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ABSTRACT 

 

The natural knee is a hinge joint with significant functional requirements during 

activities of daily living; as a result, acute and chronic injuries can occur.  Pathologies are 

influenced by joint anatomy and may include patellar maltracking, cartilage degeneration 

(e.g. osteoarthritis), or acute injuries such as meniscal or ligamentous tears.  Population 

variability makes broadly applicable conclusions about etiology of these conditions from 

small-scale investigations challenging.  The work presented in this dissertation is a 

demonstration of statistical modeling approaches to evaluate population variability in 

anatomy of the knee and function of its tibiofemoral (TF) and patellofemoral (PF) joints.  

Three-dimensional (3D) computational models of the bone and cartilage in the knee were 

characterized using a principal component analysis (PCA) algorithm to understand the 

primary sources of variability in shape and motion and make predictions from sparse 

data. 

Statistical models were used to investigate relationships between natural knee 

anatomy and kinematics and make predictions of both shape and function from sparse 

data.  A whole-joint characterization study identified key correlations between shape and 

function of the TF and PF joints, successfully recreating results from multiple studies and 

introducing new relationships under one unified approach.  Results from this study were 



 

iii 

 

used in a subsequent investigation to build a statistical model of two-dimensional (2D) 

shape and alignment measures and 6 degree-of-freedom (DOF) kinematics to identify the 

key measures capable of predicting PF joint motion.  The ability to reconstruct the 3D 

implanted patellar bone of a subject with a total knee replacement (TKR) was evaluated 

by a statistical shape model of the patella and simulated 2D edge profiles in a custom 

optimization algorithm.  Lastly, a validated predictive algorithm was employed to assess 

the accuracy of subject-specific knee articular cartilage predictions from bony geometry.  

The utility of statistical modeling is elucidated by the population-based evaluations of the 

musculoskeletal system described in this work and could continue to inform 

characteristics related to pathological conditions and large-scale computational 

evaluations of implant performance. 
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CHAPTER 1. INTRODUCTION 

 

1.1. Introduction 

Kinematics and contact mechanics are known factors contributing to natural knee 

joint pathologies, including patellar subluxation and dislocation (Boling et al., 2010), and 

osteoarthritis (OA), or degeneration of the articular cartilage (Andriacchi 

and Mündermann, 2003 and 2006; Neogi et al., 2013).  The onset of OA, in particular, 

can exacerbate these conditions through increased pain and altered mechanics (Hamai et 

al., 2009; Brage et al., 1994).  The knee is a complex anatomical structure comprised of 

the tibiofemoral (TF) and patellofemoral (PF) joints.  Understanding the relationships 

between shape and 6 degree-of-freedom (DOF) joint motion is therefore useful for 

improving outcomes from physical therapy and total knee replacement (TKR).  

Experimental investigations into knee joint function have historically involved in vitro or 

in vivo data collections on cadaveric specimens or live subjects and joint anatomy has 

traditionally been characterized by 2D linear measures on magnetic resonance (MR) or 

computed tomography (CT) scans.  These methods, however, are limited in their ability 

to describe complete knee morphology or measure muscle forces and internal joint loads. 

Computational biomechanics offers an efficient means by which to investigate 

complexities of the human musculoskeletal system that would otherwise be too difficult 

or cost prohibitive to study experimentally.  Studies have developed complex 
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computational models on a small number of subjects to assess subject-specific 

characteristics of the joint (Halloran et al., 2005; Baldwin et al., 2012).  These studies 

provide valuable insight into the mechanics of the knee joint, but are limited in their 

applicability to the broader population.  Joint anatomy and kinematics of the knee vary 

significantly across the entire human population and within ethnicities (Leszko et al., 

2012; Mahfouz et al., 2013).  Population-based analyses are becoming increasingly 

relevant as the age range for injuries and surgical intervention increases (Ravi et al., 

2012). 

Statistical methods provide a means by which to evaluate variability and 

uncertainty in biological systems.  When linked to computer models of the human 

musculoskeletal system, these methods can account for anatomical and physiological 

variation in a population of subjects.  Statistical shape models (SSMs) have evaluated 

three-dimensional (3D) geometric variability in bone, cartilage and ligamentous 

structures across a training set of subjects (Meller et al., 2004; Chintalapani et al., 2007).  

Other applications have included assessment of resection plane positioning to inform 

TKR component sizing (Dai et al., 2013), and prediction of 3D bone shape from sparse 

data such as digitized anatomical landmarks during surgical intervention or 3D 

ultrasound imaging (Fleute et al., 1998; Barratt et al., 2008). 

In addition to structural anatomy, statistical models have incorporated material 

property and functional characteristics of bones and joints (Deluzio et al., 2007; Bryan et 

al., 2010; Sarkalkan et al., 2014).  SSMs involving multiple structures have informed not 

only relationships between adjoining bones but also joint alignment and kinematic 
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variability (Rao et al., 2013).  This dissertation describes the use of statistical methods to 

further investigate variability in shape, alignment and function of the natural knee and 

their application to identify key clinical measures related to function, improve the 

efficiency of experimental methods, and predict previously unexplored characteristics 

from sparse data. 

1.2.  Objectives 

The objectives of this dissertation were to develop several statistical models of the 

knee joint for applications ranging from characterization of population variability to 

prediction of shape or function.  Models varied in size of the training set and were 

developed with different combinations of shape, alignment and function variables.  Bone, 

cartilage and ligament structures of the tibiofemoral (TF) and patellofemoral (PF) joints 

were extracted from CT, MR, or stereo radiographic images and registered to a common 

point distribution model (PDM).  TF and PF kinematic data were obtained from 

experimental testing or numerical simulations; for correspondence, the data were also 

registered in a consistent manner.   

Each statistical model was developed by applying principal component analysis 

(PCA) to the registered training set of subject data.  PCA reduced the large number of 

shape and/or function variables into a smaller set principal component (PC) scores 

describing important structure within the data.  The models were employed in leave-one-

out analyses to make predictions either between registered training set data or from 

unregistered, sparse data such as 2D images that were not part of the training sets.  

Specific aims included (1) characterizing shape-function relationships in the TF and PF 
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joints, (2) predicting PF joint function from linear geometric measures, (3) reconstruction 

of 3D patellar bone from x-ray images, and (4) predicting cartilage from bony geometry 

with an SSM of the whole knee. 

1.3.  Dissertation Overview 

Chapter 2 provides an overview of the published literature on measures-based and 

statistical modeling approaches to computational analyses of the knee.   The chapter 

primarily focuses on relationships between shape and function, estimation of shape from 

sparse data, and predictions of shape or function for new, unknown subjects. 

Chapter 3 provides an overview of the methods to develop, evaluate and use 

statistical shape models.  Specifically, this chapter describes data collection and 

processing, statistical model development using PCA, training set and PC mode 

visualization, statistical model-based finite element analysis, automated clinical shape 

parameter measurements, and 3D object reconstruction from 2D radiographs. 

Chapter 4 presents Statistical Modeling to Characterize Relationships between 

Knee Anatomy and Kinematics whose objective was to describe relationships between 

knee anatomy and tibiofemoral and patellofemoral kinematics using a statistical shape 

and function modeling approach.  Similar models and techniques presented here are also 

used in subsequent chapters.  This study has been published in the Journal of Orthopaedic 

Research. 

Chapter 5 presents Statistical Shape Modeling Predicts Patellar Bone Geometry 

to Enable Stereo-Radiographic Kinematic Tracking whose objective was to accurately 

predict the shape and pose of the natural patella from biplane fluoroscopic images using a 
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patella-specific statistical shape model.  This study has been accepted for presentation at 

the 2016 annual meeting of the Orthopaedic Research Society and will be submitted in 

manuscript form to a peer-reviewed journal. 

Chapter 6 presents Prediction of Knee Articular Cartilage from 3D Bone 

Geometry Using a Statistical Shape Model whose objective was to accurately predict 

specimen-specific distribution and thickness of the femoral, tibial and patellar articulating 

cartilages from the specimen bony geometry using a statistical shape model of the knee 

joint.  This study will be submitted in manuscript form to a peer-reviewed journal. 

Chapter 7 presents Measures-driven Prediction of Patellofemoral Joint 

Kinematics whose objective was to predict patellofemoral function from linear shape 

measures on the previously developed statistical shape and function model described in 

Chapter 4.  This study will be submitted in manuscript form to a peer-reviewed journal. 

Chapter 8 discusses the specific contributions of this dissertation in addition to 

suggestions for continuing work with statistical modeling techniques in the field.  
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CHAPTER 2. BACKGROUND INFORMATION AND LITERATURE REVIEW 

 

2.1.  Statistical Modeling of Biological Structures 

Population variability introduces a challenge for researchers in their pursuit to 

understand the complex function of biological structures.  Size and shape are 

fundamental differences among structures of interest, and statistical (or active) shape 

models (SSMs) have been developed to characterize and quantify these variables in 

members of a population.  Cootes et al. originally illustrated the utility of SSMs by 

describing two-dimensional (2D) geometric differences in circuit-board resistors with 

principal component (PC) modes of variation.  The modes described important structural 

variability such as body length, body width, and wire length in the training set of resistors 

that were used to build the model (Cootes et al., 1995).  Correspondence between training 

set members was achieved by manual selection of landmark features on the resistor 

shapes such as points at the ends of the wires or along the outline of the resistor body.  A 

unique characteristic of the SSM was elucidated by plotting the first two modes of 

variation against each other; the lack of correlation illustrated their independence and 

thus, efficient representation of population variability. 

Statistical modeling techniques have been extended to 3D models of human bones 

to better understand population anatomical variability.  Lorenz et al. introduced the idea 
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of a surface point distribution model (PDM) that acts as a template upon which to register 

like shapes for point-to-point correspondence (Lorenz et al., 2000).  Important geometric 

differences have been elucidated by correlations between common anatomical features on 

the bone and principal component modes of variation (Meller et al., 2004).  Other early 

applications have included fitting SSMs to x-rays for subsequent age or density 

measurements (Behiels et al., 2002)  and semi-automated CT or MR scan segmentation 

(Fripp et al., 2006) to efficiently develop 3D subject-specific models. 

The inclusion of multiple structures into a single SSM has informed whole joint 

morphology and alignment characteristics in the shoulder (Yang et al., 2008) and knee 

(Baldwin et al., 2010).  Baldwin et al. built a PCA-based SSM of articular cartilage in the 

tibiofemoral (TF) and patellofemoral (PF) joints from automatically segmented MR 

scans.  Shape and alignment of the cartilage were described by the first few PC modes of 

variation; isotropic scaling and significant as-scanned alignment was represented in Mode 

1, patellar SI alignment as described by Mode 2, and sagittal plane shape changes were 

described by both Modes 3 and 4.  Although limited in its ability to describe 

performance-related alignment characteristics, the model successfully illustrated the 

ability to dually described shape and relative position of anatomical structures.  Yang et 

al. evaluated shoulder joint anatomy in primates by applying PCA to a training set of 

scapulae and humeri as a data reduction technique and then utilized canonical correlation 

analysis (CCA) to quantify geometric relationships for a subsequent predictive analysis 

(Yang et al., 2008).  CCA was applied to the PC modes of each bone and described 

“highly linear morphological interrelationships” between bones of the shoulder joint. 
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Recent SSMs have also expanded to incorporate other metrics such as bone 

density distribution to further inform population variability in material properties (Querol 

et al., 2006; Bredbenner, et al., 2008; Bryan et al., 2010; Sarkalkan et al., 2014).  CT 

scans, which also contain gray-scale density information, were used to dually fit shape 

models for extraction of both geometry and material properties in a cohort of femurs 

(Querol et al., 2006; Brednenner et al., 2008; Sarkalkan et al., 2014).  Bryan et al. 

extended an SSM of the whole femur to incorporate material properties with the goal of 

creating models suitable for finite element (FE) analyses (Bryan et al., 2010).  The 

authors demonstrated the robustness of the model by leave-one-out and reconstruction 

tests that assess predictive and descriptive capabilities of the model.  Utility of material-

mapped shape models was further demonstrated by the efficient development of virtual 

models for subsequent FE investigations; 1000 FE material-mapped femurs were 

subjected to a fall-loading condition to study femoral neck fracture risk (Bryan et al., 

2009).  Results relating fracture location and the surrounding bone mineral density 

distribution illustrated the technique’s ability to recreate common fracture patterns and 

provide valuable correlations to local bone material properties.  Sarkalkan et al. 

illustrated the diagnostic capabilities of incorporating material properties by identifying 

modes of variation with predisposing factors for osteoarthritis (OA) such as including 

bone porosity in the femoral head (Sarkalkan et al., 2014). 

Multi-body statistical models have been further developed with the addition of 

performance measures such as kinetics, kinematics and deformation mechanics.  

Statistical models of kinematics and kinetics have been employed to evaluate patterns and 
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inform functional consequences of subjects with OA (Deluzio et al., 1997).  Galloway et 

al. similarly built a statistical model of TF kinetics from musculoskeletal models of gait 

representing 31 pre-operative TKR patients (Galloway et al., 2012).  Leave-one-out and 

reconstruction tests demonstrated the model’s ability to predict and fully describe the 

kinetic curves, thus meeting the authors’ goal for developing a population of virtual 

instances from a small training set. 

With the goal of predicting kinematics and contact mechanics from shape, 

Fitzpatrick et al. combined anatomy and mechanics to develop an SSM of PF joint 

cartilage in a prescribed loaded alignment and finite-element (FE) predicted mechanics 

(Fitzpatrick et al., 2011).  The first several modes of variation described similar size and 

shape changes as Baldwin et al.; uniform scaling, patella alta and sulcus groove depth 

were descriptors of Modes 1, 2 and 3, respectively (Baldwin et al., 2010).  Kinematics 

and contact mechanics were predicted in a leave-one-out analysis using only the shape of 

the left-out specimen and the SSM.  Good agreement existed between the FE- and SSM-

predicted kinematics with root mean square errors of less than 3 degrees and 2.5 mm.  

The holistic approach of evaluating shape variability through statistical analysis of point 

distribution models (PDMs) introduces the ability to study groups of points, specifically 

edges, which can be used to predict and track 3D representations. 

The predictive capability of SSMs has also been used to reconstruct 3D bone 

contours from fluoroscopic x-rays (Kurazeme et al., 2009; Zhu et al., 2011; Baka et al., 

2011) for in vivo bone tracking to measure 6 degree-of-freedom (DOF) joint kinematics. 

Baka et al. developed a technique for optimizing shape parameters in a 3D SSM of the 
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distal femur to achieve accurate pose and shape estimation based on Canny edge maps of 

2 or more coupled fluoroscopic images. Accuracy to within 1.68 mm of the ground-truth 

geometry was achieved, illustrating the feasibility of this technique to accurately 

reproduce specimen-specific 3D bone contours and eliminate the need for acquisition and 

segmentation of MR or CT images, thus reducing processing time and radiation exposure 

to patients. Baka et al. extended their previous work of shape and pose estimation to a 

sequence of fluoroscopic images for femur bone tracking and relative motion through the 

sequence (Baka et al., 2012). The two-step alternating process included one initial 

manual alignment of the mean model geometry with automatic pose fitting to subsequent 

frames in the sequence by seed information from the previous frame. The second step 

optimized the shape parameters across all frames to obtain a single shape estimate for the 

entire sequence. Root-mean-square (RMS) error for SSM-based shape predictions was 

1.48 mm and RMS tracking errors in ML and AP translations and rotations were less than 

0.2 mm and 0.1 degrees. Internal-external (IE) rotation was the most difficult DOF to 

predict with RMS error of 1 +/- 2.5 degrees. The limitation was attributed to axe-

symmetry in the femoral shaft during IE rotation and relatively low impact of the distal 

region where useful edge variation occurs during IE.  In their latest study, Baka et al. 

used the previously described technique to estimate shape and pose of both the tibia and 

femur to calculate in vivo TF kinematics of a jump-landing activity in biplane 

fluoroscopic images (Baka et al., 2014).  Kinematic accuracy between the SSM-based 

and CT-segmented models was within 1 mm and 1 degree with the exception of axial 

tibial rotation (1.18 degrees).  The authors also demonstrated that more accurate SSM-
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based geometries do not necessarily result in more accurate measurements, suggesting 

that 2D-3D fitting plays a larger role in determining in vivo kinematics. To date, no 

authors have attempted to reconstruct patellae or PF kinematics, which may further 

reduce the need for segmentation and processing of 3D models from CT or MR scans. 

SSM-based predictions have also been used to predict adjoining bones (Yang et 

al., 2008). A statistical model of the scapula and humerus was developed and 

subsequently used in a leave-one-out type of analysis to predict one bone shape from the 

shape of the other.  A non-linear partial least squares (NIPALS) algorithm took advantage 

of the common relationships, or redundancies, (e.g. corresponding isotropic scaling) 

between the two bones within each principal component and described by their 

implementation of CCA.  Redundancies are revealed in the off-diagonal components of 

the covariance matrix while diagonal components represent variances and highlight 

important structure in the dataset.  Traditionally, low covariance is sought when 

determining the optimal bases to describe the dataset (Shlens et al., 2014); however, non-

zero covariance components may indicate strong relationships between variables that a 

statistical model could use to estimate missing information in incomplete datasets. 

2.2.  Anatomical and Functional Analysis of the Knee 

Owing to the complex morphology and functional requirements of the knee, 

researchers have been compelled to investigate specific characteristics of shape and 

kinematics.  There is value in understanding the influence of a particular anatomical 

feature on joint motion for diagnosis and treatment of pathologies.  Historically, joint 

anatomy has been characterized and measured from medical imaging (e.g. CT, MR, or x-
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ray) or cadaveric studies.  Studies have focused on sagittal plane knee morphology in an 

effort to understand the main anatomical drivers of flexion, and in-plane (SI and AP) 

translations of the TF and PF joints (Iwaki et al., 2000; Martelli et al., 2002; Masouros et 

al., 2010).  Iwaki et al. looked at sagittal MR scans of the TF joint and characterized the 

femur articular condyles as arcs of varying length and radius (Iwaki et al., 2000).  The 

medial condyle was described as two separate arcs: an anterior arc associated with 

extension and a posterior arc associated with flexion.  The medial plateau of the tibia was 

described as two flat regions with the anterior region (extension facet) angled posteriorly 

and articulating with the femur’s extension arc in early flexion.  Posterior to the extension 

facet, the flexion facet articulates with the posterior arc of the femur; however, the 

authors described the relative motion of the medial compartment as almost entirely 

rotational, with little AP translation.  The lateral condyle was described primarily by a 

flexion facet upon which joint rotation and translation occurred.  This variation in AP 

translation between the medial and lateral condyles during flexion causes internal tibial 

rotation, commonly referred to as the screw-home mechanism (Masouros et al., 2010; 

Piazza and Cavanaugh, 2000). 

In addition to the sagittal plane, Martelli et al. evaluated MR scans of the articular 

surfaces in all three major anatomical planes to further understand geometric and 

kinematic variability (Martelli et al., 2002).  A coronal view of the joint revealed curved 

and thus, more congruent TF surfaces between the inside aspect of the medial condyle 

and the tibial eminence.  However, a flattened interior aspect of the lateral condyle 

resulted in less congruency, suggesting a relationship with increased mobility.  In a 
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transverse (axial) view, the medial side of the tibial eminence was relatively linear in the 

AP direction, but laterally it exhibited a more convex curve.  The authors indicated that 

this increased congruency in the medial compartment contributed to the constraint of the 

medial condyle and subsequent arcing motion of the lateral condyle around the tibial 

eminence and about a medially-orientated longitudinal axis.  Furthermore, the 

congruency and constraint of the medial compartment also likely contributes to coronal 

plane varus rotation, which is often accompanied by lift-off of the lateral condyle during 

flexion (Martelli et al., 2002). 

PF joint geometry is characterized by two articulating facets on the posterior 

aspect of the patella and the femur trochlear groove.  As the patella slides along the 

groove, its primary function is to increase the moment arm of the quadriceps muscle and 

improve TF flexion efficiency (Masouros, et al., 2010).  The shape and conformity of 

these surfaces are known to affect joint alignment, motion and pain (Harbaugh et al., 

2010; Powers et al., 2000; Pal et al., 2013; Stefanik et al., 2013).  Stefanik et al. measured 

features of the PF joint in 907 axial plane MR scans and correlated patellar tilt angle with 

lateral trochlear inclination and trochlear angle. Bisect offset of the patella was also 

correlated to lateral trochlear inclination (r = -0.38).  Harbaugh et al. correlated lateral 

trochlear inclination with medial patellar alignment in both a healthy control group and a 

patellar maltracking group (Harbaugh et al., 2010).  Medial tilt or IE alignment of the 

patella was also correlated to both cohorts (r = 0.61 and r = 0.57, respectively). 

Pal et al. measured patella alta-baja, patellar tilt angle and bisect offset from 

oblique-axial planes of 3D MRIs in PF pain-free subjects and subjects experiencing PF 
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pain (Pal et al., 2013).  PF pain subjects experienced more patellar maltracking with an 

alta patella and, within the PF pain group, there were significant differences in patellar tilt 

for subjects with alta patella versus those with pain and normal patellar height.  The 

authors also suggested that bisect offset may be another parameter that varies in PF pain 

versus pain-free subjects (p = 0.058).  Powers et al. assessed trochlear groove depth in the 

axial plane of MR scans and found correlations with patellar medial-lateral tilt and 

displacement in early flexion (Powers et al., 2000).  A shallower groove described by a 

larger sulcus angle was correlated to both laterally rotated and laterally displaced 

patellae.  Varadarajan et al. found that axial MR plane parameters such as mediolateral 

trochlear sulcus position and trochlear bisector angle were more strongly correlated to 

axial alignment and kinematic parameters, e.g. tilt and ML position, than coronal 

measures, e.g. trochlear groove angle and patellar VV alignment (Varadarajan et al., 

2010).  Freedman and Sheehan assessed the ability of 2D MR image-based measurements 

to predict 3D kinematics using a regression-based approach (Freedman and Sheehan, 

2013).  Measurements of static patellar tilt angle and bisect offset were strongly 

correlated to their dynamic counterparts but were not enough to predict complete 3D 

dynamic kinematics. 

In addition to the articular surfaces, investigations of inter-joint and whole bone 

characteristics have reported correlations to knee mechanics.  Hill et al. noted that during 

loaded squatting, an initial tibial position in external rotation demonstrated less internal 

rotation than an initial tibial position in neutral (Hill et al., 2000).  Similarly, Pal et al. 

reported that alta patellae did not demonstrate as much flexion or medial-lateral 
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translation through the flexion cycle as the healthy control group (Pal et al. 2013).  The 

most significant inter-joint relationship at the knee was reported by Sheehan et al. who 

noted that internal tibial rotation resulted in increased medial patellar tracking (Sheehan 

et al., 2009).   In an investigation of knee kinematics and the whole femur bone, Hoshino 

et al. reported that two measurements, condylar twist angle and condylar offset ratio, 

were positively correlated to tibial internal rotation and anterior translation, respectively 

(Hoshino et al., 2012).  This finding suggests that it is not simply the articulating 

geometry of the distal condyles that influences knee joint motion but also their relative 

alignment to the proximal femoral head.  
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CHAPTER 3. OVERVIEW OF METHODS 

 

This chapter describes the methods that were used to develop, analyze, and apply 

statistical models of knee for the studies presented in subsequent chapters.  Data 

collection involved experimental testing and computational analysis of joint kinematics, 

creation of specimen-specific 3D models from magnetic resonance (MR) images, and 

automated extraction of linear measures.  The PCA-based approach for SSM 

development is discussed with a focus on its application for a comprehensive training set 

of specimen geometry (bone, cartilage, and ligaments) and 6 degree-of-freedom (DOF) 

kinematics for the TF and PF joints.  Processing and visualization of the geometric and 

kinematic representations for principal component modes of variation illustrates the 

utility of statistical models in FE modeling.  Finally, the methods for predicting 3D shape 

from 2D images with a statistical model is discussed in relation to a subsequent study. 

3.1.  Data Collection 

3.1.1. Experimental Testing 

Chapter 4 presents experimental knee mechanics that were used to develop a 

statistical shape and function model of the TF and PF joints.  This section discusses the 

experimental protocol and subsequent processing that was performed to acquire those 

data.  In vitro testing of cadaveric knee joints provides access to detailed information 
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about the joint and its function that is difficult to acquire from in vivo methods.  The 

Kansas Knee Simulator (KKS) is an experimental simulator in which cadaveric knees are 

mounted and controlled by a simulated hip, ankle and quadriceps load to replicate a 

variety of activities including gait and squatting (Figure 3.1).  Rigid body markers are 

surgically mounted to the femur, tibia and patella and subsequently tracked via an 

Optotrak system (Northern Digital, Waterloo, ON).  These tracked points can then be 

used to calculate the relative motion between the three bones and thus, the 6-DOF 

kinematics for the PF and TF joints (Halloran et al., 2005; Maletsky and Hillberry 2005). 

3.1.2. Imaging and Segmentation 

3D representations of the knee used in subsequent chapters and statistical models 

were acquired from traditional imaging and segmentation approaches.  Imaging 

modalities and the structures that they reveal are discussed in this section. Detailed 

information regarding the internal and surrounding structures of the knee joint are 

accessible through the use of magnetic resonance (MR), computed tomography (CT), and 

radiographic x-ray imaging modalities. Radiographs are the most common modality; 

however, they rely on x-rays and thus are limited in their ability to capture the structural 

detail of a joint since x-rays are only absorbed by dense structures and calcium-rich bone.  

While radiographs are used to assess bone quality and static joint alignment, a real 

benefit is the speed at which they can be captured (e.g. in fluoroscopic systems), which 

makes them an ideal choice for visualizing in vivo dynamic activity of joints and other 

internal systems via radiopaque agents.  CT imaging utilizes radiographic x-rays acquired 

at different axial positions around an object, which are then tomographically 
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reconstructed into nearly adjacent cross-sectional images of the object.  The result is a set 

of sequential 2D planar images that contain detailed shape and density information for 

the imaged bone.  However, this method also relies on x-rays and thus it lacks the ability 

to capture soft tissue structures such as cartilage, ligaments, tendons and musculature.  

MR images provide detailed 2D cross-sectional views of the internal structures and are 

capable of sub-millimeter gaps between slices.  Slices are generated by powerful magnets 

that rapidly and repeatedly align the structure’s hydrogen atoms in two opposing 

orientations; electrical properties of these alignments are recorded.  The alignment time 

required by the hydrogen atoms varies by structure, resulting in different signal properties 

and creating contrast in the resulting cross-sectional image.  The prevalence of hydrogen 

atoms in most biological structures means MR scans are capable of capturing high levels 

of detail for both hard and soft tissues. 

By combining a sequence of slices from MRI it was possible to digitally 

reconstruct a 3D representation of the scanned object (Figure 3.2).  In the case of the knee 

joint, slices of the bone and cartilage for the distal femur, proximal tibia, and patella were 

masked in their appropriate slices using segmentation software such as ScanIP 

(Simpleware Exeter, UK).  Attachment sites for ligamentous structures were also 

masked; these included the rectus femoris (RF), patellar ligament (PAT-LIG), medial 

patellofemoral ligament (MPFL), lateral patellofemoral ligament (LPFL), medial 

collateral ligament (MCL), superficial medial collateral ligament (sMCL), lateral 

collateral ligament (LCL), anterior cruciate ligament (ACL), and posterior cruciate 

ligament (PCL).  Although most scans show a clear interface between bone and cartilage, 
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low resolution of some scans can make it challenging to locate thinner ligaments (e.g. 

MCL, LCL) and the tapering edges of thicker ligaments. Therefore, it is necessary to 

have a working knowledge of the anatomy of the knee joint in order to mask the 

appropriate image features on the MRI slice.  Once all slices for a particular structure 

were masked, a 3D representation was computed; gaps between adjacent slices were 

interpolated to form a single 3D model. Typically, the resulting 3D model contained 

imperfections on the surface as a result of large slice gaps or masking inconsistencies due 

to human error. Filtering techniques to remove these artifacts included filling of cavities, 

removal of small islands, and surface smoothing via the Recursive Gaussian process to 

remove erratic (high-frequency) changes in surface contour.  Because capturing surface 

contours were of primary interest, 3D models were further defined by vertices and 2D 

triangular faces, which were exported separately as stereolithography (STL) files.  

Structures from a single sequence of MR images were described with respect to that 

image stack’s coordinate system and positioned in space as they were when scanned.  

The 2D bone surface representations were then imported into Hyperworks (Altair, Troy, 

MI), a dedicated pre-processing software, where their fine meshes were resampled 

according to the registration technique discussed in Chapter 3.2.2.  Members of the 

training set were chosen in an effort to describe the broad range of sizes found in the 

white male and female populations (Figure 3.3).  Information regarding the training set 

demographics, scan information, and study usage may be found in Table 3.1 and Table 

D.3. 
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3.2.  Development of the Statistical Model 

3.2.1. The Template Mesh 

Comparison of knee geometries using statistical methods requires correspondence 

between their mesh representations. Each knee joint was therefore registered to a 

common template mesh for the bones, cartilage, and ligamentous structures (Figure 3.2).  

The template for the femur, tibia and patella bones contains 2384, 1101 and 472 nodes, 

respectively, each with 2D triangular elements approximately 3 mm in length.  Since 

cartilage-to-cartilage contact is often of interest in FE-based studies, the softer articular 

cartilage of the TF and PF joints was represented with continuum hexahedral elements to 

create an FE-ready statistical model.  The femoral, medial tibial, lateral tibial and patellar 

cartilages consisted of 2748, 990, 825, 90 and 504 hexahedral elements, respectively.  

Handles were used to move zones of adjacent nodes and thus represent subject-specific 

cartilage shape with a consistent mesh. 

An anatomic local coordinate system (LCS) was defined for the femur, tibia, and 

patella bones.  These LCS were established based on the articular surface geometry and 

anatomical landmarks (Rao et al., 2013).  The femoral coordinate system was defined by 

the axis of a cylinder fitted through the flexion facet of the medial and lateral condyles of 

the femur and the line passing through the centroids of three image slices in the 

transected diaphysis of the femur (Pandy et al., 1997; Morton et al., 2007).  The origin 

was placed at the midpoint between the medial and lateral epicondylar points.  The tibial 

coordinate system was constructed with the origin at the medial tibial eminence, using 

lines passing through centroids of three image slices in the transected diaphysis, and 
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through the centers of the tibial condyles (Morton et al., 2007).  The patellar coordinate 

system was developed using the proximal, distal, and lateral points around the articular 

periphery with the origin located at the geometric centroid (Morton et al., 2007).  

Cartilage and ligament attachment sites were defined with respect to their bone’s LCS. 

3.2.2. Geometry Registration 

Registration refers to any process by which segmented shapes of a training set are 

linked to a common point distribution model (PDM) or template mesh for 

correspondence, which is required for PCA (Chapter 3.2.4) and the development of an 

SSM.  Cartilage is primarily a 2D structure with a much smaller thickness dimension.  By 

contrast, bones are more uniform in their 3D shape, which makes handling variation less 

of a challenge for registration protocols.  Therefore, two separate registration processes 

were developed to achieve the best results for bone and cartilage. 

Bone registration involves alignment of the training set subjects to the template 

mesh and employment of an iterative closest point (ICP) algorithm to find nearest-

neighbor nodal relationships between the geometries.  First, STL meshes of the femur, 

tibia and patella are aligned to their respective templates; the femur and tibia shafts are 

then cropped to match the long-axis length of the template mesh.  Cropping increases the 

similarity between the template and specimen meshes and thus, increases the likelihood 

of improved correspondence.  ICP employs several techniques; a nearest-neighbor search 

with improved efficiency from a kd-tree algorithm, rigid body alignment, and orthotropic 

scaling to reduce the overall distance between nearest neighbors.  The nodes on the 

template geometry are then assigned the coordinates of their associated target specimen 
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nodes, effectively representing the specimen’s geometry with the template mesh.  As 

each specimen is aligned to the template mesh via ICP, they adopt the template’s LCS as 

their own.  This adoption ensures that subsequent size and shape analysis will be 

independent of relative joint alignments.  Joint alignment of the as-scanned position may 

therefore be defined by the transformation between two bones (Figure 3.1).   

Registration of the articulating cartilage is based on similar work by Fitzpatrick et 

al. was developed to uniformly distribute 2030, 504 and 390 handles on the surface of 

each subject’s segmented femoral, tibial, and patellar cartilages, respectively (Fitzpatrick 

et al. 2011).  A graphical user interface (GUI) provides coronal and transverse views of 

the 3D segmented STL geometry for landmark point selection (Figure 3.4).  Seven 

landmark points on the femoral cartilage are selected on the cartilage edges above the 

posterior condyles, corner points on the anterior aspect of the medial and lateral condyles, 

the intercondylar notch, and distal points on each condyle.  Two mediolateral landmark 

points on each of the tibial cartilages and patellar cartilage define the primary axis along 

which the algorithm mathematically distributes vertical sets of handles on the attachment 

and articular surfaces of the cartilage volumes.  The algorithm divides the STL meshes 

into subsections based on these landmark points and distributed handles evenly across the 

dividing lines.  Uniform handle placement is an important component of both 

correspondence between subjects and the generation of well-formed hexahedral elements 

for use in FE analyses.  Morphing of the template cartilage mesh (Figure 3.5) to a 

subject-specific shape is achieved by repositioning the template mesh handles to the 

subject’s corresponding handle coordinates.  Surrounding internal and surface nodes are 
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linearly interpolated between adjacent handles to morph and smooth the hex mesh into 

the subject-specific geometry (Baldwin et al., 2010).  Cartilage structures are also 

described in the coordinate system of the associated bone so as to reduce the effects of 

alignment variability. 

3.2.3. Kinematic Processing 

Kinematics of cadaveric knees tested on the KKS are measured by tracking each 

bone’s rigid body marker (Figure 3.1).  Rigid body markers are affixed directly to the 

femur, tibia, and patella and tracked optically (Optotrak, Northern Digital Inc., Waterloo, 

CA) as they move in the test apparatus.  After testing, each bone is cleaned to expose the 

knee articular surfaces and manually digitized with a hand-held probe.  In this way, an 

outline of the articular surface is recorded with respect to the bone’s rigid body marker 

set.  The digitized articular surface is then used to align the specimen mesh geometry and 

local coordinate system to the rigid body marker’s coordinate system in which the 

experiment was recorded (Figure 3.6).  This dissertation uses a femur-fixed coordinate 

system to define TF and PF kinematics (translation and rotation) of the tibia and patella 

relative to the femur, respectively.  Kinematics are reported using the Grood-Suntay 

open-chain kinematic descriptors of motion.  Correspondence of motion between subjects 

was based on TF flexion; all other DOF were described with respect to tibial flexion and 

resampled to a consistent number of data points in order to compare joint motion across 

the training set. 
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3.2.4. Principal Component Analysis 

Principal Component Analysis (PCA) is a mathematical process meant to describe 

large datasets of data where patterns and trends are difficult to characterize with simple 

linear regression models.  The goal of PCA is to reduce the dimensionality of the dataset 

by defining the data based on its covariance (Jolliffe, 2002).  By measuring the variability 

in the dataset, relationships between the data points can be exposed and utilized to 

explain large subsets of the data with a single quantity. 

PCA answers the question, “Is there another basis, which is a linear combination 

of the original basis, that best re-expresses our data set?” (Shlens et al., 2014).  To that 

end, PCA operates on an nxN dataset, V, which contains N trials or observations each 

defined by a common set of n variables.  The original basis is the coordinate system(s) 

used to describe the input variables which, in the case of anatomy and kinematics, is the 

3D Cartesian coordinate system.  While this coordinate system has proven useful in 

describing clinically relevant shape and function, it is limited in its ability to easily 

describe underlying patterns or structure in the data. Representation of the dataset, V, in 

Principal Component space can be defined simply as 

𝑃𝑉 = 𝑌          (3.1) 

where P is an nxn matrix and each row represents a new basis vector transforming V into 

Y.  Choosing the bases (rows) of P are done so by performing an eigenvalue 

decomposition on the covariance matrix of the dataset 

 C = 
1

𝑛−1
𝑉𝑉𝑇         (3.2) 
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where C is nxn.  The nature of eigenvalue decomposition results in a ranked order of 

eigenvalues representing principal component variances from largest to smallest.  The 

first eigenvalue describes the largest amount of variability in the data, thus indicating the 

most important structure.  The associated eigenvector describes orientation of the basis 

or, in terms of shape, the mode by which the most geometric difference exists.  In the 

context of biological structures, this is most often a scaling mode.  PC scores are a 

representation of each training set subject in Principal Component space.  

Mathematically, each subject of the training set can be described by a vector, v, which is 

a summation of the mean subject vector, �̅�, and k principal components 

 𝑣 =  �̅� +  ∑ 𝑝𝑘 ∗ 𝑒𝑘
𝑘
𝑖=1         (3.3) 

where pk is the kth PC score and ek is its associated eigenvector.  A training set subject 

may be fully reconstructed by summing together all PC scores to reconstruct the centered 

data and then adding in the mean variable vector. 

If the training set data contains redundant information or in mathematical terms, 

linearly dependent variables, the off-diagonal components of the covariance matrix will 

be nonzero.  In order to describe the bases containing maximal variance in the dataset, a 

row matrix of bases, P, are chosen to minimize the off-diagonal terms.  While PCA seeks 

to minimize the off-diagonal terms in order to find the most appropriate bases by which 

to explain the maximal variance, mathematical redundancy may be a valuable asset when 

considering biological systems where relationships between variables is expected and 

important.  Applications suggesting the benefits of redundancy were previously discussed 

in Chapter 2.1. 
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On large datasets, PCA can be a cumbersome process even for powerful 

computers requiring a significant amount of memory to calculate full covariance 

matrices.  To reduce the memory requirements of PCA, Matlab® has developed an 

‘Economy’ mode where only the eigenvectors associated with nonzero eigenvalues are 

calculated thus reducing the size of the covariance matrix to a nxm matrix where m is the 

number of observations or columns of the original dataset V.  Since only the nonzero 

eigenvalues are relevant to the SSM, there is no loss of information (Turk and Pentland, 

1991).  Moreover, predictive algorithms developed around PCA do not require the full 

eigenvector matrix as only the vectors associated with nonzero eigenvalues are utilized in 

the prediction. 

3.2.5. Parallel Analysis 

The reorientation of bases that PCA performs on the data to achieve a ranked 

order of variance begs the question of how many principal components are actually 

significant and how many describe noise.  Noise in the data may due to factors such as 

geometric tolerances or measurement tool resolution.  In the case of point distribution 

models, unexplained variance in size and shape of the point clouds contributes to noise 

and provides no useful information to studies of shape and function.  A technique called 

Parallel Analysis seeks to describe the inherent noise by performing PCA on a set of data 

where point correspondence is randomized between observations (Ledesma et al., 2007).  

The technique requires multiple iterations of PCA; for each iteration on the data, 

observations and variables are randomly reorganized within each variable.  The result is a 

data set of uncorrelated variables on which PCA now tries to define any remaining 
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structure.  The remaining structure is considered noise, which is not likely to contribute 

valuable information in predictive scenarios.  By evaluating multiple randomized sets of 

the same data, the Parallel Analysis technique calculates 95% confidence bounds on the 

results (eigenvalues, eigenvectors, and PC scores) for a randomized data set.  The number 

of significant PC scores in the original, correlated dataset is said to be the number of PCs 

for which explained variance is greater than the variance described by noise (Figure 3.7). 

3.3.  Visualization of the Statistical Model 

PCA describes each specimen in the training set with a set of PC scores and 

associated eigenvalues and row vectors corresponding to the magnitude and direction by 

which that specimen differs from the average of the training set.  By varying these PC 

scores according to the standard normal distribution, 3D models and associated 

kinematics can be generated to represent virtual instances that are different from the 

actual training set specimen.  Although these new instances are limited to the range of 

variability present in the model, this ability to generate more virtual models is useful to 

population-based studies where a large cohort of physiologically relevant specimen are 

required (Bryan et al., 2009).  By perturbing one score at a time, each PC mode can be 

combined with its respective eigenvector (equation 3.3 in section 3.2.4) to return the 

geometric variables (Figure 3.8) and 6-DOF kinematics (Figure 3.1) for that PC mode.  A 

custom Matlab script organizes 3D geometry variables (Cartesian coordinates) into node 

sets associated with the element definition of the template bone mesh. The script creates a 

.tcl command file that operates on the cartilage template hexahedral mesh in Hyperworks 

(Altair, Troy, MI) to adopt the shape of the cartilage for the given instance (e.g. a 
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specimen from the training set or a vector of PC scores).  TF flexion is the dominant 

motion in knee joint motion for most activities and, thus, is the most useful measure 

against which to visualize all other joint motions.  This method allows comparisons to be 

made between specimens who have performed the same activity by “normalizing” their 

motion to a specimen-specific DOF. 

Soft tissue representation is an important component of computational finite 

element modeling.  Ligaments, tendons, and muscles impart tremendous influence on 

joint loads, kinematics, and ultimately cartilage stress.  While accurate models of the 

knee joint can be represented with 1D ligaments (Baldwin et al., 2009), the development 

of more complex models i.e. 2D or 3D) can lead to an improved understanding of soft-

tissue constraint.  2D and 3D models have been developed and validated (Fitzpatrick et 

al., 2010; Kiapour et al., 2014); however, model development methods are primarily 

manual and subject-specific, making large population-based studies impossible. 

Accordingly, an algorithm was developed to automatically generate 

computationally efficient 2D membrane representations for the soft-tissue structures of 

the knee.  The algorithm seamlessly interfaces with the current workflow to process 

subjects for SSM evaluations.  During MR segmentation, attachment sites and lines of 

action are located for the soft tissue structures described earlier in this chapter.  Once the 

attachment sites have been properly registered to a consistent numbering scheme, a 

Matlab algorithm conducts a series of interpolations and curve-fits to connect insert and 

origin sites with 2D curvilinear node sets.  For structures such as the posterior capsule, 

which cannot be located in most MRIs, bony anatomy is used to locate the origin and 
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insertion sides for these structures according to published literature (Laprade, et al. 2007).  

These node sets are then organized into the proper arrays and associated with element 

sets, which include membrane, rotary inertia, mass, and spring element types.  The result 

is a 2D representation of the soft tissue structures surrounding the knee joint (Figure 3.8).  

The benefit of this approach is three-fold: only attachment sites and lines-of-action need 

to be segmented, no manual meshing is required, and registration of attachment sites is an 

efficient way to describe soft-tissue geometric data in statistical models. 

3.4.  Explicit Finite Element Evaluation of the Statistical Model 

Population-based FE evaluations require efficient development of unique virtual 

models for the knee.  This section describes a high-level evaluation of kinematic and 

contact mechanics on a natural knee model developed from an SSM.  The SSM included 

bone, cartilage, ligament attachment sites, and experimental kinematics.  The FE model 

was constructed using the methods described above and evaluated in a dynamic 

simulation with Abaqus/Explicit
TM

 11.3-1 (Dassault Systemes, Providence, RI).  The 3D 

model represented the mean geometry of the SSM where all PC scores were set to zero 

(Figure 3.9).  The femoral, tibial, and patellar bones were represented with 2D triangular 

meshes.  The associated cartilage structures were represented with 3D hexahedral 

elements.  In the analysis, bones and cartilage were considered rigid structures.  Contact 

between the cartilage structures was defined by a pressure-overclosure relationship with a 

slope equal to 3.2 and friction coefficient of 0.04 (Halloran et al., 2005). 

The RF, VASTI, PL, MPFL, LPFL, MCL, sMCL and LCL ligaments were used 

to constrain the knee joint.  Each structure was generated by the automated ligament 
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generation algorithm described in the previous section, which consisted of deformable 

hyperelastic 2D membrane elements.  Material properties were represented by uni-axial 

tension properties from literature values (Stäubli et al., 1999).  ACL and PCL ligaments 

were modeled as 1D spring elements.  Linear actuators representing the quadriceps 

muscles were attached to the proximal portions of the VASTI and RF tendons to 

distribute a quadriceps load across the actuators according to physiological cross-

sectional area (RF=15%, VI=20%, VLL=35%, VLO=10%, VML=15%, VMO=10%) and 

orientations described in the literature (Farahmand et al., 1998).  Linear actuators at the 

insertion sites were used to bring ligaments into initial tension during the settling step of 

the analysis. 

The simulated loading conditions consisted of average experimental kinematics 

from the testing of 20 cadavers in a simulated squat cycle on the KKS.  The full 

experimental data are discussed in Chapter 4.  The model started in the average initial 

alignment position and was driven primarily by TF flexion; TF AP and IE motions were 

also prescribed; however, all other DOF for the TF and PF joints were left free.  The PF 

joint was constrained by the geometry of the femur trochlear groove and several 

ligamentous structures including the PAT-LIG, MPFL, LPFL, RF, and VASTI.  A 

simulated quadriceps load of 1000 N was ramped during the flexion cycle to maintain the 

patella to the trochlear groove.  A compressive load on the TF joint of 1000 N was also 

applied to constrain the tibia in the ML direction.  AP and IE were constrained by 

averaging the motions across experimental results from the KKS cadaver study. 
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Tibial and patellar kinematics were described using the open-chain description of 

motion (Grood and Suntay 1983).  PF kinematics shows similar trends between the FE 

and experimental results (Figure 3.10), which illustrates the utility of the cartilage and 

ligament morphing algorithms to efficiently generate suitable geometry.  The hexahedral 

cartilage reasonably described joint contact mechanics, illustrating the ability of the 

cartilage template to morph and preserve element shape (Figure 3.11).  The evaluation 

performed here illustrates the ability of an SSM to develop FE-ready geometries for 

population-based and subject-specific natural knee evaluations. 

3.5.  Automated Measurements on the SSM and its Training Set 

A consistent method for measuring geometry and kinematic alignment of the knee 

joint is crucial to understanding population variability and the relevant relationships to 

function.  A computational tool was developed to automate the process of obtaining these 

measurements on the training set and subsequent instances of the SSM.  The tool 

included clinically relevant measurements such as femur epicondylar width, femur 

anterior sulcus angle, femur medial and lateral trochlear angle, bisect offset, tibial 

posterior slope, tibial tuberosity-trochlear groove (TT-TG), patella angle, and the Insall-

Salvati index (Figure 3.12).  Other measures refer to geometric features that are less 

common clinically but provide insight into the goals of this research (Mahfouz et al., 

2012; Stefanik et al., 2013).  These measures included femur trochlear angle, distal sulcus 

angle, distal condylar angle, sulcus groove height, sulcus width, width of the 

intercondylar notch, antero-inferior sulcus angle, and anterior-posterior to medial-lateral 

distance ratios.  Kinematic measures included initial and flexion-specific alignment as 
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well as range-of-motion (ROM) in all 6-DOF.  By registering all training set geometries 

to a common LCS, two positions are available on which to take measurements: within the 

LCS for a particular bone or in a specimen-specific flexion-angle alignment.  For 

example, an accurate Insall-Salvati index requires patellar height and patellar tendon 

length measurements. Patellar tendon length is estimated as the distance between the 

most distal point on the patellar apex and the tibial tuberosity.  Patellar height, however, 

is measured with the bone in its LCS so as to reduce the effects of variability in 

alignment (namely flexion) and provide a consistent position for all patellae for such a 

measurement. 

3.6.  Building 3D Models from Radiographs using Statistical Modeling 

The high speed stereo radiography (HSSR) system at the University of Denver is 

capable of capturing in vivo dynamic motion of the skeletal system in two independent 

image planes (Figure 3.13).   High speed cameras in each perspective are synced to 

provide sequences of linked radiographic images for subsequent 3D tracking of bones 

and, in patients with TKRs, metallic components.  In the natural case, bone segmentation 

from MR or CT scans provides the 3D geometry for tracking.  Chapter 2 discussed 

algorithms that have reconstructed 3D natural femur and tibia bone geometry directly 

from the radiographic images using SSMs and automatic edge detection methods.  This 

section describes a new digitization process to extract the visible edges of an object and 

object plane using XMALab (Version 1.2.18, XROMM, Brown University).  The process 

is suitable for the resected patellar bone and thus makes reference to that application. 
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XMALab is a free, downloadable program that was developed to digitize and 

track points on moving objects from a series of biplane fluoroscopic images.  The 

program processes all of the HSSR system files to perform undistortion, calibration, and 

associated direct linear transformation (DLT) coefficient calculations.  DLT coefficients 

describe the 3D-2D transformation between a 3D object and its 2D projection onto an 

image plane (Brainerd et al., 2010).  In a biplane setup, the coordinates of a projected 

point in image planes A and B are defined by the equations  

𝑢𝐴 =
𝐴1𝑥+𝐴2𝑦+𝐴3𝑧+𝐴4

𝐴9𝑥+𝐴10𝑦+𝐴11𝑧+1
         (3.4) 

𝑣𝐴 =
𝐴5𝑥+𝐴6𝑦+𝐴7𝑧+𝐴8

𝐴9𝑥+𝐴10𝑦+𝐴11𝑧+1
         (3.5) 

𝑢𝐵 =
𝐵𝑥+𝐵2𝑦+𝐵3𝑧+𝐵4

𝐵9𝑥+𝐵10𝑦+𝐵11𝑧+1
         (3.6) 

𝑣𝐵 =
𝐵5𝑥+𝐵𝑦+𝐵7𝑧+𝐵8

𝐵9𝑥+𝐵10𝑦+𝐵11𝑧+1
         (3.7) 

where the coefficients, Ai and Bi (i = 1 to 22), make up the DLT that transforms 3D 

coordinates (x, y, z) into 2D image plane coordinates uA, vA, uB, and vB, for cameras A 

and B, respectively.  Estimation of these coefficients is conducted by solving a system of 

equations that describe the known calibration cube points in the image planes.  Chapter 6 

uses the DLTs to project an SSM instance on the camera image planes. 

The utility of XMALab is illustrated by its ability to describe object edges from 

both camera views with a single set of 3D points.  The edges of an object in each camera 

are independent projections based on the configuration of the x-ray sources and cameras 

and therefore cannot be used to directly digitize the surface of the object for direct 3D 

point matching.  This is the fundamental difference between digitization of edges and 
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points.  During edge digitization, a point selected on the outer profile of the object in one 

camera view yields an epipolar line in the other camera view that intersects the object 

twice.  Since the goal is to reconstruct a single set of 3D points to represent any part of 

the object profile, selection of either one of the intersections is valid. 

In scenarios where digitization of a plane (e.g. patellar implant resection cut) is 

required, a method was developed to extract the plane from a single pair of images.  The 

object plane must be perpendicular to the both image planes and three points must be 

selected to define the location and orientation of the plane (Figure 3.14).  Figure 3.14 

illustrates the sequence by which points may be selected on each image plane to create 

the triangle.  A more detailed protocol on the use of XMALab to create the digitized 

points file and DLT coefficients is presented in Appendix B. 

Alignment of an SSM instance to the digitized points of an object is achieved by 

first projecting the instance’s 3D surface point cloud onto both image planes via the 

DLTs.  The resulting projections are 2D point-filled patches in the image plane whose 

boundaries represent the edges of the instance.   An alpha shapes algorithm operates on 

the patch to determine which points describe the boundaries and which points are 

considered internal.  Alpha shapes are a generalization of the convex hull and useful for 

outlining point clouds with varying levels of complexity (Edelsbrunner et al., 1983).  The 

algorithm is an expansion of Delaunay triangulation in which a characteristic radius 

controls which adjacent points across the entire patch are connected, creating a well-

formed network of triangles, or faces.  The additional component of the alpha shapes 
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algorithm then analyzes the triangulated patch, eliminating the triangle sides that are 

shared, which indicates an interior edge, thereby isolating the boundary of the patch.  
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Table 3.1 Scan data and research study usage. 
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Figure 3.1 The process of extracting joint kinematics for the statistical shape and function 

model: Rigid body markers (white) fixed to the femur, tibia, and patella are tracked 

during in vitro cadaveric knee testing (A). Alignment of specimen-specific geometry 

(gray) and local anatomical coordinate systems (red) to probed cadaver surface points 

(yellow) defines position of the bones with respect to the rigid bodies. Grood-Suntay 

open-chain kinematics are calculated from the relative motion of the local bone 

coordinate systems (C). 
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Figure 3.2 The process of building a training set for the statistical shape model: 

Segmentation of a MR scan (A), the resulting 3D stereolithography model (B), alignment 

to bone template mesh (C) and handle placement on articular cartilage (D), “as-scanned” 

alignment of template mesh-registered specimen-specific geometry (E), Completed 

training set of 40 specimens (F). 
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Figure 3.3 A comparison of the cumulative distribution functions (CDF) for the femur 

epicondylar width measurement across multiple populations shows a similar range of 

geometric size in the current training set. 

 

 

Figure 3.4 Cartilage registration graphical user interface (GUI) with representative femur 

cartilage from segmentation.  Black points represent the manually selected landmark sites 

to guide the placement of surface handles on the stereolithography (STL) mesh. 
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Figure 3.5 Template hexahedral cartilage mesh with surface handles (yellow) (Baldwin et 

al., 2010). 

 

 

Figure 3.6 Alignment of registered specimen-specific geometry to their digitized position 

(yellow points) in the Kansas Knee Simulator (KKS). 
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Figure 3.7 Eigenvalues for each principal component (PC) are ranked by magnitude 

(variance).  The number of significant PCs in a model (blue) are those with variances 

greater than the variances in 5-95% bounds of models built from randomized instances of 

the same dataset (green and red). 
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Figure 3.8 The automated ligament morphing algorithm wrapped soft tissue structures 

(gray) around the first three principal component shapes of bone for a representative 

SSM.  Structures shown include the rectus femoris (RF), vasti, patellar ligament (PAT-

LIG), medial collateral ligament (MCL), superficial MCL (sMCL), lateral collateral 

ligament (LCL), medial and lateral patellofemoral (MPFL and LPFL), and posterior 

capsules (PCAP). 
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Figure 3.9 FE model of the mean geometry used in the computational analysis.  The 

position shown is in initial alignment of approximately 15 degrees. 
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Figure 3.10 Kinematics and contact mechanics for the mean geometry.  Maximum 

contact pressure, mean contact pressure, and contact area (top) for the TF and PF joints.  

Imposed KKS (black) and measured Abaqus (blue) tibial kinematics (middle) and 

patellar kinematics (bottom). 
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Figure 3.11 Contour maps of the contact pressures from the FE analysis for the tibia and 

patellar cartilages.  The full geometry on the left shows the relative position of the joint 

for each of the three flexion angles. 
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Figure 3.12 Illustrations of some of the automated linear measures: epicondylar width (a), 

anterior sulcus angle (b), sulcus width (c), cartilage width along epicondylar axis (d), 

antero-inferior sulcus angle (e), condylar ML and AP widths (f), intercondylar notch 

width at the distal aspect (g), distal sulcus angle (h), bisect offset (i), Insall-Salvatti index 

(j), tibial cartilage ML and AP widths (k), trochlear groove radius of curvature (l), 

patellar angle (m), patellar ML width (n), and patellar ridge medialization (o). 

a b c

d e f

g h i

m n o

j k l



 

47 

 

 

Figure 3.13 Orientation of a right knee in the HSSR for imaging.  Light sources at the X-

ray generators create a shadow of the object on the image-intensifiers to aid in alignment 

of the knee. 

 

Figure 3.14 Digitization of the resection plane from stereo radiographic images (left) for 

the implanted patellar bone.  Epipolar lines 1A-3A are projected across image plane B to 

inform the selection of associated points, 1B-3B, on the resection plane projection. The 

resulting 3D position of the points (red, green, blue) represents the resection plane in the 

patellar local coordinate system (right).  

BA

90 

superior 

3A2A1A

2B
1B3B

resection plane

2B

1B

3B

3A2A1Aepipolar 

lines

90 



 

48 

 

 

 

 

CHAPTER 4. STATISTICAL MODELING TO CHARACTERIZE RELATIONSHIPS 

BETWEEN KNEE ANATOMY AND KINEMATICS 

 

4.1. Abstract 

The mechanics of the knee are complex and dependent on the shape of the 

articular surfaces and their relative alignment.  Insight into how anatomy relates to 

kinematics can establish biomechanical norms, support the diagnosis and treatment of 

various pathologies (e.g. patellar maltracking) and inform implant design.  Prior studies 

have used correlations to identify anatomical measures related to specific motions.  The 

objective of this study was to describe relationships between knee anatomy and 

tibiofemoral (TF) and patellofemoral (PF) kinematics using a statistical shape and 

function modeling approach.  A principal component (PC) analysis was performed on a 

20-specimen dataset consisting of shape of the bone and cartilage for the femur, tibia and 

patella derived from imaging and 6 degree-of-freedom TF and PF kinematics from 

cadaveric testing during a simulated squat.  The PC modes characterized links between 

anatomy and kinematics; the first mode captured scaling and shape changes in the 

condylar radii and their influence on TF anterior-posterior translation, internal-external 

rotation, and the location of the femoral lowest point.  Subsequent modes described 

relations in patella shape and alta/baja alignment impacting PF kinematics.  The complex 



 

49 

 

interactions described with the data-driven statistical approach provide insight into knee 

mechanics that is useful clinically and in implant design. 

4.2.  Introduction 

“Form ever follows function” is the credo in design attributed to architect Louis 

Sullivan.  Shape of the articular geometry is known to influence the mechanics of the 

knee (Iwaki et al., 2000; Eckhoff et al., 2001; Martelli et al., 2002; Varadarajan et al., 

2010) and differences in knee morphology have been shown to exist across the 

population (Yue et al., 2011; Mahfouz et al., 2012).  Accordingly, the anatomy and 

function of the structures of the knee have been well studied to establish biomechanical 

norms, diagnose pathology, guide surgical treatments, and inform implant design (Dennis 

et al., 2011; Pal et al., 2013; Clary et al., 2013). 

Knee kinematics are measured from in vitro cadaveric experiments (Farahmand et 

al., 2004; Amis et al., 2006; Maletsky et al., 2005; Baldwin et al., 2009) and in vivo data 

collections with fluoroscopy (Dennis et al., 2001; Li et al., 2004) and open magnetic 

resonance (MR) imaging (Pal et al., 2013; Harbaugh et al., 2010).  Subject-specific 

kinematics are described after registering representations of the anatomy derived from 

MR or computed tomography (CT) imaging.  The kinematics of the knee are 

characterized by a combination of sliding and rotation marked by anterior translation and 

internal rotation of the tibia relative to the femur combined with lateral translation and 

external rotation of the patella relative to the femur during flexion (Freeman et al., 2005; 

Masouros et al., 2010). 
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Prior research has investigated relationships between anatomy and functional 

behavior. Freeman et al. described sagittal plane condylar geometry as a sequence of arcs 

with different radii that interact with a flat medial and convex lateral tibial plateau 

(Freeman et al., 2005).  Due to varying radii, tibiofemoral (TF) conformity changes 

during flexion and the medial condyle remains relatively motionless while the lateral 

condyle translates posteriorly on the tibia, contributing to characteristic tibial rotation.  In 

the natural knee, Hoshino et al. identified correlations between the condylar offset ratio 

and anterior-posterior (AP) translation and between condylar twist angle and internal-

external (IE) rotation (Hoshino et al., 2012).  While considering total knee replacement 

(TKR) implants, Clary et al. investigated abrupt versus gradually reducing changes in the 

femoral sagittal radius of curvature and their impact on TF AP motion, particularly at 

mid-flexion (Clary et al., 2013). 

Incorporating the patellofemoral (PF) joint, Li et al. described the effects of TF 

rotation on PF contact mechanics (Li et al., 2004).  Other studies have used image-based 

measurements of the articular surface of the patella and femoral trochlear groove to 

investigate differences between patellar pain or maltracking groups and normal subjects.  

Correlations have been identified between patellar kinematics and depth of the trochlea or 

sulcus angle (Powers et al., 2000).  Considering lateral and nonlateral maltrackers and 

controls, Harbaugh et al. found morphological differences in sulcus angle, patellar height, 

articular cartilage depth, and lateral trochlear inclination (the angle between the tangent 

to the lateral trochlear edge and posterior condylar line) between groups (Harbaugh et al., 

2010).  Recently, Pal et al. showed that patellar maltracking in early flexion was more 
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prevalent in patellar pain subjects than in pain-free subjects, with the patellar pain cohort 

having more alta patellar alignment (Pal et al., 2013).  While correlations importantly 

identify influential parameters, they do not quantitatively define the relationships or 

provide thresholds for diagnosis.  Freedman and Sheehan applied a regression-based 

approach to predict three-dimensional (3D) PF kinematics from two-dimensional (2D) 

static measures of geometry and alignment, although the technique was not able to fully 

predict the kinematic results (Freedman et al., 2013). 

As an alternative to 2D measurements, Fitzpatrick et al. applied principal 

component analysis (PCA) to investigate relationships between shape morphology 

represented by a statistical shape model (SSM) and PF kinematics predicted by finite 

element analysis (Fitzpatrick et al., 2011).  Statistical or active shape models quantify the 

variation between members of a population (Cootes et al., 1995; Behiels et al., 2002), and 

have been used previously to characterize variability in bone morphology and density 

(Bryan et al., 2010; Shim et al., 2008).  Prior SSM studies have focused on individual 

bones with applications to fracture risk (Bryan et al., 2009; Fritscher et al., 2009) and 

sizing lines for implants (Fitzpatrick et al., 2007; Dai et al., 2013).  Recently, statistical 

models have been applied to consider multiple structures of a joint (Baldwin et al., 2010; 

Bredbenner et al., 2010; Rao et al., 2013). 

As imaging is typically part of the kinematic measurement process, there is an 

opportunity to use the combination of anatomy and kinematic data to gain insight into the 

functional interactions of the knee joint in a more holistic way.  Accordingly, the 

objectives of this study were to characterize relationships between knee anatomy and 
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kinematics using a statistical shape and function modeling approach.  The current 

approach is unique in that the PC modes defining the relationships between anatomy and 

kinematics are determined from the data, in contrast to other studies which required a 

priori identification of the anatomical measure and kinematic output to be investigated.  

Further, the statistical shape model more fully accounts for the geometry and alignment 

by using the complete articular geometry instead of a limited set of linear measurements.  

Lastly, the approach enables the prediction of kinematics for a knee’s geometry, which is 

not possible with correlation-based evaluations. 

4.3.  Methods 

This study utilized a combination of imaging and in vitro kinematic data from a 

cohort of 20 cadaveric specimens to develop a statistical shape and kinematics model of 

the knee joint (Figure 4.1).  The specimens were male with an average age of 64 years 

(range: 44 to 80), average weight of 78 kg (range: 60 to 127 kg) and average body mass 

index (BMI) of 25 (range: 19 to 41).  The specimens were all considered healthy normal 

with no signs of osteoarthritis; cartilage, ligaments and menisci were all intact.  Each 

specimen was imaged using MR (Siemens Avanto 1.5T, 3D balanced gradient echo 

sequence, centered on a 150 mm field of view, in-plane resolution of 0.35 mm, axial slice 

thickness of 1 mm) and subsequently tested in the Kansas knee simulator under a 

simulated squat activity (Maletsky et al., 2005).  The loading condition used a 

combination of load-controlled actuators at a simulated hip and ankle and a position-

controlled quadriceps actuator to simulate a 90° knee bend (Baldwin et al., 2009).  An 
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Optotrak motion capture system (Northern Digital Inc., Waterloo, CA) recorded the 

movement of rigid body markers attached to the femur, tibia and patella. 

Bone and cartilage geometry for the femur, tibia and patella were reconstructed 

from the MR images using ScanIP (Simpleware, Exeter, UK).  A template mesh, 

including local anatomic coordinate systems, was developed for the median subject (Rao 

et al. 2013).  An iterative closest point (ICP) algorithm registered each knee to the 

template mesh resulting in a consistent mesh and coordinate system for all specimens 

(Figure 4.2).  The bone template mesh contained 2384, 1101 and 472 nodes for the 

femur, tibia and patella, respectively.  A template hexahedral mesh of each cartilage 

structure was morphed for each specimen using a mesh-morphing approach with 

Hyperworks (Altair, Troy, MI) (Baldwin et al., 2010). 

The local anatomic coordinate systems for each bone were established based on 

the articular surface geometry and anatomical landmarks (Rao et al., 2013).  The femoral 

coordinate system was defined by the axis of a cylinder fit through the flexion facet of the 

medial and lateral condyles of the femur and the line passing through the centroids of 

three image slices in the transected diaphysis of the femur (Pandy et al., 1997; Morton et 

al., 2007).  The origin was located at the midpoint between the medial and lateral 

epicondylar points.  The tibial coordinate system was constructed with the origin at the 

medial tibial eminence, using lines passing through centroids of three image slices in the 

transected diaphysis, and through the centers of the tibial condyles (Morton et al., 2007).  

The patellar coordinate system was developed using the proximal, distal, and lateral 

points around the articular periphery with the origin located at the geometric centroid 
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(Morton et al., 2007). Experimentally-measured kinematics from the squat cycle were 

converted to 6 degree-of-freedom (DOF) TF and PF kinematics using a three-cylindrical 

open-chain description of motion (Grood and Suntay, 1983).  Joint kinematic data for all 

specimens were normalized from 0 (0° flexion) to 100% (90° flexion) of the cycle and 

discretized at 1% intervals for each DOF. 

The statistical shape-function model was established by applying PCA to the 

training set data consisting of nodal coordinates (3D Cartesian coordinates for each node 

in its local coordinate system) for each bone and cartilage structure and discretized TF 

and PF kinematics (101 points for each DOF).  The array of raw data, V, consisted of an 

n x N matrix with n corresponding variables (18153 describing shape and 1212 

describing kinematics) for N specimens.  PCA was performed on the covariance matrix of 

V; PCA is a widely-used statistical technique to decompose a large data set into its 

primary modes of variation or principal components.  The analyses resulted in a series of 

non-zero eigenvalues characterizing the amount of variability explained and associated 

eigenvector matrix, E.  Each of the subjects was represented by a series of PC scores, P. 

Note: ’ corresponds to transpose, which is equivalent to the inverse for an orthogonal 

matrix.  

V = raw data containing subjects (n x N) 

where v = (n x 1) = {vshape vkinematics}’ for one subject 

C = covariance matrix (n x n) of V 

E = eigenvector matrix (n x N-1) from PCA on C for non-zero eigenvalues 

E = {
𝐸𝑠ℎ𝑎𝑝𝑒

𝐸𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑠
} 
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P = v’ * E = PC scores (1 x N-1) for one subject 

v’ = P * E’ = subject representation (1 x n) 

The modes of variation were perturbed by +/- 1.5 standard deviations (denoted hereafter 

simply by + or -) from the mean to visualize the changes in size, shape, alignment or 

initial position, and kinematics through the squat cycle.  This level was set to balance 

emphasizing the geometric differences, while maintaining realistic instances given the 

size of the training set.  As a composite of the AP and IE kinematics and to enable 

comparisons to in vivo studies, the location of TF contact was estimated using the lowest 

point on the medial and lateral femoral condyles relative to the tibial SI axis (Banks et al., 

2003; Dennis et al., 2005).  To describe variations in shape and alignment, a series of 

measurements used commonly in clinical and radiographic assessments were 

automatedly performed on the 3D representation; measurements included epicondylar 

width, Insall-Salvati index, sulcus angle, and bisect offset (Insall and Salvatti, 1971; 

Kalichman et al., 2007; Pal et al., 2011; Stefanik et al., 2013) (Table 4.1
1
).  Pearson’s 

correlation coefficients were computed between the measurements and PC scores 

representing each specimen, as well as between the measurements, initial alignment and 

range of motion (ROM) kinematics. 

Lastly, a leave-one-out (LOO) evaluation was performed to assess the ability of 

the model to predict the shape and kinematics of a new subject from outside of the 

training set.  To perform kinematic predictions from the geometry of a new or left-out 

subject, an approach similar to Fitzpatrick et al. was applied (Fitzpatrick et al., 2011).  

                                                 
1
 See Appendix B for measurement descriptions. 
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The geometry was described as the shape-only variables of the raw subject vector (vshape).  

Using the shape portion of the eigenvectors, the shape representation was transformed 

into PC scores (Pnew) corresponding to each mode.  Then, the PC scores and full 

eigenvector matrix were used to predict the shape and kinematic vector for the new 

specimen.  All PC modes were utilized in these predictions. 

Pnew = vnew shape’ * Eshape = (1 x nshape) * (nshape x N-1) = (1 x N-1)   

vnew’ = {vnew shape vnew kinematics}’ = Pnew * E’ 

                  = (1 x N-1) * (N-1 x n) = (1 x n) 

Mean absolute errors were calculated between actual and model-estimated shape and 

location of the lowest contact point. 

4.4.  Results 

The statistical model identified relationships between shape and kinematic 

variation in the training set as a series of modes of variation.  As the earliest modes 

captured the largest amount of variability in the data, they are emphasized here.  For 

example, the first 3 modes of variation explained 49.0% of the variability, with 6, 15 and 

19 modes capturing 69.4%, 95.1% and 100%, respectively (Table B.1).  By perturbing 

individual modes, the corresponding changes in anatomy and TF and PF kinematics are 

shown in Figure 4.4 and Figure 4.5
2
 for Modes 1-3 and in Appendix B for Modes 4-6.  

Additionally, correlations described the shape and kinematic parameters captured in each 

mode (Table 4.2).  

                                                 
2
 Absolute and relative kinematics for all degrees of freedom are presented in Appendix B, Figure B.1 & 

Figure B.2. 
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 In addition to describing scaling of the knee (Figure 4.3), Mode 1 captured 

changes in the medial and lateral AP condylar geometry, AP and IE kinematics and the 

location of the lowest contact point (Figure 4.4 and Figure 4.6).  The sagittal radius of 

curvature for the medial condyle scaled uniformly between Mode 1+ and Mode 1- 

(Figure 4.6).  The sagittal radius for the lateral condyle was relatively constant between 

20° and 50° flexion, albeit with offset centers, but varied in deeper flexion (Figure 6); 

between 60° and 90° flexion, the radius of curvature for the lateral condyle was up to 

1.45X larger for Mode 1+, while it remained relatively constant (within 0.96X) over the 

same range for Mode 1-.  The initial TF position of the Mode 1+ (larger) knee was more 

flexed, external, and posterior compared to the Mode 1- (smaller) knee (Figure 4.4).  

During the flexion cycle, both knees rotated internally a similar amount; however, the 

majority of the motion occurred in early flexion for the Mode 1- knee.  The Mode 1+ 

knee exhibited a steady anterior tibial motion with flexion, while the tibia initially moved 

anteriorly, followed by posterior translation after 20° flexion for the Mode 1- knee.  The 

lowest point data showed little motion of the medial contact point, while the lateral 

contact point moved posteriorly, capturing the differences in the amount of IE rotation in 

early flexion with Mode 1 (Figure 4.6). In the PF joint, Mode 1 described variation in ML 

translation (Figure 4.5), which was linked to differences in the anterior aspects of the 

condylar geometry.  PC scores for Mode 1 were strongly correlated to anatomic size 

measurements, including femoral epicondylar width (correlation r = 0.91) (Table 4.2). 

Mode 2 described anatomical shape changes in the bone and cartilage, alta-baja 

(SI) alignment of the patella relative to the femur and PF kinematic changes in AP and SI 
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translation and IE rotation (Figure 4.3 and Figure 4.5).  Illustrating alta-baja alignment of 

the patella, PC scores for Mode 2 were correlated to the Insall-Salvati index (r = -0.61, 

Table 4.2).  The alta patella for Mode 2- had consistently larger AP and SI kinematics 

than the baja patella of Mode 2+, which affects the moment arm of the quadriceps.  

Further, the Mode 2- geometry with the alta patella had a shallower trochlear angle of 

2.5° and exhibited internal patellar rotation during early flexion, compared to the baja 

patella in Mode 2+ with a steeper trochlear angle of 4.9° and external patellar rotation 

during flexion (Figure 4.5).  Both models (Mode 2+ and 2-) realized a similar IE position 

at roughly 25° flexion when the patella engaged the trochlear groove.  Differences in 

cartilage coverage on the bone were also noted in Mode 2 (Merchant view of Figure 4.3). 

Mode 3 accounted for further anatomic shape changes in the femur and patella, 

and patellar alignment, including some alta-baja variability (r = 0.54) and initial PF IE 

and VV position.  Differences were observed in the anterior-lateral aspect of the femur 

and trochlear groove; correlations between the antero-inferior femoral sulcus angle, 

measured in a 45° merchant view, and PC score for Mode 3 were -0.52.  The prominence 

of the anterior-lateral facet influenced both the initial PF IE (Figure 4.5) and VV (Figure 

B.2) alignment, although motions through the flexion cycle were similar (Figure 4.5).  

Mode 3 also resulted in the largest differences in the AP location of the lateral contact 

point (Figure 4.6) and ROM for TF IE rotation with 8.8° and 11.5° for Mode 3+ and 3-, 

respectively (Figure 4.4, Figure B.1).  While not significantly correlated (r < 0.5), Mode 3 

described differences in the distal sulcus angle of 7° between the +/- models, versus 3° 

and 4° in Modes 1 and 2, respectively. 
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Using data for the specimens in the training set, significant correlations were 

identified between 2D anatomical measurements and kinematics (Table 4.3, Figure B.3).  

The size measures, largely captured in Mode 1, were strongly correlated to many of the 

initial alignment DOF, particularly SI, AP and ML translation.  A greater distal sulcus 

angle corresponded to greater tibial IE ROM through the flexion cycle (r = 0.83), while a 

greater distal condylar angle was correlated to a more valgus TF VV alignment (r = 0.73).  

As described in Modes 2 and 3, the Insall-Salvati ratio was correlated to initial PF FE (r = 

-0.54), SI (r = 0.46) and AP (r = 0.50) alignment.  Bisect offset, a measure of patellar 

tracking, increased with more laterally-aligned PF joints (r = 0.67).  Further, strong 

correlations were identified between TF and PF kinematics through the cycle, specifically 

between PF FE and TF FE, between PF VV and TF VV, and between PF ML and TF IE 

(Table B.2). 

Results of the LOO evaluation characterized the predictive ability of the model 

with errors computed between the actual and model-predicted geometry and lowest point 

locations for the left-out knee.  The absolute geometric error averaged across all nodes 

and for all specimens was 1.90 mm with a standard deviation of 0.39 mm.  Differences 

between predicted and actual femoral lowest point were typically smaller in the medial 

compartment than the lateral and smaller in the ML direction compared to the AP 

direction (Figure 4.6, Table 4.4).  Averaged over the flexion range and for all specimens, 

the mean absolute errors were 2.11 mm and 2.87 mm for the ML and AP directions on 

the medial condyle and 2.22 mm and 4.53 mm on the lateral condyle, respectively. 
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4.5.  Discussion 

The data-driven statistical modeling approach developed in this study 

demonstrated the ability to capture the role of complex anatomic and kinematic 

interactions and present them in a way that provides design and surgical insights.  

Relationships described between anatomy, initial alignment, and TF and PF motions 

through a squat cycle confirmed findings from several other studies, with the current 

approach enabling a more holistic consideration of the interactions.  The benefits of the 

PCA-based approach are as follows: 

 the PC modes describing the relationships between anatomy and kinematics are 

elucidate from the data without requiring a priori identification of the inputs and 

output measures to compare,  

 evaluations are performed with the full articular geometry rather than a limited set 

of linear measures, and  

 the resulting model enables predictions of kinematics for a new subject’s 

geometry. 

Traditionally, studies have identified sets of measurements and investigated 

relationships with correlations between measures of interest.  For instance, Harbaugh et 

al. focused on lateral trochlear inclination angle (LTI) and patellar height, and reported a 

correlation between LTI and medial patellar tracking in their healthy control group (r = 

0.35) (Harbaugh et al., 2010).  Investigating the patellar anatomy of 907 subjects, 

Stefanik et al. reported the highest correlation between bisect offset and LTI (r = -0.38) 

(Stefanik et al., 2013).  Further, Powers et al. reported correlations between bisect offset 
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and sulcus angle (r = 0.74) (Powers et al., 2000).  The approach taken in the current study 

can be used to report similar correlations to these prior studies; for example, this data 

elucidated links between bisect offset and LTI (r = -0.62), between LTI and PF ML 

alignment (r = -0.46), between bisect offset and PF ML alignment (r=0.67), and between 

bisect offset and sulcus angle (r=0.50).  However, the PCA-based approach implemented 

in the current work utilizes three-dimensional representations of the bones and cartilage, 

which enabled a more comprehensive analysis, including the potential to discover 

unanticipated links between anatomy and kinematics and the ability to investigate inter-

relationships between measurements when interpreting findings, which may not be 

possible with the traditional approach.  This approach does not require a priori knowledge 

of factors which are anticipated to be linked; instead, the entire shape and kinematic 

database is interrogated and relationships within that dataset emerge within each of the 

modes of variation.  This extended beyond correlation of a single shape metric with a 

single kinematic metric to a more holistic interpretation of the data and the relationships 

within.  For example, Mode 2 showed a relationship between an alta patella with shallow 

trochlear angle and internal patellar rotation. 

The first 6 PC modes of variation were investigated to describe associations 

between changes in anatomy and kinematics.  Emphasis was placed on the early modes 

which captured the largest amount of variance in the data.  Further, a parallel analysis, 

which involved randomizing the variables within each observation and performing PCA 

on this new dataset in an effort to quantify the inherent noise in the data (Horn, 1965), 

found the first 6 modes were significant. 
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Described by Mode 1 with the most variation explained, changes in the sagittal 

femoral condyle geometry or J-curve were directly linked to the AP and IE kinematics 

and, ultimately, the location of the lowest point.  The finding that more gradual radius 

changes through the flexion facet of Mode 1- led to reduced posterior tibial translation (or 

anterior femoral translation) (Figure 4.4 and Figure 4.6) agreed with Clary et al., which 

observed that an increasing "braking" radius results in less anterior motion and more 

rollback of the femur with respect to the tibia (Clary et al., 2013).  Early flexion 

differences in the lowest point representation were affected by shape of the distal region 

of the femoral condyles with Mode 1- having a more flattened profile.  Coupled with a 

steeper slope for tibial IE rotation, the lowest-point behavior near extension was 

characteristic of the screw-home mechanism (Piazza et al., 2000).  The lowest point 

location provides a surrogate measure of contact and enables comparisons to prior 

fluoroscopic studies (Banks et al., 2003; Dennis et al., 2005).  Alternatively, a contact or 

patch-based analysis of the kinematics could provide additional information, but was not 

considered in the current study. 

Further, differences in TF IE rotation during the cycle were described in Modes 3, 

both in ROM (Figure 4.4 and Figure B.1) and the location of the femoral lowest point 

(Figure 4.6).  Hoshino et al. noted the importance of distal femur morphology, 

particularly a correlation between condylar twist angle and internal tibial rotation 

(Hoshino et al., 2012).  Changes in the morphology of the distal femur were also 

described in Mode 3 with differences reported in distal sulcus angle.  According to 

Freeman et al., the inner facets of the condyles and tibial eminence interact to guide tibial 
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rotation (Freeman et al., 2005).  Lastly, the more general correlation between tibial IE 

rotation and patellar ML translation is consistent with Sheehan et al. and underscores the 

shape-driven interactions between TF and PF joints (Sheehan et al., 2009). 

PF kinematics were dependent on the anatomy of the patella and trochlear groove, 

and initial patellar alignment.  A deeper trochlear groove or smaller sulcus angle led to 

more PF external rotation (Mode 2), while the anatomy of the anterior-lateral facet and 

trochlear groove influenced the initial PF IE alignment.  Regarding patellar alta-baja, the 

Insall-Salvati index, PC score for Mode 2 and PF AP alignment all shared strong 

correlations (Table 4.2 and Table 4.3).  Fitzpatrick et al. showed that quadriceps 

efficiency during a deep knee bend was affected by patellar resection thickness 

(Fitzpatrick et al., 2013), highlighting that the AP position of the patella serves as an 

effective moment arm.  Accordingly, the current model may be useful in developing 

subject-specific representations for musculoskeletal simulations considering shape and 

alignment variability in the population. 

Numerous studies have used shape of the femur, patella and relative alignment as 

measures to differentiate healthy normal and pathologic groups.  This study confirmed 

the importance of alta-baja, bisect offset and sulcus angle in PF mechanics, and notes 

their established links to PF pain and maltracking (Pal et al., 2013; Harbaugh et al., 

2010).  This study also demonstrated the ability to efficiently measure these important 

parameters within the SSM and evaluate them with respect to dynamic motions, rather 

than static poses used in prior MR based studies.  Both of these considerations are 
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important in enabling evaluations of larger-scale populations under clinically relevant 

conditions. 

As subject-specific measurement of kinematics is time consuming and expensive, 

it is rare to have a dataset of 20 natural knees for the same activity.  Many studies have 

presented kinematics for datasets with smaller numbers of subjects.  However, the size of 

the dataset remains relatively small when compared to the overall population.  The all-

male training set is not representative of the overall population and is a limitation of the 

study; however, the group does represent a subset of the potential total knee replacement 

population.  A further limitation is that the kinematic data were measured from cadaveric 

specimens in a simulator.  The applied loading condition was identical for all specimens 

and not scaled with size or body weight, which will influence the kinematics.  The shape-

function approach could be similarly implemented using in vivo data from biplane 

fluoroscopy, which potentially allows for consideration of larger numbers of subjects and 

a greater variety of activities.  As the data required to represent the subject’s shape is part 

of the workflow, implementation can be performed with minimal additional processing.  

Interestingly, SSM has recently been used to represent the subject’s geometry using an 

optimization to the fluoroscopy data alone, alleviating the need for additional imaging 

and segmentation (Baka et al., 2012). 

This study did not directly investigate the role of soft tissue structures, which are 

known to provide constraint and impact knee mechanics.  The cadaveric simulator data 

notably captured intersubject variability in anatomy, alignment and soft tissue constraint, 

and thereby considered factors not included in Fitzpatrick et al., which used kinematics 
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derived from finite element analyses with a constant soft tissue representation 

(Fitzpatrick et al., 2011). 

The predictive capability of the SSM was evaluated using the LOO test; results 

demonstrated the ability of the model to accurately recreate the shape and kinematics of 

the left-out specimen.  The errors in shape representation were comparable to those 

reported in Rao et al. and other SSM models (Rao et al., 2013).  Errors in the lowest point 

predictions were dependent on the condyle and DOF, but less than 3 mm on average for 

all DOF.  The ability to represent new subjects accurately provides confidence in using 

the approach in larger population studies which require the generation of virtual 

instances. 

Insight into relationships between knee anatomy and kinematics has broad 

reaching impact in biomechanics.  Relationships for the healthy normal dataset can 

address current areas of interest in knee mechanics and the design of total knee 

replacement implants, particularly regarding the impact of shape of the condylar 

geometry or j-curve and identifying anatomical features the drive motion (e.g. rotation or 

rollback).  Additionally, insight into the kinematics associated with patients with certain 

characteristics (e.g. patella alta or a narrow trochlear groove) may lead to altered surgical 

decision-making related to implant selection, sizing and placement to avoid overloading 

regions of bone, crepitus and other complications (Dennis et al., 2011; Fitzpatrick et al., 

2013).  The approach can be extended to further investigate differences between healthy 

normal and pathologic groups, especially when shape and alignment are contributing 

factors, as in patellar maltracking, PF pain and varus/valgus deformities.  
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Figure 4.1 Development of a statistical shape and function model. The shape 

representation was derived from image data by segmenting and establishing 

correspondence to a template mesh, and tibiofemoral and patellofemoral kinematics were 

obtained from cadaveric testing and registration of the anatomy and local coordinate 

systems (CS) to experimentally probed points. 
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Figure 4.2 Training set of 20 specimens used to create the statistical shape-kinematics 

model. Specimens are represented with the template mesh in the initial kinematic 

position. 
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Figure 4.3 Representations of bone and cartilage for the first three principal component 

modes. Knees are shown at +/- 1.5 standard deviations. Coronal and sagittal views at 

initial alignment with merchant view at 45° TF flexion. 
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Figure 4.4 Tibiofemoral kinematics for the first 3 principal component modes and all 

specimens (gray lines). Clockwise from top: Tibial flexion-extension, anterior-posterior 

(AP) translation and internal-external (IE) rotation. Inset bar charts show relative 

contribution of each mode. 
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Figure 4.5 Patellofemoral kinematics for the first 3 principal component modes and all 

specimens (gray lines). Clockwise from top-left: Patellar internal-external (IE) rotation, 

medial-lateral (ML) translation, superior-inferior (SI) translation and anterior-poster (AP) 

translation. Inset bar charts show relative contribution of each mode. ISI = Insall-Salvati 

Index. 
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Figure 4.6 Sagittal condylar geometry (with radius of curvature lines) for the mean and 

first three modes (left).Femoral lowest point representation of the TF contact points for 

the first three modes at +/- 1.5 standard deviations (right). 
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Figure 4.7 Comparison of actual (solid) and predicted (dashed) lowest contact point for a 

leave-one-out evaluation with varying flexion. Predictions were made with each member 

of the training set left out of the analysis. Error bars shown for anterior-posterior (AP) 

and medial-lateral (ML) degrees of freedom on each condyle. Full extension results 

reported as 0-10° flexion as not all specimens achieved 0°. 
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Table 4.1 Descriptive statistics and anatomical measures for the training set. 

Anatomic Measure Mean 

Standard 

Deviation Min. Max. 

Age [yr] 64 10.8 44 80 

Weight [kg] 78 16.2 61 127 

Body Mass Index [BMI] 25 5.2 19 41 

Epicondylar Width [mm] 87.4 4.0 81.0 98.3 

Femur AP Width [mm] 66.4 2.8 62.1 75.2 

Tibia ML Width [mm] 80.3 3.5 73.8 89.4 

Patella AP Thickness [mm] 19.0 2.3 14.9 22.8 

Patella Angle [°] 146.5 6.4 136.2 155.7 

Insall-Salvati Index 1.2 0.2 0.8 1.5 

Trochlear Angle [°] 4.2 2.3 0.3 8.7 

Anterior Sulcus Angle [°] 144.3 8.8 131.6 171.5 

Medial Trochlear Inclination [°] 163.1 6.0 152.5 179.8 

Lateral Trochlear Inclination [°] 18.8 3.7 8.4 24.9 

Antero-inferior Sulcus Angle [°] 72.2 13.8 56.3 118.1 

Distal Sulcus Angle [°] 132.4 6.2 122.4 145.0 

Distal Condylar Angle [°] 6.7 2.0 3.6 10.9 

Bisect Offset [%] 60.1 6.7 50.2 76.1 
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Table 4.2 Pearson’s correlation coefficients between the first six principal components 

and anatomical and kinematic measures. Initial alignment correlations were calculated at 

approximately 10 degrees TF flexion. Range-of-motion (ROM) was defined as the 

difference between the minimum and maximum values in a kinematic measure. 

Correlations are presented as absolute values. Anatomical measures with no significant 

correlations were omitted. White cells indicate no correlation. 
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Table 4.3 Pearson’s correlation coefficients between anatomical and kinematic measures. 

Initial alignment correlations were calculated at 10 degrees TF flexion. Range-of-motion 

(ROM) was defined as the difference between the minimum and maximum values in a 

kinematic measure. Correlations are presented as absolute values. Anatomical measures 

with no significant correlations were omitted. White cells indicate no correlation. 
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Table 4.4 Mean absolute error between experimental and predicted lowest point results 

averaged across all specimens. All values are in millimeters. 

Flexion 

Angle (°)  

 Medial   Lateral  

 ML   AP   ML   AP  

 μ   σ   μ   σ   μ   σ   μ   σ  

0 1.98 1.34 3.76 2.81 2.20 1.56 4.53 3.35 

30 1.99 1.46 2.77 2.56 2.49 1.76 4.03 3.69 

60 1.83 1.56 2.56 1.75 2.46 1.52 4.49 3.23 

80 2.65 1.91 2.39 1.69 1.74 1.51 5.06 3.20 

Average 2.11 1.57 2.87 2.20 2.22 1.59 4.53 3.37 
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CHAPTER 5. MEASURES-DRIVEN PREDICTION OF PATELLOFEMORAL JOINT 

KINEMATICS 

 

5.1. Abstract 

Patellofemoral (PF) complications in the natural knee, including subluxation and 

dislocation, account for at least 25% of reported knee problems in active individuals.  

Clinical assessments and rehabilitation protocols rely upon a practical understanding of 

the anatomical factors influencing joint kinematics.  The purpose of this study was to 

create a statistical shape-function model to isolate clinically relevant morphological 

factors influencing joint function and assess the predictive capability of linear measures 

on kinematics.  Fifteen clinically obtainable 2D linear measures of shape and alignment 

of the PF joint were taken on twenty-four 3D finite element (FE) models.  A statistical 

measures-only model was created using principal component analysis (PCA) to 

characterize variability in the training set.  6 degree-of-freedom (DOF) kinematics of the 

PF joint were adopted from a previous study and combined with the measures-only 

principal component (PC) scores to create a new statistical model.  The first three PC 

modes primarily described scaling, trochlear groove geometry, and patellar mediolateral 

(ML) alignment, respectively.  Linear measures such as trochlear groove angle in the 

coronal plane and intercondylar notch width at the distal aspect were correlated with PF 

ML range-of-motion.  Mean RMS error across all knees between the FE-predicted and 
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statistical model-predicted kinematics were less than 3.0 degrees and 2.6 mm based on 5 

PCs, which described 83.6% of the total variability in the statistical model, were used.  

The statistical modeling approach elucidated new relationships between clinically 

accessible measures and joint motion and the prediction of motion by a combination of 

linear measures suggests potential for developing clearer causal relationships. 

5.2.  Introduction 

Patellofemoral (PF) complications in the natural knee, including subluxation and 

dislocation, account for at least 25% of reported knee problems in active individuals 

(Boling et al., 2010).  PF joint function is influenced by a number of factors including the 

surrounding musculature, joint ligament laxity, and articular surface geometry (Jafari et 

al., 2008).  Evaluation and diagnosis of PF joint complications are informed by an 

understanding of which factors contribute to a particular conditions or characteristics of 

motion. 

Clinical measures such as patella alta, tilt, and the femur trochlear groove 

geometry have been correlated with PF joint function and pain (Pal et al., 2013; Stefanik 

et al., 2013; Harbaugh et al., 2010; Freedman et al., 2013).  Pal et al., (2013) assessed the 

effects of patella alta-baja, a measure of patellar superior-inferior (SI) alignment in the 

sagittal plane, on PF pain syndrome; subjects with patella alta were more likely to 

experience pain during weightbearing (Pal et al., 2013).  Harbaugh et al. (2010) evaluated 

femur trochlear shape measures in groups of pain and pain-free subjects, finding 

relationships between shape and tracking in all groups particularly for lateral trochlear 

inclination (LTI) and patellar height (Harbaugh et al., 2010).  2D linear measures of static 
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alignment from magnetic resonance (MR) images could only partially predict dynamic 6 

degree-of-freedom (DOF) PF joint kinematics (Freedman et al., 2013), which suggests 

that contributions from only alignment may be confounded by the challenges of working 

with experimental kinematics. 

Computer models of the PF joint have attempted to evaluate joint function by 

individually perturbing specific inputs in a design-of-experiments (DOE) analysis.  Jafari 

et al. (2008) controlled joint characteristics such as femoral anterior sulcus angle (ASA), 

quadriceps line-of-action, and medial retinaculum laxity to study their effects on patellar 

subluxation and dislocation (Jafari et al., 2008).  A mathematical model solved static 

equilibrium equations describing PF joint geometry and loads to assess geometric and 

ligamentous constraint effects on alignment.  Each characteristic individually contributed 

to patellar maltracking; however, a combination of the characteristics resulted in the most 

severe lateral shift.  More recently, a DOE analysis was combined with a validated finite-

element (FE) model of the PF joint to evaluate factors associated with dislocation 

(Fitzpatrick et al., 2016).  The study also reported the largest maltracking issues with a 

combination of factors and described sulcus angle as the most impactful factor. 

Statistical models provide an alternative approach to evaluations of joint 

mechanics by characterizing and quantifying relationships between natural or implanted 

joint geometry and function.  FE-based analyses have been combined with statistical 

models of bone shape and material properties to evaluate performance of the implanted 

tibia as well as the natural and implanted femoral head (Galloway et al., 2013; Bryan et 

al., 2009; Bryan et al., 2012), and articular surface geometry to evaluate PF kinematics 
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(Fitzpatrick et al., 2011).  Studies have also combined 3D bone and cartilage models with 

experimental kinematics using principal component analysis (PCA) to quantify 

relationships in the natural knee (Smoger et al., 2015).  Fitzpatrick et al. (2011) created a 

statistical shape and function model with FE predicted PF joint mechanics to study 

relationships between 3D joint geometry and function.  FE modeling is particularly useful 

for its ability to efficiently assess whole joint variability in a controlled environment.  A 

larger SSM consisting of the bones and cartilage for both the PF and TF joints was 

recently developed; elucidating similar relationships between shape and function as well 

as inter-joint relationships such as the influence of tibial internal rotation and patellar 

medial translation (Smoger et al., 2015).  The use of statistical modeling to characterize 

and predict whole joint shape-function relationships supports the hypothesis that an array 

of clinical measures may equally inform these relationships, providing a more direct 

cause-effect relationship between shape and kinematics. 

Thus, the purpose of this study was to build a statistical model of the PF joint to 

identify key shape measures influencing joint motion and assess their predictive 

capability.  The statistical model included clinically relevant 2D linear measures and 6-

DOF PF kinematics predicted by a validated dynamic FE simulation of the PF joint in 

Fitzpatrick et al. (2011).  Measures were taken directly from the 3D FE models, thus 

measurements were not constrained to a single slice as is the case in scan-based 

approaches.  The measures represent a comprehensive set of clinically obtainable 

dimensions from common knee radiographs.  The FE simulation isolated articular surface 

shape variability from other factors influencing PF joint function; thus, the advantage was 
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a more explicit relationship between linear measures and function.  2D linear measures 

serve as simpler descriptors of joint morphology over whole joint representations; 

however, they are significantly easier to measure and thus their impact on joint function 

is useful for establishing norms and understanding natural knee joint complications. 

5.3.  Methods 

Twenty-four 3D finite element (FE) models of healthy, subject-specific knee 

joints were adopted from a previous study (Fitzpatrick et al., 2011).  The models had 

been developed from segmented magnetic resonance (MR) scans and consistent loading 

conditions and musculature were applied to each subject-specific bone and cartilage 

geometries.  Joint function was described by 432 6-DOF PF kinematics (72 variables per 

DOF) also adopted from the aforementioned study.  Kinematics were reported with 

respect to the femur using a three-cylindrical open-chain description of motion (Grood 

and Suntay, 1983).  For the current study, an automated measurement algorithm extracted 

fifteen linear anatomical measurements from the 3D geometry (Table 5.1, Figure 5.1).  

The algorithm was developed in Matlab (Mathworks, Natick, MA, USA) and included 

calculations for single bone and joint alignment measurements.  Measurements such as 

trochlear angle, sulcus width, and bisect offset are taken with respect to the posterior 

condylar line (PCL), which is a commonly used anatomical reference line (Stefanik et al., 

2013; Harbaugh et al., 2010). 

A statistical model of the fifteen measures was created by applying principal 

component analysis (PCA) to the training set measures.  PCA calculates a new set of 

orthogonal bases, or PCs, to describe the linear measures.  Components are ranked by the 
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amount of variance they describe and each subject is given a PC score that represents its 

measures in each component.  The goal of the statistical model is to group like measures 

into a single PC.  A subsequent statistical model combined the linear measure PC scores 

and FE-based kinematics to describe relationships between shape modes of variation and 

joint motion.  Relationships between shape and function were elucidated by calculating 

Pearson’s correlation coefficients between measures and characteristics of joint motion 

including range of motion (ROM), and alignment at various flexion angles throughout the 

cycle.  Individual measures were correlated with a particular motion characteristic if both 

metrics varied significantly within a given PC mode of variation.  Correlations above 0.5 

were considered significant. 

The predictive capability of the measure-kinematics model was assessed by a 

leave-one-out type of analysis.  The number of measures included in the model was 

constrained to three and the leave-one-out evaluations of all possible combinations were 

performed.  Three of the fifteen measures were selected to avoid overfitting model data 

and isolate the most influential measures.  Each subject was successively left out of the 

training set and a new measure-kinematics statistical model was developed with the 

remaining subjects.  The new model was then used to predict the left-out subject’s 

kinematics given only their linear measures.  A predictive PCA approach (Fitzpatrick et 

al. 2011) was employed wherein the predictors (measures) and predicted variables 

(kinematics) were separately correlated to the PC scores of the combined measure-

kinematics model.  These correlations described the strength of PCA to characterize the 

relationships between predictor and predicted variables.  The linear relationship (slope) 
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between predictor and overall PC scores was used to modify the PC scores of a “new” 

subject.  These modified PC scores were then projected from PC space back into their 

original coordinate system (degrees or millimeters).  Accuracy was reported as the 

average across all knees of the RMS error between model-predicted and FE-based 

kinematics. 

5.4.  Results 

The measure-only statistical model characterized relationships within the linear 

measures, describing 95% of the variability with the first 10 principal component modes 

of variation (Table 5.2).  The first 3 modes of variation described 70.1% of the variability 

and were correlated to specific linear measures.  Mode 1 primarily described scaling; the 

Pearson’s correlation coefficient between Mode 1 and femur cartilage ML width, R, was 

0.95.  Mode 1 was also the only mode to describe femur trochlear angle (r = -0.66).  

Mode 2 described several measures independent of scaling including femur anterior and 

distal sulcus angles (r = -0.53 & r = 0.88) as well as PF congruency at the same positions 

that sulcus angle measures were taken (r = 0.57 & r = -0.64).  Mode 2 also described 

variability in the LTI (r = 0.51), a measure which was inversely proportional to patellar 

ridge medialization (r = -0.54).   Ridge medialization was measured as the perpendicular 

distance from a sagittal plane at the centroid of patella to the middle of the ridge line.   

While not considered significant, Mode 2 was most highly correlated of any with Insall-

Salvatti index (r = -0.47). Mode 3 described femur antero-inferior sulcus angle (r = 0.63) 

and bisect offset (r = 0.65). 
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The measure-kinematics model linked shape and kinematic metrics by trends in 

variability. Mode 1 was correlated with most kinematic measures likely due to the scaling 

factor whereas the next two modes described unique motion characteristics independent 

of size (Figure 5.2).  Mode 2 described variability in patellar flexion-extension (FE), and 

SI alignment independent of scaling (r = 0.83 & r = 0.76).  Mode 3 described variability 

in patellar mediolateral (ML) and internal-external (IE) alignment (r = 0.53 & r = 0.62, 

respectively).  Mode 5 was correlated with PF ML ROM (r = -0.50) and mildly correlated 

with trochlear groove angle (TGA) (r = 0.43). 

Relationships directly between linear measures and kinematics were also 

assessed.  Descriptors of the trochlear groove geometry were correlated with PF ML 

ROM, particularly ASA (r = 0.58) and it’s medial and lateral components, MTI (r = 0.55) 

and LTI (r = -0.50).  Two measures, LTI and intercondylar notch width at the distal 

aspect, were correlated to PF IE ROM (r = 0.58 and r = -0.55).  In effect, as the 

intercondylar notch width grows, PF contact points move away towards the outer regions 

of the patellar facets, resulting in increased constraint of the patella.  Trochlear groove 

angle (TGA) was consistently correlated to patellar ML alignment after 30 degrees TF 

flexion (r = -0.6) and trended toward significance with PF ML ROM (r = -0.47), which is 

notable considering the relationships between Mode 5 and both of these measures of 

shape and function. 

The predictive capability of the measure-kinematics model was elucidated by the 

accuracy between model-predicted and FE-based kinematics.  Overall, mean RMS 

differences across all knees were less than 3.0 degrees and 2.6 mm when 5 PCs 
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describing 83.6% of the total variability in the statistical model were used (Table 5.3, 

Figure 5.3).  Separate sets of measures accurately predicted different kinematic DOF.  PF 

flexion was predicted to within 3 degrees by the femur epicondylar width, AP width, and 

height of the patella (Table 5.3).  PF IE rotation was the most challenging to predict at 2.6 

degrees however the optimal measures included femur sulcus angle, medial trochlear 

inclination, and trochlear groove angle.  PF ML translation was predicted to within 2.1 

mm by the femur sulcus groove width, bisect offset, and trochlear groove angle.  PF AP 

translation was predicted to within 1.3 mm by the distal sulcus angle, patellar ML width, 

and Insall-Salvati index.  By comparison, the statistical model developed by Fitzpatrick et 

al. (2011) with the full articular geometry predicted kinematics with similar accuracy.  A 

reconstruction test confirmed that when population-level variability was accounted for in 

the statistical model (by including that subject in the development of the model), the 

model predicted that subject’s kinematics perfectly. 

5.5. Discussion 

Clinical measures are easily accessible and may provide causal information 

regarding how a joint functions under observed conditions.  The purpose of this study 

was to quantify the ability of clinically obtainable measures to describe subject-specific 

FE-predicted PF joint kinematics.  A statistical model of shape and alignment measures 

of the femur and patella quantified relationships between morphological features and 

grouped them by modes of variation.  Measures of scaling were primarily described by 

the first mode of variation, which is a common trait of biological structure variability.  

Mode 2 described a significant amount of the trochlear groove variability, which 
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confirms existing studies that have reported the largest influences on PF kinematics from 

a combination of morphological changes (Stefanik et al., 2013; Nha et al., 2008).  A 

notable inverse relationship between LTI and patellar ridge medialization was 

discovered; steeper and thus larger LTI angles in healthy individuals corresponded to a 

more centered patellar ridgeline, which likely keeps the patella from being forced 

medially by the groove.  Femur trochlear angle in the axial plane has been described as a 

possible factor for patellar tracking (Stefanik et al., 2013). That measure was not found to 

influence kinematics in this study; however, trochlear angle was closely tied to measures 

of scaling, which may explain the variability in ML translation described by Mode 1 

(Figure 5.2).  The correlation between width of the intercondylar notch at the distal aspect 

and PF ML ROM is a new relationship that provides further insight into deep-flexion 

patellar stability. 

The predictive capability of linear measures may directly impact clinicians as 

these measures are commonly retrieved from most imaging modalities (i.e. CT, MR, X-

ray).  The current study differs from the approach taken by Freedman et al. (2013); their 

predictions were based solely on alignment measures whereas the current study 

considered morphological measures in addition to several measures of alignment.  

Furthermore, the combined optimization and statistical modeling approach allowed for a 

search of the entire design space to identify the 3 key measures that influenced individual 

kinematics and ultimately increased accuracy over using all 15 measures.  The increase in 

accuracy can be explained by eliminating measures that were not strongly correlated to a 

particular kinematic DOF and thereby reducing noise in the predictor variables.  Key 
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predictive measures such as patellar height for PF SI and angular measurements of the 

trochlear groove for PF IE support the findings of Harbaugh et al. (2010) who reported 

that taller patellae tracked higher in the trochlear groove and an increase in LTI 

corresponded to internal patellar rotation (Harbaugh et al., 2010). 

By including only the first several PC modes of variation from the measures-only 

statistical model to make the kinematic predictions, a reduced set of interrelated measure 

combinations was able to accurately reproduce subject-specific kinematics.  By 

comparison, the statistical shape-function model developed by Fitzpatrick et al. (2011) 

reported mean errors of less than 3 degrees and 2.5 mm.  This study has shown that a 

drastically reduced number of variables, particularly ones that are feasibly measured in a 

clinical setting, can achieve comparable levels of accuracy. 

Factors other than shape are known to influence joint mechanics.  The effects of 

tibiofemoral kinematics on patellar tracking have been well documented (Sheehan et al., 

2009; Smoger et al., 2015; Mizuno et al., 2001).  Specifically, tibial IE rotation is known 

to influence patellar ML translation (Sheehan et al., 2009; Smoger et al., 2015) and an 

increased Q-angle shifts the patella laterally with internal rotation (Mizuno et al., 2001).  

Musculature also plays a significant role; Shalhoub et al. (2014) reported PF kinematic 

variability due to changes in quadriceps loading.  Quadriceps loading, however, was a 

controlled factor in the FE model from which the current study’s kinematics were 

adopted.  Furthermore, the geometries considered in this study were healthy, which limits 

conclusions for pathologic knees as their shape is often significantly different. 
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Overall, the approach highlighted several key benefits: combinations of 

interrelated measures were grouped into separate shape parameters without a priori 

knowledge of relationships, relationships between kinematics and both individual 

measures or groups of measures were quantified, and the relationships were strong 

enough to use in predictive studies to evaluate new geometries.  
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Figure 5.1 Illustrations of the automatically extracted linear measures.  Measures include 

femur epicondylar width (a), femur anterior sulcus angle (b), femur antero-inferior sulcus 

angle (c), patellar cartilage width and height (d), femur cartilage width along the 

epicondylar axis (e), medial trochlear inclination (f), lateral trochlear inclination (g), 

distal sulcus angle (h), patellar angle (i), Insall-Salvatti Index (j), intercondylar notch 

width (k), femur sulcus width along the posterior condylar line (PCL) (l), bisect offset 

(m), and femur AP width (n). The angle formed by the PCL and the line connecting both 

anterior condylar points on the femur (image n) describes the trochlear angle (axial 

plane). 
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Figure 5.2 Patellofemoral kinematics for the first three principal component modes and 

all subjects (gray lines).  Patellar varus-valgus (VV) and internal-external (IE) rotation 

(top), medial-lateral (ML) and superior-inferior (SI) translation (bottom).  

Mean        Mode 1 + 2σ Mode 2 + 2σ Mode 3 + 2σ

Mode 1 - 2σ Mode 2 - 2σ Mode 3 - 2σ
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Figure 5.3 Comparison of measure-based (current study) and shape-based kinematics 

(Fitzpatrick et al. 2011) to training set kinematics (Fitzpatrick et al. 2011) for two 

representative subjects (bold curves).  Training set kinematics (from FE) are shown in 

gray and illustrate the spread for each degree of freedom. 

FE predicted (Fitzpatrick et al., 2011)

Shape predicted (Fitzpatrick et al., 2011)

Measure predicted (current study)
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Table 5.1 Descriptive statistics for the linear measures of the PF joint. 

Measurement Mean 
Standard 

Deviation 
Min Max 

Femur Sulcus Width (mm) 32.6 5.8 15.3 42.0 

Femur Anterior Sulcus Angle (deg) 150.2 9.2 134.2 165.0 

Femur AP Width (mm) 60.7 4.6 51.6 68.0 

Femur Distal Sulcus Angle (deg) 107.0 11.8 82.3 128.7 

Femur Lateral Trochlear Inclination (deg) 16.0 3.8 10.4 21.5 

Femur Medial Trochlear Inclination (deg) 166.2 6.8 154.9 177.7 

Femur ML Width (mm) 79.4 7.4 66.6 92.8 

Femur Trochlear Angle (deg) 4.3 2.7 0.3 11.1 

Patella Angle (deg) 122.1 7.5 110.7 140.6 

Patella SI Height (mm) 39.7 3.8 34.7 44.8 

Patella ML Width (mm) 42.7 4.0 35.8 50.6 

Insall-Salvati Index 1.4 0.2 1.0 2.0 

Bisect Offset (%) 60.9 8.0 43.4 74.1 

Intercondylar Notch Width (mm) 23.0 2.8 17.3 27.6 

Trochlear Groove Angle (deg) -4.2 4.9 -12.5 4.8 

 

 

Table 5.2 Cumulative variability explained with the specified number of modes of 

variation. 

Mode Cumulative Variability (%) 

1 40.1 

2 59.1 

3 70.1 

4 76.7 

5 82.7 

6 87.1 

10 95.7 

23 100 
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Table 5.3 Mean RMS error and standard deviations (SD) for individual sets of predictive 

measures for each kinematic DOF.  Difference is between FE-predicted and measure-

predicted kinematics. 

DOF Predictive Measures 

Top 3 Measures 

Mean 

(SD) 

All 15 Measures 

Mean 

(SD) 

FE Femur Epicondylar Width 
2.91 

(1.47) 

3.22 

(1.59) 
(deg.) Femur AP Width 

 

Patella SI Height 

VV Patella Angle 
1.43 

(0.98) 

1.71 

(0.86) 
(deg.) Patella ML Width 

 

Patella SI Height 

IE Femur Sulcus Angle 
2.59 

(1.33) 

2.84 

(1.70) 
(deg.) Medial Trochlear Inclination 

 

Trochlear Groove Angle 

ML Femur Sulcus Width 
2.05 

(1.15) 

2.27 

(1.13) 
(mm) Bisect Offset 

 

Trochlear Groove Angle 

AP Femur Distal Sulcus Angle 
1.22 

(1.38) 

1.36 

(0.98) 
(mm) Patella ML Width 

 

Insall-Salvati Index 

SI Insall-Salvati Index 
2.53 

(1.47) 

2.57 

(1.47) 
(mm) Femur AP Width 

 

Patella SI Width 
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CHAPTER 6. STATISTICAL SHAPE MODELING PREDICTS PATELLAR BONE 

GEOMETRY TO ENABLE STEREO-RADIOGRAPHIC KINEMATIC TRACKING 

  

6.1. Abstract 

 Complications in the patellofemoral (PF) joint of patients with total knee 

replacements include patellar subluxation and dislocation, and can require revision.  Such 

complications are characterized by excessive rotation and translation between the patellar 

and femoral components and thus require accurate in vivo evaluation techniques.  Stereo-

radiographic and 3D-2D registration techniques are capable of high accuracy; however, 

the radiotransparent nature of the patellar component requires alternative means of 

tracking the patella.  The objective of the current study was to develop a virtual stereo-

radiographic platform for geometric prediction of subject-specific implanted patellar 

bone geometries from 2D radiographic images for use in 3D-2D tracking.  A statistical 

shape model (SSM) of the patellar bone was developed from magnetic resonance images 

of 50 subjects and each subject’s geometry was separately predicted in a leave-one-out 

approach to evaluate the necessary number of simulated 2D target profiles of the bone.  

Five unique radiographic perspectives of the bone provided optimal 2D target matching 

and an average 3D geometric error of 0.45 ± 0.07 mm (mean ± standard deviation), 

which is comparable to the accuracy of traditional imaging segmentation errors.  The 

ability to predict the remaining natural patellar bone geometry of the implanted PF joint 
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instead of CT segmentation can reduce radiation exposure and eliminate time and cost 

from in vivo kinematic analyses. 

6.2.  Introduction 

Patellofemoral (PF) joint complications continue to account for a significant 

percentage of total knee replacement (TKR) revisions (Dalury et al., 2003; Rhee et al., 

2008).  Pathologies such as patellar subluxation and maltracking are characterized by 

medial-lateral (ML) translation and internal-external rotation of the patella (Singerman et 

al., 1997; Kawano et al., 2002) and are a common cause of TKR revisions (D’Lima et al., 

2003).  Measuring dynamic in vivo PF joint kinematics to understand these complications 

continues to be a challenge for patients with total knee replacements (TKR) because of 

the need for accuracy in multiple degrees of freedom (DOF) and the difficulty in tracking 

the implanted patellar bone or component.  Current in vivo kinematic measurement 

techniques for the knee include static (Fellows 2005) and dynamic (Powers et al., 2003; 

von Eisenhart-Rothe et al., 2004; von Eisenhart-Rothe et al., 2007; Sheehan et al., 2009; 

Carpenter et al., 2009) magnetic resonance (MR) imaging; however, static MR images 

have been unable to reproduce dynamic joint motion and dynamic MR studies have relied 

on combining scans from multiple cycles (Bey et al., 2008).  Dynamic single-plane 

fluoroscopy has also been used to evaluate sagittal plane in vivo PF kinematics for TKR 

patients during high-flexion activities (Komistek et al., 2000, Stiehl et al., 2001, 

Argenson et al., 2005, Leszko et al., 2010).  In particular, the sagittal angle of the patellar 

bone resection surface was tracked relative to the tibial long axis and an assumed PF 
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contact location was defined by the shortest perpendicular distance between the femoral 

component and patellar mass center. 

Stereo-radiography or biplane fluoroscopy has enabled in vivo kinematic analysis 

of the natural tibiofemoral (TF) (You et al., 2001; Li et al., 2008, Bey et al., 2008) and 

patellofemoral (PF) (Nha et al., 2008; Bey et al., 2008) joints, as well as in the implanted 

TF joint (Bingham 2006; Hanson 2006).  Studies have used three-dimensional to two-

dimensional (3D-2D) registration of virtual bone models or computer-aided-design 

(CAD) models of metallic implants to fluoroscopic images for 3D pose extraction of the 

joint (Mahfouz et al., 2003; Bingham et al., 2006).  Comparing a 3D-2D registration 

method between dual-plane and single-plane systems, Zhu et al. reported sub-millimeter 

and sub-degree accuracies for TF joint tracking with a dual-plane system; this amounted 

to 2x in-plane and 10x out-of-plane improvements in accuracy over their single-plane 

system (Zhu et al., 2012).  Recently, a high speed stereo-radiographic imaging system 

was developed at the University of Denver for tracking in vivo joint kinematics (Ivester et 

al., 2015).  Using a 3D-2D registration method of digitally reconstructed radiographs 

(DRRs) from a CT-based 3D model, tracking error for a phantom knee joint was 0.15 

mm (S.D. 0.13 mm) and 0.41° (S.D. 0.30°) in translation and rotation, respectively. 

Stereo radiographic tracking of the implanted patella is challenging because the patellar 

implant is radiotransparent and while tracking embedded beads is accurate to <0.1 mm 

and 0.1° (Bingham et al., 2006), this method requires custom modified implants and does 

not translate easily to large-population studies.  Without beaded implants, the resected 

patella requires either pre-surgical imaging of bones and precise implant placement or 
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post-surgical imaging, which is challenging due to imaging artifacts, expensive, and 

increases patient exposure. 

Statistical shape models (SSMs) offer an alternative means of obtaining subject-

specific bone geometry.  SSMs have been used to characterize the morphology of 

individual bones and whole joints (Yang et al., 2008; Bryan et al., 2010; Rao et al., 2013; 

Smoger et al., 2015) and, more recently, to estimate 3D shape and 6-DOF pose from 2D 

image sets (Laporte et al., 2003; Zheng et al., 2006; Kurazume et al., 2009; Zhu et al., 

2011, Baka et al., 2012).  Laporte et al. described a method for first optimizing scale and 

rigid body alignment of one generic model of the distal femur and then applying a kriging 

algorithm to deform the generic shape to match the 2D radiograph contours (Laporte et 

al., 2003).  Zheng et al. improved upon the prior study by introducing an SSM of the 

distal femur to allow for physiologic perturbations of the shape and automatic Canny 

edge detection in the radiographs to reduce operator error (Zheng et al., 2006).  

Kurazume applied a similar SSM-based projection-radiograph optimization method to the 

proximal femur and achieved sub-mm errors (Kurazume et al., 2009).  Their SSM was 

built from 56 subjects and ultimately 10 SSM shape parameters were used to make their 

predictions.  Baka et al. have dually predicted shape and pose of the TF joint from 

biplane fluoroscopic images of a gait cycle, avoiding the need for additional scanning and 

reconstruction (Baka et al., 2012).   

Limited work has been done to reconstruct subject-specific patellae from 

fluoroscopic images to track the motions of the PF joint.  Furthermore, reconstruction of 

resected bones with limited shape profile information has also not been evaluated.  
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Accordingly, this study proposes an SSM-based reconstruction method that can 

accurately recreate 3D implanted patellar geometry from fluoroscopic images.  The 

objective of this study was to develop a virtual platform of a stereo-radiographic imaging 

system and evaluate the predictive capability of an SSM to generate subject-specific 3D 

patellar geometries from simulated target profiles to enable tracking of in vivo PF 

kinematics.  The study informs future experimental protocols without risk to patients by 

utilizing a cohort of previously segmented patellar geometries.  The study also evaluates 

the number of views and orientations required to produce quality geometric predictions.  

The prediction algorithm also highlights the utility of an edge detection technique with 

nearest neighbor search. 

6.3.  Methods 

An SSM of the healthy normal patellar bone was developed from a training set of 

50 subjects. The subjects included 25 males and 25 females whose average age was 64 

years (range: 44 to 87), average weight was 73 kg (range: 43 to 127), and average body 

mass index (BMI) was 25.2 (range: 19.0 to 41.3).  Data used in the preparation of this 

article were obtained from the Osteoarthritis Initiative (OAI) database, which is available 

for public access at http://www.oai.ucsf.edu/. Specific datasets used are 0.E.1, which 

consists of baseline (initial healthy) scans.  Subjects were included if they were deemed 

healthy and normal with no signs of osteoarthritis.  The patellae were reconstructed from 

MR scans using ScanIP (Simpleware, Exeter, UK) and registered to a template mesh 

according to [Rao 2013; Smoger 2015].  Registration was performed through an iterative 

closest point algorithm and provided nodal correspondence between all subjects in a 
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common local coordinate system.  The template mesh consisted of 472 nodes and average 

element edge lengths were approximately 3 mm.  The local coordinate system was 

developed using the proximal, distal, and lateral points around the articular periphery of 

the template mesh with the origin located at the geometric centroid [Rao 2013]. 

The SSM was established by applying PCA to the training set of 50 subjects.  

Each subject’s shape was represented by a 1416 x 1 vector of its registered 3D nodal 

coordinates (x, y, z).  PCA was applied to the covariance matrix of the training set data.  

PCA is a widely-used statistical technique to decompose a large data set into its primary 

modes of variation or principal components (PCs).  The analysis resulted in a series of 49 

non-zero eigenvalues characterizing the amount of variability explained and an associated 

eigenvector matrix.  The modes of variation described the anatomic variation present in 

the dataset and enabled both training set subjects and new instances of the SSM to be 

represented by a series of PC scores. 

An SSM of the healthy normal patellar bone was developed from a training set of 

50 subjects. The subjects included 25 males and 25 females with an average age of 64 

years (range: 44 to 87), average weight of 73 kg (range: 43 to 127), and average body 

mass index (BMI) of 25.2 (range: 19.0 to 41.3).  Data used in the preparation of this 

article were obtained from the Osteoarthritis Initiative (OAI) database, which is available 

for public access at http://www.oai.ucsf.edu/. Specific datasets used are 0.E.1, which 

consists of baseline (initial healthy) scans.  Subjects were included if they were deemed 

healthy and normal with no signs of osteoarthritis.  The patellae were reconstructed from 

MR scans using ScanIP (Simpleware, Exeter, UK) and registered to a template mesh 
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according to (Rao et al., 2013; Smoger et al., 2015).  Registration was performed through 

an iterative closest point algorithm and provided nodal correspondence between all 

subjects in a common local coordinate system.  The template mesh consisted of 472 

nodes and average element edge lengths were approximately 3 mm.  The local coordinate 

system was developed using the proximal, distal, and lateral points around the articular 

periphery of the template mesh with the origin located at the geometric centroid (Rao et 

al., 2013). 

The SSM was established by applying PCA to the training set of 50 subjects.  

Each subject’s shape was represented by a 1416 x 1 vector of its registered 3D nodal 

coordinates (x, y, z).  PCA was applied to the covariance matrix of the training set data.  

PCA is a widely-used statistical technique to decompose a large data set into its primary 

modes of variation or principal components (PCs).  The analysis resulted in a series of 49 

non-zero eigenvalues characterizing the amount of variability explained and an associated 

eigenvector matrix.  The modes of variation described the anatomic variation present in 

the dataset and enabled both training set subjects and new instances of the SSM to be 

represented by a series of PC scores. 

A virtual model of the stereo-radiography system was developed to simulate an 

experimental data collection on a population of subjects. The model was based on an 

experimental configuration and subject pose consistent with prior data collections in the 

knee (Kefala et al., 2015).  Experimental images and projection parameters were 

collected for a single subject as a part of a larger IRB-approved study.  The subject was 

imaged in the sagittal and transverse directions with respect to cameras A and B, 
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respectively (Figure 6.1).  To avoid occlusion from the metallic implants and surrounding 

tissue, the knee was imaged at 45° flexion.  Radio-opaque markers were placed on the 

patella to locate the patella in the imaging volume of the system.  A direct linear 

transform (DLT), which maps 3D objects onto the camera’s 2D image plane, was 

calculated in a calibration process (Brainerd et al., 2010).  Briefly, a DLT is estimated by 

identifying, in each camera image, points on a cube at known relative positions in the 3D 

object space.  The markers were digitized on the radiographs and the DLT transformed 

the digitized points into the 3D object space to locate the virtual imaging volume.  

Marker digitization and camera calibration was conducted in XRayProject (XROMM, 

Brown University). 

For each patella in the training set, an appropriately-sized patellar implant was 

selected and located, the bone was virtually resected (Ali et al., 2015), and simulated 2D 

images representative of the stereo-radiography system were generated.  Virtual 

implantation of the training set patellae was achieved by optimizing size and placement 

of a commercially available patellar implant component to retain the natural thickness 

and maximize coverage of the implant with less than 2 mm of overhang (Figure 6.2).  A 

transformation was calculated between the training set and marker reference frames to 

locate the 50 patellae in the imaging volume and to the approximate imaged position of 

the joint.  A horizontal rotation was then applied to each patellae and its associated 

resection plane in the object space to simulate five imaged positions with respect to the 

experimentally imaged position (Figure 6.3).  Using the DLT, nodes for each patella and 

resection plane pair were mapped to the virtual 2D image planes for all 5 positions 
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resulting in 10 unique views of the patella.  Positioning actual knee joints for a cohort in 

the imaging volume would likely introduce some random alignment variability between 

the patella and the image planes.  To account for this, each patella was randomly 

perturbed in the imaging volume (prior to applying the DLT) by up to ±5 mm and ±5°.  

An alpha-shapes algorithm outlined 2D profiles of the projected vertices of the intact 

patella.  Briefly, alpha-shapes are a generalization of the convex hull and is useful for 

outlining point clouds with varying levels of complexity (Edelsbrunner et al., 1983).  The 

intact profile was then separated into an anterior and posterior region by locating the two 

intersecting points of the intact and resection profiles.  The anterior region, representing 

the remaining natural surface projections, was used to simulate each TKR-implanted 

patella’s resected target profile. 

A leave-one-out type of analysis was performed on three different sets of imaged 

positions including the 1
st
 position alone (2 images), the 1

st
, 3

rd
, and 5

th
 positions (6 

images), and all five positions (10 images).  Each of the 50 subjects were separately left 

out of the training set and new, 49-subject SSMs were built.  An optimization algorithm 

was designed to change shape and alignment of the new instance of the SSM to match the 

2D anterior target profiles of the left-out patella (Figure 6.4Figure 6.4).  The objective 

function minimized the difference between the 2D anterior target profiles and the project 

profile of the 3D SSM.  2D image plane error, E, was calculated as the average of the 

root-mean-square (RMS) errors, ei, across the images: 

𝐸 = 𝐹(𝑋) =
1

𝑛
∑ 𝑒𝑖

𝑛
𝑖=1         (6.1) 

𝑒𝑖 = √
1

𝑚
∑ 𝑑𝑖𝑗

2𝑚
𝑗=1         (6.2) 
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RMS error was calculated using the 2D Euclidean distances, dij, measured 

between pairs of matched points in each image: 

𝑑𝑖𝑗 = √{(𝑥𝑖𝑗 − �̂�𝑖𝑗)
2

+ (𝑦𝑖𝑗 − �̂�𝑖𝑗)
2

+ (𝑧𝑖𝑗 − �̂�𝑖𝑗)
2

}   (6.3) 

where n equals the number of images (or twice the number of positions) and m 

equals the number of matched points in an image.  Design variables included 6 pose (3 

rotation, 3 translation) parameters and 18 shape parameters, which accounted for 95% of 

the variability in the training set.  Side constraints were placed on the design variables in 

an effort to limit the model to realistic geometries.  The shape parameters were bounded 

by ±3 standard deviations to ensure realistic instances; rotation and translation design 

variables were bounded by ±20° and ±50 mm, respectively.   

Given a manually aligned starting pose of the mean SSM instance, its nodes were 

projected onto the image planes and the alpha-shapes profiles were matched to the 

simulated anterior target profiles using a perpendicular nearest neighbor search 

algorithm.  Since imaged positions were linked by the known transformation between 

them, only one set of pose parameters was optimized to simultaneously align projections 

in multiple imaged positions.  To ultimately assess accuracy, 3D error on only the 

anterior region (as defined by the cut plane) was calculated as the Euclidean distance in 

mm between matched nodes for the SSM prediction and original patellar geometry. 

6.4.  Results 

The statistical shape model was developed to characterize anatomic variation in a 

small number of shape parameters.  The first three modes of variation were visualized by 

individually perturbing the mean geometry by ±1.5 standard deviations of each PC.  This 
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level was chosen to qualify the geometric differences and maintain realistic instances 

given the size of the training set.  The first PC mode accounting for 65.0% of the total 

variation, was strongly correlated to uniform scaling (r = -0.95) (Figure 6.5).  The second 

PC mode, accounting for 6.5% of the total variation, primarily described shape changes 

including the ML/AP aspect ratio and significant concavity of the articular surface at -1.5 

standard deviations compared to a flat articular surface at -1.5 standard deviations.  The 

third principal component, accounting for 4.6% of the total variation, resulted in changes 

in shape of the medial articular facet and mediolateral shift of the apex were the most 

significant shape variations in this mode of variation.  18 PCs, which were used in the 

optimization, accounted for 95% of the total variation. 

The number of images required to accurately predict the 3D patellar geometry 

was evaluated by comparing three scenarios involving 1, 3, and 5 positions for each left-

out subject (Figure 6.6).  Errors from these scenarios were averaged across all subject 

predictions.  Using only the 1
st
 (experimentally imaged) position, composed of a sagittal 

and axial or merchant view, the average 2D image plane error on the anterior region was 

0.48±0.15 pixels (mean ± std. dev.) (Figure 6.7).  The associated average 3D geometric 

error was 0.58±0.12 mm with noticeable differences where the patellar profile was not 

visible in the image.  Image sets using positions 1, 3 and 5 together achieved average 2D 

image plane errors of 1.05±0.61 pixels and 0.48±0.10 mm for 3D geometric error.  Using 

all 5 positions resulted in the largest average 2D image plane error (1.33±0.50 pixels), but 

the lowest 3D geometric error (0.45±0.07 mm) and better representation of the actual 

geometry across the anterior surface (Figure 6.8). 
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On average, a single subject optimization completed in 58, 60, and 29 iterations 

spanning 10, 22, and 19 minutes for 1, 3 and 5 positions, respectively.  In all cases, the 

average PC scores for the predicted patellar geometries was zero, which indicates that the 

algorithm generated a predicted set of patellae with an equally balanced amount of 

variation. 

6.5.  Discussion 

An approach was developed to predict a 3D SSM-based geometric representation 

of the anterior patellar bone geometry from sets of paired stereo-radiographic images, 

with the benefit of enabling tracking of in vivo PF kinematics for TKR subjects without 

requiring specialized beaded implants or additional imaging.  The computational 

approach here utilized a leave-one-out type of analysis to robustly and safely evaluate the 

predictive capability of the approach by using 50 subject-specific geometries to generate 

simulated target profiles similar to those achieved via edge detection methods.  The 

current approach eliminated the need for imaging and thus may significantly reduce 

radiation exposure in some protocols.  Radiation dose level for a knee CT was reported to 

be 0.16 mSv (Biswas et al., 2009) whereas the dose in the current protocol was less than 

0.006 mSv (PCXMC STUK, Radiation and Nuclear Safety Authority, Helsinki, Finland), 

or about 4% of the radiation a person would receive from CT.  Furthermore, 0.006mSv is 

about one day of natural background radiation in the US.  The stereo-radiography 

simulation platform was well suited to assess accuracy for the various pose scenarios 

without impact on patients; the best performing scenario will be implemented in future in 

vivo data collections. 
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The SSM developed in this study described the main modes of variation in a 

population of 50 subjects.  As in other studies (Bryan et al., 2010, Rao et al., 2013, 

Smoger et al., 2015), scaling is the primary mode of variation.  In structures like the 

patella whose geometry is relatively convex compared to the neighboring femur and tibia, 

it is understandable that scaling would account for 65%, a significant amount of the 

overall variability.  Mode 2 shape variation, which described the concavity of the 

articular surface, was also observed in a previous study that developed an SSM of the 

cartilage in the PF joint (Fitzpatrick et al., 2011).  This comparison illustrates a broader 

capability of SSMs to consistently characterize shape variation in related structures (i.e. 

patellar bone and cartilage). 

The robustness of the algorithm to predict 3D geometries from 2D fluoroscopic 

images was evaluated with a leave-one-out type of analysis.  Each of the 50 patellae were 

separately left out of the SSM training set and used to simulate 2D target profiles for the 

SSM to match.  Differences between the actual and predicted patellae occurred primarily 

where the geometry was not well captured by the profile edges. When more positions 

were incorporated into the optimization, differences in the average 3D shape (mean and 

std. dev.) decreased; average 2D errors increased in these scenarios as the optimization 

required balancing the 3D shape over multiple profiles.  3D geometric error exists in 

regions hidden from the 2D target profiles (particularly when using only 1 position), 

which suggests that shape variability at the poles is not strongly correlated to adjacent 

regions.  Evaluation of each subject excluded from the SSM training set illustrates the 

ability to describe new patellar geometries with the SSM parameters. 
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The alpha-shapes algorithm used to outline the dense 3D point projections 

provided similar results to edge-detection techniques (Canny et al., 1986) and is 

presented here along with a perpendicular nearest neighbor search as an alternative 

method to the application of digitally reconstructed radiographs for 3D-2D registration.  

The rounded shape of the patella is an ideal geometry for the alpha-shapes algorithm and 

a perpendicular nearest neighbor search because interior and hidden edges are uncommon 

and the radial nature of the projected image reduces the number of possible nearest 

neighbors, thus improving optimization speed.  This method similar to the 2D distance 

maps developed by Kurazume et al. but is simpler to implement (Kurazume et al., 2009). 

Compared to shape prediction techniques from natural bone images (Baka et al., 

2011; Li et al., 2008), the proposed methodology was applied to an implanted geometry 

and thus requires experimental protocol and computational processing that adds some 

complexity.  Specific positions of the patella must be imaged in order to capture enough 

of the subtle shape variability.  Existing natural studies have used fluoroscopic images 

taken directly from the activities they seek to track because the bones have so far been 

intact and more complex in their shape.  The implanted patella presents a challenge in 

that a portion of the bone is removed and surrounding metallic implants may occlude 

some or all of the remaining patellar bone in dynamic 6-DOF activities.  Furthermore, the 

geometries of the natural femur and tibia provide more information in a single set of 

biplane images.  The additional snapshot images proposed in this methodology represent 

a small increment and thus should not be considered as added risk especially if it 

eliminates CT scanning. 
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The ability to track in vivo PF kinematics with a 3D-2D registration method 

depends on the geometric accuracy of the 3D model, the registration algorithm, and the 

accuracy of the 2D image edge detection protocol.  By optimizing pose of a deformable 

SSM to simulated target profiles, our method focused on recreating accurate 3D 

geometric models.  Baka et al. reported a 0.78 mm point-to-surface difference between 

their SSM-based femur bone prediction and ground truth models (Baka et al., 2012).  

Baka et al. applied their shape prediction method to simultaneously track the femur in a 

biplane fluoroscopic setup and achieved average tracking errors less than 0.07 mm 

translation and less than 0.2° rotation except for longitudinal rotation, which was reported 

at 0.32° (Baka et al., 2014).  Similarly, Zhu et al. reported an absolute average geometric 

error of 0.9 mm for the femur bone prediction.  Furthermore, geometric errors reported 

here are less than the slice thickness of most MR and CT image sets, which is typically 

0.7 mm (Zhu et al., 2011).  Comparable geometric errors to previous studies indicate that 

the predictions generated here are sufficient for tracking in single and dual-plane studies. 

In summary, this study evaluated the ability of an SSM to predict the 3D natural 

geometry of the implanted patellar bone from 2D stereo-radiographic images of the knee 

joint.  The method eliminates the need for prior CT imaging and segmentation, which is 

especially challenging in the TKR implanted knee.  The level of accuracy achieved in the 

current study exceeds existing 3D geometric predictions of adjacent bones and is 

comparable to traditional segmentation considering inter-rater variability, making it 

sufficient to perform kinematic tracking of TKR subjects.  These results are promising, 

however further work is needed to evaluate this technique experimentally.  
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Figure 6.1 Imaged position of the flexed left knee in the high speed stereo radiography 

(HSSR) system, top view (left).  Representation of the imaged knee as seen on camera 

planes A and B (right). Note: Subject is supine. 
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Figure 6.2 A representative intact patella (left) and, after automated implantation, its 

resected version (right). 

 

 

 

Figure 6.3 Proposed imaging positions with varying orientation in the horizontal plane of 

the stereo-radiography system. 
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Figure 6.4 Schematic of the optimization algorithm to reconstruct the full 3D patellar 

geometry from simulated sparse data.  PC scores of the patellar bone SSM are optimized 

until the profile (black) of the projected point cloud (green) matches the simulated target 

profiles (red).  The magenta lines represent corresponding points on the target and 

predicted profiles.  RMS error calculated between these corresponding point sets is 

minimized by the optimization algorithm. 
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Figure 6.5 Representations of patellar bone for the first three principal component modes.  

Patellae are shown at +/- 1.5 standard deviations.  Views include coronal (top), sagittal 

(middle), and transverse (bottom). 

 

 

Figure 6.6 Nodes of an instance of the patellar bone SSM (green) projected by the DLT 

onto the camera image planes and its profile (black). The anterior region of the target 

profiles for a representative left-out subject (red). One position is shown for rigid body 

alignment of the mean instance and then all five positions over ~180° for the optimized 

instance. 
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Figure 6.7 Comparison of the three imaging scenarios for a representative subject; the 1
st
 

position (left), the 1
st
, 3

rd
, and 5

th
 positions (center), and all five positions (right).  Bar 

charts show the 2D image plane error (blue) in pixels and anterior surface 3D geometric 

error (red) in millimeters for each scenario.  Contours represent absolute difference 

between the actual and predicted shape for the resected case. Contour units are in 

millimeters. 
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Figure 6.8 Contours of absolute difference between the actual and predicted shape for the 

resected case using all 5 positions. Four representative subjects are shown.  Individual 

RMS errors are reported next to each subject.  Units are in millimeters. 
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CHAPTER 7. PREDICTION OF KNEE ARTICULAR CARTILAGE FROM 3D BONE 

GEOMETRY USING A STATISTICAL SHAPE MODEL 

 

7.1. Abstract 

Finite element (FE) models of the natural knee are used to evaluate mechanics of 

the articular cartilage that are otherwise challenging to measure.  These investigations 

require accurate three-dimensional (3D) representations of the cartilage, which is 

typically segmented from magnetic resonance (MR) images.  Substituting segmented 

geometries with an accurate statistical shape model (SSM) representation could reduce 

costly and time-consuming imaging and establish norms for cartilage thickness maps.  

While segmentation processes have been improved with the assistance of SSMs, 3D 

models sufficient for complex computational analyses have not yet been developed 

without the assistance of MR imaging.  The objective of this study was to develop an 

SSM of the bone and articular cartilage in the whole knee joint and to predict subject-

specific, FE-ready cartilage volumes given only the registered bone geometry.  An SSM 

of bone and cartilage geometry was developed from 50 MR scans of healthy normal 

subjects.  The cartilage geometry was linked directly to a hexahedral mesh by an efficient 

mesh-morphing algorithm.  Principal component analysis (PCA) described common 

modes of variation across the training set.  A predictive PCA approach quantified the 

degree to which bone and cartilage modes were correlated.  A leave-one-out type of 
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evaluation predicted subject-specific cartilage from new bone geometry for a training set 

of 50 subjects.  Coverage predictions were within 2 mm and average thickness accuracy 

was within 0.55 mm across all cartilages.  These results illustrate the potential to develop 

computationally sufficient cartilage representations without the need for imaging, 

segmentation, and mesh processing. 

7.2.  Introduction 

Articular cartilage of the knee allows the joint to function normally by permitting 

smooth articulation, efficient load transfer and, due to it is aneural and avascular 

properties, pain-free movement.  Cartilage damage may occur as a result of the 

significant loading and kinematic requirements in everyday activities.  Cartilage 

degradation typically leads to joint pain and often requires intensive surgical intervention, 

such as total knee replacement (TKR).  Hence, many studies have sought to understand 

the morphology and properties of knee articular cartilage through a variety of 

computational research methods including clinical assessments, finite element (FE) 

models, or for osteoarthritis (OA) disease progression (Andriacchi et al., 2006; Harris et 

al., 2012; Omoumi et al., 2015).  Furthermore, small differences have been reported to 

significantly impact contact mechanics.  Li et al. developed an FE model of the knee to 

evaluate the effect of cartilage thickness on contact mechanics and reported that 9% 

increase in peak surface pressure occurred with 10% thinning of cartilage (Li et al., 

2001).   

Studies have investigated relationships between bone and cartilage morphology to 

evaluate causes OA, establish norms for cartilage distribution and thickness, and inform 
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automated segmentation algorithms.  Neogi et al. performed linear discriminant analysis 

on a three-dimensional (3D) active appearance model of knee bones to show that bone 

shape can predict the onset of radiographic knee OA (Neogi et al., 2013).  Faber et al. 

reported statistically significant differences in cartilage volume between men and women 

and attributed it to the larger male joint surface (Faber et al., 2001).  Increased cartilage 

thickness has also been correlated with regions of contact in normal knees (Li et al., 

2005), suggesting that shape and alignment of a joint may provide insight into the state of 

the cartilage structures.  Connolly et al. evaluated cartilage thickness across different 

flexion regions of the femoral condyles and tibial plateaus; cartilage was thicker in the 

posterior regions of the femoral condyles (Connolly et al., 2008). 

Describing the 3D representation of knee joint geometry is typically achieved 

from segmentation of computed tomography (CT) or magnetic resonance (MR) imaging.  

CT is preferred for characterizing bony anatomy in preparation for TKR surgery (White 

et al., 2008); however, it does not provide details regarding soft tissue structures.  While 

MR imaging captures cartilage and other soft tissues, segmenting these structures is 

typically a manual process and may take several hours to complete (Koo et al., 2005).  

Additionally, manual segmentation requires a working knowledge of anatomy and 

experience with the imaging modalities to reduce operator error. 

Algorithms to speed up the segmentation process have employed statistical shape 

models (SSMs) to automatically detect bone and cartilage boundaries in MR images and 

create gross 3D models of the cartilage (Folkesson et al., 2007, Fripp et al., 2010, 

Solloway et al., 1997, Yang et al., 2015).  Development of an SSM involves establishing 
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correspondence in a training set of subject geometries and then performing principal 

component analysis (PCA) to determine the common modes of variation in the data.  

Solloway et al. built a 2D SSM of the enclosed regions on MRIs in order to efficiently 

locate bone and cartilage interfaces.  More recently, 3D SSMs have been developed to 

improve accuracy and efficiency by including bone-cartilage interface probability maps 

(Fripp et al., 1997) and differentiating between healthy and osteoarthritic populations 

(Folkesson et al., 2007). 

SSMs have also gained popularity as useful tools for describing anatomic 

variation and evaluating sparse data to make predictions about bone shape or joint 

function.  The approach has been successfully applied to describing morphology in the 

knee bone (Bryan et al., 2010) and cartilage (Baldwin et al., 2010), in the human brain 

(Reuckert et al., 2003) and in joints with multiple structures (Rao et al., 2013; Yang et al., 

2008).  Baka et al. exploited the deformable nature of SSMs to predict pose and 3D 

geometry of the femur and tibia from stereo-radiographic images (Baka et al., 2011).  

Recent work has assessed relationships between shape and function by performing PCA 

with geometric, contact mechanics, and kinematic data (Fitzpatrick et al., 2011; Smoger 

et al., 2015).  These studies were able to predict kinematics and contact mechanics from 

the shape of the joint. 

Accordingly, the objective of the current study was to combine an SSM of bone 

and cartilage in the whole knee joint with a predictive modeling approach to estimate 

cartilage geometry from local bony anatomy.  Specifically, an SSM of the femoral, tibial, 

and patellar bone and cartilage surface geometries was developed from MR images to 
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quantify relationships between morphology of bone and cartilage.  The model described 

the associated variability in bone and cartilage with a set of shape parameters.  An 

established predictive algorithm evaluated the strength of the relationships between bone 

and cartilage within each shape parameter (Fitzpatrick et al., 2011).  In the current study, 

the algorithm predicted cartilage shape for a new bony geometry by characterizing the 

bone shape with model shape parameters and leveraging these bone-cartilage shape 

parameter relationships to generate associated cartilage geometry.  The utility of this 

approach is illustrated in the nearly instantaneous generation of FE-ready 3D geometric 

shape representations of the cartilage from bone without the need for MR imaging.  The 

approach serves to make CT imaging and dynamic stereo-radiographic more attractive 

options considering the improved bone appearance in CTs and advances in predicting 

bone shape from stereo-radiographic images with SSMs identical to the one used here. 

7.3.  Methods 

An SSM of the knee bone and articular cartilage was developed from MR images 

of 50 subjects.  The subjects included 25 males and 25 females, whose average age was 

64 years (range: 44 to 87), average weight was 73 kg (range: 43 to 127), and average 

body mass index (BMI) was 25.2 (range: 19.0 to 41.3).  Subject geometries were from 

experimental cadaveric testing and from data courtesy of the Osteoarthritis Initiative 

(OAI), which is available for public access at http://www.oai.ucsf.edu/.  The OAI 

datasets are from 0.E.1, which consists of baseline (initial healthy) scans.  Subjects were 

included if they were deemed healthy and normal with no signs of osteoarthritis.  Bone 

and cartilage for the femur, tibia, and patella were manually segmented for each subject 
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using ScanIP (Simpleware, Exeter, UK).  The bones were registered to template meshes 

using an iterative closest point (ICP) algorithm with rigid-body, scaling, and freeform 

transformations (Rao et al., 2013).  The bone template meshes contained 2384, 1101 and 

472 nodes for the femur, tibia and patella, respectively (Figure 7.1).  Triangular elements 

with approximate edge lengths of 3 mm described the surface of the bones.  Each 

template bone was also defined in an anatomically derived local coordinate system (CS) 

(Rao et al., 2013).  This technique dually ensured correspondence between bony features 

across all 50 subjects and aligned each subject to a consistent anatomical CS for efficient 

evaluation of shape and joint alignment variability.  The cartilage template meshes 

contained 3968, 2736, and 780 nodes for the femur, tibia and patella, respectively 

(Baldwin et al., 2010).  To enable accurate contact evaluations in finite element (FE) 

modeling, each structure was represented with hexahedral elements.  A subset of the 

surface nodes were also designated as handles on the template mesh to facilitate the 

mesh-morphing process in Hyperworks (Altair, Troy, MI). 

A custom Matlab (Mathworks, Natick, MA) algorithm based on similar work by 

Fitzpatrick et al. (2011) was developed to uniformly distribute 2030, 504 and 390 handles 

on the surface of each subject’s segmented femoral, tibial, and patellar cartilages, 

respectively.  A graphical user interface (GUI) provided coronal and transverse views of 

the 3D stereolithography (STL) segmented geometry in for landmark point selection. 

Seven landmark points on the femoral cartilage were selected on the cartilage edges 

above the posterior condyles, corner points on the anterior aspect of the medial and 

lateral condyles, the intercondylar notch, and distal points on each condyle (Figure 7.2).  
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Two mediolateral landmark points on each of the tibial cartilages and patellar cartilage 

defined the primary axis along which the algorithm mathematically distributed vertical 

sets of handles on the attachment and articular surfaces of the cartilage volumes.  The 

algorithm divided the STL meshes into subsections based on these landmark points and 

distributed handles evenly across the dividing lines.  Uniform handle placement is an 

important component of both correspondence between subjects and the generation of 

well-formed hexahedral elements for use in FE analyses.  Morphing of the template 

cartilage mesh to a subject-specific shape was achieved by repositioning the template 

mesh handles to the subject’s corresponding handle coordinates.  Surrounding internal 

and surface nodes were linearly interpolated between adjacent handles to morph and 

smooth the hex mesh into the subject-specific geometry (Baldwin et al., 2010).  Cartilage 

structures were described in the coordinate system of the associated bone.  Inter-rater 

variability in cartilage registration using the GUI was evaluated between three raters.  

Each rater was familiar with the anatomy of knee articular cartilage and given basic GUI 

instructions.  Error was quantified by the average 3D geometric distance between 

corresponding surface handles. 

The SSM was developed by applying PCA to the 3D coordinates of 3,957 bone 

nodes and 2,924 cartilage handles, which represent the nodes on both the bone cartilage 

interface and articular surface.  PCA is a data dimensionality reduction technique that 

describes the raw data by a linear set of orthogonal bases (eigenvectors) and principal 

component (PC) scores that are organized in descending ordered of variability, or 

eigenvalues.  In PCA, the largest eigenvalue indicates the greatest variance along the 
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associated eigenvector and thus, the first PC contains the most significant structure within 

the dataset.  Nodal and handle correspondence across all 50 aligned subjects allows the 

PCA technique to describe the variability in shape of the structures.  The cartilage surface 

handles were used to develop the SSM because they efficiently described the shape of the 

cartilage. 

Reconstruction and leave-one-out evaluations were first performed separately on 

the bones and cartilage to assess the ability of the SSM to accurately characterize new 

subjects in the lower dimensional principal component space.  A reconstruction test 

evaluates the ability of an SSM to assign PC scores to each of the subjects in the training 

set.  This method is useful to evaluate the amount of variability described by each 

principal component; when all principal components are used, the resulting PC scores 

should exactly describe the subjects and thus 3D geometric error should be zero.  In a 

leave-one-out evaluation, each subject is left out one at a time while the others are used in 

the training set for the new SSM; the left-out subject is then considered a “new” or 

unknown subject and described by the new SSM as a set of PC scores.  Some amount of 

variability in a “new” subject is likely to be indescribable given that the model was not 

trained on its geometry.  By performing leave-one-out tests separately on bone and 

cartilage, the variability in each structure was independently quantified to assess their 

particular effectiveness in a predictive application. 

A predictive leave-one-out evaluation assessed the ability of the combined bone-

cartilage SSM to predict the shape of cartilage from a “new” bone geometry outside of 

the training set.  The predictive approach described in Fitzpatrick et al. was employed in 
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this study (Fitzpatrick et al., 2011); inputs were bone shape variables and outputs were 

cartilage shape variables.  An initial bone-only SSM was constructed to define PC scores, 

eigenvalues and eigenvectors for the training set.  Characterization (PC scoring) of the 

left-out subject was achieved by subtracting the mean SSM shape vector, �̅�bone-SSM, from 

the new subject vector, vbone-raw, and multiplying the centered data, vbone-new, by the SSM 

eigenvectors, Ebone, to project the subject’s bones into Principal Component space. 

vbone-new = vbone-raw – �̅�bone-SSM       (7.1) 

Pbone-new = vbone-new’ * Ebone = (1 x nbone) * (nbone x N-1) = (1 x N-1)  (7.2) 

 A combined bone-cartilage SSM was built to describe the relationships between 

bone and cartilage shape.  PC scores associated with the bone, Pbone, were calculated from 

the new SSM by multiplying the bone shape vectors, vbone, and the bone portion of the 

combined eigenvectors, Ecombined-bone.  The linear relationship vector, m, quantified the 

effect of the input PC scores on the combined PC scores, Pcombined.  Multiplying m and 

Pbone-new converted the left-out bone scores, Pbone-new, to scores suitable for describing the 

new subject’s full geometry including cartilage.  Together with the full eigenvector 

matrix, these new PC scores were used to reconstruct the bone and cartilage shape for the 

new subject in their original coordinate system. 

{Pbone-mod}i = mi  * {Pbone-new}i   i = 1 to number of PCs (7.3) 

vnew’ = {vbone-new vcartilage-new}’ =  

Pbone-mod * E’ = (1 x N-1) * (N-1 x n) = (1 x n)    (7.4) 

Correlations between the SSM’s input (bone) and overall (bone-cartilage) PC 

scores were calculated to quantify the strength of the input-combined relationship and 
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thus assess the ability of the input measures to describe the shape model.  The strength of 

output-combined relationships was evaluated in the same way. A successful prediction of 

the left-out subject’s output measures from input measures is dependent upon the strength 

of these relationships within the SSM.  3D geometric error between corresponding points 

was calculated to assess the accuracy of SSM-based cartilage predictions.  Cartilage 

thickness differences were also assessed in an effort to understand whether or not the 

error distribution was random. 

7.4.  Results 

Both the bone-only and bone-cartilage SSMs reduced several thousand coordinate 

variables into nominally 50 principal components, which describe independent modes of 

variation.  Mode 1 in the bone SSM described 56.5% of the geometric variability and was 

strongly correlated to scaling measures such as surface area in patellar bone (r = -0.86) 

(Figure 7.3).  Similarly, mode 1 described 27.2% of the variability in the cartilage SSM 

and was highly correlated to patellar cartilage surface area (r = -0.84).  This finding 

supports the expectation that both structures are primarily described by scale.  Mode 2 

described sulcus angle variability (r = 0.59 in bone, r = 0.52 in cartilage).  Visually, Mode 

3 described cartilage coverage variability on both the femur and patella.  Average 

thickness in the femur, tibia, and patellar cartilages were 2.62 mm, 2.18 mm, and 2.88 

mm, respectively; average surface area was 5327.1 mm
2
, 1177.4 mm

2
, and 1904.3 mm

2
, 

respectively. 

Reconstruction tests confirmed that the members of the training set could be 

perfectly characterized by the model by projecting to and from principal component 
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space without any loss of information.  Separate leave-one-out tests on the bone and 

cartilage SSMs assessed their ability to accurately characterize new subject bones and 

cartilages, respectively.  Using all 48 PCs, average 3D geometric errors in the bone SSM 

were 0.50 ± 0.42 mm (mean ± std. dev.), 0.57 ± 0.50 mm, and 0.49 ± 0.40 mm for the 

femur, tibia, and patella, respectively.  By comparison, average 3D geometric errors in 

the cartilage SSM were 0.70 ± 0.56 mm, 0.85 ± 0.73 mm, and 0.65 ± 0.49 mm for the 

femur, tibia, and patella, respectively, and thickness error were 0.48 ± 0.12 mm, 0.43 ± 

0.11 mm, and 0.52 ± 0.12 mm, respectively.   

The combined bone-cartilage SSM evaluated the relationships between the two 

structures.  Shape variation in bone and cartilage was therefore described by a single set 

of principal components.  Accounting for a combined 61.7% of the overall variability, the 

first 3 modes described 40.3%, 14.8%, and 6.6% of the variability, respectively.  Overall, 

9 and 33 modes cumulatively described 75% and 95% of the variability in the training 

set, respectively.  As one would expect the first and second modes of variation were 

correlated with scaling and sulcus groove measures that were correlated in the structure-

specific SSMs described earlier.  Notably, the combined SSM now provides a single set 

of PC scores that describe variability within and between both bone and cartilage. 

Using all PCs in the reconstruction test, 3D geometric error between actual and 

predicted structures was zero, thus the reconstruction test successfully rebuilt the bone 

and cartilage of each subject in the training set given the subject’s bone and cartilage.  In 

the leave-one-out test, only the bone was given to the model and the predictive algorithm 

described earlier was employed to estimate cartilage shape.  Since correlations to the 
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overall PC scores are calculated separately for the input and output PCs (Figure 7.4), 

prediction accuracy is dependent upon the combined strength of these correlations for 

each PC.  The first input and output correlations are high; indicating that scaling is 

strongly related between the two structures.  In contrast, the third input correlation is very 

low, indicating that Mode 3 describes little bone shape variation.  3D geometric error in 

the bone was 0.57 ± 0.47 mm, 0.64 ± 0.56 mm, and 0.59 ± 0.46 mm in the femur, tibia, 

and patella, respectively (Figure 7.5).  Average cartilage 3D geometric error was 1.17 ± 

0.88 mm, 1.85 ± 1.40 mm, and 1.09 ± 0.72 mm, respectively.  Average thickness errors 

were 0.51 ± 0.12 mm, 0.40 ± 0.11 mm, and 0.51 ± 0.13 mm, respectively.  By 

comparison, these errors are similar to those calculated in the separate bone and cartilage 

evaluations.  Bounds on the predictions were determined by perturbing weakly correlated 

principal component scores and assessing the resulting geometric variability.  The 3
rd

 

principal component, which is substantially weaker in its relationship to the bone but 

accounts for almost 7% of the overall variability, was perturbed by by ±1 standard 

deviation of that mode.  The perturbation resulted in a difference of up to ±2 mm at the 

cartilage edges.  Inter-rater variability in the cartilage registration process was 0.25 mm 

for average 3D geometric distance between corresponding handles, which resulted in 0.1 

mm average thickness variation between corresponding handles of each rater’s registered 

geometries. 

7.5.  Discussion 

The purpose of this study was to assess the relationship between bone and 

cartilage shape and the predictive capability of bone geometry for the distribution and 
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thickness of articular cartilage.  A statistical shape model of bone and articular cartilage 

in the knee joint was used in leave-one-out type of evaluation to predict subject-specific 

cartilage from bony anatomy.  A complete representation of bone and cartilage provides 

several benefits; the PC modes described a holistic relationship between anatomy of the 

bone and cartilage for the femur, tibia, and patella without requiring a priori identification 

of specific shape measures; an efficient mesh-morphing process allowed seamless 

integration with finite element modeling techniques; and enables efficient development of 

new virtual geometries for use in population-based studies. 

Accuracy of left-out bone and cartilage predictions were evaluated by 3D 

geometric and thickness differences from its actual shape vector.  Cartilage and bone 

scaled well together, which is likely a result of the strong correlation of both structures to 

the first mode of variation.  Other studies have made similar connections between size of 

the joint and cartilage coverage; statistically significant gender differences were found in 

cartilage volume due to the larger male joint surface (Faber et al., 2001).  All of the 

geometric error in the bone can be traced back to the bone-only SSM’s ability to score 

new subjects.  By comparison, the difference between cartilage predictions by the 

combined SSM and cartilage-only SSM was less than 1.0 mm.  Thickness errors between 

the cartilage-only and combined SSM leave-one-out tests were virtually the same.  

Therefore, a large portion of the cartilage error can be ascribed to the consistency of 

cartilage coverage, particularly at the cartilage boundaries.  The remaining error may be 

explained by the strength of the relationship between the shape of bone and cartilage, 

which is strongest in the first and second modes of variation (Figure 7.4).  Bounds on the 
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predictions of up to ± 2 mm illustrate the challenges in imaging and segmenting thin 

cartilage boundaries.  The weak relationship between bone shape and the 3
rd

 mode of 

variation presents a challenge in predicting its appropriate PC score.  However, since the 

majority of contact in activities and mechanics-based evaluations occurs away from these 

regions, their accuracy is unlikely to impact contact mechanics or implant selection and 

placement. 

Few other studies have evaluated the predictive capability of whole structures to 

estimate size and shape of adjacent structures.  Yang et al. applied a nonlinear iterative 

partial least squares (NIPALS) regression approach in the shoulder joint to predict 

adjacent bones from each other (Yang et al., 2008).  Given the scapular bone as the 

predictor, average RMS error between the actual and predicted humeri was 2.63 ± 0.91 

mm.  When the humerus was the predictor, average scapular RMS error was 5.66 ± 1.48 

mm.  Given the differences in structures from the current study, it is difficult to make a 

direct comparison to the current study, however the NIPALS approach was also 

evaluated in this work and performance was comparable to the predictive PCA approach. 

Alternative automated methods for capturing cartilage shape require the use of 

MR scans to guide a statistical model.  Fripp et al. proposed a method for development of 

a 3D active shape model that includes bone, a probability map of the bone-cartilage 

interface, and a cartilage thickness map to be used on MR images with a specific imaging 

sequence (Fripp et al., 2007).  The resulting cartilage segmentation matched with 

manually segmented cartilage structures to within 0.25 mm; however, the structures 

would require further processing for use in computational contact analyses.  Baldwin et 
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al. linked MR images with a statistical shape model of knee articular cartilage that 

efficiently morphed a template hexahedral FE model to a subject-specific shape with 

limited user interaction (Baldwin et al., 2010).  Efficiencies with statistical models and 

FE analyses are important in population-based analyses where model-processing time 

makes large sample sizes cumbersome.  SSMs have already been used to evaluate relative 

differences in contact mechanics between modes of variation (Rao et al., 2013). 

SSM-based evaluations of disease states such as OA have demonstrated their 

potential to act as a classifier and predictor.  Neogi et al. performed an MR-based study 

that detected the onset of OA (Neogi et al., 2013).  Active appearance models of the 

bones were created for healthy and pathologic knees and linear discriminant analysis 

identified vectors to discriminate between the two groups.  Results indicated that 3D bone 

shape increased the likelihood of developing OA by 3X.  Furthermore, studies have 

shown statistically significant differences between OA and healthy cartilage (Folkesson 

et al., 2007).   Thus, the current workflow could exploit PCA as a classifier on a larger 

training set of healthy and pathologic subjects to further investigate the etiology of OA. 

Morphology of knee articular cartilage is also affected by other factors that have 

not been considered in this study.  Cartilage thickness increased by 20-50% in regions of 

contact in normal knees (Li et al., 2005) and while contact area may be estimated by bone 

shape, joint alignment was not considered in this study.  Hudelmaier et al. reported an 

age-dependent positive correlation between muscle cross sectional area and cartilage 

volume (r = 0.66) and thickness (r = 0.44) (Hudelmaier et al., 2003).  Loading conditions 

also been reported to have an effect on cartilage thickness.  Eckstein et al. reported as 
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much as 0.26 mm in thickness variability due to activity (Eckstein et al. 2000), which can 

take several hours to recover.  Inactivity also contributes to cartilage loss; Hinterwimmer 

et al. reported tibial cartilage thickness atrophy over a 7 week period of 6.6 ± 4.9%, or 

0.1-0.2 mm given the average tibial cartilage thickness reported in the current study 

(Hinterwimmer et al., 2004).  As a likely more relevant time-based factor, Waterton et al. 

reported diurnal variation in femoral cartilage thickness of up to 0.6 mm in the loaded 

regions of the patellofemoral compartment and both tibiofemoral compartments 

(Waterton et al., 2000).  This finding in particular suggests that a stronger relationship 

may be formed between bone and cartilage morphology if these factors are controlled for 

or included in predictive models.  Doing so, however, makes the development of a large 

training set very difficult.  Instead factors such as segmentation error, which can be as 

much as 0.5 mm in thickness (Koo et al., 2005) and registration error, reported here, may 

be easier to control and result in valuable prediction improvements. 

Cartilage prediction may benefit TKR surgery and in vivo stereo-radiographic 

studies where radiographs and CTs are part of the current workflow.  To date, this is the 

first study to reconstruct articular cartilage from the shape of the associated bone and 

without guidance from MR images.  As patient-specific cutting blocks become more 

common in TKR surgeries, manufacturers and surgeons may benefit from an accurate 

prediction of cartilage thickness to inform cutting block design and surgical alignment in 

an effort to restore the natural joint line (Burdulis et al., 2006).  In vivo studies with 

stereo-radiography, or fluoroscopy, are also becoming more common; the technique 

provides real-time information on the motion of bones, implants and other radiopaque 
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structures.  This technique is adequate for the extraction of joints kinematics; however, 

since the articulating cartilage is not radiopaque, it must be modeled via the traditional 

MR segmentation technique if contact mechanics are of interest.  3D-2D registration 

techniques are used to align 3D bone or implant geometries with their corresponding 2D 

silhouettes on x-ray image sequences to calculate in vivo kinematics and contact 

mechanics in TKR (Li et al., 2008; Yamaguchi et al., 2011) and healthy natural knees (Li 

et al., 2005; Fernandez et al., 2008 ).  Furthermore, studies have illustrated the ability of 

SSMs to dually reconstruct and track 3D bone geometry from fluoroscopic sequences 

(Baka et al., 2011, 2012 and 2014).  The SSMs used by Baka et al. to reconstruct the 

bone are similar to the current study’s SSM, thus the workflow presented here could 

potentially use bone predicted from fluoroscopic sequences to generate the corresponding 

cartilage structures.  
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Figure 7.1 Development of a statistical shape model of the knee: Scans of an MRI were 

segmented to generate a 3D stereolithography (STL) model of the bone and cartilage.  

Bone was registered to a template using an Iterative Closest Point (ICP) algorithm while 

cartilage, being a thinner structure, required a custom developed algorithm and GUI to 

register the STL geometry.  A template developed for a median-sized subject was then 

morphed for each training set member to establish correspondence between like 

structures. 
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Figure 7.2 The segmented geometry is loaded into the Matlab® graphical user interface 

(top left), landmark points (red) are manually selected to guide the automatic distribution 

of handles (black) onto the subject’s surface (bottom left).  This dually establishes 

correspondence to the training set and the template hexahedral mesh (bottom right).  A 

mesh-morphing algorithm deforms the template hexahedral mesh to the subject’s 

segmented shape to generate an FE-ready cartilage representation (top right). 
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Figure 7.3 Representations of the bones and cartilage for first three principal component 

modes from the combined bone-cartilage model.  Knees are shown at +/- 1.5 standard 

deviations and bones are aligned to their local coordinate systems. Alignments are for 

relative comparison between mode perturbations. 
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Figure 7.4 Correlations within the combined bone-cartilage SSM. Overall PC scores were 

correlated to bone-only PC scores (left) and cartilage-only PC scores (right).  PCs with 

high correlations in both figures indicate that the shape described by those modes have 

strong predictive potential. 
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Figure 7.5 Comparison of actual and predicted cartilage distribution and thickness for the 

femur and patella.  The patella has been enlarged for the visualization purposes.  

Thickness is represented by the color contour on the actual and predicted cartilage 

surface. Units are in millimeters. 
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CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 

 

The purpose of this dissertation was to develop statistical modeling tools to 

account for variability in natural knee joint morphology and function.  The tools are 

meant to improve the efficiency of computational biomechanics evaluations.  Models 

were developed using principal component analysis (PCA), which served to efficiently 

characterize the population by describing the data with a reduced number of variables.  

The benefit of this was observed by the resulting groups of interrelated characteristics 

including holistic shape features, linear anatomical measures, and kinematics of the 

tibiofemoral (TF) and patellofemoral (PF) joints. 

Specific contributions of this research were dually in applications and outcomes 

of the statistical modeling approaches.  Statistical shape models (SSMs) had so far 

described morphological variability for applications such as TKR component sizing and 

static joint alignment variability.  Chapter 4 combined whole joint shape and 6 degree-of-

freedom (DOF) kinematics for a more complete evaluation of the knee.  The efficiency of 

this approach was illustrated by its ability to describe clinically relevant shape-function 

relationships reported across numerous existing studies.  Assessment of the whole 3D 

shape in Chapter 4 provided the necessary insight to inform potentially valuable 2D 

measures further evaluated in Chapter 5.  A measures-function model was built in 

Chapter 5 to more directly assess relationships between clinically relevant 2D linear 
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measures and motion of a controlled PF joint model.   Correlations were strong enough to 

make subject-specific kinematic predictions, suggesting that the extracted 2D measures 

may be useful metrics for establishing norms.  The methods in Chapters 4 and 5 could 

potentially be applied to pathologic groups to inform clinicians and researchers as to the 

predisposing factors influencing unnatural joint motion. 

Efficient development of natural bone geometries from SSMs and radiographs 

reduce the need for MR and CT scanning and improve the efficiency of in vivo analyses.  

Chapter 6 presented an algorithm to reconstruct the 3D shape of the patellar bone from 

radiographs, which directly contributes to those same improvements.  However, efficient 

prediction of natural bony geometry has limited utility in finite element (FE) analyses of 

contact mechanics as cartilage prediction is not part of the workflow.  Previous works 

developed SSM-based tools to improve segmentation efficiency, however this required 

MR scans and subsequent processing to align and mesh the STL geometries for use in an 

FE model.  Chapter 7 introduced a novel approach to cartilage estimation that did not 

require MR scans and has the potential to be integrated into other existing tools for a 

whole joint prediction from radiographs.  The same SSM that is used to predict subject-

specific bone shapes could potentially be used to inform the associated cartilage shape.   

Tools such as the cartilage registration and ligament wrapping algorithms 

contribute to the efficient development of natural knee models suitable for population-

based studies.  Efficient soft-tissue generation was first discussed as a direct contribution 

to the research motivating this dissertation (Baldwin, 2009).  Adaptation of these tools to 

Matlab scripting from similar versions in Hyperworks (Altair, Troy, MI) and The 
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Visualization Toolkit (VTK) has made them more user-friendly and efficient as statistical 

modeling techniques become more automated.  Further value could be added to these 

tools by eliminating the remaining manual steps such as selecting several landmark points 

on the cartilage structures to seed the automatic distribution of surface handles.  

Furthermore, not all soft-tissues of the knee are currently generated by the morphing 

algorithm; additional structures such as the popliteofibular ligament (PFL) and the 

popliteus muscle could be added if their origin and insertion sites were known or 

predictable. 

In summary, the research topics presented in this dissertation contribute to the 

growing body of knowledge on statistical shape modeling and its application to the 

natural knee joint.  Future studies should make use of the efficient generation of 

computational models for population-based FE evaluations of cartilage contact and soft-

tissue laxity under physiological loading conditions and controlled shape variability.  
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APPENDIX B. STATISTICAL MODELING TO CHARACTERIZE RELATIONSHIPS 

BETWEEN KNEE ANATOMY AND KINEMATICS 

Appendix B.1. List of Anatomical Measures 

Epicondylar Width (mm) – Distance between the medial and lateral epicondyles of the 

femur. 

Femur AP Width (mm) – Distance between the most anterior and posterior points of the 

femur. 

Tibia ML Width (mm) – Distance between the most medial and lateral points on the tibia 

in the plane of the tibial plateau. 

Patella AP Width (mm) – Distance between the most anterior and posterior points of the 

patella. 

Patella Angle (deg.) – Angle, in the transverse plane, between two lines drawn along the 

surfaces of the medial and lateral facets of the patella. 

Insall-Salvati Index – Ratio of the length of the patellar tendon to the height of the 

patella. 

Trochlear Angle (deg.) - Angle, in the transverse plane, between the posterior condylar 

line and a line passing along the most anterior margins of the medial and lateral 

trochlear facets. 

Anterior Sulcus Angle (deg.) – Angle, in the transverse plane, between two lines drawn 

along the surfaces of the medial and lateral trochlear facets. 

Medial Trochlear Inclination (deg.) – Angle, in the transverse plane, between the 

posterior condylar line and a line drawn along the surface of the medial trochlear 

facet. 

Lateral Trochlear Inclination (deg.) – Angle, in the transverse plane, between the 

posterior condylar line and a line drawn along the surface of the lateral trochlear 

facet. 

Antero-inferior Sulcus Angle (deg.) – Angle, in the 45° merchant view, between two 

lines drawn along the surfaces of the medial and lateral trochlear facets. 
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Distal Sulcus Angle (deg.) – Angle, in the coronal plane, between two lines drawn along 

the surfaces of the medial and lateral trochlear facets. 

Distal Condylar Angle (deg.) – Angle, in the coronal plane, between a line connecting the 

most distal points of the condyles and the mediolateral axis of the femur. 

Bisect Offset (%) – The percentage of the patellar lateral to the midline of the femur. 

 

Appendix B.2. Description of Further Modes 

Descriptions of the first three modes were provided in Chapter 4.  This section 

describes the relevant shape-kinematic relationships for modes 4 through 6.  As the 

amount of variability decreases with later modes (Table B.1), these modes characterized 

more subtle changes. 

In comparison to Mode 4-, Mode 4+ exhibited a more medial patellar ridge and 

thicker medial facet, which, when paired with a more prominent lateral trochlear facet on 

the femur, contributed to a more lateral initial patellar alignment (Figure B.4).  PC score 

for Mode 4 was moderately correlated to initial ML patellar alignment (r = 0.64, Table 

B.2), which is consistent with findings from Harbaugh et al. relating patellar ML 

translation and the prominence of the lateral trochlear facet (Harbaugh et al., 2010).  

Mode 4+ also featured a near constant distal and posterior femoral radius, leading to less 

tibial SI translation through the cycle; however, deeper tibial dwell points placed Mode 

4+ in a more superior initial position (not shown).  Tibial SI translation through the cycle 

was only 2 mm compared to the 7 mm of translation in 4-.  Mode 4- described a non-

uniform AP/SI aspect ratio with a decreasing radius from distal to posterior on the medial 

femoral condyle that contributed to a more superior motion through the cycle (r = -0.55). 

Mode 5 primarily described changes to the femoral intercondylar notch and 
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medial-lateral kinematics (TF and PF, Figure B.5).  PC score for Mode 5 was highly 

correlated to tibial ML translation through the cycle (r = 0.77, Table B.2).  Mode 5+ was 

characterized by a larger intercondylar notch width (27 mm) compared to Mode 5- (21 

mm, Figure B.5), resulting in greater medial tibial translation.  Mode 5- also showed the 

largest amount of lateral patellar translation, which is likely attributed to the tibial motion 

and a steeper medial trochlear facet in the distal region.   

Both Modes 5 and 6 captured differences in the femur’s distal sulcus geometry 

and variation in tibial IE rotation through the cycle (Figure B.5 and Figure B.6).  Mode 5 

described the angle of the medial femoral facet and intercondylar notch.  Noting the 

correlation between TF IE and PF ML (0.61, below), Mode 5 exhibited the largest 

variation in ROM for these measures, suggesting the geometric changes led to 

interactions between patellar medial translation and internal tibial rotation.  For Mode 6+ 

and 6-, respectively, the distal sulcus angle was 130° and 120°, and tibial IE ROM was 

14.1° degrees and 6.2° of internal rotation through the cycle.  Accordingly, the PC score 

for Mode 6 was correlated to TF IE ROM (0.51, Table B.2). 

Expanding on distal sulcus angle and TF IE rotation, Mode 6 also characterized 

variation in the J-curve, which was more subtle than in Mode 1, and tibial AP translation.  

PC score for Mode 6 was correlated to the TF AP ROM (r = -0.55, Table B.2).  Mode 6- 

described changes in the shape of the posterior-inferior aspect of the femoral condylar 

geometry, effectively changing the shape of the J-curve (Figure B.6).  The resulting 

flatter distal aspect of the femur was associated with a more anteriorly aligned tibia than 

in Mode 6+. 
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Table B.1 Cumulative variability explained with the specified number of modes of 

variation. 

Mode Cumulative variability (%) 

1 23.0 

2 36.3 

3 49.0 

4 57.7 

5 64.3 

6 69.4 

10 84.7 

15 

19 

95.3 

100.0 
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Table B.2 Pearson’s correlation coefficients between net kinematics defined here as the 

difference between start and end positions in the flexion cycle.  Correlations are 

presented as absolute values.  White cells indicate no correlation. 
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Figure B.1 Absolute and relative tibiofemoral kinematics for the first 3 principal 

component modes and all specimens (gray lines). Bar charts show relative contribution of 

each mode.  
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Figure B.2 Absolute and relative patellofemoral kinematics for the first 3 principal 

component modes and all specimens (gray lines). Bar charts show relative contribution of 

each mode.  
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Figure B.3 Scatter plots of mode, shape and kinematic relationships with strong 

correlations.  PC score for Mode 1 versus epicondylar width (A), anatomic measures 

versus tibiofemoral (TF) kinematics (B-C), and patellofemoral (PF) shape and kinematics 

(D-F).  Colored data points represent the first six PC modes at +/-1.5σ.  Pearson’s 
correlation coefficient (r) and linear equation are reported for each plot.    
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Figure B.4 Distal view of Mode 4+ and 4- showing variation in patellar ML alignment 

and lateral trochlear inclination (top left).  The absolute patellar ML translation curve 

further illustrates the high ROM in Mode 4- (top right).  Geometric differences in the 

medial femoral condyle contribute to the variation in relative tibial SI translation (bottom 

left and right). 
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Figure B.5 Proximal view of Mode 5+ and 5- showing variation in intercondylar notch 

width (top left).  Relative tibial ML translation through the cycle (top right).  Variation in 

the distal region of the medial femoral facet influences the relative patellar ML 

translation through the cycle (bottom left and right).  Dimensions are shown in 

millimeters unless otherwise noted. 
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Figure B.6 Initial anterior tibial alignment in Mode 6- is associated with more prominent 

postero-inferior femoral condyles (top left).  Second to Mode 1, Mode 6 exhibited a large 

amount of through-cycle variation in tibial AP translation (top right).  Variation in distal 

sulcus angle (bottom left) and relative tibial IE rotation (bottom right) are highly 

correlated (r = 0.83). 

  

0 20 40 60 80

-10

0

TF Flexion [deg]

T
ib

ia
l 

IE
 R

o
ta

ti
o
n
 [

d
eg

]

MODE 6

+1.5σ-1.5σ

anterior

-1.5σ

+1.5σ

internal

anterior

MEAN

MODE 1

MODE 2

MODE 3

MODE 4

MODE 5

MODE 6

+1.5σ -1.5σ

medial



 

167 

 

 

 

 

APPENDIX C. PATELLA DIGITIZATION INSTRUCTIONS IN XMALAB 

 

Organize file/folders in the new subject’s directory 

1. Create or located a ‘Calibration’ and ‘XMALab’ folder. 

2. Copy/paste the framespec5.csv and CalibrationPoints1.ref files to the Calibration 

folder (take from an already processed subject folder). 

 

Convert files from .cine to .tif 

1. Open the Cine Viewer Application, CV.exe, and select the Open File icon.

 
2. Select the .cine file you’d like to convert (i.e. Cube_01_Cam_14201.cine).
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3. Select the ‘Play’ tab to the right of the image.

 

 

4. Select the dropdown menu arrow at bottom right and click ‘Save Cine to File’.
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5. Choose ‘TIFF 8.24 images, *.tif’ in the ‘Save as type’ dropdown menu & use the 

same filename.

 
6. Return to the ‘Manager’ tab and select the red X icon to remove the file from the 

application. 

7. Repeat steps 2-6 for the two cube and two mesh files needed for calibration and 

undistortion. 
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Convert multiple .cine files to .tif using the ‘Batch convert files’ tool 

1. Open the Cine Viewer Application, CV.exe, and select the Batch convert files 

icon.  

2. Create a new folder ‘TIF’ in the same directory as the .cine files and select all 

files to convert. 
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3. Upon selecting ‘Open’ in the window shown above, a new window will replace it. 

Browse to the TIF folder and enter a generic filename (i.e. ‘Pose’) and then choose 

‘TIFF 8.24 images, *.tif’ in the ‘Save as type’ dropdown menu. Select Convert. A 

folder for each file will be created. 

 

4. You are now done with CV.exe, you may close the application. 

Create a .xma file to begin the calibration, undistortion and digitization process 

1. Open the XMALab application and select the New Dataset icon. 

2. Browse to and select the cube.tif, mesh.tif, framespec.csv, and 

CalibrationPoints1.ref files 
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.  

3. The Undistortion workspace will load.  Select the ‘compute undistortion’ 

button on the left hand side. This takes about 1 minute and results in green dots on 

the mesh once completed. 

4. Select ‘Calibration’ from the Workspace dropdown menu above the images. 

5. Select the first reference point in Camera 1 as indicated on the left hand side (i.e. 

40 Triangle). 

Zoom = scroll wheel & Drag = Rt. Click & Hold 

6. Select remaining points as indicated on left hand side. All other points will appear 

automatically. 

7. Repeat steps 5 & 6 for Camera 2. 

8. Calibration is complete if no errors appear and green dots appear on all cube 

points. 

9. Save the .xma file to the /XMALab/ folder (File > Save) with the subject name 

(i.e. DP04.xma). 
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10. Export the DLT coefficients. 

File > Export > XRayProject Matlab Format 

Note a bug crashes XMALab 1.2.18 after files are created. 

11. Do not close XMALab if you now wish to digitize. Move on to next set of 

instructions. 

Digitizing in XMALab 

1. If you are opening a new XMALab application, select ‘Load .xma file’ select the 

.xma file. 

Undistortion will reprocess. 

2. Select ‘Marker tracking’ from the Workspace dropdown menu above the 

images. 

3. Select the ‘Add trial’ button to open a file setup window. 

4. Name your trial (i.e. Pose_L1). Browse to and select the .tif files for the pose. Select 

Ok.  

5. Select ‘Set Number Markers’ in the Points window/tab on left side and type 50 

and select Ok. 

 
Note you may need additional or fewer markers depending on the patella. A list of 

points will appear on the left hand side. 

6. Select all points (Ctrl+A) and Right-click anywhere in the Points list to show the 

Points menu. 
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7. Select ‘Change Detectionmethod of selected Points’ and choose ‘no detection’. 

Select Ok. 

8. Select the first point in the list and then select the first bead in Camera A. 

If no distorted epipolar line appears in Camera B, simply scroll or drag on the 

window to update. 

9. Select the first bead in Camera B (should be the only bead intersecting the 

epipolar line). 

10. To advance to the next point, Click-hold Ctrl while you select the second bead 

in Camera A. 

11. Release Ctrl, select 2
nd

 marker in Camera B (should be only point intersecting 

the epipolar line). 

12. Repeat steps 10 & 11 to digitize the 3
rd

 and final marker. 

If your crosshair moves in the image, the Detectionmethod may need to be reset. 

See steps 6 & 7. 

Try to stay consistent with the order in which you digitize the 3 markers across all 

poses. 

13. Repeat steps 10 & 11 to digitize the patellar profile in each view. Read notes 1 

& 2. 
Note 1: If epipolar line crosses patella profile in two spots, both profile points are 

valid. 

You don’t care how 3D points project onto both views simultaneously. 

You only care how the 3D points project onto each view separately. 

Note 2: If a profile point in one camera results in an epipolar line that does NOT 

intersect the natural patellar profile in the other camera, place a dummy point 

AWAY from the profile and make a note (i.e. “Point 34 in camera A is irrelevant 

even though it’s useful in camera B”). 

ALL “DUMMY” POINTS MUST GO AT THE END IN ONE CAMERA 

VIEW (i.e. points 41-46 below) 

 
14. Delete any points from the points list that haven’t been used. 

15. Export the 3D points to a .csv file (i.e. Pose_L1.csv) with headers. File > 

Export > 3D Points 

These points are “irrelevant” in 
Camera A but  useful in Camera B

Points List
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16. Save the .xma file frequently! 

17. Select the  button above the images to add a new trial/pose and repeat steps 4 

through 17. 

18. Resection Plane Digitization Step (only required in a single view for each 

patella): 

a. Choose a pose (ideally Pose_*1) that provides a view that is as 

perpendicular to the cut plane as possible (i.e. the right image below is a 

sagittal view of a left patella). 

b. In the perpendicular image (shown here on right) select 3 points (shown 

here as stars) along a straight line that best represents the resection 

plane. 
c. Place corresponding markers in the left image in the same way shown 

below. 

This will create a triangle (kind of like peg locations) that represents the 

resection plane 

 
19. Export a new file of the 3D points to a .csv file (i.e. Pose_**_cutplane.csv) with 

headers. 

Replace ** with the current pose (i.e. L1, R3, etc.) 

 

Make sure you have exported the following files before you run the 

prediction wrapper script, PAT_PREDICT_OPT_WRAPPER.m 

 

1 - MergedDlts_Frame0.csv 

4 - Pose_**.csv files (one for each pose) 

1 - Pose_**_cutplane.csv digitized pose points with additional cutplane points 

1 - unwanted_points.dat file containing the unwanted points information 

Example (Leg, Pose, Camera, Start): L 1 A 43 

      R 3 B 40 
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APPENDIX D. TRAINING SET IDENTIFIERS 

 

Table D.3 Training set identifiers and demographics from the University of Kansas, 

DePuy-Synthes, and Osteoarthritis Initiative databases. 

Mean   62.6 1.7 71.1 24.6 

Std. Dev.   10.1 0.1 12.7 3.7 

Min   37.0 1.5 42.6 19.0 

Max   80.0 1.9 100.0 33.9 

Subjects Gender 
Age 

(years) 

Height 

(m) 

Weight 

(kg) 
BMI 

BB02 M 80 1.83 93.0 27.8 

BB03 M 55 1.68 81.64 29.1 

BB04 M 59 1.78 63.5 20.1 

BB06 M 59 1.78 63.5 20.1 

BB07 M 80 1.83 92.98 27.8 

BB08 M 61 1.83 90.72 27.1 

BB09 M 80 1.83 93.0 27.8 

BB11 M 55 1.68 81.6 29.1 

BB12 M 59 1.78 63.5 20.1 

BB14 M 68 1.83 100.0 29.9 

BB16 M 72 1.66 68.2 24.9 

BB17 M 63 1.85 77.1 22.4 

BB24 M 74 1.75 81.7 26.7 

BB25 M 60 1.75 60.8 19.8 

BB26 M 52 1.73 72.6 24.3 

BB27 M 79 1.73 74.4 24.9 

BB29 M 77 1.73 86.2 28.9 

BB30 M 52 1.73 72.6 24.3 

BB32 M 64 1.75 61.2 19.9 

BB34 M 71 1.78 70.3 22.2 

DU02 M 44 1.83 70.3 21.0 
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DU03 M 72 1.83 77.1 23.1 

KS03 M 62 1.74 75 24.7 

SQ03 M 42 1.65 54.4 20.0 

SQ07 M 61 1.88 69.9 19.8 

DU05 F 37 1.68 54.4 19.3 

9001695 F 52 1.65 77.7 28.6 

9039972 F 70 1.65 61.4 22.4 

9043005 F 72 1.58 56.9 22.7 

9098882 F 78 1.63 76.3 28.9 

9169499 F 67 1.59 76.1 30.1 

9207016 F 62 1.64 68.1 25.4 

9240045 F 60 1.63 53.0 20.0 

9280181 F 53 1.81 81.2 24.8 

9363662 F 53 1.71 88.3 30.2 

9393127 F 59 1.63 65.7 24.7 

9405034 F 57 1.53 62.4 26.7 

9431345 F 52 1.57 53.8 21.8 

9435250 F 55 1.50 42.6 19.0 

9439881 F 56 1.61 54.9 21.2 

9465321 F 52 1.67 74.3 26.6 

9674667 F 67 1.54 60.1 25.3 

9736028 F 60 1.64 91.0 33.9 

9771440 F 63 1.58 58.2 23.3 

9842543 F 74 1.59 67.7 26.9 

9861824 F 60 1.70 64.3 22.4 

9905276 F 66 1.64 75.5 28.0 

9932750 F 71 1.59 58.7 23.2 

9980800 F 69 1.63 76.5 28.8 

9998089 F 66 1.66 60.1 21.9 
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