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Abstract  

 

Wireless sensor networks (WSNs) have shown promise in a broad range of 

applications. One of the primary challenges in leveraging WSNs lies in gathering 

accurate position information for the deployed sensors while minimizing power cost. In 

this research, detailed background research is discussed regarding existing methods and 

assumptions of modeling methods and processes for estimating sensor positions. Several 

novel localization methods are developed by applying rigorous mathematical and 

statistical principles, which exploit constraining properties of the physical problem in 

order to produce improved location estimates. These methods are suitable for one-, two-, 

and three-dimensional position estimation in ascending order of difficulty and 

complexity. Unlike many previously existing methods, the techniques presented in this 

dissertation utilize practical, realistic assumptions and are progressively designed to 

mitigate incrementally discovered limitations. The design and results of a developed 

multiple-layered simulation environment are also presented that model and characterize 

the developed methods. The approach, developed methodologies, and software 

infrastructure presented in this dissertation provide a framework for future endeavors 

within the field of wireless sensor networks. 
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Chapter One:  Introduction and Rationale 

1.1 Introduction 

Wireless sensor networks have become prevalent both in research and 

applications. These networks, being composed of a large number of cheaply produced, 

low powered devices, gather small samples of data from different locations, using such 

data for analysis or to trigger alarm conditions. The devices that comprise the vast 

majority of the network are known as sensors due to the fact that their primary function is 

to sense local environmental data. However, the value of this data comes not just from 

simply analyzing it collectively for statistical purposes, but from analyzing it relative to 

the location distribution it represents. The data collected from a WSN is at least two-

dimensional in that there is always position information associated with the sensed 

information. While the technology of sensing information has been well-studied, a 

challenge still remains in accurately and precisely locating the sensors.  

 Larger, more complex, more powerful devices can utilize technologies like GPS 

in order to identify locations. In many WSNs, however, the majority of the sensor devices 

do not have the „capacity‟ to include such technologies. Thus, it is necessary to use other 
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means to locate sensors. While many methods are available, few of them produce 

feasible, reliable, and consistent results worthy of pairing with the gathered data. This 

problem is more complex than it might initially seem to be. Locating small, somewhat 

randomly distributed devices containing simple technologies and limited power supplies, 

requires overcoming many obstacles including communication range, measurement error, 

cascaded error, and power limitations, just to name a few. The contributions of this 

research are aimed at addressing these issues and others inherent to localization of WSNs. 

 The primary contributions focus on methods of analysis and modeling that 

practically take into account many of the real-world challenges associated with WSN 

localization. Preliminary distance measurements containing unknown, random quantities 

of error are derived from beacon signals sent from two mobile beacons based on the 

received signal strengths (RSS) of the beacons at the sensors. Particular emphasis is given 

to the bounding, minimization, and even utilization of associated errors in order to 

provide precise and accurate localization capabilities, while meeting rigid problem 

constraints. Unlike other methods previously published, this research seeks to avoid 

making unrealistic assumptions, providing factual, methodical, and mathematically-sound 

approaches based on long-accepted principles and refined models. One of the core 

premises of this research is the principle of utilization of all applicable, measurable facets 
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of the localization problem, including error modeling, through careful modeling. These 

contributions should provide not only usable methods of localization for problems 

meeting the assumptions of this research, but a solid foundation on which to build new 

methods that have different structures and differing assumptions. A series of models and 

corresponding methods are presented, each building on the previous one and providing 

increased precision of localization. Both single-dimensional and two-dimensional 

concepts and models are presented with extension into three dimensions models left as 

future research. The rough methods presented first provide primitive means of 

understanding and modeling the localization problem. These methods are simple, fast, 

and effective, though imprecise. The bounded-magnitude method utilizes known factors 

and modeling constraints to place the sensor within a certain range of the beacons. The 

bounded-error method takes an additional step in modeling the error present in the 

measured readings to further increase the precision in an incremental, algorithmic 

approach. Last, the bounded-angle method takes a slightly-different approach in 

recognizing that in multiple dimensions, there are two unknown factors in localization: 

distance and direction. Each of these methods forms the foundation for modeling and 

localization to minimize assumptions and increase precision while maintaining accuracy 

and integrity.  
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1.2 Summary of Contributions 

The novel approach in this dissertation relates to utilizing error modeling and 

analysis to augment the modeling of a localization system. This contributes to new 

understanding and means of utilizing error prediction as a supplement to system 

accuracy, rather than tolerated inaccuracy. The methods presented herein attempt to 

utilize factors that are frequently ignored in other works, aiming at deriving  methods and 

an overall ideology of attempting to transform “negative” factors, such as error, into 

beneficial and usable results. The RSS-based, anchor-based, mobile beacon approach to 

localization utilized in this work provides a backdrop of a typical, usable scenario for 

WSN localization in order to ensure the practical applicability and realism of the 

proposed methods and subsequent simulation results. These methods presented herein are 

backed by many simulated trials that illustrate the effectiveness and expected 

performance of the methods along with detailed error analyses that show how the 

modeled error is used for bounding sensor locations.  

There are three classes of methods presented in this dissertation. The first class is 

that of rough, approximation methods used to estimate sensor position quickly and 

simply with a relatively low degree of accuracy and precision. The second class is that of 

error-bounding methods that utilize knowledge of the estimated error within the system to 

iteratively increase the precision with which each sensor is localized. The third class is 

that of angle-bounding methods that build upon the previously-discussed error-bounding 

methods by extending the concept from componentized, single-dimensional quantities to 

radial factors. 
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There are many advantages over existing methods. Many of the existing methods 

make broad, unrealistic, and unqualified assumptions that do not warrant or allow real 

application. Often, there is an assumption that the distance between sensor nodes and 

beacons is known. This is a fallacy as sensor deployment is often imprecise. This leads to 

questioning the use of static anchors at all as it can be difficult to predict the number and 

proper placement of such anchors for localization purposes. Another common assumption 

is related to self-localization methods that assume temporal isolation of error. These 

methods fail to account for ripples in error caused by inexact or outright erroneous 

localizations in a way that could affect the usefulness of the entire network. One of the 

most egregious assumptions is the lack of inclusion of any account for error in 

localization efforts. These systems make broad and improbable assumptions of perfect 

measurements. A few works even assume sensor locations and then prove the correctness 

of those locations using this assumption. This is a type of “catch 22” methodology that is 

completely inapplicable. The work presented herein proposes methods and uses 

approaches that attempt to state reasonable assumptions and experimentally determine the 

effectiveness of true localization scenarios. 

The primary foreseen limitations of this research are the lack of substantive, 

comparative efforts in existing works and the sample error-modeling choices utilized for 

demonstration of cases-in-point throughout this work. While we believe that there is 

generalizable potential of the methods and ideology presented within this work along 

with direct application of the methods herein to the localization problem at hand, it 

should be noted that unknown and unrealized factors may limit the generalizability of 
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these methods when more-complex and non-linear models are utilized. The fundamental 

assumptions of certain error characteristics, such as upper-limit bounding and 

randomness distribution, may require that further research and testing be performed to 

ensure applicability and effectiveness in different situations and cases. The overall 

efficacy and efforts of the methodologies and ideology presented in this work are 

dependent on the ability to establish relationships between system operational models and 

error models and utilize as many known and quantifiable factors as possible to augment 

system predictability. Limitations in the current state-of-the-art RSS modeling 

methodologies provide both motivations and limitations to this research. 

1.3 Dissertation Outline 

This dissertation is divided into six progressive sections that fully describe the 

problem being analyzed, solutions designed, tests considered, results obtained, analyses 

made, conclusions drawn, and indications of future directions that could be taken to 

improve and expand upon the efforts undertaken. The first chapter provides an 

introduction to the topic at hand along with the rationale for its choosing and subsequent 

approaches. It introduces the research efforts undertaken, recent developments from such 

research corresponding to the topic, and the reasoning for the design choices and 

approaches taken and the means of their execution. The second chapter provides an 

extensive, detailed review of existing efforts and works related to the topic at hand. It 

provides a thorough discussion of these materials to provide a deep and thorough 

understanding of the nature of the environment of the topic and the reasoning behind its 

challenge. This body of information leads to chapter three, which outlines the nature and 
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concerns of the problem at hand to provide a framework for the solutions to be presented. 

This chapter focuses upon the specific nature and aspects of the localization problem as it 

pertains to wireless sensor networks and clearly defines the assumptions and the reasons 

for their existence within this dissertation along with the potential pitfalls associated with 

such assumptions and how this dissertation addresses them in a direction uncommon to 

other existing works. With the problem clearly stated, chapter four proposes the methods 

of solutions for the problem in increasing dimensional spaces. The described methods 

were incrementally-designed for this dissertation and are presented in such fashion to 

illustrate the layered improvements they collectively-demonstrate as each method 

improves upon its predecessor with the first methods discussed being based on 

fundamental mathematical and physical concepts and the findings and shortcomings of 

existing works. With the designed methods fully described, chapter five of this 

dissertation discusses the simulation that was designed to prove the concepts of the 

designed methods based upon the problem statement and assumptions previously 

detailed. It describes the design, operation, and gathered results of the simulation 

software. This software was specifically designed to exercise and characterize the 

proposed methods in an even-handed, unbiased manner to provide conclusive, fair 

measurements as might be made in real-world measurements. Having gathered such 

measurements, chapter six discusses the detailed analyses and conclusions drawn from 

the simulation results to fairly and accurately ascertain the viability of the proposed 

methods and indicate the nature and shortcomings of such methods from a practical 

perspective of hindsight. The conclusions and directions discussed to conclude this 
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dissertation should provide indicatively the benefits, applications, and potential areas of 

expansion of the principles, methods, and designs discussed as a guide to those seeking 

direct application or future development. 

  



 

9 

 

 

 

Chapter Two:  Background and Literature Review 

In order to understand the nature of this research, it is important to review related 

work. There are three main contextual areas of focus in this research: wireless sensor 

networks, localization, and error-modeling. While the primary focus of the research is in 

the area of localization, important consideration needs to be given to the other two areas. 

2.1 Wireless Sensor Networks  

 Wireless sensor networks (WSNs) are a type of ad-hoc network in which small 

devices containing environment-sensing hardware and wireless communication devices 

are the primary structural component [1]. These sensors are deployed over a relatively 

large area in hopes of gathering a topological collection of information containing many 

small samples. There are many important applications for WSNs, including geological 

data gathering, construction, and military applications [2]. The sensors are commonly 

referred to as nodes, or regular nodes, and may be as many as a million in number or 

more. Because these sensors are incredibly small, light-weight, low-powered, and 

cheaply-produced, their useful life spans and operational flexibilities are incredibly 

limited [3]. Their communication ranges and battery lives are amongst their most primary 

limitations [4]. As such, data gathering efforts, quantities of communication, and on-bard 

processing must be carefully planned and budgeted. 

Wireless sensor networks often have unbalanced assignments of processing and data-

gathering responsibilities [5]. Because the sensors have limited capability and are focused 
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on very specific data gathering activities, it is necessary to provide support for the 

massive number of sensors in terms of data recovery and eventual processing. This 

involves providing data recovery mechanisms that can be positioned within the 

communication range of the sensors, which is a challenging task given the large number 

of sensors and the potentially massive deployment area over which the sensors are 

deployed. Many schemes have been derived for accomplishment of this task, including 

deployment of higher-powered support nodes, sometimes called cluster heads, and 

complex algorithmic approaches involving dynamic sensor behavior and delegation of 

responsibilities. The method of solving the communication problem often leads to 

classifying a particular network based on its communication organization and 

infrastructure. 

The classification of WSNs as ad-hoc networks comes from the fact that nodes are 

often deployed from a long range with little control over the precision of their eventual 

deployment locations. Due to their small size and simplicity, the sensors have no 

controllable mobility. The means of deployment, lack of mobility control, and incredibly-

limited communication range of the sensors provide a challenge of locating the sensors 

once they have been deployed, a process known as localization, which is discussed in 

detail in the next section [2, 6, 7]. 

2.2 Localization 

Once a collection of sensors has been deployed, the primary challenge being 

faced is the ability to locate those sensors. Knowing the location of the sensors is 

important for two critical reasons. At first, the location at which a sensor's data is 
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gathered is one of the primary pieces of information desired for data analysis purposes. 

Indeed, a collection of sensor network data without location information would be nearly 

worthless. This is because the geographic topology of the information is as important as 

the individual pieces of information themselves [6]. 

The second critical reason involves the fact that in order to have any data to 

analyze at all, it is necessary to „recover‟ the data from the sensors. This involves 

transmission of data from individual sensors, a costly and complex effort based on the 

sensors' limited battery lives, limited communication ranges, and large deployment area. 

It might be necessary to position a data recovery device within less than a few meters of 

any given sensor in order to recover its gathered data! Due to the small size of the sensor 

devices, automated means of locating the sensors via detailed imaging or simple 

estimation have been proven difficult. This is especially true when sensors are obstructed 

by other objects or contained within other objects. When it is important to know where a 

sensor is located to a precision of a few centimeters or less, the precision of the means of 

locating sensors becomes quite important. In this section, we will first discuss the nature 

of localization, including its structure and challenges. This will be followed by a 

discussion of some of the technological approaches towards localization with particular 

emphasis on those utilized by this research [6, 8, 9]. 

2.2.1 Nature of Localization 

Localization is the process of given locality to a physical entity. In any discussion 

of location, it is important to note the universal fact that the location of something is an 

entirely relative matter. It is fundamentally impossible to give location to anything 
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without reference to the location of something else! This makes location a problem of 

relationship. Often, it is the likelihood of two subjects in some characteristic that places 

them “locally” with one another relative to other subjects that are not as like in 

characteristic. For purposes of geographic location, the primary reference object is that of 

the Earth itself. The characteristic of concern is that of a physical point on the Earth's 

surface, making the relationship of concern one of physical distance from that point. 

Thus, localization here involves the use of known points and translation of distance to 

match those points. 

The surface of the Earth, while having distinguishing characteristics, does not 

provide regular, predictable points from which to reference, especially when the scale of 

reference needs to be rather small, as is the case with sensor nodes. Furthermore, in order 

to locate a sensor, either the sensor's position must be already known or the distance from 

a point of known location must be found. Adding to this challenge is that it is often 

necessary to receive some type of wireless communication from a sensor in order to 

attempt any kind of distance measurement. For reasons discussed earlier, simply 

detecting light from a sensor, a process known as imaging, often lacks the precision and 

suitability needed for many applications. Thus, an invisible detection method is 

necessary. 

The simplest and most fundamental approach to this method is that of asking a 

sensor to respond to a simple query in order to know of its presence and attempt to 

determine its location based on the properties of the communication medium. The query 

is often known as a beacon with the transmitter of such a beacon being known as an 
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anchor. This is similar to the popular children's game “Marco Polo” in which the medium 

of sound wave traversal through air is the means of communication and the loudness and 

directional information contained within received sounds is used to locate other players. 

When one player shouts “Marco!”, the other players respond with “Polo!”. This is a 

classic example of beacon/response localization. 

Given a beacon system in a particular medium, the processes of locating a sensor 

node requires mathematically processing the communication information within the 

medium in order to accurately and precisely locate the sensor. This mathematical 

processing is often known as trilateration; involving the solution of several related 

equations based on multiple known locations (usually three) and distance measurements 

from those known locations to the unknown sensor location. The accuracy of the 

localization is proportional to the number of known points with a certain minimum 

number of known points being necessary to obtain any results at all. The primary reason 

for using three points is to overcome the reflective problem of using only two where it 

may be impossible to know on which side of the shared axis of the two points a sensor 

may be located. Trilateration in three dimensions adds another degree of freedom of 

location than in two dimensions, though the principle and approach still remains the 

same. Later in this research, many aspects of the mathematics involved with trilateration 

and its close relative, triangulation, will be discussed in great detail. 

Even with an established medium and calculation method for distance 

measurement, the challenge of the breadth of possible localization must be addressed. 

Due to the small size and capabilities of a sensor, the proximate distance of a known 



 

14 

 

point from the sensor is proportional to the scale in which the sensor operates, which is 

likely only a few meters. Thus, even if adequate known points were available as 

distributed throughout the field of deployment, the deployment and management of such 

known-point devices would create a problem on the scale of the sensor localization 

problem itself. Unless a complex and potentially-fragile hierarchical location scheme is 

desired in which locating a sensor involves multiple distance-measurement “hops” from 

lower-powered devices to higher-powered devices, it might be suggested that a mobile 

system be utilized to perform beacon transmission and response gathering. Indeed, such a 

mobile beacon system is utilized in the methods of this research. To understand such 

systems, further discussion of the technological aspects of approaching the localization 

problem is discussed. 

2.2.2 Related Technologies and Existing Approaches 

There are many existing technologies and a variety of approaches in the field of 

WSNs regarding localization [6, 9, 10, 11, 12, 13, 14, 15]. This Section outlines some of 

the distinctions in approaches and classifications of the different technologies and 

conceptual approaches and discusses the purposes and some of the limitations concerning 

them. It should be noted that the application of many of the technologies and approaches 

herein is heavily dependent upon the specific application requirements and nature of the 

environment of deployment [2]. It would be imprudent to classify any approach or 

particular technology as strictly advantageous, though it can be noted that a clear 

understanding of system usage, parameters, and goals will likely indicate certain means 

more readily than others. 



 

15 

 

2.2.2.1 Global Positioning Systems (GPSs) 

Of the many approaches to localization, by far one of the most accurate and 

ubiquitous is the GPS. These systems utilize geo-stationary satellites in order to 

accurately trilaterate the position of a GPS-enabled device [16]. They are so central to 

most localization schemes that even if they are not utilized at the lower levels of a 

localization scheme, such as the nodes in a WSN, they are often utilized at the highest 

level, such as locating the network as-a-whole relative to the global coordinate system. 

GPS satellites provide the de facto points of reference for most localization hierarchies 

[17]. 

2.2.2.2 Algorithms 

There are many classifications of algorithmic approaches as shown in Figure 2.1. 

These often depend on the specific structure and configuration of the WSN being 

localized. Furthermore, a single algorithm can be related to more than one classification 

[6, 18]. 
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Figure 2.2-1 Wireless Sensor Network Algorithms 

 

2.2.2.2.1 Range-Based/Range-Free 

Range-based algorithms [6, 19, 20, 21, 22, 23, 24, 25] are based on the 

assumption that the absolute distance between a sensor nodes and an anchor can be 

measured using distance and/or angle information related to the beacon. Some of these 

types of information include: time of arrival (ToA), time difference of arrival (TDoA), 

received signal strength (RSS), and angle of arrival (AOA). This information is usually 

paired with one more computation methods, such as maximum likelihood, trilateration, 

multi-trilateration, or triangulation, to determine the position of each sensor node. One 

advantage of this type  
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Figure 2.2-2 Range-Free vs Range-Based 
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of localization algorithm is its high precision and accuracy while utilizing relatively few 

anchors. One disadvantage is the added cost of additional hardware needing to each 

sensor for ranging purposes. Another clear disadvantage is the sensitivity of results to 

noise and obstruction of line of sight (LoS). 

Time-of-arrival (ToA) and time difference of arrival (TDoA) utilize the fact that 

the distance between a sensor node and an anchor can be determined by the time of flight 

(ToF) of communication signals (e.g. RF or acoustic signals) [6, 26]. These two pieces of 

information are amongst the most accurate for range-based approaches in regards to 

distance-estimation, being formulated as d = Vp * ToF where Vp is the propagation 

speed of the communication signal in the current medium. The most common and 

familiar approach is ToA, which is used by GPS systems. This approach can be further 

classified into two approaches: using a one-way signal, which requires synchronization 

between anchors sensor nodes, and using a two-way signal, which does not require any 

synchronization though at the cost of network delay. TDoA approaches require that nodes 

transmit two different types of signals that travel at different speeds, such as RF and 

acoustic [6, 18, 19, 20]. This eliminates the necessity of knowing the absolute 

transmission times. In the case of using a radio and an acoustic signal, the destination 

node receives the radio signal first due to its faster propagation speed when compared 

with the acoustic signal as shown in Figure 2.2.3. The receipt times of the two types of 

signals are recorded in order to calculate the time-difference to estimate distance. This 

approach is extremely accurate so long as LoS and appropriate environmental conditions 
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are met, which can be difficult inside of buildings or in mountainous terrains. 

Additionally, the speed of the acoustic 

Transmitter

ssr VTT ).( Distance

Receiver

rT sT

RF Acoustic

Figure.2.2-3  Time Difference of Arrival 

  

signals depends heavily on environmental factors, such as temperature [6]. 

Received signal strength (RSS) approaches are popular because they do not 

require any special hardware and most sensor nodes on the market can perform power 

measurements [6, 27, 28, 29, 30, 31]. These approaches use a quantified received signal 

strength indicator (RSSI) based on the fact that beacon signals lose power (suffer 

attenuation) during propagation, a factor known as path loss. Although RSSI approaches 

are inexpensive and easy to implement, they face specific challenges, such as multi-path 

fading, channel noise effects, and background interference, making distance estimations 

based on these approaches inaccurate compared with other types of approaches. The 

received power of these techniques can formulated by 

                    (
 

   
)
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 where    and     are the transmitted and received power,    and     are the transmitter 

and receiver antenna gains,    is the wavelength, and d is a calibrated distance constant 

[6, 23, 24, 31, 32]. This research makes heavy use of the RSS approach and attempts to 

address and gain advantage from its shortcomings. 

Angle of Arrival (AoA) approaches rely on observing phase or time differences 

between signals arriving at different antennas within an antenna array in order to 

determine the direction of an anchor. AoA approaches achieve high levels of accuracy to 

within a few degrees at the cost of needed multiple antennae [6, 19, 27]. The size of 

sensor nodes affects the spatial separation possible between antennae, which in turn 

affect the usefulness of these types of approaches. Additionally, multipath reflections, 

directivities of antennae, and shadowing can affect measurements. The following figure 

illustrates n arrays for the antenna. 
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Figure 2.2-4 An Antenna Array with N Antenna Elements 

 

Range- Free approaches do not rely on any of these range-based pieces of 

information [6, 33, 34, 35, 36, 37, 38]. These approaches are connectivity-based and 

include hop-based (one-hop or multi-hop) and Euclidean approaches. They utilize an 

awareness of who is connected to whom to estimate locations of sensor nodes. The 

principle of these algorithms is that if two nodes can communicate with each other, the 

distance between them must be within the maximum communication range of the sensor 

nodes being utilized, which is typically quite short.  An advantage of these approaches is 

the simplicity and relatively low-cost of sensor nodes due to not needed special hardware. 

Disadvantages include the need for large numbers of anchor nodes, a relatively large 
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radio range, and specific deployments to obtain satisfactory accuracy [6, 39]. There are 

some researches making balance between range based and range free [40]. 

Hop-based approaches calculate a distance vector (DV) based on flooding 

beacons sent by anchors to all reachable nodes within the WSN. The number of hops 

taken by each flooded message from one node to the next allows sensor nodes to become 

aware of their relative distances to each anchor. When an anchor receives a message from 

another anchor, it estimates the average distance of one hop using the locations of both 

anchors and the hop-count, which is then sent back to the sensor network as a correction 

factor. Using this correction factor, sensor nodes are able to estimate their distances to 

anchors based on some type of computation method, such as trilateration. 

2.2.2.2.1  Anchor-Based/Anchor-Free 

This algorithm classification is based on whether or not an algorithm needs the 

use of anchors. Certain range-free algorithms utilize an anchor-free approach to simply 

estimate locality. Anchor-based approaches use anchor nodes to rotate, transform, and 

sometimes scale a relative coordinate system to an absolute coordinate system. For two-

dimensional spaces, at least three non-collinear anchor nodes are required. This increases 

to four non-planar nodes for three-dimensional spaces. The final coordinate assignments 

of a sensor nodes are valid with respect to a global coordinate system or any other 

coordinate system being used. A drawback to anchor-based algorithms is that another 

positioning system is required to determine anchor node positions. Another drawback to 

anchor-based algorithms is that anchor nodes are relatively expensive as they usually 

require a GPS receiver to be mounted on them. Location information can also be hard-
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coded into each anchor node, a quite expensive task requiring careful deployment of 

anchor nodes as required. Anchor-free approaches [6, 41] do not require anchor nodes 

and provide only relative node localization of sensor nodes in regard to other sensor 

nodes. For some applications, such relative coordinates are sufficient. Geographic routing 

protocols need select the next forwarding node based on that node being closer to the 

destination, a relative metric. 

2.2.2.2.3 Mobile-Beacon/Static-Beacon 

Static beacons are fixed in location and must be placed in specific locations 

within the WSN. A minimum number of anchor nodes are required for adequate results 

with determination of optimal placing [6], two factors that are drawbacks to static 

placement. Mobile beacons have certain distinct advantages, such as heavy reuse 

requiring considerably fewer beacons and reduced communication costs between beacon 

nodes and sensor nodes. Mobile anchors can be mounted to carriers such as traditional 

vehicles that can traverse the deployment area. The main problem with using mobile 

beacons is in finding the optimal trajectory path to ensure that the distance between 

anchors and sensor nodes is within communication range of the sensor nodes. This adds 

an additional coordination and timing factor to approaches using mobile beacons. Indeed, 

there is a sub-field of study in regards to mobile beacon trajectories with different 

approaches suggested, such as Random Waypoint (RWP) [6, 42, 43, 44]. This work 

makes heavy use of mobile beacons and discusses the use of trajectory planning and its 

effects on localization. 
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The following figure, figure 2.2.5, summarizes the different aspects of mobile and 

static beacons. The majority of previous researches used just one Mobile Beacon [45, 

46, 47, 48, 49, 50, 51], but they are some others used more than one mobile anchors [52, 

53, 54]. The Sparse-Straight-Line (SSL) and Dense-Straight-Line (DSL) [55, 56] 

approaches to mobile beacon trajectory will be further explained in Section 4.7. For our 

simulation purposes, both approaches were made possible and considered. The Random 

Waypoint and Spiral approaches are also feasible and have been considered as future 

work for the purposes of this dissertation. The layered-scan model, applicable to three-

dimensional localization, is considered in this dissertation as a possibility for future 

consideration of expanded efforts in three dimensions. 
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Figure 2.2-5 Static vs Mobile Beacon Classification 
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2.2.2.2.2 Relative-Position/Absolute-Position 

This classification relates to whether localization is to give position information 

relative to a global coordinate system or simply identify neighbors and approximate 

distances. As was previously mentioned, certain applications focus only on proximate 

distance and do not need absolute location information [6]. 

2.2.2.2.3  Mobile-Sensor/Static-Sensor 

Similarly to the concept of mobile or static beacons, sensors can be made to be 

mobile or static. For purposes of this research, we primarily concern ourselves with 

statically-positioned sensor nodes, though mobile sensor node localization could be seen 

as a potential extension [6]. 

2.2.2.2.6 Indoor/Outdoor 

This is a relatively simple classification, but one worthy of note as indoor and 

outdoor applications often have very different needs and challenges [57]. Factors such as 

line of sight (LoS) and material effects often characterize indoor applications [58]. 

Outdoor applications typically have a much larger deployment area [59]. This research 

primarily focuses on outdoor applications, though indoor applications could also be 

considered [6,36]. 

2.2.2.2.7  Centralized / Distributed 

This type of algorithm classification defines the infrastructure and function of a 

WSN. A centralized algorithm operates to collect data from remote sensor nodes to 

increasingly-centralized points [6, 60, 61, 62]. A distributed algorithm decentralizes the 

nature of this task amongst the masses of sensor nodes [2, 6, 61, 63]. This research 
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focuses on a “flat” decentralized approach by having ultimate data recovery come 

directly from the nodes themselves on an individual basis. 

2.3  Error-Modeling and Analysis 

The principle of error-modeling is the qualification and quantification of errors 

present within a system. This is of critical importance to ensure accuracy and qualify 

precision. In the distance-based localization scheme that is the primary focus of this 

research, the means and approach to modeling error present both advantages and 

limitations to the methods discussed. Error-modeling is similar to solution modeling in 

that the nature of the physical problem at hand and the mathematical representation of the 

problem dictate the effectiveness of the method. One of the primary distinctions when 

working with error is relating incurred error to the operational model of the system itself. 

Often, the two models take similar forms and have related structures and properties. Each 

controls the other in some way and yet error can be seen as an independent factor because 

its elimination would seemingly be possible if the operational model of the system were 

able to do so. Thus, error-modeling can be seen as a means of classifying the 

shortcomings of the operational model itself, qualifying and quantifying factors that are 

otherwise ignored or marginalized in the operational model. While modeling and 

quantifying error is useful for statement of the precision of system outcomes, analysis is 

often needed to make full use of the observed error [64, 65, 66, 67, 68, 69, 70]. 

When analyzing error, it is sometimes possible to augment the original system 

model to allow the error incurred to become a part of the system definition rather than an 

unwanted factor to be considered separately. Because error is often systematically-related 
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to system operation, it is also often governed by the operational and structure of the 

system itself. As there are relationships amongst varying operations and instances of 

operations of a system, so there are also relationships amongst the error incurred during 

these operations. It is these relationships and the analysis and transformation of them that 

are central to this work. Supplementing error analyses to system models creates a type of 

feedback mechanism that can lead to better understanding and possible improvement-

upon results garnered from typical system operations. As all system modeling is a type of 

prediction of behaviors, so error-modeling can itself provide addition sets of predictable 

behavior upon which improved analyses and better decisions can be made. 

2.4 Position Computation 

After blind nodes estimate the distances between themselves and neighboring 

anchors, using one or more distance estimation methods, they need to compute their 

locations in the case of self-localization or they should send the gather data with extra ID 

information to a central system, which will compute the sensor node locations. Many 

methods exist for position computation, including trilateration, multilateration, 

triangulation, bounding box estimation, probabilistic estimation, central positioning, and 

others [6, 53, 62, 63]. A localization system‟s performance depends on the availability of 

information and environmental constraints, which can affect the choice of a method. Not 

all methods are appropriate for all applications. Figure 2.3.1 shows some of well-known 

methods. 
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(a)                                             (b)                                           (c) 

Figure 2.4-1 (a) Triangulation (b) Trilateration (c) Multilateration 

 

2.4.1 Triangulation 

Triangulation involves the use of angular relationships rather than distance 

relationships. The node itself may determine its position, which is common in WSNs, or 

this can be done remotely.  As is shown in the figure above, a minimum of three 

reference nodes are necessary for unknown nodes to be able to estimate their positions 

based on the trigonometric relationships of their angles in relation to the reference nodes 

[6, 71]. 

2.4.2 Trilateration and Multilateration 

Trilateration is the most common localization computation method used to 

determine absolute or relative locations of unknown nodes. This is accomplished based 

on geometric distance relationships of circles, spheres, and triangles. In addition to its 

practical applications in wireless sensor networks, trilateration has other uses in 

surveying and navigation, including use in global positioning systems (GPSs). In contrast 

to triangulation, trilateration does not involve the measurement of angles. It uses the 

range information from each anchor node as distance measurements upon which to 

http://en.wikipedia.org/wiki/Circles
http://en.wikipedia.org/wiki/Triangle
http://en.wikipedia.org/wiki/Surveying
http://en.wikipedia.org/wiki/Navigation
http://en.wikipedia.org/wiki/Global_positioning_system
http://en.wikipedia.org/wiki/Triangulation
http://en.wikipedia.org/wiki/Angle
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perform computations. For two dimensions, at least three anchor nodes are necessary. For 

three dimensions, at least four anchor nodes are necessary [6, 61]. 

Let (xi, yi) be the known position of anchori, then let di be the estimated distance 

from that anchor to an unknown sensor node, which lies in (x, y) position. We can 

consider the distance between the anchor- and sensor position as a radius, then the system 

of equations can be described as: 
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By rearranging the terms, a proper system of linear equations can be obtained in the form 

Ax = b, where 
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This system of equations can be solved using a standard least-squares method as folow: 
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Trilateration fails rare cases if there is no inverse to A. However, in most cases, a highly 

accurate sensor location estimation can be found.  

An additional check can be done by computing the residue between the given distance 

(di) and the estimated location [6]: 
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If the residue is large, the system of equations is inconsistent.  The estimated location will 

be rejected if the residue length exceeds the radio range [6]. 

Trilateration assumes perfect range measurements between the target nodes and three 

fixed anchors. If these measurements contain errors, solving the linear systems will yield 

incorrect positions. In multilateration this problem can be solved by using more than 

three anchors. In solving the linear system, the measurements' mean-square errors are 

minimized thus producing better results than trilateration. 

Given measured and estimated distance values, multilateration is used to 

maximize the likely estimation of node positions by computing a minimum least-square 

estimation of the error, which is defined as the difference between the measured and 

estimated values. 

When no range information is available, trilateration and multilateration are 

ineffective, calling for the use of the proximity technique. It determines whether or not a 

node is in range or near a reference point by having the reference transmit periodic 

beacon signals and determine if the node is able to receive at least a certain number of the 

beacon signals, which is set as a threshold. In a period of time, if a node receives a 
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number of beacon signals greater than the set threshold, it is determined to be in-

proximity of the reference point. 

2.4.3 Bounding Box  

The bounding box method uses squares to bound the possible positions of each 

unknown sensor node. A bounding box is defined for each reference, beacon, node i as a 

square with its center at the position of the node (xi, yi) as presented in figure 2.3.2. So, if 

the estimated distance is di, the sides of the square will be of size 2* di, making the corner 

coordinates (xi – di, yi – di),  (xi –di, yi +di),  (xi + di, yi + di), and (xi + di, yi – di).  

Without any need for floating point operations, the intersection of all bounding boxes can 

be easily computed by finding the minimum of the high coordinates and the maximum of 

the low coordinates.  This is depicted in the figure below with the shaded rectangle, the 

center of which is the estimated position of the unknown node [6, 63, 70]. 

 

Figure 2.4-2 Building the Bounding Box 

 

The main disadvantage of this method is that the error is greater than that produced by the 

trilateration method. The main advantage is that finding the intersection of squares uses 

few processor resources compared with finding the intersection of circles. 
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2.5 Literature Review  

Han [8] proposed a Localization Mobile Anchor algorithm that was based on 

Trilateration (LMAT) in WSNs. He studied five different traveling trajectories, namely 

LMAT, SPIRAL, SCAN, DOUBLE SCAN and HILBERT algorithms to optimize the 

mobile beacon trajectory. Liu [25] presented a random-direction mobility model for 

mobile beacons to cover the sensor area and compares his results with Ssu‟s and Yu‟s 

algorithms. Teng proposed in [29] a distributed MRC localization scheme with a specific 

trajectory in static WSNs. Furthermore, Teng developed with his group two improved 

approaches (MRC_Nearst and MRC_Centroid) for applications that operate within noisy 

environments. The results show that MRC_Centroid is the best method for noisy 

environments. In [42], Park studied the mobile trajectory path and its effect on 

localization accuracy using the slope of the trend line and the closest point to the static 

sensor node on the trajectory of the mobile beacon. He, then, compared the method of 

Ssu et al., with his proposed methods, which included methods with and without filtering. 

 A directional antenna was used as equipped hardware in mobile beacons to 

obtain a high-level of received power by unknown nodes. Ou [27] proposed a range-free 

localization scheme with four directional antennas for each mobile anchor.  Another type 

of directional antenna, rotary, was used to periodically send messages in a determined 

azimuth within the ADAL (Azimuthally Defined Area Localization) [58] scheme by 

Guerrero. In this method, the centroid of the intersection area of several beacon messages 

is used by unknown nodes to determine their positions. In [59], Zhang developed a single 

beam directional antenna and varied the mobile beacon velocity to obtain more accuracy. 
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In some research papers, more than one directional antenna was applied for each MB to 

enhance accuracy and reduce power consumption. 

Guo [57] proposed a mobile-assisted localization scheme, called perpendicular 

Intersection, which use a delicate tradeoff balance between range-free and range-based 

approaches instead of RSSI directly mapping value. Chen [39] proposed another type of 

intersection method called BLI (Border Line Intersection Localization) method where the 

first and last MB messages were recorded by unknown sensors to determine the border 

with which to compute their locations. 

The weighted-centroid localization method, which uses three mobile beacons, was 

proposed in [54].In addition,  Cui [52] proposed another weighted centroid localization 

method using four mobile beacons with two different trajectory “RWP and Layered-

Scan” of mobile beacon. In [37], the authors compared TRL, FMB (Four Mobile 

Beacons), and TMB for RWP (Random Waypoint) model and straight-line moving 

trajectories.  

In [45], Kim proposed a novel range-based localization scheme which involves a 

movement strategy with a low computational complexity of mobile anchor, called mobile 

beacon-assisted localization (MBAL). Bahi et al. [46] developed a range-based 

localization scheme that uses a Hilbert space-filling curve as the trajectory for the mobile 

beacon. A GMAN (Group of Mobile Anchor Nodes) was proposed in a range-based 

localization scheme by Zhang et al. [50] to move through the network area allowing 

unknown sensor nodes to estimate their positions according to the beacon point set 

determined based on RSSI. 
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Zhao [47] presented a combined node clustering scheme, which increment localization 

and mobile beacon assistance together,  Mobile Beacon Assisted Localization based on 

Network Density Clustering (MBL(ndc)) 

Lee et al. [48] presented a mobile assisted, which moves straight line, localization 

scheme based on geometric constraints utilizing three reference points. Ssu et al. [38] 

presented a localization scheme by which the unknown nodes estimate their locations 

based on geometry conjecture (perpendicular bisector of a chord). 

Xu and his group [41] proposed an Anchor-Free Mobile Geographic Distribution 

Localization (MGDL) algorithm to monitor and detect the movement of sensor nodes. 

After the movement is detected, the moved node will trigger a series of mobile 

localization procedures to recomputed the new locations. MGDL was applied for static 

and mobile nodes and then compared with the elastic localization algorithm (ELA) and 

MCL. Chia – Ho Ou [51] presented a range-free localization scheme based on standard 

geometric corollaries using flying anchors for 3D. The same scheme was developed with 

four mobile beacons with RWP and layered scan moving trajectory by Cui [32]. 

  [36] Reviewed and classified localization schemes using different numbers of 

criteria for indoor and outdoor environments. Kushwah developed a passive method in 

[28]. Since only a few acoustic mobile beacons emit acoustic signals, the unknown nodes 

just receive these and RF signals to estimate their locations. In [43], Localization method 

on the virtual force and anty colon algorithm was proposed and then compared to Hilbert 

method by Geng. Fu [30] proposed a three dimensional space based localization scheme 

called SMAL, the average localization error is very low (0.04%). 
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 Doherty [65] used a rectangular bounding method to around possible positions for 

all the unknown nodes in the network and minimize the bounded are with any additional 

constraints. In [68], parametic channel mode is presented and localization error is reduced 

by Tarrio. Karagiannis [69] presented four error models and used the points of 

intersection to form circles with estimated distances from each other. This was done in 

order to apply different methods to form clusters. Ragio [70] used a bounding box 

method to minimize the error of localization for mobile WSN constraining the received 

samples. Ying and his group [73] developed a new algorithm called Ecolocation (error 

controlling localization technique) based on RF sequences to minimize the localization 

error. In [64], Qiao proposed two gradient decent algorithms to obtain excellent 

localization accuracy. The same idea was used with the combination of pruning 

inconsistent measurements to higher the localization accuracy which was presented by 

Garg [67]. Sirakumar. S [66] developed a genetic algorithm for Error minimization in 

WSN. Demirbas [71] presented a robust and light weight solution to use the ratio of RSS 

which is from a light weight receiver to overcome a signal received power fluctuation. In 

[72], Baro presented a practical swam potionalization (osp) algorithm to bound the area 

where the sensor can be located, and minimize error.  

Although static and mobile beacons are both feasible options for a WSN, current, 

modern approach to localization are typically based on the use of mobile beacons due to 

their flexibility of application and lower cost. The table below summarizes a number of 

the aspects and parameters of current works that utilize mobile beacons in order to 

provide a broad cross-section of the efforts within the area of localization. 
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Table 1 Mobile Beacons assisted localization solutions comparison 
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Chapter Three:  Problem Statement 

3.1  Nature of Problem 

This research addresses the problem of localization of sensor nodes within a 

WSN. The sensor nodes are assumed to be randomly, statically-positioned throughout a 

relatively-large deployment area. Mobile anchors with directional transmission 

capabilities are assumed to be mounted on a vehicle capable of accurately traversing the 

deployment area, recovering the sensor data, and performing all necessary in-operation 

processing tasks. The use of RSS information and direct data recovery from sensor nodes 

provides the base structure and challenge of the work. The limited communication range 

and capabilities of sensor nodes and the frequently erroneous feedback provided by RSS 
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information present challenges that have not been adequately addressed or overcome in 

existing work in the literature. 

The intended outcomes of this work are to present a detailed understanding of the 

use of error-modeling in augmenting distance measurements, model the RSS localization 

system presented, generate methods to characterize the error present in the system, and 

simulate the resulting models and methods to validate the improvements in localization 

achieved by the conceived methods. Final analysis of the simulation results will provide a 

means of drawing conclusions as to the practical behaviors of the localization system and 

the true effectiveness of the methods presented. Current efforts in this work indicate that 

additional algorithmic enhancements may be possible once preliminary simulation results 

are analyzed. 

This research is intended to be both a proof of concept of the usage of error-

modeling and analysis in localization as well as a platform for further research into 

additional methods and concepts of “holistic” modeling in which potentially-undesirable 

system behaviors, such as incorrect measurements, can be exploited to the benefit of 

improved system output. 

The sections that follow indicate the proposed methods of solution to the 

localization problem and illustrate the simulation that was designed based on these 

methods along with results and analyses based on this simulation. The proposed range 

from a space of a single dimension to that of three dimensions, which is the most likely 

application space for future localization efforts. The proposed solutions build upon one 

another progressing from a single dimension to three dimensions, which follows the 
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nature of the localization problem in that each dimension effectively constitutes a 

separate localization problem with certain mathematical and physical relationships 

correlating the dimensional solutions. Based upon these solutions, the designed 

simulation tests the functionality, limits, and nature of the solutions further. 

The simulation environment was designed to follow the specific nature of the 

localization problem in that the simulated environment, dimensional measurements, and 

physical characteristics modeled within the simulation are based directly from what 

might be expected in a real-world application. This ensures certain quality in the results 

gathered and the subsequent analyses in that they follow from a modeled environment 

intended to match the real environment closely-enough to provide what we believe to be 

conclusively-coherent results. Before discussing such results though, the next section 

provides the necessary details of the mathematical and physical modeling of the proposed 

solutions methods. 
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Chapter Four:  Proposed Methods of Solution 

4.1 Introduction 

Assume that there exist two mobile beacons located before and after a sensor in 

terms of direction of travel of the beacons and that no other location information 

regarding the sensor‟s location is known. This entails envisioning three axes through the 

beacons: the first being the axis of travel passing through both beacons, the second 

passing perpendicularly through the first at the “after” beacon that points in the direction 

of travel, and the third passing perpendicularly through the first at the “before” beacon 

that is behind in the direction of travel. Thus, it can be seen that these three axes, when 

viewed from above in two dimensions, divide the space into six regions. If we define the 

direction of travel to be to the right, we find that three regions exist above the axis of 

travel and three exist below. Two of those regions exist before, or to the left of, the 

“before” axis. Another two of those regions exist between the “before” and “after” axes. 

The remaining two of those regions exist after, or to the right of, the “after” axis. 

As the beacons move in the direction of travel, some of the space in the center 

two regions shifts to become part of the left two regions, while some of the space of the 

right two regions shifts to become part of the center two regions. The beacons are 

assumed to be directional with a 180 degree range of transmission and reception. 

Additionally, if a reading at a point in time is missing from one beacon, the 

corresponding reading from the other beacon is discarded. From this, it becomes clear 
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that the “before” beacon, facing to the right, and the “after” beacon, facing to the left, can 

only communicate with a sensor that lies between the two vertical axes they create. It 

should also be clear that communications between the two beacons and the sensor can be 

considered related based on time of communication, allowing us to pair the information 

gathered at the two beacons for any given point in time. This is due to the fact that at the 

time the communications were made, the sensor was in the same fixed location relative to 

both beacons. If both sets of communications are intended to determine the position of 

the sensor, they should both clearly indicate the same position. As the beacons move, 

new pairs of information are attained at fixed steps in movement. Because the sensor 

itself does not move, any new position indications should identify the same location of 

the sensor as any previous position indications. This is fundamentally equivalent to 

placing a multitude of paired, directional beacons at fixed intervals. The complete 

procedure for Mobile Beacons (MB‟s) and Sensor Nodes (SN‟s) are given in the 

following flow chart [6, 71, 72, 73, 74]. 
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Figure 4.1-1 Flow Chart for Transmission and Receive Beacons and Data a) MB's b) SN's 

 

4.2 Conventions and Relationships 

A “b” in subscript denotes a relationship to a beacon “before” a sensor. 

An “a” in subscript denotes a relationship to a beacon “after” a sensor. 
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An “i” or “j” in subscript denotes a sample taken at a particular point by a beacon before 

or after the sensor, respectively. 

Variables with a “ ” above them indicate estimates of their plain counterparts. 

The following conventions are used throughout this document: 

S = sensor location (unknown) 

B = beacon location (known) 

Δm = movement step distance of beacons (chosen constant) 

D = distance between paired “before” and “after” beacons (chosen constant integral 

multiple of Δm) 

d = distance between a beacon and a sensor 

r = uniformly-distributed random power loss ratio in beacon transmission (unknown) 

e = error in distance measurement d, seen as a shortage resulting from r (unknown) 

dr = measured d based upon power reading of beacon transmission (known) 

The following relationships hold throughout this document: 

 S = Bb + db = Ba - da  (4.1) 

 B(i+1) = Bi + Δm (4.2) 

 D = db + da = |Ba - Bb| (4.3) 

                (4.4) 

 0 ≤ r ≤ 0.3 (assumption), e = d ∙ r (assumption) 

               (4.5) 

 dr = d - e = d ∙ (1 – r) (4.6) 

        (4.7) 
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       . (4.8) 

4.3 Sensor Localization Using Rough Methods 

Clearly determining db or dain one dimensional case and determining both in two 

dimensional cases will yield the unknown location of a sensor. Because only estimates of 

db and da (drb and dra) can be obtained via calculation based on the signal strength of the 

beacons sent from A and B, it is necessary to use appropriate methodologies to reduce the 

errors in distance measurement (eb and ea) inherent in drb and dra. The methods discussed 

in this section, categorized by dimensionality, provide crude means of estimating the 

location of a sensor and form the foundational precepts for later, more refined means. 

4.3.1 One-Dimensional Approach 

Here it is assumed without loss of generality that both beacons and a sensor are located 

on the x-axis. If the ratio c of distances db and da is known, using the relationship of D 

with db and da makes identifying the sensor location a trivial matter. 

 

 

 

Figure 4.3-1 1-D-Basic Rough Method Layout 

 

Some observation and using equation 4.3 and the ratio (   
  

  
 ) yields to: 

      
 

   
 , (4.9) 
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 ,  (4.10) 

Due to fluctuations in power, the beacon power readings taken by a sensor may 

have a certain percentage of error. These error ratios (rb and ra) correspond to shortened 

distance measurements (drb and dra) by factors of distance measurement errors (eb and 

ea). 

The summation of equations 4.7 and 4.8 and using equation 4.3 yields to: 

           (4.11) 

as it shown in Figure 4.3.1 

In the case of equality in equation 4.11 plus doing some simple observation leads to the 

conclusion that the two measured distances must both be completely accurate, meaning 

that        and       . This is due to the fact that by assumption each measured 

distance can never exceed the actual distance it is representing, making it mathematically 

impossible to draw any other conclusion [71, 72, 73]. 

Note:        and       . 

More generally, for any pair of measured distances (drbi, draj), if drbi + draj + (j - i)* Δm = 

D, then drbi = dbi and draj = daj. By selecting the “before” and “after” measurements that 

provide the closest approximation to this equality, it is possible to derive a crude, though 

possibly effective, means of estimating the location of a sensor. 
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Figure 4.3-2 1-D-Multi Sending Case Basic Rough Method Layout 
 

Though the quality of estimation of such a crude method is highly dependent 

upon quantities of measurements producing nearer results through a type of “trial and 

error”, it does, nonetheless, form the basis of concept for the more refined methods 

discussed in later sections that attempt to “bound” the location of the sensor by knowing 

that the sensor cannot be located within the range covered by any drb or dra, which forms 

a kind of “floor” for the possible location of a sensor. 

It will most often be the case that           . It is from this fundamental 

premise that we explore a method involving estimation of c in order to provide a 

primitive means of hopefully eliminating some of the incurred error. This method 

involves the use of a ratio of received signal powers in the form of calculated measured 

distances.  

 ̂  
   

   
 

  

  
   , where K is an unknown error factor 

Given a pair of “before” and “after” readings from two paired beacon transmissions, we 

are able to relate the measured distances obtained from them. 

From   

 
   

   
  

  

  
   ,  
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                , and  

                

we find that            
                   

        
          

          (4.12) 

If we assume that  ̂   , meaning that K = 1 , 

we find that 
     

    
  

    

   
          

 
 

When we relate this to 

        (        )    (         )     ,   

we find that (        )    (      
   

   
      )  (      

   

   
      )   (        )        

 yields        
   (         )

   
   

    
     (4.13) 

and        
   (         )

   
   

    
 (4.14) 

 

   From this point it is a trivial matter to find    and    using the fundamental 

relationship         . This method can also be generalized to use alternative, 

potentially more accurate replacement for drb and dra based on additional readings using 

the method described just prior. Since this method utilizes an assumption that is often 

untrue, proper quantification of results dictates that we have really found   ̂  and   ̂ , 

indicating that our final conclusions are still in fact   ̂  and   ̂. 

4.3.2 Two-Dimensional Approach 

The use of the methods described above as extended to the two-dimensional realm 

requires additional considerations. Fundamentally, the problem is exactly the same if the 
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sensor lies on the axis of movement between the two beacons. However, this is likely not 

the case in question. Thus, it is necessary to determine two factors: distance along the 

axis of movement (position) and distance from the axis of movement (offset). This 

approach follows from the known mathematical fact that the shortest distance between a 

line (the axis of movement) and a point (the sensor) is a line perpendicular to the first line 

(the offset). 

 It should be immediately noted that with the case of two beacons there are in fact 

three distances relative to the position on the axis of movement. These three distances are 

from the position and the sensor, before-beacon, and after-beacon with before and after 

being relative to the direction of movement. It should be clear that the two triangles 

formed from this geometry have the same height, a property that is exploited thoroughly 

throughout the two-dimensional approaches in this work. The figure below illustrates this 

geometry [39]. 

From observation it can be noted that 

                (4.15)  

 where       and      are the components of db and da respectfully along the axis of 

movement. Similar to the single-dimensional case, we must consider that 

                  (4.16)  

 Additionally, we must also consider that                with particular attention 

paid to the fact the                  may be different due to the errors present 

in           . This is another fact that is thoroughly exploited throughout the two-
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dimensional approaches in this research. The following Figure shows the one sending 

case layout for tow dimension [71]. 
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Figure 4.3-3 2-D Basic Layout 

 

 Ideally, if                    , then              and the sensor position 

is known. However, it is fundamentally impossible to separate drb and dra into their 

constituent components. What is known is that the errors associated with             

will follow the components of each to scale. 

 Thus, [
    

    
  

   

   
  

  

   
   and 

    

    
  

   

   
  

  

   
 . 

As a rough attempt at localization, we could assume that the read distances are 

correct (without error) and draw a circle centered at each beacon with radius equal to the 

read distance corresponding to that beacon. The intersection of the circles would then 

yield the sensor's position as shown in the next figure. 
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Figure 4.3-4 2-D- Radial Range for Ratios Uses 

 

While this crude method can be executed from a single set of readings, the 

assumption that there are no errors creates an imminent hazard. If more than one set of 

readings are used, it may be possible to obtain a more accurate location for the sensor. 

This is one of the founding tasks to be accomplished for this work. The figure below 

outlines the structure of the task in case of two pair of readings. 

In the case of two or more readings, we draw for each pair of readings a circle 

centered at each beacon with radius equal to the corresponding dr. Because we know that 

any detected sensor must be at least dr away from a transmitting beacon, we can assume 

that the sensor is above these circles with the lowest possible location for the sensor 

being the intersection of the two circles. This intersection makes a probable estimation 

point for the sensor‟s location. When determining which pair of readings to consider, 

those two readings that produce the highest intersection point are taken as the best 

candidates due to their elimination of the estimated locations produced by other 

candidates. 
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If the condition occurs that there exist no overlapping pairs of beacons, it must be 

true that the sums of all pairs of readings are less than the distances between their 

corresponding beacons. In other words, equation 4.11 can be rewritten as: 

                 (4.17)  

Here, dij is the distance between beacons Bbi and Baj. In order to resolve this situation, we 

identify the pair of beacons that produces a sum of readings closest to the corresponding 

distance between the beacons and utilize the ratio of the individual readings compared 

with the total sum of the readings to apply small extension factors to each reading such 

that the two extended readings produce an overlap point. To identify the candidate pair of 

beacons, we minimize the following relationship: 

      (           )       

Figure 4.3-5 2-D-Multisendig Case Layout 
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We utilize the minimal value produced by the relationship in order to produce the 

necessary extension factors by doubling it and multiplying by the relational ratios. 

Mathematically, this follows as: 

  ̂          
     

(           )
        (           )  (4.18)  

  ̂          
     

(           )
        (           )  (4.19)  

These new extended readings produce an intersection point that becomes the 

estimated location for the sensor [38]. 

4.3.3 Three-Dimensional Approach outlines 

The beacons and overall processing system are mounted within a flying vehicle 

that could be manned or unmanned. One of the critical components of the onboard 

system is the ability to accurately measure altitude. In the simple case that we consider, 

the sensors are located in a flat, two-dimensional plane above which our surveying 

vehicle passes at a fixed altitude. Thus, we can assume that both the before and after 

beacons should be located at the same altitude when performing broadcasts. 

Mathematically, the relationship between the sensor-plane and the beacon-plane is: 

               

For estimation purposes to tolerate a certain degree of realistic error, we locate the 

sensor plane with the following relationship: 

        [(       )   (       )] 

The location of the sensor plane becomes the value of the z-coordinate for 

calculation purposes. By observing the figure below, it can be seen that the readings 
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taken from beacon broadcasts now represent the shape of a cone Here, we consider a pair 

of readings as accurate candidates (db = drb, and da = dra) if and only if they are greater 

than the altitude and their circular-projections onto the sensor plane intersect. Given these 

conditions, we can consider this a two-dimensional problem and solve for the estimation 

of the x and y coordinates as explained in Section 4.3.2. The estimated sensor position is 

the intersection of these circles. If the condition occurs that we do not find a pair of 

candidates that meet the altitude condition, extension factors are added to the most 

appropriate candidates. Thus, if a reading is smaller than the altitude (dr < h), the 

following incremental transformation is applied until the altitude condition (h) is met: 

            
    

 
         where n = 1,2,3,…. (4.20) 

            
    

 
       (4.21)  
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Figure 4.3-6 3-D-Onesendig Case Layout 

 

4.4 Sensor Localization Using Magnitude Bounding Method 

In this section, we hold the assumption that the sensor is located between the two 

beacons as in task one and can receive wireless signals from both anchors. The received 

signals are gathered and sent to the system and they will be translated to distances. In this 

area we are going to find the line where the sensor can be in 1-D, the area in 2-D, and the 

volume in 3D.  In addition to the general assumption, we assume that the translated 

distances from the received powers are greater, equal to the specific percent of the real 

distance and less, or equal to the real distance itself.  

(      )              

(      )              
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Where rmax is a random variable that depends on the communication fluctuation. 

4.4.1 One-Dimensional Approach 

In this task we are going to first determine the minimum and maximum x 

coordinates that the sensor cannot exceed for each pair of transmission cases. Then we 

will minimize the possibility line length for the sensor‟s position through the combination 

of all cases [72, 73, 74]. 

Our assumption now is: 

(      )             

(      )             

S u

bd ad

bB aB

bdr adr
minx maxx

)(x

Figure 4.4-1 1-D-Magnitute Bounding Layout 

  

As a result, the sensor is located on the line between     and      as shown in 

figure 4.4.1.  

In the case of more than one reading, we are going to determine      and      for 

each pair of readings, then we will choose the      and the      that have the closest  

values to each other as shown in Figure 4.4.2. 
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4.4.2  Two-Dimensional Approach 

The two-dimensional approach to magnitude bounding allows the determination 

of a “floor” for the location of the sensor based on the fact that the minimum distance to 

the sensor from a beacon is equal to the read distance for that beacon. For the “ceiling”, 

the communication range of the sensor is limited and thus the sensor location cannot be 

out of range of either beacon. The figure below illustrates these points. 
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Figure 4.4-3 2-D-Magnitute Bounding 
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This approach, while completely accurate given the constraining assumptions, is 

not as precise as more-refined methods because the area of certainty in which the sensor 

is located is rather large. It follows from these conclusions that a more-refined bounding 

method is necessary. 

4.5 Sensor Localization Using Bounded-Error Method 

The previously discussed methods, despite their inconsistent, error-prone results, 

form the groundwork of principles and approaches necessary to take a more accurate 

approach to sensor localization. The method discussed in this section bounds the errors of 

all readings through correlation of gathered readings. This differs from the previously 

discussed methods and those methods found within researched works in that it utilizes the 

magnitudes of unknown error quantities as a means to accurately place sensor locations. 

As before, what we desire are accurate estimates of distances db and da, represented as 

 ̂ and  ̂ . Because our error-model e = d*r relates distance “d” and power loss ratio “r”, 

it is important to note that d = dr + e = d*(1-r) + d*r. Thus, when dr is minimal, e is 

maximal and vice versa. It is from this standpoint that we initially assume that e is 

maximal, making dr minimal. When e is maximal, r is necessarily maximal as well [6, 63, 

70, 74]. 

Given that     
  

   
 , 

When dr is minimal,     
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Figure 4.5-1 1-D-Minimum Estimated Error 

 

The previously discussed methods, despite their inconsistent, error-prone results, 

form the groundwork of principles and approaches necessary to take a more accurate 

approach to sensor localization. The method discussed in this section bounds the errors of 

all readings through correlation of gathered readings. This differs from the previously 

discussed methods and those methods found within researched works in that it utilizes the 

magnitudes of unknown error quantities as a means to accurately place sensor locations. 

As before, what we desire are accurate estimates of distances db and da, represented as 

 ̂ and  ̂ . Because our error-model e = d*r relates distance “d” and power loss ratio “r”, 

it is important to note that d = dr + e = d*(1-r) + d*r. Thus, when dr is minimal, e is 

maximal and vice versa. It is from this standpoint that we initially assume that e is 

maximal, making dr minimal. When e is maximal, r is necessarily maximal as well. 

Given that     
  

   
 , 

When dr is minimal,     
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4.5.1  One-Dimensional Approach 

In the case of a single dimension, db + da = D as previously established. Because 

db and da lie within the same plane, their reading counterparts drb and dra are directly 

correlated within that plane. The fundamental inequality between them is that they may 

have different error ratios “r”. As the following figure depicts, the readings obtained for 

the “before” and “after” sides provide means of establishing “floor” values for their 

respective sides. Simple observation leads to the conclusion that the “before” side also 

provides a “ceiling” for the “after” side and vice versa. This becomes especially 

important when taking into account multiple combinations of “before” and “after” 

readings. 

Even with these observations and relationships, it should be noted that our efforts 

ought to be concentrated on locating the exact position of S. Theoretically, the sensor 

position can be computed using equations 4.1, 4.4, and 4.5 as follows:  

                           (      ) 

 Since the errors are not known, we can calculate the minimum and the maximum 

possible positions of the sensor. 

          (          
   

    ̂
) (4.22)  

          (    
   

    ̂
        ) (4.23) 

            

Figures 4.4.2 A and B illustrate two different reading cases of the one sending 

bounding case. 
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Figure 4.5-2 1-D- Estimated Error Bounding 

a) Estimated Error determine Bounding points 

b)  Real Reading determine Bounding points 

 

When multiple combinations of “before” and “after” readings are utilized per the 

previously discussed methods, it becomes possible to iteratively update these boundaries 

of “S” by ensuring that only the most maximal minimum and minimal maximum are 

kept. From new readings, it is possible to minimize previous “r” estimations. 
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Figure 4.5-3 1-D- Adjusted Estimated Error Bounding 

 

For any given set of readings, 
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Figure 4.5-4 1-D-Part of Estimated Error Cancelation 
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Figure 4.5-5 Flow Chart for 1-D- Bounding Algorithm 
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Figure 4.5-6  Simplification of the Flow Chart for 1-D- Bounding Algorithm 
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Bounding Algorithm (BA): 

1- Compute the sums of readings(           ), for all readings i= 1… n, and j = 1, 

2… n where n is the total number of readings. 

2- Compare all the sums of the pair readings computed above with 

(             ) 

3- If any                  then compute sensor position 

                         and stop 

Or any             (      )     then compute sensor position 

       (
     

       
 )       (

     

       
 )   

and stop 

                         

4- Compute rbi and rai ranges using the above equations  and chose the smallest 

ranges 

5- Find the measured readings related to them and then compute the real distances as 

follow: 

    

          
  

  

   
 or     

    

          
    

 

    

          
  

  

    

 or     
    

          
    

6- Compute the sensor location as follow: 
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4.5.2 Two-Dimensional Case 

The two-dimensional application of the error-bounding method follows from the 

principles established for single-dimensional application. From a single transmission, it is 

our task to utilize the read distances to perform a radial bounding rather than a linear 

bounding [31, 32]. Thus, the single-dimensional case can be seen as a specialized version 

of the two-dimensional case in which the sensor lies directly between the beacons. The 

figure below illustrates the geometry of this aspect of the problem. 

 

Figure 4.5-7 2-D-Estimated Error Bounding Layout 

 

However, given a developed method, it is necessary to utilize additional readings 

to further bound the area of certainty for the sensor location. This constitutes a type of 

iterative algorithmic process of refining the error assumptions of previous readings in 

order to minimize the area of certainty of sensor location. The following figure 
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demonstrates the geometry of the expanded approach. The simulation results are shown 

in chapter 5 illustrate the approached process in creating and refining radial bounds for 

the sensor location. It should be noted that a fundamental observation regarding this 

process is that of extreme-values, meaning that refinement relies on bounding conditions 

that exceed previously-demonstrated conditions. 
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Figure 4.5-8  2-D-Two Sending Case Estimated Error Bounding Layout 

 

Since the shortest distance between the sensor‟s location and the line between the 

beacons, which is on the x-axis, is the perpendicular line as shown in figure 4.5.8. The 

following equations control the estimated sensor position:  
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Lemma: 

            
     

       
      

       

Proof: 

To find the square differences‟ relationship between the second and the first 

reading for before beacon, we can do the following: 

   
     

      
      

  (       )  (       )  
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Figure 4.5-9 2-D-Two Sending Case Estimated Error Bounding using Similar Triangulation 

 

4.5.3 Three-Dimensional Approach outlines 

As considered in the two-dimension section above, we still hold the assumption 

that the reading taken from a beacon cannot be smaller than a partial part of a related 

distance and cannot be bigger than the distance itself. First, we must apply any necessary 

extension factors based on the altitude per process explained in Section 4.5.2 until both 

cones‟ sides are greater than their altitude. From this point, we compute estimated 

distances as illustrated in Section 4.3.3 resulting in two cones for each reading as 

illustrated in figure4.5.10. Given the projections of two sets of concentric circles with 

some degrees of overlap, the problem can be considered in two dimensions per the 

methodology discussed in Section 4.5.2. 
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Figure 4.5-10 3-D-One Sending Case Estimated Error Bounding using Similar Cones 

 

When we have multiple readings, just like in the 2D section, we once again try to 

minimize the area in which the sensor is located within the overlap of the 2 cones in the 

3D model. Then, we can find the estimate sensor position‟s volume and calculate its 

estimated location regarding the nearest beacons. After that, we can find the estimated x, 

and y coordinates.  

4.6  Sensor Localization Using Bounded-Angle Method 

This method is an offshoot of the bounded-error method that could serve as a 

substitute and may demonstrate quality as a supplement to that method. While it is known 

that certain regions incrementally fall outside of the area of certainty for sensor location 

through the process of further refinement, it must be noted that some of the area included 
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using the bounded-error method area actually unfeasible possible locations for the sensor 

due to the geometry of the problem. As the figure below illustrates. It is necessary that 

the angle created between the sensor and before-beacon and the before-beacon and 

location on the access of movement must increase with further readings taken after 

beacon movement. This is illustrated in table 2. 

Table  2 Before Angles for different DX when D = 5 
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1/5 11.309 2 5/7 2/5 21.801 4 3/4 3/5 30.963 6 

1/4 14.036 4 2/5 1/2 26.565 7 1/8 3/4 36.869 8 1/8 

1/3 18.434 8 1/8 2/3 33.690 11 1/3 1 45 11 1/3 

1/2 26.5651 18 3/7 1 45 18 3/7 1 1/2 56.309 15 1/4 

1 45 0 2 63.434  3 71.565  
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e 
=

 2
 1/5 11.309 7 1/8 

2/5 21.801 11 8/9 3/5 30.963 14 

1/3 18.434 26 4/7 
2/3 33.690 29 3/4 1 45 26 4/7 

1 45 0 

2 63.434  3 71.565 0 
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 3

 

1/5 11.309 

15 1/4 

 2/5 21.801 23 1/5 3/5 30.963 

25 1/3 

 

1/2 26.565 0 1 45 0 1 1/2 56.309 

 

 

 The angles created by the after-beacon and its movement must decrease with 

movement. While having single-dimensional implications, this method is most 

appropriately applied to multi-dimensional cases. 
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Figure 4.6-1 Angular Bounding Layout 

 

From the figure above we can read: 

  (   )     ,     (   )      

                           

                          

                          

                ϒb2 = 90 – θb2, and ϒb1 = 90 – θb1 - ϒb2  

                ϒb1 = 90 – θa1, and ϒb2 = 90 – θb2 - ϒb1  

and from simulation results it‟s found that: 

                 ,                    

 The nature of the bounded-angle method is that of utilizing minimal and maximal 

possible angles for the direction of the sensor. This addresses a problem aspect not found 

in a single-dimensional case: the direction of the sensor for which we have obtained a 

distance measurement is unknown, but able to be bounded. It can readily be observed that 
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although the sensor could be placed on either side of the axis of movement due to a 

mirror property of the geometry, the addition of a third beacon or many other simple 

means could be utilized as a future effort to isolate the area of certainty to a single side of 

the axis of movement.  

4.6.1  The Relationship between Angles 

We know that the y-distance (dy) is equal for the angles to the sensor of all 

before-and-after beacon broadcasts, Sxmin and Sxmax   are respectively positioned after 

the last before-beacon (Bbn) and before the first after-beacon (Ba1), and the distance 

between these two beacons is Δx. Given these strong relationships, being able to 

constrain the angles from the beacons to the sensors would lead to greatly-increased 

accuracy of estimating the location of the sensor. In order to simplify the explanation of 

this process, we assume that the x-position of the sensor (Sx) is known in order to explain 

the relationships between before-before-, after- after-, and before-after-beacon positions. 

4.6.1.1  The Relationship Between Before Angles 

After computing minimum and maximum angles for all steps for each beacon, we can try 

to constrain these angles by finding relationships among them. Figure 4.6.1 shows the 

case of two readings. 
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Similarly, we can find the relationships among    ,     and     
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In general we can write the relationship between any    and     under the condition: k < 

i as follows:  
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)      (   )  (4.24)  

4.6.1.2  The Relationship Between After Angles 

We can identify similar relationships regarding after-beacon angles. 
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Similarly, we can find the relationship among    ,     and     
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In general we can write the relationship between any    and     under the condition: 

 j < l as follows:  
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or 
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)      (   )  (4.25)  

 

4.6.1.3  The Relationship between Before and After Angles 

 Now all that remains is to establish the critical, connecting relationships between 

before and after angles.  
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)      (   )  (4.26)  

In the case of i = j and considering the position of Sx, we can determine if     is greater 

than, equal to, or smaller than    . There are several important points to consider when 

determining these relationships between before and after beacons. 

 The middle point 

     
           

 
 

Lemma          

Proof:  

       

      
 

     

    
 

          

        
  

      
           

  

           
      

 
           

          
    

 

               

Or  

                       

 The first half-distance interval  
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Here, the y-distance (dy) is equal for both angles and Sx is located in the first half 

of the region (Δx) between daxi and dbxi, This means that daxi > dbxi  and 

          

        
   

and 

               

As a result  

         

 

 The second half distance interval 

     
           

 
 

Similarly, but opposite, this case means that daxi < dbxi  and 

          

        
   

and 

               

As a result  

         

4.6.2  Problem Transform From 2-D to 1-D and X Coordinate Estimation 

After constraining the angles as much as possible, we can compute the new 

rbminn, rbmaxn, raminn, and ramaxn as follows: 
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  or           
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Given these constrained distanced, we can utilize the concepts from our one-dimensional 

analysis for computing the minimum and maximum values for each reading in the x-

space  (drbxmin, drbxmax, draxmin, and drbxmax) and then perform some calculations to estimate 

the x-coordinate of the sensor. 

                          

                          

                           

                           

After computing all readings in x-space, we can calculate all of their corresponding 

estimated distances using the newly-computed rbminn, rbmaxn, raminn, and ramaxn. 

 ̂          
        

(           )
 

 ̂          
        

(           )
 

 ̂          
        

(           )
 

 ̂          
        

(           )
 

In the same way, way we can compute all corresponding estimated distances for after 

beacons. 
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 ̂          
        

(           )
 

 ̂          
        

(           )
 

 ̂          
        

(           )
 

 ̂          
        

(           )
 

By comparing these estimated readings with Sxmin and Sxmax, we were able to 

constrain Sxmin and Sxmax along with drbxmin and drbxmax and draxmin, and drbxmax. Finally we 

can estimate the x-coordinate of the sensor location (Sxi) as we did in Section 4.5.1 and 

then compute the estimated reading distances in the x-space  ̂     and  ̂    . 

4.6.3  Problem Retransform From 1-D to 2-D and Y-Coordinate Estimation 

After computing the estimated reading distances in the x-space  ̂    ,  and  ̂    , 

we are now able to calculate the estimated angles for all sensors in the field for each 

reading as follows: 

 ̂         ( 
 ̂    

    
 ) 

 ̂         ( 
 ̂    

    
 ) 

By finding the intersection points of rays drawn using these angles originating at 

their corresponding beacons, we can identify several estimated sensor locations for each 

sensor. By averaging the x- and y-coordinates of these estimated locations, we can arrive 

at an estimated location for each sensor that is of high accuracy. 
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What follows are the flow chart and corresponding algorithm that are 

preliminarily suggested for this work. While some proof of concept tests have been used 

to perform an initial feasibility and solidity evaluation of these attempts, it is a necessary 

task to verify their uses through simulation and refine them as necessary. 
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Figure 4.6-2   Flow Chart for Angular Bounding Method Algorithm 
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Angular Bounding Algorithm (ABA): 

 

1- Compute all        and          
 

                 ,                  

 

2- Find all angles                                          

 

              ( 
       

        

),               ( 
       

        

), 

 

              ( 
       

        

),               ( 
       

        

) 

 

3- Compute the sum of                      ,                      

 

Where                          ,                           

                           ,                           

 

4- If                      (        )  ,                         store them 

Else delete them 

 

5- Find the new angles                                              

 

               ( 
   (      )

        

),                ( 
   (      )
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               ( 
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),                ( 
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6- Compute the sum of                        ,                        

 

7- Apply the bounding algorithm for 1D 

 

8- Compute the new angles 

 

9- Solve for x, and y 
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4.6.4  Three-Dimensional Approach Outlines 

 
 

Figure 4.6-3 3-DAangular Bounding Method Layout 

 

As noted before, the angular bounding method is a developed method of 

estimated error. After determining the volume or in some cases the area, we can once 

more minimize the bounded volume, or the bounded area, by using the relationships 

between the angles as illustrated in the previous section. 
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4.7  Mobile Beacons Trajectory 

In regards to the paths taken by mobile-beacon-carrying vehicles for purposes of 

field coverage, there are many possible options. Figure 4.7.1 illustrates what is known as 

the Sparse-Straight-Line (SSL) movement pattern, which is shown in Figure. This pattern 

is typically unable to localize every sensor node due to its broad vertical spacing. The 

second figure, figure 4.7.2 illustrates the Dense-Straight-Line (DSL) movement pattern. 

The methods developed for this dissertation utilize this pattern to ensure the highest-

likelihood of complete sensor network localization. The use of these patterns allows for 

both horizontal and vertical isolation of broadcast steps so that the information gained as 

a result of such broadcasts is uniform in spacing and able to be subjected to mathematical 

analyses that take advantage of this fact [55, 56]. 

 

 

Figure 4.7-1 SSL Mobile Trajectory 
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Figure 4.7-2 DSL Mobile Trajectory 

 

4.8  Measurement-Error Ratio Distribution Assumptions 

Two different forms of measurement-error ratio distribution were considered for 

this dissertation. Both were considered over an adjustable segment within the range from 

0 to 1.0 with the values within this range being missing portions of the distance-

measurements calculated based on beacon broadcasts. The first distribution was that of a 

uniform distribution, which considers all parts of the segment from which measurement-

error ratios were drawn to be equally-likely. Based on this assumption, the localization 

methods leveraged during simulation considered the final localization positions within 

their bounded regions to be equally-likely. This assumption no longer held when 

considering a Gaussian distribution, which considers the segment from which 

measurement-error ratios were drawn to be normally-likely with mean focused at the 

center of the segment. The construction of such a constrained, normal distribution 
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required that four standard deviations in the positive and negative directions from the 

mean be fitted within the segment with the remaining, highly-unlikely tails of the 

distribution being truncated to zero probability. Under the Gaussian assumption, the 

localization methods leveraged during simulation, being aware of the initial segment and 

distribution of measurement-error ratios, considered sensor positions closer to the 

Gaussian mean to be of much greater likelihood than those further from the mean. This 

created a considerable effect when the mean was eliminated as a possibility based on the 

efforts of the localization methods. 

  



 

89 

 

 

 

Chapter Five:  Simulation and results of Sensor Localization  

5.1 Introduction 

In the previous chapter we discussed various mathematical models and methods 

for estimated sensor locations. The models that we established were proven based on the 

localization problem definitions established previously and fundamentals of trigonometry 

and mathematical relationships. While the methods suggested are firmly-grounded in 

proof, what remains is to measure the magnitude of success of the application of these 

methods. It would theoretically be possible to use algorithmic and proof-based methods 

to establish accuracy given the definitions and constraints established. However, doing so 

would be tedious and prone to error and skepticism. It is for these reasons that we opted 

to develop a means of gathering concrete, objective proof capable of being subjected to 

theoretical and statistical scrutiny. In establishing such a means, there are several 

principles aspects to be mentioned, the first of which is the definition of magnitude of 

correctness. 

Given that the nature of the localization problem is in identifying the locations of 

sensors, the logical conclusion to measuring correctness of a localization method is in 

measuring the error of identifying the locations of large bodies of randomly-located 

sensors. While this would be possible to do in a real-world scenario given the proper 

equipment and experimental arrangements, for the scope of this work such an endeavor 

would have been extremely inefficient and cost-prohibitive. Thus, for this research, we 
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designed a fully-featured simulation environment for placing large arrays of sensors in a 

virtual field and a virtual set of beacons to traverse this field. Because the base-

information utilized by all of the suggested methods in this work is the same, we were 

able to achieve high efficiency in implementation by passing the gathered beacon 

information for each sensor to each implemented method to simultaneously gather 

individual results. The obviously-desired result of each method is a single, definitive 

estimated location for each sensor in the field. Given these goals and constructions, we 

next must establish the parameters of consideration. 

The parameters utilized for our simulation were those that were deemed to 

produce obvious effects on the outcome of sensor localization based upon the models 

discussed in the previous chapters. These specifically include: 

 Step Size in the Direction of Travel (DX) 

 Step Size Perpendicular to the Direction of Travel (DY) 

 Separation of Beacons (D) 

 Broadcast Angle of Beacons (A) 

 Communication Range of Beacons (C) 

 Number of Sensors (Sensors) 

 Minimum Measurement Error (RMIN) 

 Maximum Measurement Error (RMAX) 

Given these parameters, we established the following gathered results: 

 Mean Error (for each method) 

 Minimum Error (for each method) 
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 Maximum Error (for each method) 

 Mean Sensors Detected 

 Minimum Sensors Detected 

 Maximum Sensors Detected 

In order to accurately and efficiently administer the necessary parameters to our 

simulation and gather the requisite results, a separate result-gathering environment was 

developed to administer set numbers of trials per each set of parameters and encapsulate 

execution of the simulation environment. This allowed for the execution of many random 

trials with each desired set of parameters in order to perform statistical averaging to 

minimize the effects of random occurrences that might unduly benefit or harm the results 

being gathered. Because our primary concern was the mean and range of effectiveness of 

sensor localization, the gathered-results were tailored as such. Once we gathered the 

desires results, we next needed to present them in a meaningful and analytical way. 

Although tabular results would have sufficed for proof of concept, we felt that 

detailed graphical results would much more effectively lend themselves to proper 

analysis and reveal characteristics specific to each method that might be left unnoticed in 

a tabular form. Thus, we created an automated graphing environment to effectively and 

efficiently display the encapsulated results of the result-gathering environment. The 

results of this effort are displayed liberally throughout this chapter. 

It should be kept in mind that results were gathered for both one-dimensional and 

two-dimensional variations of each method. We strongly believe that future expansion to 

three dimensions would be able to utilize the same foundations and tools established and 
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designed for this work. When displaying actual simulated fields in graphical form 

throughout this chapter, it should be noted that beacon locations are denoted by an “x” 

and sensor locations are denoted by an “o”.  The model‟s performance depends on 

whether or not the beacon separation distance is less than or equal to a meter.    

5.2 1-D- Methods 

The software used in this Section was the Matlab 7.8. In it, we used a line length 

of 500 units. We distributed 100 nodes randomly and their localization job is to receive 

and gather beacon signals and then send them back to the system but with an addition of 

their ID information. In this section, there are three methods: Rough, Magnitude 

Bounding, and Error Bounding; we will compare all of the methods with each other and 

they will be analyzed profoundly with different parameter values. The communication 

range of beacons is equal to the beacons‟ separation distance to ensure all sensors are 

detected. To obtain more average accuracy for the mean error, we run the simulation 

programs 50 times. 
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5.2.1 Rough Method  

 

Figure 5.2-1 Accuracy of Rough Method vs Δx for different Rmax‟s 

 

At the Horizontal Beacon Step Size of 2.5 units (D/4), all of the Maximum 

Measurement Error Ratios (Rmax) had different mean errors; more specifically, the 0.1 

Rmax had a mean error of approximately 1.18 units while the 0.2 Rmax had a mean error of 

about 1 units and the 0.3 Rmax had a mean error of approximately 0.7 units. Then the 0.1 

and the 0.2 Rmaxs rapidly dropped while the 0.3 Rmax increased. After that, all 3 Rmaxs 

decreased, and then they all increased again all reaching almost the same mean error 

value of 0.6 units.  
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 The previous figure, figure 5.2.1, shows the rough method‟s mean error vs the 

horizontal beacon step sizes for different Rmaxs while the following figure, figure 5.2.2, 

also shows the rough method‟s mean error vs horizontal beacon step sizes but it will 

demonstrate it by testing different beacon separation distances.  

 

Figure 5.2-2 Accuracy of Ruogh Method vs Δx for different D‟s 

 

 The rough method‟s mean error fluctuates 0.59 and 1 for the beacon with a 

separation distance of 2. For the beacon with the separation distance of 6, the mean error 

is approximately 0.75 units when the horizontal beacon step size is 6/4 and then rises to 

its peak of approximately 1.6 units and decreases sharply afterwards a mean error of 1 at 

D/2. It then continues to decrease but does so at a far less rapid rate reaching its lowest 
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mean error of 0.4 units at the step size of 6. The beacon with the separation distance of 10 

starts out with a mean error of approximately 0.7 units and then increases and then 

increases slightly between the step size of 2.5-3.5; after that it continues to increase but at 

a faster rate than before reaching its peak at the step size of 5 and then decreases reaching 

a mean error of 0.7 by the step size of 10. 

 To sum up, there‟s no specific rule for the mean error as a function in the 

horizontal beacon step size and for different Ds and Rmaxs. This is because the rough 

method depends on the actual reading distances as explained in Section 4.3.1. 

5.2.2  Magnitude Bounding Method  

 

Figure 5.2-3 Accuracy of Magnitude Bounding Method for different Rmax‟s 
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 Overall, all the 3 Rmaxs increased. Each of the Rmaxs increased at almost a constant 

rate, making the relationship between the horizontal beacon step size and the mean error 

seem like a linear one. At the horizontal beacon step size of D/4, the 0.3 Rmax had the 

highest mean error at 0.03 units while the 0.2 Rmax had a mean error of 0.02 and the 0.1 

Rmax had a mean error of 0.01. They all increased but at different rates; the 0.3 Rmax 

increased with the most rapid rate reaching a mean error of about 0.04 units while the 0.2 

Rmax increased to a mean error of approximately 0.03 units and the 0.1 Rmax increased to a 

mean error of 0.015 units. Then, they all continued to increase at the same rate they 

increased by before.  

 The prior figure, figure 5.2.3, demonstrates the mean error‟s relationship with the 

horizontal beacon step size for the Magnitude Bounding method by testing different 

Rmaxs while the following figure, figure 5.2.4, will demonstrate the same relationship but 

it will do so by testing different beacon separation distances.  
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Figure 5.2-4  Accuracy of Magnitude Bounding Method for different D‟s 

 

In contrast to the rough method, the magnitude bounding method‟s mean error 

depends on the beacon separation distance and the horizontal beacon step size. It‟s clearly 

demonstrated that the smaller the distance, the smaller the mean error and that the higher 

the horizontal beacon step size, the higher the mean error.  
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5.2.3 Error Bounding Method  

 

Figure 5.2-5 Accuracy of  Error Bounding Method for different Rmax‟s 

 

In general, all of the 3 Rmaxs increased at the same rate for the horizontal beacon 

step sizes of 2.5-3.5. The 0.1 Rmax was the only Rmax that remained almost stable at this 

rate throughout all of the step sizes. The 0.2 Rmax, on the other hand, changed its rate of 

growth becoming more rapid every time as the step size increased while the 0.3 step size 

seemed to grow at a rapid rate but then started to grow at a less rapid rate at the step size 

of 5. 

 Figure 5.2.5 shows the error bounding method‟s mean error vs the horizontal 

beacon step size by testing different Rmax, while the following figure, figure 5.2.6, will 
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look at the same relationship between the mean error and the horizontal beacon step size 

but by testing beacon separation distances instead.  

 
 

Figure 5.2-6 Accuracy of Error Bounding Method vs DX 

 

Like the magnitude bounding method‟s mean error, the error bounding method‟s 

mean error depends on D and the horizontal beacon step size but has a much smaller 

range of mean errors because the bounding values (Sxmin and Sxmax) are determined by the 

before and after beacons as illustrated in Section 4.5.1.  

5.3 2-D-Methods 

In this Section, we used the same software that was used in section 5.2 with the 

1D method, but instead of using a 500 unit field, we used a square field with the length of 
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100 units. The simulation codes are run 50 times as in 1-D to obtain high average 

accuracy. 

5.3.1 Finding the Best Beacon Transmission Angle 

 The three following figures illustrate the sensor detection as a function of 

different transmission angles (15, 30, 45. 60, 75, 90) for diverse Rmax‟s (0.1, 0.2, 0.3) 

respectively.  

 

Figure 5.3-1 Sensor Detection for Rmax = 0.1 

 

Figure 5.3.1 shows the number of minimum, maximum, and mean sensors 

detected when the maximum measurement error ratio is 0.1 as a function of the beacon 

communication angle.  In general, the figure demonstrates that the higher the beacon 
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communication angle, the higher the sensor detection. The minimum sensor detection is 

87 of all distributed sensors. 

  

 

Figure 5.3-2 Sensor Detection for Rmax = 0.2 

 

 The figure 5.3.2 also shows the number of minimum, maximum, and mean 

sensors detected when the maximum measurement error ratio is 0.2 as a function 

of the beacon communication angle. For the most part, the figure illustrates that 

the higher the beacon communication angle, the higher the sensor detection. The 

minimum sensor detection is 87 of all distributed sensors. 
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Figure 5.3-3 Sensor Detection for Rmax = 0.3 

 

 In this figure, it is illustrated that the sensor detection is extremely 

dependent on the sensor communication angle. The figure also illustrates that the 

minimum sensor detection and the maximum sensor detection fluctuate while the 

mean sensor detection stays almost the same for all the different beacon 

communication angles.  
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Figure 5.3-4 Sensor Detection for A = 90 

  

Figure 5.3.4 demonstrates that all the sensors for all of the different beacon 

separation distances and all the three different Rmax‟s are detected when the beacon 

transmission angle is equal to 90 degrees which is we used the beacon transmission angle 

of 90, in all of the two dimension simulations to ensure all sensora in the field are 

detected.  

5.3.2 Rough Method  

Figure 5.3.5 shows the actual and the estimated sensor positions in the whole 

field. The actual sensors‟ positions are marked as small red rhombuses and the rough 

method sensors‟ estimated positions are marked as small light blue circles. 
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Figure 5.3-5 Localization Results of Rough Method 

 

. Figures 5.3.6 and 5.3.7 show the comparison results when the mean error of the 

rough method is a function of the horizontal beacon step size for different D‟s and 

Rmax‟s respectively. 
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Figure 5.3-6 Accuracy of the Rough Method vs. Rmax  

 

Generally, the beacon separation with a distance of 10 units has the highest mean 

error and this remains so throughout the other error ratios. The beacon separation distance 

of 10 has a mean error of 0.25 units at the error ratio of 0.1 while the two other 

measurements have a mean error below 0.15 units. Afterwards, all of the three beacon 

separation distances increased; more specifically, at the error ratio of 0.2, the beacon 

separation distance of 10 reached a mean error of 0.35 units while the beacon separation 

distance of 6 and the beacon separation of 2 reached a mean error of more than 0.2. Then, 

from the error ratio of 0.2-0.3, the beacon separation with a distance of 2 and the beacon 

separation distance 10 both increased at a less dramatic rate than before with the beacon 
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separation distance 10 reaching a mean error of more than 0.35 units and the beacon 

separation distance of 2 reaching a mean error of about 0.25. Unlike the two other beacon 

separation distances, the beacon separation distance of 6 rises with a more significant rate 

reaching a mean error of about 0.3 units at the error ratio 0.3. 

The preceding figure shows the rough method‟s mean error vs Rmax for different 

D‟s, while the proceeding figure also shows the rough method‟s mean error but it‟s vs the 

Dx this time for different Rmaxs. 

 

Figure 5.3-7  Accuracy of Rough Method vs DX 
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5.3.3 Error Bounding Method 

In Figure 5.3.8, the sub figures a, b, c, and d shows the principle of EBM for 4 

sending cases respectively. The small circles represent the RMIN values and their radius 

is equal to the actual reading distances. As explained in Section 4.5.2, based on our 

assumption, the readings are equal to the minimum distance, so that we can compute the 

maximum estimated distance, which equal to the estimated distance, for each reading 

from both sides. These are represented with the big circles. Then, the possible location 

area for the sensor is bounded and it‟s clear that the higher the sending cases the smaller 

the area, where the sensor can be located.  

 

Figure 5.3-8 2-D Four Sending Case-Bounded-Error Method 

a) First Sending  b) Second Sending  c) Third Sending  d) Furth Sending 
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Figure 5.3.9 shows the actual and the estimated sensor positions in the whole 

field. The true positions are marked as small red dots and the error bounding method 

estimated positions are marked as small blue squares. 

 

 
Figure 5.3-9 Localization Result of Error Bounding Method 

                              

The accuracy of Error Bounding Method as a function in Rmax and DX for different D‟s  

is illustrated in figures 5.3.10 and 5.3.11 respectively.   
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Figure 5.3-10 Accuracy of the Error Bounding Method vs. Rmax for different D‟s 

 

 This figure shows that the beacon separation distance of 10 has once again 

managed to get the highest mean error throughout all of the maximum measurement error 

ratios (Rmax) that were tested. All of the mean errors for the 3 separation distances 

increased-sometimes more rapidly than other times.  At the Rmax 0.1 units, the beacon 

separation distance of 10 has a mean error of more than 0.6 units while the beacon 

separation distance of 6 has a mean error of 0.3 units and the beacon separation distance 

of 2 has a mean error of 0.1. Then, at the Rmax of 0.2 units, the beacon separation distance 

of 10 increased very significantly reaching a mean error of 0.12 while the beacon 

separation distance of 6 rose to a mean error of 0.5 and the beacon separation distance of 
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2 grew at a faster rate than the beacon separation distance of 6 reaching a mean error of 

approximately 0.4. After that, the beacon separation distance of 10 continued to increase 

at the same linear rate with a slope of 5.5 reaching a mean error of about 0.18 at the error 

ratio of 0.3 while the beacon separation distance of 6 grew at a more rapid rate than 

before reaching a mean error of about 0.1 while the beacon separation distance of 2 rose 

at a far less dramatic rate than before almost as if it didn‟t change at all.  

 

 

 

Figure 5.3-11 Accuracy of the Error Bounding Method vs DX for different D‟s 

 

All the three maximum measurement error ratios (Rmaxs) had little to no change 

from the horizontal beacon step size (DX) of 1.5-3 units until they all got to the same 
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mean error at the Δ x of 3 units. Then, they all began to grow at rapid rates. The 0.3 Rmax 

grew at a faster rate than the others reaching a mean error of more than 2 units while the 

2 other Rmaxs managed to reach a mean error of approximately 1.5 units. It‟s clearly seen 

that the mean error isn‟t all dependent on the Rmax when Δx is equal to half of the 

distance between the beacons. On the other hand, when Δx is equal to the distance 

between the beacons, the mean error is extremely affected by Rmax.   

In conclusion, the mean error of the Bounded-Error Method depends on the 

beacon separation distance and on the horizontal beacon step size as shown in figure 

5.3.2. The smaller the D, and the DX, the smaller the error. On the other hand, the Error 

Bounding Method mean error does not depend on the Rmax in the majority of the cases 

when DX is equal to or less than D/2.  

It‟s illustrated in table 5.2 that the higher the transmission angle the higher the 

localize percentage and vice versa. In the other hand, the smaller the transmission angles 

the better accuracy can be obtained.  

5.3.4 Angular Bounding Method 

Figure 5.3.12 shows the actual and the estimated sensor positions in the whole 

field. The true positions are marked as small squares and the estimated positions are 

marked as small circles. 
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Figure 5.3-12 Localization Result of Angular Bounding Method 

 

Table 3 shows a matlab result example for the sensor 52. The first four lines 

illustrate the original minimum angle (further left) and the maximum angle (further right) 

from detected before beacons. The other two left and right columns are the improvement 

results and the angle between partases is the actual angle. The other four lines explain the 

same idea for after detected beacons. The last two lines in the table shows the results for 

minimum (left side) and maximum (right side) bounding values of x- and y- coordinate 

respectively for the sensor 52. The actual sensor position is the left side value in partasis 

and the estimated sensor position is the right value. 
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Table 3 Angle Minimization and Sensor Location Estimation for Sensor 52  

thetab 18: [  9.826 ->   9.826 ->   9.826 ( 10.598)  14.211 <-  17.214 <-  17.214] 

degrees 

thetab 19: [ 13.343 ->  13.343 ->  13.343 ( 14.518)  15.287 <-  24.086 <-  24.086] 

degrees 

thetab 20: [ 20.611 ->  20.611 ->  20.611 ( 22.800)  22.741 <-  38.739 <-  38.739] 

degrees 

thetab 21: [ 42.230 ->  42.230 ->  44.135 ( 48.141)  54.759 <-  75.646 <-  75.646] 

degrees 

  

thetaa 18: [ 40.887 ->  40.887 ->  40.887 ( 59.588)  62.805 <-  73.839 <-  73.839] 

degrees 

thetaa 19: [ 20.239 ->  20.239 ->  20.239 ( 25.786)  37.991 <-  37.991 <-  37.991] 

degrees 

thetaa 20: [ 13.182 ->  13.182 ->  13.182 ( 15.720)  23.766 <-  23.766 <-  23.766] 

degrees 

thetaa 21: [  9.738 ->   9.738 ->   9.738 ( 11.232)  15.341 <-  17.046 <-  17.046] 

degrees 

  

S52x: [ 24.388 ->  24.388 ->  24.743 ->  24.743 ( 24.906,  24.856)  24.970 <-  25.061 

<-  25.061 <-  25.061] 

S52y: [78.963 ->  78.963 ( 79.012,  78.975)  78.988 <-  79.514] 
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Figure 5.3-13Angular Bounding Layout 

 

After computing the first step, which determines the minimum and maximum 

angles for each sending case for before and after beacons, of Angular Bounding Method 

as it shown in Figure 5.3.13, the angle interval mong minimum and maximum angles for 

each sending case can be minimized as explained in Section 4.6.1. 

Figures 5.3.14 and 5.3.15 present the comparison results when the estimated error 

is a function of the beacon step size in x direction for Rmax‟s and different D‟s 

respectively.  
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Figure 5.3-14  Accuracy of the Angular Method vs DX for different Rmax‟s 

 

The Angular Bounding Method is affected by increasing the Rmax. This is clear in figure 

5.3.14 which demonstrates that the bigger the horizontal beacon step size, the bigger the 

mean error with an exception of Rmax 0.2 and Rmax 0.1 when they were at the 

horizontal beacon step size. 
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Figure 5.3-15 Accuracy of the Angular Method vs Rmax for different D‟s 

      

 Overall, it can be seen that most of the significant changes happen when the 

beacon separation distance=6; it started out at the mean error of approximately 0.4 units 

and rapidly increased to a mean error of approximately 0.8 units at the maximum 

measurement error ratio (Rmax) of 0.2 units just like the beacon with the separation 

distance of 2. Then it continued to increase at the same almost linear rate reaching a high 

mean error of about 1.2 units. At the beginning, the beacon with the separation distance 

of 10 has a higher mean error than that of the beacon with the separation distance of 2, 

but as the Rmax increases, the beacon with the separation distance of 2 managed to surpass 

the beacon with the separation distance of 10.  
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As a result, the angular bounding method‟s mean error almost never depends on 

Rmax if the horizontal beacon step size is equal to a third of the distance and this is 

accurate for both of the Rmaxs 0.2 and 0.3 when the horizontal beacon step size is equal to 

D/2, but the angular bounding method does depend on the Rmax when DX is equal to D or 

D/4 as shown in figure 5.3.14. On the contrary, the mean error of the middle value of the 

beacon separation distance extremely depends on Rmax values and changes almost linearly 

as a function of Rmax by a slope of 4, while the mean error of D=2 and D=10 almost never 

changes.  

5.4 Methods Comparison 

In this Section, we are going to compare all the methods with each other for the 

best specific parameter values that we obtained from previous discussion. 

5.4.1 1-D-Methods Comparison 

 In this Section, we compare all of the previously studied methods with each other.  

5.4.1.1 1-D-Methods Comparison for different beacon separation distance  

 The mean error of all 3 compared methods, rough- magnitude-, and error 

bounding- method, vs. the horizontal beacon step size for different beacon separation 

distances, D=10, 6, 2, are illustrated in figures: 5.4.1, 5.4.2, and 5.4.3 respectively.  
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Figure 5.4-1 1-D Methods-Error Comparison for D = 10 

 

The only method whose changes were very significant throughout all of the 

horizontal beacon step sizes are the rough method‟s mean errors. It started out with the a 

very high mean error of 2.5 units at the horizontal beacon step size of 2.5 and then 

fluctuated in a rapid manner while magnitude bounding method also jumped around but 

did so in a less significant manner and while the error bounding method had very 

insignificant slight changes throughout all the horizontal beacon step sizes.  
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Figure 5.4-2 1-D Methods-Error Comparison for D = 6 

             

Once again, the rough method managed to record the highest mean errors and the 

most significant changes while the magnitude bounding method came in second when it 

comes to significant changes and the 3
rd

 place goes to the error bounding method because 

it had almost no mean errors at all for any of the horizontal beacon step sizes. The rough 

method, on the other hand, started out with the highest number of mean errors at more 

than 3 units and then continued to grow at a rapid rate reaching a mean error of about 4.5 

units which was its highest value. The magnitude bounding method seemed to have 

reached its highest value of mean errors, approximately 1, at the horizontal beacon step 

size of 2; and that also seems to be the case for the error bounding method because it got 
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to its highest value of mean errors, less than 0.5 units, at the same horizontal beacon step 

size.    

 

Figure 5.4-3 1-D Methods-Error Comparison for D = 2 

            

Once more, the rough method‟s mean errors seem to be the highest. The rough 

method recorded its highest mean error, approximately 3 units, at the horizontal beacon 

step size of .70 units, while the magnitude bounding method also recorded its highest 

mean error, approximately 1, at this horizontal beacon step size also. The error bounding 

method seemed to have almost no mean errors for any of the horizontal beacon step sizes. 

To sum up, the rough method did not depend on the horizontal beacon step size 

for different D‟s, but as the D gets smaller so does the error range The mean errors for the 
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Magnitude bounding method regard almost the same behavior as the rough method‟s 

mean errors but with more stability.  

5.4.1.2 1-D-Methods Comparison for different Rmaxs 

 

Figure 5.4-4 1-D Methods-Error Comparison for Rmax = 0.3 

 

The rough method‟s mean errors were significantly high for all of the horizontal 

beacon step sizes while the error bounding method seemed to not have recorded almost 

any mean errors, and the magnitude bounding method‟s mean errors were somewhat high 

for all of the horizontal beacon step sizes. The rough method reached its lowest point of 

mean errors, approximately 2 units, at the horizontal beacon step size of 5 just like the 
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magnitude bounding method whose mean errors also seem to be the lowest at 

approximately 0.5 units at this horizontal beacon step size.  

 

Figure 5.4-5 1-D Methods-Error Comparison for Rmax = 0.2 

                             

The rough method‟s mean errors were the highest while the magnitude bounding 

method‟s mean errors were the 2
nd

 highest and the error bounding method‟s mean errors 

were the least; in fact, the error bounding method recorded almost no mean errors at all. 

The rough method recorded its highest mean error, approximately 3.25 units, at the 

horizontal beacon step size of 2.5 just like the magnitude bounding method which also 

recorded its highest mean error of approximately 1 at this step size. Then, the rough 

method recorded its lowest mean error of 2 units at the step size of 3.33 units; after that, 
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the method‟s mean errors fluctuated along with the magnitude bounding method‟s mean 

errors.  

 

Figure 5.4-6 1-D Methods-Error Comparison for Rmax = 0.1 

 

From the horizontal beacon step size of 3.33 units, the rough method managed to 

record its highest mean error, almost 4.25 units and then dropped at a very rapid rate 

recording its lowest mean error of approximately 1.25 units at the horizontal beacon step 

size of 5 in which the magnitude bounding method also recorded its lowest mean error, 

almost 0.5 units. The error bounding method, on the other hand, recorded almost no mean 

errors at all for any of the horizontal beacon step sizes.  
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As a result the estimated error method always give us better or at least equal 

results in compare to other two methods and the rough method give in the majority of 

running cases the worst results. In addition, the higher the number of steps the higher the 

obtained accuracy special for magnitude bounding method and the reason for that more 

parts of the errors are canceled. 

5.4.2 2-D-Methods Comparison 

This Section will compare the most important parameters of all the different 

methods. One of the parameters is the distance between the before and after mobile 

beacons (D) as a function of the number of steps and also as a function of the Rmax.  

Another parameter that will be explored in this section is the Rmax as a function of the 

number of steps and as a function of the beacon transmission angles. To ensure that all 

the sensors are detected, we made the beacon transmission angle 90 degrees and the 

communication range equal to the used distance between the beacons.  

5.4.2.1  2-D-Methods Comparison for different beacon separation distances.  

Figure 5.4.7 illustrates the comparison of the 3 different methods by 

demonstrating the mean error for each of them as a function of the horizontal beacon step 

size for three different distance values.  
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Figure 5.4-7 2-D Methods-Error Comparison for D = 10 

 

Ultimately, the rough method‟s mean error increases dramatically while the error 

bounding method‟s mean error increases and decreases very slightly and the angular 

method‟s mean error increases slightly. More specifically, the rough method‟s mean error 

increases slowly reaching a mean error of more than 0.5 units at the horizontal beacon 

step size of 3.33 while the mean error for both error bounding method and the angular 

bounding method very slightly increases. After that, the rough method‟s mean error 

increases at an even slower rate while the error bounding method‟s mean error decreases 

very slightly and angular bounding method‟s mean error stays the same. Then, the mean 

error for the rough method dramatically rises reaching a mean error of approximately 3.4 
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units at the horizontal beacon step size of 10, while the mean error for the two other 

methods slightly increases.  

 
 

Figure 5.4-8 2-DMethods-Error Comparison for D = 6 

 

Generally, the only method whose mean error has significant changes is the rough 

method. From the horizontal beacon step size of 1.5-2, the rough method‟s mean error 

increases rapidly to a mean error of 0.5 units while the 2 other methods increase very 

slightly. Afterwards, from the horizontal beacon size of 2-3, the rough method‟s mean 

error increases at a slower rate than last time‟s reaching a mean error of more than 0.5 

units while the error bounding method and the angular bounding method‟s mean error 

stayed the same. Then, the mean error for the rough method dramatically rose all the way 
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to a mean error of approximately 3.1 at the step size of 6 while the 2 other methods have 

little to no change at all.  

 
 

Figure 5.4-9 2-D Methods-Error Comparison for D = 2 

                  

 For the most part, the error bounding method and angular bounding method had 

no major changes while the rough method had grown at an almost exponential rate. The 

rough method grew at a constant rate from the horizontal beacon step sizes of 0.5-1. At 

that point, the rough method‟s mean error reached more than 0.5. Afterwards, the rough 

method increased quickly reaching a mean error of approximately 3.5 at the step size of 

2.  
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To sum it up, the rough method does not depend on the distance between the 

before and after beacons as illustrated in all the three above figures, but it does extremely 

depend on the number of steps. On the other hand, the two other methods are affected by 

the distance between the before and after beacons and it‟s clearly demonstrated that the 

smaller the D the slimmer the chance for error in both methods.  

5.4.2.2 Dense-Straight-Line Mobile trajectory simulation results 

The following figures demonstrate the results of the DSL which is the second path 

of mobile beacon trajectory as explained thoroughly in Section 4.7.  

 

Figure 5.4-10 2-D DSL Methods-Error Comparison for D = 10 
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The previous figure, figure 5.4.10, presents the comparison results for all 2-D 

developed techniques when the beacon separation distance is equal to 10.  

 

 

Figure 5.4-11 2-D DSL Methods-Error Comparison for D = 6 

 

The above figure presents the comparison results for all 2-D developed techniques 

when the beacon separation distance is equal to 6. The following figure, figure 5.4.12, 

presents the comparison results for all 2-D developed techniques when the beacon 

separation distance is equal to 10.  
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Figure 5.4-12 2-D DSL Methods-Error Comparison for D = 2 

 

To sum up, the DSL trajectory path minimized the mean error especially for the 

rough method and the cost for that is energy consumption, since the sensors will receive 

more beacons from mobile beacons.  
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5.4.2.3 2-D-Methods Comparison for different Rmaxs 

The below figures illustrate the comparison of the 3 different methods by 

demonstrating the mean error for each of them as a function of the horizontal beacon step 

size for three different Rmax values.  

 

 
 

Figure 5.4-13 2-DMethods-Error Comparison for Rmax = 0.3 

 

Ultimately, the rough method mean error increases form the horizontal beacon 

step size of 1.5-6 while the two other methods very slightly increase. From the beacon 

size step of 1.5-2, the rough method increases at a slow rate reaching a mean error of 0.5 

at the step size of 2 while the two other methods stay the same. Afterwards, the rough 
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method increases at an even slower rate from the beacon step size of 2-3 reaching a mean 

error of 0.7 while the error bounding method stays the same and the angular bounding 

method very slightly increases. Then, the rough method mean error increases at a 

significant rate from the step sizes of 3-6 while the error bounding method‟s mean error 

and the angular bounding method‟s  mean error slightly increase.  

 
 

 
Figure 5.4-14 2-DMethods-Error Comparison for Rmax = 0.2 

  

From the horizontal beacon step size of 1.5-2, the rough method mean error 

slightly increases while the error bounding method mean error somewhat decrease and 

the angular bounding method stay the same. Afterwards, the rough method‟s mean error 

continues to increase but does so at a faster rate reaching a mean error of more than 0.5 at 
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a horizontal beacon step size of 3 while the error bounding method‟s mean error 

somewhat increases and the angular bounding method‟s mean error stays the same once 

again.  After that, the mean error for the rough method significantly increases reaching a 

mean error of more than 3 at the step size of 6 while the error bonding method‟s mean 

error stays the same and the angular bounding method‟s mean error very slightly 

increases. 

 
 

Figure 5.4-15 2-DMethods-Error Comparison for Rmax = 0.1 

 

The rough method mean error increases at an almost exponential rate from the 

horizontal step size of 1.5-6 while the angular bounding method increases slightly and the 
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error bounding method  mean error increases very slightly from the step size of 1.5-2 and 

then decreases also very slightly from the horizontal beacon step size of 2-6. 

To put it briefly, the rough method is dependent on the Rmax as shown in the 

three figures above. In addition, the rough method is also extremely dependent on the 

number of steps. The error in the angular bounding method is a little smaller especially in 

the case of one step when we compare Rmax0.1 to Rmax 0.3, but the error bounding 

method stays almost the same. 

5.4.2.4 2-D-Methods Comparison for different beacon separation distances 

The following figures illustrate the comparison of the 3 different methods by 

demonstrating the mean error for each of them as a function of the Rmax for three 

different distance values. They compare the accuracy of all the three 2-D studied methods 

as a function in maximum measurement error ratio when the separation beacon distance 

equal to 10, 6, and 2 units respectively.  
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Figure 5.4-16 2-DMethods-Error Comparison for D = 10 

  

This figure shows, once again, significant changes only in the rough method‟s 

mean errors. The rough method‟s mean errors rapidly grew from the maximum 

measurement error ratio of 0.1-0.2 reaching its peak of 0.35 while the error bounding 

method stayed almost the same at a mean error of 0.2 and the angular bounding method 

slightly increased to a mean error of less than 0.05. Then, the rough method continued to 

grow but did so at a much slower rate from the error ratio of 0.2-0.3 while the error 

bounding method slightly decreased and the angular bounding method continued to 

slightly increase.  
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 The second figure compares the accuracy of all the three 2-D studied methods as 

a function in maximum measurement error ratio when the separation beacon distance 

equal to six units.  

 
 

Figure 5.4-17 2-D Methods-Error Comparison for D = 6 

 

Generally, the only method whose mean error has significant changes is the rough 

method. From the maximum measurement error ratio of 0.1-0.2, the rough methods mean 

error increases rapidly to a mean error of approximately 0.32 while the error bounding 

method decreases slightly and the angular bounding method increases slightly, too. 

Afterwards, from the error ratio of 0.2-0.3, the rough method‟s mean error increases at a 

much faster rate than last time reaching a mean error of more than 0.3 while the error 
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bounding method continued to decrease slowly and the angular bounding method also 

continued to slightly increase.  

. The third one compare the accuracy of all the three 2D studied methods as a 

function in maximum measurement error ratio when the separation beacon distance equal 

to two units.  

 

 
 

Figure 5.4-18 2-DMethods-Error Comparison for D = 2 

                   

For the most part, the error bounding method and angular bounding method had 

no major changes while the rough method grew rapidly. The rough method grew 

significantly from error ratios of 0.1-0.2. At that point, the rough method‟s mean error 



 

138 

 

reached more than 0.2. Afterwards, the rough method increased at a slower rate than 

before reaching a mean error of approximately 0.3 at the error ratio of 0.3.   

In summary, the rough method is dependent on the Rmax as it is demonstrated in 

the above figures. Moreover, it‟s also exceedingly dependent on the number of steps. The 

error in the angular bounding method is a minor one especially in the case of one step 

when the Rmax0.1 and the Rmax 0.3 were compared, but the error bounding method 

stays almost the same. In addition, the higher the Rmax, the higher the rough method‟s 

mean error, but the smaller the D, the smaller the mean error of all the three compared 

methods. At the same time, the smaller the Δx, the smaller the error for all three 

separation beacon steps.  

5.4.2.5 2-D-Methods Comparison for different transmission angles 

The following figures illustrate the comparison of the 3 different methods by 

demonstrating the mean error for each of them as a function of the beacon transmission 

angles for three different Rmax values.  
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Figure 5.4-19 2-DMethods-Error Comparison for Rmax = 0.3 

                             

The rough method recorded the highest mean errors for all the beacon 

communication angles while the angular bounding method recorded the lowest mean 

errors. The rough method‟s mean errors fluctuated while the error bounding method‟s 

mean errors seemed to grow at a constant rate. The angular bounding method‟s mean 

errors, on the other hand, seemed to not change at all for any beacon communication 

angle.  
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Figure 5.4-20 2-DMethods-ErrorCcomparison for Rmax = 0.2 

 

The mean error rises for all 3 methods from the beacon communication angle of 

15-30 degree. The rough method is at its peak on the communication angle of 30 degree, 

but after that it drops dramatically while the error bounding method increases at an 

almost constant rate. In the other hand, the angular bounding method does not affected in 

increasing of beacon transmission angle and has almost the same error values.  
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Figure 5.4-21 2-DMethods-Error Comparison for Rmax = 0.1 

 

The rough method mean error is at its peak at the beacon communication angle of 

15 degree, but then it drops dramatically for the beacon communication angles of 15-30 

degree while the error bounding method and the angular bounding method slightly 

increase. From the beacon communication angles of 30-50 degree, the mean error for the 

rough method rapidly increases and then significantly decreases reaching a mean error of 

about 0.5 at the communication angle of 60 degree while the error bounding method 

mean error continues to increase and the angular bounding method mean error increases 

and decreases very slightly.  

 



 

142 

 

In summary, the rough method‟s mean error fluctuates and does not essentially 

depend on the beacon communication angle if the angle is smaller than 45 degrees. It is 

only after that that the mean error becomes dependent on the beacon angle and it does so 

in an extreme manner in which the mean error decreases as the beacon angle increases 

and the same goes for the Rmax since the mean error also decreases while the Rmax 

decreases.  On the other hand, the error bounding method is dependent on the beacon 

angle; more specifically, as the beacon angle increases the mean error rises slightly along 

with it. The angular bounding method is exactly the opposite because it almost always 

never depends on the angle of the beacon since its mean error basically stays the same as 

the beacon angle changes; this is all because the determined area for the sensor‟s possible 

location is extremely minimized as a result of the angle relationships [refer to Section 

4.6].  
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Chapter Six:  Conclusion 

The approaches, methods, and analysis presented herein provided a new direction 

and a set of methods for wireless sensor network (WSN) localization. A discussion of the 

background and current approaches and technologies localization efforts and the 

shortcomings and poor assumptions of many existing state-of-the-art methods was 

provided to illustrate the need for a better approach. Building upon these limitations and 

flaws, a new means of utilizing error-modeling to improve the precision in sensor 

localization was presented along with the necessary terminology, algorithms, and 

analyses to implement and verify the methods designed upon the research and 

understanding contributed by this work. 

After careful mathematical analyses were performed on the information to be 

gathered from the wireless sensor network, structured mathematical models were 

developed based on fundamentals of algebra, trigonometry, probability, and statistics. 

From these models, several localization methods were developed to exploit the 

relationships found and statistical indications. These methods ranged from the simplest 

rough methods to the considerably more magnitude and error-bounding methods to the 

most complex angular-bounding methods. Each developed method utilized the insights 

and benefits provided by the previous to further refine the estimations of sensor positions, 

ultimately producing increasingly-improved estimations. The rough methods utilized 

basic Boolean truth-statements of where a sensor could and could not be located based on 
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physical facts and predetermined assumptions. From these rough methods, magnitude and 

error-bounding methods were developed to further utilize other parameters of the 

information-gathering system, such as communication range and error ratio range, in 

order to further bound the estimated sensor location. From these observations, in the two-

dimensional and three-dimensional cases, properties of trigonometric relationships were 

applied to the locations and distances determined in the previous methods to produce 

further derived boundaries on the estimated sensor location. Many of these relationships 

were grounded upon observations of the physical movement and transmission processed 

involved with the information-gathering process to create a type of recursive, dynamic 

checklist of conditions to provide increasingly-smaller possible locations for estimation. 

It should be kept in mind that the goal of this area-shrinking methodology was one of 

consequential, probabilistic minimization. Because a sensor is a physical object with a 

fixed area (or volume in three dimensions), an estimate of its location should be formed 

within the smallest area of positive probability possible. Once this area is determined, 

probabilistic analyses can be performed to yield the most-likely sensor location to finalize 

an estimate. It is from this perspective that we developed our simulation software. 

The simulation constructed in this work was divided into three sections. The first 

was the physical modeling and information-gathering unit that was responsible for 

transforming input parameters (broadcast angle, communication range, etc.) into 

estimation error measurements for each localization method. Given the broad range of 

control offered through the input parameters, the estimation error measurements were 

able to vary widely to properly characterize the localization methods. This unit was given 
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the capability of being controlled by the second section, which was that of the trial test 

bed. The second unit‟s primary responsibility was to automate the operation of the first 

unit‟s processes in order to supply varying parameter values and record average 

estimation error measurements over the course of many trials. The measurements taken 

were collected into large tables to make them available for later analyses and graphing. 

The third unit‟s responsibility was to perform predetermined, automated analyses of the 

tables generated by the second unit to provide interesting, graphical representations that 

would yield insights as to the operating characteristics and optimal parameter values for 

each method based on sets of limiting criteria. For example, lowering the distance 

estimation ratio might lead to better performance by one method and worse performance 

by another, which indicates their operating differences and the ways in which controlling 

parameters should be varied to yield ideal performance. 

The resulting performance results gathered were able to meet the design criteria of 

the software. Many combinations of parameters and resulting performances were 

gathered, analyzed, and graphed in the previous chapter. These results are too widely-

varied and detailed to mention in summary. They were able to indicate both expected and 

surprising application selections for localization method depending on desired modeling 

based on input parameters. Overall, the results indicated large, incremental improvements 

over the methods ranging from simple to complex. The results fully met the desired 

outcomes of the research and development criteria set forth for the work, though further 

areas of improvement and development are still possible.  
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As error analysis is fundamental to the methods that were designed and presented, 

any implementations built upon this work should benefit from the candid and open 

evaluations that have been provided. Solid and realistic assumptions, coupled with 

extensive simulation results, were used to prove the validity and performance of the 

methods herein that were built upon mathematical fundamentals and probabilistic 

models. Componentized, single-dimensional error quantities and radial error factors were 

discussed, analyzed, and utilized in-depth to iteratively improve the precision of 

localization efforts and provide a means of evaluation for most real-world scenarios 

based on the assumptions and needs for particular applications. We believe that there are 

many possibilities for the extension of these efforts into greater dimensions and more 

complex, concrete models. The approaches taken should provide a clear path to building 

upon different assumptions than those made here while maintaining the integrity and 

reliability of such efforts. 

It is our belief that the methods of localization designed and tested within this 

work, based upon reasonably-realistic models and assumptions, show great promise in 

practical localization applications for real-world wireless sensor networks. With slight 

refinements of the geometric models utilized and appropriate tuning of the dependent 

parameters, each of the methods herein should provide reasonable localization outcomes 

with relatively-minimal power consumption compared with other localization methods. 

This was accomplished through exploitation of deep mathematical relationships on 

simple feedback information. The usage of such derived knowledge allows for shifting of 

the burden of localization (and therefore power consumption) from the wireless sensors 
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themselves to the final processing station. This satisfies the requisite requirements of 

accurate localization with minimal power usage, which is typical, primary goal of any 

localization system of quality. 
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