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Abstract  

 

At present the main source of our power and energy needs are from fossil fuel; 

almost all transportation tools and nearly 70% of electrical power are produced by 

fossil fuel. But unfortunately these materials are limited in our planet, with obvious 

drawback such as pollution. So looking for new kinds of energy supply is an urgent 

matter. Solar-powered photovoltaic system provides a clean energy solution to this 

problem. It is developing fast all over the world in terms of both research work and 

actual applications. It is estimated that the power supplied by solar energy can 

provide 10 percent of United States power needs. This thesis mainly discusses 

photovoltaic system modeling from the beginning of site selection to system sizing. 

Some tools are used during the project. A GIS application is used to help developers 

in the preliminary studies. Photovoltaic system simulation software PVsyst involves 

the system components setting and sizing process. Two types of systems are built in 

this study: stand-alone system and grid connected system; the location is set at 

Denver, Colorado. For each system the array mounting, analysis of loads and modules 

selection are studied. The simulation is performed after the system model is 

completed, the results includes loss diagrams, system energy yields and system 

efficiencies. At last the economic analysis and comparison between the two types of 

PV systems is analyzed.  
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          Chapter one: Solar radiation  

1. Solar radiation 
Choosing a suitable location is the beginning step of a photovoltaic system 

design and is very important. Even a well-established solar system with good 

component parameters and configuration cannot have desired power output if it is not 

installed at an appropriate place. Generally speaking, the solar panels should insolate 

under sunlight for at least six hours each day; so the study of solar radiation and its 

properties is essential.  

1.1 Basic concepts of solar radiation 

1.1.1 Definition of solar irradiation 

Solar irradiation is the product of solar irradiance (Watts per square meter) 

and time (hour). So solar irradiation has a unit of Watt-hours per square meter. It can 

also be denoted by insolation. The figure below shows the variation of solar radiation 

during a certain day. 
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Figure1. 1: Solar radiation from sunrise to sunset 

 

Peak sun hour is the total number of hours of a day that can receive radiation; 

it is an equivalent form of insolation and most radiation data is represented using 

either of these units expressed as kWh/m2/day. The figure below shows the annual 

insolation map of the United States. 

 
Figure1. 2：Average photovoltaic resource of United States [1] 
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1.1.2 Direct, diffuse and reflected radiations 

In photovoltaic technologies people are more interested in terrestrial radiation 

which is the amount of radiation reaching the ground surface. The radiation 

originating from the sun will be affected by some factors while traveling through 

earth atmosphere.  

When sunlight passes through the atmosphere, attenuation will be caused by 

the following phenomena: 

a. Rayleigh scattering [2] by small particles in the atmosphere; 

b. Scattering by aerosols and dusts; 

c. Absorption in the atmosphere, such as ozone absorbs at high energies and 

water vapor, carbon dioxide absorb infrared [3]. 

The original radiation is divided into direct, diffuse and reflected radiation 

after scattering and absorption [2]. Direct radiation is the radiation that reaches the 

earth surface without scattering; diffuse radiation is scattered by atmosphere and 

clouds, and the radiation reflected from ground features is called reflected radiation. 

The summation of these three kinds of radiation composes global radiation. In 

practice, reflected radiation is much less than the other ones, so usually it can be 

ignored.  
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Figure1. 3: Radiation constituents: direct, diffuse and reflected 

 

1.1.3 Air mass 

 

If the sky is clear, the maximum radiation will be received by the ground 

when the sun is directly overhead or called zenith; in this case the sunlight has the 

shortest pathlength. This pathlength is approximated as 1/cosθ; θ is the angle between 

the actual position of the sun and the position when the sun is directly overhead. The 

pathlength is called air mass represented by AM and thus is determined as: 

 

AM=1/cosθ                                                      (1-1) 
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Figure1. 4: Schematic diagram of AM (air mass) 

 

 

 

When θ=48.2° the air mass equals 1.5; AM1.5 is the standard terrestrial solar 

spectrum.  

 

1.1.4 Angular influence in solar radiation 

Besides atmosphere factors that affect radiation, there are other movements 

affecting the results. They are angular considerations caused by the rotation of earth 

around the sun and the axis of itself. When earth rotates around the sun, it forms two 

planes due to the difference of its orbit around the sun and its tilted axis. The plane of 

the orbit around the sun is called ecliptic plane and the plane parallel with equator is 

called equatorial plane. Therefore the angle between ecliptic plane and equatorial 

plane is declination angle.  
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Figure1. 5: Declination angle 

 

The declination angle is changes periodically through a year due to the 

movements of the earth. The maximum and minimum value of declination occurs at 

summer and winter solstice with the angle of 23.45° and -23.45°, respectively. It can 

be calculated in the following equation [4]: 

 

 =      s       
     

   
）                                       (1-2) 

 

Where n is the number of day from 1 (Jan 1st) to 365 (Dec 31
st
). On 

equinoxes the declination will get the value of zero.  

The altitude angle (elevation angle) is the angle between the sun and the 

horizon. It varies through the day which equals 0° at sunrise and reaches its maximum 

value at solar noon. Azimuth angle is the horizontal angle between the sun and a 

reference direction. Normally the reference direction is north or south.  
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Figure1. 6: Altitude angle and azimuth angle 

 

The value of altitude angle depends on latitude and time of year. The 

following equation can be used to determine the altitude angle [3]:  

 

 =                                                           (1-3) 
 

where:   is the declination angle derived from equation (2),   is the latitude 

and   represents altitude angle. 
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Figure1. 7: Altitude angle calculation [5] 

The azimuth angle can be calculated as follows [6]: 

 =   cs    
        

    
                                              (1-4) 

where δ is the declination angle and   is the solar hour angle with negative 

value in the morning and positive value in afternoon, α is altitude angle.  

Solar zenith angle is the angle between the sun and the vertical axis from the 

earth; it can be calculated by the equation below: 

 

cosθ = s   s    cos cos cos                                    (1-5) 
where δ is declination angle and φ the latitude,   is the solar hour angle.  

1.2 Tilt and azimuth angle of the panel 

The orientation of the solar panel is a very important factor for determining 

the electrical power output. There are two parameters affecting orientation: array tilt 

angle and array azimuth angle. Tilt angle is the angle between the panel plane and the 

horizontal surface. Azimuth angle is the angle between the reference direction 

(typically south in northern hemisphere) and array facing direction.  

Generally speaking, the optimal tilt angle of an array should be the latitude of 

where it is located, so in high latitude area the array tilt angle is larger than low 
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latitude areas, however, due to the variation of climate and solar declination angle, 

there is often an adjustment of the tilt angle. For instance, on summer solstice the tilt 

angle should decrease because the declination achieve a maximum value of 23.5° 

while on winter solstice the tilt angle increases.  

 

 
Figure1. 8: optimal tilt angle due to time variation of year 

The optimal azimuth angle for northern hemisphere is due south. Deviation 

from south direction will result in decrease of solar power production and this 

decrease becomes worse with larger tilt angles, so it should be noted when building 

PV system in high latitude areas. In lower latitude area this reduction is in an 

acceptable range.  

The collector will have maximum radiation when incident light is 

perpendicular to the panel, but with the change of the position of the sun, a fixed 

mounted solar panel can only get maximum insolation during part time of a day. To 

get higher radiation levels, tracking systems is introduced. It uses axis to fix the solar 

panel an then it allows the panel to adjust the tilt and azimuth angle according to the 

current position of the sun. In one-axis tracking system, the panel can rotate around 

the vertical axis to change its azimuth. Two-axis tracking can make the panel facing 

the sun by adjusting two axes simultaneously to receive better radiation.  
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1.3 Solar radiation calculation 

1.3.1 Sunset hour angle 

Sunset hour angle is the angle at the time of sunset. It is represented by  s and 

can be calculated by the following equation [7]:  

 

cos  =                                                            (1-6) 
 

where φ is the latitude of the location and   is the declination angle.  

1.3.2 Extraterrestrial radiation 

Extraterrestrial radiation is solar radiation outside Earth’s atmosphere. It is 

required to know the quantity and characteristics of extraterrestrial radiation. Daily 

value of extraterrestrial radiation is calculated as follows: 

 

  =
        

 
 1       cos    

 

   
   cos cos s       s   s          (1-7) 

 

In the above equation, Gsc is the solar constant with the value of 1367W/m
2
, φ 

is the latitude of calculated position,   is the declination angle and    is sunset hour 

angle.  

Another important parameter that needs to be introduced is called clear sky 

index, it is the ratio between terrestrial radiation and extraterrestrial radiation. 

According to this definition, it is represented as: 

KT=H/H0                                                        (1-8) 
where KT is clear sky index and H is terrestrial radiation on horizontal surface.  
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1.3.3 Solar radiation on tilted plane 

As mentioned before, due to its low value, ground reflected radiation is 

neglected in the following calculation. 

 

To calculate average daily diffuse radiation a model from [21] is used and can 

be expressed as: 

 
H

Hd
= 1   1            1    

    1    
 , or 

 
H

Hd
= 1   1            1    

    1                               (1-9) 

dH  in the above equations is average daily value of diffuse radiation which is 

calculated from average daily global radiation H .  

The first formula is used in the case of sunset hour angle is less than 81.4° and 

the second one is used when this angle is greater than 81.4°. KT is the clear sky index 

calculated in equation (7). 

Then for global irradiance the hourly values of radiation can be derived 

through the calculation below: 

  =
 

  
   c cos                                                (1-10) 

In the above formula, the coefficients b and c is expressed as: 

 =           1 s       
 

 
                                  (1-11) 

c =              s       
 

 
                                 (1-12) 

where rt is the ratio of hourly radiation to daily global radiation,   is solar 

hour angle and  s is the sunset hour angle.  

Similarly, for diffuse irradiance the following equation is given [8]: 

  =
 

  
 

          

             
                                            (1-13) 

where rt is the ratio of hourly diffuse radiation value to daily value. Therefore 
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the hourly global radiation and diffuse radiation for each day can be derived by: 

H= rt H                                                         (1-14) 

Hd =rd dH                                                       (1-15) 
So the direct radiation Hb is further given by: 

 

Hb= H - Hd                                                      (1-16) 

1.3.4 Calculation of solar irradiance on the PV array 

To get the hourly irradiance of the PV array, a model from [Duffie and Beckman] is used 

to describe it. It can be expressed as below: 

  =         
      

 
     

      

 
                                (1-17) 

 

where   is called diffuse reflectance or ground albedo: it is set to different 

values according to ground types. Generally the values of 0.15 to 0.2 are most 

commonly used in practice. Table below shows albedo of various ground types[9]. 

 

 

 

 

 

 

 
 
Table1. 1 Albedo of different ground surface 

Surface Albedo 

Grass 0.25 

Macadam 0.18 

Asphalt 0.15 

Snow 0.45-0.9 

Dark soil 0.08-0.13 

Savanna 0.16-0.21 

Dry sand 0.35 

Concrete 0.25-0.35 

Red tiles 0.33 

Aluminum 0.85 

where β in equation (16) is the slope of the array surface and Rb is the ratio of 

direct radiation of the PV array to the radiation on horizontal plane and is given as: 
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  =
    

     
                                                      (1-18) 

where θ is the incident angle and θz is solar zenith angle given by equation (5). 

By using this model the change of the position of the sun as well as solar array can be 

determined for more accurate estimation.  

After all values of Ht are obtained, they are added together to get the daily 

irradiance tH . Here is the summary of the whole calculation process: 

a. Compute the hourly direct and diffuse radiation Hb and Hd based on the data 

of global radiation. 

b. Continue to calculate hourly global radiation Ht on a tilt surface. 

c. Through summation of the results of the second step, the final daily 

irradiance can be obtained.  
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Chapter two: GIS implementation for 

estimating photovoltaic system 

2.1 Introduction 
Solar power has competitive advantages in the fields of sustainable 

development and environmental protection. However, there are still many obstacles to 

apply PV generation at large scale so far; one of the main reasons is the initial costs., 

Due to this point the preliminary investigation and site selection are crucial for PV 

power station; these factors must be taken into consideration carefully. 

When assessing solar radiation of a certain area, in order to consider 

landscape features it is ideal to build solar radiation model integrated with 

Geographic information system (GIS). This kind of model can provide fast, low-cost 

and precise solar radiation result that covers large area. It also has the capability of 

analyzing the effects of slope, orientation and shadowing. So integrating solar 

radiation model with GIS and image processing software is very helpful for analysis 

and improvements of application. 
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2.2 Introduction of PVGIS 
PVGIS is a program developed by European Commission Joint Research 

Center [10]. The model can be used to calculate the solar radiation potential of a 

certain area, based on solar radiation map. It can be generally categorized as a 

database with web application and can be used to provide PV system development 

information for decision-makers, researchers and industry in a region. It can also be 

used to observe solar distribution and do some simple calculation such as estimating 

solar radiation of a region. The PVGIS can be accessed from 

http://re.jrc.ec.europa.eu/pvgis/index.htm.  

 

The unique solar irradiation database includes the solar radiation map of 

Europe and Africa. This database is developed by using r.sun command which is 

integrated into GRASS GIS software [11] [12]. The database contains raster map of 

monthly average and annual horizontal surface. In addition, it considers the situation 

of slope of 15°, 25°and 40°. It can be used to estimate diffuse and reflected 

components of clear and overcast sky. Daily irradiation is then calculated through the 

integration of collected solar irradiation at different time intervals of a day.  

To build the database of solar radiation, the first step is to compute the global 

surface solar radiation under clear sky condition [12]. There is a parameter called 

linke turbidity, which is based on several global information including clear sky 

irradiation, perceptible water vapor, aerosol optical depth and ground information 

from aerosol measurement. The root mean square error is set to be 0.7 in this case. 

Then the clear sky irradiation is computed.  

Next phase is the interpolation of clear sky index and computation following 

http://re.jrc.ec.europa.eu/pvgis/index.htm


16 
 

with the raster map of surface solar irradiation. In this step, the clear sky irradiation 

Ghc and clear sky index Kc are computed respectively. Kc is the computed as the ratio 

of real sky radiation and clear sky radiation. This parameter is calculated in GRASS 

GIS, a solar radiation model built in GIS software. After that, the overcast global 

irradiation is computed and the raster map can be obtained.  

The third step is the calculation of diffuse and beam components of overcast 

condition and the radiation raster map of inclined surface. To achieve this purpose, a 

new parameter, of inclined surface is introduced, which is denoted as Gi. The value 

can be obtained using the same way as calculating Kc (clear sky index). 

PVGIS model is built by r.sun model which is built into GRASS GIS software 

to create the database. In r.sun model the three kinds of radiation— direct, diffuse and 

reflected radiations are derived under clear sky condition and finally the global 

radiation is obtained.  

2.2.1 Database and models of PVGIS 

As a solar power radiation database, PVGIS has the following features: open 

source data and software structure; integration of high resolution meteorological and 

geographical environmental data into GIS system; understandable map-based results, 

and user-friendly interface access. The database is built by using solar radiation 

model r.sun which is integrated into GRASS GIS software and other related 

programs. As a result, PVGIS combines the conclusions from laboratory, observation 

station and geographical testing. It is used as a research tool of solar technology 

performance assessment from geographical aspect; the web interface can be used to 

provide interactive access between data, map and tools.  

The database of PVGIS is mainly used to evaluate the potential electricity 
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generation of PV modules that are built on horizontal, vertical and optimal surfaces. 

Horizontal structure is not common unless under integration considerations. 

However, it may be used as baseline estimate. One reason is that many radiation data 

are measured under horizontal surface condition. So it will be helpful to estimate 

tilted surface results by comparing with the data of horizontal surface. For most 

widely used PV technology, installation in existing infrastructure in residential area, 

the annual electricity generation E from a PV system is calculated by the following 

equation: [13] 

E=Pk PR G                                                       (2-1) 
where Pk is unit peak power, PR is the ratio of system performance, and G is 

the annual radiation sum measured under horizontal, vertical or inclined surface. 

The capacity of PV system is given by Wp; it represents the nominal power 

output under standard test condition of 1000 W/m
2
 irradiance and environmental 

temperature of 25°C. The advantage of this measurement is that it does not require 

the knowledge of PV conversion efficiency or module attributes. Theoretically PR in 

equation (1) is 1 if the system operates normally under standard test condition. In 

practice, the system output is lower than peak value even if the radiation value is 

1000W/m
2
. One reason is that the operation temperature is often higher than 25°C 

and leads to reduced PV efficiency. Other reasons include angular and spectrum 

uncertainty and power loss in inverters and cables. So a parameter gross is used to 

represent the ratio between actual output and nominal power. This ratio of a typical 

module of mono crystalline or poly crystalline installed on the rooftop is 0.75. [13]  

The database is connected with web-based interactive application; this web-

based access is designed to evaluate solar radiation and PV system performance by 
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using some maps and diagrams. The specific evaluation location can be decided by 

directly choosing from the map; choosing the name of a city or a country or entering 

the latitude and longitude of the area. The monthly and yearly solar radiation 

estimation results will be displayed in new windows. A basic map and special 

meteorological solar radiation distribution map can give the user a geographical 

comprehension of the data. 

2.2.1.1 Solar radiation models and database:  

R.sun [10] model has three dataset as its input:  

A. Digital Elevation Model (DEM), in GRASS GIS the data used for 

calculating main database and spatial analysis comes from SRTM-30 (Shuttle Radar 

Topographic Mission) [14]. It calls for high resolution SRTM-30 dataset of global 

dataset in the web-application, but for those areas beyond 60 degrees north latitude, 

there is only SRTM-30 database available.  

B. Linke Turbidity Factor [15], it provides the optical status of monthly 

clear atmosphere. This dataset has 12 10-km resolution grids [14]. By combining data 

source of different points and grid the raster map is drawn. The initial data in SRTM-

30 DEM is reduced to 1-km resolution grid.  

C. Clear sky coefficients Kcb and Kcd, they are used to convert the clear sky 

beam and diffuse radiation, which are calculated in the r.sun model, into practical 

values. These two coefficients are obtained by observation results of average daily 

value of beam and diffuse radiation from 566 meteorological stations in the region. 

These data records observation or estimated values from a 10-year period of 1981-

1990. In addition, some information is obtained from Europe Solar Radiation Atlas 
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(ESRA) [16] as supplement for remote areas or areas without observation stations. 

Through multivariate spline interpolation method the monthly average values of Kcb 

and Kcd are converted into  grid cells of 2 by 12. Moreover, those results that are 

attenuated higher than 15 percent due to shadowing effects caused by terrain feature 

are excluded from the data collection.  

Another input parameter called surface albedo, it is the part of solar radiation 

that reflected from earth surface back to space, usually for ground it takes the value of 

0.2. It can also use other data source as the spatial distribution value of each grid cell 

to improve the estimation accuracy. 

The above three database are converted to Lambert azimuth equal area map 

projection and are integrated in to GRASS GIS software for simulation and 

calculation. For PVGIS web-application, the following data layers are compiled and 

optimized to achieve the purpose of fast saving and reading: linke atmosphere 

turbidity factor and clear sky coefficients are stored in 1km grid resolution format; 

this database also contains land coverage and other geographical information.  

For desired locations, SRTM-3 elevation and related data are stored in 100m 

grid resolution. Interactive tools read these data and reduce the 1km resolution of 

neighboring area.  

Under the time interval of every 15 minutes, r.sun model uses three input 

parameters to run the estimation of beam, diffuse and reflected radiation of horizontal 

and inclined surface from sunrise to sunset, respectively. The three parameters are 

elevation, atmosphere turbidity factor and surface albedo as mentioned above. Clear 

sky coefficients Kcb represents the ratio of monthly daily sum and daily sum of beam 
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radiation, Kcd represents the ratio of monthly daily sum and daily sum of diffuse 

radiation. They are used to predict the radiation for a particular day. The model 

assumes that these coefficients are obtained from meteorological stations and are 

interpolated into the algorithm structure. Also the model can use the data measured 

from satellite.  

Only the average value of Kcb and Kcd can be used as inputs in PVGIS. 

Practical radiations of a certain day in a month are calculated according to these 

inputs, and thus the monthly and yearly radiation results can be obtained. PVGIS uses 

the terrain shadowing derived by SRTM-3 digital elevation model as obstacle factor. 

With the use of r.horizon command to precalculate the terrain elevation and optimize 

overall operation procedure, elevation level data is read in r.sun model and used to 

compute shadow effects of beam component of radiation.  

Besides r.sun model, there are some other GIS programs related with 

photovoltaic. They are: r.sunyear for calculating the optimal inclination angle of 

mounted PV module; r.suntrack for the simulation of two-axis tracking PV system 

and r.pv for the simulation of silicon crystalline PV system with the consideration of 

temperature, respectively. User can estimate the radiation or output of flat-plate PV 

through integrated application of these programs. In the web application these 

programs are embedded for the convenience of user to perform analysis for a region.  

The accuracy of model outputs is evaluated by actual measurements of ground 

stations. Having the results of 539 ground stations and after the analysis of these 

results, it is found that among these stations there are 92% of them with output errors 

less than 5% between the simulation results and practical measurements. And twelve 
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stations have the error of 8% which take the 2.2% of all stations. In addition, these 

results are based on the analysis after obtaining actual measurement results. For the 

regions without ground stations the uncertainty concept should be built. Cross 

validation is used to predict the error of these areas that are far away from ground 

stations. However, the conclusion of cross validation does not give the geographical 

distribution of error, 90% of test areas have an error less than 7.2%, while in 19 

locations this number raises to 10%. 

2.2.1.2 Air temperature 

The creation of temperature database is through the collection of seven 

monthly averages during different time point of each day; they are maximum value, 

minimum value, and five values measured through a 3-hour interval from six am to 

six pm. The measurements come from European Meteorological Monitoring 

Infrastructure (EMMI) [17]. In GRASS GIS, elevation are taken into account through 

multivariate spline interpolation method using v.vol.rst command and thus a better 

temperature estimation of mountainous region is obtained.  

The five measurements obtained by 3-hour interval from 6 am to 6 pm are 

used to build monthly daytime air temperature results and simulate the performance 

of silicon crystalline PV modules through r.pv command. The daytime air 

temperature results are obtained by a polynomial representing each grid cell. Similar 

method can be used to calculate average temperature, maximum air temperature and 

time of appearance.  

2.3 Web applications 
For the purpose of providing this solar radiation evaluation tool to the public, 
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a web application was built and was put into use in 2002. Afterwards, it was updated 

for several years with a big upgrade in the year of 2007. The user interface of this 

web application is programmed by PHP and JavaScript and uses Google map as 

media. The basic tools for performing calculation process are compiled in C 

language. Global radiation, temperature and other geographical data are stored in the 

server end as binary files to guarantee fast accessing calculation program.  

The new user interface is composed by a map window and some application 

parts, the map window is shown in fig.2.1 and its calculation parts are shown in 

fig.2.2.  
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Figure 2. 1: solar radiation map in Europe 
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Figure 2. 2 application inputs window 

Through this user interface there are four applications:  

1). Querying local monthly average meteorological information  

Solar radiation, temperature and other related information of long term 

monthly average observation results of different regions can be selected. Terrain 

shadowing caused by high elevation surface of each month can be calculated, as 

along with the yearly loss of horizontal radiation. The following results can be 

derived by using this function: 
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Global radiation of horizontal and inclined surface 

Optimal angle of mounted PV installed at south-faced inclined surface 

The ratio of diffuse radiation and global radiation on horizontal surface 

Linke turbidity factor 

The air temperature of all day and the time period between sunrise and sunset 

2). the simulation for a typical day of each month   

User can obtain monthly average values of radiation and temperature. The 

radiation data contains average global radiation; diffuse and real sky radiation of 

mounted surface and two-axis tracking system for given angle and orientation. 

Radiation profile is calculated from the clear sky values between sunrise and sunset 

which is adjusted by the clear sky index coefficients Kcb and Kcd. Therefore the 

radiation profile is symmetrical with the sun at noon unless the radiation is affected 

by shadowing effects. The time interval used to compute radiation profile is 15 

minutes. 

A monthly average daytime radiation value profile is calculated by the 

observation results derived from 6:00 to 18:00 divided by three hours interval. These 

values are computed through a polynomial which can help calculate the temperature 

of any time during a time period. Outside the time period, the accuracy of these 

results decreases fast, so it is only valid within time period from 6:00 to 18:00. This 

application also can show horizontal elevation changing with sun track at summer and 

winter solstice. 

 3).estimate of PV system performance 

This function can be used to estimate the performance of PV system that is 
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connected to grid. Only a few information needs to be provided by the user: system 

nominal peak power; system loss estimation (including inverter and cable loss with a 

default value of 14 percent); the orientation and inclined angle of fixed-mounted PV 

module; installation method - fixed or two-axis tracking; and PV technology used - 

crystalline silicon or thin film.  

When entering installation angle, user can let the application calculate optimal 

orientation and inclined angle, or compute the optimal inclined angle under given 

orientation. The calculation method used in this application is the same as the model 

of solar radiation estimation. In the calculation the terrain shadowing effect and high 

reflectance under shallow solar radiation incident angle are also considered.  

The choice of different PV technology is used to determine the complexity of 

model. For crystalline silicon a model that uses a function of temperature and 

radiation is introduced to calculate conversion efficiency of PV module. 

Compared with the actual results obtained from instantaneous radiation and 

temperature, those results based on monthly averaged values have a acceptable 

accuracy [18][19]. Right now the database only has long-term 15 minutes averaged 

profiles of radiation and temperature for a typical day of each month. Since the 

relationship of PV modules energy production and radiation is not linear, this 

simplification will result in error. A preliminary study shows that due to the positive 

correlation between radiation and air temperature, the yearly energy is overestimated 

by 1 to 1.5 percent. Because most radiation is absorbed when the sky is cloudless, the 

clear sky radiation model is used to replace real sky radiation when calculating PV 

conversion efficiency. The overestimation can be reduced to less than 1 percent in 
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this way. Adding time series of radiation and temperature can further reduce the error.  

The model of thin film is still under development; the energy production 

estimation accuracy of this kind of technology is difficult, since it largely depends on 

the solar spectrum; its performance is closely related to long-term radiation effect and 

the period with high temperature.  

4).PV potential of different regions 

This tool shows the yearly global radiation and solar source of different 

countries and regions in Europe. It is used for regional planning and policy making; 

in addition, it also gives the solar source of fixed mount PV module in different 

inclined conditions and PV potential.  

For each region, there will be an average potential value from CORINEL and 

Cover and Global Land Cover databases which is based on residential areas. By doing 

this remote areas such as mountain are avoided and more emphasis is put to those 

locations that are more frequently used for PV module installation, like the rooftop of 

buildings and vicinities, for the needs of connecting to the grid.  

Compared with other applications, this program uses previous map instead of 

Google map. It has zoom function and the regions can be selected from list.  

For these four applications, the related data will be calculated first, the data 

defined by the user is run as request. Due to the complicated calculation procedure, 

the following measures are taken to reach optimal calculation speed. First, all 

calculation process are run at the server end, therefore the calculation time will not be 

determined by the computer of user end. The program are compiled using C language 

to ensure faster running speed than those programs compiled in scripting language, 
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such as PHP or Perl. Data that is necessary in calculation is saved in binary form, 

each grid use fixed capacity, so the read and write operation of input data is 

independent of the size of data set.  

For the estimation of PV capacity, the user can choose to run the program 

under optimal inclined angle and orientation conditions (east-west direction). The 

data storage in the server is 7 GB. Besides the program for solar radiation calculation, 

other parts of application are mostly written by scripting language at server end, 

mainly in PHP. The scripting language Java is minimized to make it convenient for 

those users who do not have related programming background.  

2.4 Using online calculators 
The user input has been shown in figure 2.2. Some of the input parameters are 

listed below. 

a. Mounting position 

For fixed mounting PV modules, installation method will influence the 

temperature of modules and then affect the efficiency. Experiments show that if the 

air flow around the module is limited, module will become hotter. There are two 

options in the application. The first one is called free standing where the module is 

installed on a plane allowing air flowing around the module. The second way is 

building integrated where, the module will be built completely inside the structure of 

the building, such as the wall or rooftop. In this way, the air flow is restricted. There 

are some other installation methods besides these two ways, for instant, the module is 

mounted on the curved roof tiles allowing air flow. In this case, the performance will 

be somewhere bewteen the two results mentioned above.  

b. Tilt and azimuth angle 
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c. Tracking options 

For some systems, the PV modules can be moved to track the sun in the sky to 

better absorb the sunlight. There are several different ways of tracking: 

(1) Vertical axis 

Module is mounted on a vertical rotating axis at a certain angle. It is assumed 

that the axis rotates at daytime so that the angle between module and the sun is 

always as small as possible. This means that it will not keep a constant value of 

rotating speed during the day. The angle is determined by module and ground surface, 

or it can be calculated to get the optimal value.  

(2) Inclined axis  

The module is installed on an axis that has an angle with horizontal surface 

and faces south-north direction. The plane of module is assumed to be parallel with 

the rotating of axis. Same as the vertical axis, user can directly enter this angle or 

calculate it from application provided by program.  

(3) Two-axis tracker 

The module is put on a system that can move the module in east-west 

direction and so there is an angle with ground to make sure it always points to the 

sun. The module not only collects radiation directly from the sun, but also uses 

reflected light from other part of the sky.  

2.5 Example and results 
Table 2.1 shows the estimated PV output of application for a selected location. 

The parameters are as follows, user needs to input the location, mounting method and 

PV technology.  

Location: 40°48'9" North, 1°13'49" West, Elevation: 1249 m  
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Solar radiation database used: PVGIS-classic  

Fixed mounting with tilt angle of 35° and azimuth angle due to south 

Nominal power of the PV system: 1.0 kW (crystalline silicon) 

Estimated losses due to temperature: 9.6% (using local ambient temperature) 

Estimated loss due to angular reflectance effects: 2.6% 

Other losses (cables, inverter etc.): 14.0% 

Combined PV system losses: 24.3% 

Table2 1: System energy production estimate 

Fixed system: tilt angle = 35°, 

Azimuth angle = 0° 

Month Ed (kWh) Em (kWh) Hd (kWh/m
2
) Hm (kWh/m

2
) 

January 2.75 85.2 3.41 106 

February 3.18 89.1 4.00 112 

March 4.19 130 5.44 169 

April 4.24 127 5.58 167 

May 4.55 141 6.13 190 

June 4.64 139 6.39 192 

July 4.78 148 6.65 206 

August 4.64 144 6.42 199 

September 4.38 131 5.91 177 

October 3.56 110 4.67 145 

November 2.77 83.0 3.48 104 

December 2.39 74.2 2.96 91.9 

Yearly average 3.84 117 5.09 155 

Total for year 1400 1860 

In the table:  

Ed: Average daily electricity production from the given system (kWh)  

Em: Average monthly electricity production from the given system (kWh) 

Hd: Average daily sum of global irradiation per square meter received by the modules 

of the given system (kWh/m
2
) 

Hm: Average sum of global irradiation per square meter received by the modules of 

the given system (kWh/m
2
) 



31 
 

Figure 2.3 shows the graph of the estimated monthly PV output: 

 
Figure2. 3: estimated PV output for the same location 

Figure 2.4 shows estimated solar irradiation graph for the same location:  

 
Figure2. 4: estimated solar irradiation for the same location 
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2.6 Conclusion 
The development of PVGIS is for assisting policy making, research and 

education. Its goal is to increase the understanding of PV technology and other solar 

related technologies in Europe. The map-based instantaneous analysis tool is useful 

for both professionals and public at preparation stage of PV project, especially for 

prefeasibility study and site selection analysis.  

 

When comparing the output of PVGIS with other simulation model, the errors 

exist due to the different sources of database development. In addition, different 

simulation methodology also leads to the error. Only through comparison it can be 

decided that which model is better for different project.  
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Chapter Three: Stand alone system 

design principles 

3.1 PV modules 

3.1.1 I-V curve 

PV cells are the basic elements of a PV system; through series or parallel 

connection they form PV modules to produce desired voltage; PV modules are further 

connected together to constitute PV arrays for practical use. To describe the 

characteristics of a PV module, I-V curve is a fundamental way to show the 

performance of the PV module, and through it some important parameters of modules 

can be obtained.  

 
Figure 3.1: I-V curve of PV modules 
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Graph in Fig. 3.1 is a basic I-V curve. It shows parameters including short-

circuit current, open-circuit voltage, maximum power current and voltage and 

maximum power point. These parameters depend on the irradiance and temperature 

of PV modules. 

In the I-V curve figure, the maximum power point is the module operating 

point at which the power output of modules reaches maximum value; the 

corresponding current and voltage are called maximum power current and maximum 

power voltage respectively. This value of maximum power point can be used to 

evaluate performance of PV modules under standard test condition or other 

circumstances.  

3.1.2 Device response 

I-V curves vary with different modules, but the magnitude and position of the 

curve still changes even for the same module because of irradiance and temperature 

variation. 

3.1.2.1 Solar irradiance response 

Solar irradiance variation has small influence on voltage but bigger influence 

on current., it is proportional to the solar irradiance increasing, therefore the output 

power also follows a similar change with irradiance, as shown in Figure 3.2.   
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                           Irradiance (W/m

2
) 

Figure3.2: solar irradiance response 

3.1.2.2 Temperature response 

The rise of temperature will cause a dramatic fall of voltage but only a little 

increase of current, thus higher operation temperature reduces power output and 

module efficiency. Long duration high temperature environment also leads to damage 

of PV modules. So it is desired to install modules in a place where is cool enough. 

Temperature affection on modules are shown in the figure below. Refer Fig. 3.3? 
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Figure3.3: voltage will drop due to temperature increase 

3.1.3 Module connections 

First the modules will be connected in series to get desired voltage, and then 

they are connected in parallel for current and power requirements.  

3.1.3.1 Series connection 

For series connection, it is critical to use the same type of modules. When 

identical modules are connected together, the voltage will be the sum of each 

individual module’s voltage while current remains the same. If modules with different 

I-V curve are connected together power loss will occur, because only the lowest 

current can be the output of the entire module. However, modules with different 

voltages can be connected in series if their output currents are the same. In this case it 

will not have power loss.  
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Figure 3.4: current output for similar devices and dissimilar devices 

3.1.3.2 Parallel connections 

When connected in parallel, if the module of the same type, the current is the 

sum of each branch’s current and voltage remain the same as individual module’s 

voltage. Different modules can also be connected in parallel. In this case the voltage 

will be the average value between two output voltages.  

 

 
Figure3.5: I-V curves of modules in parallel 

3.1.4 Bypass diodes 

Sometimes PV modules will experience reverse-bias situations.  Under this 

state, negative voltage will be generated instead of normal positive voltage. It is 

caused by open-circuit or broken cells. A bypass diode is used to prevent this 
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phenomenon. It is connected in parallel with PV cells, in normal conditions the 

current will flow through cells and in the case of a broken cell, current can still pass 

through bypass diode to charge the battery. Without bypass diode the reverse voltage 

will reach breakdown voltage and finally damage the modules. Usually a bypass 

diode will limit the breakdown voltage to 0.7 V [20].  

 

 
Figure3.6: Bypass diode 

3.1.5 PV module modeling 

The simulation in later chapters uses a PV model called one diode model [21]. 

The model has the following equivalent circuit for a PV cell. 

 
Figure3.7: One diode model 

This model is at first designed to describe single PV cell. Assuming that every 

cell is the same, the model can be expressed by the following equation:  
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  =      –    
          

          
  

          /                      (3-1) 
where I is the current produced by the module; 

IPH is phtotcurrent which is proportional to the irradiance; 

Io is the inverse saturation current depending on temperature; 

V is the voltage at terminal of the module and q the charge of a single 

electron; 

Rs and Rsh is series resistence and shunt resistence respectively; 

K is bolzmann’s constant and γ represents diode quality factor which often 

falls between 1 and 2.  

Ncs is the number of cells in series. 

Tc is the effective temperature of modules. 

In the above equation, photocurrent depends on the irradiance and temperature 

of the PV cells; it can be determined as follows:  

   =  
 

    
                                                  (3-2) 

where G is real irradiance and Gref is the irradiance under stardand test 

condition with 1000 w/m
2
.  

Tc and Tcref is the real temperature and temperature under stardand test 

condition which is 25°C. 

MUisc is temperature coefficient of the photocurrent. 

The diode reverse saturation current Io in equation (3-1) are expressed below: 

  =        
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where Egap is the gap energy of the material. This number vaies with different 

materials. 

Table3.1: gap energy for different materials [20] 
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Material Gap energy 

Crystalline silicon 1.12 eV 

CIS 1.03 eV 

Amorphous silicon 1.7 eV 

CdTe 1.5 eV 

 

3.1.6 PV cell materials 

By far the most commonly used for PV cell industry is crystalline silicon (c-

Si). Other semiconductors like gallium arsenide (GaAs) and amporphous silicon are 

also used for different kinds of PV modules. Crystalline silicon materials are 

dominent in PV cells market because it is more cost-effective than other materials. 

Gallium arsenide materials have higher efficiency; however, the price is also 

expensive compared with crystalline silicon. In addition, the toxicity is another factor 

that limits the use of gallium arsenide. GaAs can be mixed with indium, phosphorus 

and aluminum to produce semiconductor. The alloy can receive solar radiation 

components with different wavelength through sunlight. Therefore they are highly 

efficient and are ideal for concentrating applications. Thin-film technologies are also 

widely used today. Thin-film module can be obtained by putting a thin layer of 

semiconductors on the plane through chemical vapor deposition techniques. Then 

using laser to divide cells and make electrical connection between them. Usually the 

materials for thin-film technology are amorphous silicon (a-Si), copper indium 

gallium selenide (CIGS) and cadmium telluride. Compared with crystalline silicon, 

they are less expensive but the efficiency is lower. Other PV materials include 

multijunction and photoelectrochemical cells such as dye-sensitized cells and 

polymer cells. The table below shows efficiencies of some mainly used materials 

[22]. 
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Table3.2: PV material efficiencies 

Material Typical efficiencies in 

percent 

Best laboratory efficiency 

in percent 

Gallium arsenide 20 32 

Monocrystalline silicon 14 to 17 25 

Polycrystalline silicon 11.5 to 14 20 

Ribbon silicon 11 to 13 16.5 

Copper indium gallium 

selenide 

9 to 11.5 19 

Cadmium telluride 8 to 10 16.5 

Amorphous silicon 5 to 9.5 13 

Dye-sensitized 4 to 5 11 

Polymer 1 to 2.5 5 

 

PV modules fabrication involves producing wafers and assembling them into 

cells and modules. Wafer is semiconductor material in the form of flat sheet. They are 

typically 180μm to 350 μm thick and made from p-type silicon. Generally crystalline 

silicon wafers have three forms: monocrystalline silicon, polycrystalline silicon and 

ribbon silicon. Each of them are different in efficiency and cost. Monocrystalline 

silicon have an efficiency of 14% to 17% while some laboratories can produce 

samples with efficiency of 25%. Polycrystalline silicon have relatively small 

efficiency compared with monocrystalline silicon but their cost is lower and the 

denser packing in modules also make them attractive. Ribbon silicon has the lowest 

efficiency among the three types with the cheapest price, because during 

manufacturing there is less material waste.  
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Chapter four: Photovoltaic System 

components 

4.1 batteries 

4.1.1 Introduction 

In the simplest stand-alone system design, PV arrays connect directly to the 

loads and it is called direct-coupled systems. It is very easy to design and build such a 

system. However, in practice this kind of design is not easy to use. Because there are 

many factors that affect the performance and power output of the PV system, like 

temperature, solar radiation and load variation during peak hour and off-peak hour. A 

system with simple structure does not have the capability to operate properly 

according to different conditions. So designing direct-coupled system requires 

accurate system parameters to satisfy different considerations.  

Due to the difficulties described above, in fact most stand-alone PV system 

will have batteries for the purpose of energy storage to better face the situation of 

demand fluctuations during certain period.  
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4.1.2 Battery capacity 

Capacity measures energy storage capability of batteries and is expressed as 

ampere hour. Capacity can be influenced by several parameters including 

temperature, charge and discharge and age. Usually batteries will have better capacity 

under higher temperature than cold conditions, but excessive high temperature also 

reduces the battery life. Next figure shows the relationship between temperature and 

battery capacity. It can also be read from the figure that capacity is affected by 

discharge rate.  

     

 
Figure4. 1: relationship between capacity and temperature 
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4.1.3 Battery types 

4.1.3.1 Flooded-electrolyte batteries 

For this type of batteries the electrolyte is liquid. The constituents change 

according to different battery chemistry. In lead-acid cells the electrolyte is diluted 

sulfuric acid and in nickel-cadmium cells it is potassium hydroxide solution. Flooded-

electrolyte batteries can be divided into open-vent type and sealed-vent type.  

Open-vent batteries: there is a way for air flow and water supply, because it is 

necessary to add water against water loss and maintain the correct concentration. It 

has a removable cap through which water can be added. 

Sealed-vent batteries: in contrast with open-vent batteries, there is no way for 

gas escape and water supply.  

4.1.3.2 Captive-electrolyte batteries 

Captive-electrolyte is the electrolyte in the form of solid. Captive-electrolyte 

cannot be replenished from outside, but it can combine the oxygen produced from 

positive plates and hydrogen from negative plates to create water and thus provide 

supplement internally. Due to this feature, it is an ideal choice to use captive-

electrolyte batteries for stand-alone system that is located in remote areas.  

4.1.3.3 Lead-acid batteries 

Lead-acid batteries are by far the most commonly used in PV systems. They 

are low cost and have the capacity ranging from 10 Ah up to 1000 Ah. The deep cycle 

characteristics make them appropriate for PV installations. But there are still some 
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limitations of lead-acid batteries. They are sensitive to harsh temperature and need to 

be maintained frequently. The table below shows characteristics of different lead-acid 

batteries. 

Table4. 1: lead-acid batteries characteristics [22] 

 Type Cost Availabi

lity 

Deep 

cycle 

performan

ce 

Temperat

ure 

tolerance 

Maintenan

ce 

Flooded 

electrolyte 
Lead-antimony Low Very 

good 

Good Good High 

Lead-calcium open-

vent 

Low Very 

good 

Poor Poor Medium 

Lead-calcium sealed-

vent 

Low Very 

good 

Poor Poor Low 

Lead-antimony/lead-

calcium 

Low Limited Good Good Medium 

Captive 

electrolyt

e 

Lead-calcium sealed-

vent 

Mediu

m 

Limited Fair Poor Low 

Lead-antimony/lead-

calcium 

Mediu

m 

Limited Fair Poor low 

Lead-acid batteries can be divided according to the elements alloyed in the 

plate. Three major types are lead-antimony, lead-calcium and hybrids. 

4.1.4 Battery selection 
Choosing batteries for PV systems involves many considerations and  a 

balance needs to be found between desired and undesired properties. Two main parts  

to be considered are  system requirements and battery characteristics. Table below 

shows some key properties that need to be considered when selecting batteries. 

Table4. 2: Battery selection criteria 

System requirements Battery characteristics 

system configuration energy storage density 

discharge current allowable depth of discharge 

daily depth of discharge charging characteristics 

autonomy life cycles 

accessibility electrolyte specific gravity 

temperature freezing susceptibility 

 sulfation susceptibility 

 gassing characteristics 

self-discharge rate 
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maintenance requirements 

size and weight 

4.1.4.1 Battery bank 

In practical use batteries are usually connected together to provide required capacity 

and voltage. They can be connected either in series or in parallel. In most cases the 

voltage of a battery bank is 12V, 24V or 48V. The figure below shows the capacity 

and voltage of a battery bank in series and in parallel, respectively.  

 

 
Figure4. 2: batteries are connected in series 
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Figure4. 3: batteries are connected in parallel 

It is recommended to connect batteries in series rather than in parallel, 

because when batteries are connected in parallel, the small difference due to 

resistance, length and integrity will lead to inequality of electricity for batteries. To 

overcome this deficit, when connected in parallel the external connection should be 

made from positive and negative terminals on opposite sides of the PV bank. The 

connection is presented in figure 4.4 
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Figure4. 4: series and parallel connections are combined together 

4.2 Battery charge controllers 
A charge controller is an essential component of stand-alone PV systems. It is 

used to protect the batteries from overcharge and disovercharge in order to get higher 

capacity and extend cycle life.  

4.2.1 Overcharge protection 
If a battery without a charge controller is fully charged, the charging process 

will continue and leads to an excessive voltage, and then it may result in battery 

damage including gassing, electrolyte loss, internal heating and grid corrosion. A 

Charge controller prevents a battery from overcharge by interrupting or limiting the 

current flow when a battery is at full state of charge. To achieve this purpose, a 

voltage regulation setpoint is employed.  

 

4.2.2 Overdischarge protection 

When the load’s demand exceeds the supply of PV arrays in peak hours or the 
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irradiance is insufficient, the batteries may be in the status of overdischarge which 

can cause reduction of battery life and performance. To prevent overdischarge a 

charger controller is used to disconnect the load from the battery if the voltage of the 

battery reaches a predetermined value.  

 

4.3.3 Charge controller setpoints 

Charge controllers need to operate under some particular situations; typically 

these situations are defined previously and are setpoints. They can be divided into 

charge regulation setpoints and load control setpoints.  

4.3.3.1 Voltage regulation (VR) setpoints  

Voltage regulation setpoint is used to describe the maximum voltage that a 

battery should reach when charging. Once the battery voltage reaches charge 

regulation setpoints, it means the battery is fully charged. A Charge controller will 

disconnect the array and battery or limit the current to the battery. It is critical to 

choose an appropriate setpoint for charge controllers and it depends on factors like 

battery type, size of array and load, temperature and electrolyte losses. The next table 

lists setpoints for different kinds of batteries.  

 
 
 
 
 
Table4. 3: voltage regulation setpoint for different type of batteries [23] 

Battery type Interrupting charge controller Linear charge controller 

Per cell Per nominal  

12V battery 

Per cell Per nominal  

12V battery 

Flooded open 

vent  

lead-acid 

2.43 – 2.47 14.6-14.8 2.40-2.43 14.4-14.6 
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Sealed valve-

regulated lead-

acid (VRLA) 

2.37-2.40 14.2-14.4 2.33-2.37 14.0-14.2 

Flooded 

pocket plate 

nickel-

cadmium 

1.45-1.50 14.5-15.0 1.45-1.50 14.5-15.0 

When define setpoints for stand-alone system practically it is often to set them 

higher than manufacturer’s recommendation. The season is that batteries need to be 

charged in a short time period due to limitation of real conditions. So a higher voltage 

regulation setpoint can reduce the charging time.  

4.3.3.2 Reconnect voltage of array 

If the voltage reaches voltage regulation setpoint the charge controller will 

disconnect array and battery, current will stop from flowing into the battery and then 

battery begins to discharge with the decrease of battery voltage. Again when this 

number reaches a predetermined value then array will reconnect battery and continue 

charging. This predefined value is called array reconnect voltage.  

Without setting array reconnect voltage, the battery will not be charged again 

and remain at a low level state of charge condition. Reconnect voltage ensures battery 

in a normal cycle of charging and discharging. Figure below shows voltage regulation 

and array reconnect setpoints.  
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Figure4. 5: Voltage regulation and array reconnect setpoint 

From figure 4.5, noted that voltage regulation setpoint and array reconnect 

voltage setpoint are not equal. The voltage difference between them is called voltage 

regulation hysteresis (VRH). It is an important parameter for interrupting type 

controllers, if the VRH is too large it will be more difficult to charge the battery and 

cause low energy utilization. For small VRH the battery will change the status of 

charging and discharging frequently which will damage the charge controller. Most 

interrupting charge controllers use a VRH of 0.4 V to 1.4 V.  

4.3.3.3 Low-Voltage Disconnect Setpoint 

In practical use if the battery voltage drops to a low level its performance and 

life will be shortened. A device is used to achieve the function of disconnecting the 

load from batteries. It can either be a single unit or be integrated into charge 

controllers. To achieve this function a low-voltage disconnect (LVD) setpoint is 
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established. The setpoint also defines depth of discharge and available capacity of the 

battery.  

Choosing a proper disconnect voltage need to take into account both battery 

life and load needs. If the value is too low, load demand can be satisfied but the 

battery will experience high depth of discharge and reduce battery life. For high LVD 

batteries can perform well but limit the load availability.  

Generally speaking, LVD setpoints are located at the position where the depth 

of charge of battery is less than 75% to 80% [22]. Usually the LVD setpoint for lead-

acid batteries with nominal voltage of 12V is 11.2V to 11.5V. A lower setpoint is 

given for high discharge rate in order to achieve the same depth of discharge.  

4.3.3.4 Load reconnect voltage (LRV) setpoint 

Similar to the array reconnect voltage setpoint, after disconnection of the load 

and battery, the battery voltage will rise to open circuit voltage and due to the power 

supply from the array or other backup generators, the voltage are increasing gradually 

until some particular values. At that value the controller will reconnect the load with 

the battery; this value is load reconnect voltage setpoint.  

When choosing LRV setpoint, it is important to select a value high enough to 

ensure the battery is charged to a certain level, while not too high considering load 

availability. The values are often set between 12.5V to 13.0V for nominal 12V lead-

acid batteries. And the batteries often reach 25% to 50% state of charge when they are 

reconnected with loads.  
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Figure4. 6: low-voltage disconnect setpoint and reconnect voltage setpoint 

There is also a difference between voltage disconnect setpoint and reconnect 

point, it is called low-voltage disconnect hysteresis (LVDH). A proper LVDH 

selection will take the consideration of both battery and loads. Larger LVDH will 

make the battery to get fully charged which is beneficial to battery life but give up 

loads availability. Small LVDH ensures loads to work more efficiently but the battery 

will rapidly change the status of charge and discharge so shorten its life.  

4.4 Type of charge controllers 
Charge controllers often use switch elements to regulate current, they can be 

either interrupting of linear type. The first type regulates current by an ON/OFF 

switch and linear type use a more consistent way by lowering current gradually.  

 

4.4.1 Shunt charge controller 

Shunt charge controller regulates the current flow by short-circuiting the array 

through an element inside the controller. A blocking diode is used to prevent the 
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battery from short-circuit. Due to the voltage drop existed in the array components 

which is caused by resistance, a heat sink is required for controllers.  

Usually a power transistor or MOSFET is used as the control element. The 

simplest and cost-effective design is interrupting type controllers. It can perfectly 

disconnect array and battery by an ON/OFF switch. After voltage reaches the 

reconnect value, the switch will close to charge the battery. Shunt interrupting 

controllers can be widely used in PV systems and especially suitable for small stand-

alone system. Next figure shows a graph of shunt interrupting controllers.  

 

 
Figure4. 7: Shunt Interrupting Controller 

Shunt linear controllers limit the current when the battery reaches full state of 

charge by gradually reducing the resistance. When selecting voltage regulation 

setpoints interrupting controllers requires higher values than linear controllers in 

order to make the battery fully charged.  

4.4.2 Series charge controllers  

Series charge controllers regulate current by open-circuiting the array. The 

control elements are in series rather than in parallel as shunt control. There is also a 

switch or a relay that can open the circuit to stop charging current flowing when the 

battery voltage reaches voltage setpoints. Compared to shunt controller design, there 
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is no need to put blocking diode to prevent battery short-circuiting. Figure shows 

series charge controller.  

 

 
Figure4. 8: Series Controller Design  

Series interrupting charge controllers are the most basic design forms. Similar 

to shunt interrupting controllers, it contains a switch to open or close the circuit. If the 

battery voltage achieves the voltage regulation setpoint the controller will open circuit 

to cut the current, after a time period when the voltage drops down to the voltage 

reconnect setpoint then array will connect battery again to charge. As battery 

becomes more fully charged, it takes less time to reach voltage regulation setpoint for 

each charging and discharging cycle. And the current also reduces for each time. So 

full charge is achieved by small intervals which is analogous to the shunt controller.  

4.4.3 Maximum power point tracking (MPPT) charge controllers 

This kind of charge controllers can make system operating as close as possible 

to the maximum power point on I-V curve through monitoring the circuit and 

changing the resistance or input voltages dynamically.  
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Figure4. 9: Maximum power point tracking 

When external condition changes as irradiance reduction as shown in the 

figure, the I-V curve has a new pattern as well as the position of maximum power 

point. MPPT controller can adjust voltage according to current conditions to continue 

get maximum power. MPPT charge controllers improve battery charging performance 

effectively. Without MPPT control the array will operates at low battery voltage with 

a power loss of about 20%.  
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4.4 Loss in PV systems 
In ideal conditions, the array should yield 1KWh under standard test 

conditions with irradiance of 1kW. However, there are some unavoidable factors that 

reduce the efficiency of PV system; they are losses existing widely among system 

components. System losses are caused by many kinds of reasons, like the resistance 

of electronic circuits and units aging. Major loss includes irradiance loss, mismatch 

loss, wiring loss soiling loss and thermal loss.  

4.4.1 Array incidence loss (IAM loss) 

The incident light will be weakened when it reaches the surface of the PV 

array surface compared with STC. The loss follows Fresnel’s law of transmission and 

reflection of the outside layer of solar panel and cell surface. The effect of IAM loss 

can be described by the following parameter [20]: 

 

    = 1      
 

    
 1                                            (4-1) 

Where i is the incident angle. Coefficient b0 is determined by different 

modules, for single-glazed thermal module, b0 is 0.1. For crystalline modules with 

high refraction index the b0 take the value of 0.05. 

4.4.2 Array mismatch loss 

Mismatch loss are mainly caused by the connection of cells with different 

characteristics. A PV module that constituents with different cells may result in  

power loss and reliability degradation due to the abnormal operating state of single 

cell. This loss is more severe for series connection when a certain cell is shaded or 

broken. Next figure shows the effect of mismatch cell.  
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Figure4. 10: Current voltage curve of mismatch effect 

In the above figure, curve 1 presents several identical cells connection and 2 

shows a shaded cell. When they are connected together from the result of curve 3 it is 

clear that current reduction appears. So the power output also decreases, sometimes 

can drop to zero. In this case if the array is short-circuited, the shaded cell is reverse- 

biased and other cells operate at their maximum power point. All power generated by 

other cells will cumulate at the shaded cell and cause damage. Bypass diodes are used 

against these results.  

4.4.3 Wiring loss 

Wiring loss are existing modules and terminals of the array. These losses can 

be characterized by the resistance R.  

4.4.4 Array thermal losses  

In practical the modules often operates at higher temperature than STC 

conditions which will decrease their performance and further the power output. This 

kind of loss is called thermal loss. For crystalline silicon cells, the thermal loss will 
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result 0.4% of power output reduction from maximum power point with each degree 

Celsius rise.  

4.4.5 Soiling loss 

Soiling loss are those losses caused by the coverage of external objects that 

can block the insolation such as snow and pollutant. The influence of dirt depends on 

location and weather condition, for industrial or urban areas, the effect of dirt 

accumulation will be higher as well as droughty weather. In winter season snow also 

cause soiling loss, the duration of snow coverage on module surface is the main factor 

that affects energy yield. It will depends on the ambient temperature and module tilt 

angle, when it is below zero degree Celsius snow will remain on the surface for long 

time. A small tilt angle also prevents snow from sliding off the surface. A PV module 

with lower tilt angle can experience 30% more energy [24] reduction compared with 

a module that has higher tilt angle.  

4.5 Inverters  
The function of an inverter is to transform DC power to AC power; it is 

widely used in the systems that contain AC appliances. In real system design the 

inverters also integrates other components to form power conditioning unit (PCU) 

[22]. Power conditioning units can act as DC to DC converters and maximum power 

point trackers.  

PV inverters can be divided into stand-alone inverters and grid-connected 

inverters.  

Stand-alone inverters connect with batteries and operate independently from 

PV array. Grid-connected inverters connect PV array and operate in parallel with 

utility grids.  
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4.5.1 DC-DC converters: 

DC–DC converters are used to change the voltage of DC power from one to 

another. They can achieve this function through high frequency switching and 

transformers. Transformers can also provide circuit isolation. Buck converter and 

boost converter are used as step down converter and step up converter, respectively.  

PV inverters often use DC-DC converters to change voltage before the 

inverting process. For battery-based system, converters can provide other voltages 

rather than battery nominal voltage. Parameters of DC-DC converters are power 

rating, input and output voltages and conversion efficiency.  

4.5.2 Maximum power point trackers (MPPT) 

Maximum power point trackers are a form of DC-DC converter. It uses 

electronic components to adjust PV outputs and make it operate at its maximum 

power point under changing irradiance and temperature. Interactive inverters often 

contain MPPT circuits.  

For large PV system with multiple PV arrays, individual MPPTs are designed 

to connect each array, in this way it is more efficient for MPPTs to operate at 

maximum output with each array that has different characteristics. So the total 

performance of PV system improves.  

In some system, battery charge controllers have the function of MPPT, so 

there is no need to contain MPPT circuits in inverters.  

4.5.3 Inverter characteristics 

Main parameters that describe inverters include power, voltage and current 

ratings and efficiency.  
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4.5.3.1 Power ratings 

Power ratings mainly affect power output of an array. Grid-connected 

inverters have a power ratings ranging from 700 W to 500 kW for large utility needs. 

Stand-alone inverters are smaller in range from 3 kW up to 6 kW.  

Temperature limitation is the major factor that restricts power ratings. Usually 

inverters can operate at temperature from -20°C to 50°C. Inverters can use heat sinks 

or ventilation fans against excessive high temperature.  

Grid-connected inverters limit temperature by control the power delivered to 

inverter. It can make the voltage rises and operating away from maximum power 

point. When the temperature drops, it can again operate at maximum power point. 

Next figure illustrate this process.  

 

 
Figure4. 11: Inverters limit the power output by reducing voltage 



62 
 

4.5.3.2 Voltage ratings 

Voltage ratings of inverters refer to AC output voltage and DC input voltage. 

The AC output for smaller inverters typically produces 120 V or 240 V. larger 

inverters have the voltages of 208 V, 277 V or 480 V three phase AC output. For 

grid-connected inverters the voltage output should within -10% to 5% of nominal 

voltage.  

DC input voltage depends on the type of inverter. For stand-alone inverters it 

is based on battery characteristics while for grid-connected inverters it is determined 

by PV arrays. Stand-alone systems with lead-acid battery of 12 V have a voltage 

range from 11 V to 16 V [22]. And for larger systems the range also changes.  

For grid-connected inverters, there are minimum operating voltages to ensure 

inverters normal performance and produce desired peak and RMS value of output 

voltage. On the other hand, a maximum voltage is also required to prevent inverters 

operate at excessive voltage. Figure below shows the operating voltage range.  
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Figure4. 12: The operating input range and their maximum power point 

Array voltage increases with increasing grid voltage, in order to have a 

desired range of output AC voltage the DC input voltage must meet has a certain 

minimum values. Next figure illustrate this. 
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Figure4. 13: The relationship of utility and array voltage 

DC input voltage for grid-connected inverters is affected by temperature. And 

some inverters have a wide range of input voltages which allows different array sizes 

and configurations. 

4.5.3.3 Current ratings 

Current ratings is responsible for the current value of both input and output 

side. For DC side, current ratings decide the maximum input current under normal 

inverter operation. For output current the loads and magnitude of current are 

concerned.  

The output AC current is affected by ambient temperature. DC input current 

decreases with the increasing of input voltage to give a constant power output as the 
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figure shows below: 

 

 
Figure4. 14: Input currents are reduced when voltage rises. 

Maximum outputs AC current are also monitored and protection devices are 

used to prevent over current. They are integrated within the inverters.  

4.5.3.4 Efficiency 

During inverting process, there are some power losses due to operation needs 

and heat loss caused by circuit resistance. The efficiency of an inverter can be 

described by the following equation: 

 

    =
   

   
                                               (4-2) 

Where η is inverter efficiency and PAC is output power, PDC is input power.  

Most grid-connected inverters have an efficiency of 90% to 95%. Stand-alone 

inverters have peak efficiency of 90%. Generally inverters with high frequency and 
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voltage are more efficient than those lower ones. The efficiency is mainly affected by 

the load, inverter temperature and DC input voltage. Next figure shows inverter 

efficiencies for grid-connected inverters. 

 

 
Figure4. 15: Inverter efficiency of different power rating 
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Chapter five: Stand-alone system design 

using PVsyst software 

5.1 Introduction of PVsyst Software 
The modeling process, simulation and results analysis are based on PVsyst. It 

is a software package used to study, size and analyzing data of different types of 

photovoltaic system including stand alone system, grid-connected system, water 

pumping system and DC grid system. The first three kinds of systems contain a 

preliminary design and a detailed project design. 

The preliminary design uses monthly values of meteorological data and just 

few key parameters of system component for simulation process and obtains a rough 

estimation of the project. For grid-connected systems, it gives array orientation and 

system specification settings, including module type and technology, mounting and 

ventilation property.  
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For stand-alone systems, user can define module orientation, loads monthly or 

yearly total consumption, in the results array nominal power, battery capacity and 

other required system parameters can be obtained such as autonomy and system 

voltage.  

In project design provides comprehensive system configurations. At first user 

choose the project location to get meteorological data. Then select the plane 

orientation type of fixed plane or tracking options. And a detailed system components 

dataset is given for defining PV module and array connection, loads, batteries, 

inverters and charge controllers as shown in figure below.  

 
Figure5. 1: system components selection in project design 

After that user can set detailed loss parameters like thermal loss, wiring loss, 

mismatch loss, soiling loss and incident angle loss. Simulation results are categorized 

by several aspects. Users can view irradiation, energy output, battery performance, 
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loads availability through the results. And a detailed loss diagram to visualize all the 

loss factors of the entire system. There is also a economic evaluation for financial 

analysis.  

5.2 Geographical and meteorological data 
PVsyst provide two kinds of meteorological data for users: monthly and hour 

data. When defining geographical site, the monthly meteorological data of horizontal 

global irradiation, diffuse irradiation, ambient temperature and wind velocity are 

given at the same time. However, for detailed simulation purpose, the hourly value of 

irradiation and temperature are needed. Synthetic hourly data can be generated 

automatically from monthly values of global irradiation and temperature when the 

site is confirmed. For more accurate simulation results PVsyst support external data 

sources to be imported for project. 

The location of the project is chosen to be at Denver. Users can choose the 

location by selecting country and region, further location definition can be obtained 

through entering latitude, longitude and altitude directly. For meteorological data at 

least the global irradiation and temperature should be included in dataset to ensure the 

running of the simulation while the diffuse horizontal irradiation and wind velocity 

are optional. 

In the project the data files of US Typical Meteorological Year (TMY3) data 

are used. It is a data file contains meteorological data from 1961-1990 and 1991-2005 

National Solar Radiation Data Base and developed by National Renewable Energy 

Laboratory. (NREL)[25] In TMY3 the data are collected from 1020 sites of the US. 

Next figure shows the locations.  
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Figure5. 2: Locations of TMY3 ground stations [26] 

The TMY3 datasets contains hourly values of solar insolation and climate data 

of one-year period. It is an external data source so user should get it freely from the 

web and import it into PVsyst. Next table shows hourly value during one year with 

two different days of December 21
st
 and June 21

st
, respectively.  
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Table5. 1:Date: June 21
st
: 

Time interval 

beginning 

Global 

irradiation 

(W/m
2
) 

Diffuse radiation 

(W/m
2
) 

Temperature 

(°C) 

Wind velocity 

(m/s) 

00:00 0 0.0 17.20 3.10 

01:00 0 0.0 16.70 4.10 

02:00 0 0.0 16.70 1.50 

03:00 0 0.0 15.60 1.50 

04:00 4 3.0 16.10 1.50 

05:00 76 64 17.20 2.10 

06:00 123 96.0 18.30 3.10 

07:00 382 136.0 20.60 2.10 

08:00 634 119.0 22.20 2.60 

09:00 702 159.0 24.40 2.10 

10:00 870 207.0 26.10 3.60 

11:00 946 180.0 27.20 2.10 

12:00 723 460.0 26.70 0.00 

13:00 569 298.0 26.70 5.20 

14:00 429 317.0 26.10 2.60 

15:00 402 254.0 23.90 1.50 

16:00 337 144.0 24.40 2.60 

17:00 117 117.0 23.90 1.50 

18:00 38 38.0 19.40 6.70 

19:00 3 3.0 18.30 3.60 

20:00 0 0.0 17.80 2.60 

21:00 0 0.0 17.20 2.60 

22:00 0 0.0 17.20 2.60 

23:00 0 0.0 17.20 2.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Table5. 2: Date: December 21

st
: 

Time interval 

beginning 

Global 

irradiation 

(W/m
2
) 

Diffuse radiation 

(W/m
2
) 

Temperature 

(°C) 

Wind velocity 

(m/s) 

00:00 0 0.0 -1.10 1.50 

01:00 0 0.0 -1.70 2.10 
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02:00 0 0.0 -1.70 2.10 

03:00 0 0.0 -2.20 2.60 

04:00 0 0.0 -2.20 2.10 

05:00 0 0.0 -2.20 2.10 

06:00 0 0.0 -2.80 2.10 

07:00 20 9.0 0.60 3.10 

08:00 148 32.0 3.90 5.20 

09:00 294 44.0 8.30 4.10 

10:00 404 53.0 12.20 4.10 

11:00 461 57.0 15.00 3.10 

12:00 457 57.0 16.10 1.50 

13:00 395 52.0 15.60 2.10 

14:00 279 43.0 15.60 2.10 

15:00 130 32.0 14.40 1.50 

16:00 13 9.0 9.40 2.10 

17:00 0 0.0 4.40 2.10 

18:00 0 0.0 4.40 2.10 

19:00 0 0.0 3.90 3.60 

20:00 0 0.0 3.30 3.60 

21:00 0 0.0 2.20 3.60 

22:00 0 0.0 2.80 4.10 

23:00 0 0.0 2.20 1.50 

 

Then Albedo values are needed to be set. It is the fraction of global irradiation 

reflected by the ground and received by PV array. It is zero for horizontal plane and 

increases with tilt angle. Program allows adjusting the albedo values for each month 

for the consideration of snow coverage. Usually the values range from 0.14 to 0.22 

and up to 0.8 for snow situation. In the simulation this it is set to be a default value of 

0.2.  
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Figure5. 3: Setting Albedo values 

5.3 Orientation: 
In photovoltaic system design the orientation should be taken into 

consideration because they will affect the performance of photovoltaic systems. To 

receive the maximum amount of solar radiation the photovoltaic panel needs to be 

placed at a certain angle.  

There are different ways of array mounting and the simplest one is fixed-tile 

mounting type. It is also the most commonly used way by far. In this way the array 

are permanently installed at an angle and face one direction according to its location, 

for northern hemisphere it faces south and opposite in southern hemisphere. It is cost-

effective and is easily for installation and maintenance. However, due to the 

limitation of sunlight absorption, the energy collection is rather low. An improved 

way for this kind of mounting is using an adjustable tilt structure. The tilt angle can 

be adjusted manually to better receive sunlight; in summer season when the sun is 

higher the tilt angle is decreased while it is raised to catch the sun in lower position of 

the sky.  

Although adjustable tilt angle mounting is an improvement to fixed-tilt array 

mounting. It is still cannot get the maximum power output because only by adjusting 
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tilt angle is not enough to ensure the PV panel to work at a desired orientation. By 

using tracking system this drawback can be overcome. Sun-tracking system can make 

the array orient to the sun according to its changing position and so the panel will face 

the sun at all time during daytime. Compared with fixed mounting, the array can 

produce up to 40% more power. According to the number of axis used and way of 

rotation, tracking systems are classified into different types.  

Single-axis tracking use one axis and the array can rotate through it to follow 

the sun path. The array rotates either around the vertical axis to change the azimuth 

angle or rotate east-west. Both of these two ways can also adjust tilt angle 

simultaneously.  

Two axis tracking are further used to catch the sun position more accurately. 

The two axes rotate independently. One configuration is altitude-azimuth tracking, 

one axis rotates to change the azimuth angle and another axis is tilt axis used to 

follow the sun’s altitude. Equatorial tracking uses north-south axis to rotate the array 

in an east-west way and tilt axis change the tilt angle periodically over one year.  

PVsyst gives numerous orientation schemes for photovoltaic modules 

installation including the mounting methods mentioned above. They are:  

a. Fixed tilted plane: user only needs set tilt and azimuth. 

 

 
Figure5. 4: fixed mount array 

b. Seasonal tilt adjustment: plane tilt can be adjusted for summer and winter 
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season. 

 
Figure5. 5: Adjustable tilt mounting 

g. One axis tracking, vertical axis: solar panel is fixed onto an axis and can 

rotate with the sun path.  

 
Figure5. 6: vertical axis tracking 

e. One axis tracking, horizontal axis E-W: orientation axis is defined normal 

to the horizontal axis. Stroke limits should be defined from lower limit to upper limit. 

This configuration is actually not suitable for PV systems. 

 

 
Figure5. 7: one axis tracking 

d. Two axis tracking, tilted axis: tilt and azimuth of the axis are needed to be 

defined. 
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Figure5. 8: two axis tracking mounting 

f. Two axis tracking, horizontal axis N-S east to west: it is the usual setting for 

horizontal axis tracking systems, using tilt axis with tilt = 0 degree.  

 

 
Figure5. 9: two axis horizontal axis N-S east to west 

c. Tracking, two axes: the plane is fixed within a frame and can rotate, tile and 

azimuth angle need to be defined with maximum value of -90 degree to 90 degree and 

-180 degree to 180 degree, respectively. Then user can also choose a frame with 

north-south axis or a frame with east-west axis.  

h. Tracking sun shields: it may yield solutions to the difficult optimization 

between sun protection and PV production.  

For economic and maintenance considerations, here we choose the fixed tilt 

angle option as simulation model. The optimal tilt angle for fixed mount array is 

usually the latitude of the location. Since the latitude of Denver is 39.83 degree. The 
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tilt angle for this project is set to be 40°.  

In PVsyst, by using the plane optimization tool user can also easily find the 

optimal plane tilt and azimuth.  

 
Figure5. 10: plane optimization for yearly irradiation yield 

5.4 Stand-alone system sizing 

5.4.1 Load analysis 

 

For system configuration, first we need to define the user’s need. In stand-

alone system, the energy consumption is based on the daily, monthly or yearly use. 

The daily energy consumption for each load is determined by its power and operating 

time. In order to get an accurate load demand, the power and operating time must be 

obtained for each load.  

If the system contains AC loads, an inverter is needed to convert DC voltage 

provided by array or batteries to AC voltages. There are several factors need to be 

considered when selecting an inverter. First the power output of the inverter should 

meet the peak watt hour of all AC loads. Usually the inverter is chosen to little larger 

than the AC loads demand for the possible future load extension. Inverter efficiency 
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is typically about 80% to 95%. [22]  

5.4.1.1 Project assumption of load analysis 

The designated location for the example is set to be at Denver, a residential 

house is constructed with a stand-alone PV system providing its power. The loads are 

being evaluated by monthly values. The usage of the majority of the loads is thought 

to be constant during single month. The loads include appliances and media 

equipments.  

The appliances are composed by a refrigerator, a micro-wave oven, a toaster, 

air conditioner, coffee machine, washing machine and a dryer. First the daily power 

demand for each of them is obtained. [27] The refrigerator consumes about 1.2 kWh 

per day. The micro-wave oven has a power rating with 1 kW and operates about 15 

minutes each day. So the daily energy consumption for micro-wave oven is 250 Wh. 

a toaster typically rated at 1150 W and uses for 8 minutes so that it has an energy 

consumption of 153 Wh. Coffeemaker rates at 800W for 15 minutes per day. The 

daily energy is 200 Wh. Washing machine has a power rating of 500W and operate 

twice a week with half an hour each time, the total energy then is 500 a week and 71 

Wh per day.  

Media equipment includes a TV set, a computer, a satellite dish. The nominal 

power of TV and satellite dish is 150W and 30W; they are used about 3 hours each 

day. The summation is 540 Wh one day. The power of a desktop computer is 120W 

and is used for 2 hours each day. The energy consumption is about 240W.  

The power of air conditioner is 1000 W and energy consumption is 3kW for 

three hours in one day. However, this appliance is only during summer. Because the 
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total load requirements changes in different time of year, the monthly loads analysis 

is applied in the project. Next table shows the energy consumption for the household 

appliances in the month of July.  

Table5. 3: AC loads analysis of July: 

Load Number Power rating 

(W) 

Operating 

time(hour/day) 

Energy 

consumption 

(Wh/day) 

Fluorescent 

lamp 

4 18 4 288 

Fluorescent 

lamp  

4 10 4 160 

Refrigerator 1 120 10 1200 

Micro-wave 

Oven 

1 1000 0.3 300 

Toaster 1 1150 0.2 230 

Coffeemaker 1 800 0.25 200 

Washing 

machine 

1 500 0.14 71 

TV 1 150 3 450 

Satellite dish 1 30 3 90 

Computer 1 120 2 240 

Air conditioner 1 1000 3 3000 

Total AC power: 4982 W 

Total daily AC energy consumption: 6229Wh 

Inverter efficiency 90% 

Average daily DC energy consumption: 6921 Wh/day 

 

 

For the month of July, through the table above it is shown that total AC power 

requirement is 4982 W and the DC energy demand is 6064 Wh per day. So the 

inverter should be able to provide AC power of 5 kW. For future load addition 

considerations, the power rating of inverter should be a little higher than current value 

with 5.2 or 5.3 kW. Due to the inverter efficiency is 90% the final daily DC energy 

supply should be 6738 Wh.  
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The system should be designed to meet each month of the year including the 

highest loads usage month and lowest insolation month. There is a relationship 

between loads and insolation for each month and the worst case is that energy 

consumption is relatively high during low insolation month. The ratio between loads 

requirement and insolation is called critical design ration, it varies with the load 

demand and insolation for different months and are given for each month. The critical 

design month is the month with the highest critical design ratio, which means the 

system must work and supply enough power to the load under low sunlight 

conditions. The system components should be designed in the assumption of critical 

month.  

To calculate critical design ratio, besides load consumption the insolation data 

is also needed. The insolation is represented by peak sun hours (PSH) per day; peak 

sun hour is the number of hours that receives solar irradiance of 1000W/m
2
 during 

one day from sunrise to sunset. Peak sun hours are given as average daily insolation 

in the unit of kWh/m
2
. It often gets its maximum value in summer and reaches 

minimum during December or January in northern hemisphere.  

The load is assumed to be seasonally constant during winter, spring and fall. 

In summer the air conditioner is used and for individual season the energy is 

considered equal to each other. So the energy consumption for summer which is the 

month of June, July and August is obtained above, same as the month of July. For 

other three seasons, the energy use should be the summation of all loads without air 

conditioner and is 3229 kWh. Considering the inverter efficiency of 90% the final 

load needs is 3921/0.9=3587 kWh.  
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The insolation data can be derived from TMY3 data introduced above. The 

dataset gives global irradiance for each day and month. Then it is possible to calculate 

the critical design ratio for each month. Next table shows the critical ratio. 

 
 
 
Table5. 4: Critical design analysis 

Month Daily DC energy 

consumption (Wh) 

Insolation(PSH/day) Critical design 

ratio 

January 3587 2.50 1434.8 

February 3587 3.17 1131.5 

March 3587 4.66 769.7 

April 3587 4.79 748.9 

May 3587 6.33 566.7 

June 6921 7.27 951.9 

July 6921 6.72 1029.9 

August 6921 5.99 1155.4 

September 3587 5.18 692.4 

October 3587 3.68 974.7 

November 3587 2.46 1458.1 

December 3587 2.08 1724.5 

From the critical design ratio given by the form, it is obvious that December 

has the highest value and therefore December is the critical design month.  

The appliances can be entered into the loads datasheet in PVsyst, set 

December as the sample, the micro-wave oven and coffeemaker are categorized as 

domestic appliances; toaster is considered as other uses. Next two figure show the 

loads requirements in January and July:  
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Figure5. 11: domestic appliance power consumption settings for January 

 

 
Figure5. 12: loads energy consumption for July 

In the loads analysis sheet, the fluorescent lamps with 10W and 18W are 

thought to be eight identical 14W lamps. The TV set and computer have different 
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operating time, so it is needed to give the value of average daily use for them, it can 

be calculated by the following equation:  

 =
                     

          
                                   (5-1) 

Where t is the average daily operating time of n loads, pn is the power rating 

for each load and tn is the separate operating time of pn.  

Using the above equation and the load table, the daily usage of TV set, dish 

and computer are given as: 

 =
                        

             
=      o  s  

Similarly, the time of domestic appliance including micro wave oven and 

coffeemaker is:  

 =
                     

          
=       o    

Other uses here only means toaster which has an individual operating time of 

0.2 hour. But in the season of summer, the other uses includes toaster and air 

conditioner, thus the operating time is: 

 =
                   

           
= 1    o  s  

PVsyst does not support two digit-numbers after decimal point, so 0.28 hour is 

rounded to 0.3 hour. That is the reason why the total daily energy consumption 

appeared on the data sheet is 3268 and 6263 Wh for January and July, a little bit 

higher than table calculation result.  

5.4.2 Array and battery sizing 

5.4.2.1 Battery pre-sizing parameters 

1). Decide the requested autonomy 

The requested autonomy is defined as the time period that a battery can 
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support the loads power consumption without insolation. It is started from a full 

battery charge state and is given in days. Larger autonomy requires increased battery 

bank which is more cost and difficult to maintain, but reduces the depth of discharge 

and is therefore beneficial for the battery.  

2). Loss of load probability (LOL probability) 

It is the value of the time during one year that PV modules cannot meet the 

demand of load presented by percentage value, Due to the real insolation condition 

and system failure, it always exists. During the sizing process, the LOL probability 

allows for determining PV array size that is needed, for a given battery capacity. LOL 

probability is decided by autonomy and insolation. In practical, most stand-alone 

systems have 5% loss of load probability with autonomy of three to five days. The 

figure below shows factors that affects loss of load probability.  

 
Figure5. 13: Loss of load probability can be roughly determined by insolation and autonomy. 

For this project, the autonomy is set to be 4 days and loss of load probability 

is 5 percent.  

3). Battery voltage 
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Typically the DC voltages for stand-alone system are 12V, 24V or 48V. 

Higher voltage results in lower current, which can further leads to the decrease of the 

size of corresponding components including inverter, charger controller and batteries. 

So the reliability of the system improves. Lower current also reduces the power loss 

and enhance the efficiency of the system. The figure below shows the relationship 

between system voltage and current.  

 

 
Figure5. 14: DC system voltage and Current 

5.4.2.2. Battery sizing 

The desired battery output is determined by loads and autonomy and can be 

calculated through the following equation: 

 

    =
         

   
                                           (5-3) 
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Where Edaily is the daily energy consumption and Ta is the autonomy, Vdc is 

DC voltage.  

In this system, the daily energy consumption is 6263 Wh, autonomy is 4 days 

and DC voltage is 48V. So the battery output should be: 

    =
         

   
=    A   

 

So the battery should have the capacity of 522Ah for the loads to work 

normally.  

In practical use due to some factors the real output will be less than the 

theoretical calculation. So the battery needs a larger capacity. These factors include 

depth of discharge, discharge rate and operating temperature. Almost all batteries 

cannot have a depth of discharge of 100 percent. Once the battery reaches an 

excessive depth of discharge permanent damage will occur. Usually batteries have a 

depth of discharge ranging from 20% to 80%. As the most commonly used battery 

technology, the lead-acid type of battery can have the depth of discharge of 80%.  

Temperature also affects battery capacity, the battery capacity is determined 

under standard test conditions of 25 °C; lower temperature will reduce the battery 

capacity. Excessive high discharge rate is another factor lowers the battery capacity. 

The capacity affected by temperature and discharge rate can be drawn into the figure 

below: 
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Figure5. 15: battery capacity is affected by discharge rate and temperature 

The nominal voltage and rated capacity of the battery is put on the nameplate 

by manufacturer. In PVsyst these values are given according to the load requirement 

defined in the previous stage, as well as the loss of load probability and autonomy:  

 

 
Figure5. 16: Battery basic parameters sizing 

To get desired capacity and voltage, batteries need to be connected in series 

and parallel to form a battery bank. Parallel connection is not ideal because the 

existence of wiring loss, however, considering the capacity requirement, it is better to 

limit the parallel connections within three to four strings. Then the battery bank can 
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be designed according to the DC voltage and capacity. The desired capacity is the 

summation of the individual capacity of each string; the voltage is the summation of 

each element constituting the string. For the desired capacity, the number of strings is 

often not an integer, so the number should be round up to the closest integer. It should 

be taken into consideration that the final real capacity is not too much than the desired 

capacity.  

The DC voltage of the system should be decided by the load requirements, the 

power of some appliances exceed 1000W, so a 48V DC voltage is needed to meet the 

demand of these loads. From figure for the required capacity of 522Ah the suggested 

capacity is 578Ah. Then a suitable battery set is selected. Through PVsyst numerous 

kinds of batteries produced by different manufacturers are available. In its data sheet 

user can view the basic parameters including DC voltage and capacity. In the project 

a 6V lead-acid battery produced by Surrette is used considering capacity and number 

of strings. The battery capacity is 291 Ah and voltage is 6V. The weighted operating 

time for the whole house according to equation () is calculated as: 

 

 =
                                                                

                                               

      
=

     o  s/     
In order to get 48V voltage, 8 batteries are connected in series and two strings 

are connected in parallel to provide 578Ah capacity. Then the total capacity is 582Ah.  

 

 

 

 

 

 

 
Table5. 5: Battery sizing parameter 
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Daily energy consumption 6229Wh 

DC system voltage 48V 

Autonomy 4 days 

Required battery output 522 Ah 

Weighted operating time 4.02 hours 

Minimum operating temperature 0°C 

Suggested battery bank capacity 578 Ah 

Battery Manufacturer Surrette 

Battery voltage 6V 

Battery capacity 291 Ah 

Number of batteries in series 8 

Number of strings in parallel 2 

Total number of batteries 16 

Practical battery capacity 582 Ah 

 

The discharge rate of the battery can be obtained directly from PVsyst.  

 
Figure5. 17: battery discharge rate 

5.4.2.3 PV array sizing 

The array should also be sized properly to provide enough energy to the loads 
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and for charging the battery. So there is required array output current, first the array is 

calculated by the energy and DC voltage. However, when considering battery charge, 

the current should be higher than the original calculation because the battery charging 

efficiency is always less than 100%. For most batteries the charging efficiency is 

between 85% and 95% [23], then the final output current is calculated using the 

following equation:  

 =
     

           
                                           (5-4) 

Where Ecrit is the daily energy consumption for critical design month, ηB is the 

battery charge efficiency, Vdc is the system voltage, and tPSH is the peak sun hour of 

the critical design month. The critical design month is December; the battery 

efficiency is set to be 90%. So from table the current is given by:  

 =
       

            
=39.9A 

This means the array should produce at least 39.9A current for loads work 

normally under peak sun hour conditions. However, similar to battery capacity, the 

array required output is affected by some factors so it never reaches the theoretical 

output. These factors include soiling and temperature, in order to get desired array 

output, it is necessary to increase array size considering these factors.  

Soiling is the effect of dust and dirt falls on the surface of the PV array which 

can cause shade and further reducing the insolation. Most arrays have the soiling 

factor coefficient of 0.95 under light soiling and 0.9 under heavy condition. Then the 

rated array output current considering soiling is given by: 

      =
      

  
                                             (5-5) 

Iarray in the above equation is required current and cs is soiling coefficient. In 

this case the rated current is then calculated as: 
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      =
     

     
=   A  

Another factor is temperature which affects the voltage output. There is a 

coefficient of 0.45% drops of voltage for every degree rise from 25°C. Furthermore, 

the charging voltage is higher than the required voltage so to get the required voltage 

it should be multiplied by 1.2 for charging voltage. The array rated voltage can be 

calculated as:  

      = 1         1                                   (5-6) 

Where VSDC is the DC voltage, C%V is the temperature coefficient, Tmax is the 

maximum module operating temperature, and Tref is the reference temperature.  

Then the array voltage should be calculated using above formula:  

      = 1       1                   =         
Next step is to choose the module and decide the number in series and strings 

according to the rated voltage and current, which is 64.08V and 42A, respectively. In 

PVsyst the modules are chosen and arranged to meet the demands. Next table shows 

the entire array sizing parameters: 

Table5. 6: array sizing parameters 

Array Sizing  

Average daily DC energy consumption 

for critical design month 

3578Wh/day 

DC system voltage 48V 

Critical design month insolation 2.08 PSH/day 

Battery charging efficiency 90% 

Required array output current 39.9A 

Soiling factor 0.95 

Rated array output current 42A 

Temperature coefficient for voltage 0.45%/°C 

Maximum operating temperature 50°C 

Reference operating temperature 25°C 

Rated array operating voltage 64.08V 

Module rated voltage 9.8V 

Module rated current 7.31A 

Number of modules in series 13 

Number of modules in parallel 6 

Total number of modules 78 
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In this project the chosen module ND-72 ELU made by Sharp; it has a power 

of 72W, the maximum power voltage is 9.8V and maximum power current is 7.31A. 

The array consists of 48 modules with power output of 3456W. 

 
Figure5. 18: choosing PV modules 

1) Model parameters 

Comprehensive module parameters setting page is provided in the PV module 

tool window. Similar to the battery setting, in basic data sheet it displays PV modules 

identifiers from different manufacturers. As mentioned above, ND-72 ELU is 

considered as the module for this project. The electrical characteristics are measured 

under standard test conditions. Next table lists the parameters of ND-72 ELU.  

Table5. 7: module selection 

Module ND-72 ELU 

Manufacturer Sharp 

Nominal power 72Wp 

Technology Polycrystalline silicon 

Short circuit current 8.04A 

Open circuit voltage 12.43V 

Maximum power point current 7.22A 

Maximum power point voltage 9.88V 

Module area 1.153m
2 

Cells area 0.292m
2 

Module area efficiency 10.93% 

Cells area efficiency 14.53% 

Next figure shows the I-V curve of the module. It is slightly different when 

the series resistance changes.  
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Figure5. 19: I/V characteristics given under irradiance of 1000W/m

2
, temperature 25°C. 

As the conclusion before, irradiance and module temperature mainly affects 

power output. The performance of the module under different irradiance and 

temperature is also shown using PVsyst: when comparing irradiance, the module 

operating temperature is set at 45°C, instead of 25°C.  
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Figure5. 20: ND-72 ELU I-V curve under different irradiance 

From the figure it is apparent that the power will increase with the irradiance 

rises. When comparing the power under different temperature, the default irradiance 

is 1000W/m
2
.  
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Figure5. 21: PV module behavior with different temperature 

From the figure, when the current remains the same for low voltage conditions 

whatever how much the insolation is. And it begins to drop down when getting close 

to the maximum power point. High temperature will reduce the power output; it is 

verified by the curves. When temperature reaches 70°C, the maximum power voltage 

is as low as less than 5V. For the reference temperature of 25°C, the voltage can reach 

to about 6.5V and makes the maximum power higher.  

5.4.3 Charge controllers 

Next step is the selection of charge controller which is called regulator in 

PVsyst. When building a stand-alone system, it is commonly to use a power 

conditioning unit which integrates inverter, Rectifiers, transformers and DC-DC 

converters and thus can perform the function of each component. In PVsyst the 

inverter and maximum power point tracker (MPPT) are part of the charge controller 

configurations. The most important parameters in charge controller setting is voltage 
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regulation setpoint, array reconnect voltage setpoint for battery charging, and low-

voltage disconnect setpoint, load reconnect voltage setpoint for load management as 

described in chapter 4.  

In table 4.3 some reference voltage regulation setpoints are given depending 

on the battery type, however these parameters are further optimized according to 

several factors including controller type and loads [recommended practices for charge 

controllers Eric P.Usher]. PVsyst can automatically create the voltage regulation 

setpoints for the predefined system. Similarly to voltage regulation setpoints, the load 

control setpoints are also based on various kinds of factors including battery 

maximum depth of discharge and system type. The table below lists the setpoints of 

the charge controller. 

Table5. 8: charge controller setpoints 

Charging control setpoints Load control setpoints 

Voltage regulation 

setpoints 

Per cell 2.25V Low-Voltage 

disconnect setpoint 

Per cell 1.96V 

Whole 

system 

54V Whole 

system 

47V 

Reconnect voltage 

setpoint 

 

Per cell 2.18V Load reconnect 

voltage 

Per cell 2.10V 

Whole 

system 

52.3V Whole 

system 

50.4V 

5.4.3.1 Temperature compensation 

The setpoints derived above are based on the temperature of 25°C. Charge 

controllers will change these setpoints if the temperature varies because temperature 

strongly affects the chemical reaction and thus the performance of the battery. When 

temperature rises, the battery will have a faster charging rate and start gassing earlier. 

At lower temperature the charging rate becomes slow down. So the battery will be 

overcharged under high temperature conditions and insufficiently charged in cold 
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weather if the charge controller uses fixed setpoints. Temperature compensation is 

introduced to help the battery to be fully charged under hot or cold weather as at 

25°C.  

To measure temperature a sensor is installed with the system, small systems 

uses internal sensors mounted on the battery case for approximating battery 

temperature. Larger systems or batteries are located at the place with different 

temperature; an external sensor should be used. They are more accurate since the 

temperature varies significantly between the ambient environment and inside the 

controller. Temperature-compensated charge controller adjusts setpoints according to 

a predefined correction coefficient. For most lead-acid type batteries, this coefficient 

is -5 mV/°C/cell.[23] The voltage setpoint at other temperature is computed using the 

following formula: [22] 

     =                                               (5-7) 

Where Vcomp is compensated setpoint, Vset is reference temperature setpoint, 

Ctemp is compensation coefficient, TBAT is battery temperature and ns is the number of 

batteries connected in series. In this simulation, the Vset is 54V and Ns is 8, the 

voltage regulation setpoint at 0°C can be calculated as: 

     =                     =      

For the battery operating at 40°C, the compensated setpoint is  

     =                      =        

5.4.4 Array losses in PVsyst 

The array losses plays an important part in reducing the array output, PVsyst 

takes several types of loss into project simulation consideration including thermal 

losses, Ohmic losses, module quality losses, mismatch losses, soiling losses and IAM 

losses. PVsyst gives each of these losses default values so user does not need to set 
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them, however they can still be changed in particular projects.  

1) Thermal losses 

The thermal behavior is presented by thermal loss factor U which is given by 

the following expression:  

 =                                                           (5-8) 

Where Uc is a constant component with the unit of W/m
2

*k and Uv is the 

coefficient of the wind velocity V (m/s). They mainly depend on the way of mounting 

the modules. When using typical meteorological year source, the value of Uc and UV 

is given as: 

UC=25W/m
2

*k,        UV=1.2W/m
2

* k/m/s 

2). Array Ohmic wiring losses 

The array wiring losses can be characterized by the resistance R. The program 

provides a default value for wiring loss of the entire system of 1.5% under the 

standard test condition. User can modify it for specific situations. The wiring loss 

result is shown in the figure below: 

 
Figure5. 22: wiring loss setting 

3). Mismatch loss 

Mismatch losses are due to the slightly different characteristics even between 

the same modules when they are connected together. It is able to show the power loss 

at the maximum power point as well as the current loss under fixed voltage condition. 

Through PVsyst a graphic tool is applied to view the effect of adding mismatch loss 

on the I-V curve compared with ideal one.  
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Figure5. 23: mismatch loss of PV module: ND-72 ELU of Sharp 

The curve in green represents the theoretical characteristics, the black one 

takes mismatch loss into account. There is 2.0% loss at MPP from the figure and the 

current loss is 3.8%.  

4) Soiling loss 

Soiling loss is another main factor that affects the power output of PV 

modules. The influence of soiling loss depends on the location of the modules, the 

array mounted near industry or urban areas are more likely to become soiled. In 

PVsyst the soiling loss can be derived using percentage over a year. Usually the 

soiling loss is 5%. [28]. 

5) IAM loss 

PVsyst defines the loss as the actual incident light when it reaches the surface 

of the array due to small particles in the air compared with ideal case. It is represented 
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in equation (4-1). The default value of b0 is 0.05.  

PVsyst gives a synthesized diagram of the losses set above and the results 

after these losses.  

 
Figure5. 24: array losses effect 

This loss effect figure is obtained under 800W/m
2
 irradiance instead of 

standard test condition. The reference condition with irradiance of 800W/m
2
, ambient 

temperature of 20°C and wind speed of 1m/s is called nominal operating cell 

temperature (NOCT). [29]. When modules are installed in the field, they are often 

operated at higher temperature and low insolation than standard test conditions. The 

NOCT is defined as the temperature of the open circuit cell in module. The figure 

shows that the maximum power is 2.66kW, and each color represents one kind of loss 
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as shown in the picture. The losses are given by PVsyst in percentage listed in the 

table below: 

 
Table5. 9: Losses effect 

Type of Loss Quantity of loss (%) 

Module quality loss 4.9% 

Module mismatch loss 2.7% 

IAM loss 2.3% 

Module temperature effect 10.0% 

Wiring resist 1.3% 

The final result is the curve in black and the power output is 2.19kW. So the 

total loss for this system is 1-2.19kW/2.73kW=19.6%. 
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Chapter six: Grid connected system 

design 

Sizing grid connected photovoltaic system is a relatively simple procedure 

compared with stand-alone system because the system is connected to the external 

utility. So if the PV array produces more energy than the loads need, the extra energy 

can be delivered to utility grids, in the case of PV array cannot meet the loads 

demand, utility will provide electricity for the loads. Therefore battery bank is not 

necessary for grid connected systems.  

6.1 Grid-connected system sizing 
For the convenience of economic analysis the grid-connect system will still 

based on a building located at Denver as well as the module mounting.  

The sizing of grid-connected system involves the loads analysis, module and 

inverter selection. The load in the stand-alone system project is still available for the 

grid-connected system, however, there is no need to use battery bank, and the critical 

design concept will not be used here. So energy consumption in the month of July 

should be applied for design the project. From chapter 5 the AC loads is 6263 Wh per 

day and 187.9 kWh each month.  
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6.1.1 Insolation 

According to TMY3 data in table 5.1 and 5.2, the yearly average insolation is 

4.57 PSH. That means the daily insolation of 1000W/m
2
 is 4.57 hours.  

6.1.2 System AC energy needs 

The system AC energy is calculated by the following equation: 

               =                                     (6-1) 

Where S in the peak sun hour for the project location, η is the overall system 

efficiency from PV to AC grid, typically it equals to 75%. [22] PDCpeak represents the 

peak DC power system rating of 1Wp. Then the Eac can be computed as below: 

   =           o  s  1      = 1       
So 1Wp (DC) installed produces Eac=1.25kWh per year for the project. And 

the AC loads is 187.9 kWh per month derived above, then the yearly consumption is 

2286 kWh. Then the required system DC power output will be  

2254.8/1.25=1.828 kWp 

For module selection, the ND-72 ELU manufactured by Sharp is continued 

used here. The number of modules in series used is 1828/43 Wp = 42.5 and Rounding 

up to 43.  

6.1.3 Inverter sizing 

Most inverters have a recommended array nominal power to inverter nominal 

power ration ranging from 1.0 to 1.1. The nominal power of the inverter is defined as 

the output power. When the inverter is sized to match the power of PV array, if the 

maximum DC power produced by PV array exceeds the input DC limit of the 

inverter, the inverter will stay at the safe power range by adjusting the operating point 

on the I-V curve.  

According to the DC power needs obtained above, an inverter with nominal 

power of 2 kWp is selected. The model of the inverter is PVIN02KS made by GE, the 

main parameters are listed in the table below:  
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Table6. 1: PVIN02KS main parameter 

PV input side Output AC side 

Minimum MPP 

voltage 

150 V Grid voltage 230 V 

Maximum MPP 

voltage 

450 V Nominal AC power 2.00 kW 

Absolute maximum 

PV voltage 

500 V Maximum AC 

power 

2.2 kW 

  Nominal AC 

current 

8.7 A 

  Maximum AC 

current 

10.2 A 

  Maximum 

efficiency 

96.0% 

After completing the module and inverter sizing, PVsyst gives the system 

operating conditions and array sizing results:  

Tabl 6. 2: Array sizing 

Module in series 43 

Number of strings 1 

Number of modules  43 

Module area 17m
2
 

Array nominal power/inverter nominal 

power ratio 

0.92 

Array nominal voltage 2.0 kWp 
 
Table 6. 3: operating conditions 

Voltage at maximum power point (60°C) 230V 

Voltage at maximum power point (20°C) 280 V 

Open circuit voltage (10°C) 391 V 

Plane irradiance 1116W/m
2
 (Peak 

sun hour) 

Plane irradiance  1000W/m
2
 (STC) 

Maximum power 

point current 

8.1A Maximum power 

point current 

7.3A 

Short circuit 

current 

9.1A Short circuit 

current 

8.1A 

Maximum 

operating power 

2.0 kW Maximum 

operating power 

2.0 kW 

 

Next figure shows the inverter I-V curve at the temperature of 60°C and 20°C, 

respectively.  
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Figure 6. 1: Array voltages setting 

The detailed losses are similar to the stand-alone system, however, the Ohmic 

loss is different, next figure shows the wiring loss parameter setting window:  

 

 
Figure 6. 2: Array Ohmic loss for grid-connect system 
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Chapter seven: Simulation using PVsyst 

7.1 Simulation process 
After completing the system configuration and make sure all the parameters 

are set properly for the project. Simulation can run in different ways. The simulation 

dates are based on the meteorological data when defining the project and is limited in 

a certain period selected by user. There are about fifty variables calculated during 

simulation, they are classified into several categories according to their 

characteristics. The simulation process allows performing variables in monthly, daily 

and hourly values, but hourly results are not available for all variables. For a 

particular variable that is desired to show the hourly data, user can choose it before 

simulation and add it into the lists of hourly data storage. Or the user can define the 

graphs with variables of x and y axis.  

The program will firstly simulate the irradiance, including effective global 

irradiance, array virtual energy at MPP. In the simulation process the factors that 

affect the final results are calculated simultaneously like diffuse and albedo 

attenuation factor for irradiance and array temperature for energy at MPP.  
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The procedures above are the common steps for all kinds of systems, and then 

PVsyst will do the simulation process and variables according the system type. For 

stand-alone system, the program will deal with array production, battery and user 

consumption simultaneously. The current is a function of voltage for each 

component:  

a. PV array: consider the I-V curve of the module; the Ohmic loss, module 

quality and mismatch loss also affect the current.  

b. Battery: voltage characteristics of the battery depend on state of charge, 

temperature and current.  

c. Loads: the current is a function of voltage for the given energy 

consumption.  

After the current is determined, state of charge and battery voltage is 

calculated at the end of time interval. Besides, the system performance is affected by 

charge controller.  

The variables are mainly PV array behavior and battery operation.  

For grid-connected systems, the simulation will take inverter behavior into 

consideration for different situation: 

a. The array maximum power output does not reach the threshold of the 

inverter, the array is considered as open circuit.  

b. The inverter output power is greater than its nominal power; it will either 

limit the current or cut the inverter input according to the inverter definition.  

c. When the MPP voltage reaches the maximum or minimum voltage of the 

inverter I-V curve, it stays at that point.  
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d. In normal conditions, the array operates at maximum power point as well as 

the inverter input energy, the output energy is computed according to its efficiency 

curve.  

For each case above the energy loss is calculated separately. Then for user 

defined loads, the energy consumption is done. The variables mainly calculated in the 

simulation and shown in the result are PV array and inverter behavior, energy output 

and use.  

7.2 Results 
The simulation results can be displayed comprehensively through PVsyst; it creates a 

report which includes the main results, the variables are available as monthly values, 

some of them can be defined as in hourly or daily values before the simulation.  

7.2.1 Stand-alone system results 

In stand-alone system simulation, the system performance is mainly focused 

on battery characteristics, array output and energy usage. The stand-alone system is 

described in chapter 5; the meteorological data for the location of Denver is listed in 

the table:  

Table7. 1: Meteorological and irradiation data 

 Horizontal 

global 

irradiation 

(kWh/m
2
) 

Horizontal 

diffuse 

irradiation 

(kWh/m
2
) 

Ambient 

temperature 

(°C) 

Wind 

velocity 

(m/s) 

Incident 

global 

irradiation 

(kWh/m
2
) 

Incident 

diffuse 

irradiation 

(kWh/m
2
) 

January 77.6 22.88 0.79 3.8 133.1 28.43 
February 88.7 31.03 -0.05 3.5 128.6 34.60 
March 144.4 42.56 6.13 4.4 180.1 44.92 
April 143.6 60.54 5.83 5.3 154.2 59.05 
May 196.1 73.09 15.49 3.8 192.3 69.06 
June 218.0 62.98 23.10 3.4 205.1 58.44 
July 208.2 68.17 22.27 3.0 198.9 63.80 
August 185.7 61.18 22.61 4.5 192.4 59.45 
September 155.3 48.51 19.16 4.1 181.8 50.05 
October 114.2 34.81 10.04 3.8 157.9 38.95 
November 73.9 29.16 2.9 4.2 117.3 34.05 
December 64.4 21.54 1.43 3.2 114.6 26.76 
Year 1670.2 556.45 10.88 3.9 1956.2 567.56 
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Table7. 2: Battery bank performance: 

 Average 

battery voltage 

SOCmean EffbatI  

% 

EffbatE  

% 
January 50.7 0.818 91.2 83.2 
February 50.8 0.853 92.0 89.3 
March 51.0 0.875 90.5 84.2 
April 50.8 0.851 91.3 92.7 
May 51.3 0.891 86.3 78.1 
June 51.4 0.900 85.2 78.6 
July 51.2 0.889 87.2 83.2 
August 51.2 0.888 87.5 82.8 
September 51.4 0.901 83.2 76.8 
October 50.8 0.844 92.1 90.9 
November 50.4 0.770 93.4 88.2 
December 50.6 0.811 93.1 94.8 
Year 51.0 0.858 89.3 84.9 

SOCmean: average state of charge 

EffbatI: battery current charge/discharge efficiency 

EffbatE: battery energy charge/discharge efficiency 

 

The battery voltage is affected by temperature; it rises with increasing 

temperature and drops down when temperature decreases. The battery state of charge 

also reduces in low temperature.  

Table 7.3 shows the system energy production and consumption: 

Table7. 3: system energy production and consumption 
 E array 

(kWh) 

E avail 

(kWh) 

E user 

(kWh) 

E load 

(kWh) 

I user  

(Ah) 
January 160.0 266.6 101.3 101.3 1970.6 
February 153.3 273.5 91.5 91.5 1766.2 
March 210.7 381.5 101.3 101.3 1947.4 
April 190.2 337.9 98.0 98.0 1887.0 
May 226.2 408.6 101.3 101.3 1937.5 
June 210.4 426.7 187.9 187.9 3675.2 
July 233.8 410.0 194.2 194.2 3784.4 
August 225.4 403.1 194.2 194.2 3792.3 
September 209.1 385.7 98.0 98.0 1881.4 
October 187.3 337.0 101.3 101.3 1954.0 
November 138.2 243.5 98.0 98.0 1905.7 
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December 133.5 225.7 101.3 101.3 1971.2 
Year 2278.0 4099.8 1468.4 1468.4 28472.9 

E array: effective energy at the output of the array 

E avail: produced available solar energy 

E user: energy supplied to the user 

E load: energy need of the load 

I user: current supplied to the user in Ah. 

From the table above the energy produced by PV array is sufficient to meet 

the demand of the loads for the entire year, for the design is based on the critical 

operating condition month. And the capacity for the month from June to August is 

higher than other months because of the use of air conditioner.  

The loss diagram gives a detailed illustration of the quality of the system 

design by defining the main sources of loss. The loss diagram can be shown as a 

whole year or individual month. The loss calculation begins with the array nominal 

energy which is derived from global effective radiation and array MPP efficiency at 

standard test condition. Then different kind of loss is taken into consideration 

according to system type. There are common losses exist, while in stand-alone system 

the diagram gives detailed battery use illustration. Each loss is defined as a 

percentage value of the previous energy.  

Some losses are impossible to calculate accurately, for instance the Ohmic 

loss in stand-alone system is obtained using the relation PLoss=R*I
2
. In practical the 

array resistance modifies the array operating point and the whole circuit equilibrium, 

so more accurate calculation will simulate the system with and without the resistance, 

and compare the difference. However this method also causes some error. The loss 
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diagram for the stand-alone project is shown in figure 

 

 
Figure7. 1: loss diagram of stand-alone system 

The array nominal energy is 6518 kWh, and then it calculates different kinds 

of losses according to the values set in the loss configuration. The design is on the 

critical month and therefore the battery has to be selected with enough capacity to 

meet the loads needs and autonomy, so the unused energy loss in the diagram takes 

large amount. And at last the energy to the loads is 1468 kWh indicates that the whole 

system has an efficiency of 22.5%.  
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The results can be shown in the form of graphs divided into different kinds for 

display such as: meteorological and irradiation data, PV array behavior, battery 

operation and system operating conditions. Each of them has further detailed 

information as results.   

 

 
Figure7. 2: normalized productions of the stand-alone system 

7.2.2 Grid-connected system simulation results 
The simulation process and results of grid-connected system are similar to 

stand-alone system, however, instead of battery bank, an inverter analysis is run by 

the program.  
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Table7. 4: Inverter performance 

 EoutInv  

(kWh) 

EffinvR  

(%) 

InvLoss 

(kWh) 

IL Oper 

(kWh) 

January 226.8 94.5 13.09 13.09 

February 212.2 94.4 12.64 12.62 

March 277.9 94.4 16.48 16.46 

April 226.0 93.8 14.86 14.86 

May 262.9 94.2 16.32 16.31 

June 263.4 94.3 15.93 15.93 

July 256.9 94.2 15.96 15.96 

August 256.8 94.4 15.32 15.30 

September 255.5 94.6 14.69 14.66 

October 243.5 94.6 13.96 13.93 

November 194.7 94.5 11.47 11.46 

December 193.3 94.2 11.81 11.80 

Year 2869.9 94.3 172.52 172.39 

 

EoutInv: available energy at inverter output 

EffinvR: inverter efficiency 

InvLoss: global inverter losses 

IL Oper: inverter loss during operation  

 

The energy produced by PV array is delivered into the inverter and then 

becomes AC power. The energy and the inverter output increases with the irradiation 

collected by PV panels. The efficiency stays nearly the same throughout the whole 

year. The loss variation is similar to energy output.  

 

The loads energy consumption of the grid-connected project is displayed 

below. 
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Table7. 5: Energy yield of grid-connected system 

 E Avail 

(kWh) 

E Load 

(kWh) 

E User 

(kWh) 

E_Grid 

(kWh) 

SolFrac 

January 177.4 194.2 56.11 177.4 0.289 

February 165.5 175.4 54.96 165.5 0.313 

March 217.1 194.2 67.10 217.1 0.346 

April 175.6 187.9 64.77 175.6 0.345 

May 197.8 194.2 74.74 197.8 0.385 

June 199.3 187.9 72.86 199.3 0.388 

July 190.5 194.2 74.66 190.5 0.384 

August 196.7 194.2 69.72 196.7 0.359 

September 197.2 187.9 66.15 197.2 0.352 

October 190.9 194.2 59.85 190.9 0.308 

November 149.8 187.9 51.49 149.8 0.274 

December 149.0 194.2 52.19 149.0 0.269 

Year 2206.8 2286.0 764.48 2206.8 0.334 

E Avail: available solar energy 

E Load: energy need of the user 

E User: energy supplied to the user 

E_Grid: energy injected to the grid  

SolFrac: solar fraction (E User/E Load) 

The table above shows that the not all energy produced by PV array are used 

by loads, some of them are transmitted into power grid, however, the rest of the 

energy is not enough for the loads needs so the grid also need to supply power to the 

loads. The reason is that at daytime the array produce more energy than loads need so 

the extra energy should be delivered into grid instead of storing in battery bank as 

stand-alone system, while in the evening the user’s needs rises to a high level but the 
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array stop working and there is no battery to support the system, so the grid needs to 

power the system.  

 

 

The efficiency of the system is shown in table 7.6:  
Table7. 6: System efficiency 

 EffArrR (%) EffSysR (%) 

January 5.17 3.82 

February 5.16 3.80 

March 5.00 3.69 

April 4.97 3.62 

May 4.54 3.24 

June 4.54 3.17 

July 4.56 3.30 

August 4.56 3.30 

September 4.62 3.37 

October 4.86 3.61 

November 5.10 3.70 

December 5.10 3.71 

Year 4.83 3.51 

EffArrR: Array Efficiency: Array energy/rough area 

EffSysR: System efficiency: inverter output energy/rough area 

The array efficiency trends is opposite compared with the energy production, 

it is higher at winter months and lower in the summer, the reason is high temperature 

in summer will reduce the module performance. The PV module which is made by 

polycrystalline has a lower efficiency than single crystalline, but the cost is less 

expensive.  

The loss diagram of the system:  
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Figure7. 3: loss diagram of grid-connected system 

The loss diagram contains all the losses that may exist in the whole process, 

the loss factors are summarized according to each procedure; the final energy 

produced by the array is 2207 kWh. However, due to the loads distribution, only 764 

kWh is used by the loads and 1442 kWh is transferred into grid. In peak hours the 

grid will provide 1522kWh for the loads running normally.  

The normalized productions graph is shown below:  
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Figure7. 4: Grid-connected system normalized production 

The above figure is a graphical expression of the system energy yields. It 

shows the system losses including PV array loss and other losses, the inverter output 

energy are also shown at the bottom of the histogram.  

In figure 7.2 and 7.4, the yield energy is expressed as kWh/kWp/day, it is an 

indicator related to the incident energy on the collector, and normalized by array 

nominal installed power at standard test conditions for the convenience of comparison 

between different systems. Next two tables show this normalized system performance 

for both stand-alone system and grid-connected system.  
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Table7. 7: Stand-alone system normalized performance coefficients 

 Yr 

(kWh/m
2
/day) 

Lu Lc Ya 

(kWh/kWp/day

) 

Ls Yf 

(kWh/

kWp/d

ay) 

PR 

January 133.06 1.178 2.798 1.24 0.548 0.95 0.220 

February 128.57 1.329 3.008 1.33 0.639 0.95 0.206 

March 180.13 1.763 3.844 1.68 1.021 0.95 0.162 

April 154.21 1.440 3.306 1.49 0.888 0.95 0.184 

May 192.33 1.855 4.093 1.80 1.166 0.95 0.152 

June 205.07 2.133 4.806 1.98 0.218 1.81 0.265 

July 198.88 1.757 4.233 1.86 0.370 1.81 0.282 

August 192.38 1.706 4.102 1.80 0.292 1.81 0.292 

September 181.79 1.853 4.043 1.75 1.071 0.95 0.156 

October 157.92 1.515 3.346 1.47 0.802 0.95 0.186 

November 117.32 1.104 2.578 1.13 0.387 0.95 0.242 

December 114.59 1.045 2.451 1.07 0.300 0.95 0.256 

Year 1956.25 1.558 3.554 1.55 0.642 1.16 0.217 

Yr: reference system yield, is the ideal array yield without any loss. It 

represents the one kWh incident energy produces the array nominal power.  

Ya: array yield, the array daily output 

Yf: system yield, the system daily useful energy 

Lc: collection loss, it is equal to Yr – Ya and is the array losses including 

thermal, wiring, module quality, mismatch and IAM losses.  

Ls: System loss which is the battery inefficiencies in stand-alone system.  

PR: performance ratio, PR= Yf/Yr, it is the global system efficiency.  

For stand-alone system, unused energy (Lu), the energy cannot supply to the 

user because full battery.  

 

 

 

 

 

 
Table7. 8: Grid-connected system normalized performance coefficients 

 Yr 

(kWh/kWp/day) 

Lc Ya 

(kWh/kWp/day) 
Ls Yf 

(kWh/kWp/day) 
PR 

January 143.70 0.797 2.30 0.999 2.84 0.612 
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February 134.86 0.833 2.39 1.051 2.93 0.609 
March 182.38 1.174 2.92 1.235 3.47 0.591 
April 150.23 1.025 2.48 1.080 2.90 0.580 
May 181.78 1.396 3.91 1.303 3.16 0.540 
June 190.69 1.738 3.15 1.322 3.30 0.519 
July 186.18 1.640 2.98 1.319 3.05 0.507 
August 184.75 1.607 2.96 1.206 3.15 0.528 
September 181.00 1.566 2.99 1.207 3.26 0.540 
October 163.85 1.167 2.62 1.065 3.05 0.578 
November 125.21 0.764 2.07 0.933 2.48 0.593 
December 124.49 0.734 1.99 0.898 2.38 0.594 
Year 1949.12 1.206 2.65 1.135 3.00 0.562 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



120 
 

Chapter eight: Economic analysis 

PV systems are often considered as a clean energy solution which is friendly 

to environment; however, on the other hand, PV systems are also valuable in financial 

issues. With effective design and operation, a PV system may pay back its investment 

and have further profit. Some PV systems have lower cost than other type of 

generations. To decide the cost and value of a PV system, an economic analysis is 

conducted by designers.  

8.1 Cost analysis 
A cost analysis involves both the cost and value. The financial cost is not the 

only factor though. Other factors include lifetime, availability, practicality and ease of 

use all contribute to the feasibility of a system. So the cost analysis will take as many 

factors into consideration as possible although some of them are difficult to quantify. 

When analyzing PV systems a life-cycle cost [22] is usually used. It is the total cost 

of all expenses from the design of the system until the end of its life. It gives the 

detailed fees for every stage of the system installation and operation. Some factors are 

easy to quantify like the price of system components while others are not and can 

only be estimated such as system installation cost.  
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It is better to do life-cycle cost analysis before the system design because 

through the results designer can get a depth of understanding of how to choose the 

system type, do the configurations and select appropriate components. So the purpose 

of getting maximum value and minimum costs can achieve. Sometimes this is done 

after the system installation, the advantage of doing analysis after the project is that 

the cost of system installation and components are determined so the results are more 

accurate than pre-analysis. And the exact experience can be used for future work such 

as replacement.  

8.1.1 Initial costs 

Financial costs include initial costs, maintenance costs, repair costs and 

replacement costs. At the end of a system life salvage value is considered.  

Initial cost involves the stage of design, engineering, devices and installation 

of the PV system. The prices of equipments are obtained from manufacturer or 

sellers. Labor costs for design, engineering and installation should be estimated. The 

different cost between a system that is installed by self and a system that requires 

professional installation should also be noticed. Other charges may come from the 

transportation of the devices. Then the total cost is thought to be the initial cost at the 

beginning of life of the system.  

8.1.2 Maintenance costs 

Maintenance costs are created during the operation period of the system; it 

includes system monitoring, cleaning, insurance, property taxes and operator salaries. 

The fuel for hybrid system and replacement costs is not included. Maintenance costs 

appear periodically during the life of the PV system so they can be summarized as an 

annual fee.  
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8.1.3 Energy costs 

The energy cost is the input energy costs used to produce electricity in an 

electric generation. The fuel type depends on the generators. For PV system, the cost 

solar radiation does not exist.  

 

8.1.4 Repair and replacement costs 
If one or several of the system components is damaged or malfunction, it has 

to be repaired to continue work normally. In most times it is hard to predict which 

part of the system will have failure, so the repair costs are often estimated a value and 

added together with replacement cost. The repair budget may include the fuses, 

mounts and modules renovate expenses. Replacement cost is the cost of changing a 

new device instead of an old one which has a shorter life than the entire PV system 

design life. For instance, in stand-alone system, the batteries usually can use for three 

to five years, while the whole system is designed to run 15 to 20 years. So the 

batteries will need to be replaced for several times during this period.  

8.1.5 Salvage value 

The salvage value is the money value of the PV system at the end of its life. 

Usually a 20% value of the original price of the system movable components is set 

for salvage value. [22] This number can be adjusted according to specific system 

condition.  

8.2 Life-cycle cost analysis 
To calculate the life-cycle cost analysis, all kinds of cost should be added together 

and subtract the salvage value at last. The result can be expressed as follows:  

 

   =   M                                                  (8-1) 

Where LCC is the life-cycle cost, I is the initial cost, MPV is the maintenance 

cost, EPV is the energy cost, RPV is the repair and replacement cost and SPV is the 
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salvage value. Then the life-cycle cost of stand-alone system and grid-connected 

system can be calculated by using the formula.  

For stand-alone system, the prices of system components and other fees are 

listed in the table below, based on a 20 year life usage:  

 
 
 
 
 
 
 
 
Table8. 1: Life-cycle costs of stand-alone system 

Initial costs Battery Price 

Surrette S-460 (16) $4880 

PV Module Price 

Sharp ND-72 ELU 

(48) 

$22848 

Charge controller price 

Xantrex $124 

Maintenance costs  $1000 

Repair and 

replacement costs 

Battery bank 

replacement 

$14640 

Charge controller 

replacement 

$124 

Salvage value -$2785 

Life cycle costs $40831 

The single battery price for Surrette S-460 is 305 dollars, in the stand-alone 

system the battery bank consists of 16 batteries so the price is 305*16=4880 dollars. 

The price for one piece of Sharp ND-72 ELU module is 476 dollars, 48 modules are 

used in the project with a price of 22848 dollars. The maintenance cost for each year 

is estimated for 50 dollars each year and 1000 dollars for 20 years. The designed 

battery life time is 5 years, and they need to be replaced at the year of 5, 10 and 15. 

The charge controller should be replaced at the year of 10. The salvage value is 

estimated about 10% of system initial cost which is 2785 dollars. So the total life 
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cycle cost will be 40831 dollars.  

The life cycle cost of grid-connected system is similar. In the initial costs 

inverter are instead of battery bank. Next table shows the items: 

Table8. 2: life cycle costs of grid-connected system: 

Initial costs PV Module Price 

Sharp ND-72 ELU 

(28) 

$13328 

Inverter Price 

GE PVIN02KS $1954.34 

Maintenance costs  $1000 

Repair and 

replacement costs 

Inverter 

replacement 

$2000 

Salvage value -$1528 

Life cycle costs $16754.34 

Comparing the results, the grid-connected system is less cost than stand-alone 

system because batteries are not used. However, grid-connected system will need to 

connect with gird utilities and limits the practical application of grid-connected 

system. Although stand-alone system costs more, it will be an ideal choice for remote 

areas for its independence.  

 

In practical use, the performance of a photovoltaic system will be affected by 

real weather, load usage and other unpredictable events, the economic analysis is then 

not accurate, and so to better evaluate the system cost and investment, we use 

software called System Advisor Model to do the economic analysis. System Advisor 

Model is designed to do the construction and evaluation of renewable energy project 

and industry which is developed by NREL. The built model can calculate the cost of 

the electricity based on the information of project location, technology type and 

financial option.  
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8.3 Economic evaluations by using SAM (System Advisor Model)  
 

The current version of System Advisor Model can only provide grid-

connected type system analysis. To get started for a new system, there are some input 

pages with different topics for user to configure. They are climate, financing, annual 

performance, PV system costs, PVWatts solar array and electric load. As the same 

grid-connected system, the climate conditions is still set at Denver, SAM can 

automatically search and get the weather information after the user chooses the 

location of the project.  

 

8.3.1 Financing settings 

 

The input variables of financing settings include analysis period, inflation rate 

and real discount rate. The analysis period is the life of the project, we set it 20 years. 

Inflation rate is the annual rate of change of prices, typically based on a price index. 

SAM uses the inflation rate to calculate the value of costs in years two and later of the 

project. Real discount rate is a measure of the time value of money expressed as an 

annual rate. It is used to calculate the present value of dollar amounts in the project. 

The values of these rates are set in the figure below:  

 

 
Figure8. 1 Financing setting page 
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The salvage value is still set to be ten percent of the initial cost. Besides, SAM 

also lists some tax options including federal and state tax.  

 

8.3.2 Annual system performance 

 

Annual system performance contains system degradation and availability. 

System degradation represents the system annual output reduction due to the aging 

equipments. If the degradation rate is one percent, the power output of the system 

from the year two will be 99% of the previous year. The availability accounts for 

downtimes due to forced and scheduled outages. The default value of 100% for 

photovoltaic systems results in no reduction in output.  

 

8.3.3 PV system costs 

 

A PV system cost gives user access to define the installation and operation 

costs of the photovoltaic project. The cost is further divided into direct cost and 

indirect cost. Direct cost represents the expense of the system components while 

indirect cost is mainly the fees that are difficult to get a specific value. For grid-

connected system the direct costs are module and inverter, balance of system and 

installation costs. An indirect cost is classified as engineer, procure and construct 

which is the cost of as design and construction. Also we need to decide the operation 

and maintenance costs, it can be input in three ways: fixed annual, fixed cost by 

capacity, and variable cost by generation. The total initial costs and maintenance cost 

is shown in the figure below:  
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Figure8. 2 PV system costs setting page 

 
 
Figure8. 3 Operation and maintenance costs  

 

From the figure, it is concluded that the total initial cost is $10968.48.  

 

8.3.4 Solar array inputs 

 

The system inputs define the size of the system, derate factor and array 

orientation, these items are the same as they are made before.  
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8.3.5 Electric load 

 

Similar to the array settings, the load in SAM should follow the results 

obtained in previous chapter.  

 

8.4 economic results 
 

On the result page, SAM provides table and graphs for cash flow and energy 

usage. The main parameters include cash flow year, energy, and operating and 

maintenance costs.  

 

 
 
 
Table8. 3 Results of the PV system simulation 

Year Energy(kWh) Energy 

value ($) 

Fixed 

operating 

and 

maintenance 

annual ($) 

Fixed 

operating 

and 

maintenance 

($) 

Operating 

costs ($) 

1 3751 900.29 200 45.7 245.7 

2 3732 918.18 205 46.84 251.84 

3 3714 936.43 210.12 48.01 258.14 

4 3695 955.04 215.38 49.21 264.59 

5 3677 974.02 220.76 50.44 271.21 

6 3658 993.38 226.28 51.71 277.99 

7 3640 1013.12 231.94 53 284.94 

8 3622 1033.26 237.74 54.32 292.06 

9 3604 1053.80 243.68 55.68 299.36 

10 3586 1074.74 249.77 57.07 306.85 

11 3568 1096.10 256.02 58.5 314.52 

12 3550 1117.89 262.42 59.96 322.38 

13 3532 1140.10 268.98 61.46 330.44 

14 3515 1162.76 275.7 63 338.7 

15 3497 1185.87 282.59 64.57 347.17 

16 3479 1209.44 289.66 66.19 355.85 
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17 3462 1233.48 296.9 67.84 364.74 

18 3445 1258 304.32 6954 373.86 

19 3428 1283 311.93 71.28 383.21 

20 3410 1308.50 319.73 73.06 -1360.69 

     4522.86 

 

The table above shows the energy and maintenance cost for each year during 

the 20 year lifetime of the system. The power output gradually drops due to the aging 

of the system. The fixed operating fees is becoming higher each than before because 

of the inflation. On the twentieth year the negative cost is due to the salvage value. 

The initial install cost calculated before is 10968.48 dollars, the operating and a 

maintenance cost is 4522.86 dollars. So the total cost for this grid-connected system 

should be 15491.34 dollars. This result is less than the cost analysis derived before, 

because the price of module and inverter may be from a different source. Next figure 

shows the costs in different kinds.  

 

 
Figure8. 4 The total cost of a PV system  

 

From the figure above, we can see that the system components including 

module, inverter and other BOS costs take main part of the total costs. After the 

installation is completed, the yearly operating and maintenance cost only take 



130 
 

relatively small part of the total costs.  
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Chapter nine: Conclusion 

Photovoltaic technology has been thought as one of the main renewable 

energy source in the near future. The research of photovoltaic systems is developing 

fast in recent years with the increasing concern of traditional fossil fuel and 

environmental issues. Some applications have been put into use in several countries 

and more are in planning and building. Although it is developing fast, the electricity 

generated by solar energy still only takes a small percentage in the world’s energy 

distribution. So the prospect of photovoltaic system is enormous.  

Geographical information system can be used in the pre-feasible study of a 

photovoltaic system design. With the meteorological data collected from different 

ways the analyzers can get immediate weather information and long term climate 

conditions in order to determine whether solar energy solution is available. GIS can 

further provide terrain and topography data for the type selection of the system. In 

mountainous areas, the shading effects cannot be neglected. By using GIS designers 

can get an idea of how the shadings affect the system. Usually for photovoltaics 

systems solar resource distribution maps are generated for research. They can be 

yearly, monthly or seasonally. Through GIS analysis it is better for the preliminary 

stage such as site selection and some mounting parameters. 
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Choosing the type of system depends on the location. Stand-alone system is 

used for remote areas or the areas away from the grid. For this kind of system, 

because solar radiation is not available during night time, it is necessary to install a 

battery bank for the loads otherwise the loads will not work. The sizing of a stand-

alone system mainly depends on the loads energy consumption. The battery bank 

capacity determination is affected by some other factors like autonomy and in the 

case of damage of PV array. For a designed area, to guarantee the system can meet 

the loads demand, critical design month is used for sizing the system. It is the worst 

case scenario in all months. Since the system is designed to meet the energy 

consumption in this month, it will work normally all over the year.  

The sizing of grid-connected system is not complicated as stand-alone systems 

because it is interactive with the grid and if there is failure of the PV system the loads 

can still be powered by grid utility. While in the case of the energy produced by PV 

array exceeds loads demand, the system can transmit extra energy into power grid.  

So the battery bank is not used in grid-connected any more. Both of the systems have 

wide range of applications like transmission tower beacons, street and security 

lighting and water pumping.  

The photovoltaic simulation software of PVsyst is used to get a 

comprehensive study of the PV systems. It can build the different projects as the 

user’s requirement. In this study the stand-alone system and grid-connected system 

are built at the location of Denver, Colorado. The climate data is obtained from the 

typical meteorological year 3 developed by NREL. The system components and 

sizing are designed and calculated according to common household energy 



133 
 

consumption. The advantage of PV system compared with other kind sources is that 

after the initial investment there is no other costs except equipment replacements. 

And usually the system is designed to run at least 20 years. But the initial cost is 

rather high and for stand-alone systems the battery need to be replaced every five to 

seven years.  

In the project design there is still some work can be improved, for example, 

the near shading effects are not considered in the building. The shading effects not 

only affect solar radiation in mountainous areas, some objects like trees and buildings 

also have similar influence. In stand-alone system project, in order to meet the critical 

design demand, the PV array and battery bank is designed with large production and 

capacity, so it will produce extra energy which cannot be stored in the battery and 

thus the costs more and waste of energy. It should be solved by better coordinate the 

loads demands and battery bank.  
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