertainty (van de 

Schoot et al, 2013). Please refer to Figure 2 to see this concept displayed visually. 

The selections of distributions in Figure 2 illustrate various levels of prior 

knowledge concerning the average math ability for a group of students.  
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Figure 2. Prior distributions illustrating varying levels of uncertainty. Adapted 
from A Gentle Introduction to Bayesian Analysis: Applications to Developmental 
Research, p. 5, by van de Schoot et al., 2013, Society for Research in Child 
Development. 
 

Figure 2 displays four prior distributions concerning the average math 

ability for a group of students. Assuming that this is assessed via a skills test 

where the range of possible scores is 40 through 180, Figure 2a illustrates a non-

informative prior. Each value between 40 and 180 is equally likely to be the mean 

of the group of students. This represents an assumption that nothing is known 

about the mean math ability for the given population prior to the start of the study. 

This is in contrast to informative priors, which are displayed in Figures 2b-2d. 
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Figure 2b represents the expectation that the mean is 100, as opposed to a very 

low score or a very high score, but substantial uncertainty exists concerning this 

expectation because the scores vary from very low to very high. The variance of 

this distribution is greater than that of Figure 2c. Figure 2c also expects a mean 

math ability of 100, but with less uncertainty. Figure 2d displays an assumption of 

higher uncertainty concerning the mean math ability, but expects a lower mean 

score for the population. As is evidenced by this figure, prior distributions can be 

more or less informative. However, it is important to realize that while a non-

informative prior can appear as more objective, it does not represent complete 

ignorance about the parameter in question. There is a degree of subjectivity 

associated with the choosing of any prior distribution (Stokes, Chen, & Gunes, 

2014). A second, important classification of prior distributions concerns the 

degree of conjugacy between the prior and posterior distributions. The prior 

distribution is considered to be conjugate if it and the resulting posterior 

distribution are found in the same family of distributions. Conjugate priors are 

used more frequently for mainly two reasons: firstly, their use simplifies 

computations; and secondly, the resulting posterior distribution becomes 

interpretable as additional data and thus can be used to update the analysis as the 

next prior distribution (Gelman, Carlin, Stern, & Rubin, 1995). However, 

conjugate priors may not necessarily represent the model parameters realistically 

and due to the limited number of conjugate priors, the overuse of these 

distributions limits the flexibility found in Bayesian modeling (StataCorp, 2015).   
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  As previously stated, the likelihood is combined with prior information to 

create the posterior distribution. Less uncertainty should exist in the posterior 

distribution, given the inclusion of both prior information and data at hand 

(Gelman, Carlin, Stern, & Rubin, 1995; van de Schoot et al., 2013). Gelman 

references this as a “compromise,” stating that the posterior distribution is 

centered at a point of compromise between the prior distribution and the data, and 

this point of compromise is increasingly controlled by the data as the sample size 

increases (Gelman, Carlin, Stern, & Rubin, 1995). See Figure 3 for a visual 

display of this concept. However, given that the prior distribution and the 

likelihood are combined mathematically through integrals (Holmes, n.d.), the 

posterior distribution is obtained via simulation using Markov chain Monte Carlo 

(MCMC) methods (Stokes, Chen, & Gunes, 2014; van de Schoot et al., 2013). 

These methods generate a series of samples from the target distribution and 

compute the posterior estimates of interest using Monte Carlo Markov chains—a 

numerical integration method that finds the expectation of an integral (Stokes, 

Chen, & Gunes, 2014). It is from this simulated distribution that point estimates 

are derived. The posterior distribution reflects all current information known 

concerning the parameter:  the location of the distribution is summarized by the 

mean, median, and mode, and the variation is summarized by the standard 

deviation and interquartile range. The mean represents the posterior expectation 

of the parameter and the mode may be interpreted as the single “most likely” 

value of the parameter, given the data. These statistics are reported as results of 

the analysis, in addition to a report of posterior uncertainty, or variance (Gelman, 
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Carlin, Stern, & Rubin, 1995). Oftentimes, the credibility interval, also referred to 

as the posterior probability interval (PPI), is reported, which is the counterpart of 

the frequentist confidence interval (StataCorp, 2015; van de Schoot et al., 2013). 

 
Figure 3. Visual display of the combination of the prior distribution and the 
likelihood to create the posterior distribution. Adapted from A Gentle Introduction 
to Bayesian Analysis: Applications to Developmental Research, p. 8, by van de 
Schoot et al., 2013, Society for Research in Child Development.  
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When comparing two Bayesian models, model fit is also reported. It is 

traditionally assessed through the Akaike information criterion (AIC), the 

Bayesian information criterion (BIC), and deviance information criterion (DIC) 

(StataCorp, 2015; Stokes, Chen, & Gunes, 2014). These fit indices do not provide 

overall model fit, however, but instead are used as comparative statistics across 

models. The BIC is more conservative than the AIC, but all three are appropriate 

for non-informative priors in Bayesian modeling. A difference is that the DIC is 

designed specifically for Bayesian estimation that involves MCMC sampling. An 

additional type of fit index, the Bayes Factor (BF), has also been developed and 

represents the ratio of the marginal likelihoods of two competing models. A 

Bayes Factor essentially computes the relative probabilities of how well each 

model fits the data compared to the base model (StataCorp, 2015). While this is 

helpful when comparing two models directly, it is computationally very 

difficult—so much so that it led to the development of the other aforementioned 

indices (Berg, Meyer, & Yu, 2012). 

Differences between the Bayesian and Frequentist Approach to 

Statistics. Given this presentation of Bayesian methods, it is evident that many 

differences exist between the Bayesian approach and the frequentist approach. 

These differences are summarized primarily in the expression of probability, the 

treatment of parameters, and the reporting of statistics. Fundamentally and at its 

core, the Bayesian approach to statistics views probability as “the subjective 

experience of uncertainty” (van de Schoot et al., 2013). This is in contrast to the 

frequentist approach, which perceives probability as the frequency of a particular 
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event, given repeated sampling. This difference in understanding regarding the 

nature of event probability provides the basis for the difference in understanding 

regarding parameters between the two approaches. For the frequentist approach, 

parameters are understood as unknown but fixed and constant quantities across 

samples, which are reflected by a fixed parameter associated with some level of 

error due to sampling (StataCorp, 2015; Stokes, Chen, & Gunes, 2014). That is 

why repeated random sampling is so important to the frequentist methodologist: 

the frequentist analysis answers questions based on the distribution of statistics 

from repeated hypothetical samples, which are generated by the same process. 

However, a Bayesian analysis seeks to answer questions also based on the 

distribution of parameters, but conditional on the observed sample. The Bayesian 

approach assumes that the observed data are fixed; the model parameters are 

allowed to vary and are treated as random (StataCorp, 2015). 

This difference in probability and thus parameters leads to a difference in 

reporting statistics and subsequently, results. As noted above and unique to 

Bayesian methods, common summaries of location for the posterior distribution 

are the mean, median, and mode, and common summaries of variance are the 

standard deviation and interquartile range (Gelman, Carlin, Stern, & Rubin, 

1995). The frequentist approach relies on confidence intervals and hypothesis 

testing of the model and of parameters. Given that comparisons are oftentimes 

made between resulting models of the frequentist and Bayesian approaches, the 

Bayesian approach has incorporated its version of these statistics—also using 

hypothesis testing and developing posterior probability intervals, the latter of 
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which are the counterparts to confidence intervals. The interpretation of the 

frequentist 95% confidence interval is that with repeated sampling and 

computations of the confidence interval each time, 95% of these intervals will 

contain the true value of the parameter. Thus, for any given single confidence 

interval, the probability that the true parameter is in that interval is either zero or 

one. However, the Bayesian credible interval, or posterior probability interval, 

provides a range for a parameter such that the probability that the parameter lies 

in that range is 95%, and not zero or one (StataCorp, 2015; van de Schoot et al., 

2013). Regarding hypothesis testing, the frequentist approach answers the 

question of how likely are the observed data, given that the null hypothesis is true, 

whereas the Bayesian approach answers the question of how likely is the null 

hypothesis, given the observed data (StataCorp, 2015). 

Methods of Comparison between the Frequentist and Bayesian 

Approach to Statistics. Continuing in this vein of comparisons between a classical 

approach and the Bayesian approach to statistics, very little work has been done in 

terms of formalizing a method of comparison between the two approaches. Most 

work on this point takes a very narrow approach; researchers are interested to 

know about the comparative utility of each approach but limited to their specific 

case. Consequently, many studies have been done that compare the classical 

approach to the Bayesian approach, but the method of comparison varies widely 

based on research design and variable construction. In spite of the variation, 

attempts at a comparison method can be grouped into three main categories: a 
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comparison to a known underlying estimate; a comparison in terms of bias; and a 

comparison of frequentist confidence intervals to Bayesian credible intervals.  

Much work on this topic uses simulations, and studies that make 

comparisons to a known underlying estimate fall into this category. These studies 

generally first generate a known distribution, reliability estimate, or point 

estimate, and then evaluate the closeness of results of the different modeling 

approaches to this known estimate (Betti, Cazzaniga, & Tornatore, 2011; 

Guikema, 2005). Simulation work is also involved in the second comparison 

method. In this comparison method, studies use simulations and generate a known 

distribution or estimate. However, instead of providing a simple, direct 

comparison to the known estimate, studies that utilize this comparison method 

calculate the amount of bias in the models. This generally requires a comparison 

to the known estimate; however, it takes the analysis one step further by 

evaluating parameter bias, looking at statistical power, or assessing credible 

intervals (Bennett, Crowe, Price, Stamey, & Seaman, Jr., 2013; Price, 2012). The 

last method of comparison is more straightforward, as it compares frequentist 

confidence intervals to Bayesian credible intervals (Liu, Yang, Qiang, Xiao, & 

Shi, 2012; Stegmueller, 2013). While simulations have been used, they are not 

required for this method as empirical data can provide the necessary points for 

comparison. Out of the three methods, this is most likely most direct in situations 

involving empirical, or not simulated, data.  

While methods of comparison fall generally into these three categories, 

some outliers remain. Based on the variable construction, one study utilized kappa 
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scores to compare classifications of hospitals. The kappa scores were used to 

show level of agreement between the classical approach and the Bayesian 

approach in terms of hospital classification (Austin, Naylor, & Tu, 2000). Another 

study made no formal comparison and instead, simply compared results 

qualitatively (Coory, Wills, & Barnett, 2009). This illustrates the wide breadth of 

methods available to researchers wishing to compare results of the Bayesian and 

classical approaches. While this may be good for the researcher in terms of 

flexibility and applicability of method, it also is one point within the field where 

standardization could occur. 

In summary, there are both advantages and disadvantages to the Bayesian 

approach to statistics. The inclusion of prior information provides not only more 

balanced results (StataCorp, 2015), but also requires reflection on work already 

completed in the field (van de Schoot et al., 2013). The Bayesian approach is also 

seen as more comprehensive and exact as it utilizes the entire posterior 

distribution of model parameters (StataCorp, 2015), resulting in a more direct 

expression of uncertainty (van de Schoot et al., 2013). Results are also more 

intuitive and straightforward in interpretation (StataCorp, 2015; Stokes, Chen, & 

Rubin, 1995; van de Schoot et al., 2013). However, specifying prior information, 

given its subjective nature, is seen as controversial by some and increases the 

complexity of both computations and the model. Essentially, if one is interested in 

repeated-sampling inference regarding parameters, then the frequentist approach 

is the more appropriate method. However, if one is interested in the probability 

that the parameter of interest belongs to some pre-specified interval, then the 
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Bayesian approach is the more appropriate method (StataCorp, 2015). Due to the 

nature of elections and the treatment of probability as uncertainty and parameters 

as random, this understanding illustrates why Bayesian methods are more 

appropriate for the subject at hand than the frequentist approach.  

Misconceptions about Indicators of Statistical Significance 

  In March 2016, the American Statistical Association (ASA) issued a 

statement concerning statistical significance and outlined a series of principles to 

improve the quality surrounding the conduct and interpretation of statistics, 

particularly highlighting the p-value. Many of these statements codified previous 

controversial, or at least non-traditional, thoughts concerning the use of p-values 

in research. This next section addresses those discussions concerning the 

controversy surrounding and misconception of the p-value. 

  One point of misconception concerning the p-value is its definition. A 

correct definition of the p-value is as follows: The p-value represents the 

probability of observing data as extreme or more extreme than the data collected, 

under an assumption of no effect or that the null hypothesis is true (Goodman, 

1999; Wilkinson, 2014). Oftentimes the researcher misconstrues this definition, 

potentially due to a misordering of the conditional probability. The p-value 

provides the probability of p(D|H0), or the probability of these data, given the null 

hypothesis, instead of p(H0|D), or the probability of this hypothesis, given the 

observed data. The latter represents what most researchers may wish to conclude, 

although that would be incorrect (Falk & Greenbaum, 1995; Gill, 1999; Gliner, 

Leech, & Morgan, 2002; Gross, 2015; Kirk, 1996). The p-value does not provide 
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the probability of either the null or alternative hypothesis being true (Minium, 

King, & Bear, 1993). This also coincides with the second principle articulated by 

the ASA: “P-values do not measure the probability that the studied hypothesis is 

true, or the probability that the data were produced by random chance alone” 

(American Statistical Association, 2016). 

  One point of controversy surrounding the p-value is its usefulness as it 

relates to the null hypothesis. The null hypothesis can be rejected unless the effect 

is exactly zero with a large enough sample or enough statistical power (Gill, 1999; 

Gliner, Leech, & Morgan, 2002; Gross, 2015; Kirk, 1996; Meehl, 1978). This 

detracts from its usefulness, but also highlights that a ‘statistically significant’ 

result does not necessarily indicate a meaningful result. The strong emphasis on 

p-values has deterred further investigation into more meaningful evaluations of 

measurement and has blurred the distinction between p-values and effect sizes 

(Gliner, Leech, & Morgan, 2002; Gross, 2015; Rothman, 2014). The ASA 

summarized it this way, stating that “statistical significance … does not measure 

the size of an effect or the importance of a result” (American Statistical 

Association, 2016). 

  A second point of controversy relates to the arbitrary nature of the 

significance level. By setting a fixed level of significance, the researcher turns a 

distribution of probability or uncertainty into a dichotomous decision of either 

rejecting or failing to reject the null hypothesis (Kirk, 1996). Creating this 

dichotomy and this distinction presumes no measurement error, an assumption 

that very few social scientists would be willing to defend (Gill, 1999). Treating 
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the significance level in this way can also influence conclusions. For example, 

presume two researchers obtain identical treatment effects from a set of data; 

however, one measures at a significance level of .05, whereas the other measures 

at a significance level of 0.01. Different conclusions are drawn concerning the 

treatment effect, given the significance level (Kirk, 1996). Furthermore, a small 

change in a group mean or a regression coefficient can cause a different 

conclusion to be drawn, which is why some advocate measuring the statistical 

significance of the difference of two results instead of the difference in 

significance levels between two results (Gelman & Stern, 2006). The ASA 

highlighted this discrepancy as well, stating that “scientific conclusions and 

business or policy decisions should not be based only on whether a p-value passes 

a specific threshold” (American Statistical Association, 2016). 

  Lastly, the implications of these misconceptions surrounding the definition 

and use of p-values are great. Using a misconstrued statistic creates a poor 

classification system for results, causing researchers to preoccupy themselves 

with ‘statistical significance’ and ending ultimately with a publication bias 

(Gross, 2015; Rothman, 2014). This focus on significance has also led to a 

dichotomous view of relationships that are better handled in quantitative or 

probabilistic terms (Rothman, 2014). Furthermore, it undermines and inhibits 

progress in the field. Researchers lose incentive to specify more precise 

hypotheses and explore competing hypotheses. Likewise, even a fair treatment of 

the p-value results in an understanding just as narrow, as it provides no further 
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information than what is already known about the state of the world (Gigerenzer, 

1998; Gill, 1999). 

From this review, the need to bring a new perspective to critical 

realignment theory becomes clear. As demonstrated above, current work has only 

evaluated critical realignment theory through the classical approach to statistics. 

This is concerning given the misconceptions surrounding p-values and the 

treatment of probability. However, the Bayesian approach to statistics corrects for 

both of these concerns, treating probability as the degree of uncertainty and the 

parameters as random. The next section of this discussion turns to the application 

of Bayesian modeling to the question of critical realignment theory.  
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CHAPTER TWO: METHOD 
 

To assess if Bayesian methods improve the usefulness of critical 

realignment theory in comparison to the frequentist approach, two sets of models 

were estimated: one pertaining to the presidential popular vote, and one pertaining 

to U.S. House seats. Each set of models was analyzed using both ordinary least 

squares (OLS) regression and Bayesian linear regression. The results of these two 

statistical approaches were then compared. Analyses relating to the classical 

approach utilized SPSS version 24 and analyses relating to the Bayesian approach 

utilized SAS 9.3.  

 
Data 
 

Presidential Popular Vote Returns. The data for the first set of models 

were taken from a compilation of presidential popular vote returns denoted in 

Congressional Quarterly’s Guide to U.S. Elections. For each general election 

between 1828 and 2008, the total number of votes, the number of votes for the 

Democratic candidate, the number of votes for the Republican candidate, and the 

number of votes for both a third party and a fourth party candidate, respectively, 

were collected. Limiting this analysis to the two major political parties, votes for 

the third and fourth parties were discarded. This resulted in a sample size of 45 

elections.  
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The dependent variable for this analysis was the Democratic two-party 

percentage of the presidential vote from 1828 to 2008. While the raw data 

collected from the Congressional Quarterly included a variable containing the 

percentage of Democratic vote, this percentage accounted for the third and fourth 

party voting that occurred. Consequently, the Democratic percentage for the 

dependent variable was recalculated to appropriately capture only the two-party 

percentage. There was no concern for floor or ceiling effects on the dependent 

variable in the presidential analysis or in the congressional analysis as the 

dependent variable is measured on a scale from 0 to 1, or as a percentage between 

the values of 0 and 100.  

The other variables in the model included a set of five dummy variables 

and one constant. The set of five dummy variables were coded to identify the five 

hypothesized epochs or eras in American electoral history. For example, the first 

epoch is hypothesized from 1828 to 1856. Thus, all general elections within and 

including the endpoints of that range would be coded as one for the 1828 era 

variable, whereas all other general elections are coded as zero. This was done for 

all five epochs, resulting in the five dummy-coded era variables. However, 

introducing all five of those variables into the model simultaneously would result 

in perfect multicollinearity. Consequently, the dummy variable for the era to 

which comparisons are being made was excluded from the model. In its place, 

however, was a constant, which corresponds to the mean of the dependent 

variable for that era. It is this constant that allowed for a comparison to the 

excluded era. 
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Share of U.S. House Seats. Data for this second set of models were taken 

from the Office of the Clerk within the U.S. House of Representatives and the 

Historical Statistics of the United States. For each House election between 1828 

and 2008, the number of U.S. House seats held by Republicans and Democrats 

was gathered. Limiting the analysis to the two major parties, the sum of total seats 

was calculated. Then, using this calculated sum, the percentage of U.S. House 

seats held by the Democrats was calculated. This two-party percentage of 

Democratically-held U.S. House seats was the dependent variable for this set of 

models. The sample size for this analysis was 90 congressional elections.  

Similar to the presidential popular vote models, the other variables in this 

series of models included a set of four dummy variables and one constant. 

However, one additional variable was added to the model: a measure of the effect 

of a general election running simultaneously with the House election. Campbell 

referred to this as the “on-year presidential surge and the midterm decline” 

(Campbell, 2006). The variable represented the difference between the 

Democratic presidential candidate’s vote percentage and 50 percent. It took a 

positive value in the “on year”, or the general election year, and took a negative 

value in the midterm cycles. This was to control for the surge and decline effects; 

between the on-year and midterm cycle, the midterm decline cancels the on-year 

surge. 

While these two sets of analyses are similar, one important difference 

exists between them. As discussed previously in the literature review and shown 

visually in Figure 4, the timing of the epochs differ slightly between the 
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congressional analysis and the presidential analysis. The reasons for this have 

already been outlined in a previous chapter; mentioning this here is for the coding 

of the data. For example, for the fourth presidential epoch spanning general 

elections from 1932 to 1960, all general elections within this timeframe and 

inclusive of the endpoints, were coded as one. All other general elections, from 

1828 to 2008, were coded as zero. For the analysis of the fourth congressional 

epoch, all midterm and general elections between 1932 and 1994 inclusive of the 

endpoints, were coded as one. All other general and midterm elections between 

1828 and 2008 were coded as zero.  

One other unique feature of this type of data relates to the formation of the 

present-day political parties in the United States. In recent history, mainly two 

parties, the Republicans and Democrats, have dominated American politics. 

However, while the basic ideals of these parties have not changed over the years, 

the names of these parties have. Other labels that have been used with regards to 

American political parties and affiliation include Whigs, Democratic Republicans, 

National Republicans, among others. However, these names changes are only 

relevant for one election within this analysis. For all but the 1912 election, the 

largest contenders, in terms of percentage of the total vote, were the Democrats 

and Republicans. However, four candidates ran in the 1912 general election: 

Woodrow Wilson, representing the Democratic party; Theodore Roosevelt, 

representing the Progressive party; William H. Taft representing the Republican 

party; and Eugene V. Debs representing the Socialist party. In this particular 

election, the largest contenders, in terms of percentage of the total vote, were 
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Woodrow Wilson and Theodore Roosevelt (CQ Press, 2010). Thus, to remain 

consistent with using the largest two contenders percentage-wise, this election 

only compared the Democratic percentage vote to the Progressive percentage 

vote. Theoretically, this is appropriate as the Progressive party was understood as 

a more active branch of the Republican party (Milkis, 2012).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  Diagram illustrating the five hypothesized epochs of American electoral 
history, specifying elections for the congressional and presidential analyses, 
respectively.  
 
Analysis Plan  
 

The analysis plan for the first set of research questions posed in this study 

was comprised of three sets of multiple regressions for the analysis of the 

presidential popular vote and three sets of regressions for the analysis of the U.S. 

House seats. The first set of regressions within each analysis (i.e., either 

presidential or congressional) sought to replicate and extende the results found in 

Campbell’s 2006 study to illustrate the contribution of classical multiple 
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regression to the question of critical elections. The second set of regressions 

examined the effect on and influence of Bayesian methods with regard to this 

research question, setting up the model similarly to the first set but specifying a 

non-informative prior distribution. The third set of regressions mimicked the 

second set of regressions, but included an informative prior distribution. Each set 

of regressions had four unique regressions within it; this was to individually test 

the five different epochs associated with critical elections and realignment theory. 

To answer the second set of research questions raised in this study, the 

relative strength of the comparison methods discussed in the literature review was 

first assessed. From here, the most efficient method was identified and then 

applied to the current comparison being made between the frequentist and 

Bayesian approaches on the topic of critical realignment theory.  

Frequentist Approach. To answer the first research question, which 

examines critical realignment theory from the classical statistical approach, a set 

of multiple linear regressions was conducted. The full set of regressions evaluates 

critical realignment theory as a whole, and each single regression compared one 

baseline era to its corresponding comparison era. Given that there are five 

hypothesized eras, this resulted in four regressions to test the entire theory.  

This procedure had multiple steps. However, before moving forward with 

the construction of variables and analysis plan, a power analysis was first 

conducted to ensure enough statistical power existed to carry out the analysis. 

This is because an underpowered study will cause a true difference in outcomes to 

go undetected, and an overpowered study will find a meaningless effect. An 
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acceptable range of statistical power is from 0.80 to 0.90 (Adams-Huet & Ahn, 

2009).  

Second, after meeting the requirement of statistical power, variables were 

manipulated as described above, resulting in five predictors in each regression. 

Those five predictors include:  a constant held to the mean of the dependent 

variable for the baseline era, and four dummy-coded variables representing the 

remaining four hypothesized eras. Descriptive statistics were also run at this time. 

The third step of the process involved checking the assumptions of linear 

regression. The assumptions of linear regression include independence of 

observations, independence of errors, normality, linearity, homoscedasticity of 

residuals, and absence of multicollinearity. Independence of observations implies 

that each observation is stand-alone; one observation does not affect another 

observation. The independence of observations is generally assessed through an 

evaluation of data collection methods. Independence of errors implies non-

correlated errors, and the Durbin-Watson statistic is used to assess this 

assumption. Normality is assessed for each variable in the model, and this is done 

through kurtosis and skewness statistics. The assumption of linearity speaks to the 

type of relationship between each independent and the dependent variable, and is 

typically assessed through an evaluation of observed versus predicted values 

using scatterplots. Homoscedasticity means constant error variance, and is 

assessed by evaluating scatterplots of residuals against predicted values. Lastly, 

the absence of multicollinearity means that independent variables are not highly 
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correlated with one another, and this is typically assessed through a variance 

inflation factor.  

After assessing these assumptions, the next step in the process was to run 

the models. All variables were entered simultaneously into the model, and for this 

analysis, the model took the following form:  

 

𝑦 = 𝛽. +	𝛽0𝑥0 +	𝛽2𝑥2 +	𝛽3𝑥3 +	𝛽4𝑥4 (3) 

 

where 𝑦 represents the Democratic two-party percentage vote for the given 

election, β0 represents the mean of the dependent variable for the baseline era, β1 

represents the regression coefficient for the comparison era, x1 represents the 

coding of the comparison era, β2 represents the regression coefficient for the first 

control era, x2 represents the coding of the first control era, β3 represents the 

regression coefficient for the second control era, x3 represents the coding of the 

second control era, β4 represents the regression coefficient for the third control 

era, and x4 represents the coding of the third control era. As stated previously, 

four regressions were run in order to test each baseline era against its 

corresponding comparison era.  

After running the models, the fifth step in the process was to review the 

results and then assess model fit. The F-test was used to assess whether the set of 

independent variables collectively predicted the dependent variable; however, the 

focus of this study was on the results of the t-tests for the regression coefficients 

in addition to the value of coefficients to determine the presence and impact of a 
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realignment. Given the constant and the dummy coding of the eras, one era was 

tested against the constant at a time. Thus, the resulting coefficient represented the 

difference in percentage points of the mean of the dependent variable for the 

baseline era and the comparison era. The t-test for this coefficient then indicated 

whether the difference is statistically significant. The R2 value was also reported 

to assess model fit and evaluate how much variance is accounted for in the model.  

Bayesian Approach. After completing this first set of regressions, the 

research question was then examined from the perspective of Bayesian methods. 

The models carried the same specification as in the classical ordinary least 

squares regression, given that a point of interest was to compare the contribution 

of each method on the topic of critical realignments.  

Several steps also existed in the Bayesian analysis. The first step was to 

choose a probability model for the data. This is similar to choosing a data model 

in the classical approach. It involves selecting a probability distribution for the 

data if the parameters of interest were known. If the assumption is made that 

observations are independent and covariates will be included in the model, then a 

probability function of the form p(yi | xi,q) would be used, where yi are the data 

values to be observed, xi is the covariate information, and q is the vector of 

unknown parameters. This can take the form of a Bernoulli distribution or a 

normal distribution, for example.  

After selecting the data model, the second step in Bayesian analysis was to 

select a prior distribution. This distribution represented current knowledge 

regarding the unknown parameters prior to data being observed. There are two 
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main types of prior distributions: non-informative prior distributions, also referred 

to as reference distributions, and informative prior distributions. The non-

informative prior distribution is more objective and assigns equal probability to 

all values of the parameter. This assumes that no prior knowledge exists regarding 

the parameter. This is in contrast to an informative prior distribution, which 

assumes some level of knowledge exists about the parameter. This knowledge can 

be gained through substantive information known by the researcher performing 

the analysis, through eliciting expert opinion, or through meta-analysis. This step 

was completed for each unknown parameter. For this particular study, expert 

opinion was gathered from a researcher in the field who specializes in critical 

realignment theory. Information from this source was translated into a distribution 

and used as the prior for the respective parameter.  

After selecting the prior distributions, the next step was to observe or 

collect the data. These data were used to create the likelihood function, or more 

simply, the likelihood. This likelihood is a joint probability function, and treats 

the data as fixed quantities. The likelihood is given by: 

 

𝐿 𝜃 𝑦 = 𝑝 𝑦0, . . . , 𝑦8 𝜃 = 	 𝑝(𝑦98
9:0 |𝜃) (4) 

 

where θ represents the unknown parameter, and y represents the observed data. 

Applying this likelihood to the example at hand, one might understand it in the 

following way:  the likelihood of a certain mean difference in the Democratic 

two-party percentage between two realignment eras is conditional on the observed 
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election returns, which is equal to the probability of such election returns, given a 

certain mean difference between realignment eras. This is also equal to the 

product of the probability of the observed election returns conditional on a certain 

mean difference for all observed data points. This likelihood function assumes 

that the data values 𝑦 = (𝑦0, . . . , 𝑦8) were obtained independently.  

The fourth step in the process was to create the posterior distribution for 

each unknown parameter by combining the prior distribution with the likelihood, 

or the data at hand. To do this, Bayes’ theorem was applied:  

      

𝑝 𝜃 𝑦 = 	 %(&)%('|&)
% & %('|&) ;&

 = % & <(&|')
%(')

 ∝ 𝑝 𝜃 𝐿(𝜃|𝑦) (5)  

 

where “∝” means “is proportional to”, θ represents the unknown parameter, and y 

represents the observed data. This formulation of Bayes’ theorem allows the 

reader to see where the prior information is combined with the data at hand. At 

the right side of the equation, the likelihood function, 𝐿 𝜃 𝑦 , is multiplied by 

𝑝(𝜃), which represents the prior distribution (Glickman & van Dyk, 2007). This 

means that the posterior distribution is proportional to the product of the prior 

distribution and the likelihood function. Here, the phrase “proportional to” implies 

that one must multiply or divide by a normalizing constant that forces the 

expression to integrate to one (Feller, 1968; Glickman & van Dyk, 2007). The 

computation of the integration is shown toward the left side of (5) 

by	 𝑝 𝜃 𝑝(𝑦|𝜃) 𝑑𝜃. This integration to a value of one is important because if the 
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posterior distribution does not integrate to one, then it is considered an improper 

posterior distribution and an inadmissible solution (Gelman, 2014).  

 The fifth step was to assess the posterior distribution first for convergence 

and second for estimates. Since Bayesian inference is dependent upon the 

formation of this posterior distribution, convergence of the Markov chain Monte 

Carlo simulations was assessed. This is because the stationary distribution of the 

Markov chain is the posterior distribution and the lack of convergence means that 

the parameter space has not been sufficiently explored. A lack of convergence 

leads to inefficiencies in sampling, as any sampling of the distribution would not 

approximate the target distribution well. While no one statistic informs the 

researcher of convergence, typical tests include the Gelman-Rubin, Geweke, and 

Heidelberger-Welch tests. The Gelman-Rubin test diagnostics rely on parallel 

chains or simulations to test whether they all converge to the same posterior 

distribution (SAS Institute, 2016). The Geweke diagnostic compares means from 

two non-overlapping parts of the chain to see if they come from the same 

distribution, and the Heidelberger-Welch test calculates a test statistic to test 

whether the Markov chain is from a stationary distribution (Lam, 2009). To 

measure the mixing of the chain and dependency among chain samples, 

correlations between variables and autocorrelation statistics were assessed 

(Stokes, Chen, & Gunes, 2014). Traceplots were also visually inspected to see if 

bad mixing occurred at any part of the parameter space (Lam, 2009). Given that 

the analysis results in a posterior distribution for each model parameter, these 

metrics were gathered and are provided for each parameter. After confirming 
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appropriate convergence of the chain, estimates were also reported from the 

posterior distribution. Typical statistics include the mean, standard deviation, and 

the 95% credible intervals (van de Schoot & Depaoli, 2014).  

The last step in this process was to conduct a sensitivity analysis. This 

type of analysis assesses the degree to which posterior inferences change when 

other reasonable probability distributions are used in place of the current prior 

distribution. As was mentioned briefly in the literature review, comparative model 

fit is assessed by the DIC statistic. The DIC statistic incorporates both goodness 

of fit and a penalty term for increasing model complexity. While better model fit 

results in a larger likelihood value, this is multiplied by -2 which results in an 

overall smaller value for a better fitting model (Berg, Meyer, & Yu, 2012). This is 

why the research question was examined with both informative and non-

informative prior distributions.        

Comparison between the Frequentist and Bayesian Approaches. As 

mentioned previously, the second set of research questions was interested in 

formalizing a comparison method between the classical approach and the 

Bayesian approach to statistics. The first step was to assess the relative strength of 

the comparison method, evaluating the method on two main points:  its 

applicability to different types of data; and information gained from the 

comparison, both as it relates to the topic but also to the statistical approach. 

These two standards were operationalized through a set of indicators: two 

indicators for the first standard of applicability to different types of data; and five 

indicators for the second standard of information gained from the comparison. 
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The two indicators for the first standard were whether the comparison method 

applies to simulated data and empirical data, and the five indicators for the second 

standard were as follows: first, whether the comparison method results in a 

quantifiable component; second, whether the comparison method highlights the 

meaningful significance of the result; third, whether the comparison method 

captures the meaning of the approach; fourth, whether the comparison method 

applies to different types of studies; and fifth, whether the comparison method 

gathers information which allows for a direct comparison between approaches. 

After assessing the relative strength by assigning rankings of the comparison 

methods in this way, the most efficient, or relatively strongest, method was 

selected.  

  The next step in this process was to then apply the method to the 

comparison of critical realignment theory from the classical statistics approach 

and the Bayesian approach. While this comparison resulted in some kind of 

measure or statistic, the third step in this process was to then evaluate that statistic 

for information gained as it relates to critical realignment theory, but also 

information gained regarding the two approaches to statistics. This third and last 

step sought to answer the latter two research questions pertaining to the field of 

research methods and statistics.  
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CHAPTER THREE: RESULTS 

Power Analysis 
 

Prior to running the analysis, a power analysis was conducted for each set 

of data. The presidential models tested for the average mean difference between 

the baseline era and the comparison era, while controlling for the other three eras. 

Consequently, four parameters are estimated in each model. Given four 

predictors, an alpha level of .05, power set at the recommended level of .80 

(Adams-Huet & Ahn, 2009), and assuming a medium effect size of .30, a sample 

size of 45 is required to detect a significant model, F(4, 40) = 2.61. The 

congressional models also tested for the average mean difference between the 

baseline era and the comparison era, while controlling for the other three eras and 

the surge in voting during general election years. Consequently, 5 parameters are 

estimated in each model. Given five parameters, an alpha level of .05, power set 

at the recommended level of .80 (Adams-Huet & Ahn, 2009), and assuming a 

medium effect size of .25, a sample size of 58 is required to detect a significant 

model, F(5,52) = 2.39. Power was met in both analyses with a sample size of 45 

elections for the presidential analysis, and a sample size of 90 elections for the 

congressional analysis.     
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Classical Linear Regression Analysis 
 

Presidential Models. Model assumptions were evaluated prior to 

interpreting model results. First, the presidential dataset was evaluated for 

outlying and influential elections. This investigation was done by utilizing Cook’s 

D and residual values. By utilizing the Cook’s D value, two cases, the 1912 and 

1956 elections, were identified as influential. Only the 1912 election had a 

residual value outside the accepted bounds; consequently, this election was 

dropped. After dropping this observation, the regressions were rerun and these 

statistics were again evaluated for additional outliers. After adjusting the Cook’s 

D value for the change in sample size, three additional elections were considered 

to be influential: the 1936 election, the 1956 election, and the 1964 election. 

However, only the 1964 election was found to have a residual value outside the 

accepted bounds. A decision was made to keep this election in the dataset for the 

following reasons: first, the accepted range for residual values is from -2 to 2, and 

the residual value of this election was 2.12, only marginally above the cut-off; 

second, by dropping the 1912 election, the sample size falls from 46 to 45 

elections. Given the power analysis, deleting an additional election would create 

an underpowered study to find a medium effect. Lastly, the 1964 election is one 

of the elections being tested for a critical realignment. Consequently, it is not 

surprising that it might appear as an influential data point. Given these reasons, 

the decision was made to retain this election in the dataset.  



 63 
 

After working through an evaluation of influential points, the remaining 

assumptions of the model were also evaluated. Independence of observations was 

assumed, as presidential vote returns were recorded at the end of each election 

and only compiled for this analysis. Autocorrelation was not detected in the 

presidential data, as indicated by a Durbin-Watson statistic of 1.48. Residual 

values appeared normally distributed, with a skewness value of -.14 and a kurtosis 

value of -.39. A linear model was deemed appropriate through inspection of 

scatterplots of the dependent variable against each independent variable, and the 

data were found to be homoscedastic by evaluating scatterplots of the residual 

values against the predicted values. The aforementioned scatterplots can be found 

in Appendix A. Lastly, there was no indication of multicollinearity, as the 

tolerance and variance inflation factors fell within accepted bounds.   

As previously noted, multiple linear regression analysis was used to 

develop a model for comparing mean differences in the Democratic percentage of 

the presidential two-party vote across critical realignments in American electoral 

history. Basic descriptive statistics and regression coefficients are shown in 

Tables 1 and 2, respectively. Comparing the first era (1828-1856) to the second 

era (1860-1892), the mean difference in the Democratic percentage of the 

presidential two-party vote was found to be statistically significant, 𝛽 = -0.057, 

t(40) = -2.07, p = 0.045. The model was able to account for 31.3% of the variance 

in the Democratic percentage of the two-party vote, F(4,40) = 4.55, p = 0.004, R2 
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= .31.1 Comparing the second era (1860-1892) to the third era (1896-1928), the 

mean difference in the Democratic share of the presidential vote was not found to 

be statistically significant, 𝛽 = -0.052, t(40) = -1.89, p = 0.07. Comparing the 

third era (1896-1928) to the fourth era (1932-1960), the mean difference in the 

Democratic share of the presidential vote was found to be statistically significant, 

𝛽 = 0.096, t(40) = 3.39, p = 0.002. Lastly, comparing the fourth era (1932-1960) 

to the fifth era (1964-2008), the mean difference in the Democratic percentage of 

the two-party vote was not found to be statistically significant, 𝛽 = -0.031, t(40) = 

-1.20, p = 0.24.  

The point estimates provided in both the table below and the text above 

indicate the magnitude of mean difference between the eras noted as measured in 

percentage points. The sign on the coefficient indicates the direction of the swing 

in party dominance, with a negative sign indicating a swing toward the 

conservatives, as it indicates that the Democratic percentage of the vote fell. 

Likewise, a positive sign on the coefficient indicates a swing toward the liberal 

side, indicating an increase in the Democratic percentage of the presidential vote. 

The results above support the conclusion of a critical realignment, based upon 

statistical significance, in the Republicans’ favor in 1860, corroborated by the 

election of Republican President Abraham Lincoln, and the conclusion of a 

critical realignment in the Democrats’ favor in 1932, corroborated by the election 

of President Franklin D. Roosevelt of the Democratic Party.    
                                                
1 These fit statistics are the same for each presidential model within the classical approach, as only 
the indicator is changing between runs of the model. Likewise, the sample size, R2, adjusted R2, 
the standard error of the estimate, and the Durbin-Watson statistic listed in the table are also 
consistent across runs of the model.  
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Table 1 

Descriptive Statistics for the Presidential Classical Regression Models  

Variables N Mean 
Standard 
Deviation 

Democratic Percentage of 
Two-Party Presidential Vote 45 0.49 0.06 
Dummy Variables 

   1828-1860 45 0.18 0.39 
1860-1892 45 0.20 0.40 
1896-1928 45 0.18 0.39 
1932-1960 45 0.18 0.39 
1964-2008 45 0.27 0.45 

 
 
Table 2 
 
Regression Coefficients for the Presidential Classical Regression Models 
 

  Dependent variable: Democratic percentage of two-party vote 
 All presidential elections except 1912 

Dummy 
Variables 

(1) (2) (3) (4) 

  Coefficient Standard 
Error 

Coefficient Standard 
Error 

Coefficient Standard 
Error 

Coefficient Standard 
Error 

1828-1856 -   0.057* 2.07 0.108*** 3.85 0.013 0.45 

1860-1892 -0.057* -2.07 -   0.052 1.89 -0.044 -1.60 

1896-1928 -0.108*** -3.85 -0.052 -1.89 -   -0.096* -3.93 

1932-1960 -0.013 -0.45 0.044 1.60 0.096** 3.93 -   

1964-2008 -0.044 -1.69 0.013 0.53 0.065* 2.52 -0.031 -1.20 

                  

Constant 0.537   0.481   0.429   0.525   

N 45   45   45   45   

R2 0.313   0.313   0.313   0.313   

Adjusted R2 0.240   0.240   0.240   0.240   

Standard error 
of estimate 

0.056   0.056   0.056   0.056   

Durbin-Watson 
statistic 

1.480   1.480   1.480   1.480   

         
* p<.05         

** p<.01         
*** p<.001         
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Congressional Models. The results from the congressional data are 

addressed next. Similar to the presidential data, the congressional dataset was first 

evaluated for outliers. An initial evaluation of Cook’s D and residual values 

against the data, using both values as metrics, returned the following elections as 

outliers: the 1864 election, the 1866 election, the 1890 election, the 1912 election, 

and the 1936 election. Using only a measure of the Cook’s D value added the 

elections of 1860 and 1894. Since the 1912 election was found to be an outlier in 

the presidential dataset as well, this observation was first deleted and the analysis 

was rerun. The other four elections which were found to be influential points 

remained as such on both indicators when rerunning the analysis. 

On a second evaluation of outliers after the deletion of the election of 

1912, the 1866 election, the 1864 election, the 1890 election, and the 1936 

election remained as influential points on both indicators as mentioned above. At 

this point, the 1866 election carried the highest absolute residual and Cook’s D 

values; consequently, this election was deleted next from the dataset to see how 

its removal would affect the other outlying points. After its deletion, the elections 

of 1864, 1936, and 1890 all remained as influential points as indicated by both 

residual and Cook’s D values. The Cook’s D measurement also denoted a series 

of other elections as influential points; however, these elections did not carry 

residual values above an absolute value of 2. At this point, the election of 1936 

carried the highest residual value and so this election was eliminated to measure 

the effect on the other outlying points.  
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A few additional passes were made through the data, but due to concerns 

of overfitting the model, the decision was made to evaluate outlying and 

influential points in a different manner. Here, the elections that appeared as 

influential during the first evaluation of influential points were dummy coded. A 

dummy variable was created in which the supposed outlying elections were coded 

as a “1” and all other elections were coded as a “0”. This binary variable was then 

entered into the regressions and its coefficient was evaluated for statistical 

significance. In the subsequent regressions, this variable was not found to be a 

statistically significant predictor, indicating that this group of elections was not 

statistically significantly affecting the slope of the regression line. Consequently, 

a decision was made to include these elections for two reasons: first, some of the 

supposed outlying elections were either located at or near critical juncture points 

(i.e., the elections of 1864 and 1936); and second, there was some concern 

regarding statistical power if all influential elections were dropped.  

Consequently, after this investigation, assumptions were evaluated. 

Independence of observations was assumed, as the seat shares were recorded at 

the end of each election and only compiled for this analysis. Autocorrelation was 

not detected in the presidential data, as indicated by a Durbin-Watson statistic of 

1.22. Residual values appeared normally distributed, with a skewness value of .20 

and a kurtosis value of .52. A linear model was deemed appropriate through 

scatterplots of the dependent variable against each independent variable, and the 

data were found to be homoscedastic by evaluating scatterplots of the residual 

values against the predicted values. The aforementioned scatterplots can be found 
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in Appendix A. Lastly, there was no indication of multicollinearity, as the 

tolerance and variance inflation factors fell within accepted bounds.   

As noted in previous sections, multiple linear regression analysis was used 

to develop a model for comparing mean differences in the Democratic seat share 

in the U.S. House across eras of critical realignments in American electoral 

history. Basic descriptive statistics and regression coefficients are shown in Table 

3 and Table 4. Comparing the first era (1828-1858) to the second era (1860-

1894), the mean difference in the Democratic seat share in the U.S. House of 

Representatives was found to be statistically significant, 𝛽 = -0.112, t(85) = -3.33, 

p = 0.001. The model was able to account for 33.6% of the variance in the 

Democratic seat share, F(5,85) = 8.61, p < 0.001, R2 = .336.2 Comparing the 

second era (1860-1894) to the third era (1896-1930), the mean difference in the 

Democratic seat share was not found to be statistically significant, 𝛽 = -0.019, 

t(85) = -0.57, p = 0.57. Comparing the third era (1896-1930) to the fourth era 

(1932-1994), the mean difference in the Democratic seat share was found to be 

statistically significant, 𝛽 = 0.15, t(85) = 5.19, p < .001. Lastly, comparing the 

fourth era (1932-1994) to the fifth era (1996-2008), the mean difference in the 

Democratic seat share was found to be statistically significant, 𝛽 = -0.114, t(85) = 

-2.80, p < 0.001.  

Similar to the presidential models, the point estimates provided both in the 

table below and the text above indicate the magnitude of mean difference in 
                                                
2 Similar to the presidential models, only the indicator is changing between runs of the 
congressional model in the classical approach, resulting in consistent fit statistics. This is 
applicable as well to the aforementioned statistics in the table detailing regression coefficients for 
the congressional model. 
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Democratic seat shares in the U.S. House across the specified eras. The sign on 

the coefficient carries a similar interpretation to that of the presidential models; a 

negative sign indicates a conservative swing as the average percentage of 

Democratic seats fell between the two eras, whereas a positive sign indicates the 

opposite scenario, with a swing toward the liberal side. The results corroborate the 

presidential analysis, as both the 1860 and 1932 congressional elections 

demarcated eras of statistically significant mean differences in the Democratic 

seat share in the U.S. House from the most previous era, and in the same direction 

as found within the presidential analysis. The one outstanding result is the 

comparison of the fourth to the fifth era, which did not find statistically significant 

results in the presidential analysis, but did find such in the congressional analysis.  

Table 3 
 
Descriptive Statistics for the Congressional Classical Regression Models 
 

Variables N Mean 
Standard 
Deviation 

Democratic Percentage of US House 
Seats 91 0.53 0.12 
Midterm Election Surge 91 0.79 11.74 
Dummy Variables 

   1828-1858 91 0.18 0.38 
1860-1894 91 0.20 0.40 
1896-1930 91 0.20 0.40 
1932-1994 91 0.35 0.48 
1996-2008 91 0.08 0.27 

 
 
Table 4 
 
Regression Coefficients for the Congressional Classical Regression Models 
 

  Dependent variable: Democratic percentage of US House seats 
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Dummy 
Variables 

(1) (2) (3) (4) 

 Coefficient Standard 
Error 

Coefficient Standard 
Error 

Coefficient Standard 
Error 

Coefficient Standard 
Error 

1828-1858 -   0.110** 3.33 0.131*** 3.87 -0.019 -0.65 

1860-1894 -0.110** -3.33 -   0.019 0.57 -0.131*** -4.55 

1896-1930 -0.130*** -3.87 -0.019 -0.57 -   -0.150*** -5.19 

1932-1994 0.020 0.65 0.131*** 4.55 0.150*** 5.19 -   

1996-2008 -0.100* -2.15 0.017 0.39 0.035 0.81 -0.114** -2.8 

Midterm 
Election 
Surge 

-0.001 -1.07 -0.001 -1.07 -0.001 -1.07 -0.001 -1.07 

                  

Constant 0.580   0.468   0.449   0.599   

N 91   91   91   91   

R2 0.336   0.336   0.336   0.336   

Adjusted R2 0.297   0.297   0.297   0.297   

Standard error 
of estimate 

0.098   0.098   0.098   0.098   

Durbin-
Watson 
statistic 

1.221   1.221   1.221   1.221   

         
* p<.05         
** p<.01         
*** p<.001         

 
 
Bayesian Linear Regression Analysis 
 

Specification of Prior Distributions. For the models employing 

informative prior distributions, the prior distributions for the parameters were 

assumed to be normal and means and variances were set to the values found in the 

table below. The means and variances found below were derived from adjusting 

Burnham’s model, as Burnham presupposed an electoral realignment in 1856 and 

not 1860 and none after 1932. This particularly complicated the variance 

calculations (M.W. Frank, personal communication, September 16, 2016). For the 
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models employing non-informative distributions, the default of 

“COEFFPRIOR=UNIFORM” within the SAS PROC GENMOD command 

statement was utilized, applying a uniform, or equal probability prior, to all 

parameters in the model. Code for setting and applying these prior distributions, 

in addition to all Bayesian analysis, can be found in Appendix B. 

Table 5 
 
Means and Variances for the Informative Prior Distributions for the Presidential 
Bayesian Models 
 

Elections Mean Variance 
1828-1856 53.0 9.0 
1860-1892 48.0 2.5 
1896-1928 45.0 30.0 
1932-1960 53.0 16.0 
1964-2008 50.0 12.0 

 
Table 6 
 
Means and Variances for the Informative Prior Distributions for the 
Congressional Bayesian Models 
 

Elections Mean Variance 
1828-1858 55.0 25.0 
1860-1894 50.0 30.0 
1896-1930 43.0 25.0 
1932-1994 62.0 25.0 
1996-2008 55.0 25.0 

 
Presidential Models. As previously mentioned, convergence of the Monte 

Carlo Markov chains is vital for Bayesian analysis. Convergence of the simulation 

draws ideally achieve a stationary distribution, from which inferences regarding 

parameters can be made. No one statistic indicates convergence; instead, a series 
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of diagnostics are evaluated first to assess convergence before interpreting 

parameters.  

For all presidential models, diagnostics provided no evidence that 

convergence was not achieved. The Gelman-Rubin test, which uses parallel 

chains with differing initial values to test whether they all converge to the same 

target distribution, returned similar estimates for each model (i.e., each non-

informative model and each informative model) indicating one stationary 

distribution, respectively. The Geweke test is similar, but evaluates convergence 

by comparing means from the early and later parts of the Markov chain. 

Statistically significant results indicate a significant difference in the means, 

implying a lack of convergence to one stationary distribution. This test returned 

non-significant results for each presidential model. Visual analysis of the trace 

plots indicated sufficient burn-in and adequate mixing of the chain. Adequate 

mixing of the chain was also supported by the autocorrelation graphs and the 

effective sample size; correlations were low among lagged points and the 

effective sample size matched precisely the number of Monte Carlo simulations. 

The Markov chain was deemed long enough through the Heidelberger-Welch test, 

and accuracy of the percentiles is high, as indicated by the Raftery-Lewis test. 

This was supported by a dependence factor close to one. Tables detailing these 

specifics are provided below and the trace plots and posterior distributions for 

each parameter are provided in Appendix B.  
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Table 7 

Convergence Diagnostics for the Presidential Bayesian Models Using a Non-
Informative Prior Distribution 
 

Diagnostic 
Statistics 

Explanation 
of Test 

Accepted 
Bounds 

Model 1: 
Comparing 

1828-1856 to 
1860-1892 

Model 2: 
Comparing 

1860-1892 to 
1896-1928 

Model 3: 
Comparing 

1896-1928 to 
1932-1960 

Model 4: 
Comparing 

1932-1960 to 
1964-2008 

Gelman-
Rubin 

Uses parallel 
chains with 

differing 
initial values 

to assess 
convergence 

to same 
distribution. 
Failure to do 

so could 
indicate a 

multi-mode 
posterior 

distribution.  

This is 
measured 

by the ratio 
of within-
chain and 
between-

chain 
variance. A 
value close 

to 1 is 
considered 
adequate. 

Values range 
from 0.9999 to 

1.0003  

Values range 
from 0.9999 to 

1.0003  

Values range 
from 0.9999 to 

1.0003  

Values range 
from 0.9999 to 

1.0003  

Geweke Compares 
means from 

early and later 
parts of 
Markov 
chain. 

Small p-
values 

indicate 
rejection. 

Lowest p-value 
is 0.5590 

Lowest p-value 
is 0.5701 

Lowest p-value 
is 0.5701 

Lowest p-value 
is 0.5681 

Autocorrel
ation 
statistics 

Measures 
dependency 
among chain 

samples. 

Low 
correlation 

between 
lagged 
points 

indicates 
adequate 
mixing. 

Refer to graphs 
in appendix. 

Refer to graphs 
in appendix. 

Refer to graphs 
in appendix. 

Refer to graphs 
in appendix. 

Effective 
Sample 
Size 

Similar to 
autocorrelatio
n; measures 

mixing of the 
chain. 

Low 
discrepancy 
between the 

effective 
sample size 

and the 
simulation 
sample size 

indicates 
adequate 
mixing. 

Effective 
sample size is 

10,000; 
simulation 
sample size 

equaled 10,000 

Effective 
sample size is 

10,000; 
simulation 
sample size 

equaled 10,000 

Effective 
sample size is 

10,000; 
simulation 
sample size 

equaled 10,000 

Effective 
sample size is 

10,000; 
simulation 
sample size 

equaled 10,000 

Heidelberg
er-Welch 

Ensures 
adequate 

length of the 
chain. 

Small p-
values 

indicate 
rejection. 

Lowest p-value 
is 0.1900 

Lowest p-value 
is 0.1800 

Lowest p-value 
is 0.1800 

Lowest p-value 
is 0.1864 

Rafferty-
Lewis  

Evaluates the 
accuracy of 
the desired 

percentiles by 
reporting the 

number of 
samples 
needed. 

Failure could 
indicate the 
need for a 

longer chain. 

The 
resulting 

dependence 
factor 

should be 
close to 1. 

Dependence 
factors range 

from 0.9904 to 
1.0406 

Dependence 
factors range 

from 0.9904 to 
1.0406 

Dependence 
factors range 

from 0.9904 to 
1.0406 

Dependence 
factors range 

from 0.9904 to 
1.0406 
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*Further mixing of the Markov chains and 
adequate burn-in are evaluated visually and 
are presented in the appendix. 

    

**Table adapted from 
https://support.sas.com/documentation/cdl/en/statug/63347/HT
ML/default/viewer.htm#statug_introbayes_sect008.htm#statug.i
ntrobayes.bayesess 

   

 

Table 8 

Convergence Diagnostics for the Presidential Bayesian Models Using an 
Informative Prior Distribution 
 

Diagnostic 
Statistics 

Explanation 
of Test 

Accepted 
Bounds 

Model 1: 
Comparing 

1828-1856 to 
1860-1892 

Model 2: 
Comparing 

1860-1892 to 
1896-1928 

Model 3: 
Comparing 

1896-1928 to 
1932-1960 

Model 4: 
Comparing 

1932-1960 to 
1964-2008 

Gelman-
Rubin 

Uses parallel 
chains with 

differing 
initial values 

to assess 
convergence 

to same 
distribution. 
Failure to do 

so could 
indicate a 

multi-mode 
posterior 

distribution.  

This is 
measured 

by the 
ratio of 
within-

chain and 
between-

chain 
variance. 
A value 

close to 1 
is 

considered 
adequate. 

Values range 
from 1.0001 to 

1.0005 

Values range 
from 1.0000 to 

1.0005 

Values range 
from 1.0001 to 

1.0007 

Values range 
from 1.0001 to 

1.0007 

Geweke Compares 
means from 

early and 
later parts of 

Markov 
chain. 

Small p-
values 

indicate 
rejection. 

Lowest p-value 
is 0.1603 

Lowest p-value 
is 0.1732 

Lowest p-value 
is 0.1745 

Lowest p-value 
is 0.1553 

Autocorrelatio
n statistics 

Measures 
dependency 
among chain 

samples. 

Low 
correlation 

between 
lagged 
points 

indicates 
adequate 
mixing, 

demonstrat
ed 

graphically
. 

Refer to graphs 
in appendix. 

Refer to graphs 
in appendix. 

Refer to graphs 
in appendix. 

Refer to graphs 
in appendix. 

Effective 
Sample Size 

Similar to 
autocorrelati
on; measures 

mixing of 
the chain. 

Low 
discrepanc
y between 

the 
effective 
sample 
size and 

the 
simulation 

sample 
size 

indicates 
adequate 
mixing. 

Effective 
sample size 
ranged from 
9,653.10 to 
10,268.30; 
simulation 

sample size is 
10,000 

Effective 
sample size 
ranged from 
9,653.10 to 
10,268.30; 
simulation 

sample size is 
10,000 

Effective 
sample size 
ranged from 
9,653.10 to 
10,268.30; 
simulation 

sample size is 
10,000 

Effective 
sample size 
ranged from 
9,653.10 to 
10,268.30; 
simulation 

sample size is 
10,000 
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Heidelberger-
Welch  

Ensures 
adequate 

length of the 
chain. 

Small p-
values 

indicate 
rejection. 

Lowest p-value 
is 0.0771; 

however, the 
sample passed 
the stationary 

test. 

Lowest p-value 
is 0.0685; 

however, the 
sample passed 
the stationary 

test. 

Lowest p-value 
is 0.0723; 

however, the 
sample passed 
the stationary 

test. 

Lowest p-value 
is 0.0767; 

however, the 
sample passed 
the stationary 

test. 
Rafferty-
Lewis  

Evaluates 
the accuracy 

of the 
desired 

percentiles 
by reporting 
the number 
of samples 

needed. 
Failure 
could 

indicate the 
need for a 

longer chain. 

The 
resulting 

dependenc
e factor 

should be 
close to 1. 

Values range 
from 0.9586 to 

1.0320 

Values range 
from 0.9586 to 

1.0320 

Values range 
from 0.9744 to 

1.0844 

Values range 
from 0.9744 to 

1.0755 

*Further mixing of the Markov chains and 
adequate burn-in are evaluated visually and 
are presented in the appendix. 

    

**Table adapted from 
https://support.sas.com/documentation/cdl/en/statug/63347/HT
ML/default/viewer.htm#statug_introbayes_sect008.htm#statug.i
ntrobayes.bayesess 

   

 

Since these diagnostics did not reveal any concern with the convergence 

of the chains, the stationary distributions can be interpreted for parameter 

estimates. Tables 9 through 16 below summarize the prior and posterior moments 

of the parameters of each of the models as well as the Deviance Information 

Criteria (DIC) statistic for each model, which provides a measure of comparative 

model fit. A comparison of the DIC statistic suggests that the informative model 

is a better fit when evaluating the first era (1828-1856) to the second era (1860-

1892), although the difference in the DIC statistic is small. Consequently, using 

the informative model, the posterior mean for this difference is -0.052, with a 

standard deviation of 0.031. Theoretically, this posterior mean indicates that the 

average Democratic share of the presidential vote fell by 5.22 percentage points 

from the first to the second era, 1828-1856 to 1860-1892 respectively.  
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Since model parameters are regarded as random estimates in Bayesian 

analysis, the conditional probability of parameters carrying a directional effect, 

given the data, must be estimated from the posterior distribution samples. For 

example, if one was interested in whether a beta coefficient carried a positive 

effect on an outcome, one would estimate the conditional probability that the beta 

coefficient was greater than zero, drawing from the posterior distribution samples. 

However, in this case, the significance of the covariate is not whether it is greater 

than zero, but whether it is greater than the average change in Democratic percent 

of the presidential vote across all U.S. elections. If the average change within the 

era is significantly greater or lesser than the average change across all U.S. 

elections, then one may be able to conclude the occurrence of realignment. 

Consequently, there is a 0.42 probability of the mean difference between the first 

and second era being greater than the overall average change in the Democratic 

share of the presidential popular vote.  

Comparing the second (1860-1892) era to the third (1896-1928) era for the 

presidential data, the DIC statistic indicated slightly better model fit for the 

informative model. The posterior distribution for this difference had a mean of -

0.028 with a standard deviation of 0.03. This means that the average Democratic 

share of the presidential vote fell 2.81 percentage points from the second era to 

the third era. However, there is only a 0.16 probability that the mean difference 

for this comparison is greater than the overall average change in the Democratic 

share of the presidential popular vote. 
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Comparing the third (1896-1928) era to the fourth (1932-1960) era, again 

the DIC statistic indicated slightly better model fit for the informative model. The 

posterior distribution indicated a mean of 0.089 with a standard deviation of 0.03. 

This means that the average Democratic vote share rose 8.97 percentage points 

between the third and fourth eras. There is a 0.85 probability, though, that this 

average mean difference for this comparison is greater than the overall average 

change in the Democratic share of the presidential popular vote.  

Lastly, comparing the fourth (1932-196) era to the fifth (1960-2008) era, 

the DIC statistic indicated slightly better model fit for the non-informative model. 

This posterior distribution had a mean of -0.031 and a standard deviation of 0.029. 

This means that the average Democratic vote share fell 3.05 percentage points 

between the fourth and fifth eras; however, there is a 0.17 probability that this 

mean difference is greater than the average change in the Democratic vote share 

of the presidential popular vote.  

 
Table 9 
 
Prior and Posterior Distribution Information for the Non-Informative Bayesian 
Presidential Models, Comparing the First and Second Eras 
 

  Prior Information Posterior Information 

  Mean Std Dev Mean Std Dev Equal Tail Interval Highest Posterior Density Interval 

1828-1860 - - - - - - 

1860-1892 0 1.00E-06 -0.0566 0.0302 (-0.1156, 0.0035) (-0.1172, 0.0013) 

1896-1928 0 1.00E-06 -0.0887 0.0305 (-0.1487, -0.0288) (-0.1477, -0.0280) 

1932-1964 0 1.00E-06 -0.0128 0.0316 (-0.0749, 0.0494) (-0.0730, 0.0509) 

1964-2008 0 1.00E-06 -0.0433 0.0286 (-0.0996, 0.0125) (-0.1011, 0.0107) 

Constant 0 1.00E-06 0.5373 0.0220 (0.4940, 0.5798) (0.4950, 0.5806) 

DIC: -118.833 
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Table 10 
 
Prior and Posterior Distribution Information for the Informative Bayesian 
Presidential Models, Comparing the First and Second Eras 
 

  Prior Information Posterior Information 

  Mean Std Dev Mean Std Dev Equal Tail Interval Highest Posterior Density Interval 

1828-1860 - - - - - - 

1860-1892 48.00 0.40 -0.0522 0.0306 (-0.1114, 0.0080) (-0.1132, 0.0060) 

1896-1928 45.00 0.03 -0.0843 0.0306 (-0.1442, -0.0235) (-0.1472, -0.0271) 

1932-1964 53.00 0.06 -0.0072 0.0315 (-0.0684, 0.0564) (-0.0675, 0.0571) 

1964-2008 50.00 0.08 -0.0382 0.0287 (-0.0948, 0.0188) (-0.0952, 0.0177) 

Constant 0 1.00E-06 0.5333 0.0221 (0.4898, 0.5771) (0.4885, 0.5753) 

DIC: -119.334 
 
Table 11 
 
Prior and Posterior Distribution Information for the Non-Informative Bayesian 
Presidential Models, Comparing the Second and Third Eras 
 

  Prior Information Posterior Information 

  Mean Std Dev Mean Std Dev Equal Tail Interval Highest Posterior Density Interval 

1828-1860 0 1.00E-06 0.0567 0.0302 (-0.0023, 0.1168) (-0.0040, 0.1145) 

1860-1892 - - - - - - 

1896-1928 0 1.00E-06 -0.0321 0.0296 (-0.0904, 0.0260) (-0.0908, 0.0256) 

1932-1964 0 1.00E-06 0.0539 0.0307 (-0.0166, 0.1041) (-0.0146, 0.1058) 

1964-2008 0 1.00E-06 0.0133 0.0277 (-0.0410, 0.0676) (-0.0418, 0.0667) 

Constant 0 1.00E-06 0.4807 0.0207 (0.4396, 0.5207) (0.4412, 0.5218) 

DIC: -118.833 
 
Table 12 
 
Prior and Posterior Distribution Information for the Informative Bayesian 
Presidential Models, Comparing the Second and Third Eras 
 

  Prior Information Posterior Information 

  Mean Std Dev Mean Std Dev Equal Tail Interval Highest Posterior Density Interval 

1828-1860 53.00 0.11 0.0606 0.0306 (0.0014, 0.1208) (-0.0004, 0.1187) 
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1860-1892 - - - - - - 

1896-1928 45.00 0.03 -0.0281 0.0297 (-0.0859, 0.0308) (-0.0859, 0.0307) 

1932-1964 53.00 0.06 0.0490 0.0306 (-0.0109, 0.1112) (-0.0116, 0.1093) 

1964-2008 50.00 0.08 0.0180 0.0277 (-0.0368, 0.0731) (-0.0378, 0.0717) 

Constant 0 1.00E-06 0.4772 0.0208 (0.4358, 0.5186) (0.4339, 0.5158) 

DIC: -119.337 
 
Table 13 
 
 Prior and Posterior Distribution Information for the Non-Informative Bayesian 
Presidential Models, Comparing the Third and Fourth Eras 
 

  Prior Information Posterior Information 

  Mean Std Dev Mean Std Dev Equal Tail Interval Highest Posterior Density Interval 

1828-1860 0 1.00E-06 0.0889 0.0302 (0.0299, 0.1490) (0.0282, 0.1468) 

1860-1892 0 1.00E-06 0.0323 0.0296 (-0.0260, 0.0904) (-0.0263, 0.0900) 

1896-1928 - - - - - - 

1932-1964 0 1.00E-06 0.0761 0.0307 (0.0157, 0.1363) (0.0176, 0.1380) 

1964-2008 0 1.00E-06 0.0455 0.0277 (-0.0088, 0.0999) (-0.0096, 0.0989) 

Constant 0 1.00E-06 0.4485 0.0207 (0.4074, 0.4885) (0.4090, 0.4896) 

DIC: -118.833 
 
Table 14 
 
Prior and Posterior Distribution Information for the Informative Bayesian 
Presidential Models, Comparing the Third and Fourth Eras 
 

  Prior Information Posterior Information 

  Mean Std Dev Mean Std Dev Equal Tail Interval Highest Posterior Density Interval 

1828-1860 53.00 0.11 0.1012 0.0308 (0.0420, 0.1625) (0.0418, 0.1621) 

1860-1892 48.00 0.40 0.0530 0.0303 (-0.0049, 0.1140) (-0.0051, 0.1136) 

1896-1928 - - - - - - 

1932-1964 53.00 0.06 0.0897 0.0309 (0.0297, 0.1529) (0.0280, 0.1505) 

1964-2008 50.00 0.08 0.0586 0.0281 (0.0041, 0.1149) (0.0023, 0.1127) 

Constant 0 1.00E-06 0.4366 0.0211 (0.3938, 0.4778) (0.3930, 0.4763) 

DIC: -118.872 
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Table 15 
 
Prior and Posterior Distribution Information for the Non-Informative Bayesian 
Presidential Models, Comparing the Fourth and Fifth Eras 
 

  Prior Information Posterior Information 

  Mean Std Dev Mean Std Dev Equal Tail Interval Highest Posterior Density Interval 

1828-1860 0 1.00E-06 0.0128 0.0311 (-0.0479, 0.0746) (-0.0496, 0.0723) 

1860-1892 0 1.00E-06 -0.0438 0.0305 (-0.1039, 0.0162) (-0.1026, 0.0170) 

1896-1928 0 1.00E-06 -0.0761 0.0306 (-0.1365, -0.0155) (-0.1369, -0.0165) 

1932-1964 - - - - - - 

1964-2008 0 1.00E-06 -0.0305 0.0286 (-0.0869, 0.0252) (-0.0885, 0.0234) 

Constant 0 1.00E-06 0.5246 0.0220 (0.4812, 0.5670) (0.4830, 0.5685) 

DIC: -118.833 
 
Table 16 
 
Prior and Posterior Distribution Information for the Informative Bayesian 
Presidential Models, Comparing the Fourth and Fifth Eras 
 

  Prior Information Posterior Information 

  Mean Std Dev Mean Std Dev Equal Tail Interval Highest Posterior Density Interval 

1828-1860 53.00 0.11 0.0257 0.0317 (-0.0352, 0.0886) (-0.0355, 0.0883) 

1860-1892 48.00 0.40 -0.0225 0.0312 (-0.0825, 0.0404) (-0.0830, 0.0395) 

1896-1928 45.00 0.03 -0.0628 0.0309 (-0.1228, 0.0002) (-0.1235, -0.0011) 

1932-1964 - - - - - - 

1964-2008 50.00 0.08 -0.0171 0.0291 (-0.0737, 0.0409) (-0.0739, 0.0403) 

Constant 0 1.00E-06 0.5121 0.0224 (0.4671, 0.5557) (0.4684, 0.5568) 

DIC: -118.798 
 
 

Congressional Models. Similar to the presidential models, diagnostics 

provided no evidence that convergence was not achieved in the congressional 

models using either a non-informative or informative prior distribution. The 

Gelman-Rubin test returned similar estimates, again indicating one stationary 

distribution. Mean differences between the early and later parts of the Markov 
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chain were not found to be statistically significant by the Geweke test, and visual 

analysis of the trace plots indicated sufficient burn-in and adequate mixing. 

Autocorrelation statistics and the effective sample size also indicated adequate 

mixing of the chain; similar to the presidential models, correlations were low 

among lagged points and the effective sample size matched the number of Monte 

Carlo simulations. The Heidelberger-Welch test concluded that a longer Markov 

chain was not needed, and accuracy of the percentiles was found to be within 

.005, as indicated by the Raftery-Lewis test. Again, tables detailing these specifics 

are provided below and the trace plots and posterior distributions for each 

parameter are provided in Appendix B.  

Table 17 

Convergence Diagnostics for the Congressional Bayesian Models Using a Non-
Informative Prior Distribution  
 

Diagnostic 
Statistics 

Explanation 
of Test 

Accepted 
Bounds 

Model 1: 
Comparing 

1828-1858 to 
1860-1894 

Model 2: 
Comparing 

1860-1894 to 
1896-1930 

Model 3: 
Comparing 

1896-1930 to 
1932-1994 

Model 4: 
Comparing 

1932-1994 to 
1996-2008 

Gelman-
Rubin 

Uses parallel 
chains with 

differing 
initial values 

to assess 
convergence 

to same 
distribution. 
Failure to do 

so could 
indicate a 

multi-mode 
posterior 

distribution.  

This is 
measured 

by the ratio 
of within-
chain and 
between-

chain 
variance. 
A value 

close to 1 
is 

considered 
adequate. 

Values range 
from 0.9999 to 

1.0002 

Values range 
from 0.9999 to 

1.0002 

Values range 
from 0.9999 to 

1.0002 

Values range 
from 0.9999 to 

1.0003 

Geweke Compares 
means from 

early and 
later parts of 

Markov 
chain. 

Small p-
values 

indicate 
rejection. 

Lowest p-value 
is 0.2791 

Lowest p-value 
is 0.2791 

Lowest p-value 
is 0.2791 

Lowest p-value 
is 0.2791 

Autocorrelat
ion statistics 

Measures 
dependency 
among chain 

samples. 

Low 
correlation 

between 
lagged 
points 

indicates 

Refer to graphs 
in the appendix 

Refer to graphs 
in the appendix 

Refer to graphs 
in the appendix 

Refer to graphs 
in the appendix 
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adequate 
mixing. 

Effective 
Sample Size 

Similar to 
autocorrelati
on; measures 
mixing of the 

chain. 

Low 
discrepanc
y between 

the 
effective 
sample 
size and 

the 
simulation 

sample 
size 

indicates 
adequate 
mixing. 

Effective 
sample size 
ranged from 
9,042.50 to 

10,000; 
simulation 
sample size 

equaled 10,000 

Effective 
sample size 
ranged from 
9,042.50 to 

10,000; 
simulation 
sample size 

equaled 10,000 

Effective 
sample size 
ranged from 
9,042.50 to 

10,000; 
simulation 
sample size 

equaled 10,000 

Effective 
sample size 
ranged from 
9,042.50 to 

10,000; 
simulation 
sample size 

equaled 10,000 

Heidelberge
r-Welch 

Ensures 
adequate 

length of the 
chain. 

Small p-
values 

indicate 
rejection. 

Lowest p-value 
is 0.2736 

Lowest p-value 
is 0.2677 

Lowest p-value 
is 0.2683 

Lowest p-value 
is 0.1835 

Rafferty-
Lewis  

Evaluates the 
accuracy of 
the desired 
percentiles 

by reporting 
the number 
of samples 

needed. 
Failure could 
indicate the 
need for a 

longer chain. 

The 
resulting 

dependenc
e factor 

should be 
close to 1. 

Values range 
from 0.9744 to 

1.0235 

Values range 
from 0.9744 to 

1.0406 

Values range 
from 0.9744 to 

1.0406 

Values range 
from 0.9664 to 

1.0235 

*Further mixing of the Markov chains and 
adequate burn-in are evaluated visually and 
are presented in the appendix. 

    

**Table adapted from 
https://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/viewer.
htm#statug_introbayes_sect008.htm#statug.introbayes.bayesess 

  

 

Table 18 

Convergence Diagnostics for the Congressional Bayesian Models Using an 
Informative Prior Distribution 
 

Diagnostic 
Statistics 

Explanation of 
Test 

Accepted 
Bounds 

Model 1: 
Comparing 
1828-1858 to 
1860-1894 

Model 2: 
Comparing 
1860-1894 to 
1896-1930 

Model 3: 
Comparing 
1896-1930 to 
1932-1994 

Model 4: 
Comparing 
1932-1994 to 
1996-2008 

Gelman-
Rubin 

Uses parallel 
chains with 
differing initial 
values to 
assess 
convergence to 
same 
distribution. 
Failure to do 
so could 
indicate a 
multi-mode 
posterior 
distribution.  

This is 
measured 
by the ratio 
of within-
chain and 
between-
chain 
variance. 
A value 
close to 1 
is 
considered 
adequate. 

Values range 
from 0.9999 to 
1.0003 

Values range 
from 0.9999 to 
1.0003 

Values range 
from 0.9999 to 
1.0003 

Values range 
from 0.9999 to 
1.0004 
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Geweke 

Compares 
means from 
early and later 
parts of 
Markov chain. 

Small p-
values 
indicate 
rejection. 

Lowest p-value 
is 0.0945 

Lowest p-value 
is 0.0947 

Lowest p-value 
is 0.0948 

Lowest p-value 
is 0.0964 

Autocorrel
ation 
statistics 

Measures 
dependency 
among chain 
samples. 

Low 
correlation 
between 
lagged 
points 
indicates 
adequate 
mixing, 
demonstrat
ed 
graphically
. 

Refer to graphs 
in the appendix 

Refer to graphs 
in the appendix 

Refer to graphs 
in the appendix 

Refer to graphs 
in the appendix 

Effective 
Sample 
Size 

Similar to 
autocorrelation
; measures 
mixing of the 
chain. 

Low 
discrepanc
y between 
the 
effective 
sample 
size and 
the 
simulation 
sample 
size 
indicates 
adequate 
mixing. 

Effective 
sample size 
ranged from 
9,674.10 to 
10,218.20; 
simulation 
sample size 
equaled 10,000 

Effective 
sample size 
ranged from 
9,674.10 to 
10,218.20; 
simulation 
sample size 
equaled 10,000 

Effective 
sample size 
ranged from 
9,674.10 to 
10,218.20; 
simulation 
sample size 
equaled 10,000 

Effective 
sample size 
ranged from 
9,674.10 to 
10,218.20; 
simulation 
sample size 
equaled 10,000 

Heidelber
ger-Welch  

Ensures 
adequate 
length of the 
chain. 

Small p-
values 
indicate 
rejection. 

Lowest p-value 
is 0.4462 

Lowest p-value 
is 0.4462 

Lowest p-value 
is 0.4461 

Lowest p-value 
is 0.4469 

Rafferty-
Lewis  

Evaluates the 
accuracy of the 
desired 
percentiles by 
reporting the 
number of 
samples 
needed. Failure 
could indicate 
the need for a 
longer chain. 

The 
resulting 
dependenc
e factor 
should be 
close to 1. 

Values range 
from 0.9744 to 
1.0152 

Values range 
from 0.9744 to 
1.0152 

Values range 
from 0.9744 to 
1.0152 

Values range 
from 0.9744 to 
1.0320 

*Further mixing of the Markov chains and 
adequate burn-in are evaluated visually and 
are presented in the appendix.     

**NOTE: Table adapted from 
https://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/viewer.
htm#statug_introbayes_sect008.htm#statug.introbayes.bayesess   

 

Since these diagnostics did not indicate any issue with the convergence of 

the chains, the stationary distributions can be interpreted for parameter estimates. 

Similar to the presidential data, Tables 19 through 26 below summarize the prior 

and posterior moments of the parameters of each of the models. The DIC statistic 
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is also provided, as it measures comparative model fit. Although the difference in 

the DIC statistic is small, the DIC statistic suggests that the informative model 

provides better model fit when evaluating the first era (1828-1858) to the second 

era (1860-1894). Consequently, using the informative model, the posterior mean 

for this difference is -0.108, with a standard deviation of 0.03. Theoretically, this 

posterior mean indicates that the average Democratic share of seats in the U.S. 

House of Representatives fell by 10.75 percentage points from the first to the 

second era, 1828-1858 to 1860-1894 respectively. As before, this was compared 

to the average Democratic seat share across all U.S. elections, and there is a .77 

probability that this difference is greater than the average change in Democratic 

seat share.  

Comparing the second (1860-1894) era to the third (1896-1930) era, again, 

the DIC statistic was slightly smaller for the informative model. The mean of this 

posterior distribution was -0.014 with a standard deviation of 0.03. This means 

that the average Democratic seat share in the U.S. House fell by 1.36 percentage 

points between the second and third eras. There is a .02 probability that this 

difference is greater than the average change in Democratic seat shares across all 

U.S. elections.  

Comparing the third (1896-1930) era to the fourth (1932-1994) era, the 

DIC statistic indicated slightly better model fit for the informative model. The 

posterior mean of this distribution had a value of 0.15 with a standard deviation of 

0.03. This means that the average Democratic seat share in the U.S. House grew 

by 15.48 percentage points between the third and fourth eras. There is a 0.99 
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probability that this change is greater than the average change in the Democratic 

seat share.  

Lastly, comparing the non-informative and the informative models for the 

comparison between the fourth (1932-1994) era and the fifth (1996-2008) era, the 

DIC statistic indicated slightly better model fit for the informative model. The 

mean of this posterior distribution carried a value of -0.1088 with a standard 

deviation of 0.04. This indicates that the average change fell by 10.88 percentage 

points between the fourth and fifth eras, and there is a 0.74 probability that this 

change exceeds the average change in Democratic seat shares across all U.S. 

elections.  

Table 19 

Prior and Posterior Distribution Information for the Non-Informative Bayesian 
Congressional Models, Comparing the First and Second Eras 
 

Election Years Prior Information Posterior Information 

Mean Std Dev Mean Std Dev Equal Tail Interval Highest Posterior Density Interval 

1828-1858 - - - - - - 

1860-1894 0 1.00E-06 -0.1119 0.0342 (-0.1787, -0.0441) (-0.1756, -0.0421) 

1896-1930 0 1.00E-06 -0.1308 0.0342 (-0.1982, -0.0648) (-0.1982, -0.0649) 

1932-1994 0 1.00E-06 0.0192 0.0303 (-0.0398, 0.0787) (-0.0392, 0.0790) 

1996-2008 0 1.00E-06 -0.0952 0.0449 (-0.1844, -0.0076) (-0.1833, -0.0068) 

General 
Election Surge 

0 1.00E-06 -0.0009 0.0009 (-0.0027, 0.0008) (-0.0027, 0.0009)  

Constant 0 1.00E-06 0.5799 0.0248 (0.5314, 0.6278) (0.5308, 0.6268) 

DIC: -156.671 

 
Table 20 
 
Prior and Posterior Distribution Information for the Informative Bayesian 
Congressional Models, Comparing the First and Second Eras 
 

Election Years Prior Information Posterior Information 
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Mean Std Dev Mean Std Dev Equal Tail Interval Highest Posterior Density Interval 

1828-1858 - - - - - - 

1860-1894 50.00 0.03 -0.1075 0.0343 (-0.1742, -0.0395) (-0.1675, -0.0422) 

1896-1930 43.00 0.04 -0.1251 0.0341 (-0.1924, -0.0577) (-0.1925, -0.0578) 

1932-1994 62.00 0.04 0.0247 0.0306 (-0.0348, 0.0848) (-0.0344, 0.0852) 

1996-2008 55.00 0.04 -0.0840 0.0450 (-0.1715, 0.0050) (-0.1704, 0.0057) 

General 
Election Surge 

0 1.00E-06 -0.0010 0.0009 (-0.0027, 0.0008) (-0.0027, 0.0008) 

Constant 0 1.00E-06 0.5752 0.0249 (0.5256, 0.6232) (0.5273, 0.6246) 

DIC: -156.865 

 
Table 21 
 
Prior and Posterior Distribution Information for the Non-Informative Bayesian 
Congressional Models, Comparing the Second and Third Eras 
 

Election Years Prior Information Posterior Information 

Mean Std Dev Mean Std Dev Equal Tail Interval Highest Posterior Density Interval 

1828-1858 0 1.00E-06 0.1120 0.0342 (0.0451, 0.1797) (0.0482, 0.1818) 

1860-1894 - - - - - - 

1896-1930 0 1.00E-06 -0.0189 0.0331 (-0.0845, 0.0453) (-0.0860, 0.0434) 

1932-1994 0 1.00E-06 0.1312 0.0292 (0.0745, 0.1882) (0.0745, 0.1882) 

1996-2008 0 1.00E-06 0.0167 0.0442 (-0.0713, 0.1027) (-0.0718, 0.1020) 

General 
Election Surge 

0 1.00E-06 -0.0009 0.0009 (-0.0027, 0.0008) (-0.0027, 0.0009) 

Constant 0 1.00E-06 0.4680 0.0234 (0.4219, 0.5131) (0.4205, 0.5114) 

DIC: -156.671 

 
 
Table 22 
 
Prior and Posterior Distribution Information for the Informative Bayesian 
Congressional Models, Comparing the Second and Third Eras 
 

Election Years Prior Information Posterior Information 

Mean Std Dev Mean Std Dev Equal Tail Interval Highest Posterior Density Interval 

1828-1858 55.00 0.04 0.1159 0.0343 (0.0491, 0.1837) (0.0482, 0.1823) 

1860-1894 - - - - - - 

1896-1930 43.00 0.04 -0.0136 0.0330 (-0.0785, 0.0518) (-0.0775, 0.0524) 

1932-1994 62.00 0.04 0.1362 0.0294 (0.0789, 0.1940) (0.0797, 0.1947) 
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1996-2008 55.00 0.04 0.0274 0.0442 (-0.0586, 0.1155) (-0.0592, 0.1143) 

General 
Election Surge 

0 1.00E-06 -0.0010 0.0009 (-0.0027, 0.0008) (-0.0027, 0.0008) 

Constant 0 1.00E-06 0.4637 0.0235 (0.4168, 0.5090) (0.4161, 0.5078) 

DIC: -156.868 

  
Table 23 
 
Prior and Posterior Distribution Information for the Non-Informative Bayesian 
Congressional Models, Comparing the Third and Fourth Eras 
 

Election Years Prior Information Posterior Information 

Mean Std Dev Mean Std Dev Equal Tail Interval Highest Posterior Density Interval 

1828-1858 0 1.00E-06 0.1305 0.0342 (0.0636, 0.1984) (0.0667, 0.2005) 

1860-1894 0 1.00E-06 0.0183 0.0331 (-0.0472, 0.0824) (-0.0474, 0.0820) 

1896-1930 - - - - - - 

1932-1994 0 1.00E-06 0.1497 0.0292 (0.0930, 0.2069) (0.0931, 0.2069) 

1996-2008 0 1.00E-06 0.0353 0.0442 (-0.0528, 0.1213) (-0.0533, 0.1207) 

General 
Election Surge 

0 1.00E-06 -0.0010 0.0009 (-0.0027, 0.0008) (-0.0027, 0.0009) 

Constant 0 1.00E-06 0.4494 0.0235 (0.4031, 0.4947) (0.4022, 0.4934) 

DIC: -156.671 

 
Table 24 
 
Prior and Posterior Distribution Information for the Informative Bayesian 
Congressional Models, Comparing the Third and Fourth Eras 
 

Election Years Prior Information Posterior Information 

Mean Std Dev Mean Std Dev Equal Tail Interval Highest Posterior Density Interval 

1828-1858 55.00 0.04 0.1344 0.0344 (0.0675, 0.2024) (0.0666, 0.2010) 

1860-1894 50.00 0.03 0.0234 0.0330 (-0.0415, 0.0887) (-0.0407, 0.0893) 

1896-1930 - - - - - - 

1932-1994 62.00 0.04 0.1548 0.0294 (0.0974, 0.2127) (0.0983, 0.2134) 

1996-2008 55.00 0.04 0.0460 0.0442 (-0.0400, 0.1341) (-0.0408, 0.1327) 

General 
Election Surge 

0 1.00E-06 -0.0009 0.0009 (-0.0027, 0.0008) (-0.0027, 0.0009) 

Constant 0 1.00E-06 0.4452 0.0235 (0.3982, 0.4906) (0.3973, 0.4893) 

DIC: -156.869 
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Table 25 
 
Prior and Posterior Distribution Information for the Non-Informative Bayesian 
Congressional Models, Comparing the Fourth and Fifth Eras 
 

Election Years Prior Information Posterior Information 

Mean Std Dev Mean Std Dev Equal Tail Interval Highest Posterior Density Interval 

1828-1858 0 1.00E-06 -0.0193 0.0304 (-0.0788, 0.0410) (-0.0761, 0.0429) 

1860-1894 0 1.00E-06 -0.1316 0.0292 (-0.1893, -0.0744) (-0.1915, -0.0771) 

1896-1930 0 1.00E-06 -0.1500 0.0291 (-0.2069, -0.0924) (-0.2062, -0.0920) 

1932-1994 - - - - - - 

1996-2008 0 1.00E-06 -0.1145 0.0413 (-0.1962, -0.0340) (-0.1960, -0.0339) 

General 
Election Surge 

0 1.00E-06 -0.0009 0.0009 (-0.0027, 0.0008) (-0.0026, 0.0009) 

Constant 0 1.00E-06 0.5993 0.0175 (0.5649, 0.6327) (0.5652, 0.6328) 

DIC: -156.671 

 
Table 26 
 
Prior and Posterior Distribution Information for the Informative Bayesian 
Congressional Models, Comparing the Fourth and Fifth Eras 
 

Election Years Prior Information Posterior Information 

Mean Std Dev Mean Std Dev Equal Tail Interval Highest Posterior Density Interval 

1828-1858 55.00 0.04 -0.0178 0.0306 (-0.0772, 0.0425) (-0.0786, 0.0407) 

1860-1894 50.00 0.03 -0.1288 0.0291 (-0.1862, -0.0711) (-0.1872, -0.0728) 

1896-1930 43.00 0.04 -0.1466 0.0292 (-0.2038, -0.0888) (-0.2044, -0.0900) 

1932-1994 - - - - - - 

1996-2008 55.00 0.04 -0.1088 0.0413 (-0.1894, -0.0264) (-0.1910, -0.0287) 

General 
Election Surge 

0 1.00E-06 -0.0010 0.0009 (-0.0027, 0.0008) (-0.0027, 0.0008) 

Constant 0 1.00E-06 0.5974 0.0175 (0.5626, 0.6310) (0.5639, 0.6316) 

DIC: -156.91 

 
Sensitivity Analysis. A sensitivity analysis was also run to assess the 

robustness of both the non-informative and informative presidential and 

congressional models. This is done by assuming a second prior distribution for 

each parameter. Given the model adjustments noted by the expert opinion and its 
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potential influence on variance, the means were held constant and the variances 

were set to the informative prior values to investigate this effect.  The results of 

this analysis are shown in Appendix C.    

Looking at the presidential models, the DIC statistic indicated slightly 

better model fit for this alternative set of models, but the difference in the DIC 

statistic was small. Changes in the mean of the posterior distribution were 

contained to less than 0.005 for all but one; the outlier was the comparison 

between the third and fourth eras, where the informative model returned a mean 

estimate of 0.089 and the alternative model returned an estimate of 0.076. The 

DIC statistics were -118.87 and -119.38, respectively.  

The congressional models returned similar results, with the alternative 

models demonstrating slightly better model fit. However, differences between all 

mean comparisons across the two sets of models remained within 0.005. 

Practically, this translates to half of a percentage point. This result, and the 

closeness of the DIC statistic, demonstrates the robustness of the informative 

model results for both sets of data.  

Formal Comparison 

This next section addresses the formal comparison between the classical 

and Bayesian statistical approaches. To aid in understanding, some definitions are 

provided. There are three parts to this comparison: first, the five methods of 

comparison that are noted in the literature review are used in an attempt to 

compare the classical and Bayesian approaches to statistics. These five methods 

will be referred to as the “comparison methods.” Second, two standards were 
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developed for the purpose of the comparison: the first one relating to types of 

data, and the second one relating to information gained from the comparison. 

These will be referred to as “standards.” Third, to clarify and operationalize the 

standards, the standards are broken down into indicators. The first standard has 

two indicators, and the second standard has five indicators. Overall, each of the 

five comparison methods was measured against all seven indicators. A table 

detailing this information follows the text to help clarify this formulation. 

As mentioned previously, the literature discusses five comparison methods 

for comparing the classical and Bayesian approach to statistics:  a comparison to 

an underlying known estimate, a comparison in terms of bias, a comparison of 

frequentist confidence intervals to Bayesian credible intervals, a comparison done 

through kappa scores, and a qualitative comparison. As outlined in the methods 

section, each one of these comparison methods was measured against two 

standards: the general applicability of the method, and as well as a comparison of 

the information gained from the method. From this, a rank was assigned to each 

comparison method through a point system and the top ranked method applied to 

the case at hand. 

This next section further explains the standards utilized, followed by an 

evaluation of the different comparison methods against these standards. Lastly, 

the top ranked method was applied to the case at hand.  

Explanation of Standards. The first standard that the comparison method 

was measured against was whether the method is applicable to different types of 

data. Since Bayesian methods utilize simulated data at times, this is an important 
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consideration concerning the applicability of the method to the social sciences, 

and for this study in particular. Types of data were grouped into two main groups: 

empirical and simulated. If the method is applicable to both, the comparison 

method received two points. Otherwise, one point was awarded for the type of 

data to which the comparison method applies. 

  This second standard is focused particularly on information gained from 

the comparison method, but operationalized through five indicators: first, whether 

the comparison method resulted in a quantifiable component; second, whether the 

comparison method carried a component by which to determine the meaningful 

significance of the result; third, whether the comparison method captures the 

meaning of the model or statistical approach; fourth, whether the comparison 

method carries application to different types of studies, which is to be 

differentiated from the different types of data mentioned in the first standard; and 

fifth, whether information that allows a direct comparison is gained. 

Evaluation of Comparison Methods. As mentioned by Betti, Cazzaniga, 

and Tornatore (2011) and Guikema (2005), one way to compare the effectiveness 

of the two statistical approaches is to compare each approach to an underlying 

known estimate. However, using known estimates limits the data type to 

simulations, and consequently, resulted in the comparison method receiving only 

one point on the first standard. Regarding the indicators for the second standard, 

this comparison method met four of the five indicators. This comparison method 

resulted in a quantifiable component, namely the distance from the resulting point 

estimate to the known point estimate (though not a true underlying value), and 
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this measure of distance can be used to differentiate results and thus produce 

some level of meaningful significance concerning the results. This comparison 

method also captured the meaning of each statistical approach, as it measures 

distance from a resulting point estimate or the mean of a distribution to the known 

underlying point estimate. It also resulted in congruent information across 

statistical approaches, as the unit of measurement is distance and this can be 

compared across approaches. However, this comparison method did not meet the 

fourth indicator of applicability across different types of studies, as it does not 

work when the underlying point estimate is not known.  

Bennett, Crowe, Price, Stamey, and Seaman, Jr. (2013) and Price (2012) 

built on the first comparison method, describing a comparison method in which 

the amount of bias present in the model parameters is calculated. As this 

comparison method is also based on a known underlying value, it only works with 

simulated data. With regard to the second standard, this comparison method met 

three out of the five indicators. Since the outcome of this comparison method 

would be the amount of bias present in model parameters, this method resulted in 

a quantifiable component that provides a level of meaningful significance to the 

result. This comparison method also reflected the meaning of the statistical 

approach, as it measures the amount of influence on model parameters. However, 

it was not found to be applicable to different types of studies, as the underlying 

point estimate must be known, and congruent information was not presented 

between models because model parameters are treated fundamentally differently 

across statistical approaches.  
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The third comparison method between the two statistical approaches was a 

comparison of frequentist confidence intervals to Bayesian credible intervals. 

Concerning the first standard, this comparison method was applicable to both 

empirical and simulated data. Regarding the second standard, this comparison 

method met four out of the five indicators. Since both intervals can be represented 

numerically, the outcome of the comparison would also be numeric and thus 

quantifiable in nature. While these intervals did not meet the fifth indicator of 

providing congruent information, traditionally these intervals are seen as 

counterpart measures across approaches and so some level of meaningful 

significance as it pertains to the models and approaches could be discerned. This 

comparison method is applicable to different types of studies and does capture the 

meaning of the appropriate statistical approach as each interval measures the 

interval for the presumed underlying point estimate.  

Although not as prevalent in the literature as the first three comparison 

methods, this fourth comparison method utilized a standard measure across 

statistical approaches. This fourth comparison method utilized kappa scores, a 

method of inter-rater agreement for categorical variables, and compared the level 

of percent agreement. As for the first standard, kappa scoring can be utilized with 

both empirical and simulated data. As for the second standard, this method met 

three out of the five indicators. This method carries a quantifiable component, but 

also provides a level of significance of results across models. While congruent 

information is gained, as the percent agreement is directly comparable across 

models, this comparison method is not applicable to all studies, as it deals mainly 
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with classification of categorical variables, and does not ultimately capture the 

meaning of the statistical approach as it does not deal with the underlying point 

estimate.  

  The final comparison method is only indirectly discussed in the literature, 

mainly through a discussion of results from comparison studies or simulations 

between the classical and Bayesian approaches to statistics. This final comparison 

method was a qualitative comparison, trying to provide a more shaded picture of 

the information gained from the models. As for the first standard, this method can 

be applied to both empirical and simulated data. As for the second standard, this 

comparison method met four out of the five indicators. There is no quantifiable 

component, but the qualitative description of the results of the model does speak 

to the approach to statistics and also provides some level of meaningful 

significance regarding the model. A qualitative comparison is applicable to any 

type of model and could easily provide congruent information, in addition to 

specific points of differences that might not be highlighted in a quantitative 

comparison. 

Given this evaluation of the standards and as displayed in the table below, 

two comparison methods were found to be most efficient as they pertain to this 

comparison process. Consequently, those two methods were applied to the present 

example.  
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Table 27 
 
Rankings of Comparison Methods for Comparisons between the Classical and 
Bayesian Statistical Approaches 
 

Comparison Method 

First Standard: Applicability 
to different types of data Second standard: Measurement of information gained from comparison 

Total 
Points 

Simulated 
Data 

Experimental 
Data 

Has a 
quantifiable 
component 

Has an 
ability to 

differentiate 
results in 
terms of 

importance 

Captures 
the 

meaning of 
the model 

Carries 
application 
to different 

types of 
studies 

Whether 
information 
that allows 

a direct 
comparison 

is gained 

Comparison 1: 
Comparison to an 
underlying known 
estimate 

Yes No Yes Yes Yes 

No; this 
method is 

only 
applicable to 

simulated 
studies 

Yes 5 

Comparison 2: 
Comparison in 
terms of bias 
present in 
parameters 

Yes No Yes Yes Yes 

No; this 
method is 

only 
applicable 

for studies in 
which one 
can induce 

bias and thus 
limited to 
simulated 

studies 

No; this 
method 
does not 
provide 

comparable 
information 

because 
model 

parameters 
are 

understood 
differently 

across 
approaches 

4 
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Comparison 3: 
Comparison 
between frequentist 
confidence intervals 
and Bayesian 
credible intervals 

Yes Yes Yes Yes Yes Yes 

No; this 
method 
does not 
provide 
directly 

comparable 
information 

because 
confidence 
intervals 

and credible 
intervals 
represent 
different 
concepts 

6 

Comparison 4: 
Comparison of 
kappa scores 
between the two 
methods 

Yes Yes Yes Yes 

No; this 
method 
looks at 
only the 

congruence 
between 

percentage 
correctly 
classified, 

which does 
not reveal 
anything 
particular 
about the 
overall 

statistical 
approach 

No; this 
method only 
works with 

classification 
studies 

Yes 5 

Comparison 5: 
Comparison 
completed 
qualitatively, 
focusing on 
interpretation 

Yes Yes 

No; this 
method is 
focused on 
discussing 

the 
differences 

in 
interpretation 

Yes Yes Yes Yes 6 
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Application of Comparison Methods. The comparison numerically 

between confidence intervals and credible intervals is shown in the table below. 

Two additional columns are part of this table; one column indicates statistical 

significance, and the other table indicates the comparison probability to the 

baseline utilized earlier in this section. With this view, a few findings can be seen. 

First, the results across the models were quite similar. Looking more closely at a 

comparison between the means and the point estimates, differences in the 

congressional comparisons ranged from 0.0045 to 0.0054. The presidential 

models contained a much larger range between the two models: differences in 

corresponding means and point estimates ranged from 0.0005 to 0.02.  

Second, statistical significance appeared to correlate with the Bayesian 

probabilities. This was more pronounced in the congressional results; however, it 

appeared that high probabilities correlate with statistical significance or low p-

values. One interesting result was the comparison between the first and second 

presidential eras:  the classical approach returned a p-value of .045, which would 

fall under the standard alpha level of 0.05. However, the associated probability 

was 0.42, which indicates that this mean was only approximately as likely as the 

average change in the Democratic two-party presidential vote. A second 

interesting result was the saliency of this pattern in the congressional results. Of 

course, the p-values are more extreme, but so are the probabilities. 
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Table 28 

Differences in Point Estimates and Frequentist Confidence Intervals and 
Bayesian Credible Intervals for the Presidential Models 
 

Comparison Eras Difference 
in Point 
Estimate 

Differences in Interval 
Bounds 

Differences 
in Interval 

Range 

Associated p-
value 

Associated 
Probability 

Minimum 
Value 

Maximum 
Value 

1828-1856 to 1860-1892 -0.0048 -0.0006 -0.0090 -0.0084 0.0450 0.4179 
1860-1892 to 1896-1928 -0.0239 -0.0211 -0.0268 -0.0057 0.0660 0.1556 

1896-1928 to 1932-1960 0.0063 0.0093 -0.0009 -0.0102 0.0020 0.8458 
1932-1960 to 1964-2008 -0.0005 0.0039 -0.0042 -0.0081 0.2380 0.1667 

 
Table 29 
 
Differences in Point Estimates and Frequentist Confidence Intervals and 
Bayesian Credible Intervals for the Congressional Models 
 

Comparison Eras Difference 
in Point 
Estimate 

Differences in Interval 
Bounds 

Differences in 
Interval Range 

Associated 
p-value 

Associated 
Probability 

Minimum 
Value 

Maximum 
Value 

1828-1858 to 1860-1894 -0.0045 -0.0048 -0.0055 -0.0007 0.0010 0.7664 

1860-1894 to 1896-1930 -0.0054 -0.0045 -0.0058 -0.0013 0.7180 0.0214 

1896-1930 to 1932-1994 -0.0048 -0.0054 -0.0057 -0.0003 0.0000 0.9920 

1932-1994 to 1996-2008 -0.0052 -0.0066 -0.0066 0.0000 0.0070 0.7405 

 
 

Next, the two statistical approaches were evaluated qualitatively as they 

pertained to these results. Looking through this second comparative lens, two 

main points can be made, but with one major caveat. First, and again, the results 

are similar. This is seen in closeness of the means and point estimates and in the 

closeness of the confidence intervals and credible intervals. Second, the closeness 

of these results could lead one to conclude that with some margin of error, both 
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approaches would arrive at the same conclusion. In this case, this is true. 

However, there is one major caveat to this viewpoint: the interpretations of each 

mean, point estimate, credible interval, and confidence interval are very different 

between these two approaches. First, the mean references the mean of a 

distribution, which means that it is the average point for this random parameter. 

However, the point estimate has a very different interpretation: this estimate is 

understood as the underlying true value. Consequently, while these values may 

appear to be the same, their interpretation is very different.  

This same argument applies to the credible intervals and confidence 

intervals. While these measures are considered counterparts in the literature, these 

two intervals do not represent the same concept. Confidence intervals, with an 

alpha level of .05, are typically explained as 95% of the intervals contain the true 

estimate. However, this means the answer as it pertains to any one confidence 

interval is binary: either the interval contains the point estimate or it does not. 

This is differentiated from the Bayesian credible interval, where a 95% Bayesian 

credible interval is interpreted as 95% of the posterior distribution lies within that 

particular region. Consequently, while the actual numeric values are close, the 

interpretation and lens across these measures is again very different.  

The main point of the comparison of results from a frequentist and 

Bayesian perspective is:  while the results are similar, the interpretation of the 

results leads to very different conclusions because they stem from very different 

philosophical viewpoints. With the current comparison methods available, a 

comparison done only numerically may not necessarily highlight this point. While 
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a qualitative comparison as this may be included in a discussion of results, it is 

important to recognize that this comparison still may be the most efficient way to 

compare these statistical approaches.  
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CHAPTER FOUR: DISCUSSION 
 
The results presented in the previous chapter underscore the importance of 

continued analysis and discussion of critical elections, from both a political 

science perspective and a statistical perspective. This chapter extends that 

discussion, paying particular attention to the research questions posed at the 

beginning of this study. This section begins with a review of the results, explains 

their significance, and then turns toward the implications and limitations of this 

research before posing avenues for future research.  

Summary of Results 

Utilizing the classical statistical approach, the beta coefficients of two of 

the four election years tested were found to be statistically significant in the 

presidential analysis, which was also found for the congressional analysis. The 

first year, 1860, saw a reduction in the Democratic two-party percentage of the 

presidential vote of almost 6 percentage points with the election of Abraham 

Lincoln. Likewise, Congress saw an 11 percentage point reduction in Democratic 

seat share within the same election cycle. The second election year, 1932, elected 

Franklin D. Roosevelt to the presidency with almost a 10 point swing in the 

Democratic percentage of the presidential vote. Again, Congress confirmed this 

pattern with a rise in the Democratic seat share of 15 percentage points when 

compared to the average Democratic seat share of the previous era.  



 102 
 

The congressional analysis also returned a statistically significant result 

when comparing the fourth and fifth eras. This was not seen in the presidential 

analysis; however, a number of reasons might explain this result. First, the 

demarcation for the fifth era was different between the presidential and 

congressional analysis. This is due to literature surrounding the context of election 

cycles in Congress and the presumption of a gradual shift instead of a strong 

swing in one election cycle (Campbell, 2006). Second, while both outcomes are 

national indicators, the presidential vote may mask a national swing in party 

dominance due to the level of aggregation, whereas enough disaggregation may 

exist in seat shares such that a swing may still be noticeable. Third, in spite of the 

different demarcations of the congressional eras, the timing of the presidential 

election may still not capture the swing in political climate and dominance. Given 

that congressional elections occur more frequently, this may better display the 

political climate and geography at the time.  

Generally, the results of the Bayesian analysis yielded similar conclusions. 

For the congressional analysis, there was a 76.64% probability that the change 

seen between the first and second era was greater than the average change seen in 

Democratic seat share between any two congressional election years, and there 

was a 99.20% probability that the change seen between the third and fourth eras 

was greater than the average change seen between any two congressional election 

years. The presidential results also returned a high probability that the change 

between the third and fourth eras was greater than the average change seen in the 

Democratic two-party percentage of the presidential vote at 84.58%. The only 
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exception to this statement was the presidential election of 1860. This presidential 

election had an only 41.79% probability that the change seen here between eras 

was greater than the average change in the Democratic two-party percentage of 

presidential vote seen between any two election years. However, this finding did 

coincide with the results of the classical presidential analysis; while the resultant 

p-value was statistically significant, the p-value fell right at the cut-off for 

significance with a value of 0.045.  

The last portion of the results section sought to formally compare the 

results of the two statistical approaches. This was done by applying a set of 

standards uniformly across five different comparison methods that were noted in 

the literature. The five comparison methods were comparisons to known 

estimates, comparisons in terms of bias present in parameters, comparisons 

between frequentist confidence intervals and Bayesian credible intervals, 

comparisons between kappa scores, and a qualitative comparison between the two 

approaches. After ranking these five comparison methods on a set of standards, 

two comparison methods were found to be most efficient: first, the comparison 

between confidence intervals and credible intervals; and second, the qualitative 

comparison. Each of these comparison methods has their strengths. The interval 

comparison carries a quantifiable component whereas the qualitative comparison 

allows for all differences to be highlighted and discussed at length. Applying 

these comparison methods to the topic at hand, the comparison between intervals 

was very close numerically, but did not highlight easily that the two point 
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estimates demonstrate very different concepts. The latter point was the primary 

objective of the second qualitative comparison.  

Importance of Findings 

Consequently, the results of this study yield two main findings: first, 

critical elections were found in 1860 and 1932; and second, the most efficient 

methods of comparison between the classical and Bayesian statistical approaches 

are a comparison of confidence and credible intervals and a qualitative 

comparison. The first main finding is discussed, followed by a discussion of the 

second finding. Uncovering critical elections in 1860 and 1932 is important for a 

couple of different reasons. First, the identification of critical elections indicates 

shifts in the American electorate and political climate. This means that the 

American electorate is not static and is responsive to different stimuli within the 

political climate, whether that be economic change, a change in demographics, or 

a shift in the ideological stances of the parties (Lodge, Steenbergen, & Brau, 

1995).  

Further, this identification of critical elections and the ability to replicate 

some of the results discussed by Campbell (2006) discredits the argument made 

by Mayhew (2002). Mayhew (2002) argued that the empirical validity of some 

previous work on the topic was questionable, as he and others were not able to 

replicate prior results. The study completed in this work utilized more electoral 

history than Campbell’s 2006 work, which could explain a lack of complete 

congruence in results; however, the partial replication of this work defies 

Mayhew’s validity claim. Mayhew also claimed that creating a typology of 
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elections only served that purpose--that there is no greater reason for such 

classification, and in fact, the classification creates a narrow perspective through 

which to view American electoral history (Mayhew, 2002). One could argue, 

however, that the identification of such elections actually carries the opposite 

effect. By identifying critical elections and then closely evaluating the historical 

context, factors which carry a motivating effect on the electorate might be 

realized and then utilized to forecast future eras of realignment within American 

electoral history (Carmines & Wagner, 2006).  

Continuing in this vein, Mayhew’s claims were not discredited by only 

one statistical approach. The closeness of the results across approaches serve as 

confirmation for the elections that were identified as realigning. Obviously 

differences in interpretation between approaches exist; however, the same 

substantial result was achieved. Extending this point further, not only are results 

confirmed across approaches, but this comparison also indicates that the 

identification of critical elections is not dependent upon the classical approach to 

statistics. The ability to apply a secondary approach to the same topic and find the 

same results is not only confirmation of those results, but adds credence to the 

theory.  

Other contributions of this study to the field exist. One contribution of the 

classical approach is the addition of election years to previous work, such as 

Campbell’s 2006 work, and partial confirmation of his results. A second 

contribution of the classical approach is the accessibility of the approach and 

subsequent results, as Bayesian methods, until recently, were limited due to a lack 
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of inclusion in standard statistical packages (Peck, 2015) and the dominance of 

frequentist methods in statistics programs (Bolstad, 2002). Alternatively, 

Bayesian methods are able to incorporate a more direct expression of uncertainty 

through the use of prior distributions (van de Schoot et al., 2013) and also produce 

a more precise result, providing a numeric probability instead of a statement 

concerning statistical significance (Lilford & Braunholtz, 1996). While not all 

researchers present results in this way, the focus on statistical significance can 

lead to incorrect conclusions (Kirk, 1996) and a dichotomous view that may be 

better explained through probabilistic terms (Rothman, 2014). However, while 

both approaches offer contributions, one could argue that Bayesian methods 

perform better at identifying critical elections for two reasons: first, Bayesian 

methods better capture the social science situation under study; and second, 

Bayesian methods provide a probability which is perhaps more easily 

interpretable than a p-value (Kruschke, 2011).  

The second main finding of the work presented here concerns comparisons 

between the classical and Bayesian statistical approaches. The results discussed 

above identified a comparison between confidence and credible intervals and a 

comparison done qualitatively as the most effective. This finding is important for 

several reasons. First, there is no formalized way to compare the classical and 

Bayesian approaches. Some theorists have attempted a compromise between the 

two approaches, but none have been adopted due to a lack of justification from 

either perspective (Berger, Boukai, & Wang, 1997). Consequently, this work 
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contributes to the field by drawing attention to this need, illustrating its 

importance, and also providing a starting point for the conversation.  

Tangential to this first point, the comparison between frequentist and 

Bayesian approaches highlights their philosophical differences. Some comparison 

methods captured the meaning of the model, or accounted for the philosophical 

difference, but then information was either not directly comparable or the method 

only worked on simulated data. The only exception to this rule was the qualitative 

comparison. This demonstrates that not only has a formal comparison not been 

developed, but a solid formal comparison needs to account for the differences in 

perspective across approaches.  

One other main contribution of this study is the systematic review of 

comparison methods and their relative strengths. As previously mentioned, the 

five methods utilized were the following: first, a comparison to a known, 

underlying point estimate; second, a comparison in terms of bias present in the 

models; third, a comparison of frequentist confidence intervals to Bayesian 

credible intervals; fourth, a comparison of kappa scores; and fifth, a qualitative 

comparison. Beginning with a comparison to a known, underlying estimate, the 

relative strength of this method is the differential amount between the result of the 

model and true point estimate. One is able to know with complete certainty the 

true distance between the two values. Likewise, the relative strength for the 

comparison in terms of bias is that the true amount of bias in each of the 

parameter estimates is known. The actual effect of inducing bias in the model is 

known, again, with complete certainty. The fourth method of comparison noted 



 108 
 

above is the comparison of kappa scores. The relative strength of this method is 

that information on the same scale and with the same implications is compared. 

This is obviously the highest standard; however, this method is only applicable to 

classification studies. The comparison between the two intervals is quantifiable 

and easily reported from analyses using the models. It can also be applied in 

empirical settings, and carries applicability to different types of studies. Lastly, 

comparing the two approaches qualitatively also carries a few relative strengths. 

First, incorporating a qualitative comparison allows for complexities pertaining to 

the models to be identified and discussed in full, such as qualifying statements 

that might not be immediately noticed or incorporated into other methods of 

comparison. Likewise, a qualitative comparison also allows for the discussion to 

reflect the uniqueness of the statistical approach--again, a characteristic that may 

not be available with other comparisons.  

Implications for Theory and Practice 

A few implications exist for the field as a result of this study. First, the 

presence of statistically significant results not only demonstrates that the 

electorate is not static, but also supports continued study of the theory. Carmines 

and Wagner (2006) have begun this conversation, acknowledging the critiques 

concerning the usefulness of the theory, but purport that looking beneath the 

elections themselves to the evolution of issues over time may further enhance the 

perspective of realignment theory.  

A second implication for both theory and practice stems one main 

difference between the two statistical approaches: the treatment of the parameters 
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as either fixed or random estimates. This study highlights the need for researchers 

to be aware of this particular difference in the treatment of parameters. It not only 

asks that researchers be aware and knowledgeable about this difference, but to 

also ensure that the method applied appropriately captures the targeted 

understanding of the final estimate. Likewise, the choice of approach is not only 

realized in the final result, but can also be evident in the statement and 

operationalization of the research question. Bayesian methods allow for other 

questions to be asked of the data (Austin, Naylor, & Tu, 2000; Kruschke, 2011), 

which influences model development and operationalization of the question.  

A final point of consideration for theory and practice is the prior 

distribution utilized in the model. While Bayesian analysis is useful as it makes 

uncertainty explicit (Coory, Wills, & Barnett, 2009), one point of contention is the 

use of prior distributions in Bayesian models. Some researchers note the difficulty 

in setting prior probabilities (Chang & Boral, 2008), and proponents of the 

frequentist approach argue that misspecified prior distributions can alter results 

and induce bias in the model (Bennett, Crowe, Price, Stamey & Seaman, Jr., 

2013). Proponents of the Bayesian approach counter that ignoring prior 

information on the topic also biases results. Consequently, the use and 

specification of prior distributions is not only a contentious topic of discussion for 

researchers between the two camps, but is also an area that the Bayesian 

researcher should treat carefully. 
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Study Limitations 

Limitations exist to the results presented here. First, national datasets were 

used. Although the decision to use national datasets was based on other research 

on this topic, the use of such data presumes a national realignment. Realignments 

could occur regionally, by state, or even on a local level. The use of national data 

may mask the presence of lower level realignments, and a realignment, for 

instance, in the North may not be realized by a direct and opposite reversal in the 

South. Consequently, a more full investigation should be done, and would involve 

testing for realignments at other levels of government.  

A second limitation to the results presented here is the particular definition 

for “critical election” utilized within this study. This study utilized a definition by 

Brunell, Grofman, and Merrill, III (2012) of a decisive and durable shift in party 

dominance. Other definitions of critical elections exist, and the operationalization 

of these definitions could also affect the outcomes of this study.  

A third and intertwined limitation is the demarcation of critical elections 

utilized within this study. One major assumption made within this study is that 

critical elections have occurred only at the elections tested in this study. While the 

choice of 1860, 1896, 1932, and 1964 were based on previous research, this study 

is limited in testing only those elections and did not seek to uncover any other 

potential elections. Related to this discussion is the demarcation of the fifth 

congressional era. Instead of spanning the same timeframe as the presidential 

analysis, the fourth congressional era was expanded, consequently reducing the 

number of elections in the fifth congressional era. This decision was based on 
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literature and the situational understanding of a gradual change in Congress; 

however, this delineation of eras could potentially alter results.  

A fourth limitation to the study presented here relates to the data and 

methods utilized. This study utilized secondary data, collected from national 

sources. However, any data misreported in those sources, or any subsequent 

miscoding by the researcher, could influence results. Likewise, not only the use of 

the particular definition of critical election discussed here, but also its 

operationalization and how that affects the choice of method could also alter 

results. This study was highly influenced by Campbell’s 2006 work, as it was the 

most comprehensive work on the topic of critical elections. However, choices 

made by the researcher as it pertains to data sources, years included, and methods 

utilized could also influence results. 

The operationalization of the research question also affects the Bayesian 

analysis undertaken here. Since critical realignment theory requires a durable shift 

in party power (Brunell, Grofman, & Merrill III, 2012), this limits analyses to a 

retrospective look. This perspective, combined with the current operationalized 

definition of critical elections, greatly hinders the application of Bayesian 

methods. While still applicable, the strength of Bayesian approach is seen in the 

method’s ability to account for prior information. However, due to the 

operationalization presented here, this strength is not seen to its fullest extent. 

Avenues for Future Research 

Given these limitations, many avenues for future research exist. This study 

assumed a certain definition of critical elections; one could investigate the effect 
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of operationalizing that definition differently. Likewise, this study also tested only 

specific, presupposed critical elections; one could test other elections to 

investigate whether other realigning eras exist. This study also used national data; 

consequently, looking at a different level of government might also influence 

results. The perspective of issue evolution within and across elections could also 

be investigated. However, the major avenue for further research stemming from 

this study is the development of a metric through which to compare the classical 

and Bayesian statistical approaches. As was denoted in this study, comparison 

methods exist between the two approaches; however, many of these methods do 

not directly compare both approaches, taking into account the basis of the 

approach. More research is needed to explore whether such a comparison is 

possible, given the different treatment of probability.  
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CHAPTER FIVE: CONCLUSION 
 

This study began from one main point of difference: the treatment of 

probability between the classical approach and the Bayesian approach to statistics. 

The difference is substantial: in the classical approach, probability is treated as a 

long-term frequency of a particular event occurring, whereas in the Bayesian 

approach, probability is viewed as a degree of uncertainty. In theory, this is 

simply a difference in definition; however, in practice, the implications of that 

difference require more thought regarding the applicability of the approach. The 

classical approach, due to its definition of a long-term frequency, asks that 

conditions remain precisely the same among random replicates of the measured 

phenomenon. Social science situations rarely meet this requirement, and elections 

are no different. The change in voters, issues, and candidates impede the 

actualization of this requirement, leading to an inadequate application of the 

classical approach to statistics in this setting. This situation is then only 

compounded by the controversy that exists over set significance levels. As these 

levels are set arbitrarily and in particular, are interpreted dichotomously (i.e., 

either the result is statistically significant or not), the results of these analyses are 

limited in their interpretation and, thus, in practical significance. Consequently, 

this main difference between statistical approaches requires a reevaluation of 
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social science phenomena, and in this particular case, critical elections, from a 

new perspective.  

Based on this difference and its implications for practice, this study sought 

to understand the question of critical elections through the Bayesian statistical 

approach. The purpose of this was two-fold: first, prior to this study, Bayesian 

modeling had not been applied to the study of critical elections in American 

electoral history; and second, critical elections had not been evaluated in this way, 

meaning that new information pertaining to critical elections might be uncovered. 

This study sought to expand Bayesian methods to this topic, but also see what 

further information could be gained regarding critical elections through this 

viewpoint. This purpose resulted in the statement of six research questions:  the 

first three relating to the field of political science and the latter three relating to 

the field of research methods and statistics. The first three questions looked at the 

occurrence of critical elections from the classical approach and the Bayesian 

approach, evaluating the contribution of each approach to the identification of 

such elections. The latter three questions focused on a comparison between 

approaches, discussing the relative strengths of comparison methods derived from 

literature in addition to information gained from the application of the most 

efficient method to the comparison at hand.  

The scope of this study was limited to an evaluation of the traditionally 

accepted critical elections: 1860, 1896, and 1932. The election of 1964 was added 

to the analysis based on evidence found in literature. The study as a whole took a 

national perspective, and elections between 1828 and 2008 were evaluated. This 
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section will first provide a summary of the study in its entirety, followed by some 

concluding thoughts.  

For many researchers, V.O. Key (1955) is credited with deriving the base 

of critical realignment theory. He perceived elections as acts of “collective 

decision”, and perceived critical elections as ones where the result is a sharp 

change in party lines which persists for subsequent elections (Key, 1955). Other 

influential researchers in the field, such as Schattschneider (1960), Burnham 

(1970), Sundquist (1973), and Kleppner (1987), followed in his footsteps, each 

providing their unique contribution to the field of critical realignment theory. In 

the end, we find that critical elections are characterized by highly concerned and 

polarized voters (Key, 1955) at times when the ideological distance between 

parties grows (Burnham, 1970). Oftentimes critical elections result in new party 

lines, splicing the electorate at a national level along current, highly politicized 

issues (Key, 1955; Schattschneider, 1960).  

Such elections can occur for a variety of reasons, but those reasons are 

generally grouped into three main categories: the conversion of voters, the 

mobilization of voters, or the demobilization of voters (Darmofal & Nardulli, 

2010). The conversion thesis posits that a critical election will occur if enough 

voters change their party attachment from one party to the opposing party. This 

can happen for a number of reasons, such as the strength of the local and state 

parties, group membership, or the rise of divisive issues (Burnham, 1970; 

Darmofal & Nardulli, 2010; Kleppner, 1987; Sundquist, 1973; Zingher, 2014). 

The mobilization thesis explains a rise in voter turnout, as previous non-voters 
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become inclined to vote. Oftentimes the high intensity of the political climate, 

potentially due to divisive issues, encourages political participation of this group 

which subsequently changes the current balance of parties and can cause a critical 

election (Andersen, 1979; Beck, 1982; Wanat & Burke, 1982). Lastly, the 

demobilization thesis posits that a critical election can occur based on the 

alienation of once active, partisan voters. This occurs most predominantly through 

the disillusionment with one’s party platform (Kleppner, 1987).  

Arguably, through these theses, critical elections have occurred at specific 

timepoints throughout American electoral history. The traditionally accepted 

elections are 1860, 1896, and 1932. Given literature on the political climate at the 

time, the election of 1964 was also added to the analysis presented in this study. 

These elections were the ones evaluated throughout this work. However, not all 

researchers agree with the inclusion of these specified elections, or with a theory 

of a cyclical realignment throughout American electoral history. Mayhew (2002) 

argues against the entire genre on three main points: first, the validity of the 

empirical work completed; second, the added benefit of the genre; and third, the 

lack of relevancy to the present day. He takes issue with some of the empirical 

work, as he and others have not been able to replicate it, but more so he argues 

that there is little benefit to identifying critical elections. He argues that not all 

elections are equal—some are more important than others, but to classify 

elections in such a way as this creates a useless dichotomy. This dichotomy does 

nothing to propel the genre forward and instead constrains more interesting work 

on the topic. His third point is that critical elections have not followed the pattern 
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prescribed; consequently, while there may have been a cyclical look earlier in 

history, the lack of a known critical election in recent history illustrates the lack of 

relevancy of the genre.  

As stated previously, these elections were evaluated through both the 

classical statistical approach and the Bayesian statistical approach. The classical 

approach is more known, and is also referred to as the frequentist approach. 

Although an older technique, the Bayesian approach has laid dormant for a 

number of years due to a lack of computing power. Bayesian methods are 

predicated on the idea of conditional probability, and uses those probabilities, 

conditional on data, to express beliefs about unknown quantities. There are three 

main components to Bayesian methods--the prior, the likelihood, and the 

posterior, and it is the prior distribution, or previously known information 

concerning an event, that is combined with the evidence at hand to create the 

posterior distribution. For this study, the posterior distribution was obtained via 

Markov chain Monte Carlo simulations, and it is the mean and standard deviation 

of that posterior distribution that serves as the point estimate.  

To assess whether Bayesian methods provide any improvement over the 

classical approach as it pertains to the identification of critical elections, the 

elections of 1860, 1896, 1932, and 1964 were tested through both the classical 

approach and the Bayesian approach. Two sets of analyses were run; one set of 

models utilized the Democratic two-party percentage of the presidential vote as 

the outcome variable, and the second set of models utilized the Democratic seat 

share within the U.S. House of Representatives as the outcome variable. 
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Secondary data were used, and were gathered from the Office of the Clerk within 

the U.S. House of Representatives, the Historical Statistics of the United States, 

and the CQ Press' Guide to U.S. Elections. In order to test the hypothesized 

critical elections, eras were formed with the hypothesized critical election 

beginning the next era. For example, within the presidential analysis, the first era 

spanned from 1828 to 1856, the second era spanned from 1860 to 1892, the third 

era spanned from 1896 to 1928, the fourth era spanned from 1932 to 1960, and 

the fifth era spanned from 1964 to 2008. It should be noted that the fifth 

congressional era began with 1996 instead of 1964. From here, the data were 

coded to represent the appropriate era and regressions were run to assess the mean 

difference between the current era and the most previous era.  

To further understand any improvements of the Bayesian approach over 

the frequentist approach, a formal comparison between the two approaches was 

also conducted. A review of the literature identified five methods of comparison 

used by other researchers. These methods included a comparison to a known 

estimate, a comparison in terms of bias, a comparison of frequentist confidence 

intervals and Bayesian credible intervals, a comparison of kappa scores, and a 

qualitative comparison. These different methods were ranked based on developed 

criteria and the highest ranked methods were applied to the question at hand. 

The analysis of the presidential data found two critical elections, one in 

1860 and one in 1932. The sign on the coefficient was of the expected direction in 

both cases, corroborated by the election of Republican President Abraham 

Lincoln in 1860 and the election of Democratic President Franklin D. Roosevelt 
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in 1932. The congressional analysis supported these results, and also found a 

critical election in 1996. Furthermore, the Bayesian models served to confirm 

these results, as most of the probabilities of these results being greater than the 

average change in that outcome variable were relatively high. The one outlying 

result was the first critical election in the presidential analysis. For this 1860 

election, there was a 41.79% probability that the change seen between the first 

and second eras was greater than the average change in the Democratic two-party 

percentage of the presidential vote. However, there was an 84.58% probability 

that the change seen between the third and fourth eras was greater than the 

average change in the same outcome variable. For the congressional analysis, 

there was a 76.64% probability that the change seen between the first and second 

eras was greater than the average change in Democratic seat share, and there was 

a 99.20% probability that the change seen between the third and fourth eras was 

greater than the average change seen in the same outcome variable. 

As discussed, methods of comparing the frequentist and Bayesian 

statistical approaches were also evaluated and ranked according to a developed set 

of standards. This evaluation resulted in two comparison methods being applied to 

the topic at hand: first, the comparison between frequentist confidence intervals 

and Bayesian credible intervals; and second, the qualitative comparison. The first 

comparison method resulted in very similar point estimates, but did not account 

for the difference in understanding between the intervals developed with the 

frequentist and Bayesian analyses. The second comparison method was able to 

account for the differences between these two methods, but did not provide a 
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numerical comparison. Overall, results were very similar, both numerically and in 

the identification of critical elections; however, it is to be remembered that the 

interpretation of these intervals is very different.  

Returning to the research questions, the first three questions were focused 

on the contribution of each statistical approach to the genre of critical realignment 

theory as well as noting any improvements of the Bayesian approach over the 

classical approach as it pertains to the identification of critical elections. From this 

study, the contributions of the classical approach to the field of critical 

realignment theory are the expansion and extension of Campbell’s work with the 

addition of nearly 50 years of elections, but more so the accessibility of results. 

Due to the familiarity of the classical approach and the presentation of results in 

typical studies, the accessibility of such results is high and is certainly a benefit 

and contribution of the classical approach. Turning toward the Bayesian approach, 

the main contribution of Bayesian methods to the theory is the precision with 

which results are presented. Instead of a dichotomous statement regarding 

statistical significance in the classical approach, Bayesian methods yield a 

probability that represents a comparison between the simulated point estimates 

from the posterior distribution and a predetermined baseline. However, as to 

whether this aids in the identification of critical elections is a moot point; the 

classical approach does offer a more concise method.  

The latter three research questions focused on the contribution of this 

study to the field of research methods and statistics, and more specifically, on the 

formal comparison method between the two approaches. As discussed previously, 
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five comparison methods were found in the literature, and the fourth research 

question evaluated each comparison method for its relative strength. After ranking 

these comparison methods by their relative strength, the fifth research question 

surrounded the application of that method to the question at hand. Through the 

comparison of confidence and credible intervals with an additional qualitative 

comparison, it was noted that the results, both numerically and substantively, 

were very similar. However, it is important to note that while similar numbers 

were returned for each set of intervals, the interpretation of these intervals is very 

different.  

The last research question was focused on gathering further information 

regarding the two statistical approaches from the completion of these 

comparisons. This question highlighted the increased precision from the Bayesian 

approach. This is seen in both the comparison between confidence and credible 

intervals and the probability associated with the mean estimates. In the classical 

approach, 95% of confidence intervals contain the true parameter. This means that 

with any one interval, either the true parameter falls within the interval or it does 

not. In the Bayesian approach, the 95% credible interval consistently demarcates a 

region that contains 95% of the probability distribution. This leads to a statement 

of greater certainty in the Bayesian approach. Likewise, instead of using an 

arbitrarily set significance level in the classical approach where the answer is 

typically interpreted in a dichotomous fashion, the Bayesian approach has the 

flexibility to return a probability associated with a certain point estimate. 

Regardless, the overarching contribution of this study is to be aware, informed, 
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and cognizant of the differences in interpretation and more so the treatment of 

parameters between the two methods. This carries strong implications for 

researchers and practitioners, as choosing a method which does not describe the 

practical situation being modeled may lead to inadequate conclusions.  

Based on this summary, a few conclusions can be reached. First, while 

philosophical differences are apparent between the Bayesian and classical 

statistical approaches, the conclusions of this study result in the same substantive 

outcome. Interpretations differ between the two approaches, but it is still 

considered as confirmatory that both methods resulted in the same critical 

junctures. Second, while comparisons between statistical approaches can be made, 

much room exists for work to be done as it pertains to the development of a 

formal, comparative statistic. As presented earlier, some methods currently exist, 

but these do not capture the philosophical differences that exist between the two 

approaches. This carries great implications for interpretation.  

Finally, the last main conclusion of this work is that critical elections are a 

part of the United States’ electoral history. As Darmofal and Nardulli (2010) note, 

these types of elections are important as they serve to hold political elites 

accountable. Consequently, understanding their occurrence and frequency 

becomes a near necessity. While Mayhew (2002) may argue that critical elections 

have lost relevancy and are no longer a part of the United States’ electoral cycle, 

the election of President Obama in 2008 particularly followed by the election of 

President Trump in 2016 may provide evidence counter to that claim. While it is 

too early to fully analyze these elections utilizing the methods discussed here, 
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preliminary evidence may suggest a shift. Ball’s comment that the “old 

[Republican] party establishment went into exile, perhaps never to return” (2016) 

may suggest a new political cleavage, and his comments regarding Republicans 

leaving the party could provide further evidence of conversion or demobilization. 

Regardless of the occurrence of a ‘true’ critical election, the prospect is certainly 

intriguing for political scientists and demands further study.  
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APPENDIX A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A1. Scatterplot demonstrating the homoscedasticity of the presidential 
models. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A2. Scatterplot demonstrating the homoscedasticity of the congressional 
models. 
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Figure A3. Scatterplot demonstrating the linearity between the Democratic two-
party presidential vote and the first era, 1828-1856. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A4. Scatterplot demonstrating the linearity between the Democratic two-
party presidential vote and the second era, 1860-1892. 
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Figure A5. Scatterplot demonstrating the linearity between the Democratic two-
party presidential vote and the third era, 1896-1928. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A6. Scatterplot demonstrating the linearity between the Democratic two-
party presidential vote and the fourth era, 1932-1960. 
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Figure A7. Scatterplot demonstrating the linearity between the Democratic two-
party presidential vote and the fifth era, 1964-2008. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A8. Scatterplot demonstrating the linearity between the U.S. House 
between Representative seat share and the first era, 1828-1858. 
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Figure A9. Scatterplot demonstrating the linearity between the U.S. House 
between Representative seat share and the second era, 1860-1894. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A10. Scatterplot demonstrating the linearity between the U.S. House 
between Representative seat share and the third era, 1896-1930. 
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Figure A11. Scatterplot demonstrating the linearity between the U.S. House 
between Representative seat share and the fourth era, 1932-1994. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A12. Scatterplot demonstrating the linearity between the U.S. House 
between Representative seat share and the fifth era, 1996-2008. 
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Figure A13. Scatterplot demonstrating the linearity between the U.S. House 
between Representative seat share and the general election surge. 
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Figure B1. SAS programming used for the presidential Bayesian models, using a 
non-informative prior distribution.  
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Figure B2. SAS programming used for the congressional Bayesian models, using 
a non-informative prior distribution.  
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Figure B3. SAS programming used for the presidential Bayesian models, using an 
informative prior distribution.  
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Figure B4. SAS programming used for the congressional Bayesian models, using 
an informative prior distribution.  
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Figure B5. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative presidential model parameter of the 
1860-1892 era, when testing the difference between the 1828-1856 and 1860-
1892 eras.  
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Figure B6. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative presidential model parameter of the 
1896-1928 era, when testing the difference between the 1828-1856 and 1860-
1892 eras. 
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Figure B7. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative presidential model parameter of the 
1932-1960 era, when testing the difference between the 1828-1856 and 1860-
1892 eras. 
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Figure B8. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative presidential model parameter of the 
1964-2008 era, when testing the difference between the 1828-1856 and 1860-
1892 eras. 
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Figure B9. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative presidential model parameter of the 
1828-1856 era, when testing the difference between the 1860-1892 and 1896-
1928 eras. 
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Figure B10. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative presidential model parameter of the 
1896-1928 era, when testing the difference between the 1860-1892 and 1896-
1928 eras. 
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Figure B11. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative presidential model parameter of the 
1932-1960 era, when testing the difference between the 1860-1892 and 1896-
1928 eras. 
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Figure B12. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative presidential model parameter of the 
1964-2008 era, when testing the difference between the 1860-1892 and 1896-
1928 eras. 
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Figure B13. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative presidential model parameter of the 
1828-1856 era, when testing the difference between the 1896-1928 and 1932-
1960 eras. 
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Figure B14. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative presidential model parameter of the 
1860-1892 era, when testing the difference between the 1896-1928 and 1932-
1960 eras. 
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Figure B15. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative presidential model parameter of the 
1932-1960 era, when testing the difference between the 1896-1928 and 1932-
1960 eras. 
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Figure B16. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative presidential model parameter of the 
1964-2008 era, when testing the difference between the 1896-1928 and 1932-
1960 eras. 
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Figure B17. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative presidential model parameter of the 
1828-1856 era, when testing the difference between the 1932-1960 and 1964-
2008 eras. 
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Figure B18. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative presidential model parameter of the 
1860-1892 era, when testing the difference between the 1932-1960 and 1964-
2008 eras. 
 



 169 
 

 

Figure B19. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative presidential model parameter of the 
1896-1928 era, when testing the difference between the 1932-1960 and 1964-
2008 eras. 
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Figure B20. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative presidential model parameter of the 
1964-2008 era, when testing the difference between the 1932-1960 and 1964-
2008 eras. 
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Figure B21. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative presidential model parameter of the 
1860-1892 era, when testing the difference between the 1828-1856 and 1860-
1892 eras.  
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Figure B22. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative presidential model parameter of the 
1896-1928 era, when testing the difference between the 1828-1856 and 1860-
1892 eras. 
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Figure B23. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative presidential model parameter of the 
1932-1960 era, when testing the difference between the 1828-1856 and 1860-
1892 eras. 
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Figure B24. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative presidential model parameter of the 
1964-2008 era, when testing the difference between the 1828-1856 and 1860-
1892 eras. 
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Figure B25. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative presidential model parameter of the 
1828-1856 era, when testing the difference between the 1860-1892 and 1896-
1928 eras. 
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Figure B26. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative presidential model parameter of the 
1896-1928 era, when testing the difference between the 1860-1892 and 1896-
1928 eras. 
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Figure B27. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative presidential model parameter of the 
1932-1960 era, when testing the difference between the 1860-1892 and 1896-
1928 eras. 
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Figure B28. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative presidential model parameter of the 
1964-2008 era, when testing the difference between the 1860-1892 and 1896-
1928 eras. 
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Figure B29. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative presidential model parameter of the 
1828-1856 era, when testing the difference between the 1896-1928 and 1932-
1960 eras. 
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Figure B30. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative presidential model parameter of the 
1860-1892 era, when testing the difference between the 1896-1928 and 1932-
1960 eras. 
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Figure B31. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative presidential model parameter of the 
1932-1960 era, when testing the difference between the 1896-1928 and 1932-
1960 eras. 
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Figure B32. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative presidential model parameter of the 
1964-2008 era, when testing the difference between the 1896-1928 and 1932-
1960 eras. 
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Figure B33. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative presidential model parameter of the 
1828-1856 era, when testing the difference between the 1932-1960 and 1964-
2008 eras. 
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Figure B34. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative presidential model parameter of the 
1860-1892 era, when testing the difference between the 1932-1960 and 1964-
2008 eras. 
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Figure B35. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative presidential model parameter of the 
1896-1928 era, when testing the difference between the 1932-1960 and 1964-
2008 eras. 
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Figure B36. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative presidential model parameter of the 
1964-2008 era, when testing the difference between the 1932-1960 and 1964-
2008 eras. 
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Figure B37. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative congressional model parameter of 
the 1860-1894 era, when testing the difference between the 1828-1858 and 1860-
1894 eras. 
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Figure B38. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative congressional model parameter of 
the 1896-1930 era, when testing the difference between the 1828-1858 and 1860-
1894 eras. 
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Figure B39. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative congressional model parameter of 
the 1932-1994 era, when testing the difference between the 1828-1858 and 1860-
1894 eras. 
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Figure B40. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative congressional model parameter of 
the 1996-2008 era, when testing the difference between the 1828-1858 and 1860-
1894 eras. 
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Figure B41. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative congressional model parameter 
controlling for general election surge, when testing the difference between the 
1828-1858 and 1860-1894 eras. 
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Figure B42. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative congressional model parameter of 
the 1828-1858 era, when testing the difference between the 1860-1894 and 1896-
1930 eras. 
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Figure B43. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative congressional model parameter of 
the 1896-1930 era, when testing the difference between the 1860-1894 and 1896-
1930 eras. 
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Figure B44. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative congressional model parameter of 
the 1932-1994 era, when testing the difference between the 1860-1894 and 1896-
1930 eras. 
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Figure B45. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative congressional model parameter of 
the 1996-2008 era, when testing the difference between the 1860-1894 and 1896-
1930 eras. 
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Figure B46. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative congressional model parameter 
controlling for general election surge, when testing the difference between the 
1860-1894 and 1896-1930 eras. 
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Figure B47. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative congressional model parameter of 
the 1828-1858 era, when testing the difference between the 1896-1930 and 1932-
1994 eras. 
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Figure B48. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative congressional model parameter of 
the 1860-1894 era, when testing the difference between the 1896-1930 and 1932-
1994 eras. 
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Figure B49. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative congressional model parameter of 
the 1932-1994 era, when testing the difference between the 1896-1930 and 1932-
1994 eras. 
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Figure B50. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative congressional model parameter of 
the 1996-2008 era, when testing the difference between the 1896-1930 and 1932-
1994 eras. 
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Figure B51. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative congressional model parameter 
controlling for general election surge, when testing the difference between the 
1896-1930 and 1932-1994 eras. 
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Figure B52. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative congressional model parameter of 
the 1828-1858 era, when testing the difference between the 1932-1994 and 1996-
2008 eras. 
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Figure B53. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative congressional model parameter of 
the 1860-1894 era, when testing the difference between the 1932-1994 and 1996-
2008 eras. 
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Figure B54. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative congressional model parameter of 
the 1896-1930 era, when testing the difference between the 1932-1994 and 1996-
2008 eras. 
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Figure B55. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative congressional model parameter of 
the 1996-2008 era, when testing the difference between the 1932-1994 and 1996-
2008 eras. 
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Figure B56. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the non-informative congressional model parameter 
controlling for general election surge, when testing the difference between the 
1932-1994 and 1996-2008 eras. 
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Figure B57. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative congressional model parameter of the 
1860-1894 era, when testing the difference between the 1828-1858 and 1860-
1894 eras. 
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Figure B58. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative congressional model parameter of the 
1896-1930 era, when testing the difference between the 1828-1858 and 1860-
1894 eras. 
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Figure B59. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative congressional model parameter of the 
1932-1994 era, when testing the difference between the 1828-1858 and 1860-
1894 eras. 
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Figure B60. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative congressional model parameter of the 
1996-2008 era, when testing the difference between the 1828-1858 and 1860-
1894 eras. 
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Figure B61. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative congressional model parameter 
controlling for general election surge, when testing the difference between the 
1828-1858 and 1860-1894 eras. 
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Figure B62. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative congressional model parameter of the 
1828-1858 era, when testing the difference between the 1860-1894 and 1896-
1930 eras. 
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Figure B63. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative congressional model parameter of the 
1896-1930 era, when testing the difference between the 1860-1894 and 1896-
1930 eras. 
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Figure B64. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative congressional model parameter of the 
1932-1994 era, when testing the difference between the 1860-1894 and 1896-
1930 eras. 
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Figure B65. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative congressional model parameter of the 
1996-2008 era, when testing the difference between the 1860-1894 and 1896-
1930 eras. 
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Figure B66. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative congressional model parameter 
controlling for general election surge, when testing the difference between the 
1860-1894 and 1896-1930 eras. 
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Figure B67. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative congressional model parameter of the 
1828-1858 era, when testing the difference between the 1896-1930 and 1932-
1994 eras. 
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Figure B68. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative congressional model parameter of the 
1860-1894 era, when testing the difference between the 1896-1930 and 1932-
1994 eras. 
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Figure B69. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative congressional model parameter of the 
1932-1994 era, when testing the difference between the 1896-1930 and 1932-
1994 eras. 
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Figure B70. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative congressional model parameter of the 
1996-2008 era, when testing the difference between the 1896-1930 and 1932-
1994 eras. 
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Figure B71. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative congressional model parameter 
controlling for general election surge, when testing the difference between the 
1896-1930 and 1932-1994 eras. 
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Figure B72. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative congressional model parameter of the 
1828-1858 era, when testing the difference between the 1932-1994 and 1996-
2008 eras. 
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Figure B73. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative congressional model parameter of the 
1860-1894 era, when testing the difference between the 1932-1994 and 1996-
2008 eras. 
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Figure B74. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative congressional model parameter of the 
1896-1930 era, when testing the difference between the 1932-1994 and 1996-
2008 eras. 
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Figure B75. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative congressional model parameter of the 
1996-2008 era, when testing the difference between the 1932-1994 and 1996-
2008 eras. 
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Figure B76. Graphs of autocorrelation, adequate mixing of the chain, and the 
posterior distribution for the informative congressional model parameter 
controlling for general election surge, when testing the difference between the 
1932-1994 and 1996-2008 eras. 
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APPENDIX C 
 

Table C1. Results of the sensitivity analysis for the presidential data, comparing 
1828-1856 to 1860-1892.  
 

Variable Prior Information Posterior Information 

 
Mean Standard Deviation Mean Standard Deviation Equal Tail Interval Highest Posterior Density 

1828-1856 - - - - - - 

1860-1892 0 0.4000 -0.0563 0.0305 (-0.1158, 0.0037) (-0.1162, 0.0028) 

1896-1928 0 0.0333 -0.0891 0.0306 (-0.1496, -0.0288) (-0.1517, -0.0317) 

1932-1960 0 0.0625 -0.0127 0.0315 (-0.0740, 0.0503) (-0.0738, 0.0504) 

1964-2008 0 0.0833 -0.0436 0.0287 (-0.1004, 0.0130) (-0.1020, 0.0112) 

Constant 0 1.00E-06 0.5375 0.022 (0.4943, 0.5816) (0.4938, 0.5805) 

DIC: -119.385 
     

 
Table C2. Results of the sensitivity analysis for the presidential data, comparing 
1860-1892 to 1896-1928. 
 

Variable Prior Information Posterior Information 

 Mean Standard 
Deviation 

Mean Standard 
Deviation 

Equal Tail 
Interval 

Highest Posterior 
Density 

1828-1856 0 0.1111 0.0569 0.0306 (-0.0026, 
0.1170) 

(-0.0030, 0.1160) 

1860-1892 - - - - - - 

1896-1928 0 0.0333 -0.0325 0.0297 (-0.0911, 
0.0262) 

(-0.0921, 0.0246) 

1932-1960 0 0.0625 0.0439 0.0306 (-0.0158, 
0.1059) 

(-0.0173, 0.1032) 

1964-2008 0 0.0833 0.0130 0.0277 (-0.0423, 
0.0675) 

(-0.0394, 0.0701) 

Constant 0 1.00E-06 0.4809 0.0208 (0.4400, 
0.5222) 

(0.4376, 0.5192) 

DIC: -119.384      

 
Table C3. Results of the sensitivity analysis for the presidential data, comparing 
1896-1928 to 1932-1960. 
 

Variable Prior Information Posterior Information 

 Mean Standard 
Deviation 

Mean Standard 
Deviation 

Equal Tail 
Interval 

Highest Posterior 
Density 

1828-1856 0 0.1111 0.0891 0.0306 (0.0296, 
0.1492) 

(0.0293, 0.1483) 

1860-1892 0 0.4000 0.0319 0.0297 (-0.0267, 
0.0906) 

(-0.0277, 0.0890) 

1896-1928 - - - - - - 

1932-1960 0 0.0625 0.0761 0.0306 (0.0164, 
0.1381) 

(0.0149, 0.1354) 
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1964-2008 0 0.0833 0.0452 0.0277 (-0.0101, 
0.0997) 

(-0.0072, 0.1023) 

Constant 0 1.00E-06 0.4487 0.0208 (0.4078, 
0.4900) 

(0.4054, 0.4870) 

DIC: -119.384      

 
Table C4. Results of the sensitivity analysis for the presidential data, comparing 
1932-1960 to 1964-2008. 
 

Variable Prior Information Posterior Information 

 Mean Standard 
Deviation 

Mean Standard 
Deviation 

Equal Tail 
Interval 

Highest Posterior 
Density 

1828-1856 0 0.1111 0.0131 0.0314 (-0.0482, 
0.0749) 

(-0.0486, 0.0739) 

1860-1892 0 0.4000 -0.0442 0.0306 (-0.1046, 
0.0162) 

(-0.1066, 0.0134) 

1896-1928 0 0.0333 -0.0761 0.0306 (-0.1357, -
0.0148) 

(-0.1379, -0.0171) 

1932-1960 - - - - - - 

1964-2008 0 0.0833 -0.0309 0.0287 (-0.0880, 
0.0256) 

(-0.0875, 0.0257) 

Constant 0 1.00E-06 0.5247 0.0221 (0.4813, 
0.5686) 

(0.4803, 0.5669) 

DIC: -119.385      

 
Table C5. Results of the sensitivity analysis for the congressional data, comparing 
1828-1858 to 1860-1894.  
 

Variable Prior Information Posterior Information 

 Mean Standard 
Deviation 

Mean Standard 
Deviation 

Equal Tail 
Interval 

Highest Posterior 
Density 

1828-1858 - - - - - - 

1858-1894 0 0.0330 -0.1123 0.0343 (-0.1794, -
0.0449) 

(-0.1802, -0.0464) 

1896-1930 0 0.0400 -0.1310 0.0341 (-0.1983, -
0.0636) 

(-0.1974, -0.0631) 

1932-1994 0 0.0400 0.0194 0.0305 (-0.0405, 
0.0792) 

(-0.0342, 0.0773) 

1996-2008 0 0.0400 -0.0951 0.0449 (-0.1829, -
0.0064) 

(-0.1812, -0.0051) 

General Election 
Surge 

0 1.00E-06 -0.0010 0.0009 (-0.0027, 
0.0008) 

(-0.0026, 0.0008) 

Constant 0 1.00E-06 0.5800 0.0249 (0.5306, 
0.6281) 

(0.5317, 0.6286) 

DIC: -156.938       
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Table C6. Results of the sensitivity analysis for the congressional data, comparing 
1860-1894 to 1896-1930. 
 

Variable Prior Information Posterior Information 

 Mean Standard 
Deviation 

Mean Standard 
Deviation 

Equal Tail 
Interval 

Highest Posterior 
Density 

1828-1858 0 0.0400 0.1115 0.0343 (0.0445, 0.1790) (0.0436, 0.1775) 

1858-1894 - - - - - - 

1896-1930 0 0.0400 -
0.0190 

0.0330 (-0.0839, 
0.0460) 

(-0.0827, 0.0471) 

1932-1994 0 0.0400 0.1314 0.0293 (0.0735, 0.1889) (0.0725, 0.1876) 

1996-2008 0 0.0169 0.0441 0.0449 (-0.0698, 
0.1041) 

(-0.0703, 0.1032) 

General Election 
Surge 

0 1.00E-06 -
0.0009 

0.0009 (-0.0027, 
0.0008) 

(-0.0027, 0.0008) 

Constant 0 1.00E-06 0.4681 0.0235 (0.4215, 0.5136) (0.4223, 0.5139) 

DIC: -156.938       

 
Table C7. Results of the sensitivity analysis for the congressional data, comparing 
1896-1930 to 1932-1994. 
 

Variable Prior Information Posterior Information 

 Mean Standard 
Deviation 

Mean Standard 
Deviation 

Equal Tail 
Interval 

Highest Posterior 
Density 

1828-1858 0 0.0400 0.1301 0.0344 (0.0629, 0.1977) (0.0621, 0.1962) 

1858-1894 0 0.0333 0.0181 0.0330 (-0.0468, 
0.0831) 

(-0.0455, 0.0843) 

1896-1930 - - - - - - 

1932-1994 0 0.0400 0.1500 0.0294 (0.0920, 0.2076) (0.0911, 0.2063) 

1996-2008 0 0.0400 0.0354 0.0442 (-0.0513, 
0.1227) 

(-0.0519, 0.1217) 

General Election 
Surge 

0 1.00E-06 -
0.0009 

0.0009 (-0.0027, 
0.0008) 

(-0.0026, 0.0009) 

Constant 0 1.00E-06 0.4495 0.0235 (0.4028, 0.4951) (0.4052, 0.4970) 

DIC: -156.938       

 
Table C8. Results of the sensitivity analysis for the congressional data, comparing 
1932-1994 to 1996-2008. 
 

Variable Prior Information Posterior Information 

 Mean Standard 
Deviation 

Mean Standard 
Deviation 

Equal Tail 
Interval 

Highest Posterior 
Density 

1828-1858 0 0.0400 -
0.0197 

0.0306 (-0.0794, 
0.0404) 

(-0.0802, 0.0390) 

1858-1894 0 0.0333 -
0.1316 

0.0290 (-0.1891, -
0.0739) 

(-0.1903, -0.0761) 

1896-1930 0 0.0400 -
0.1496 

0.0292 (-0.2068, -
0.0920) 

(-0.2072, -0.0930) 

1932-1994 - - - - - - 
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1996-2008 0 0.0400 -
0.1144 

0.0413 (-0.1954, -
0.0322) 

(-0.1964, -0.0342) 

General Election 
Surge 

0 1.00E-06 -
0.0009 

0.0009 (-0.0027, 
0.0008) 

(-0.0027, 0.0008) 

Constant 0 1.00E-06 0.5993 0.0175 (0.5647, 0.6330) (0.5658, 0.6337) 

DIC: -156.938       

 
 


	An Evaluation of Critical Realignment Theory: Comparing Bayesian and Frequentist Approaches
	Recommended Citation

	Rhodes_FullDraft_06JUNE2017_Formatted

