
University of Denver University of Denver 

Digital Commons @ DU Digital Commons @ DU 

Electronic Theses and Dissertations Graduate Studies 

1-1-2016 

Molecular Mechanisms of Protein Thermal Stability Molecular Mechanisms of Protein Thermal Stability 

Lucas Sawle 
University of Denver 

Follow this and additional works at: https://digitalcommons.du.edu/etd 

 Part of the Biological and Chemical Physics Commons 

Recommended Citation Recommended Citation 
Sawle, Lucas, "Molecular Mechanisms of Protein Thermal Stability" (2016). Electronic Theses and 
Dissertations. 1137. 
https://digitalcommons.du.edu/etd/1137 

This Dissertation is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It 
has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital 
Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu. 

https://digitalcommons.du.edu/
https://digitalcommons.du.edu/etd
https://digitalcommons.du.edu/graduate
https://digitalcommons.du.edu/etd?utm_source=digitalcommons.du.edu%2Fetd%2F1137&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/196?utm_source=digitalcommons.du.edu%2Fetd%2F1137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.du.edu/etd/1137?utm_source=digitalcommons.du.edu%2Fetd%2F1137&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jennifer.cox@du.edu,dig-commons@du.edu


Molecular Mechanisms of Protein

Thermal Stability

A Dissertation

Presented to the Faculty

of Natural Sciences and Mathematics

University of Denver

in Partial Fulfillment

of the Requirements for the Degree

of Doctor of Philosophy

by

Lucas Sawle

June 2016

Advisor: Dr. Kingshuk Ghosh



c© Copyright by Lucas Sawle, 2016.

All Rights Reserved



Author: Lucas Sawle
Title: Molecular Mechanisms of Protein Thermal Stability
Advisor: Dr. Kingshuk Ghosh
Degree Date: June 2016

Abstract

Organisms that thrive under extreme conditions, such as high salt concentra-

tion, low pH, or high temperature, provide an opportunity to investigate the molec-

ular and cellular strategies these organisms have adapted to survive in their harsh

environments. Thermophilic proteins, those extracted from organisms that live at

high temperature, maintain their structure and function at much higher tempera-

tures compared to their mesophilic counterparts, found in organisms that live near

room temperature. Thermophilic and mesophilic homolog protein pairs have identi-

cal functionality, and show a high degree of structural and sequential similarity, but

differ significantly in their response to high temperature. Addressing the principles

of enhanced stability and structural resilience to high temperatures environments is

important in furthering our understanding of protein folding and stability, and can be

quite useful for protein engineering in industrial and biomedical arenas. Furthermore,

understanding temperature dependent protein stability can provide valuable insights

into aging and certain diseases.

This work will present the observations from multiple large-scale studies that

show meaningful general principles that can be a potential mechanism for ther-

mophilic adaptation. First, from the analysis of the largest data set of thermody-

namic data, the roles of reduced thermodynamic parameters upon unfolding, and

their association with the unfolded state are discussed. Next, from a first-principle

polymer physics model, the contribution from electrostatic interactions are shown to

reduce the dimensionality of the unfolded state in thermophilic proteins. Finally,
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as a result of long time scale molecular dynamics simulations, electrostatic inter-

actions are shown to be the key contributor in the stability of the folded state in

thermal stable proteins. The combined results indicate that thermophilic proteins

modify their amino acid content to increase the amount of charged side chains to

utilize an adaptive strategy of enhancing favorable electrostatic energies. Molecular

effects of protein mutations are observed in experimental measurements of protein

thermodynamic values and enzymatic activity. However, modified proteins can also

be quantitatively linked to cellular health and fitness. The consequences of modi-

fied thermodynamic traits seen in thermophilic proteins to the growth rate of several

organisms will be discussed.
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Chapter 1

Introduction

Organisms that thrive under extreme conditions, such as high salt concentration,

small or large pH levels, or high temperatures, provide an opportunity to investigate

the molecular and cellular strategies these organisms have adapted to survive in their

harsh environments. Thermophilic proteins, those extracted from organisms that

live at high temperature, denature at much higher temperatures compared to their

mesophilic counterparts, found in organisms that live at, or near room temperature.

However, a complete understanding of the molecular mechanisms responsible for en-

hanced thermal stability is lacking. Thermophilic and mesophilic homolog protein

pairs have identical functionality, and show a high degree of structural and sequen-

tial similarity, but differ significantly in their response to high temperature. Ther-

mophilic proteins maintain their structure, and therefore their function and activity

at high temperatures, and identifying and understanding the factors that contribute

to the stability under extreme conditions has been a long standing problem within

the protein community. Addressing the principles of enhanced stability and intrinsic

resistance to high temperatures environments is not only important in furthering our

understanding of protein folding, stability, and evolution, but has strong appeal in
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industrial and biotechnological arenas where engineered enzymes could have a multi-

tude of applications.1–3 Furthermore, understanding temperature dependent protein

stability can provide valuable insights into proteostasis, the complex and coordinated

process of regulating protein expression, stability, and degradation to maintain cellu-

lar health. Aging and disease (cystic fibrosis, Alzheimer’s, Parkinson’s, and Hunting-

ton’s disease) have been attributed to disruptions in the proteostasis network,4–7 and

protein thermal stability is a key component in understanding these perturbations.

1.1 Factors enhancing thermal stability

A number of strategies have been proposed in an attempt to explain enhanced

stability in thermophilic proteins, and currently, there is a lack of consensus in any

single proposed mechanism.

Thermodynamic measurements

A thermodynamic understanding of thermophilic protein stability demands knowl-

edge of the free energy change of unfolding. Experimental measurements provide a

wealth of information in the determination of thermodynamic properties, such as

changes in enthalpy (∆H), entropy (∆S), and specific heat (∆Cp) upon protein un-

folding, and provide direct, unambiguous validation that thermophilic proteins indeed

have a higher denaturing temperature than mesophiles. Analysis of gathered thermo-

dynamic information highlights the role each of these parameters contributes to the

temperature dependent unfolding free energy, i.e. the protein stability curve.

Modifications to the individual thermodynamic contributions (∆H, ∆S, and

∆Cp) of the free energy have consequences to the overall stability and denaturing

temperature. With respect to their mesophilic counterparts, increased melting tem-

2



perature in thermophiles can be achieved by i) increasing the enthalpy change ∆H

resulting in an upshift of the free energy stability curve, ii) a reduction in the curvature

by decreasing ∆Cp to broaden the stability curve, iii) a lateral shift toward elevated

temperatures, or a combination of these strategies.8,9 Figure 1.1 demonstrates the

changes to stability curves resulting from these different mechanisms. Previous stud-
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Figure 1.1: Stability curves shifted from a generalized mesophilic thermodynamic parame-
ters (blue curve). An increased melting temperature can be achieved by an upshift (red),
broadening (purple), or lateral shift (orange) of the free energy curve.

ies of thermodynamic information showcased that a reduced change in specific heat

(∆Cp) in thermophilic systems broadened the free energy curve, leading to elevated

denaturing temperatures, but kept the location and magnitude of the stability max-

imum unchanged10–17 (purple curve in Figure 1.1), and direct comparison between

several thermophilic and mesophilic homologues support this observation.13 Other

work has shown that an increased enthalpy change (upshift of the free energy curve)

in thermophiles may be responsible for heightened thermal stability.18

An issue that arises in trying to establish the key players in adaptation is the

lack of large scale studies. Particularly, most studies conducted in comparing ther-

modynamic values between mesophile and thermophiles tend to focus on pairs or

3



small families worth of information. In a large scale study conducted by this group,

analysis showed that while a reduced specific heat change is seen in a large data set,

reduced changes in enthalpy and entropy play a key role in thermophilic adaptation.19

Specifically, the observed reduced entropy of folding imparts the largest positive shift

in stability curve when compared to the other thermodynamic parameters. Details

of this work will be described in subsequent chapters. While a reduced specific heat

change can be linked to a reduced change in solvent accessible surface area by empiri-

cal means,20 and therefore linked to smaller unfolded states in thermophilic proteins, a

reduced enthalpy and entropy change from unfolding also points to residual structure

and the role of the unfolded state in thermal adaptation.

Although insightful, the studies do not offer many molecular insights. Thermo-

dynamic properties are treated as indirect evidence, while the molecular underpin-

nings remain elusive. Below, the contributions to enhanced thermal stability from

previously proposed structural and biophysical mechanisms are discussed.

Hydrophobicity

The hydrophobic effect (the observed aggregation of nonpolar amino acids in the

protein core) is one of the main driving forces in all protein folding,21,22 but what

role does this effect have in protein thermostability? Analysis of 20 genomes, 12 from

mesophiles and eight from thermophiles, have shown that proteins from thermophilic

organisms posses a significant increase in hydrophobic (nonpolar) amino acids.23 Fur-

thermore, from a study of 373 structurally well-aligned homologous pairs, 80% of

thermophiles displayed higher hydrophobicity than their mesophilic counterpart, and

a more refined set of 102 homologs showed 71% of thermophiles had more favorable

hydrophobicity.24 But does the enrichment of hydrophobic residues in the protein

necessarily enhance thermophiles to resist elevated temperatures? Theoretically, it

4



has been shown that even a small increase in the percentage of hydrophobic amino

acids presented in the sequence predicts an increase in the overall thermal stability.25

Experimentally, modification of the hydrophobic content around the protein core has

shown to extensively effect stability,26–30 and selected mutations at the protein sur-

face are stabilizing only if accompanied with a hydrophobic interaction.31–33 Mutation

of a single, unpaired nonpolar residue on the protein surface to a charged residue in-

creased the stability.34 Recent work from Matsuura et al. with the CutA1 protein

demonstrated the effectiveness of hydrophobic substitutions to increase stability, as

the double mutation to nonpolar amino acids raised the melting temperature 28◦C.35

In addition, simulation studies have demonstrated that protein stability is degraded

by mutations that remove a hydrophobic amino acid from the protein core,36 and via

high temperature modeling, denature easily compared to the wild type.37

Hydrogen bonding

Historically, hydrogen bonding and the hydrophobic effect were thought to be

the most important contributions to folded state stability of all proteins.21,22,38–42 The

contributions of the hydrophobic effect to the high temperature resistance seen in ther-

mophiles has been discussed, but leaves the question: do thermophilic proteins benefit

in any way from hydrogen bonding? The work of Vogt and coworkers have shown by

analyzing 16 thermophilic–mesophilic homolog families that in 80% of thermophiles,

increases in hydrogen bond content correlated with increased thermal stability.1,43 In

pairwise homologous structure comparisons, the thermophile contained more hydro-

gen bonds,44,45 and via the results of molecular dynamics simulations of a homolog

pair, the thermophile formed not just more protein-protein hydrogen bonds, but also

displayed an affinity to form these bonds with the model solvent.46 Mutational studies

also display the correlation of removed hydrogen bonds and loss of stability.39,47–49
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The presence of additional hydrogen bonds help maintain the native states of ther-

mophilic systems during high temperature simulations, while the mesophilic homolog

denatured.50,51

However, in contradiction to the aforementioned studies, and in agreement with

a pairwise report,52 the results of a structural study compromised of 25 protein

mesophile and thermophile homolog families demonstrated no difference in the num-

ber of hydrogen bonds between the homologous groups, and no tendency for the bond

count to be effected by temperature.53 The hydrogen bond count from simulation

studies of homolog pairs are also seen as equivalent,54,55 leaving the role of hydrogen

bond contribution towards increased thermal stability a controversial subject.

Electrostatic contributions

While hydrophobicity and hydrogen bonding have been historical arguments to-

ward protein stability, mounting evidence for electrostatic interactions, specifically

those between charged amino acids, point to the dominant contribution for enhanced

thermal stability. Starting with purely amino acid sequence content analysis, an

increase in the number of charged amino acids was found in thermophilic proteins

by comparison of mesophilic and thermophilic genomes,23 and by in-depth statisti-

cal analysis of over 125 sequence pairs from homologous groups.56 The consistent

finding from multiple structure comparison studies show an increased number of ion

pairs (salt bridges) and larger interacting ion networks in the thermophilic proteins

compared to mesophilic.24,43,44,53,57–65 The mechanisms observed by researchers with

respect to the thermophilic protein folded state is to increase the favorable charge-

charge interactions by optimizing spatial placement of charged amino acids on the

protein surface,66–71 and alleviate the unfavorable interactions by charge reversal or

negation.72–76
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The above structural studies illuminate the strategy of optimization in charge–

charge interactions, either pairwise or within larger networks, by spatial preference

or in relieving repulsive interactions. Simulation studies allow these static assess-

ments to be expanded to include dynamical information. Many simulations have

been conducted amongst homologous mesophilic-thermophilic pairs, and at elevated

temperatures, to demonstrate that heightened thermal tolerance can be attributed to

more favorable charge-charge interactions.51,54,55,77–81

A larger abundance of charged amino acids does not equate to an automatic

enhancement of stability. Surprisingly, ionic interactions appear to make little con-

tribution towards stability, or even destabilize the protein native state at room tem-

perature.62,82 The formation of a salt bridge is favorable for the folded protein if the

desolvation energy penalty is surpassed by the favorable contributions due to the

interaction of the interacting amino acids. The work of Elcock has proposed a way

to reconcile the destabilization of ion pairs with their abundance in thermophiles.83

Specifically, the small contributions to stability of ion pairs is found from the large

dehydration penalty incurred from bringing separated charges in the unfolded state

together to form salt bridges. The coulombic interaction of an ion pair is obviously

favorable, but the energy is not enough to offset the large desolvation penalty incurred

upon folding. Due to the lowering of the dielectric constant of water at high tem-

perature, the energy loss from desolvation of the charged residues will be minimized,

thus encouraging the formation of ionic pairs.13,63,77,78,84,85

Enhanced dielectric

An enrichment of charged side chains in thermophilic proteins is no guarantee

to increased stability, due to the larger desolvation penalty upon folding from the

elevated charge count. A potential strategy adapted by thermophilic proteins is an
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enhanced interior dielectric constant, reducing this desolvation penalty from an in-

creased count of ionic side chains content discussed above. Quantifying structural

dynamics provides information about electrostatic free energies. Specifically, from

the Frölich–Kirkwood theory of dielectrics, and utilizing the magnitude of dipole

fluctuations that arise from protein dynamics, a dielectric constant can be estimated

for the protein system from molecular dynamics simulations.86,87 Dielectrics calcu-

lated in this manner are a direct measure of protein polarizability. Dominy and

colleagues have shown that by raising their dielectric constant, thermophiles reduce

the dehydration penalty incurred upon folding by reducing the dielectric constant

discrepancy .87 Furthermore, the dielectric imbalance that exists between the protein

interior and the solvent medium can be alleviated at high temperatures, where the

dielectric constant of the water solvent will be reduced, relieving some of the larger

dehydration penalty.83 These measurements, combined with the flexibility studies

mentioned below, demonstrate the comparative differences in structural dynamics

between homologous pairs of thermophilic and mesophilic proteins.

Native state flexibility

Although the static structures between mesophilic and thermophilic homologous

proteins share a high degree of structural similarity, the collective motions and flexi-

bility encoded in these structures must be different for thermophiles to remain active

at high temperatures. Motivated by observations that i) thermophilic enzymatic

activity is optimal near the natural environment of the organism at high tempera-

tures, and relatively inactive at low temperatures,88 and ii) function is directly re-

lated to structural dynamics,89,90 a long-standing view is that at room temperature,

thermophilic proteins display more mechanical rigidity, and show less activity than

their mesophilic homolog, but at each organisms respective physiological tempera-
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ture, enzymatic activity is equivalent.91–97 Enhancement of rigidity by introduction

of proline residues, removal of glycines, or the introduction of disulfide bridges have

been shown to increase the stability of proteins.98–101 Early hydrogen exchange ex-

periments have suggested that thermophilic proteins are indeed less flexible at room

temperatures compared to their mesophilic counterparts.94,102 Low protease suscep-

tibility and slower unfolding rate103 in thermophiles also tend to support this view.

However, subsequent experimental investigations to test conformational flexibility of

thermophilic and mesophilic homologs have shown otherwise. Hydrogen exchange

experiments show sufficient conformational flexibility at room temperature in ther-

mophilic rubredoxin104,105 and RNaseH.106 Furthermore, investigations of α-amylase

with neutron scattering have shown the thermophilic enzyme is characterized by a

higher structural flexibility.107,108 The work of Querol et al.109 gathered data for 195

single point mutations linked to greater thermostability and found, by use of crystal-

lographic B-factors, that greater rigidity is not a good indicator of thermal stability.

While experimental studies of reduced flexibility in thermophiles remain incon-

clusive, computational studies have also remained indecisive. Rigidity theory based

analysis from the program FIRST110 has shown that thermophilic rubredoxin is struc-

turally more rigid than its mesophilic counterpart.111 Furthermore, room temperature

molecular dynamics simulations of homologous protein pairs verify the lack of flexibil-

ity in the thermophile with respect to the mesophile.80,112 A separate analysis based

on constraint network analysis has also shown the role of rigidity in thermostability of

different mutants from Lipase.113 However, as clearly articulated by Karshikoff et al.,

rigidity is a characteristic of a frozen structure and neglects structural fluctuations.114

Molecular dynamics (MD) simulations provide the ability to capture such fluctuations

and dynamics, although at a much shorter time scale than protein domain dynam-

ics probed by hydrogen exchange. MD simulations of protein native states at room
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temperature have concluded that thermophiles are not necessarily associated with

suppressed fluctuations.50,54,81,115,116

Loop depletion

Secondary structure loop regions are often overlooked, but serve an important

part in proteins.117 From proteomic analysis of 20 unique genomes, it has been ob-

served that thermophiles have a shorter sequence than their mesophilic homolog by

removal of amino acids in these loop regions, suggesting that by reduction of molec-

ular fluctuation in the folded and unfolded states, thermal resilience is enhanced by

adapting a strategy of entropic stabilization.118,119 Validity for this notion has been

seen by many groups whose work showed that by increasing the length of loop regions,

stability is reduced,44,120–123 and by cleaving loop region residues, increased stability

is observed.124 Furthermore, high temperature simulations of BPTI have shown the

loop areas act as “targets of attack” for unfolding.125

Combination of factors

No individual mechanism or strategy is solely responsible for the increased ther-

mal stability. Instead, thermophilic proteins have adapted by optimizing a combi-

nation of the discussed mechanisms. Direct comparison of homologous Cold Shock

proteins (CSP) shows a high level of sequence similarity (only 12 of 67 amino acids

differ), but a large difference in denaturing temperature (23.3◦C). A double muta-

tion in the mesophilic CSP to the corresponding thermophilic amino acids accounted

for a 21◦C increase in melting temperature by i) alleviation of unfavorable charge-

charge interactions, and ii) a charge reversal to optimize an ionic network allowing the

formation of a localized rigid cluster more resistant to increased temperature.13,74,76
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Experimental evolution work of Shamoo et al. display the utilization of several

adaptive strategies to enhance protein stability for organism fitness.126–128 Briefly, the

weak-link method allows the study of adaptation of a single gene within a bacterial

population. In the weak-link approach, survival of a genetically modified thermophilic

organism at elevated temperatures is directly linked to changes in the essential en-

zyme adenylate kinase (ADK) derived from the mesophile. ADK function is essential

for adenylate homeostasis and energy metabolism. The thermophile (native growth

temperature range of 48 − 72◦C) expressed the mesophilic ADK, but was unable to

grow at temperature higher than 55◦C due to high temperature inactivation of the

mesophilic ADK. To increase the temperature growth range of the modified organism

to that of the native thermophile, evolution of a large population was conducted by

a slow temperature increase of 55 to 70◦C over 30 days, and population samples were

drawn and functional intermediates of the inserted mesophilic ADK were observed.

The first mutation was a glutamine to arginine mutation (Q199R) that displayed a

marginal increase in the thermal stability of ADK, but dramatically improved enzyme

function. The mutation and introduction of a charged amino acid permitted the for-

mation of a small ionic network on the surface of ADK, allowing the rigidification of

the C-terminus. The Q199R mutation acted as a progenitor for five double mutations

that arose simultaneously within the population at higher incubation temperatures

increasing the denaturing temperature above the Q199R mutation. Of these five, four

aided in further rigidification of the C-terminus by either electrostatic interaction ex-

panding the aforementioned surface ion network, introduction of hydrogen bonds not

present in the unmutated structure, or by increasing hydrophobicity in a cavity made

with the terminus structure.
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1.2 Goals of this project

In the remainder of this thesis, contributions to understanding the strategies em-

ployed in thermophilic adaptation will be presented. First, in an attempt to settle the

contradicting viewpoints seen in earlier and smaller studies, the largest data set of ex-

perimentally determined thermodynamic data was curated, and from the calculated

average parameters for changes in specific heat (∆Cp), enthalpy (∆H), and entropy

(∆S), thermophilic proteins show a smaller change in enthalpy and entropy upon

unfolding.19 A reduced change in heat capacity was also observed, in accord with

earlier studies of thermodynamic parameters. However, the reduced ∆Cp term has a

minimal negative effect on stability, and the smaller change in enthalpy destabilized

our ideal system substantially. The reduced entropy change observed in thermophilic

ideal system offsets the destabilizing effects of smaller ∆Cp and ∆H, and amounts to

a net large increase in stability. Furthermore, the reduction in the thermodynamic pa-

rameters allowed the logical inference to the role of residual structure in the unfolded

state.

Second, from the large-scale thermodynamic parameter study, the role of dena-

tured state residual structure was highlighted as a potential strategy for enhanced

stability. However, an actual physical mechanism remained undefinable. Using meth-

ods from polymer physics theory and first principle approaches, we modeled the un-

folding state of a large set of thermophilic and mesophilic homolog protein pairs. By

considering the effects of ionic amino acid patterning within the sequence alone, it was

observed that nearly 70% of the thermophilic sequences in the 540 pair dataset had

a smaller, more compact unfolded state,129 reinforcing the roles of residual structure,

and enrichment and optimization of charged amino acids as strategies for enhanced

thermal stability.
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Third, the role of native state dynamics was examined by utilizing long time

scale, room temperature molecular dynamics simulations for 13 pairs of thermophilic

and mesophilic homologous globular proteins. The majority of previous studies have

relied on only a select protein pair per study, not allowing any universal mechanisms

to be seen. By including many pairs, different competing strategies, and the relative

importance of each were highlighted. However, the demands of a study of this scale

have raised additional concerns detailed below.

With the exception of only a few simulation studies,51,54,81 previous work uti-

lized relatively short simulation trajectories with very little attention paid to quality

of sampling measures, leaving the reported observables unreliable, or artifacts of in-

adequate sampling. Therefore, we will first introduce a novel technique to test the

convergence of molecular dynamics simulations that allow the sampled trajectories to

be claimed as adequately sampled and self-consistent.130

Next, due to the lack of experimental unfolding information, only half of the 13

homolog pairs have a documented melting temperature. The pairs were constructed

by assuming proteins from thermophilic organisms would intrinsically possess height-

ened stability at elevated temperatures. Therefore, we conducted a pairwise study of

all of the system pairs in high temperature environments (≈ 400K) with the goal of

observing resistance to unfolding in the thermophilic protein, and structural insta-

bility in the mesophilic protein. This study helped to verify the consistency of the

computational force field away from room temperature simulations, and demonstrated

that even in the absence of experimental melting temperatures, the thermophilic pro-

teins in this study displayed structural resilience at elevated temperature, while their

respective mesophilic proteins denatured.

Now with the ability to adequately study verified mesophilic-thermophilic ho-

molog pairs, the minimum simulation time per system was 1µs, with the in-depth
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convergence inspection applied to each simulation, causing some protein pairs to be

simulated up to 6µs to simply model the folded state. From the multitude of infor-

mation, a plethora of significant conclusions were found. Specifically, thermophilic

proteins have adapted a strategy to construct well connected attractive electrostatic

networks within their folded state. Furthermore, the electrostatic driven adaptation

employed more subtle mechanisms, such as a more favorable electrostatic interac-

tion energy, or a reduced dehydration penalty via an increased folded state dielectric

constant.

Finally, the effects of protein thermal stability on cellular health and fitness will

be discussed. Specifically, the effects to cellular growth rate by alterations to protein

thermodynamics. From thermodynamic free energy equations, the free energy distri-

bution of the entire proteome was calculated to estimate the growth rate of several

mesophilic and thermophilic organisms. This model showed quantitative agreement

with the experimental thermal growth data, but only upon proper selection of protein

thermodynamic parameters.19

From these studies, we hoped to gain further insights into the mechanisms and

strategies of thermophilic adaptation not seen in previous works. Having used larger

datasets in these projects, we hoped to remove the ambiguous and often conflicted

results from earlier studies. Also, having incorporated a quality of sampling metric

into our molecular dynamics study, the resultant observables will be explicit, reliable,

and reproducible.
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Chapter 2

Thermodynamic Study

Studying different mechanisms by which proteins increase, or decrease stability

can teach us fundamentals of protein thermodynamics, and assist in the design of new

enzymes with desired stability. The vast majority of biophysical studies have been

directed towards understanding the origin of enhanced stability in proteins under con-

ditions of high temperature.105,131–135 The unusual tolerance to high temperature has

raised a few interesting questions: i) Does any systematic principle exist that proteins

may utilize to withstand such high temperatures? ii) Do significant alteration of the

average enthalpy, entropy, or specific heat, or a combination of these effect thermal

stability? iii) Does high melting temperature also imply high maximal stability free

energy? Researchers have tried to address these questions by directly comparing dif-

ferent homologues of proteins extracted from mesophilic and thermophilic organisms

.13–15,18,131,132,136–138

It is not clear which of these mechanisms proteins adopt, or whether they adopt

different mechanisms simultaneously to a different extent. It has been widely demon-

strated that reduced ∆Cp is primarily responsible for increased stability13–16 by broad-

ening the stability curve, but keeping the location and magnitude of the maximum of
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the stability curve unchanged. Direct comparison between several thermophilic and

mesophilic homologues support this observation.13 However, other studies suggest

otherwise by demonstrating little dependence between melting temperature and ∆Cp

of unfolding.18,139

These different and often contradictory studies make it very hard to identify the

principle behind increased stability. Conclusions are very specific to proteins, and

there is no systematic study136 using a large data set of different protein families to

explain increased stability. Conclusions are often conflicting depending on the list of

proteins studied, and this is mainly due to two reasons, i) lack of systematic analysis

of a large dataset as previous studies were mostly restricted to smaller sets of proteins,

and ii) lack of proper decoupling of different driving forces. The latter point origi-

nates from the fact that enthalpy and entropy changes are significantly temperature

dependent, due to non-zero ∆Cp arising from hydrophobic effect, both enthalpic and

entropic changes are temperature dependent in the following manner:140,141

∆H(T ) = ∆H(Th) + ∆Cp(T − Th) (2.1)

∆S(T ) = ∆S(Ts) + ∆Cp log

(
T

Ts

)
(2.2)

where, Th and Ts are two reference temperatures. This also raises the natural ques-

tion: at what temperature one should compute these quantities to compare ? From

equations 2.1 and 2.2, it is evident that both enthalpy and entropy change have differ-

ent hydrophobic contribution (due to non-zero ∆Cp) at different temperatures. For

example, total change in entropy has a contribution due to configurational entropy of

the protein chain as well as mixing entropy of amino acids, increasing the difficulty

to isolate and study the role of different driving forces separately.
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In order to significantly decouple the hydrophobic effect from conformational en-

tropy and purely enthalpic contributions (polar and van der Waals), one should com-

pute ∆H(T ) and ∆S(T ) at temperatures where the hydrophobic effect is minimal.

Extensive studies dating back to Privalov,142,143 Baldwin,144 Doig145 and Robertson-

Murphy140 showed the existence of a temperature where enthalpy and entropy (per

residue) for many different proteins converge. These convergence temperatures are

now believed to be the temperature where hydrophobic effects are zero, and the con-

tribution to enthalpy is purely due to van der Waals or polar interactions. Similarly,

at the convergence temperature entropy is primarily conformational in origin as hy-

drophobic contribution is minimal. Hydrocarbon-transfer experiments by Baldwin

demonstrated the existence of a similar convergence temperature, where the trans-

fer entropy is zero and was very close to the protein convergence temperature.144

The finding strongly suggests, at this temperature the protein chain conformational

entropy is significantly decoupled from the hydrophobic entropy. Extensive work of

Robertson-Murphy gives the most recent and reliable estimate of these convergence

temperatures based on the largest set of proteins: for entropy Ts = 385K and for

enthalpy, Th = 373.5K. The original work of Robertson-Murphy,140 and previous

work141 showed ∆H(N) and ∆S(N) can be very well approximated as a linear func-

tion of chain length N when computed at 373.5K and 385K, respectively. In fact,

the correlation coefficient between the changes in enthalpy and entropy versus chain

length were the highest at these two temperatures.140 Based on this evidence, and

several other studies,142,146,147 it is clear, at these temperatures sequence effects are

minimal, and the major contribution to enthalpy and entropy is due to the polymeric

nature of the protein alone.140,148 Therefore, the slope and intercept of the linear de-

pendence of these properties with respect to protein chain length gives us an average

estimate of changes in enthalpy, conformational entropy and specific heat of a pro-
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tein upon folding purely based on the protein chain length N . This defines an Ideal

Thermal Protein, and can serve as a first estimate for the folding free energy when

all other protein information, except chain length, is absent.141

Here, we will compute and compare changes in entropy and enthalpy of ther-

mophilic and mesophilic proteins at Ts = 385K and Th = 373.5K, respectively, for

two reasons: i) at these convergence temperatures, the hydrophobic effect can be

separated from enthalpy and conformation entropy, thus different driving forces are

maximally decoupled, and ii) it provides a common reference temperature to com-

pare different proteins. This has not yet been explored, and is in striking contrast to

common practice where thermodynamic properties are computed at the melting tem-

perature for comparison. However, it is not guaranteed that at the protein melting

temperature, the hydrophobic effect is separated from conformational entropy.

Below, from the largest protein thermodynamic unfolding data set constructed to

date, almost doubling the current largest set,140 the analysis to derive Ideal Thermal

Protein parameter values will be outlined. Next, the data set will be classified into two

classes i) based on melting temperatures, and ii) a smaller set of homologous proteins

based on the optimal growth temperature of the organism from which proteins were

selected. From this classification scheme, new Ideal Thermal Protein parameter values

were found for thermophilic (with high melting temperature) and mesophilic (with low

melting temperature) proteins. Statistical analysis was conducted on the distribution

of entropy, enthalpy and specific heat changes (per amino acid) between these two

classes of proteins, revealing a new thermodynamic principle that proteins on average

may adopt to withstand high temperature. In general, lower entropic loss upon

folding may be responsible for enhanced stability in thermophilic proteins. Finally,

based on these new parameters, the entire proteome of different organisms is modeled

and compared against experimental thermal growth rate data.
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2.1 Model

Analysis was conducted on a significantly large data set (116 proteins) of ther-

modynamic data, almost doubling the number of proteins (63) from the earlier work

of Robertson-Murphy.140 In this analysis, the differences in entropy ∆S, enthalpy

∆H, and specific-heat ∆Cp between the folded and unfolded states were calculated.

Thus, ∆S is defined as Su−Sf , where Su is the entropy of the unfolded state, and Sf

is the entropy of the folded state. This definition has been used for enthalpy, specific

heat and, free energy change throughout.

As outlined above, it is most instructive to compute ∆H at 373.5K and ∆S at

385K to maximally decouple the effects of sequence and other driving forces. Further-

more, at these two temperatures, Th = 373.5K and Ts = 385K, the change in enthalpy

and entropy show a strong linear chain length dependence.140 These quantities can

be computed from enthalpy and entropy values reported at melting temperature (Tm)

using:

∆H(373.5K) = ∆H(Tm) + ∆Cp(373.5K− Tm) (2.3)

∆S(385K) = ∆S(Tm) + ∆Cp log

(
385K

Tm

)
(2.4)

Specific heat was assumed independent of temperature.140,142 All proteins that

were either multimeric, or non-two state folder were removed from the original list

of Robertson-Murphy analysis. Several new two-state folders for which changes in

enthalpy, entropy, and specific heat could be found were added to the data set. Fur-

thermore, the search was limited to only monomeric proteins under conditions where

reversible transition was observed, and closer to isoelectric point to further decouple
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electrostatic contributions. This analysis also extended the range of applicability by

including proteins with bigger chain length, and a wider range of melting tempera-

tures than originally considered in the Robertson Murphy analysis.140

However, since this set does not distinguish moderate (mesophilic) and high

melting temperature (thermophilic) proteins which may have different thermody-

namic properties, the set of 116 proteins was further decomposed into two sets by

defining a cut-off melting temperature (Tc). Upon this classification, the analysis

described above was revisited. The optimal cut-off temperature, Tc, was determined

by minimizing the least square error of fitting chain length dependent linear equation

for all three thermodynamic quantities (∆H,∆S, and ∆Cp) separately when proteins

were subdivided in two classes: i) proteins with melting temperature higher than Tc,

and ii) proteins with melting temperature below Tc. This method yielded a choice

of Tc = 341K where the least square error was minimized for enthalpy, entropy, and

specific heat change independently. Therefore, we determine Tc = 341K as the melt-

ing temperature below which we identify proteins as mesophilic, and above which

they are termed thermophilic for this analysis. Also note, the least square fitting

error of these quantities with chain length reduced significantly when proteins were

subdivided in two families compared to the undivided set.

2.2 Results

The linear correlation of the overall set was found to be slightly lower than the

original analysis due to Robertson-Murphy,140 but the average thermodynamic pa-

rameters change only slightly. Figure 2.1 shows results of this analysis. The slopes

and intercepts of these different thermodynamic quantities against chain length de-

termines the properties of an Ideal Thermal Protein.141
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Figure 2.1: Change in enthalpy, entropy and specific heat upon unfolding for the 116 con-
stituent proteins in the master set. Solid lines show the best linear fit, and filled circles
show data.

2.2.1 Ideal mesophilic and thermophilic proteins have differ-

ent thermodynamic properties

It is likely that proteins with higher melting temperature may have evolved with

a different set of thermodynamic rules than their mesophilic counterparts. Therefore,

it is natural to think that the Ideal Thermal Protein parameter values for thermophiles

would be significantly different than their mesophilic counterparts. Several indirect

experimental results support this. For example, comparison of thermodynamic prop-

erties between a thermophilic and mesophilic homologue based on native state hydro-

gen exchange by Hollien and Marqusee106 demonstrated that the increased stability

is not a result of localized effect, but rather distributed throughout. A proportional

increase in stability for all residues results in an overall enhanced stability indicating

the possible role of simple properties such as chain length in stability determination,

and the importance of studying average parameters. Motivated by this, the master

set was divided into two classes as mentioned in the methods section. Based on the

analysis outlined above, good correlation between thermodynamic parameters and

chain length for mesophilic proteins was found, see Figure 2.2. This set of 59 pro-

teins, out of a total 116, have a melting temperatures below 341K. Therefore, based

on the new analysis of this smaller, modified data set of proteins, new parameters for
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Figure 2.2: Change in enthalpy, entropy and specific heat upon unfolding for the 59 proteins
assigned to the mesophilic subset. Solid lines show the best linear fit, and filled circles show
data.

Ideal Mesophilic Protein were calculated as

∆H373.5K(N) = 4.0N + 143 kJ/mol

∆S385K(N) = 13.27N + 448 J/mol

∆Cp(N) = 0.049N + 0.85 kJ/mol

(2.5)

The remaining 57 proteins with melting temperatures at, or above 341K were

classified as thermophilic proteins, and similar analysis was carried out on this set,

Fig. 2.3. And, again good correlation between thermodynamic parameters and protein
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Figure 2.3: Change in enthalpy, entropy and specific heat upon unfolding for the 57 ther-
mophilic proteins. Solid lines show the best linear fit, and filled circles show data.

chain lengths was found for the thermophilic protein set. The new thermodynamic
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parameters obtained define an Ideal Thermophilic Protein as

∆H373.5K(N) = 3.30N + 112 kJ/mol

∆S385K(N) = 10.90N + 291 J/mol

∆Cp(N) = 0.051N − 0.26 kJ/mol

(2.6)

In the absence of any other information but the protein chain length, thermophilic

and mesophilic protein thermodynamic parameters can be estimated based on equa-

tion sets 2.5 and 2.6.

2.2.2 Specific enthalpy and entropy changes at the conver-

gence temperature are lower in thermophiles on aver-

age than mesophiles

Based on the slopes and intercepts reported above, it is clear that changes in en-

tropy and enthalpy upon folding are lower in thermophilic proteins than in mesophilic.

A slightly different, and more rigorous approach will be presented here to establish this

fact. Changes in thermodynamic parameters per amino acid for mesophilic and ther-

mophilic sets were calculated, and distributions of ∆H(373.5K)/N , ∆S(385K)/N ,

and ∆Cp/N were constructed per set. The means of these quantities were compared

between mesophiles and thermophiles. The results are summarized in Table 2.1.

From the reported values, it is clear that thermophilic proteins, on average, have

a lower value for enthalpic, entropic, and specific heat changes per residue. A two

sample t-test was performed on these distributions, from which, it can be claimed

that thermophiles have a lower change in entropy per amino acid than mesophiles
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Mean Values of Thermodynamic Parameters

Mesophile Thermophile p–value

∆H(373.5K)
N

( kJ
mol·res) 5.18 4.52 0.001

∆S(385K)
N

( J
K·mol·res) 16.97 14.12 0.00002

∆Cp

N
( kJ
K·mol·res) 0.055 0.049 0.008

∆H(Tm)
N

( kJ
mol·res) 2.72 3.65 5.3×10−8

∆S(Tm)
N

( J
K·mol·res) 8.26 10.22 0.00003

TS(K) 281.6 284.2 0.3

∆G(TS)
N

( kJ
mol·res) 0.21 0.40 3.3×10−6

Table 2.1: Mean values of thermodynamic parameters normalized by chain length. When
comparing at convergence temperatures, the changes in enthalpy and entropy are less in
thermophiles than in mesophiles. When comparing enthalpy and entropy changes at melting
temperatures, thermophilic changes are greater. TS is the temperature of maximal stability
that appears to be similar between thermophiles and mesophiles on average. However, free
energy (∆G(TS)) at the temperature of maximal stability (per amino acid) is significantly
favorable in thermophiles than mesophiles. p–value is a measure of confidence from testing
the difference of two means.

with a p-value of 0.00002. Furthermore, changes in enthalpy per amino acid are lower

for thermophiles than mesophiles with a p-value of 0.001, whereas the specific heat

p-value is 0.008.

However, when enthalpy and entropy changes were computed at their respective

melting temperatures, a reverse effect was observed. Based on values reported in the

Table 2.1, thermophiles have a higher change in specific entropy and enthalpy than

mesophiles when computed at the melting temperature, in agreement with an earlier

study.18
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2.2.3 Maximal stability free energy is higher in thermophiles

than mesophiles

Based on two set representation of mesophilic and thermophilic proteins, the

average temperature of maximal stability (Ts), and the free energy change at this

temperature (∆G(Ts)) were calcualted. The temperature of maximal stability is

similar between thermophiles and mesophiles, but the free energy change at this

temperature is almost twice as favorable in thermophiles compared to mesophiles

(see Table 2.1), in accordance with previous studies.18,149 This is also evident from the

comparison of stability curves of the Ideal Mesophilic (blue) and Ideal Thermophilic

(red) proteins in Figure 2.4.
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Figure 2.4: Plot of folding free energy of ideal thermophilic (red) protein showing a taller,
broader, and right shifted curve compared to ideal mesophilic (blue) protein. Insertion
of thermophilic specific heat change into the ideal mesophilic free energy slightly reduces
melting temperature (orange), while insertion of thermophilic enthalpy change dramatically
reduces stability (green). The substitution of thermophilic entropy into the mesophilic
free energy change (black) is the only parameter showing increased stability and melting
temperature.
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2.2.4 Reduction in folding entropy (per amino acid) is re-

sponsible for high melting temperature

Using thermodynamic parameters reported in equation sets 2.5 and 2.6, the

temperature dependent free energy ∆G(T ) (in kJ/mol) of an Ideal Thermophilic and

Ideal Mesophilic protein were calculated as

∆G(N, T )meso = (4.0N + 143) + (0.049N + 0.85)(T − 373.5K)

−T (13.27N+448)
1000

− T (0.049N + 0.85) log
(

T
385K

) (2.7)

∆G(N, T )thermo = (3.30N + 112) + (0.051N − 0.26)(T − 373.5K)

−T (10.90N+291)
1000

− T (0.051N − 0.26) log
(

T
385K

) (2.8)

Using the average chain length (N = 136 of the master 116 protein data set)

in the equations above, and plotting both ∆Gmeso and ∆Gthermo as a function of

temperature (see Figure 2.4), we make the following points:

• the ideal thermophilic curve (red) is shifted upward, broader, and laterally to

the right compared to the ideal mesophilic curve (blue).

• thermophilic melting temperature is 25 Kelvin higher than the mesophilic Tm,

355K versus 330K, these temperature ranges are approximately in the same

range as reported earlier.149

• cold denaturing temperature of thermophiles (239K) is slightly colder than that

of mesophiles (244K) as previously suggested.150
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• replacing the mesophilic specific heat change (∆Cp in equation set 2.5) in ex-

pression 2.7 with the corresponding thermophilic ∆Cp from equation set 2.6,

keeping ∆H and ∆S intact, an almost negligible change in free energy with a

slight destabilizing effect (orange curve in Fig. 2.4) is observed.

• substitution of exclusively the mesophilic enthalpy change by thermophilic value

(∆H in equation set 2.6), keeping ∆S and ∆Cp for mesophilic proteins intact,

a strong destabilizing effect is seen (green curve in Fig. 2.4).

• replacing only the mesophilic entropy by thermophilic ∆S, a significant upshift

in the stability curve is seen, increasing the melting temperature to a much

higher value (black curve, Fig. 2.4).

Thus, varying all three parameters individually, it has been clearly demonstrated an

Ideal Thermophilic Protein gains a high melting temperature by reducing the entropic

loss upon folding.

Next, a direct comparison all possible pairwise combinations of thermophilic

to mesophilic thermodynamic parameters against the pairings’ respective melting

temperatures. The above analysis gave, after decomposition, 59 mesophiles and 57

thermophiles leading to a total of 3363 comparable pairs. Also from the above anal-

ysis, all thermophilic melting temperatures are greater than mesophilic, so the dif-

ference in melting temperatures of the ith thermophile to the jth mesophile, gives

∆Tm = [Tm]i − [Tm]j > 0. Computing the difference in specific entropy for the same

ith thermophile to jth mesophile pair gives

∆

(
∆S(385K)

N

)
=

(
∆S(385K)

N

)
i

−
(

∆S(385K)

N

)
j

(2.9)

Plotting ∆Tm versus ∆
(

∆S(385K)
N

)
for all 3363 possible i,j pairwise combinations
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of mesophile-thermophile data, 70% of the pairs have a higher melting temperature

associated with differences in entropic changes (per amino acid) that are less than

zero. This implies thermophilic ∆S/N is less than mesophilic ∆S/N for 70% of

possible pairings (see Figure 2.5). Similar calculations for specific changes in enthalpy

and specific heat show in the specific enthalpy change plot 65% of pairings have

thermophilic enthalpic gain (per amino acid) lower than their mesophilic counterpart.

Finally, 61% of thermophilic ∆Cp/N is less than its mesophilic counterpart.

Figure 2.5: Direct comparison of thermophiles to mesophiles shown as the difference in
change of thermodynamic parameter (equation 2.9) versus difference in melting temperature
per pairing. Points left of Y–axis signify thermophilic proteins having a smaller change in a
respective thermodynamic quantity. For enthalpy, 65% of thermophiles are less; for entropy,
70%; for specific heat, 61%.

Analysis based on each protein pair shows a significant correlation between in-

creased melting temperature and reduced entropy change upon folding further justi-

fying the claim based on Ideal protein parameter comparison.

2.2.5 Homologous protein pairs reveal similar trend

Thus far, all analysis has been based on a mean field approach on a data set that

classified proteins into thermophile and mesophile based on their respective melting

temperature. An alternate approach is considered by constraining the data set to

consist of only pairs, or groupings, of mesophile and thermophile homologs where the

classification is based on the organism from which the proteins have been extracted.
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Several proteins derived from thermophilic organisms have been studied13,131,132,137

and compared with their homologs extracted from mesophilic organisms. The protein

pairs considered here show either high structural similarity, or high sequence identity,

and have been published as a relevant grouping based on their homology. Our 10

groupings of homologs includes six thermophilic-mesophilic pairs, and four groupings

of at least four proteins, giving a total of 16 thermophiles and 17 mesophiles. The

majority of the data shared at least 40% sequence identity with its homologs and a

backbone RMSD of less than 2Å within its pairing or group. The following groups

were published as being homologous, but were either below this criteria, or unavailable

to calculate: The pairing of MGMT-AdaC showed only 20% sequence identity, but

had a calculated backbone RMSD of 1.9Å.151 The S16 pair had 33% identity, but a

calculation of RMSD was unavailable due to a lack of structural data.152 Calculation

of sequence identity and RMSD was unavailable for Phycocyanin.153 Within the SH3

Domain-Containing group of 8 proteins, certain pairs (e.g., Sac7d and Fyn) had

RMSD as high as 9.9Å.18,139

As in the previous section, each thermophilic protein to all other mesophilic pro-

tein within the same group was compared to compute differences in changes in spe-

cific entropy
(

∆
(

∆S(385K)
N

))
, enthalpy

(
∆
(

∆H(373K)
N

))
, specific heat

(
∆
(

∆Cp)

N

))
,

and change in melting temperature (∆Tm). By directly comparing these quantities

only within groupings of homologs, a high percentage (79%) of thermophilic entropy

changes (per amino acid) are less than the mesophilic entropy changes (per amino

acid) in the same group. Also, 68% of changes in enthalpy (per amino acid), and 75%

of changes in specific heat (per amino acid) are less in thermophiles compared to their

mesophilic counterparts (see Figure 2.6). Thus, direct comparison of normalized ther-

modynamic data shows thermophiles have a high propensity to have reduced entropic,

enthalpic, and specific heat change when compared to their mesophilic counterparts.
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Figure 2.6: Direct comparison of homologous thermophiles and mesophiles shown as the
difference in change of thermodynamic parameter (equation 2.9) versus difference in melting
temperature per pairing. Points left of Y–axis signify thermophilic proteins having a smaller
change in a respective thermodynamic quantity. For enthalpy, 68% of thermophiles are less;
for entropy, 79%; for specific heat, 75%.

2.3 Discussion

The largest data set of thermodynamic properties was constructed and analyzed

for thermophilic and mesophilic proteins. Unlike any other previous study, enthalpy

(per amino acid) and entropy (per amino acid) change were computed at the con-

vergence temperature to compare thermophiles and mesophiles. The rationale was

to separate hydrophobic effects from other driving forces, i.e. decouple conforma-

tional entropy and solvation entropy. With this definition, in general and with high

statistical confidence, the gain in enthalpy (per amino acid) upon folding is less in

thermophiles than mesophiles, and is a destabilizing effect. However, with respect to

conformational entropy, thermophiles sacrifice less entropy, on average, upon unfold-

ing than mesophiles, and therefore overcompensate the destabilizing effect due to a

reduced enthalpy change. The reduced entropy change is responsible for the extra sta-

bility in thermophiles. It may appear that this finding is in conflict with studies that

predict higher specific entropy and enthalpy in thermophiles than mesophiles.18 The

apparent contradiction is due to the temperatures at which thermodynamic quan-

tities were calculated. When entropy and enthalpy were computed at the melting

temperature, the results of Kumar et al18 were recovered. However, as stated earlier,
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the entropy computed at the melting temperature is not purely conformational due

to the presence of solvation entropy. The temperatures for maximal stability were

found similar among thermophiles and mesophiles, while the folding free energy (per

amino acid) at these temperatures is significantly more favorable in thermophiles than

mesophiles, in agreement with previous studies.18,149

Therefore, computation at the convergence temperature depicting lower folding

entropy (conformational) and enthalpy associated with thermophiles is the novelty of

this analysis. Furthermore, the combined findings of reduced entropy loss and low-

ered enthalpy gain alludes to the possibility that thermophiles may retain partial con-

tacts in their denatured state. Presence of strong hydrophobic interactions, disulfide

bonds,154,155 or electrostatic interactions156–158 may be responsible for such residual

structure in the denatured state. This would explain lowered gain in enthalpy upon

folding as there are already existing favorable interactions in the denatured state.

However, due to the presence of these native/non-native contacts, the conformational

entropy in the denatured state will also be lowered. This can explain the reduced

loss in folding entropy (conformational) observed in thermophilic proteins. This is

consistent with experimental studies indicating reduction of unfolded state entropy

responsible for enhanced stability.100,159,160 The existence of residual structure in the

unfolded state,15,16 or compact denatured state152 in thermophiles are strong evidence

for reduced entropy change upon folding responsible for elevated melting tempera-

tures. Wallgren et al152 showed thermophilic Ribosomal protein S16 has a more

compact denatured state than its mesophilic homolog. Similar observations based on

radius measurement, has been made by Licata159 in connection to their studies on

Taq DNA polymerase. Comparative investigation of two thermophilic α–amylases

showed a more compact unfolded state when denatured thermally than when dena-

tured chemically. Also, the amylase with the higher thermal stability showed a more
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compact state than the amylase with lower melting temperature.160 Residual struc-

ture has been observed in thermophilic RNase H, but not in the mesophilic homolog.15

Existence of residual structure, and native/non-native contacts and local compactness

of denatured ensemble has been addressed in several other contexts as well.157,161–168

The presence of residual structure in the denatured state will be responsible for a

lowered solvent accessible surface area compared to a fully unfolded extended state.

This would consequently explain a lower ∆Cp in thermophiles, and is consistent with

other works in the literature.13–16 Thus, the finding of reduction of folding entropy

is not in contradiction with studies hinting at reduced ∆Cp, but in accordance. It

appears calculations based on convergence temperature reconciles all the existing ob-

servations by properly extracting the conformational entropy. However, it should

be remembered, by lowering ∆Cp alone, keeping ∆H(373.5K) and ∆S(385K) intact,

would lead to destabilization rather than stabilization of the protein (see orange curve

in Figure 2.4).

Another explanation behind the reduced change in folding entropy could be spe-

cific amino acid substitutions that lead to reduced entropy in the unfolded state due

to different degrees of flexibility associated with these amino acids .100,169 This is

also consistent with the technique of enhancing stability by reducing conformational

entropy of the denatured state by adding proline residues in β turns and at other loca-

tions in proteins.170,171 Nemethy and Scheraga quantified possible changes in unfolded

chain entropy from amino-acid substitution.172 The effect of entropy on increased sta-

bility may also arise from different degree of compactness in the native structure as a

result of different mutations.173 Substitution of amino acids could change the entropy

of the folded state. Concepts of rigidity, compactness, and rotameric states in the

native state play an important role in stabilizing thermophilic proteins, and would

be related to the entropy change as well. Through computational studies, rubredoxin
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was found to be more globally rigid with respect to temperature than its mesophilic

counterpart,111 and thermophilic RNase H was shown to have less backbone flexibil-

ity at same temperatures, and less conformational entropy over a large temperature

range than its mesophilic homolog.174

However, a more microscopic model will be needed to further investigate the

quantitative contribution arising from the unfolded and native state entropy differ-

ence. Based on the finding at the convergence temperature, both lowered change in

entropy and enthalpy is in accordance with several experimental studies that point to

residual structure and reduced specific heat change.13–16,152,159,160 This finding does

not contradict different studies. Rather, it reconciles all of them. However, reduced

enthalpy and specific heat upon folding has a destabilizing effect that is over com-

pensated by reduced loss in entropy imparting the higher stability in thermophiles.

Therefore, the key factor behind increased thermal tolerance is reduction of folding

entropy.

33



Chapter 3

Modeling the Unfolded State

From the analysis of thermodynamic information above, the suggestion of resid-

ual structure being a prevalent mechanism in the denatured state of thermophilic

proteins has been illuminated. This structural strategy supports the reduction in

thermodynamic parameters observed in thermophilic proteins (Table 2.1), but does

not speak to the presence any physical underpinnings that would allow residual struc-

ture to occur. Here, we will explore the consequences of electrostatic interactions that

arise from the distribution of charged amino acids in the protein sequence.

Sequence specificity of all biomolecules is central to biological function. For ex-

ample, the particular sequence of amino acids results in a unique and exclusive folded

structure of a protein responsible for a specific function.175 This sequence-structure-

function dogma has driven the protein science community to focus primarily on the

folded states of proteins. However, the unfolded, or disordered, state of a protein

remains relatively unexplored in spite of its importance.162,164,176 The protein disor-

dered state can also exhibit sequence specific properties, that itself hold important

biochemical clues. We know a significant fraction of the eukaryotic proteome is com-

prised of intrinsically disordered proteins (IDP).177 These proteins lack a definite,
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well-defined folded structure, as they are disordered, but are important in biological

regulation and signaling.177,178

The unfolded state is also important to understand the stability of the folded

structure. Thermophilic proteins, those primarily extracted from organisms that

thrive at very high temperatures, are important systems for understanding protein

stability. Thermophilic proteins transition from the folded to the unfolded state at

significantly higher temperatures than mesophilic proteins, those from organisms that

require moderate temperatures for survival. Several lines of investigation15,19,159 lead

to the intriguing possibility that thermophilic proteins may retain residual structures

in their unfolded states. The residual structure in the unfolded state can entail less

entropic loss in transition to the folded state, hence higher fold stability.19,163 A recent

study has also highlighted the role of unfolded protein ensemble in determining folding

rates.179 With these developments, it is now timely to ask how do we quantify the

protein unfolded state? In particular, we need to understand the relative differences

in the unfolded ensemble between two chains having subtle sequence variations.

While molecular simulation studies (MD) have made significant progress in mod-

eling protein folded states, the studies of unfolded proteins are severely limited by

the astronomical number of conformations that a protein molecule can adopt.180 Ad-

vanced computer architectures and novel algorithms are being developed to extend

molecular simulation times.181–183 Despite these advances, computation time still lim-

its the number and size of proteins, and the duration of processes that can be studied

by MD. Although all-atom Monte-Carlo (MC) simulations are relatively faster, and

have been recently employed as an alternate approach to speed up computation,184,185

MC simulations are also not scalable to large collections of proteins.

Theoretical polymer physics, using mathematical formalisms, describe disordered

ensembles efficiently, although approximately, and provide a tempting alternative.

35



Traditional polymer physics is primarily based on a bead-spring model, where identi-

cal beads representing monomers are strung together via springs. When the beads are

identical, they describe homopolymers. Theoretical formalisms, including variational

approaches, have been developed to describe dimensions of homopolymer chains under

good solvent conditions using a uniform value of the excluded volume parameter.186

These models have been extended to describe flexible and semiflexible polyelectrolytes

(uniformly charged polymers).187–191 Several methods have been developed to study

simple random sequences of beads representing few monomer types.192–196 Scaling

arguments and theoretical models have been proposed to describe conformations of

polyampholytes (polymers with both positive and negative charges).192,197–200 Tradi-

tional polyampholyte models rely solely on charge composition, and fail to distinguish

between sequences that have different charge patterning, but same charge composi-

tion. However, it is well known that different sequences with same charge composition

can exhibit different conformational properties.185,201 Models for random polymers av-

erage over different sequences assuming the disorder is annealed. However, a given

protein has a static sequence, hence the disorder is quenched, and the models above

are not suitable.

Polymer physics based approaches193–195,202 have also modeled heteropolymers

with specific sequences of a few monomer types as toy systems. These models, and

other polymer physics based studies, have been successful in inferring general princi-

ples in protein folding.193,194,203–208 However, none of these models have been used to

compute unfolded ensemble configurational properties as a function of the sequence

decoration. Here, we describe a general formalism to compute configurational prop-

erties of a polymer with different types of individual monomers threaded in a par-

ticular sequence in the backbone. Sequence specificity is captured by accounting for

monomer-pair specific interactions describing i) short-range excluded volume interac-
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tion, and ii) long range electrostatics. The excluded volume interaction, represented

by a pseudo-potential,209 effectively accounts for monomer-solvent interaction. This

is particularly relevant to model the protein unfolded state where solution condition

mimic that of a good solvent. However, many other potentials, with a hard core

repulsive term, and a weak attractive component, can also be approximated by a

corresponding pseudo-potential.209,210 These monomer-pair specific excluded volume

parameters can be directly used in our model to describe sequence specificity.

Below, we first present our formalism, and subsequently provide a few applica-

tions of the model. First, we benchmark our predictions against all-atom Monte Carlo

results of Das and Pappu185 for 30 distinct sequences (see Figure 3.1) each having an

equal number of Glutamic Acid (E) and Lysine (K) amino acids, but uniquely dis-

tributed. Next, we demonstrate the large scale application of the model by carrying

out a relative comparison of the denatured state dimensions between 540 orthologous

pairs of thermophilic and mesophilic proteins using sequence charge information only.

3.1 Polymer physics model

The Hamiltonian for a polymer chain in the presence of inter-monomer excluded

volume, and electrostatic interaction is given by209

βHt = − 3

2l

∫ L

0

ds

(
dR(s)

ds

)2

+

∫ L

0

ds

∫ s

0

ds′ω(s, s′)δ[R(s)−R(s′)]

+
lb
l2

∫ L

0

ds

∫ s

0

ds′q(s)q(s′)
exp(−κ|R(s)−R(s′)|)
|R(s)−R(s′)|

(3.1)

where s is the contour length variable in the backbone, R(s) is the position vec-

tor at s, L is the total contour length with l denoting the Kuhn length, T is the

temperature, and kb is Boltzmann’s constant with β = 1/(kbT ). We follow a coarse-
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grained approach where all the atomic details of the amino acid are represented by the

physicochemical properties of a single monomeric unit. Excluded volume interaction

between two monomers at s and s′ is modeled by ω(s, s′). The residue at s carries a

charge q(s) (in the units of electron charge). If fully ionized, q(s) = +1 for an amino

acid with basic side chain, qs = −1 for an acidic amino acid, and zero for neutral

residues. Furthermore, lb = e2/(4πε0εkbT ), with e being the charge of an electron,

and ε representing the dielectric constant of the medium. For water, lb = 7.2Å. We

use Debye-Huckle theory to model the interaction between charges.211 Debye length

is defined as λd = κ−1 = (8πlbcs)
−1/2, where cs is the salt concentration.

Variational approach has been used to determine the average size of homopoly-

mer chains in the presence of inter-monomer interactions.186–188 Within the varia-

tional scheme, we map the Hamiltonian (Ht), with all interactions, to a renormalized

Hamiltonian (Hr) such that

βHr =

(
− 3

2lr

∫ L

0

ds

(
dR(s)

ds

)2
)

(3.2)

where lr is the renormalized Kuhn length, and is a function of the excluded volume

and electrostatic interaction parameters. The ensemble average of some physical

observable A, with respect to the total Hamiltonian Ht up to the first order in (Hr−

Ht), can be expressed as

〈A〉 = 〈A〉r + 〈A〉r〈(Hr −Ht)〉r − 〈A(Hr −Ht)〉r +O[(Hr −Ht)
2] (3.3)

where 〈...〉r denotes averages with respect to the renormalized Hamiltonian Hr, and

〈...〉 denotes average over the original Hamiltonian Ht. Averages are computed over

all possible configurations, and thus involve functional integrals. The effective Kuhn

length lr can be determined by demanding 〈A〉 ≈ 〈A〉r. Therefore, the equation for
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the renormalized Kuhn length is given by

〈A〉r〈(Hr −Ht)〉r = 〈A(Hr −Ht)〉r. (3.4)

The choice of A depends on the quantity of interest. When we are interested in

determining the average end-to-end distance, Ree, we set A = [Ree]
2 = (R(L) −

R(0))2.186 Although this method was originally pioneered by Edwards-Singh186 for an

excluded volume chain, similar calculations were later carried out to describe charged

polymers .187–190 Subsequent work191 has shown the same variational approach can be

extended to determine the ensemble average distance between any two amino acids s2

and s1 by setting A = (R(s2)−R(s1))2. This condition determines the renormalized

Kuhn length lr(s2, s1) for a specific pair of amino acid residues (s2, s1) by demanding

〈(R(s2)−R(s1))2(Hr −Ht)〉r = 〈(R(s2)−R(s1))2〉r〈(Hr −Ht)〉r. (3.5)

Switching from continuous variables s2, s1 to discrete indices i, j for monomers on the

protein backbone, the equation above gives an equation for lr,ij.

We define xi,j = lr,ij/l as the ratio of the renormalized Kuhn length for amino

acid pair (i, j) to the bare Kuhn length l. Equation 3.5 yields an equation for xi,j

(see Reference 129 for detailed derivation):

x
3/2
i,j (i− j)(1− 1/xi,j) =

(
3

2π

)3/2
Ωi,j

xi,j
+

1

9

4πlb
l

2

(2π)2
Qel
i,j (3.6)

where, N ≥ i > j ≥ 1, N is the total number of residues in a chain, and Ωi,j represents
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the excluded volume contribution defined as

Ωi,j =
i∑

m=j

j−1∑
n=1

ωm,n
(m− j)2

(m− n)5/2
+

i∑
m=j+1

m−1∑
n=j

ωm,n(m− n)−1/2

+
N∑

m=i+1

j−1∑
n=1

ωm,n
(i− j)2

(m− n)5/2
+

N∑
m=i+1

i∑
n=j

ωm,n
(i− n)2

(m− n)5/2
(3.7)

We assume, m > n. The electrostatic contribution, Qel
i,j , is similarly defined as

Qel
i,j =

i∑
m=j

j−1∑
n=1

qmqnA(m,n, xi,j, κl)(m− j)2

+
i∑

m=j+1

m−1∑
n=j

qmqnA(m,n, xi,j, κl)(m− n)2

+
N∑

m=i+1

j−1∑
n=1

qmqnA(m,n, xi,j, κl)(i− j)2

+
N∑

m=i+1

i∑
n=j

qmqnA(m,n, xi,j, κl)(i− n)2 (3.8)

with A(m,n, xi,j, κl) as

A(m,n, xi,j, κl) = x
3/2
i,j

[
π1/2

4

(
6

xi,j

)3/2
1

(m− n)3/2

−π
1/2

2
(κl)2

(
6

xi,j

)1/2
1

(m− n)1/2

+
π

2
(κl)3 exp

(
(κl)2xi,j(m− n)

6

)
erfc

(√
(κl)2xi,j(m− n)

6

)] (3.9)
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We now present some limits of this equation. In the limit of zero salt, the

electrostatic contribution in equation 3.6 simplifies to

Qel
i,j =

(6π)3/2

4π

[
i∑

m=j

j−1∑
n=1

qmqn
(m− j)2

(m− n)3/2
+

i∑
m=j+1

m−1∑
n=j

qmqn(m− n)1/2

+
N∑

m=i+1

j−1∑
n=1

qmqn
(i− j)2

(m− n)3/2
+

N∑
m=i+1

i∑
n=j

qmqn
(i− n)2

(m− n)3/2

] (3.10)

In another limit, i = N , j = 1, qi = 1 and ωij = ω, ensuring uniform values of

charge and excluded volume parameters, we recover the results for end-to-end distance

of a flexible uniformly charged polyelectroylte derived by Muthukumar.187 However,

our formalism differs from those theories192 that derive configurational properties as

a function of compositional quantities. These theories do not account for sequence

specificity. Sequence specific theories, such as the one presented here, do not require

compositional variables and higher order correction terms.192 Here, we intend to ap-

ply our formalism for proteins that have non-uniform charge decoration, and amino

acids that can interact with each other in residue-pair specific manner. Values of xij

obtained from the equations above can be used to compute the distance between any

two amino acids i, j as

〈(Ri −Rj)
2〉 = |i− j|l2xij (3.11)

Consequently, the radius of gyration (Rg) can be calculated using

R2
g =

1

N2

∑
i>j

〈(Ri −Rj)
2〉 (3.12)

Equations 3.6, 3.7, 3.8, and 3.9 are the central results of this work. These

equations, along with equation 3.11, completely describe the disordered ensemble for

a given sequence specified by the set of {ωm,n} and {qm}.
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3.2 Results

3.2.1 Model captures all-atom simulation results

Equations 3.8 and 3.9 show chain dimensions can vary with sequence charge

decoration by explicitly accounting for charges qi, qj (on monomers i, j repectively)

and their sequence separation i−j. It is easy to see these terms can vary significantly

between two sequences, even when the sequences share the same charge composition.

Das and Pappu185 recently constructed 30 sequence variants of Glutamic Acid (E)

and Lysine (K) preserving the same composition (25 Es and 25 Ks in a chain of 50

amino acids; see Figure 3.1). They determined the sizes of these different sequences

using all-atom Monte Carlo (MC) simulation.185 We test our model against these

simulation results.
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Figure 3.1: List of 30 sequences studied to test theory against all-atom simulation results
of Das and Pappu.185 Red circle with E denotes Glutamic acid, and black circle with K
denotes Lysine. Sequence indices are noted on the left.
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To predict sequence dependent dimensions, values for the Kuhn length, l, and

the excluded volume parameter, ωm,n, are required. From the Flory random coil

simulations of Das and Pappu,185 the Kuhn length was estimated as l = 5.8Å. To

determine a value for ωm,n, the IS limit simulation radius of gyration calculations from

Das and Pappu185 were utilized. The IS limit captures the “Intrinsic Solvation” of

the polymer chain in the absence of any electrostatic interactions. These simulation

results provide a reference state for a given sequence, and are used to extract the

excluded volume parameter. From IS simulations, we obtain xij,IS defined as the

ratio of the internal distances in the IS limit (〈(Ri − Rj)
2
IS〉) to that in the Flory

random coil state. Then, we assume excluded volume parameters are independent

of the amino acids for a given sequence and choice of residues i, j. This assumption

simplifies equation 3.7, leaving only one parameter for the excluded volume. Inserting

xij,IS into equation 3.6, and assigning Qel = 0, we determine the numerical value of

the mean-field excluded volume parameter. This excluded volume parameter is used

to determine xij in the presence of electrostatics, i.e., non-zero Qel. Here, we compute

sequence specific Qel (in equation 3.8 and equation 3.9) by assuming all charged amino

acids are fully ionized with qi = −1 for Glutamic Acid and qi = +1 for Lysine. The

Debye length is computed using a salt concentration of 15 mM salt, and the Bjerrum

length is assumed to be 7.2Å, consistent with the simulation conditions. Although

slight variations in the dielectric constant, and degrees of ionization are possible from

sequence to sequence, we ignore them for simplicity. Equations 3.11 and 3.12, and

the values of xij determined above are now used to predict the radius of gyration for

each sequence. Figure 3.2 shows the comparison between the predicted values of the

radius of gyration against the simulated results without any fit parameter. Each point

in Figure 3.2 represents a synthetic protein molecule of chain length 50, consisting

of 25 positive and 25 negative charged amino acids in different arrangements (see

43



Figure 3.1). We captured the strong sequence dependence observed in the all-atom

simulations with a correlation of R2 = 0.9. Figure 3.2 (right panel) further shows

comparison between predicted radius values using simplified equation 3.10 in the zero

salt limit against simulated values. This simplified equation also captures (R2 = .94)

strong sequence dependence of radius values.

20 22 24 26 28

Rg
theory

16

18

20

22

24

26

28

30

R
gsi

m

15mM salt

20 22 24 26 28

Rg
theory

16

18

20

22

24

26

28

30

R
gsi

m

 Zero salt 

Sunday, July 19, 15

Figure 3.2: (Left) Predicted radius (Rg in Angstroms) from theory (using Debye length for
15mM salt) is plotted in x-axis against simulation in y-axis for each sequence (shown in
Figure 3.1). (Right) Predicted radius (Rg in Angstroms) from theory (using zero salt limit
equation 3.10) plotted along the x-axis, with simulation along the y-axis for each sequence.
Predicted values have a strong correlation (R2 = 0.9 for the left and R2 = 0.94 for the
right) with the all-atom simulation. Simulated Rg values were obtained from.185

We compute the distance profiles 〈〈Rij〉〉 as a function of the sequence separation,

|i− j| for five illustrative sequences from185(see Figure 3.3). These sequences contain

an equal number of positive and negative charges, but charges are distributed uniquely

per sequence (see Figure 3.1). The values of 〈〈Rij〉〉 were calculated by taking the

average of 〈Rij〉 for different values of i, j for a fixed sequence separation |i − j|.

Thus the inner 〈...〉 denotes averaging over different chain conformations for a given

choice of i, j while the outer 〈...〉 denotes averaging over all pairings of i, j , but for

a given sequence separation |i − j|. We notice non-monotonic behavior of distance

profiles, consistent with the all-atom simulation (Figure 3.4). The non-monotonic
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behavior is significant, both in the simulation and theoretical prediction, for sequences

where positive and negative charges are well segregated forming large clusters of

similar charges. Das and Pappu have provided a scaling argument185 to explain

undulations in these profiles. For short sequence separations the chain does not

experience electrostatic interaction, and behaves like an excluded volume chain before

transitioning to an intermediate length scale where the excluded volume interaction

is suppressed due to electrostatic attractions. Finally, the intermediate region crosses

over to scales where excluded volume behavior between distant chain segments is

restored, but at a smaller effective scale. Figure 3.4 shows a comparison between our

theoretical prediction and the scaling laws (in solid lines) of Das and Pappu.185
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Figure 3.3: Average distances 〈〈Rij〉〉 are plotted against sequence separation |i − j| for
five different sequences 22, 25, 28, 29, and 30. The indexing scheme of these sequences is
same as the one shown in Figure 3.1 and are taken from.185 These sequences were chosen
as illustrative examples to show heterogeneous distance scaling and their dependence on
different sequences.

The model, without any fit parameter, well predicts the relative sizes between

different sequences (Figure 3.2), and internal scaling (Figure 3.3) for a given sequence.
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Figure 3.4: Average distances 〈〈Rij〉〉 from theory (solid squares) are plotted against se-
quence separation |i− j| and compared against simulation (filled circles) for three different
sequences 10 (left), 28 (middle), and 30 (right). Comparison between theoretical prediction
and the scaling function of Das and Pappu 185 is shown (solid lines) for sequences 28 and
30 that exhibit non monotonic profile.

However, our model overestimates Rg values for the sequences where simulated val-

ues of Rg is low (lower left side in Figure 3.2). These discrepancies are noticed for

sequences where positive and negative charges are highly segregated, e.g., sequence

30 (the bottommost sequence in Figure 3.1). For identical sequences, our model also

significantly overestimates internal distance profiles when compared to the results of

all-atom simulation, although the overall profile is qualitatively similar to the simu-

lation (see Figure 3.4).

Those sequences with highly segregated charges may witness the onset of a small

degree of ordering, which can lead to several effects not included in our present model,

causing the observed differences. A possible source of error can stem from the dielec-

tric constant employed in the calculation of lb. Formation of compact structures

in the highly segregated sequences would reduce the dielectric constant compared

to the dielectric constant of water. Furthermore, these highly segregated sequences

may experience the formation of hydrogen bonds observed in the all-atom simula-

tion, but not included in our coarse-grained model. A better agreement with the

model’s predictions to simulation’s results can be obtained by lowering the excluded

volume parameter. The present value of the excluded volume parameter, used to gen-

erate Figure 3.2, is estimated using the IS limit, which does not include formation of
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backbone-sidechain hydrogen bonds. Differences between theoretical prediction and

simulation results for the internal scaling profile of sequence 10 at large separation

(Figure 3.4) can be attributed to the formation of some ordering, leading to short

range interactions not included in the excluded volume parameter.

Variation in the degree of ionization can cause further differences between our

predictions and the observed values in the all-atom simulations. In our analysis,

salt effects have been modeled using the Debye–Huckle approximation with a Debye

length corresponding to 15 mM salt concentration to match simulation conditions.

While our theory reasonably captures simulation results at 15mM (Figure 3.2 left

panel), we notice i) a slightly better agreement with simulation results using the zero

salt limit of our model (Figure 3.2 right panel), and ii) a significant screening at

125 mM, in contrast to simulation for three sequences for which data is available

(comparison data not presented). These results suggest the Debye–Huckle approxi-

mation, due to its mean-field nature, may not be a suitable approximation at high

salt concentration for sequences exhibiting strong charge segregation. Following work

of Muthukumar,210 an advanced model can be envisioned to self-consistently predict

the conformation dependent degree of ionization to address this issue. In summary, it

is possible to further improve agreement between theory and the all-atom simulation

results by taking into account these finer effects with lb, excluded volume parameters,

and degree of ionization as fit parameters. Despite these approximations, the model

is capable of capturing observed differences in the configurational properties due to

subtle variations in the chain sequence primarily due to long-range coulomb inter-

actions. Thus, the presented model can provide insights to intrinsically disordered

proteins where electrostatics strongly influences chain dimension.212,213 Furthermore,

the model may also delineate relative differences between protein sequences that have

subtle variations in their charge decorations, as demonstrated below.
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3.2.2 Thermophilic proteins have more compact denatured

states than their mesophilic orthologs

Using all-atom molecular dynamics to simulate the unfolded state is prohibitively

expensive due to sampling problems. Experimental studies are also limited, and

mostly rely on indirect measures such as changes in specific heat, which is related to

the solvent accessible surface area.214 A more direct approach would be to compare

unfolded state dimensions and configurational properties between a thermophilic and

mesophilic proteins. Thus, we need a model, akin to the one presented here, that

can capture differences in the denatured state configurational properties arising from

subtle differences in the sequence between a thermophilic and a mesophilic protein.

Our analytical model is capable of deciphering such differences in the conformational

properties due to preferential placement of charges between two similar sequences.

Another advantage of our model, being analytical, is its ability to compute configu-

rational properties for many sequences in a high throughput manner. Motivated by

these observations, we apply this formalism to evaluate the relative sizes of the dena-

tured states between thermophiles and mesophiles using sequence charge information

alone.

As an application of the model, we use slightly simplified version of Equation 3.6

by considering only the end-to-end distance in the zero salt limit. The choice of

the zero salt limit is further justified by its performance against all-atom simulation

results in the previous section (Figure 3.2 right panel). We set i = N, j = 1, and
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κ = 0. The simplified equation for x, ignoring the subscripts, becomes

x3/2(1− 1/x) =

(
3

2π

)3/2
1

x

ω

N

[
N∑
m=2

m−1∑
n=1

(m− n)−1/2

]

+
lb
l

(
2

3π

)1/2
1

N

[
N∑
m=2

m−1∑
n=1

qmqn(m− n)1/2

]
(3.13)

We also assumed that the excluded volume parameter is independent of the

types of amino acids, i.e., ωm,n = ω. We further assumed each amino acid to be a

Kuhn segment to avoid complication of ambiguous charge assignment. To find an

empirically reasonable estimate of ω, we analyzed a set of experimentally determined

unfolded state radius of gyration values measured by Hofmann et al.215 This dataset

reported Rg values characterized from different proteins of varied chain length under

native conditions. From this radius of gyration dataset we calculate x for each protein

by taking the ratio of the end to end distance under denatured condition to that of a

Flory random coil. The end to end distance (Ree) is calculated from experimentally

measured Rg values by using R2
g = R2

ee/6. The Flory random coil end-to-end distance

(Ree,frc) is computed as R2
ee,frc = Ll, where L = Nb, b is bond length, and l is the

Kuhn length. We assume b = 0.38nm and l = 0.8 nm215,216 to determine Ree,FRC .

From these calculated values of x, using the parameters mentioned above, and the

simplified equation 3.13, with the electrostatic term set to zero, we acquired a set of

excluded volume parameters (ω). We use the average value, 〈ω〉 = 0.11, to represent a

uniform excluded volume interaction amongst all amino acid pairs during calculation.

A well curated dataset by Fang et al217 consisting of 540 non-redundant mesophilic–

thermophilic protein ortholog sequence pairs was used. In construction of this dataset,

the proteins in each pairing were confirmed to contain the same domains, and trans-

membrane proteins were omitted, leaving strictly soluble, and highly probable true
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ortholog pairs.217 Because the simplified expression for x requires only sequence po-

sitions (m,n) and side chain charges at those positions (qm, qn), the sequence of

amino acids were translated from single letter codes to their respective side chain

ionic charges. Letters D and E representing negatively charged side chains became

-1, positively charged side chains R and K were converted to +1, and all remaining

amino acids were replaced with a 0, leaving pairs of sequences consisting of mixed

zeros and ±1 for analysis.

Solutions for x from solving equation 3.13 represent the relative compaction of

the unfolded state, i.e., the ratio of the unfolded end-to-end distance when including

electrostatics and excluded volume effects to the Flory random coil distance. The

values of x were calculated for each thermophile and mesophile sequence in the 540

ortholog pair dataset. From these values, respective averages of x were calculated

within thermophilic and mesophilic sets. We found averages of 〈xmeso〉 = 1.84 and

〈xthermo〉 = 1.42. The comparison of the averages gives a P–value of 5× 10−15.

A more direct analysis was conducted for each thermophile–mesophile ortholog

pair. For each pairing, the ratio of relative compactness xT of the thermophilic se-

quence to the compactness xM of the mesophilic sequence was calculated, α = xT/xM .

Values of α less than unity reflect those pairs with a more compact unfolded state in

the thermophile sequence. Values of α greater than one show the pairings which have

a more compact denatured state in the mesophile, contrary to our expectation. Here,

we introduce a 5% error in calculation of the α ratio, i.e., if the α fraction is between

0.95 and 1.05, we claim neither the thermophilic nor mesophilic sequence is more or

less compact. This error region is shown in orange in Figure 3.5. With this error,

accounting for inaccuracies that may have resulted for various approximations, we

find 65% of the pairings have a more compact unfolded state in the thermophile, 25%

of the orthologs are more collapsed in the mesophile sequence, and the remaining 11%
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are inconclusive (Figure 3.5). These statistics along with the comparison of averages

(〈xmeso〉 >〈xthermo〉) strongly suggests thermophilic sequences, on average, have more

compact unfolded states than mesophilic proteins.
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Figure 3.5: Results of analyzing ortholog set of 540 mesophile–thermophile pairs from
Fang et al.217 We plot the distribution of the ratios of thermophile relative compactness to
mesophile compactness per pairing. Orange shows the tolerance region between 0.95 and
1.05 accounting for a 5% uncertainty to account for inaccuracies due to approximations.

To investigate the origin of electrostatics in the compactness of the unfolded state

a bit more deeply, we reduced the set of 540 mesophile–thermophile pairs to include

only those that showed an attractive interaction in the electrostatic component of

equation 3.13 in the thermophile sequence of the pairings. This restriction reduced

the set of 540 pairs to 383 ortholog pairs. Repulsive overall electrostatic interactions,

manifest in the last term of equation 3.13 being positive, will not promote reduction

below the reference excluded volume size. Averages of 〈xmeso〉 = 1.66 and 〈xthermo〉 =

1.04 are calculated, and from comparison of the averages gives a P–value of 1.1×10−37.

Here, in head-to-head comparison between two proteins in a given pair with

the ±5% error margin about α = 1, 76% of thermophile sequences had a more

compact unfolded state than their mesophilic partner, 15% of the pairs showed a
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Figure 3.6: Results of analyzing the reduced set of 383 mesophile–thermophile orthologs. We
plot distribution of the ratios of thermophile relative compactness to mesophile compactness
per pairing. Orange shows the tolerance region between 0.95 and 1.05 accounting for a 5%
uncertainty to account for inaccuracies due to approximations.

smaller mesophilic denatured state, while 9% were inconclusive in the orange region

of Figure 3.6. Including the unfolded state attractive electrostatic criteria displays a

stronger discriminator toward reduced compactness in thermophilic proteins.

We have also used experimentally determined unfolded state radius of gyration

under highly denaturing condition measured by Kohn et al.205 to determine the ex-

cluded volume strength (ω), and found the overall statistics to be very similar. Based

on 540 pairs, 〈xmeso〉 = 2.42 and 〈xthermo〉 = 2.1 are calculated, and from comparison

of the averages gives a P–value of 2.2×10−12. Furthermore, we have done our analysis

by lifting the assumption that Kuhn length is equal to the bond length. In the new

analysis, we assume each Kuhn segment to consist of two amino acids, allowing the

possibility that Kuhn length in proteins is roughly twice the bond length.215,216 Net

charge of the Kuhn segments were assumed to be the addition of charges of the two

consecutive amino acids that make the Kuhn segment. This analysis also yielded sim-

ilar statistics highlighting the robustness of our results. For 540 pairs, 〈xmeso〉 = 1.9

and 〈xthermo〉 = 1.3 are calculated, with a P–value of 7.0× 10−16.
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3.2.3 Additional comparison with homolog structures shows

a similar trend

While the above data set was well curated, invoking algorithms to confirm the

sequences contained same domains, possessed high sequential similarity, and were

probably “true” homolog pairs, there was no guarantee of structural similarity. Here,

we will utilize a second data set from Robinson-Rechavi and Godzik218 that consists

of strictly well-aligned thermophilic-mesophilic homolog structures.

This structural set is substantially smaller in size, with only 55 ortholog pairs

of non-hypothetical protein domains. We followed an identical protocol in calculat-

ing unfolded state relative compactness, and we find the average values of 〈xmeso〉

and 〈xthermo〉 to be 1.96 and 1.81, respectively. Furthermore, the ratio α = xT/xM

shows a tendency of reduced compactness in thermophilic structures in 58%, while the

mesophilic unfolded state is smaller in 22%, see Figure 3.7. The remaining structures

fall in the 5% error region highlighted in orange.

Again, we reduced the set of 55 structural homolog pairs to include only those

that showed an attractive interaction in the electrostatic component of equation 3.13

in the thermophile sequence of the pairings, leaving 46 pairs. Averages of 〈xmeso〉 =

1.90 and 〈xthermo〉 = 1.64 were calculated, and from comparison of the averages, a

P–value of 2.3× 10−4 was found.

In head-to-head comparison between constituents of the 46 thermophilic-mesophilic

pairs, 67% of thermophile sequences had a more compact unfolded state than their

mesophilic partner, 20% of the pairs showed a smaller mesophilic denatured state,

while 13% were considered inconclusive in the orange region of Figure 3.8.
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Figure 3.7: Results of analyzing set of orthologous mesophile–thermophile structural pairs
from Robinson-Rechavi and Godzik.218 We plot the distribution of the ratios of thermophile
relative compactness to mesophile compactness per pairing. Orange shows the tolerance
region between 0.95 and 1.05 accounting for a 5% uncertainty to account for inaccuracies
due to approximations.

3.2.4 Thermophilic protein sequences have more segregated

charge distribution

From the above analysis, we realize the relative compactness of protein dena-

tured state is directly related to the negative value of the electrostatic contribution

(second term on the right hand side of equation 3.13). This term accounts for charge

patterning encoded in the sequence. If the excluded volume terms are the same, then

from the zero salt limit (equation 3.13) we notice a simple form of this sequence charge

decoration (SCD) metric that dictates changes in the unfolded state dimensions. SCD

is defined as

SCD =
1

N

[
N∑
m=2

m−1∑
n=1

qmqn(m− n)1/2.

]
(3.14)

Das and Pappu185 have defined a somewhat different charge decoration metric (ζ)

to classify the thirty sequences using the degree of charge mixing. Note, we use a
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Figure 3.8: Results of analyzing the reduced set of 46 mesophile–thermophile structural
domain orthologs. We plot distribution of the ratios of thermophile relative compactness to
mesophile compactness per pairing. Orange shows the tolerance region between 0.95 and
1.05 accounting for a 5% uncertainty to account for inaccuracies due to approximations.

separate symbol ζ than the original symbol (κ) of Das and Pappu to avoid confusion

with the inverse Debye length. Their metric ζ ranks sequences 1 to 30 in increasing

order, indicating sequence 1 has the lowest degree of charge separation (ζ = 0),

while sequence 30 has the highest degree of charge separation (ζ = 1) .185 As a test

of our proposed charge patterning metric, we compared SCD against the empirical

charge decoration metric (ζ) of Das and Pappu,185 and noticed a strong correlation.

Figure 3.9 shows SCD is indeed highly correlated to ζ indicating highly negative SCD

implies higher degree of charge segregation. Furthermore, based on our proteome-wide

analysis, we realize highly negative values of SCD lead to reduced denatured state

dimensions. These two findings together suggest more compact denatured states in

thermophiles may arise from relatively high degree of charge segregation (negative

value of SCD) in thermophiles than in mesophiles.
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Figure 3.9: Charge segregation metric ζ introduced by Das and Pappu (termed κ in their
work) correlates well (R2 = 0.95) with a sequence charge decoration metric SCD defined in
equation 3.14. Each point corresponds to a sequence in Figure 3.1.

3.3 Conclusion

To summarize, based on charge decoration alone, we find thermophilic proteins

have more compact denatured states compared to their mesophilic counterparts. This

observation is in line with two independent observations made by earlier studies: i)

thermophilic proteins have more residual structure in their unfolded state, and ii)

electrostatics plays a key role in thermophilic adaptation. Furthermore, we notice

a primary mechanism to achieve this is by promoting effective attractive interaction

in the thermophilic sequence quantified by the negative values of the electrostatic

contribution in equation 3.13. A closer inspection further reveals that about 86%

of the protein pairs within this set also have lower net charge for thermophiles than

mesophiles. These observations, taken together, imply charge balance,87 is a neces-

sary condition to impart residual structure in thermophilic unfolded state. Although

necessary, charge balance may not be sufficient, as different sequences can be cre-
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ated with varying contribution to the electrostatics component in equation 3.13 while

maintaining the same net charge.185 Similar conclusions, highlighting the importance

of specific patterning of charges, were also drawn describing the role of dielectric in

thermophilic adaptation.87 Further, introducing a charge patterning metric, SCD,

we find thermophiles, on average, may have more segregated charges. We reiterate

that the sequence patterning, in addition to the composition, of charges is crucial for

thermophilic adaptation.
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Chapter 4

Convergence of All-Atom

Biomolecular Simulations

Properties of the protein native state will be investigated by utilizing long time

scale, room temperature molecular dynamics simulations. Most previous studies used

relatively short simulation trajectories, with little attention paid to quality of sam-

pling, leaving the reported observables unreliable, or artifacts of inadequate sampling.

Therefore, we will introduce a novel technique to test the convergence of molecular

dynamics simulations that allow the sampled trajectories to be claimed as adequately

sampled and self-consistent.130

Ensuring convergence in biomolecular simulations is necessary to guarantee the

quality of data. How long must one simulate to ensure convergence? As simulation

time Tsim approaches infinity, the value of an observable A derived from such a long

trajectory should settle to a constant value A0 (defined as “true” for subsequent

discussion). However, the notion of infinity does not exist in numerical simulation.

Consequently, the argument above is often reversed, and the resolution seems to rely

on the constancy of the observable (A) for a sufficiently long time. The notion of
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“sufficiently long” is vague, and there is no way of knowing whether A has reached

the “true” value without knowing A0, a priori. Thus, different tests for convergence,

without the knowledge of the “true”, have been devised to quantify “how long is

sufficiently long”?

While some convergence tests are specific to individual observables, others are

global, and try to ensure convergence of the system irrespective of any particular

observable. For a good discussion on single observable error estimations, and global

convergence assessment methods, see the review by Grossfield and Zuckerman.219

However, as repeatedly stated,219–223 none of these tests can guarantee “true” con-

vergence, instead they can only provide a “self-consistency” check (SCC) of the sim-

ulation. The demand of self-consistency can significantly vary in complexity, and

consequently in the requirement of different lengths of simulation trajectories for a

given protein. Perhaps the most simple of these criteria is from Smith, Daura and van

Gunsteren (referred to as SDVG)),224 which demand simulation trajectories should

be sufficiently long such that it has explored all possible conformations. In subse-

quent work, Lyman and Zuckerman220 (termed LZ for future reference) has shown

an inadequacy of this criteria. According to the LZ criteria, in addition to the con-

stancy in the total number of found clusters, one must ensure these clusters have been

adequately populated. This is enforced by demanding the cluster probability distri-

butions from the first half and the second half of the trajectory match within some

error. Clearly, this is more stringent than just demanding that all of the clusters have

been visited. Hess has provided a separate criteria altogether by using a principal

component analysis (PCA) that does not depend on the definition of clustering.225

Accordingly, self-consistency is determined by monitoring a metric quantifying the

covariance overlap of the eigenvalue spectrum between the full and partial subsets

of the trajectory. Because the comparison is made with respect to the end of the
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simulation, the metric always tends to unity regardless of the length of the trajec-

tory. In more recent work, Romo and Grossfield223 have proposed a Block Covariance

Overlap Method (BCOM) to monitor self-consistency by determining the slowest re-

laxation time scale. According to this analysis on GPCR proteins, microsecond (µs)

long simulation trajectories could not be considered converged. While the SDVG,

Hess criteria, and other PCA based criteria have been tested frequently by numerous

researchers,226–233 the LZ criteria has only been tested in folding-unfolding simulation

of small peptides. It was shocking to realize that for such a small system, hundreds of

nanoseconds of simulation were required to satisfy LZ criteria.220 This raises a natural

question: what time scales are required to satisfy the LZ criteria in simulating real,

globular proteins?

One of the primary applications of molecular simulations of proteins is in pre-

dicting the folded structure, and the associated convergence criteria can be different

than that for studying only native state properties. For example, Lin and Shell pro-

posed to monitor the highest populated cluster which is relevant to ensure folding to

the correct structure.234 While the majority of the studies mentioned above, with one

exception,223 have mostly focused on convergence in folding-unfolding trajectories,

studies of convergence for folded state simulations are rare. Analyzing native state

properties is also important in protein science; for example in the studies of substrate

and ion binding/unbinding,235–237 effects of mutation on dynamics,51,229,238 structural

stability and flexibility,229,230,239,240 and function.181,241–244

Molecular dynamics simulations of protein native states have also been exten-

sively applied to understand the role of the native state in thermophilic adaptation.

Studies have claimed thermophilic protein native states have higher rigidity compared

to their mesophilic counterparts,50,54,55,245,246 while others have investigated the role

of ion pairs in thermophilic proteins.61,63,79 A higher dielectric constant86,87 in the
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thermophilic folded state have also been associated with high temperature tolerance.

Ensuring convergence, and adequate sampling to deduce such claims is important.

It is tempting to assume folded state simulations may be relatively easy com-

pared to folding-unfolding studies that are faced with a highly heterogeneous ensem-

ble. However, work by Romo and Grossfield223 have suggested, for GPCR proteins,

microsecond long simulations may not be sufficient to pass the BCOM self-consistency

check. Given these demands and expectations, it is now timely to ask: how long does

it take to establish convergence in native state simulations of real globular proteins?

Here, this issue will be critically examined by systematically studying multiple pro-

tein trajectories (at 300 K) subjected to multiple self-consistency check criteria. The

following systems were chosen: the 1ms simulation of BPTI of Shaw et al;247 and

from our own lab, a 20µs trajectory of the cold shock protein (CSP) in implicit sol-

vent, a 12µs simulation of CSP, a 7µs of CheW, and a 2µs trajectory of CheA all

in explicit solvent. The length of the simulation needed to satisfy the same self-

consistency criteria varied significantly between proteins. Simultaneously, for a given

protein, there is significant variation among the different SCC criteria. For example,

the implicit simulation of CSP may pass the SDVG criteria after 2µs, but does not

pass the self-consistency criteria of LZ or BCOM after 6µs of simulation.

Why do systems vary significantly in their convergence time requirement? While

the answer to this question fundamentally lies in the sequence-structure-function

properties of the protein, it has been observed that a given protein may visit a par-

ticular state more frequently than other states, exhibiting a trap-like feature in these

long simulations of the native state. In order to detect such traps in the simulation,

an additional self-consistency metric is introduced that is more reliant on the cluster

probability distribution that is more stringent than the SDVG criteria. This metric

is based on the constancy of the cluster entropy (termed as CCE) of the cluster prob-
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ability distribution. It is true that an adequate sampling must find as many clusters

available, but the proper sampling of these states is equally important. A simple cal-

culation to inspect the trajectory sampling is to calculate the entropy of the cluster

probability distribution. If the simulation has settled to a stable distribution, the plot

of the entropy as a function of time will be relatively constant. However, substantial

changes to the entropy plot, as seen in many of the protein systems presented be-

low, reflect large changes in the probabilities of the discovered clusters. One primary

advantage of this metric is to ensure if a protein is “stuck” in a metastable state

not detected by the SDVG criteria alone. Also, some of the algorithms designed to

determine decorrelation times, including those based on kinetic clustering,248 do not

detect these traps. Therefore, one should constantly monitor CCE, and if a trap is

detected by a continuous decrease in cluster entropy, the simulation should either be

allowed to continue until the entropy stabilizes, or the simulation should be aborted.

In summary, as a first assessment of adequate sampling, the number of discovered

clusters must first reach a constant value. Second, the cluster entropy should be

stable, as changes to the entropy reflect large changes in the underlying probability

distribution. Once this dual criteria is ensured, more rigorous testings of convergence

can be imposed. And as a forewarning, this process may require tens of microseconds

for native state simulations of globular proteins.

Below, the performance of multiple self-consistency criteria (SCC) from our sim-

ulations of CheW and CheA in explicit solvent, and CSP in implicit solvent are

presented. Finally, the 1ms BPTI simulation of Shaw et al,247 and our own 20µs

trajectory of CSP in explicit solvent are analyzed, and the relative performances of

SCCs to reveal insights about regions of self-consistency and its non-equivalence to

“true” convergence.
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4.1 Materials and Methods

4.1.1 Computational Setup

The 167 residue chemotaxis protein W (CheW) from E. Coli, the 105 amino

acid phosphotransferase domain of chemotaxis protein A (CheA) from Thermotoga

Maritima, and the 73 residue cold shock protein (CSP) from Thermus Thermophilus

were chosen as model systems. Initial coordinates were taken from Protein Data Bank

(PDB), specifically PDB IDs 2HO9249 for the structure of CheW, 1TQG250 for CheA,

and 3A0J251 for the CSP structure. All non-protein atoms, including crystallographic

waters and structural hydrogens, were removed. Protonation states of histidine side

chains were predicted with H++ ( http://biophysics.cs.vt.edu/H++).252–254 Using

TLEAP, protein hydrogens and neutralizing ions were added. For the explicitly sol-

vated systems, a cubic box with TIP3P255,256 water molecules with a 9Å buffer region

was used giving 6436 water molecules in CheW, 4432 in CheA, and 3833 in CSP. The

system solutions were energy minimized for two cycles using the SANDER module

of AMBER 14. The first cycle held the protein constant with harmonic restraints to

minimize poor steric positions of the solvent. The restraints were lifted, and a second

cycle of minimization allowed the entire solution to adjust to a local minima.

For explicit solvent CheW, CheA , and CSP systems, simulations were performed

with the GPU-accelerated PMEMD module of AMBER 14257 using the ff99SB force

field,258 periodic boundary conditions, and SHAKE259 to constrain the lengths of

bonds that include hydrogen atoms to their equilibrium lengths. A 9Å cutoff was

chosen for the direct sum, non-bonded interactions, and the Particle Mesh Ewald

method260–262 was used to calculate long-range electrostatics. After energy minimiza-

tion, solvent molecules were heated gradually to 300K over a 100ps period at constant

volume. The entire system was equilibrated for 5ns at constant temperature and pres-
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sure, allowing the volume to change to adjust the system’s density. Simulations were

performed at constant temperature (300K) and pressure (1atm) by employing the

Langevin thermostat and Berendsen barostat, respectively, with a 2fs time step, and

structural conformations saved every 10ps.

The implicit solvation simulation of CSP also utilized the GPU-accelerated PMEMD

module263 with the ff99SB force field, SHAKE, and Langevin thermostat, but with

no cutoff for non-bonded interactions. System was again energy minimized for two

cycles, heated to 300K, and equilibrated for 5ns. Production simulation was carried

out at 300K, with a 2fs time step, and structural coordinates were written every 10ps.

4.1.2 Clustering

The cluster command within the CPPTRAJ module of Amber264 was used to

cluster all simulation trajectories. The agglomerative, average-linkage algorithm was

employed.265 In summary, each structure begins in its own cluster, and pairs of clus-

ters are combined only if the average distance between all points of inter-cluster ele-

ments are less than the preselected distance cut-off (dc). From this clustering module,

it was possible to quantify the rate of new cluster discovery, and cluster occupancy

as a function of simulation time. For clustering and PCA based analysis, we use

cartesian representation. This is justified for folded state studies where decoupling of

internal motion and rotational motion is possible, unlike folding-unfolding simulations

where internal coordinates are preferred.266

4.1.3 Convergence inspection protocol

In the cluster counting criteria termed as SDVG, a trajectory is considered con-

verged as the rate of discovery of new clusters approaches zero.224 The LZ method
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imposes further constraints by demanding the first half of the trajectory’s probability

distribution must agree with that derived from the second half of the trajectory.220

For monitoring the constancy of the cluster entropy (CCE), we compute
∑

i pi log(pi),

where pi is the probability of the ith found cluster, as a function of simulation time.

To more rigorously assess sample quality, two methods from the Zuckerman

group were used to estimate a simulation’s decorrelation time. The first method

partitions a trajectory by constructing a histogram from randomly chosen reference

states, and from subsamples taken from the trajectory, a variance is calculated from

the histogram’s bin populations observed in the subsamples. By comparison to the

variance expected if the histogram bins consisted of fully independent and uncorre-

lated structures, a decorrelation time (τd) is estimated.222 The second method again

partitions the trajectory, but then finds physical states by merging histogram bins

with high rates of exchange.248 From physical state probabilities within blocks, an

effective sample size, and therefore a decorrelation time (τ ′d) is calculated.267 Ad-

ditionally, we utilize the Block Covariance Overlap Method (BCOM) of Romo and

Grossfield223 which calculates the average covariance overlap of Principal Component

Analysis (PCA) results from individual contiguous trajectory blocks of a given size to

the PCA results of the full trajectory. The covariance overlap metric has a range of

values from zero (completely dissimilar fluctuations) to one (identical fluctuations).

For well-sampled simulations, larger trajectory blocks should possess similar fluctu-

ations. Therefore, the average overlap is expected to approach unity for increasing

block sizes. The average covariance overlap for each block size is normalized by the

covariance value if the blocks consisted of fully uncorrelated structures found by boot-

strapping the trajectory frames. The inverse of the normalized ratio is expected to

decay to one as the block size is increased. All of the aforementioned assessment tools

(τd, τ
′
d, and BCOM) were calculated with the LOOS convergence package.268
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Systems were initially simulated for one microsecond, and the SDVG, LZ, and

CCE convergence tests were imposed. For the SDVG criteria to pass, we demanded

that no new clusters were discovered in final 500ns of simulation, and for the CCE

metric to be satisfied, we wanted the largest percent difference in entropy in the same

500ns block, to not be greater than 5%. If this dual criteria was not met, trajectories

were extended for an additional 500ns, and again tested for convergence. For this

work, we will analyze explicit solvation simulations of CSP (12µs), CheW (7µs),

and CheA (2µs), and an implicit solvated 20µs trajectory of CSP, in addition to 1

ms of BPTI simulation in explicit solvent.247 With our in-house hardware, running

on an individual graphics card, we achieve nearly 450ns/day on the GPU-accelerated

AMBER code for the implicit CSP system. For comparison, running the same system

simulation on an 8-core CPU machine, we record 11ns/day.

4.2 Results and Discussion

4.2.1 Convergence of the cluster probability distribution can

be highly demanding

We critically assess the convergence of a simulation trajectory to determine the

time scales required to adequately sample realistic globular proteins.

Explicit solvent simulation of CheW

First, we present the 7µs explicit solvent trajectory of CheW, following the sim-

ulation methodology outlined above. Per the convergence inspection protocol, and

clustering with a 1.5Å cutoff, the simulation did satisfy the SDVG criteria, but com-

parison of the first half to second half cluster probability distributions show a large
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disparity in the sampling of the discovered states, and therefore not passing the LZ

criteria (Figure 4.1, left and middle). Also, the trajectory does not pass the BCOM

criteria, as we expect the values of the BCOM analysis to approach those from the

bootstrapped BCOM, and the ratio of bootstrapped BCOM-to-BCOM to approach

unity at larger block sizes (Figure 4.2). 1
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Figure 4.1: Results of convergence tests for the CheW explicit solvent simulation at7µs. Left
panel shows number of clusters versus simulation time (SDVG method), where clustering
was calculated with dc = 1.5Å. Middle panel shows histogram of cluster occupancy of the
most occupied clusters (LZ method). The first half (red) to second half (black) occupancy
comparisons show large discrepancy between cluster populations. The CCE assessment is
displayed in the right panel.
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Figure 4.2: Results of Block Covariance Overlap Method (BCOM) analysis of CheW 7µs
trajectory. Left panel is direct calculation of covariance overlap using contiguous blocks
(black curve) and bootstrapping (red curve) at given block sizes. Converged trajectories
would show the contiguous BCOM approaching values from bootstrapped BCOM in the
large block size limit. Right panel shows the ratio of bootstrapped BCOM to blocked
BCOM, and this curve is expected to decay to one as block size is increased.

To gain further insights to the lack of convergence, we investigate the relative

stability of the distribution by monitoring the cluster probability distribution entropy
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(
∑

i pi log(pi), where pi is the probability of state i) as a function of the simulation

time. The rationale is, if the underlying configurational distribution is not changing

substantially, the entropy plot should be stable and constant between T − t and T ,

with T being the total simulation time. We call this constancy of cluster entropy

(CCE) criteria. Here, the cluster entropy exhibits a significant decrease between 1.25

and 7µs (see Figure 4.1, right). A continuous decrease in the entropy indicates: i)

the simulation is yet to settle to a stabilized state population, and ii) the distribution

is getting heavily biased towards one state with the progression of the simulation.

Examination of the cluster probability distribution shows not only a substantial dif-

ference in the distributions, but in the second half of the simulation, one particular

state accounted for a very large portion (≈ 90%) of the 3.5µs of sampling. Also, by

plotting the state probabilities as a function of simulation time (see Figure 4.3), we

see decaying occupancies in all but one state, verifying the bias.
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Figure 4.3: Probabilities of the top 20 most occupied clusters as a function of simulation time
for the 7µs simulation of CheW. The number of clusters, and their respective populations,
are found using a dc = 1.5Å. Cluster 1(the most populated state) was approximately the
only sampled state starting at 1.1µs.

To ensure there is no dependency on the choice of the clustering distance cutoff

(dc), we clustered and analyzed the 7µs trajectory for three unique values of dc, and

found the qualitative features of the results remain unchanged. These graphs are

shown in Figures A.1 and A.2.
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Would the presence of traps in a trajectory be associated with long decorrelation

times? It is natural to expect decorrelation time estimation would perhaps be able to

detect these traps. To this end, we estimate the decorrelation times, and therefore,

an error bar by calculating the effective sample size from the ratio of the total tra-

jectory length and the decorrelation time.222,223,267 We use two separate algorithms

to determine the two decorrelation times, τd and τ ′d, where the latter is based on the

kinetic exchange partitioning248,267 (see Methods for details). Both of these estimates

report a modest error of 12-19% (see Table A.1) while the trajectory itself does not

pass self-consistency check criteria using LZ, BCOM, and CCE. Clearly, the lack of

convergence and the presence of traps are not necessarily detected by decorrelation

times. Unlike other SCC tests, monitoring CCE can quickly identify whether a simu-

lation is being heavily biased towards one state, and can therefore serve as a potential

decision maker to choose between continuing the simulation, or aborting and starting

a fresh simulation.

Explicit solvent simulation of CheA

To further investigate the advantage of monitoring CCE metric, we next consider

the trajectory of the phosphotransferase domain of chemotaxis protein A (CheA) in

explicit solvent. Simulation and convergence inspections are identical to the CheW

simulation above. Within 500ns, the number of found clusters has reached a plateau,

and the system proceeds for another 500ns (total of 1µs) without the discovery of a

new state (Figure 4.4, left panel). However, similar to CheW, the cluster distribution

entropy plot shows large changes throughout (Figure 4.4, right panel), implying the

configuration distribution is not settled, and the trajectory has failed to pass the CCE

criteria. Not surprisingly, the cluster occupancy histogram shows large discrepancies

between the first and second-half of the trajectory (Figure 4.4, center panel).
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Figure 4.4: Results of convergence test for the CheA simulation after 1µs. Left panel shows
number of clusters at dc = 1.5Å versus simulation time (SDVG), and right panel shows
entropy evolution (CCE). The middle panel shows the histogram of cluster probabilities of
found clusters (LZ). The first half (red) to second half (black) occupancy comparisons show
large discrepancy between cluster populations.

For the longest CheA simulation (2µs), the SDVG criteria is again easily satisfied

(Figure 4.5, left). The cluster entropy now shows stabilization in the last 0.5µs,

indicating stabilization of the distribution in the last 500 nanoseconds out of a total

of 2µs (Figure 4.5, right). The results of the LZ criteria show an improvement in

cluster occupancies for the most occupied cluster in the trajectory (Figure 4.5, center).

However, the large discrepancies in the occupancy in the next few most populated

clusters remain, and this simulation would not satisfy the LZ criteria. Both of the 1

and 2µs trajectories were subjected to the self-consistency criteria test using BCOM

(Figure A.3). The trajectory fails to satisfy BCOM criteria, although it slightly

improved for the 2µs trajectory when compared to 1µs simulation. The analysis

reiterates the strategy that one must first ensure passing of CCE and SDVG before

imposing more rigorous tests. Decorrelation times and error bars are reported in

Table A.1.

Implicit solvent simulation of Cold Shock Protein

The test cases presented above show the need for longer simulations in order to

investigate the more stringent self consistency checks. Compared to explicit solvent

simulations, large scale sampling results can be obtained in shorter times using im-
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Figure 4.5: Results of convergence test for the CheA explicit simulation at 2µs. Left panel
shows number of clusters versus simulation time (SDVG). Center panel shows histogram of
cluster occupancy (LZ method) of found clusters, and their comparison between the first
(red) and the second half (black). Right panel shows time evolution of the cluster entropy
(CCE) which is relatively constant in the last 0.5µs.

plicit solvent simulations. Motivated by this, and its relatively smaller size, the cold

shock protein (CSP) from Thermus Thermophilus was simulated in implicit solvent

to serve as a third test case, different from the two explicit solvent systems presented

in the preceding sections. For the implicit CSP system, we see after 1.3µs, the sys-

tem has found all unique clusters (Figure 4.6, left), and the simulation continues to

2.5µs without the discovery of any new clusters, easily satisfying the constant clus-

ters protocol of SDVG. However, when we compare the cluster population between

the first and the second-half of the trajectory according to LZ criteria (Figure 4.6,

middle), we see the simulation is far from convergence. The trajectory also shows a

pronounced decrease in the cluster entropy, dropping 25% in the last 1µs (see Fig-

ure 4.6, right), reiterating an unsettled distribution, and a simulation that has not

reached convergence.

How much longer must the trajectory proceed to satisfy the CCE criteria? The

simulation was repeatedly extended in hopes the probability distribution would sta-

bilize, and the CCE criteria would be satisfied. From the previous 2.5µs time stamp,

the simulation required a total simulation time of 6µs to converge in both SDVG and

CCE methods, but did not satisfy the LZ method. Figure 4.7 shows the analysis of

the three SCC criteria from the 6µs trajectory. The cluster entropy (Figure 4.7, right)
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Figure 4.6: Results of convergence test for the CSP implicit simulation at 2.5µs. Left panel
shows the number of clusters versus simulation time with a clustering dc = 1.5Å. After
1.3µs, no new clusters are found, and the simulation is considered converged in the SDVG
criteria. Middle panel shows histogram of cluster occupancy and their discrepancy between
the first half (red) to second half (black) of the trajectory. Right panel plots the entropy of
cluster distribution with time indicating unsettled cluster probability distribution.

reflects the ongoing changes to the probability distribution up to 4µs, and afterwards,

approached a constant.
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Figure 4.7: Convergence tests for a trajectory of 6µs of CSP. The left panel shows the
number of clusters is constant near the end of the simulation, satisfying the SDVG method,
but the center histogram shows the discrepancy in cluster occupancy between the first-
half and second-half of the simulation. The right plot displays the entropy of the cluster
probability distribution as a function of simulation time which stabilized after 4µs.

It is important to note, that we cannot guarantee the distribution will remain

unchanged if simulation is extended. We can say, assuming the 6µs simulation is

all the information we possess, the trajectory has discovered all of its clusters, and

is sampling the cluster probability distribution without any trap for the last 500

nanoseconds. Results of BCOM analysis for this trajectory are shown in Figure A.4.

The error bars for 2.5 and 6µs long trajectories were computed by determining the

decorrelation times, and are reported in Table A.1. Again, we see these decorrelation

times are reasonable, and do not give us any indication regarding traps.
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4.2.2 Comparison of observables at different timescales using

Cold Shock Protein Implicit solvent simulation

We present a comparison between the CCE and SDVG criteria in predicting spe-

cific observables. As illustrated, the 2.5µs CSP simulation is sufficient to pass SDVG

criteria, while the CCE criteria is satisfied after 6µs. We set our longest simulation of

implicit CSP (20µs) as the “gold standard”, and explore the difference between cal-

culated observables from different length trajectories that passed convergence tests

at different time scales, and the “gold standard”. This would provide a sense of

performance of different convergence criteria, particularly with SDVG and CCE.

We evaluate the performance against contact maps, or probabilities of different

contacts, that are often used to gain insights.269,270 For this analysis, a contact is

defined as two Cα atoms separated less than 8Å, and we calculate the probability

that a given residue pair i, j form a contact k. For three simulation times of interest

(2.5µs, 6µs, and 20µs), we calculate the contact probability for all possible i, j residues

pairs, where j ≥ i + 2 to remove nearest neighbor effects. The contact probabilities

are denoted by Pk for the k contact. The Pk values are sorted with respect to the

“gold standard” probabilities, and plotted in Figure 4.8. The dispersion about the

20µs curve reflects the varying probabilities the simulations produce for the same

contact. However, it is qualitatively evident the dispersion is substantially reduced

in the 6µs data when compared to 2.5µs trajectory.

To better quantify the dispersion when comparing the shorter time scale simu-

lations to the “gold standard”, the contact probabilities (Pk) from the 2.5µs and 6µs

simulations were directly compared to that of the 20µs trajectory. Ideally, this com-

parison should be linear plot with a slope and an R2 both equal to one (Figure 4.9).

For the 6µs long trajectory satisfying CCE criteria, the R2 value is 0.89; and for the
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Figure 4.8: The probability of contact between amino acids i, j, indexed as k, for different
simulation time scales; 20µs in black, 6µs in orange and 2.5µs in blue. The probabilities
are sorted with respect to the 20µs simulation.

2.5µs long trajectory satisfying SDVG criteria, R2 is 0.63.
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Figure 4.9: Direct comparison of contact probabilities from CSP simulations of shorter
length (2.5µs, left panel, and 6µs, right panel) to those of the longest available trajectory
of 20µs. Each data point represents the same i, j contact in both simulation time scales,
but with differing probabilities. The reduced scatter evident in the 6µs simulation, with
respect to the shorter 2.5µs trajectory, displays the improvement in the contact observ-
able calculated from simulations passing CCE convergence criteria compared to the SDVG
method.
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4.2.3 Shortcomings of CCE convergence criteria

Calculating the entropy of the cluster probability distribution can help determine

whether the trajectory is sampling the underlying probability distribution fairly, and

in particular, it can help detecting kenetic traps. Furthermore, the above analysis of

physical observables, and their comparison with the “gold standard”, clearly shows

the advantage of satisfying CCE criteria with respect to the SDVG method. However,

the use of the CCE convergence metric has its limitations, and can be sensitive for

some observables.

First, CCE is a necessary condition, but not sufficient, i.e. CCE alone cannot

determine whether a trajectory is “truly” converged. Instead, this metric can only

say the simulation is not converged. For example, after 6µs of simulation with CSP

in implicit solvent, while the entropy is beginning to stabilize, the probability dis-

tribution does not pass LZ criteria (Figure 4.7), and the trajectory fails to pass the

BCOM criteria (see Figure A.4).

The second caveat of the CCE method, and like many other existing convergence

criteria, is that it can only provide an assessment of the presented information as

whether adequate sampling has occurred. Any addition to the simulation may explore

new phase space, consequently change the underlying distribution, and convergence

will be lost in certain metrics. As an example, when applying the convergence test

of Hess225 in which we examine the covariance overlap (Ω) between 6µs and 20µs

principal components of the implicit CSP simulation, we see a value of 0.69 (see

Figure 4.10). For this metric, a value of zero reflects totally dissimilar fluctuations,

and a value of unity is completely identical. Although, the metric is higher at 6µs

(time scale needed to pass the CCE criteria) compared to 2.5µs where SDVG criteria

passes, the addition of 14µs to the trajectory after claiming convergence by the CCE

metric displays a disparity in fluctuations as shown in Figure 4.10.
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Figure 4.10: Covariance overlap225 of the implicit CSP trajectory relative to principal
components of 20µs long trajectory. The comparison between 6µs (where CCE criteria was
satisfied), and the “gold standard” shows the discrepancy in fluctuations, giving Ω = 0.69.

4.2.4 Long simulations show self-consistency is not equiva-

lent to “true” convergence

As has been already alluded to above, the different convergence criteria are only a

test for inherent self consistency, albeit at different levels of rigor and complexity. But

the question remains, if we claim a trajectory is converged for a given simulation time,

using one or all of these criteria, does it stay converged if we extend the simulation? If

results are unchanged upon further extension, as is expected in the infinite limit, then

we can claim “true” convergence. To adequately compare “self consistency check”

(SCC) with “true” convergence, it is clear that very long simulations are needed. Here,

the hallmark 1 millisecond simulation of native state BPTI247 will be utilized to test

SCC at multiple time scales, and test the hypothesis of “true” system convergence.

Convergence tests were carried out at microsecond iterations of simulation for

the first 15µs. The trajectory was clustered with the same algorithm and cutoff

(dc = 1.25Å) after each addition of a microsecond to the simulation. After 15µs,

convergence was checked at larger iterations, but the same clustering algorithm and

cutoff were used. Therefore, we could visualize the convergence behavior of BPTI over

many time scales consistently. After just 2µs of simulation, the trajectory satisfies
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both SDVG and LZ criteria (Figure 4.11, left and middle panels). Also, the introduced

criteria of CCE displays a constant value in the final 1µs (see Figure 4.11, right). If no

further information regarding the simulation was known, one could safely claim the

native state space for BPTI was adequately sampled within 2µs, i.e. a self-consistent

region of the trajectory was found.
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Figure 4.11: Convergence criteria satisfies at 2µs of the 1millisecond BPTI simulation. Left
graph shows the evolution of the number of clusters (SDVG method), middle graph shows
cluster histogram comparison (LZ criteria), and the right graph shows time dependence of
the entropy of the distribution (CCE).

It is worth noting, the BPTI system satisfied both the LZ criteria seen in Fig-

ure 4.11, and the BCOM method (see Figure A.5) within a relatively short simulation

time. Comparing these results to the earlier analysis of our own implicit CSP system,

which is similar in size (58 amino acids in BPTI, and 73 in CSP), displays significant

protein-to-protein variation of simulation, and the inability to predict the necessary

simulation time scales for adequate sampling.

Interestingly, after discovering the self-consistent regime at 2 microsecond, three

more time scales were discovered in which the trajectory discovered unique self-

consistent regions (15µs shown in the top panel in Figure 4.12, 30µs in the middle

panel in Figure 4.12, and 800µs in the lower panel). The figures show at two of these

time points (15 and 30µs), both the SDVG and LZ criteria were satisfied, and the

cluster entropy (CCE) also remained stable for a sufficiently long time. Furthermore,

the BCOM criteria was well satisfied for both 15 and 30µs time scales (Figure A.5),

and error bars were also significantly lower (see Table A.1).
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Figure 4.12: Differing time scales of the multiple self-consistent regions in the 1ms BPTI
simulation. Top row: 15µs; middle row: 30µs; bottom row: 800µs. At each time scale, the
SDVG criteria is satisfied, but as the time scale is increased, more unique states are found.
Structural histograms for 15µs and 30µs show convergence, but 800µs is noisy. Cluster
entropy at each time cutoff seems to exhibit a constant value.

The discovery of new regions of self-consistency outside of the original 2µs tra-

jectory is alarming. Each extension of trajectory introduces new clusters, and starts

exploring states with different weights. The cluster probability distribution plots

(middle column of Figure 4.12) show the distribution is changing as more simula-

tion time is considered, specifically the first most occupied state whose weight is

decreasing as additional clusters are discovered. As we consider these SCC regions

independently, convergence test demands are met, but these regions are not equiva-

lent. With the addition of sampling to the trajectory, we enter into new regions of

native state space, after we claimed shorter time scale simulations have converged.

We observe a large and fast increase in the number of clusters after 15µs and 30µs
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time stamps that could be a result of protein dynamics (see Figure 4.12, left column).

For example, the first change in the chirality of the cysteine14–cysteine38 disulfide

bridge just after 30µs allowed the simulation to access unexplored structural configu-

rations247 (see Figure A.6for the chirality dependent states). Therefore, the presence

of SCC region is not a guarantee of “true” convergence, and if we had indeed achieved

true convergence, no new SCC regions would have been discovered.

Is the BPTI simulation capturing motions that require long time scales to ob-

serve? Quick convergence at relatively short time scales (2µs) is indicative of the

protein sampling small energy barriers that separate local minima, but as the sim-

ulation continues, the large energy barriers that are difficult to overcome in small

time scales,271,272 are passed. Therefore, we observe large increases in the number of

clusters after 15 and 30µs, suggestive of sampling newly discovered space blocked by

large energy barriers.

Is the observation of multiple regions of self-consistency an artifact of BPTI or

a hallmark of long time simulations? Our much smaller, 12µs simulation of CSP in

explicit solvent also yielded a region of self-consistent convergence that disappeared

as simulation was extended. The first SCC region occurred within 1µs, where all

three SCC criteria (SDVG, LZ, and CCE) were satisfied (see Figure 4.13), but not

the BCOM criteria (Figure A.7). Both SDVG and CCE methods were satisfied in

two other regions, 3 and 12µs, but neither the LZ, nor BCOM criteria were satisfied

at these time scales. The number of unique states discovered in the first two regions,

1µs and 3µs, are comparable, but the introduction of these states greatly modifies the

cluster probability distribution. If the early convergence is ignored, we again notice

the difficulty of passing LZ criteria.
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Figure 4.13: Three different SCC regions from the simulation of CSP in explicit solvent.
Top row: 1µs shows satisfaction of all three convergence criteria; middle row (corresponding
to 3µs of simulation); and bottom row (corresponding to 12µs of simulation) show the
simulation trajectory has passed the SDVG and CCE criteria, but not LZ. Within each
row, the left graph shows the time evolution of the number of clusters, and the right shows
that of the cluster entropy distribution. Middle panel shows the comparison of cluster
distributions between the first and the second half of the trajectory.

4.3 Conclusions

Based on our detailed study on multiple protein systems at multiple time scales

analyzed using several consistency checks, we make four key conclusions. First, the

simulation time required to satisfy different convergence criteria not only vary be-

tween different algorithms, but there is also a significant variation between proteins.

Second, the self-consistency check criteria of LZ, requiring self similarity in cluster

distribution between the first and the second half of the trajectory, and Block co-

variance Overlap method (BCOM) warn us that native state protein simulations can
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be challenging, and can require several tens of microseconds for adequate sampling.

Third, we observed that microsecond long native state simulations may encounter

traps, and these traps can not be easily detected by mere determination of decor-

relation times. We propose monitoring the constancy of cluster entropy (CCE) to

detect such traps early, and make a decision to either continue, or abort the simula-

tion. We suggest, in addition to monitoring the constancy of the number of clusters,

one must monitor the constancy of the entropy of the cluster distribution. Once

simulations have simultaneously satisfied these two conditions, more rigorous tests

from the LZ and BCOM methods, and error bar estimations should be imposed as

additional quality control. Finally, we reiterate convergence metrics can only ensure

if the distribution is being fairly sampled given a trajectory of fixed time, therefore

ensuring a self-consistency check. We cannot assess whether the distribution is cor-

rectly representing the “true” weights of the discovered states. Any extension, or new

simulation of the system can explore new phase space, and self-consistent convergence

can be lost. We observed this loss for the BPTI and CSP explicit solvent simulations,

where assessing self-consistent convergence did not guarantee “true” convergence as

evidenced by existence of multiple regions of self-consistency.

In summary, the notion of “true” convergence remains illusive. But we propose,

one must at least ensure both the satisfaction of the SDVG criteria, and stability

of the distribution by monitoring entropy of distribution, followed by more rigorous

testing of BCOM.

81



Chapter 5

Elevated Temperature Simulations

While structural information is plentiful,273 experimental thermodynamic data

is scarce,274 Therefore, in the construction of the thermophilic-mesophilic homolog

pairs data set, we were able to gather a total of 13 unique pairings that satisfied our

criteria (discussed in subsequent chapter), but experimental denaturing data was not

available for all of the homolog pairs modeled. In fact, only three complete pairs,

and only 13 of the 26 total proteins simulated have such information (see Table 5.1).

Therefore, to i) verify the thermophile system in each studied pair displayed resistance

to unfolding at a same increased temperature as their mesophilic homolog, and ii) of

equal importance, validate the simulation program correctly modeled systems away

from 300K, the homolog pairs were simulated with an elevated thermostat.

5.1 Computational Setup

Starting with coordinates generated from the two-cycle minimization of the 300K

simulations, the systems were gradually heated to the elevated temperature from zero

over a 250ps period. The choice of temperature was trial-and-error, but had to be
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Tm (◦C)

System Mesophile Thermophile

ACP – 111.5275

CheA – 99.7276

CheW – –

CheY 57.9277 101.0278

CSP 57.0279 –

HGCS – –

HPr 63.5280 88.3281

NusB 64.7282 –

PaiA – –

RNaseH 66.0283 86.0283

RNaseP 66.5284 –

Sigma – –

Thioredoxin (Oxidized) 88.8285 –

Thioredoxin (Reduced) 71.0286 –

Table 5.1: Experimental melting temperature data available for the 13 homolog pairs in
this study.

shared between the mesophilic-thermophilic constituents within each pair. Initially,

all system pairs were heated to 400K and simulated a minimum 200ns. After analysis,

if both systems denatured, the thermostat was reduced. However, if both systems

retained native-like characteristics, simulations were extended until a total simula-

tion time of 1µs was reached. If both systems were still native-like after analysis, the

thermostat was increased. Because of the higher temperature environment, the simu-

lation time step was reduced to 1.6fs, down from 2fs for 300K modeling. Coordinates

were written to trajectory files every 10ps.
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5.2 Analysis

A major difference between high temperature and 300K simulations is the lack of

convergence inspection. For this analysis, the choice in calculated observables needed

to intuitively insist that the systems were either still folded, or the systems were dena-

turing. Ideally, observables calculated from the high temperature trajectories should

either closely match those from 300K simulations, or the observables should sharply

differ, indicative of native-like properties seen at higher temperatures, or unfolding in

response to the elevated temperature environment, respectively. To this end, three

separate measures (RMSD, native contact propensity, and secondary structure con-

tent) were calculated to quantify nativeness at higher temperatures, and compared

to the same measurements found from folded state trajectories. For continuity in

comparisons between the two temperature regimes, the coordinates generated upon

completion of the 5ns equilibration phase at 300K were selected as the necessary

reference state needed in the aforementioned calculations.

The Root Mean Square Deviation (RMSD) measures the average absolute dis-

tance between atoms of two optimally superimposed three dimensional protein struc-

tures. For this analysis, one of the structures is a fixed reference state to measure

structural divergence over a simulation. The RMSD was calculated from trajectory

coordinates as a function of simulation time, r(t), to the above reference state, rref ,

as:

RMSD(t) =

√√√√ 1

N

N∑
i

||r(t)i − rref,i||2 (5.1)

where the summation is over N Cα atoms present in the system. The results of RMSD

calculations are shown in the left panel for all system pairs. The opaque curve reflects

the 300K simulation RMSD, and the bright curves are from the elevated temperature

trajectories.
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Discontinuity of native state contacts reflects denaturing within the trajectory.

From the folded state reference coordinates mentioned above, a contact was defined as

two Cα atoms within 7Å, and all contacts within the coordinates meeting this criteria

represented the set of native state contacts. These defined contacts were followed

and counted if present as a function of simulation time, and finally the contact count

within each frame was normalized by the size of the native state set, giving a fraction

Q. For each of the system pairs, this Q metric is plotted in the middle pane. The

simulations capturing native states show consistency in the present contacts, while

high temperature simulations that capture denaturing display a drop off in this value

as contacts break.

Finally, the secondary structure content of the protein was monitored as a func-

tion of simulation time. The initial assignment of secondary structure is taken from

the above reference state, and secondary structure presented during the simulation

is normalized as a percentage retained compared to the reference state. The right

panel of each system displays the secondary structure content for native state and

elevated temperature simulations. The resultant outcomes of these three observables

are plotted below at the chosen elevated thermostat setting for each system.
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5.3 Results

5.3.1 ACP
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Figure 5.1: Results of 452K simulations of ACP.

5.3.2 CheA
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Figure 5.2: Results of 375K simulations of CheA.
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5.3.3 CheW
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Figure 5.3: Results of 425K simulations of CheW.

5.3.4 CheY

0 1000 2000 3000 4000 5000 6000
0

2

4

6

8

Simulation Time (ns)

R
M
S
D

400K Trajectory 1 RMSD

0 1000 2000 3000 4000 5000 6000
0.0

0.2

0.4

0.6

0.8

1.0

Simulation Time (ns)

F
ra
ct
io
n
of
N
at
iv
e
C
on
ta
ct
s

400K Trajectory 1 Q

0 1000 2000 3000 4000 5000 6000
0.0

0.2

0.4

0.6

0.8

1.0

Simulation Time (ns)

F
ra
ct
io
n
D
S
S
P

400K Trajectory 1 DSSP Fraction

0 1000 2000 3000 4000 5000 6000
0

1

2

3

4

5

6

Simulation Time (ns)

R
M
S
D

400K Trajectory 2 RMSD

0 1000 2000 3000 4000 5000 6000
0.0

0.2

0.4

0.6

0.8

1.0

Simulation Time (ns)

F
ra
ct
io
n
of
N
at
iv
e
C
on
ta
ct
s

400K Trajectory 2 Q

0 1000 2000 3000 4000 5000 6000
0.0

0.2

0.4

0.6

0.8

1.0

Simulation Time (ns)

F
ra
ct
io
n
D
S
S
P

400K Trajectory 2 DSSP Fraction

Figure 5.4: Results of 400K simulations of CheY.
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5.3.5 CSP

0 200 400 600 800 1000 1200 1400

2

4

6

8

10

12

14

Simulation Time (ns)

R
M
S
D

425K Trajectory 1 RMSD

0 200 400 600 800 1000 1200 1400
0.0

0.2

0.4

0.6

0.8

1.0

Simulation Time (ns)

F
ra
ct
io
n
of
N
at
iv
e
C
on
ta
ct
s

425K Trajectory 1 Q

0 200 400 600 800 1000 1200 1400
0.0

0.2

0.4

0.6

0.8

1.0

Simulation Time (ns)

F
ra
ct
io
n
D
S
S
P

425K Trajectory 1 DSSP Fraction

0 200 400 600 800 1000 1200 1400
0

5

10

15

20

Simulation Time (ns)

R
M
S
D

425K Trajectory 2 RMSD

0 200 400 600 800 1000 1200 1400
0.0

0.2

0.4

0.6

0.8

1.0

Simulation Time (ns)

F
ra
ct
io
n
of
N
at
iv
e
C
on
ta
ct
s

425K Trajectory 2 Q

0 200 400 600 800 1000 1200 1400
0.0

0.2

0.4

0.6

0.8

1.0

Simulation Time (ns)

F
ra
ct
io
n
D
S
S
P

425K Trajectory 2 DSSP Fraction

Figure 5.5: Results of 425K simulations of CSP.

5.3.6 HGCS
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Figure 5.6: Results of 400K simulations of HGCS.
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5.3.7 HPr
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Figure 5.7: Results of 400K simulations of HPr.

5.3.8 NusB
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Figure 5.8: Results of 400K simulations of NusB.
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5.3.9 PaiA
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Figure 5.9: Results of 360K simulations of PaiA.

5.3.10 RNaseH
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Figure 5.10: Results of 385K simulations of RNaseH.
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5.3.11 RNaseP

0 500 1000 1500 2000

2

4

6

8

Simulation Time (ns)

R
M
S
D

360K RMSD

0 500 1000 1500 2000
0.0

0.2

0.4

0.6

0.8

1.0

Simulation Time (ns)

F
ra
ct
io
n
of
N
at
iv
e
C
on
ta
ct
s

360K Q

0 500 1000 1500 2000
0.0

0.2

0.4

0.6

0.8

1.0

Simulation Time (ns)

F
ra
ct
io
n
D
S
S
P

360K DSSP Fraction

Figure 5.11: Results of 360K simulations of RNaseP.

5.3.12 Sigma
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Figure 5.12: Results of 385K simulations of Anti-σ.
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5.3.13 Thioredoxin (Oxidized)
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Figure 5.13: Results of 400K simulations of oxidized Thioredoxin.

5.3.14 Thioredoxin (Reduced)
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Figure 5.14: Results of 400K simulations of reduced Thioredoxin.

5.4 Conclusions

In the systems presented, the thermophilic homolog retained near native-like

properties at elevated temperatures, while the mesophilic component show denaturing

in a corroboration of the three observable metrics. Therefore, in the absence of

experimental thermodynamic information, we are confident that the systems studied

are indeed distinguishable by their response to high temperature environments. Also,

the results show that the computational force field used throughout this study is

capable of capturing the intrinsic mechanisms leading to resistance of temperature

induced unfolding.
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Chapter 6

Native State Modeling

Our analysis has first shown that thermodynamic parameters upon unfolding

(∆H,∆S, and ∆Cp) are observed to be, on average, reduced in thermophilic pro-

teins, leading to the logical deduction of residual structure in the unfolded state of

thermophiles. And while the reduced parameters are insightful, by themselves, they

do not depict any physically valuable strategy to enhanced stability. Secondly, moti-

vated by the evidence from the thermodynamic study to the role of unfolded state,

we have observed the effects of applying a polymer physics model to the sequences

of homologous proteins to capture electrostatic interactions in the denatured state.

Specifically, discriminating thermophilic-mesophilic sequence pairs based on exclu-

sively their charge patterning, we have shown that thermophilic proteins tend to

have a smaller unfolded state dimension when compared to their mesophilic homolog.

Here, we will describe a third inquiry that is in parallel to the thermodynamic and

sequence-centric analysis, but based on the structural properties observed from the

protein native states.

A majority of the studies focus on particular protein pairs, making it difficult to

gain insights about the universality of proposed mechanisms. In other words, to what
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extent a mechanism conclusively proven to be responsible in one pair is also operative

in another pair? Are there competing mechanisms and if so, is there a primary

mechanism? Second, with exception of a few simulation studies,51,54,81 previous work

utilized relatively short simulation trajectories, and paid little attention to quality

of sampling measures, leaving the reported observables unreliable, or artifacts of

inadequate sampling. Recent work has shown that ensuring convergence of molecular

dynamics simulations for the native state are quite challenging.130

These concerns are addressed by conducting a global analysis of 13 orthologous

protein pairs subjected to long MD simulations of at least 1 microsecond, or longer,

as demanded to pass the convergence criteria described in a previous chapter. The

exhaustive study of protein structural dynamics between these pairs has revealed sev-

eral new insights. First, short simulation times typical of previous studies can yield

qualitatively different results when compared to long simulations. Also, the results

from simply analyzing PDB structures can be misleading, providing further evidence

for carrying out careful molecular dynamics simulation to gain correct observations.

Second, the inclusion of many pairs highlights the different competing mechanisms,

and showcases their relative importance, previously not possible with the one-protein-

at-a-time approach. In the majority of pairs studied, thermophilic proteins have a

well-connected, attractive electrostatic network, and were associated with more fa-

vorable electrostatic interaction energies when compared to their mesophilic coun-

terparts. Furthermore, the adaptive strategy driven by electrostatics may employ

several subtle mechanisms, i.e. favorable electrostatic interaction energy by increas-

ing attractive interactions, or reducing repulsive interactions, and/or reducing the

desolvation penalty by enhancing the dielectric constants. These strategies are en-

coded in the sequence and structure by charge composition, and more importantly,

the patterning amongst the amino acids. Third, structural dynamics is a consequence
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of these strategies, and consequently, thermophilic proteins may have either enhanced

or suppressed fluctuations profiles compared to mesophiles, in contradiction to long-

standing belief. Finally, alternate strategies of thermophilic adaptation were revealed

from a few special proteins pairs where modifying electrostatics does not appear to

be a viable strategy for functional reason.

6.1 Methods

6.1.1 Selection of protein pairs

For this comparative study, 13 orthologous protein pairs from mesophilic and

thermophilic organisms were selected. System pairs were chosen by first identifying

structures from known thermophilic organisms in the PDB, and finding a mesophilic

homolog. Exact proteins resolved from differing techniques (e.g. NMR to X–Ray)

have been shown to have differing flexibility and dynamics.287,288 Therefore, we re-

quired the mesophile-thermophile protein pairs be resolved from identical techniques.

Furthermore, our interest in this study is to explore the properties of independently

stable, globular proteins, so pairings had to be biologically monomeric, and have no

bound cofactors. Finally, to keep the time necessary for completion of this study

manageable, a maximum of 200 amino acids per protein was chosen. The above con-

straints resulted in 13 protein pairs displayed in Table 6.1 Experimental determined

melting temperatures were not available for all homolog pairs to verify heightened

thermal resilience, therefore, all systems were simulated at elevated temperatures to

ensure the thermophilic protein displayed high temperature resistance (see Figures 5.1

– 5.14).
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System
Mesophile Thermophile

PDB Source Organsim PDB Source Organsim

ACP 3BR8289 B. Subtilis 1W2I290 P. Horikoshii

CheA 1I5N291 S. Typhimurium 1TQG250 T. Maritima

CheW 2HO9249 E. Coli 1K0S292 T. Maritima

CheY 3CHY293 E. Coli 1TMY294 T. Maritima

CSP 1MJC295 E. Coli 3A0J 251 T. Thermophilus

HGCS 3A7L296 E. Coli 1ONL297 T. Thermophilus

HPr 1POH298 E. Coli 1Y4Y299 B. Stearothermophilus

NusB 3D3B300 E. Coli 1TZW301 T. Maritima

PaiA 1TIQ302 B. Subtilis 3FIX303 T. Acidophilum

RNaseH 2RN2304 E. Coli 1RIL305 T. Thermophilus

RNaseP 1A6F306 B. Subtilis 3Q1Q307 T. Maritima

Anti-σ 1AUZ308 B. Subtilis 1SBO309 T. Maritima

Thioredoxin 2TRX310 E. Coli 2YZU311 T. Thermophilus

Table 6.1: Homologous mesophile–thermophile protein pairs used in this study. PDB ac-
cession codes and source organism are shown.

Here, we will present the function of the selected proteins.

Acylphosphatase (ACP) Catalyzes the hydrolysis of the carboxyl-phosphate bond

in acylphosphates.

Chemotaxis Proteins (CheA, CheW, CheY) Chemotaxis is the swimming be-

havior of bacteria in response to environmental stimuli. The overall movement

is the result of alternating tumble and swim phases. In the presence of a chem-

ical gradient bacteria will chemotax, or direct their overall motion based on

the gradient. Chemical gradients are sensed through multiple transmembrane

receptors, called methyl-accepting chemotaxis proteins. CheA and CheW bind

to the receptor. The activation of the receptor by an external stimulus causes
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autophosphorylation in CheA at a single highly conserved histidine residue.

CheA in turn transfers phosphoryl groups to a conserved aspartate residues in

the response regulators CheB and CheY. CheA is a histidine kinase, and does

not actively transfer the phosphoryl group. The response regulator CheB takes

the phosphoryl group from CheA. This mechanism of signal transduction is

called a two-component system, and is a common form of signal transduction

in bacteria. CheY induces tumbling by interacting with the flagellar switch

protein FliM, inducing a change from counter-clockwise to clockwise rotation

of the flagellum. Change in the rotation state of a single flagellum can disrupt

the entire flagella bundle and cause a tumble.

Cold Shock Protein (CSP) The cold shock response in E. Coli follows an abrupt

shift in growth temperature from 37◦C to 10◦C, inducing a lag phase in cell

growth of 4-5 hours. It is accompanied by a severe reduction in protein synthesis.

As a consequence of this cold shock, the relative rate of production of at least

14 cold shock proteins is increased. For 13 out of the 14 proteins, the increase

is 2 to 10-fold. The synthesis of the major cold shock protein, CSPa, increases

at least 100-fold, reaching a level of > 10% of total protein synthesis at 10◦C.

CSPa was shown to act as a transcriptional activator of the hns and gyrA genes

encoding two other cold shock proteins.

Glycine Cleavage System H-protein (HGCS) The glycine cleavage system is a

series of enzymes that are triggered in response to high concentrations of the

amino acid glycine. The same set of enzymes is sometimes referred to as glycine

synthase when it runs in the reverse direction to form glycine. The glycine

cleavage system is composed of four proteins: the T, P, L, and H-protein. They

do not form a stable complex, so it is more appropriate to call it a “system”
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instead of a “complex”. The H-protein interactions with the three other pro-

teins, and acts as a shuttle for some of the intermediate products in glycine

decarboxylation

Histidine-containing phosphocarrier protein (HPr) A key component of the

phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a ma-

jor carbohydrate transport system in bacteria. The PTS catalyses the phos-

phorylation of sugar substrates during their translocation across the cell mem-

brane. The mechanism involves the transfer of a phosphoryl group from phos-

phoenolpyruvate (PEP) via enzyme 1 (E1) to enzyme 2 (E2) of the PTS system,

which in turn transfers it to a phosphocarrier protein (HPr). A conserved his-

tidine in the N-terminus of HPr serves as an acceptor for the phosphoryl group

of E1.

N-Utilization Substance Protein B (NusB) Transcription anti-termination pro-

tein that participates with 30S ribosomal subunit protein S10 in processive

transcription anti-termination. Anti-termination is the prokaryotic cell’s aid

to fix premature termination of RNA synthesis during transcription. Anti-

termination factor enable polymerase read-through.

PaiA N-acetyltransferase activity toward polyamines, including spermine and sper-

midine. N-acetyltransferase is an enzyme that catalyzes the transfer of acetyl

groups from acetyl-CoA to arylamines

Ribonuclease (RNaseH, RNaseP) A type of nuclease that catalyzes the degra-

dation of RNA into smaller components. A non-specific endonuclease that cat-

alyzes the cleavage of RNA via a hydrolytic mechanism. Endonuclease are

enzymes that cleave the phosphodiester bond within a polynucleotide chain.
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In DNA replication, RNaseH is responsible for removing the RNA primer, al-

lowing completion of the newly synthesized DNA. RNaseP cleaves off an extra

(precursor) sequence of RNA on tRNA molecules.

Anti-Sigma Factor Antagonist (Anti-σ) In the regulation of gene expression in

prokaryotes, anti-sigma factors bind to sigma factors and inhibit transcriptional

activity.

Thioredoxin Redox protein that antioxidants by facilitating the reduction of other

proteins by cysteine thiol-disulfide exchange

6.1.2 Computational setup

All non-protein atoms, including crystallographic waters and structural hydro-

gens, were removed from the PDB structures. The CheA mesophilic structure varied

from the thermophilic structure in that it contained a linker region in the form of

an additional alpha helix.250 To maintain direct comparison, this linker region was

removed from the structure. The protonation state of histidine side chains were pre-

dicted with H++ (http://biophysics.cs.vt.edu/H++).252–254 Using TLEAP,312 pro-

tein hydrogens, a cubic box of TIP3P255,256 water molecules with a 9Å buffer region,

and neutralizing ions was added. The system solutions were energy minimized for

two cycles using the SANDER module of AMBER 14.313 The first cycle held the

protein constant with harmonic restraints to minimize poor steric positions of the

solvent. The restraints were lifted, and a second cycle of minimization allowed the

entire solution to adjust to a local minima.

All simulations were performed with the GPU-accelerated PMEMD module of

AMBER 14257 using the ff99SB force field,258 periodic boundary conditions, and

SHAKE259 to constrain the lengths of bonds that include hydrogen atoms to their
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equilibrium lengths. A 9Å cutoff was chosen for the direct sum, non-bonded interac-

tions, and the Particle Mesh Ewald method260–262 was used to calculate long-range

electrostatics. After energy minimization, solvent molecules were heated gradually to

300K over a 100ps period at constant volume. The entire system was equilibrated for

5ns at constant temperature and pressure, allowing the volume to change to adjust

the system’s density. Simulations were performed at constant temperature (300K)

and pressure (1atm) by employing the Langevin thermostat and Berendsen barostat,

respectively, with a 2fs time step, and structural conformations saved every 10ps.

6.1.3 Convergence inspection

To ensure our simulations returned reliable, and replicable observable measure-

ments, a convergence criteria was implemented. Convergence was tested by monitor-

ing the discovery of new clusters, and the stability of the cluster distribution entropy

(described in the proceeding chapter)130 over the trajectory’s final one-fourth sim-

ulation time block, or 500ns, whichever was least. If, within the final time block,

the trajectory found less than 5% of its total number of clusters, and the largest

percent difference in cluster entropy was less than 5%, the simulation was considered

converged.

The cluster command within the CPPTRAJ module of AMBER was used to

cluster all simulation trajectories.264 The agglomerative, average-linkage algorithm

was employed265 utilizing an RMS distance metric to compare structures. In sum-

mary, each structure begins in its own cluster, and pairs of clusters are combined

only if the average distance (RMSD) between all points of inter-cluster elements are

less than the preselected distance cutoff, dc. For this direct comparison study, we

demanded the selection of dc match across mesophilic-thermophilic pairs.
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The protein pairs were simulated for an initial minimum of 1µs, and the resulting

trajectories were tested for convergence. If convergence was not satisfied, the simu-

lations were extended for an additional 500ns, and convergence retested. This cycle

of simulation and convergence testing was repeated until both systems of a given

mesophilic-thermophilic pair passed our criteria with identical simulation times. The

convergence was tested by following the discovery of new cluster and the stability of

the cluster distribution entropy.130

6.1.4 Representative atoms for the charged groups, and the

calculation of their interaction probabilities

For calculation of interactions between charged amino acids, representative atoms

for each charged group were selected (α-amino N, α-carboxyl C, Asp Cγ, Glu Cδ, His

Cε1, Lys Nζ, and Arg Cζ) ,73,156 and the appropriate charge of ±e was assigned to

only these atoms. These atoms best represented the geometric center of charge for

these particular side chains.

The distances between all possible N(N−1)/2 pairings of N ionic representative

atoms was calculated for each frame of the simulation trajectory using CPPTRAJ.

Each pairing’s distance set was analyzed to find the fraction of frames with a distance

d less than, or equal to, a predefined critical distance dc, i.e. d ≤ dc, giving the

probability p that a particular ion pair interacted. For a particular value of pc, the

number of attractive interacting ion pairs (edges) was found and normalized by the

total number of charged residues (vertices) present in the system, giving an edge-

to-vertex ratio (ζ) synonymous to a measure of connectedness in the attractive ion

interaction network. Figuress 6.1 and 6.2 show the ζ ratio as a function of the cut-off

probability p, and demonstrates the high level of connectivity in thermophiles.
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6.1.5 Calculation of protein interior dielectric constant

From the protein dipole moment fluctuations calculated from the MD simu-

lations, and application of the Frölich–Kirkwood theory of dielectrics, the internal

dielectric constant of our protein systems were determined as86,87

〈∆M2
p 〉

kTr3
p

=
(2εw + 1)(εp − 1)

(2εw + εp)
(6.1)

where 〈∆M2
p 〉 represents the time average of dipole moment deviations throughout a

system simulation, rp is the spherical radius of the protein, taken to be
√

5/3 of the

radius of gyration, and εw and εp are the dielectrics of the solvent and protein interior,

respectively. The deviation of the dipole moment is origin dependent for systems with

net charge, and for uniformity, all systems in this study used the protein center of

mass in their calculations. The protein dipole moment and radius of gyration for

each structural frame was calculated with CPPTRAJ,264 and analyzed with in-house

software.

6.1.6 Calculation of average RMSF

Fluctuations about the structural average (RMSF ) are a measure of localized

protein flexibility, and can be easily calculated from simulation data. Using CPP-

TRAJ,264 the trajectory structures are superimposed to eliminate rotational and

translational effects arising from the simulation, an average structure found, and

the fluctuations were calculated from the start of the simulation to an accumulation

of simulation time (T ) in successive intervals up to the total simulation time. The

fluctuations (RMSFi) of the Cα atom in the ith amino acid about its average position
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were calculated as

RMSFi =

√√√√ 1

T

T∑
t=1

(Cα,i(t)− 〈Cα,i〉)2 (6.2)

giving N RMSFi values for a system of N amino acids. To remove the effect of

unassigned tail regions, residues not assigned to a secondary structure at the N ter-

minus (residue 1 up to just before the first secondary structure) and C terminus (just

past the last secondary structure’s final amino acid to residue N) at the start of the

simulation were removed from the calculation. Loop regions connecting secondary

structure regions were kept for the calculation. The remaining RMSFi values are

averaged, giving 〈RMSF 〉 as a function of accumulative simulation time for a given

protein.

6.2 Results and Discussion

Long time scale simulations were subject to rigorous sampling criteria, and de-

tailed analysis revealed several important differences in the native state properties

between thermophilic and mesophilic protein pairs.

6.2.1 Attractive ionic networks are better connected in ther-

mophiles

Previous studies have indicated that thermophilic protein native states have more

ion pairs compared to their mesophilic counterparts.314 However, these studies are of-

ten and primarily based on the static PDB structure, and ignore structural dynamics.

Contacts identified from the PDB structures may be only transient, i.e. they may

disappear, and new contacts may emerge over a simulation trajectory. Furthermore,

the total number of ion-pairs does not give us insights about the connectivity be-
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tween all ion-pairs. The ion network topology can be important, as increasing the

total number of attractive ion-pairs does not necessarily enhance stability due to

the competing destabilization effect arising from the desolvation penalty of charged

groups.13 The desolvation penalty is expected to increase with the total number of

charged side chains, therefore, an efficient design strategy is to increase the number

of ionic interactions while keeping the total number of charges relatively unaltered.

This can be achieved by sharing charged residues within the ionic interactions,13,65

leading to better connected networks amongst charged groups. As a result, the attrac-

tive electrostatic interaction can become more favorable, and eventually overcome the

desolvation penalty. Network topology analysis of non-covalent connections has em-

phasized the importance of hubs in thermophilic proteins,315 while network analysis

highlighted the role of the largest rigid cluster in thermophilic proteins.111

To explore the role of connectivity in a quantitative manner, a simple metric ζ

was defined as the ratio of the number of ion pair interactions (edges) to the number

of charged residues (vertices). Higher values of ζ implied more ion pairs per charged

residues, and better connectivity. Furthermore, the dynamic nature of ion-pair for-

mation was quantified by its probability (p), and was determined by monitoring the

fraction of simulation frames in which the distance (d) between two oppositely charged

side chain representative atoms was within a defined critical distance dc, i.e. d ≤ dc.

The importance of quantifying contact probabilities in this manner have proven useful

in other studies of protein folding mechanisms as well, for example, in distinguish-

ing two-state folder from a three-state folding protein.270 For a given p, all contacts

between oppositely charged groups with a probability of at least p were considered.

When p = 1, only the most stable contacts contribute, and in the opposite limit of

very small p, all contacts, including the most unstable, were expected to contribute.

The resilience of these networks and their connectedness is quantified by computing
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ζ as a function of p. For the majority of the pairs (10 of 13), thermophilic proteins

formed better connected, and more stable networks among oppositely charged amino

acids compared to their mesophilic counterparts (see Figure 6.1). RNaseP, HGCS,

and Thioredoxin are the only three pairs that does not show any significant difference

between thermophile and mesophile (see Figure 6.2). PDB based analysis will not

reveal such pattern due to static structure. Short simulations, on the other hand,

may suffer from sampling issues yielding unreliable values of p thus highlighting the

importance of careful MD simulations subjected to strict convergence test.

This finding is consistent with earlier studies that indicated the major role of elec-

trostatics in protein stability.18,62,65,67,114,156 Mutational studies have directly shown

enhanced thermostability can be achieved by forming large networks of ionic interac-

tions.65 This is linked to the hypothesis that better connected ion-pair networks may

impart greater resilience to thermophilic proteins at high temperature.316 A possible

consequence of greater electrostatic resilience is an increased unfolding barrier, and

therefore, a slower unfolding rate which can give rise to higher stability, assuming

the folding rate remains unaltered. This has been supported by the experimental

observation that the unfolding rate in thermophilic rubredoxin is slower compared to

its mesophilic counterpart.317 Recent studies on trigger factor has also shown simi-

lar trend.318 The role of salt bridges in imparting higher stability at the cost of low

activity at low temperature has been demonstrated by mutagenesis experiment.97

6.2.2 Thermophilic proteins have more favorable electrostatic

interaction energies in their native state

The results above indicate that attractive interactions between oppositely charged

side chains are more favorable in thermophilic native states compared to their mesophilic
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Figure 6.1: Edges per vertex (defined as ζ) as a function of cut-off probability (pc) for 10
homologous protein pairs: (A) ACP, (B) CheA, (C) CheW, (D) CheY, (E) CSP, (F) HPr,
(G) NusB, (H) PaiA, (I) RNaseH, and (J) Anti-σ. The level of connectivity (the ratio of
edges to vertices) is systemically greater in the thermophile protein (red data) with respect
to the mesophilic pair homolog (blue data) as the cutoff probability is increased. See Figure
S1 for the proteins where there is no difference between thermophile and mesophile.

counterparts. But, what is the contribution from the repulsive interactions between

similarly charged amino acids? Do they offset the attractive interaction, and alter

the trend for the overall net electrostatic interaction shown above? Moreover, elec-

trostatics are long-ranged, therefore, the connectivity alone does not give a precise

measure of the attractive electrostatic interaction. To further quantitate this effect,
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Figure 6.2: Attractive interactions per charged residue (edges per vertex, ζ) as a function
of probability cut-off for (A) HGCS, (B) RNaseP, and (C) Thioredoxin. These systems did
not show a discernible difference in the ζ metric.

and provide a more comprehensive picture, the total electrostatic interaction energy

was computed from all charged residues in the folded state of the protein, but due

to the complicated, non-spherical geometry of the folded state, DelPhi319 was used

to compute the interaction energy. The electrostatic interaction energy in the folded

state was defined as

Gf
int =

1

2

∑
k

qkφk (6.3)

where qk is the kth test charge under consideration, and φk is the potential at the

kth charge location resulting from all other charges in the system. The factor of 1/2

ensures a proper summation, i.e. no double counting. Note the self energy terms,

those related to the solvation penalty have not been included in this calculation, but

are discussed in detail below.

The folded state electrostatic free energy of interaction (Gf
int) is the summation of

the coulombic energy (Gf
coul) of interacting protein ionic charges and the polarization

energy (Gf
pol) arising from the charges set within the protein boundary having a

different dielectric constant than that of solvent. The strength of the polarization

term is determined by the distance of the charges from the protein boundary, the

shape of the boundary, and the protein and solvent dielectric constants. Given a

protein structure, and respective charge and radii libraries, DelPhi319 will calculate

the total coulombic energy and a corrected reaction field energy (CRFE). From our in-
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house benchmarking with systems with exact analytical solutions (see Appendix), we

have deduced that the CRFE represents the combination of the polarization (cross)

energy and the total solvation (self) energy for the structure given. The total solvation

energy of the folded state is found in an iterative manner by summing the solvation

energies for each individual ionic residue in the presence of the entire protein, but

with charges on all other remaining ionic amino acids turned off.320 The difference

of the CRFE and the total solvation energy produced the polarization energy for the

folded state, and by combining this energy with the folded state coulombic energy, we

have deduced Gf
int. This procedure was followed for two values of internal dielectric

constants representing the dielectric constant inside the folded protein boundary.

Here, we used a generalized internal dielectric of εint = 2, and a dielectric constant

calculated from the MD simulations that represents the protein polarizability εint = εp

(see Methods section), and a fixed dielectric constant of 78 for the external solvent.

Also, all calculations were conducted utilizing a charge library that placed a single

charge of ±e at the representative atoms discussed in the Methods section, with all

other atoms were set to neutrality. Similar calculations were presented by Zhou13

using spherical geometry, and Brooks2004 for non-spherical shape.87

For this analysis, we wanted to include information from the long time-scale simu-

lations to account for the fluctuations in the folded state, but the number of trajectory

frames representing the folded state is quite large (100,000 frames per microsecond

of simulation), and thusly, the electrostatic energy calculation became quite resource

demanding if we attempted to use every simulation frame. The following compromise

was found. Instead of utilizing every frame from a simulation trajectory, we extracted

the representative structures of the first n most occupied ith clusters that accounted

for 90% of the total simulation frames (
∑n

i pi > 0.90). The electrostatic energies

for each system’s cluster representative structures were calculated by following the
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protocol outlined above with DelPhi, weighted per each cluster’s probability, and fi-

nally summed. The difference in the interaction energies between thermophile and

mesophile was defined as ∆Gf
int = Gf,thermo

int −Gf,meso
int ; where Gf,thermo

int is the electro-

static interaction energy of the folded state of the thermophilic protein, and Gf,meso
int

represented the mesophilic protein. Values of ∆Gf
int for the protein pair systems are

reported in Table 6.2.

System ∆Gfint(εint = 2) ∆Gfint(εint = εp) εthermop εmesop ∆∆Gelec(εint = εp)

ACP -53.63 -6.36 16.9 20.7 -3.29

CheA -37.28 -39.68 16.3 42.6 -10.08

CheW -31.55 -22.21 58.1 38.7 -32.22

CheY -71.24 -14.71 27.5 24.3 -18.70

CSP -45.20 -8.14 40.6 23.8 -11.44

HGCS -28.74 -19.30 18.1 24.9 -1.76

HPr -10.52 -5.05 21.1 17.6 -7.05

NusB -50.12 -7.07 46.0 27.9 -21.52

PaiA -53.82 -6.60 46.7 25.1 -26.58

RNase H -36.55 -9.06 14.8 14.3 -0.91

RNase P 21.46 23.52 46.6 37.5 17.30

Anti-σ -48.45 -7.08 38.4 36.5 -5.18

Thioredoxin 9.70 3.91 21.6 20.9 4.12

Table 6.2: Electrostatic energies calculated from structural ensembles taken from simu-
lation trajectories. The difference in electrostatic interaction energy (columns 2 and 3)

between thermophilic and mesophilic (∆Gfint = Gf,Tint −G
f,M
int ) homologs at specified internal

dielectrics. Dielectric constants calculated using protein dipole moment fluctuations from
MD simulations (columns 4 and 5). All values of ∆Gfint and ∆∆Gelec have units of kT .

For εint = 2, the thermophilic protein native states have, for 11 of the 13 pairs,

more favorable electrostatic interaction energy compared to mesophilic counterparts.

The only exceptions were the RNaseP and Thioredoxin systems (see the second col-
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umn of Table 6.2). The resulting calculations differed from calculations utilizing only

static PDB structures,78 and are shown in Table 6.3. The degree of quantitative dif-

ference in interaction energies calculated from MD simulation trajectories and static

PDB structures is apparent by comparing Tables 6.2 and 6.3. Interestingly, for three

protein systems (CheW, PaiA, and RNaseH) even a qualitative difference is observed.

PDB based structural analysis for these three system pairs predicted mesophilic pro-

teins with more favorable electrostatic interaction energy, in direct contradiction with

the simulation based analysis, reiterating the need for incorporating protein dynamics

in such calculations.

System ∆Gfint(εint = 2) ∆Gfint(εint = εp) εthermop εmesop ∆∆Gelec(εint = εp)

ACP -24.48 0.20 16.9 20.7 9.20

CheA -2.46 -37.08 16.3 42.6 -23.27

CheW 44.21 -16.73 58.1 38.7 -26.73

CheY -59.18 -17.79 27.5 24.3 -24.39

CSP -38.35 -6.86 40.6 23.8 -9.66

HGCS -45.14 -22.79 18.1 24.9 -8.89

HPr -22.69 -10.86 21.1 17.6 -10.94

NusB -135.44 -15.46 46.0 27.9 -27.10

PaiA 16.20 1.47 46.7 25.1 -14.93

RNaseH 15.21 1.58 14.8 14.3 14.41

RNaseP 13.54 29.54 46.6 37.5 24.81

Anti-σ -90.70 -12.29 38.4 36.5 -12.17

Thioredoxin 51.69 9.94 21.6 20.9 9.08

Table 6.3: Calculation of electrostatic energies using strictly the PDB structure for each
system. The difference in electrostatic interaction energy (columns 2 and 3) between ther-

mophilic and mesophilic (∆Gfint = Gf,Tint −G
f,M
int ) homologs at specified internal dielectrics.

Dielectric constants calculated using protein dipole moment fluctuations from MD simula-
tions (columns 4 and 5). All values of ∆Gfint and ∆∆Gelec have units of kT .
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A similar trend is observed by introducing the dielectric constant of the protein

interior (εp) estimated from the molecular dynamics simulation. Electrostatic inter-

action energies in the native state were more favorable in thermophilic proteins com-

pared to their mesophilic ortholog in 11 of 13 pairs. As seen previously, the RNaseP

and Thiroredoxin systems were the only two pairs that were exceptions to this finding.

The discrepancy between PDB and MD based analysis is again observed, particularly

with the PaiA and RNaseH systems where the trends are reversed. For the ACP

pairing, PDB based calculation shows almost no difference in the electrostatic in-

teraction energy between thermophilic and mesophilic constituents, in contrast to

the MD generated trajectory based calculation (compare the third column between

Tables 6.2 and 6.3). These findings are consistent with several experimental studies

demonstrating the importance of charged residues and improved electrostatic inter-

action in protein stability.67,73–75,321,322 Particularly, Makhatadze and colleagues have

indicated the role of electrostatic interaction from charged surface residues.67,71,321–323

6.2.3 Role of solvation

It is now clear that thermophilic protein native states have more favorable elec-

trostatic interactions with respect to their mesophilic counterparts. However, en-

hancement in favorable electrostatic interaction is often associated with a compet-

ing effect of increased desolvation penalty.13,83,87 The desolvation penalty (∆Gsolv =

Gf
solv −Gu

solv) is the difference in solvation energy of the charged groups in the folded

(Gf
solv) and the unfolded state (Gu

solv). In general, charged groups are better solvated

in the unfolded state than in the folded state, giving rise to positive ∆Gsolv values.

The desolvation penalty is expected to increase with the number of charges in the

system, and therefore, the desolvation penalty is of particular concern when favor-

able electrostatic interactions in the native states are achieved by an increase in the
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total number of charges. Brooks and colleagues demonstrated the possibility that

thermophilic proteins may lower the desolvation penalty by increasing the interior di-

electric constant of the protein.87 Elcock83 has noticed that although the desolvation

penalty for thermophiles can be higher than mesophiles at room temperature, it is

significantly lower at high temperature where the dielectric mismatch between pro-

tein interior and the solvent dielectric is reduced. Motivated by these observations,

the effect of desolvation among thermophilic and mesophilic protein pairs was further

quantified by calculation of the solvation energy in the folded (described above) and

unfolded states. The unfolded state solvation energy was first calculated by consid-

ering each amino acid surrounded by its two nearest sequential neighbors, where the

charges on the nearest neighbors are turned off. Using protein sequence information,

the pentamers were constructed in TLEAP,312 and energy minimized with restraints

on the backbone atoms to strictly remove bad side chain steric clashes. The electro-

static solvation energy was calculated with DelPhi319 for each constructed pentamer,

and the summation of these solvation energies represented the unfolded state solvation

energy.320

To compare the results of summing the constructed pentameric contributions,

a second method was developed to calculate the solvation energy of the unfolded

state. The charged residues were again set in the center of a pentamer, but the sur-

rounding ±2 amino acids were selected by iterating over all possible combinations of

large amino acids. The possible surrounding amino acids consisted of ASN, GLN, HIS

(HIE), LEU, MET, PHE, THR, TRP, TYR, and VAL, giving 10,000 pentameric com-

binations. Termini contributions were found by constructing trimers that consisted

of an N- or C-terminal Alanine fixed to the respective end of all possible trimeric

combinations of amino acids listed above, giving 100 trimers per terminus. Construc-

tion and calculation of the solvation energy for each charged group followed the same
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method as above. The solvation energies found for each charged group were averaged

over all possible combinations, and are shown in Table 6.4 with their variance. The

total unfolded state solvation energy is found by summing the contributions from

each charged amino acid in the sequence. Unfolded state solvation energies found

from these average values show less than 1% difference when compared to the en-

ergies calculated from the previous method above. With these average values, this

approach offers a high throughput, but very accurate calculation of unfolded state

solvation energies, and can be utilized for fast estimation of solvation energies in the

unfolded state.

Charged group 〈Usolv〉 [kT ]

N-termini −62.16± 0.02

ASP −54.58± 0.27

GLU −56.54± 0.76

ARG −58.06± 0.10

LYS −66.74± 0.29

HIS (HIP) −57.29± 2.22

C-termini −53.85± 4.21

Table 6.4: Average solvation energy of charged groups found from combinatoric construc-
tions of pentamers (amino acids) and trimers (terminal ends). Amino acids were centered
in pentamers, while terminal groups were placed at their respective end.

To quantitate the net effect of electrostatics upon folding, ∆Gelec was calcu-

lated by combining the electrostatic interaction energy and the desolvation penal-

ties as ∆Gelec = Gf
int + Gf

solv − Gu
solv. The interaction energy in the unfolded state

was assumed negligible, and its contribution ignored to simplify calculations. The

comparison of ∆Gelec values between thermophile and mesophile pair constituents

were calculated as ∆∆Gelec = ∆Gthermo
elec − ∆Gmeso

elec , where superscript thermo and

meso denote thermophilic and mesophilic constituent, respectively. Comparison be-
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tween thermophilic and mesophilic pairs displayed a majority of the protein pairs

∆Gthermo
elec < ∆Gmeso

elec (see column 7 of Table 6.2). We conclude the beneficial effect

of promoting favorable electrostatic interaction in thermophilic proteins does not get

over compensated by the destabilizing effect of solvation. The only exceptions are

the RNaseP and Thioredoxin systems, as identified above. However, we notice there

are there other protein pairs (ACP, HGCS, and RNaseH) where the benefit of elec-

trostatic interaction is marginal (around 3kT) after accounting for the contribution

from the desolvation penalty (see the section below for a discussion of this).

While the electrostatic contribution to energetics at room temperature (300K)

can be illuminating and revealing, it is possible that the role of high temperature

is important to properly understand enhanced thermostability.83 This is also consis-

tent with the hypothesis that better connected ion-pair networks may impart greater

resilience to thermophilic proteins at high temperature.316 Therefore, for protein sys-

tems ACP, RNaseH, and HGCS, it is possible that the combined effect of solvation and

electrostatic interaction becomes significantly favorable in the thermophile’s natural

elevated temperature environment.

6.2.4 Insights gleaned from the sequence comparison between

orthologous proteins

Are there any general guidelines from sequences that can rationalize the struc-

tural observables discussed above? The global study presented here provided an op-

portunity to explore the relationship between biophysical observables and properties

of the sequence.

First, by focusing on the role of protein net charge, and defining |Qthermo
net | and

|Qmeso
net | as the net charge in thermophile and mesophile, respectively, it was observed
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that |Qthermo
net | is less than, or equal to |Qmeso

net | for the protein pairs CheA, CheW,

CheY, CSP, HGCS, HPr, NusB, PaiA, Anti−σ, and Thioredoxin (see Table 6.5).

System |Qthermonet | |Qmesonet | SCDthermo SCDmeso

ACP 6 2 -40.6 -40.5

CheA 5 16 42.6 640.6

CheW 4 11 -119.5 365.1

CheY 0 4 -60.0 -38.9

CSP 1 1 -40.7 -24.0

HGCS 18 20 943.2 1263.7

HPr 0 2 -51.3 -52.9

NusB 0 0 -176.1 -146.8

PaiA 1 5 -202.6 -31.2

RNaseH 9 4 155.0 -167.9

RNaseP 20 15 936.5 621.2

Anti-σ 1 2 -61.0 -48.3

Thioredoxin 2 4 -108.9 -60.5

Table 6.5: Net charge and calculated SCD per protein system pair. Protein net charge is
calculated by summing the charge contributions from basic and acidic amino acids (+1 and
-1, respectively) in sequence. SCD is found from equation 3.14.

Interestingly, with only the exception of Thioredoxin, these protein pairs have

shown an electrostatics mediated adaptation strategy as discussed above, supporting

the simple picture of confining too many unbalanced charges in the compact folded

state can be destabilizing. Quantitive models of electrostatics based on protein net

charge have been developed and used to describe pH, salt dependent stability,141 and

oxidative damage on aging proteome.324 In this study, the only exception to this rule

is the protein pair RNaseH, where the thermophile has a much higher net charge

than the mesophile, and yet more favorable electrostatic energy than the mesophile,

demonstrating the importance of delicate placement of charges in the structure to
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gain enhanced stability. An obvious strategy to achieve this would be to selectively

distribute similar charges far from each other.114 It is also interesting to note, for

proteins NusB and CSP, |Qthermo
net | = |Qmeso

net |, but both of these protein pairs have more

favorable electrostatic interaction energies in the thermophile compared to mesophiles.

This again highlights the role of preferential charge placement67,69 in addition to net

charge composition.

Another interesting feature was observed in system pairs CheA and CheW, where

the mesophilic protein have a significantly high charge imbalance compared to its

thermophile, implying the thermophilic sequences have relieved repulsion to make

electrostatic contribution more favorable with respect to their mesophilic sequences.

Differences in electrostatic interaction energy values in Table 6.2 support this view,

and is consistent with experimental studies on other proteins.73–76

The HGCS protein pair displayed the same imbalanced trend, but with a subtle

difference. In this case, the significant charge imbalance remains in thermophilic

sequence, albeit to a lesser extent than the mesophile, i.e. |Qthermo
net | = 18 and

|Qmeso
net | = 20. Consequently, both the thermophilic and mesophilic proteins have

an overall repulsive electrostatic interaction energy (positive value, not shown) in the

folded state, however the thermophilic protein relieves some of this repulsion. For

RNaseP, the electrostatic folded state interaction is positive, consistent with the fact

that RNaseP has a high charge imbalance, |Qmeso
net | = 15 and |Qthermo

net | = 20. Fur-

thermore, a larger increase in the charge imbalance seen in thermophilic RNaseP is

consistent with the overall destabilizing electrostatic energies observed in this system

(positive values in columns 2 and 3 in Table 6.2).
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While the discussion above has focused on the role of charge composition, what

can we learn from the patterning of the charges in the primary sequence? Recent

work129 has introduced a novel sequence charge decoration (SCD) metric that can

discriminate between two sequences having the same charge composition, but differ-

ent patterning (see discussion in previous chapter). For two orthologous proteins,

considering only the difference in charge content and patterning, and assuming every-

thing else equal, a lower value of SCD implies a more compact denatured state.129

Using this metric on a dataset of 540 orthologous pairs, it has been shown that SCD

is, on average, lower in thermophiles compared to mesophiles, implying thermophiles,

in general, have a more compact denatured state compared to mesophiles and high-

lights the role of charge patterning in thermophilic adaptation. Consistent with this

finding, we notice SCDthermo is less or comparable to SCDmeso for the majority of the

sequences, 11 out of 13 pairs explored in this work, see Table 6.5. The only exceptions

are RNaseH and RNaseP for which SCDthermo is significantly higher than SCDmeso.

Both of these protein pairs show a significant charge imbalance in the thermophilic

system.

We make another interesting observation between SCD and the observed fa-

vorable electrostatic interaction energies in the folded state. For two orthologous

proteins, the one with lower value of SCD also has a more favorable electrostatic

interaction energy. Therefore suggesting preferential placement of opposite charges

to promote attraction in the native structure is related to lowering of SCD, which

in turn would predict a more compact denatured state. This is consistent with the

notion that specific contacts from the folded state may cause residual structure in

the unfolded state. Nine protein pairs out of the 13 studied exhibit this trend, with

the exceptions being ACP, HPr, RNaseH, and Thioredoxin. In the ACP and HPr

systems, the SCD values between thermophile and mesophile are comparable, while
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thermophilic protein has significantly more favorable electrostatic interaction in the

folded state. In the Thioredoxin and RnaseH systems, the ortholog with a higher

SCD was observed to have a lower electrostatic interaction energy, in contrast to the

general trend. These exceptions show the subtle differences between charge decoration

in the primary sequence and in the folded structure.

It is also illuminating to further investigate the sequences of ACP, HGCS, RNaseH,

and RNaseP that show the combined effect of solvation and electrostatic interaction

energy is comparable (ACP, HGCS, and RNaseH), or less (RNaseP) favorable in the

thermophile compared to the mesophile. Interestingly, three of these pairs (ACP,

HGCS, and RNaseP) have a significant enhancement in the fraction of hydrophobic

residues in their thermophilic sequences. An increase in hydrophobicity can signifi-

cantly enhance stability, for example an increase in hydrophobic composition fraction

from 0.38 to 0.45 is sufficient to increase the melting temperature by almost 40◦C.25

Consistent with this, mutation studies on RNaseH have shown the hydrophobic core

is responsible for the enhanced thermal stability in thermophile.15 This presents an

intriguing possibility that wherever charge neutrality is not an option to obtain higher

stability, proteins may rely on an alternate mechanism of significantly enhancing hy-

drophobic fraction. Proteins with high charge and specific charge patterning have

been associated with specific function,325,326 and these functional restrictions may

limit adopting electrostatics as a strategy to enhance stability in these proteins.

Finally, it is important to discuss the protein system pair of Thioredoxin, a pair-

ing that also does not seem to follow the electrostatics strategy. Thermophilic and

mesophilic thioredoxin does not show any marked difference in either charge content,

or in the degree of hydrophobicity. However, thermophilic sequence of Thioredoxin

has a significant proline enrichment compared to its mesophilic counterpart, and sep-

arate experiments have shown that proline substitutions can increase the melting
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temperature.171 It should also be noted that the mesophilic Thioredoxin has an un-

usually high melting temperature (80◦C).286 Therefore, it can not be ruled out, in the

absence of experimental measurement of the melting temperature of the thermophilic

counterpart, that the thermophilic and mesophilic Thioredoxin perhaps have compa-

rable stability.

6.2.5 Thermophilic proteins do not necessarily have suppressed

fluctuations in the native state

Thermophilic proteins are often believed to be more rigid compared to their

mesophilic counterparts. While previous simulation studies54,246,327,328 have already

proven a lack of such trend, further exception to this rule is provided here for several

protein pairs not studied before. The average fluctuation from the mean structure

(RMSF ) was computed as a function of time for a given protein as described in Meth-

ods. Figure 6.3 displays the average fluctuation (〈RMSF 〉) comparison between ther-

mophile and mesophile constituents for each homolog pair. This observation shows

thermophiles do not necessarily have suppressed fluctuations compared to mesophiles.

This may seem to contradict that thermophilic enzymes have lower activity at room

temperature. However, low activity may be due to high activation barrier of the

chemical step, and not necessarily due to structural rigidity.54,329 It is also impor-

tant to note, thermophilic proteins may have greater resilience at high temperature,

due to better connected ion pairs, which is not synonymous to greater rigidity.316

Finally, the time scales of reported fluctuations were limited to the simulation time,

and therefore, there is no knowledge of large scale motion, or their relative differences

between mesophilic and thermophilic proteins.
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Figure 6.3: Cumulative 〈RMSF 〉 as a function of simulation time for thermophile-mesophile
(A) ACP, (B) CheA, (C) CheW, (D) CheY, (E) CSP, (F) HGCS, (G) HPr, (H) NusB, (I)
PaiA, (J) RNaseH, (K) RNaseP, (L) Anti-σ, and (M) Thioredoxin. The crossing of curves
show the instability in the calculation for short time scales.

The time evolution of 〈RMSF 〉 for each homologous pair,Figure 6.3, makes

another important point. For multiple pairs, it is observed that the comparison of

fluctuations between thermophile and mesophile derived from short trajectories can

lead to drastically different conclusions compared to long time scale simulations, as is

evident from multiple crossings of the time evolution graphs between thermophile and

mesophile in these systems. The importance of long-time simulation and sampling
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issues have been pointed out in the flexibility study of Trigger-factor240 as well. This

once again highlights the importance of long time simulation subjected to careful

convergence checks.

6.2.6 Presence of hydrogen bonds

From pairwise thermophilic-mesophilic homolog structure comparisons, ther-

mophilic proteins have been shown to have an increased hydrogen bonding.44,45 Fur-

thermore, a correlation has been observed between an increased hydrogen bond con-

tent and thermal stability1,39,43,47–49 . Results of MD simulations have shown that the

thermophile formed not just more protein-protein hydrogen bonds, but also displayed

an affinity to form these bonds with the solvent,46 and additional hydrogen bonds

help maintain the native states of thermophilic systems during high temperature sim-

ulations, while the mesophilic homolog denatures.50,51 However, several contradictory

studies have demonstrated that there is no difference in the amount of hydrogen bonds

between homologous groupings,52–55 leaving the role of these bonds toward increased

thermal stability a disputed topic.

The results of our all-atom MD simulations allowed the detailed calculation of

hydrogen bonds existent in the native state of our system pairs, and the contribution

these bonds offer to enhanced thermal stability. Specifically, we can examine whether

thermophilic proteins make additional h-bonds, and not from a static structural rep-

resentation, but from a distribution of dynamic native state frames.

Methods

Here, we will examine the presence of four categories of hydrogen bonds classified

as: i) any donor-receptor atom pair within the protein structure (labeled U-U), ii)

strictly protein backbone donor atom to backbone receptor atom bonds (B-B), iii)
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protein atom to solvent h-bonds (U-V), and iv) hydrogen bond bridges that occur

when a solvent molecule is shared between two separate protein atoms (U-V-U). All

h-bonds were calculated with CPPTRAJ,264 and analyzed with in-house software.

Results

We define the difference in the number of hydrogen bonds of a given type as the

number presented in the thermophile minus those present in the mesophilic counter-

part. Therefore, values greater than zero reflect the system pairs with the thermophile

having a larger count of a given type, and values less than zero show the mesophilic

protein with a larger hydrogen bond count. The difference in counts are shown in

Table 6.6. As seen from the above analysis, the thermophilic component from the

homologous pairs have a tendency for increased hydrogen bonds within the protein

structure (second column of Table 6.6). Two systems display a minimal increase

(less than two more) in the mesophilic constituent over the thermophilic (HPr and

RNaseP), and the lone significant outlier is the PaiA system, where the mesophile

has, on average, six more structural h-bonds. Each hydrogen bond will enhance the

interaction free energy to a more favorable value by approximately 2kT ,38 so we can

claim that the additional bondings will help stabilize the thermophilic proteins. But,

in accounting for the energetics of donor-acceptor groups, are the solvation and polar-

ization energies going be substantially altered such that they destabilize the system?

The energy calculations to directly answer this question are a focus of near future

work, but a quick discussion will be presented here. We would need to account for

the donor-acceptor groups in DelPhi to calculate the energies that arise from addi-

tional hydrogen bonds. However, we know from Table B.4 that the polarization and

solvation energies found in the folded state of CSP by using all-atom and the ionic

representative atom are in good agreement. That is, by accounting for more than
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System ∆(U-U) ∆(B-B) ∆(U-V) ∆(U-V-U)

ACP 3.4 4.0 -13.5 -0.3

CheA 6.8 5.6 -25.0 -3.6

CheW 2.7 -1.1 5.3 -2.2

CheY 4.1 -2.8 -16.3 -3.1

CSP 5.7 1.8 7.8 2.3

HGCS 1.6 -2.2 -22.2 -4.3

HPr -1.6 -3.5 -8.0 -2.2

NusB 9.7 -1.0 10.2 -0.2

PaiA -6.2 -4.2 -36.8 -2.1

RNaseH 4.3 2.9 1.1 -2.0

RNaseP -0.6 1.0 -17.8 -5.9

Anti-σ 3.4 -1.3 18.4 2.8

Thioredoxin 5.5 2.3 3.3 1.4

Table 6.6: The average hydrogen bond content calculated from MD native state simula-
tions. The four classifications of bonds are U-U (all protein-protein), B-B (strictly protein
backbone-backbone), U-V (protein-solvent), and U-V-U (bridges between two protein sites
and a solvent molecule).

just the representative ionic atoms, we see little change in solvation and polarization

energies in the folded state. The nuance will be presented in the unfolded state calcu-

lations, where the methodology used to calculate electrostatic solvation energies will

not suffice. However, by inspection of each homolog pair’s sequences, we observe all

thermophiles have less polar amino acids than their mesophilic partner. Assuming

the backbone donor-acceptor groups are equal in solvation contributions, thermophiles

would pay a smaller desolvation penalty than mesophiles with respect to polar side

chain interactions with solvent. The conclusion would be that mesophilic solvation

energies from polar amino acids would be more unfavorable than thermophilic due

to the enrichment of these types of amino acids interacting with solvent in the un-
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folded state. Also, the thermophilic component of PaiA has such a larger favorable

electrostatic free energy compared to the mesophile, that the average difference of six

hydrogen bonds is not enough to change the observed stability claims.

6.3 Conclusion

Based on the presented global study of multiple protein pairs, five key conclusions

are to be made. First, for the majority of the protein pairs, the electrostatic interac-

tion energy is more favorable in the native state of thermophilic proteins compared to

mesophiles, consistent with several earlier experimental studies.67,71,73–75,321–323 The

trend remained unaltered even with the inclusion of the desolvation penalty upon

folding. However, with the inclusion of the desolvation penalty, three protein pairs

(ACP, HGCS, and RNaseH) found the favorable electrostatic gain became marginal,

less than 3kT . Second, within the simulation time scale, the widely held view that

thermophilic proteins are preferentially suppressed motion than their mesophilic coun-

terparts is not supported. Third, long simulation trajectories are necessary to avoid

sampling artifacts, as is evident from the observed behavior based on early simu-

lation times (short time scale) that can conflict with long simulation results. This

reiterates recent work that has shown the convergence of native state simulations can

be challenging, and may require several microseconds long simulations.130 Fourth,

estimating electrostatic contribution to energetics solely based on PDB structures

can give incorrect qualitative and quantitative predictions. Meaningful conclusions

can only be drawn from simulation trajectories that include native state dynamics.

Finally, identifying alternate mechanisms other than electrostatics for few protein

pairs may demonstrate different available strategies to enhance thermostability when

modifying electrostatics is not possible for functional reasons.
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Chapter 7

Organismal growth rate calculation

and comparison with experiment

Understanding the link between the molecular effects of protein mutations and

cellular fitness is key to understanding evolutionary dynamics. The work of Shamoo et

al has shown that by replacing the gene for Adenylate Kinase (ADK) in a thermophilic

organism with the gene from a mesophile, the modified thermophile expressed the

mesophile enzyme, but organismal fitness was greatly reduced due to enzyme heat

inactivation.126–128 Furthermore, Shakhnovich and coworkers observed that by incor-

porating destabilizing mutations in a core metabolic enzyme dihydrofolate reductase

(DHFR), the growth rate of E. Coli was substantially reduced.330 Both of these ex-

perimental works demonstrate the quantitative connection of the molecular effects of

protein mutations to cellular fitness.

The physical limitations of cells is dominated by the cell’s collection of proteins,

the proteome, and cells live on the edge of a proteome catastrophe with respect

to temperature.331,332 Based on our thermodynamic analysis, the protein stability

can be modeled as a function of chain length using parameters of the Ideal Thermal
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Protein.141,331 This model was extended to calculate the stability distribution of entire

proteomes, and estimate organismal growth rates. As will be shown, alterations to

protein thermodynamics effect the growth rate of the organism.

7.1 Model

For many organisms, the chain length distribution can be modeled as a gamma

distribution333

P (N) =
Nα−1 exp (−N/θ)

Γ(α)θα
(7.1)

where, α and θ are two parameters. This approach has been previously employed

to model the proteome stability distribution for different organismal growth rates,

such as E. Coli, Yeast, C. Elegans.331 Using the proteome chain length distribution,

P (N), and free energy equations (2.7 and 2.8), the free energy distribution P (∆G)

of the entire proteome was calculated to estimate the growth rate, r(T ), of several

mesophilic and thermophilic organism. As before, for a given proteome, we take

r(T ) = r0 exp(−∆H†/RT )
Γ∏
i=1

1

1 + exp(−∆Gi/RT )
(7.2)

where, r0 is an intrinsic rate, and ∆H† represents an Arrhenius activation barrier

for a metabolic reaction rate.331,334,335 The product term describes the stabilities of

proteins i = 1, 2, 3, . . . ,Γ, where Γ represents the number of essential proteins that

are necessary for the growth rate. The expression above assumes fitness depends

on all the essential proteins and their propensity to be in the folded state. This is

motivated by the fact that compromising the stability of any of these essential proteins

is lethal to the organism, and therefore explains the product notation in equation 7.2.

Furthermore, it assumes growth rate is related to fitness. Equation 7.2 has already
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been successfully used to model growth rates in different organisms.331,334,335 Taking

the logarithm of the rate gives equation 7.2 as

log r(T ) = log r0 −
∆H†

RT
−

Γ∑
i=1

log(1 + exp(−∆Gi/RT )) (7.3)

The summation was approximated as an integral over the entire proteome free energy

distribution, P (∆G) and express average rate334 as

〈log r(T )〉 = log r0 −
∆H†

RT
− Γ

∫
log(1 + exp(−∆G/RT ))P (∆G)d∆G (7.4)

The expression above requires the stability distribution P (∆G). We estimate this dis-

tribution by using the proteome length distribution equation 7.1 and equation 2.7 (for

mesophiles) or equation 2.8 (for thermophiles). Equation 7.4 predicts that cellular

growth rates increase with temperature at low temperature due to the assumed acti-

vated process. It predicts maximum growth at an optimum growth temperature, and

growth rates that decrease at high temperatures due to proteome denaturation (see

Figure 7.1). These curves are highly asymmetrical near the temperature of maximum

growth, and the model predicts this well. For this calculation, the model requires

two free parameters ∆H† and Γ, which were determined by fitting the experimental

data on several mesophilic and thermophilic organisms (see Figure 7.1). Values of the

fitted parameters are reported in Table 7.1 using corresponding expressions of ∆G

respective of the organism.

7.2 Results

Quantitative agreement between experimental thermal growth data, and our

proteome modeling based on Ideal Mesophilic Protein and Ideal Thermophilic Protein
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Mesophilic Species ∆H† Γ Topt [K] L

B. Megaterium336 19.7 26 315.2 272

B. Subtilis336 16.9 30 314.5 294

E. Coli337 27.1 51 314.1 301

L. Monocytogenes338 25.9 223 309.7 303

P. Aeruginosa336 21.6 101 311.9 328

P. Fluorescens336 28.9 166 311.7 340

Thermophilic Species ∆H† Γ Topt [K] L

B. Acidocaldarius339 15.6 107 339.2 306

M . Thermoautotrophicus340 29.8 81 341.2 281

T. Aquaticus336 19.1 3 347.0 284

T. Brockii341 48.8 22 345.3 304

T. Neopolitana342 28.4 1 348.0 313

T. Thermophilus343 10.6 2 346.9 299

Table 7.1: Fitted Parameters from Proteome Analysis: ∆H†, Γ, and Topt are the activation
barrier, essential proteins, and optimum growth temperature, respectively, calculated from
fitting equation 7.4 to experimental data. L is the average length of all proteins found
within a given proteome.

parameters provide additional support to our approach and finding. Growth rates

computed from equation 7.4, and protein thermodynamic data, captured the optimal

growth temperature, as well as the asymmetric temperature dependent growth curves

across many thermophilic and mesophilic organisms. Furthermore, it should be noted,

only mesophilic (thermophilic) ideal protein parameters could be used to fit mesophilic

(thermophilic) organisms. Unphysical parameter values and poor fit were observed

while using mesophilic protein parameters to fit thermophilic organism growth data,

and vice versa.

The extreme sensitivity of thermodynamic parameters to model growth data, and

successful modeling only upon proper selection of protein thermodynamic parameters,
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suggests engineering protein stability is perhaps one of the key factors organisms

utilize to adapt to elevated temperatures. It should also be noted that application of

growth rate (equation 7.2) to model fitness may not always be accurate and depends

on nutrient conditions.345,346
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Figure 7.1: Black circles denote experimental determined growth rate as function of tem-
perature for species listed. In the y–axis, normalized growth rate with respect to maximum
growth rate is plotted, while the x-axis displays temperature. Solid lines are fit to data from
equation 7.4, and the name of the fitted species are given in the graph. Blue curves denote
mesophilic organisms, while red graphs are for thermophiles. The sources of the growth-rate
data for the different organisms are given in Table 7.1 next to the species names. Proteome
chain length information about each of the organisms were obtained from Genbank344
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Chapter 8

Concluding Remarks

Attempting to understand the molecular strategies of enhanced stability in ther-

mophilic proteins has presented many challenges. Here, we have presented the results

of many studies in an attempt to gain insightful knowledge of possible mechanisms.

From a study of thermodynamic data, we have observed that thermophilic proteins, on

average, have a reduced change in thermodynamic parameters (∆H, ∆S, and ∆Cp),

but only the reduced entropy change had a favorable effect to the stability curve. The

reduced parameters allowed us to deduce that the presence of residual structure in

the unfolded state of thermophiles may be a potential mechanism adopted to thrive

in high temperature environments. Further study of the unfolded state demonstrated

that the constitution and pattering of charged amino acids at the sequence level

played a large role, and the effect of electrostatic interactions lead to a reduced size

in thermophilic proteins, verifying the residual structure hypothesis. Furthermore,

the role of electrostatic interactions from the folded state dynamics study highlighted

the contributions charged amino acids make in forming well connected ionic interac-

tion networks in thermophilic proteins. Compared to their mesophilic counterparts,

and accounting for desolvation penalties, thermophilic proteins benefit from a more
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favorable electrostatic free energy from their ionic constituents. As observed, ther-

mophilic proteins tend to enhance the attractive ionic interactions, and relieve the

repulsive contributions, and this method should be an avenue of consideration when

attempting to engineer proteins with heightened thermal resistance.

The observations we have gathered to date include the aforementioned dynamics

study performed strictly at room temperature. Although this study was insightful

by demonstrating the interactions of ionic amino acids in the folded state, do these

interactions lead directly to enhanced stability? An in-depth examination of the un-

folding simulation trajectories displayed in Figures 5.1-5.14 could illuminate potential

unfolding pathways in mesophilic proteins due to high temperature stresses. Further

analysis of these simulations could highlight the “weak spots” in mesophilic proteins,

and comparison to thermophilic information would offer insights into the modifica-

tions thermophilic proteins have adopted to resist high temperature denaturing.
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Appendix A

Convergence
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Figure A.1: The number of found clusters, cluster distribution entropy, and cluster distri-
bution histogram for different choices of dc used in clustering. Top row was found with a
dc choice of 1.25Å, the middle row used 1.5Å (identical to Figure 4.1), and dc = 1.75Å in
the bottom row. As seen, the three cutoff qualitatively produce similar outcomes.
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Figure A.2: Probabilities of the top 20 most occupied clusters as a function of simulation
time for the 7µs simulation of CheW. The number of clusters, and their respective popula-
tions, are found using a dc = 1.25Å (top), 1.5Å (middle, and identical to Figure 4.3, and
1.75Å (bottom).
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System τd (ns) % error τ ′d (ns) % error

CheW 7µs 106–171 12.3–15.6 141.7 14.2

CheA 1µs 46–91 21.4–30.2 42.7 20.7

CheA 2µs 47–87 15.3–20.9 77.0 19.6

CSP Imp 2.5µs 143–163 23.9–25.5 99.6 19.9

CSP Imp 6µs 223–358 19.3–24.4 227.2 19.5

CSP Imp 20µs 606–1015 17.4–22.5 825.0 20.3

BPTI 2µs 11-16 7.4–8.9 3.7 4.3

BPTI 15µs 21-53 3.7–5.9 5.6 1.9

BPTI 30µs 26–53 2.9–4.2 31.5 3.2

CSP Exp 1µs 67–95 25.9–30.8 34.1 18.5

CSP Exp 3µs 77–120 16.0–20.0 59.7 14.1

CSP Exp 15µs 498–607 18.2–20.1 588.9 19.8

Table A.1: Both calculations of decorrelation time included all protein atoms except hy-
drogens. τd range is from subsample sizes of 2, 3, and 4, and utilized 25 repetitions. τ ′d is
found from the average total sample size calculated from 100 iterations and 20 bins, and
clustering did not always reduce to top two-states.
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Figure A.3: Results of Block Covariance Overlap Method (BCOM) analysis of CheA 1µs
(top) and 2µs (bottom) trajectories. Left panel is direct calculation of covariance overlap
using contiguous blocks (black curve) and bootstrapping (red curve) at given block sizes.
Right panel shows the ratio of bootstrapped BCOM to blocked BCOM.
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Figure A.4: Results of Block Covariance Overlap Method (BCOM) analysis of implicit CSP
2.5µs (top) and 6µs (bottom) trajectories. Left panel is direct calculation of covariance
overlap using contiguous blocks (black curve) and bootstrapping (red curve) at given block
sizes. Right panel shows the ratio of bootstrapped BCOM to blocked BCOM.
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Figure A.5: Results of Block Covariance Overlap Method (BCOM) analysis of BPTI 2µs
(top), 15µs (middle), and 30µs (bottom) trajectories. Left panel is direct calculation of
covariance overlap using contiguous blocks (black curve) and bootstrapping (red curve) at
given block sizes. Right panel shows the ratio of bootstrapped BCOM to blocked BCOM.
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Figure A.6: Representative states for the two most occupied clusters (dc = 1.25Å) from the
800µs BPTI simulation. These two clusters account for almost 60% (left representative,
20%, and right, 39%) of all possible trajectory frames. The most noticeable difference is in
the chirality of the shown Cys14-Cys38 disulfide bridge (yellow sticks).
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Figure A.7: Results of Block Covariance Overlap Method (BCOM) analysis of Explicit CSP
1µs (top), 3µs (middle), and 12µs (bottom) trajectories. Left panel is direct calculation of
covariance overlap using contiguous blocks (black curve) and bootstrapping (red curve) at
given block sizes. Right panel shows the ratio of bootstrapped BCOM to blocked BCOM.
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Appendix B

DelPhi Benchmarking

To gather information on electrostatic properties, DelPhi utilizes a finite-difference

method to solve the Poisson-Boltzmann equation. Benchmarking will validate the

“black box” calculation, and will also serve to confirm the construction and choice of

partial charge and radii libraries DelPhi demands to operate.

Comparison with Analytical Solutions

First, let’s examine a system where an exact, analytical solution exist. Specif-

ically, a collection of charges buried in a spherical cavity, of fixed radius and low

dielectric, embedded within a medium of higher dielectric. Contributions to the sol-

vation free energy (self energy) resulting from an individual charge qi set a radial

distance si inside a cavity of radius R and dielectric εint, and an exterior medium

with dielectric εext is expressed as:

U solv
i = −166

q2
i

R

(
1

εint
− 1

εext

) ∞∑
l=0

l + 1

l + 1 + l(εint/εext)

(si
R

)2l

(B.1)
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Given the presence of a second charge, qj, separated from qi by a distance dij within

the cavity, the free energy contributions from pairwise coulombic and polarization

interactions can be written, respectively, as

U coul
ij = 332

qiqj
dijεint

(B.2)

Upol
ij = −332

qiqj
R

(
1

εint
− 1

εext

) ∞∑
l=0

l + 1

l + 1 + l(εint/εext)

(sisj
R2

)l
Pl(cosγ) (B.3)

where Pl(cosγ) are the Legendre polynomials with an angle γ between qi and qj.

The total electrostatic energy of a system consisting of N charges is defined as the

summation of solvation (self) energies and pairwise interaction energies (coulombic

and polarization terms):

U total =
N∑
i=1

(
U solv
i +

N∑
i<j

U coul
ij + Upol

ij

)
(B.4)

Two Ion Model

Given the above exact solutions, we can construct a model system within DelPhi

to test the viability and accuracy of the program’s calculations. Specifically, the

system will consist of two ions of opposite charge, qi = +e and qj = −e, each placed

on the x-axis a distance 10Å from the origin, but in opposing directions, giving

si = sj = 10Å, and dij = 20Å, inside of sphere of radius R = 16Å and εint = 2.

The external dielectric constant, εext, was set to 78 to replicate a water solvent. This

model system is visualized in Figure B.1.

Execution of DelPhi with the constructed two ion system, and necessary charge

and radii libraries, returns a coulombic energy equivalent to U coul (Eq. B.2), and a

corrected reaction field energy (CRFE) term corresponding to the total solvation free
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Figure B.1: An example model system where an exact solution exists. Two opposing charges
(black spheres) placed on the x-axis equidistant from the origin within a spherical cavity of
radius R and internal dielectric εint. Space external of the sphere has a dielectric εext.

energy and pairwise polarization energy contributions. The total solvation free energy

is calculated as the sum of all individual ion solvation free energy contribution modeled

from Equation B.1. From aforementioned values of spherical radius, burial distance,

charge, and dielectric constants, and the analytical expression of U solv (Eq. B.1), the

solvation free energy of an individual ion gives a value of −13.9779 kT , an almost

identical value from DelPhi calculation, −13.9809 kT . The polarization free energy

contribution was deduced by subtracting the total solvation energy summation from

the CRFE output, Equation B.5. Free energies calculated for the two ion system

from analytical expressions and DelPhi are shown in Table B.1.

Method U solv [kT ] U coul [kT ] Upol [kT ]

Analytical -27.9557 -14.0678 12.3753

DelPhi -27.9618 -14.0499 12.3483

Table B.1: Contributions to the electrostatic free energy of the two ion model system
shown in Figure B.1. U solv is calculated from the summation of individual ion contributions
(Eq. B.1). The Upol value from DelPhi is found by subtracting U solv from the CRFE output,
Eq. B.5.
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In summary, from comparison to analytical expressions, contributions to the

electrostatic free energy calculated from DelPhi show very strong agreement. The

pairwise coulombic energy, U coul, is directly calculated, but to assess the pairwise po-

larization energy, Upol, the outputted CRFE term needs to be reduced by the system’s

total solvation energy, which is simply the summation of all individual ion contribu-

tions in the absence of all other system ion charges. Therefore, a working algorithm

utilizing DelPhi to calculate the electrostatic free energy contributions would proceed

as follows:

1. For a system of N charges, calculate each charge’s (qi) solvation energy with all

others (qj 6=i) set to neutral, giving N solvation energy contributions.

2. From the N charge system, calculate the CRFE with all charges “turned on”.

This single execution of DelPhi will provide the pairwise coulombic energy,

U coul, as well.

3. Calculate the system’s pairwise polarization energy by subtracting the total

solvation energy of the N charges from the CRFE found in step 2.

Upol = CRFE−
N∑
i

U solv
i (B.5)

Four Ion Model

As an extension to the two ion model system discussed above, two additional

charges were added, giving four charges in the x-y plane equidistant from the origin

(see Figure B.2), and all sharing the same charge, q1−4 = +e. All other parameters

are kept from the two ion model, i.e., R = 16Å, εint = 2, and εext = 78.

The working algorithm using DelPhi was implemented, and analytical solutions

were solved using equations B.1-B.3, and B.5. Results from these two methods are
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Figure B.2: Four ions of same charge (black spheres) placed in the x-y plane, each equidis-
tant from the origin, and inside a sphere of radius R and internal dielectric εint. Space
external of the sphere has a dielectric εext.

shown in Table B.2, and again, show very strong agreement, providing more evidence

towards reliable and accurate calculations from DelPhi.

Method U solv [kT ] U coul [kT ] Upol [kT ]

Analytical -55.9114 107.7150 -88.6658

DelPhi -55.9236 107.5782 -88.5047

Table B.2: Contributions to the electrostatic free energy of the four ion model system
shown in Figure B.2. U solv is calculated from the summation of individual ion contributions
(Eq. B.1). The Upol value from DelPhi is found by subtracting U solv from the CRFE output
(Eq. B.5).

Predicting Energies from Potential Mapping

Given a system of charges, DelPhi allows the calculation of coulombic and re-

action potentials at a specified site, from which, coulombic and polarization energies

can be predicted.
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Four Ion Model

For this analysis, the four ion model with charges in x-y plane was utilized,

and potentials calculated at a site on the z-axis 10Å from the origin. The system is

displayed in Figure B.3.

Figure B.3: Four ions of same charge (black spheres) placed in the x-y plane, each equidis-
tant from the origin. The red sphere on the positive z-axis is the position of interest for
calculation of site potentials.

DelPhi calculations returned a coulombic potential of φcoul = 79.4784 kT/e, and

reaction potential φreact = −63.8188 kT/e at the test position due to the charges in

the x-y plane. From the previously tested four ion model electrostatic free energy

contributions (Table B.2), and assuming a charge of −e was inserted into the test

position, the pairwise coulombic and polarization energies of a five ion system with
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the geometry described were predicted as:

U coul
5 ions = U coul

4 ions + qeφ
coul

= 107.7150 kT + (−e)(79.4784 kT/e)

= 28.0998 kT

Upol
5 ions = Upol

4 ions + qeφ
react

= −88.5047 kT + (−e)(−63.8188 kT/e)

= −24.6859 kT

The five ion model show in Figure B.3 was constructed by assigning the test site

(red sphere) a charge of −e, and keeping all other physical parameters constant from

the four ion model discussed above. Calculations from DelPhi and analytical expres-

sions for this model, and their comparison to predicted coulombic and polarization

energies from potential mapping are show in Table B.3. Prediction of solvation self

energies is not possible from potentials. As seen, the coulombic energy is an exact

match to Delphi, and the polarization energy is in strong agreement with both the

analytical and DelPhi results.

Method U solv [kT ] U coul [kT ] Upol [kT ]

Analytical -69.8893 28.1356 -24.7507

DelPhi -69.9045 28.0998 -24.6966

Predicted from potentials – 28.0998 -24.6859

Table B.3: Electrostatic free energies for a five ion model predicted from site potentials cal-
culated from the four ion model system shown in Figure B.3, compared to direct calculations
from DelPhi and analytical expressions.
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Real Proteins

Departing from model systems in which exact solutions exist, a real protein

system (the Cold Shock Protein (CSP) from Thermus Thermophilus) was analyzed.

Instead of utilizing an all-atom partial charge library, the ionic side chains were mod-

eled with a representative ion of charge ±e, and all remaining atoms were set to

neutral. The choice of single ion over all-atom representation will be discussed below,

but is worth mentioning here that only small differences in calculated solvation and

polarization energies were seen between usage of the two charge libraries.

For first inspection in the calculation of site potentials, four ionic residues (Arg20,

Lys36, Glu43, and Asp50) were selected from CSP. Iteratively, each ion was neutral-

ized and assigned the site for potential calculations, while the remaining three ions

remained charged. As an example, Figure B.4 displays Lys36 (red sphere) neutralized,

and the remaining three ions charged (black spheres) for two different view angles.

The potentials at each of the four sites due to the remaining three charges were found,

Figure B.4: Dual angle view of the CSP four ion model. Black spheres have their respective
charges assigned. The red sphere ion is neutral, but will serve as the site for potential
calculations.

and the nomenclature was adopted of φcouli and φreacti representing the coulombic and

reaction potentials, respectively, at site i due to the remaining three ions. The total

coulombic and polarization energies of this “real” system were calculated with qi as
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the charge at site i, e.g., qLys36 = +e and qGlu43 = −e:

Upol =
1

2

∑
i

qi φ
react
i = 46.3839 kT

U coul =
1

2

∑
i

qi φ
coul
i = −48.2466 kT

With the charge of all four ions “turned on”, and the individual ion solvation energies

calculated, the total polarization energy was found from DelPhi and Equation B.5 as

46.3838 kT . The coulombic energy contribution from this DelPhi calculation was an

exact match to U coul.

Comparison with Generalized Born Model

Another method for calculation of electrostatic free energies invokes the Gener-

alized Born model to approximate the Poisson-Boltzmann equation. Here, we depart

from the spherical treatment given in expressions B.1-B.3, and remodel the expres-

sions to capture the pairwise polarization energy from more realistic protein geome-

tries.

Upol
GB ≈ −

(
1

εint
− 1

εext

)∑
i<j

qiqj√
d2
ij + rGBi rGBj exp

(
−γ d2ij

rirj

) (B.6)

where dij is separation distance between charges qi and qj, γ = 1/4, and rGBi represents

the effective Born radius calculated from the solvation (self) energy of ion i:

rGBi = −1

2

(
1

εint
− 1

εext

)
q2
i

Usolv,i
(B.7)
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The effective Born radius, rGBi , captures the degree of burial of ion i, and attempts to

quantify the amount of electrostatic screening. The smaller a Born radius for an ion,

the larger the screening as if the charge were in a medium with a higher dielectric

constant. The calculation of Born radius required the solvation energy for each ion

within the system of charges, and was calculated with DelPhi.

Real Proteins

The CSP system described in the Potential Mapping section will be used here.

Specifically, the CSP system contains 23 ionic groups, allowing the calculation of

(23 × 22)/2 = 253 possible pairwise polarization energies that were calculated with

DelPhi (Eq. B.5), and then separately with expressions B.6-B.7. Plotting polarization

energy found from Upol
GB (Eq. B.6) versus Upol found from DelPhi (Eq. B.5) for each

ion pair displays an almost y = x relationship (Figure B.5, left). Furthermore, the

ACP protein was analyzed following the same protocol, giving (30 × 29)/2 = 435

pairwise combinations, and the same near y = x relationship is seen when comparing

GB polarization energies to those calculated from DelPhi (Figure B.5, right).
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Figure B.5: Direct comparison of GB polarization energy (y-axis) versus DelPhi calculated
polarization energy (x-axis) for all possible ionic pairs from CSP (left) and ACP (right).
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The summation of all pairwise polarization energies represents the total polar-

ization energy within each system. Compared directly to DelPhi output when all

ions are in system, strong agreement is again seen. Specifically, for CSP,
∑
Upol
GB =

455.831 kT , and from DelPhi and Equation B.5, Upol = 450.274 kT , and for ACP,∑
Upol
GB = 307.969 kT , and Upol = 296.998 kT . This is expected given the almost

y = x dependence.

Representative Atom Charge Library

For the DelPhi calculations of real protein systems, we chose to construct the

charge libraries using a representative atom for charged groups rather than all-atom

partial charges. Specifically, instead of every atom carrying some value of charge, we

chose a specific atom within each of the seven charged groups (α-amino N, α-carboxyl

C, Asp Cγ, Glu Cδ, His (Hip) Cε1, Lys Nζ, and Arg Cζ) to carry a charge of ±e,

and all remaining atoms were assigned to neutrality. An obvious question arises, how

well do these representative charge results compare to those using an all-atom partial

charge library? To ensure the results gathered are trustworthy, a brief comparative

analysis and discussion is included.

Electrostatic properties from the CSP system were calculated with DelPhi us-

ing the all-atom partial charge and ionic group representation libraries, the internal

dielectric of the system set to values of 2 and 40.6 (our estimate), and following the

working algorithm outlined above to calculate the total solvation (U solv) and polar-

ization (Upol, Eq. B.5) energies. As seen in Table B.4, calculation of total solvation

and polarization energies are in good agreement. Examination of the U solv term in

either internal dielectric constant case shows the ionic group representation results

are within almost 10% of the value found from the all-atom library. Similar results
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Charge Library U solv [kT ] U coul [kT ] Upol [kT ]

εint = 2
All-atom -1390.9977 -19776.6639 433.778

Ionic groups -1227.9558 -514.5706 450.274

εint = 40.6
All-atom -27.8133 -974.2199 9.0009

Ionic groups -25.4347 -25.3483 9.7577

Table B.4: Comparison of electrostatic free energy contributions between all-atom partial
charge and ionic group representation atom libraries. Calculations performed at two dielec-
tric constants show the solvation and polarization energies are in good agreement between
both libraries.

are seen in comparison of the polarization energies. However, comparison of total

coulombic energies shows the value returned from all-atom charges is nearly 40 times

that given from ionic group representation. Recall, the DelPhi calculation of coulom-

bic energy is a summation of all pairwise coulombic interactions (Eq. B.2) set in the

interior of the proteins’s boundary. For the CSP system modeled here, 1144 atoms

are assigned a partial charge in the all-atom case, but only 23 charges in the ionic

group representation. This large discrepancy in assigned charges, and therefore in

the number of i, j pairwise interactions in the summation, could account for the large

difference seen in coulombic energies.

In summary, the use of an ionic group representative atom carrying a charge

of ±e versus usage of all-atom partial charge libraries show strong agreement in the

total solvation and polarization energies calculated for a given system. The large

discrepancy seen in the total coulombic energy stems from the over representation

of partial charges in the all-atom case. Since the present research goals are on the

effects of ionic sidechain charge–charge interactions, it is recommended to utilize the

representative atom library for current DelPhi calculations.
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