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Abstract 

For many cognitive diagnostic models, the item-attribute matrix (or Q-matrix) is 

an essential component which displays the relationship between items and their latent 

attributes or skills in knowledge and cognitive processes. However, it is a challenge to 

develop an effective Q-matrix. The purposes of the present study were (1) to validate of 

the item-attribute matrix using two levels of attributes (Level 1 attributes and Level 2 

sub-attributes), and (2) through retrofitting the diagnostic models to the mathematics test 

of the Trends in International Mathematics and Science Study (TIMSS), to evaluate the 

construct validity of TIMSS mathematics assessment by comparing the results of two 

assessment booklets.  

Item data were extracted from Booklets 2 and 3 for the 8th grade in TIMSS 2007, 

which included a total of 49 mathematics items and every student’s response to every 

item (15,654 students and 15,935 students took Booklets 2 and 3, respectively). The 

study developed three categories of attributes at two levels: content, cognitive process 

(TIMSS or new), and comprehensive cognitive process (or IT) based on the TIMSS 

assessment framework, cognitive procedures, and item type. At level one, there were 4 

content attributes (number, algebra, geometry, and data and chance), 3 TIMSS process 

attributes (knowing, applying, and reasoning), and 4 new process attributes (identifying, 

computing, judging, and reasoning). At level two, the level 1 attributes were further 

divided into 8 content attributes (b1 ~ b8), 12 TIMSS process attributes (know_a1 ~ 
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reas_a4), 11 new process attributes (d1 ~ d11). There was only one level of IT attributes 

(multiple steps/responses, complexity, and constructed-response). Twelve Q-matrices (4 

originally specified, 4 random, and 4 revised) were investigated with eleven Q-matrix 

models (QM1 ~ QM11) using multiple regression based on the linear logistic test model 

(LLTM) and the least squares distance method (LSDM).  

Comprehensive analyses indicated that the proposed Q-matrices explained most 

of the variance in item difficulty (i.e., 64% to 81%). The cognitive process attributes 

contributed to the item difficulties more than the content attributes, and the IT attributes 

contributed much more than both the content and process attributes. The new retrofitted 

process attributes explained the items better than the TIMSS process attributes. Results 

generated from the level 1 attributes and the level 2 attributes were consistent. Most 

attributes could be used to recover students’ performance, but some attributes’ 

probabilities showed unreasonable patterns. The items were adequately explained by the 

Q-matrices of QM5 and QM5-2 with the new process attributes. However, the analysis 

approaches could not demonstrate if the same construct validity was supported across 

booklets. The proposed attributes and Q-matrices explained the items of Booklet 2 better 

than the items of Booklet 3. The specified Q-matrices explained the items better than the 

random Q-matrices. 
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Chapter One 

Introduction and Literature Review 

 Assessments play a vital role in society. Probably, all of us have experienced 

numerous examinations or tests since we began school. Assessments, large or small, not 

only decide one’s immediate educational path, but also impact one’s choice of future 

careers and life, as well as bearing effects on social equality (Hanson, 1993; Miyazaki, 

1976; Wilbrink, 1997). Because of the power of assessment in our daily lives, the pursuit 

of scientific and effective assessment systems is an enduring endeavor for researchers, 

educators, and policymakers, especially for those in the field of educational assessment. 

For any nation, human resources are key to development and prosperity both 

economically and socially. Education is the primary foundation for nurturing 

knowledgeable and skilled citizens (National Commission on Excellence in Education, 

1983), while educational assessments, as evaluation tools of educational outcomes, are 

core components in the educational system. Nowadays to better appraise the development 

of children, intellectually, psychologically, or physically, educational assessments are 

administrated at all levels—international, national, regional, and local (Schmeiser, 2007). 

 From an historical perspective, the approaches and ends of educational 

assessment have changed due to progress in education systems and advances in 

technology and human society. Education is in many places no longer a privilege of the 

wealthy class. In modern society, all members are entitled to equal educational 

opportunities to fully develop their talents (National Commission on Excellence in 
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Education, 1983). For example, the progress in higher education was from being 

available to the elite to being available to the masses, and then to approaching universal 

access during the past decades (Trow, 2006). Thus, current large-scale educational 

assessments are not implemented only for selecting students for college or university 

education, such as college entry examinations, or a small group of elites for the state's 

civil services, such as the imperial Chinese civil service examinations or the 

examinations in Western Europe during the 18th and 19th centuries (Hanson, 1993; 

Wilbrink, 1997). For educational assessments employed in present K-12 education in U.S. 

and many countries around the world, the main goals are to display the students’ learning 

status, to provide feedback for learning and instruction, to collect information for 

educational policies, and finally, to raise student achievement to higher levels (Linn, 

2006, 2010; Nichols, 1994) .  

 In the 1960s, the National Assessment of Educational Progress (NAEP) was 

launched to periodically monitor student’s academic achievement (Jones & Thissen, 

2007). During the 1970s and 1980s, under educational systems deemed to be 

unsatisfactory, “both the top-down accountability and the bottom-up instructional 

perspectives” (p. 4) demanded expanding educational assessments, for both educational 

policy-making and for classroom instruction (Linn, 1993). As a result, since the 1980s, 

standardized tests have been employed by more and more states in their educational 

accountability systems (Linn, 2006, 2010; Nichols, 1994). This trend was strengthened 

by the passage of the No Child Left Behind Act of 2001 (NCLB: U.S. Department of 

Education, 2001). To improve the performance of U.S. primary and secondary schools, 

NCLB required all states to have compulsory achievement tests for multiples subjects at 
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different grades (Pellegrino, 2004). However, examinations are not ultimate goals; they 

“are supposed to be a means to an end, that end being learning” (Hanson, 1993, p. 218). 

Increasing assessment does not necessarily lead to the improvement in students’ 

achievement. As Pellegrino (2004) pointed out, “weighing the pig won’t cause it to 

grow—you still have to feed it” (p. 5). Only when educational assessments become 

integrated components of learning and instruction can they exert significant impact on 

improving students’ academic performance (Pellegrino, 2004). Thus, design and 

implementation of more reliable and effective assessments are still challenges in the 

educational assessment community. Educators expect “to develop a more efficient and 

effective diagnostic testing model that provides technically sound information about 

student achievement” and that can “facilitate differential instruction to individual students 

or groups of students” (Schmeiser, 2007, p. 1118).  

 Technically, modern educational assessments are rooted in the anthropometric 

testing and intelligence testing of the 1880s (Hanson, 1993; Jones & Thissen, 2007; 

Wilbrink, 1997). Frances Galton’s anthropometric testing and then James McKeen 

Cattell’s mental tests focus more on individual physical differences, while Binet and 

Simon’s intelligence testing was intended to assess higher cognitive abilities such as 

child’s mental age. Following them, numerous psychologists and statisticians contributed 

to the development and popularity of measurements, and their application with the U.S. 

Army and with educational systems. As in every scientific and social discipline, the long-

term development of educational assessments needs a sturdy theoretical foundation. 

Louis Leon Thurstone, as a measurement pioneer, explored underlying theories of 

measurement and the creation of reliable tests in the 1930s (Jones & Thissen, 2007). 
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Before the 1970s, classical test theory (CTT), which uses raw scores, dominated the field 

of measurement research. But, the test scores based on the CTT are dependent on test 

items and examinees, and so are not invariant. Item response theory (IRT) provides 

invariant estimates for both test item and examinee ability (Hambleton, 1993). In the 

1970s and 1980s, substantially increasing numbers of research studies employed IRT 

with practical assessment issues (Linn, 1993). However, although IRT has more 

advantages than CTT, only a single ability of an examinee is estimated in a test based on 

a summative form. IRT models still “have little connection with the concerns of cognitive 

theory about the processes, strategies, and knowledge structures that underlie item 

solving” (Embretson, 1993, p. 125). Numerous studies pointed out that assessments 

lacked cognitive foundations (Snow & Lohman, 1993). Since the 1980s, educational 

researchers have increasingly explored the integration of cognitive psychology with 

psychometrics to create better diagnostic testing and measurements (Mislevy, 2010; 

Nichols, 1994; Sheehan & Mislevy, 1990; Snow & Lohman, 1993). Growing interest in 

cognitive diagnostic assessment (CDA) concerns validity issues in educational 

assessment and a way to create efficient diagnostic tools for improving class instruction 

and students’ learning (Chen, 2006). 

 Meanwhile, the rapid advances in science and technology not only created more 

advanced computing tools, but also demanded more precise information for measurement. 

As studies in the science fields such as chemistry, biology, and physics, research in 

educational assessment reached to a relative “micro-level” with the aid of advanced 

technical tools (K. K. Tatsuoka, 2009). Following the relatively coarser-grained scores, 

such as CTT overall score and IRT score, educational researchers investigated 
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educational assessments that can provide cognitive information at a finer level of grain 

size, such as mastery of latent attributes or sub-skills, and cognitive processes that affect 

students’ acquisition of knowledge. As a result, cognitive diagnostic models (CDMs) are 

“designed to measure specific knowledge structures and processing skills in students so 

as to provide information about their cognitive strengths and weaknesses” (Leighton & 

Gierl, 2007, p. 3). Also, the study of cognitive diagnostic assessment was impelled by the 

enactment of NCLB (U.S. Department of Education, 2001), which called for interpretive, 

descriptive, and diagnostic assessment reports for individual students (U.S. Department 

of Education, 2003).  

 According to Fu and Li (Fu, 2005; Fu & Li, 2007), there are over sixty types of 

CDMs, for binary, polytomous, or continuous response items, for compensatory or non-

compensatory attribute structures, and for unidimensional or multidimensional latent 

traits. For many CDMs, the item-attribute matrix (or attribute matrix, or Q-matrix) is the 

quintessential component “because it represents the operationalization of the substantive 

theory that has given rise to the design of the diagnostic assessment” (Rupp, Templin, & 

Henson, 2010, p. 49). So, the correct specification of the relationship between items and 

attributes is a crucial step in the analyses with a CDM (Baker, 1993; de la Torre, 2008; 

Im, 2007; Im & Corter, 2011; Rupp & Templin, 2008; Rupp et al., 2010). However, 

relatively few studies have investigated validation of the item-attribute matrix. As Liu, 

Xu, and Ying (2011a) pointed out, “Despite the importance of the Q-matrix in cognitive 

diagnosis, its estimation problem is largely an unexplored area” (p. 2). Although in the 

past five years, researchers have conducted some studies on validating the Q-matrix, 

there are still no agreed-upon standards for examining the attribute matrix. The validation 
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of the attribute matrix needs to be further examined to enable reliable inferences from a 

CDM. Thus, the present study explored validation of the item-attribute matrix using test 

item data from the Trends in International Mathematics and Science Study 2007 (TIMSS 

2007). 

 TIMSS is one of a few international large-scale studies. Modern communications 

make the earth a global village with transparent borders. The world calls for more 

collaboration than ever before, although global competition still exists among countries. 

Educators extend their lenses beyond their own countries. They concern themselves with 

education and human development in the whole world, especially development of young 

people—the future of the world. Their concerns led to the development of international 

large-scale assessments, such as the Progress in International Literacy Study (PIRLS), 

Programme for International Student Assessment (PISA), and TIMSS. The primary goals 

of these international assessments are to collect solid information on trends in students’ 

achievement in mathematics, science, and reading literacy, or in the essential knowledge 

and skills needed in adult life, and also comprehensive background information that 

could affect their performance; to provide guidance for educational policy-making and 

practices; and ultimately to improve the quality and equity of education in national as 

well as international contexts (Mullis, Martin, & Foy, 2008; Mullis et al., 2005b; Mullis, 

Martin, Ruddock, O’Sullivan, & Preuschoff, 2009; Organization for Economic Co-

operation and Development [OECD], 2010). 

 TIMSS is the largest international educational study, involving more than 60 

countries around the world (Mullis et al., 2005b, 2009). The study is supervised by the 

International Association for the Evaluation of Educational Achievement (IEA). It is 



 

 

7 

 

designed to monitor fourth and eighth graders’ achievement in mathematics and science 

over time. The assessment content is in line with mathematics and science curricula in the 

participating countries and is intended to provide information important to evaluating the 

effectiveness of curricular and instructional methods. As the largest international 

comparative assessment, TIMSS results exert significant influence on the participating 

countries’ educational policies and educational improvement all around the world. Thus, 

the validation of the TIMSS assessment is extremely important. The present study 

focuses on the eighth graders’ mathematics assessment in TIMSS 2007, the latest 

released assessment. 

 According to the design framework, TIMSS is intended to better understand what 

knowledge and skills students should learn at school and the degree to which students 

have mastered that knowledge and those skills, that is, students’ particular strengths and 

weaknesses. Since the first wave of TIMSS in 1995, students’ overall mathematics 

achievement and achievement in the content domains (e.g., number, algebra, geometry, 

and data and chance) have been reported. To meet increasing needs for students’ 

performance information in cognitive processes, the subscores of three cognitive domains 

(knowing, applying, and reasoning) were required to be reported in TIMSS 2007. The 

above review shows that both TIMSS and CDA have similar study purposes, that is, to 

provide fine-grained diagnostic feedback that can facilitate instruction and learning. 

Thus, cognitive diagnostic methods were applied in the current study to explore 

achievement scales in TIMSS mathematics assessment. 
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Research Purposes and Research Questions 

 The purposes of this study were (1) to validate the item-attribute matrix using two 

levels of attributes (Level 1 attributes and Level 2 sub-attributes), and (2) through 

retrofitting the diagnostic models to the TIMSS test, to evaluate the construct validity of 

TIMSS mathematics assessment by comparing the results of two assessment booklets in 

TIMSS 2007. The matrix of mathematics attributes was cross-validated by two cognitive 

methods: multiple regression based on Fischer’s linear logistic test model (LLTM, 1973) 

and Dimitrov’s least squares distance method (LSDM, 2007). These two approaches are 

IRT-based methods, and assume that all latent attributes are non-compensatory, that is, 

all attributes must be mastered to solve an item correctly.  

 Moreover, the current study examined attributes for both mathematical content or 

knowledge and cognitive processes involving solving mathematics problems. According 

to Embretson (1983), an effective “cognitive model should diagnose attributes on 

knowledge and skills as well as cognitive processes/mechanisms” (p. 180). For eighth-

grade mathematics, the content domains are fairly consistent and the content attributes 

are easily specified. However, the attributes for cognitive processes are relatively difficult 

to identify. If every step of the cognitive process is specified, there are many parameters 

which would likely be unstable. If cognitive process attributes are summarized in a very 

broad way, insufficient feedback would be provided for instruction and learning. TIMSS 

2007 reported the subscores for the four content domains and three cognitive domains. 

Therefore, this study explored cognitive attributes with appropriate grain size for both 

domains. (Note: In this study and other CDM studies, cognitive attributes include 

attributes of both content and cognitive domains—content attributes and cognitive 
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process attributes. In TIMSS, cognitive domains only refer to cognitive 

processes/behaviors such as knowing, applying, and reasoning.) 

The following research questions were addressed in this study. 

(1) Which type of attributes contributes more to item difficulty: content, cognitive 

process, or complex cognitive process (item type)? 

(2) Do the new cognitive process attributes provide an explanation of the items? 

What different results were found between the TIMSS cognitive process 

attributes and the new cognitive process attributes? (The TIMSS cognitive 

process attributes (knowing, applying, and reasoning) were developed based 

on the TIMSS assessment framework, while the new cognitive process 

attributes (identifying, computing, judging, and reasoning) were based on 

hypothesized cognitive procedures in solving the test items.) 

(3) What differences are generated from the level 1 attributes and the level 2 

attributes? (The level 2 attributes were the sub-attributes of the level 1 

attributes) 

(4) Are the attributes of the two levels appropriate for recovering the students’ 

mathematics achievement? 

(5) What attributes combined into a Q-matrix can adequately explain the TIMSS 

mathematics test? 

 (6) Do the two booklets hold  the same construct validity in mathematics 

assessment? 

The current study contributes to the following aspects of assessment. First, the 

relationship between items and attributes is the key component for many cognitive 
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diagnostic models. Through different methods and indexes, this study sheds additional 

light on the process for creating and testing a reliable attribute matrix. Second, this study 

can provide useful information for constructing ideal test items in mathematics 

assessments, especially for TIMSS, in terms of knowledge content and cognitive 

processes, as well as item type (e.g., multiple-choice response or open response, wording, 

and length of question). As the biggest international series of studies, every wave of 

TIMSS assessments relies on numerous efforts, collaboration, time, and funding for 

designing, developing, and administering the tests (Gonzales et al., 2008; Mullis et al., 

2005b, 2008, 2009). It is an ambitious effort for TIMSS to offer scientific mathematics 

tests and feedback for instruction and learning. Third, the study also generates valuable 

results that help better understand students’ strengths and weaknesses in mathematics 

around the world. 

Literature Review 

 The following review summarizes literature related to four topics: (1) cognitive 

diagnostic assessment, (2) the item-attribute matrix, (3) cognitive diagnostic models—

LLTM and LSDM, and (4) TIMSS mathematics assessment. The first section introduces 

the motivations and advantages of developing cognitive diagnostic assessments, common 

CDMs, and the importance of the Q-matrix in CDMs. The second section addresses 

definition and selection of attributes and the challenges in building attribute matrices, and 

reviews studies of the item-attribute matrix, such as misspecification and validation of the 

Q-matrix. The third section describes the CDMs related to the present study: the LLTM 

and LSDM. The last section of this literature review summarizes the development of 
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TIMSS, design of the TIMSS 2007 mathematics assessment, and studies of cognitive 

constructs of the TIMSS mathematics test.   

Cognitive diagnostic assessment. 

The generation of CDA is a product of multiple streams of influence. The idea of 

mass education concerns progress of our society as a whole; also, it concerns 

development of individual students. The current educational system not only examines 

educational outcomes, but also pays attention to learning processes. Educators, parents, 

and students themselves want to know what knowledge has been mastered; they also 

want to deeply understand what cognitive skills are necessary for mastery. Moreover, the 

development of education seeks advanced and more reliable educational assessment, 

while advancement in modern science and techniques makes it possible to provide more 

precise measures. In addition, U.S. educational policy, specifically the enactment of 

NCLB (U.S. Department of Education, 2001), provided a strong impetus for developing 

more fine-grained assessment. Under these circumstances, CDA has attracted more 

researchers’ and educators’ interest during the past thirty years. Researchers retrofit 

CDMs to existing tests to search for more detailed diagnostic information. Meanwhile, 

they implement CDA to explore a new generation of educational assessments.  

Merits of cognitive diagnostic assessment. Cognitive diagnostic assessment 

integrates advanced knowledge in cognitive psychology and psychometrics. Compared to 

unidimensional measurement methods such as CTT and IRT, CDA has some potential 

advantages. The information derived from CDA is “interpretive and diagnostic, highly 

informative, and potentially prescriptive” (Pellegrino et al., 1999, p. 335). First, CDA 

diagnoses students’ achievement and learning at a finer level of grain size from multiple 
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dimensions within a given subject, which allows a better understanding of students’ 

knowledge states (Dimitrov, 2007; Gierl & Leighton, 2007; Lee & Sawaki, 2009; 

Leighton & Gierl, 2007; Pellegrino, Baxter, & Glaser, 1999). Individual students’ 

learning profiles are illustrated by the attributes required by each item, which cover 

underlying knowledge and skills, as well as cognitive processes (K. K. Tatsuoka, 2009).  

Second, the fine-grained feedback provides detailed information for teaching and 

instructional interventions (Leighton & Gierl, 2007; Nichols, 1994). One of the main 

purposes of CDA is to classify students according to latent knowledge characteristics 

(Rupp & Templin, 2008; Rupp et al., 2010). Through students’ knowledge profiles, 

teachers learn about students’ cognitive strengths and weaknesses in specific knowledge 

areas, which assist them in implementing more effective instructional strategies to 

remedy their weaknesses (Dimitrov, 2007; Lee & Sawaki, 2009).  

Third, CDA focuses on structured procedural or knowledge networks (Yang & 

Embretson, 2007). It holds promise for designing tests with desirable measurement and 

cognitive characteristics, especially for devising large-scale assessments (Dimitrov, 2007). 

For large-scale assessments, designing and updating test item pools always takes a great 

amount of resources in time, finance, and expertise. Use of cognitive diagnostic methods 

might reduce costs in developing test items. Studies found that CDMs have higher 

reliability than IRT models for tests with the same length (Templin & Henson, 2009), 

which indicates that students’ latent abilities can be measured with fewer items. 

Moreover, in general, the required attributes in knowledge and skills are announced 

openly before a test, while test items are kept in security. In CDA, it would be relatively 

easier to generate numerous test items through multiple combinations of the required 
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attributes. Motivated by cognitive response processes, some researchers have explored 

designing tests under CDA frameworks, such as the cognitive design system (Embretson, 

1998, 2010), evidence centered design (Almond, Mislevy, Williamson, & Yan, 2011; 

Mislevy, Almond, & Lukas, 2003; Mislevy & Haertel, 2006; Mislevy, Steinberg, & 

Almond, 2003), principled test design with the attribute hierarchy method (Gierl, Alves, 

& Majeau, 2010), and assessment engineering task models (Dallas, Furter, Luo, & Ma, 

2012; Luecht, 2002, 2012; Luecht & Dallas, 2010; Masters, 2010).  

In addition, CDA brings a promising future for testing and assessment as the 

educational environment is changing with advanced technology. For instance, some 

studies tried to integrate cognitive diagnosis into computer adaptive testing (Chang, 

Boughton, Wang, & Zhang, 2010; Neo, 2011; Neo & Chang, 2012). 

Cognitive diagnostic models with the Q-matrix. The advantages of CDA 

persuade researchers to explore different CDMs that can extract reliable references about 

students’ learning states. Many CDMs are IRT-based models and use a Q-matrix to 

specify the relationship between items and attributes required by items. The seminal 

CDMs might track back to Suppes’ probabilistic model (1969) and its extension proposed 

by Spada (Dimitrov, 2007).  

Suppes (1969) analyzed task performance and related operations in arithmetic 

problems using stimulus-response theory of finite automata. Later, Spada (1977) replaced 

Suppes’ attribute probability term with Rasch model probability (Rasch, 1960), which 

allows variance in probability across persons. Both models assumed that the probability 

for solving a problem correctly was the product of the probabilities for successfully 

manipulating the operations or knowledge. Based on the same assumption, a body of 
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conjunctive CDMs has been developed, which assume that successful response on an 

item requires mastery of all necessary knowledge and skills. In the conjunctive models, a 

low value on one attribute normally cannot be compensated for by a high value on 

another attribute. The most well-known conjunctive CDMs include the linear logistic test 

model (Fischer, 1973), the multicomponent and general component latent trait models 

(Embretson, 1984; Whitely, 1980), K. K. Tatsuoka’s rule space model (1983, 1985, 1987, 

1990, 1995, 2009), the noncompensatory reparameterized unified model or fusion model 

(DiBello, Stout, & Roussos, 1995, 2007; Hartz, 2002), the deterministic inputs, noisy 

‘‘and’’ gate (DINA) model (de la Torre & Douglas, 2004; de la Torre, 2011; Haertel, 

1989; Junker & Sijtsma, 2001; Macready & Dayton, 1977), the noisy inputs, 

deterministic ‘‘and’’ gate (NIDA) model (Junker & Sijtsma, 2001; Maris, 1999), the 

attribute hierarchy method (Gierl & Leighton, 2007; Gierl et al., 2007; Gierl, Zheng, & 

Cui, 2008; Leighton et al., 2004; Wang & Gierl, 2011), von Davier’s general diagnostic 

model (2008), Dimitrov’s least squares distance method (2007, 2010), and Rupp, 

Templin, and Henson’s log-linear CDM (2010). The LLTM and LSDM are introduced in 

detail in the following section.  

Also, researchers explored disjunctive CDMs, which assume that successful 

response to an item only requires mastery of at least one of the necessary knowledge and 

skill attributes. The disjunctive CDMs encompass the compensatory reparameterized 

unified model (Hartz, 2002), the deterministic input, noisy-or-gate (DINO) model and the 

noisy input, deterministic-or-gate (NIDO) model (Templin & Henson, 2006; Rupp et al., 

2010), the disjunctive LSDM (Dimitrov, 2012), and the log-linear CDM (Henson, 

Templin, & Willse, 2009; Rupp et al). For a more comprehensive review and summary of 
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CDMs, please refer to the studies by Rupp, Templin, and Henson (2010), Fu and Li (Fu, 

2005; Fu & Li, 2007), and DiBello, Roussos, and Stout (2007). They summarized CDMs 

in terms of attribute scale, attribute dimensionality, item type, Q-matrix incompleteness, 

cognitive strategy, and attribute structure. These models have been applied to or 

examined with simulated data or real data in the fields of mathematics, English language, 

computer science, biology, architecture, and gambling behaviors.   

For all of the above CDMs, the item-attribute matrix is an integral component. 

According to Rupp, Templin, and Henson (2010), CDMs “are confirmatory 

multidimensional latent-variable models. Their loading structure/Q-matrix can be 

complex to reflect within-item multidimensionality or simple to reflect between-item 

multidimensionality” (p. 83). To be confirmatory models, CDMs require that the loading 

structure or Q-matrix be specified before data analyses. In general, cognitive diagnostic 

analyses involve the following main steps: identifying and defining attributes according 

to tests and test items, developing the Q-matrix, choosing a model and analyzing data, 

and providing diagnostic feedback—reporting scores and classifying examinees (Lee & 

Sawaki, 2009). This analysis procedure reflects the fundamental position of the Q-matrix 

for many CDMs. The quality of the Q-matrix highly impacts whether CDMs can be 

implemented appropriately, whether the parameters can be estimated correctly, and 

whether the results are reliable. However, many studies or analyses with CDMs assume 

that the Q-matrix is correct or fixed. Also relatively few studies assess the construction 

and validation of the Q-matrix. 
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The item-attribute matrix. 

The attribute or Q-matrix, as the “weight” of attributes in item difficulty, was first 

introduced in the study of the linear logistic test model by Fischer (1973). DiBello et al. 

(2007) pointed out “LLTM’s use of a Q matrix as an historically pivotal development that 

lies mid-way between unidimensional models such as the Rasch model and fully 

diagnostic models” (p.18). Later, K. K. Tatsuoka (1983, 1985, 1990, 2009) further 

elaborated attributes and the item-attribute matrix. Researchers from the different 

perspectives addressed the construction of the item-attribute matrix and its challenges and 

the consequences of a misspecified Q-matrix, as well as potential validation methods.  

Definition of attributes and the item-attribute matrix. K. K. Tatsuoka (1983, 

1990, 2009), as one of most influential figures in CDA, illuminated attributes and the 

item-attribute matrix in detail in studies of the rule space method. Attributes (or cognitive 

attributes) refer to underlying knowledge and cognitive processing skills that are required 

to solve problems in a specific content area. Sometimes the terms “attributes” and “skills” 

are used interchangeably by researchers. Attribute patterns that exhibit mastery or 

nonmastery of attributes are defined as knowledge states or knowledge structures. 

Attributes are latent variables that can be expressed by the indicators—observed item 

scores. Compared to item-level responses, responses to attributes can be treated as micro-

level responses. Item-attribute matrix (Q-matrix or attribute matrix) is an incidence 

matrix that displays the hypothesized relationship between items and necessary attributes. 

Generally, the rows of a Q-matrix represent items and the columns represent attributes. 

For example, a Q-matrix (j × k) indicates that there are j items related to k attributes. The 

entries of a Q-matrix are 1s or 0s. For an element qjk, “1” means that a correct response to 
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item j requires attribute k; otherwise, it is “0”.  The item-attribute matrices represent the 

design of assessments (Close, 2012). 

The development of attributes and Q-matrices with high quality is always a 

challenge. It often needs the collaboration of experts in the content area fields of the test 

subject, psychology, educational measurement, statistics, and education practice (K. K. 

Tatsuoka, 2009). The experts derive a list of attributes through analyzing goals of 

assessments, test specifications, and test items, and also via studying students’ test-taking 

protocols and talking out loud when students are answering items. First, the selection and 

identification of attributes is based on the degree or level of information one wants to 

diagnose or report (Lee & Sawaki, 2009; Rupp et al., 2010; K. K. Tatsuoka, 2009), which 

means that researchers need to choose an appropriate grain size. In the studies of addition 

and fraction subtraction questions, K. K. Tatsuoka specified every source of erroneous 

rules of operations as an attribute. However, for the studies of large-scale assessments 

such as TIMSS and NAEP, she pointed out it is not appropriate to choose attributes at 

such a small grain size, which would result in unstable parameters and overly complex 

diagnostic feedback to teachers and students. Hartz (2002) also pointed out a tradeoff 

between the complexity of the Q-matrix and the accuracy of parameter estimation must 

be evaluated on a case by case basis. Therefore, a balance between the richness of 

diagnostic information and the stability of estimation is necessary. The rule space method 

can handle eighteen or fewer attributes for a test with 60 items (K. K. Tatsuoka, 2009); 

most CDMs use four to eight attributes (Rupp & Templin, 2008).  

Second, the attribute definition should reflect major knowledge, skills, and 

thinking processes that underlie the responses on tasks. Some CDA studies focus on the 
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test content or knowledge, such as mathematics attributes in number, algebra, geometry, 

and probability, or English language attributes in listening, speaking, writing, and reading. 

Some studies focus on cognitive processes, such as K. K. Tatsuoka’s addition and 

fraction subtraction questions. In the analysis of patterns of students’ sub-skill 

achievement in the Third International Math and Science Study-Revised (TIMSS-

Revised) in 1999, K. K. Tatsuoka and her associates developed a set of comprehensive 

attributes classified into three categories: content knowledge variables, cognitive process 

variables, and special skill variables unique to item types (K. K. Tatsuoka, Corter, & C. 

Tatsuoka, 2004). Using the same attribute classifications, researchers conducted cognitive 

analyses on mathematics of Turkish university entrance exam and a national assessment 

on Turkish eighth-grade (Dogan, 2006; Ma, Çetin, & Green, 2009). For a mathematics 

test, the content domains are normally known, while the appropriate cognitive domains 

are not as easily identified as the content domains. So, one of the purposes of this study 

was to identify cognitive attributes with acceptable grain size, which can provide enough 

but not too much information about students’ cognitive abilities. 

Challenges in developing the item-attribute matrix. “A successful skills 

diagnosis critically depends on high quality Q matrix development” (DiBello et al., 2007, 

p. 6). Through simulation analyses or studies using real data sets, researchers found that 

the misspecification of the item-attribute matrix can cause serious consequences such as 

incorrect estimation of item parameters and attribute distribution, poor model fit, 

misclassification of respondents, and wrong diagnostic inferences (Baker, 1993; de la 

Torre, 2008; de la Torre & Chiu, 2009; Fall & Templin, 2009; Henson & Templin, 2009; 

Im & Corter, 2011; Liu, Xu, & Ying, 2011a, 2011b; Rupp & Templin, 2008). Meanwhile, 
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it is a difficult effort to construct a Q-matrix to reflect relatively complex cognitive 

processes in solving problems. “In fact, little consensus exists as to how to identify 

attributes on a test, how to create a good Q-matrix, and how to validate or detect the 

misspecification of the Q-matrix” (Lee & Sawaki, 2009, p. 184). Although some studies 

of the Q-matrix have been conducted, generally speaking, selection and validation of the 

Q-matrix is still not well understood and needs further exploration.  

According to Lee and Sawaki (2009), one challenge in developing the Q-matrix is 

that there is a limited conceptual foundation for many commonly used Q-matrix 

constructions. Generally, domain or content experts identify the relationship between the 

attributes and test items according to a list of predefined attributes as well as their 

knowledge and intuitions. To a certain degree, creating a Q-matrix is a subjective process 

(Baker, 1993; Chen, de la Torre, & Zhang, 2012; Lee & Sawaki, 2009); and “a proposed 

Q-matrix by content experts’ specification may not be identical to the ‘true’ Q-matrix” 

(Im, 2007, p. 2). Sometimes, multiple rater methods and item statistical parameters can 

assist in adjusting and reducing the subjectivity of judgment. However, sometimes it is 

difficult to reach a consensus due to disagreements among the raters and the complexity 

of assessments. 

Challenges in developing the Q-matrix also come from examinees’ inconsistent 

response behaviors as pointed out by DiBello, Stout, and Roussos (1995, 2007), which 

result in different response patterns from those predicted by the Q-matrices. First are the 

issues of strategy and completeness in the Q-matrix. Many Q-matrices are constructed 

based on experts’ views about students’ responses to the test items. In practice, students 

may use different cognitive processes or strategies from those presumed by experts. For 
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example, Rho’s (2010) results indicated that the use of different solution strategies 

affected cognitive skill diagnosis. Under this situation, studying students’ protocols in 

test taking is a good way to validate a Q-matrix based on experts’ views (K. K. Tatsuoka, 

2009). Also, some skills or cognitive processes affecting performance may not be 

included in the list of proposed attributes. However, only the unified model and its 

extensive models acknowledge that a Q-matrix does not have to include all attributes 

using the completeness parameter. The second challenge is lack of perfect positivity, 

which shows that a respondent who has mastered all necessary attributes fails to answer 

an item correctly due to slipping, while a respondent who has not mastered all necessary 

attributes answers an item correctly through guessing. Some cognitive diagnostic studies 

incorporate this factor into the models. For example, the DINA and DINO models add 

slip and guessing parameters at the item level; and the NIDO and NIDA models restrict 

slip and guessing parameters at the attribute level. The third factor is the random error, 

such as when a respondent accidentally selects a wrong response category. However, 

many CDMs do not consider this factor.  

The study of Q-matrices and CDMs is at a very beginning stage. Ongoing debates 

exist about the Q-matrix of the well-known rule space model. K. K. Tatsuoka and her 

associates’ rule space model has been applied to hundreds of studies, including large-

scale assessments such as TIMSS, NAEP, and SAT. However, some researchers pointed 

out flaws in K. K. Tatsuoka’s Q-matrix theory, and the Boolean descriptive function is 

not appropriate for estimating examinees’ knowledge state using the Q-matrix (Ding, Zhu, 

Lin, & Cai, 2009). Moreover, in studies of the rule space model, K. K. Tatsuoka and her 

associates used addition and subtraction problems to explore classification of examinees 
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and students’ cognitive processes and misconceptions involved in solving arithmetic 

problems (Klein, Birenbaum, Standiford, & K. K. Tatsuoka, 1981; C. Tatsuoka, 2002, 

2005; K. K. Tatsuoka, 1983, 1984, 1985, 1987, 1990, 1996, 2009; K. K. Tatsuoka, 

Birenbaum, & Arnold, 1989; K. K. Tatsuoka, Linn, M. M. Tatsuoka, & Yamamoto, 1988; 

K. K. Tatsuoka & M. M. Tatsuoka, 1983, 1997). Among them, one fraction subtraction 

data set, which comprises the responses to 20 test items from 536 middle school students 

(K. K. Tatsuoka, 1984, 1990), was used by many researchers as a typical case for CDM 

research. K. K. Tatsuoka originally extracted seven attributes. Then, de la Torre and 

Douglas (2004) added one more attribute. But, besides this added attribute, their rest of 

the Q-matrix is not exactly the same as K. K. Tatsuoka’s Q-matrix. Based on a subset or 

the whole of this data set and one of the two above Q-matrices, researchers evaluated the 

exploratory technique in finding a Q-matrix, Q-matrix validation, relative and absolute 

model fit, consequences of misspecification of the Q-matrix and the cognitive model, and 

classification consistency and accuracy, or explored various cognitive models such as 

higher-order latent trait models, partially ordered latent classification models, the DINA 

and NIDA models, general DINA model framework, a model for multiple strategies of 

problem solving, and the log-linear CDM (Chen et al., 2012; Close, 2012; Close, Davison, 

& Davenport, 2012; Cui, Gierl, & Chang, 2012; de la Torre, 2008, 2009, 2011; de la 

Torre & Douglas, 2004, 2008; de la Torre & Lee, 2010; DeCarlo, 2011; Henson et al., 

2009; Im, 2007; Im & Corter, 2011; Rho, 2010; C. Tatsuoka, 2002; Wang, Ding, Song, & 

Liu, 2012). However, using a logistic version of the DINA model, DeCarlo (2011) found 

that the structure of de la Torre and Douglas’ Q-matrix resulted in some neglected 

problems in the classification of examinees: for example, estimates of latent class size 
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were too large, close to unity; and examinees who incorrectly answered all items were 

classified as mastering most of the skills. The disagreements about the widely known 

CDM and Q-matrices indicate that there still exist many unsettled issues in building a 

reliable Q-matrix. 

Studies of the item-attribute matrix. Although during the past thirty years, 

numerous CDA studies have been conducted and CDMs have been explored, “CDA is 

still in its infancy” (Leighton & Gierl, 2007, p. 3). Among CDA research projects, studies 

of the item-attribute matrix were relatively few in number. Fortunately, during the recent 

five years and especially in the past couple of years, more and more researchers realized 

the importance as well as the difficulty of developing a reliable Q-matrix. A summary of 

a thorough literature review of the studies relative to the item-attribute matrix is found in 

Appendix A. Studies of the item-attribute matrix focus on three aspects: impact of Q-

matrix misspecification on the estimation of item and person parameters and 

classification of respondents; validation of the Q-matrix; and exploratory methods of 

developing a Q-matrix. Most of the studies investigated the consequences of Q-matrix 

misspecification, while a few studies explored empirical approaches to validating 

cognitive attributes. 

Impact of Q-matrix misspecification on model parameters and classification of 

respondents. In general, studies explored three types of Q-matrix misspecification: over-

specification/fit, under-specification/fit, and mixed misfit with both over- and under-

specification. The over-specified Q-matrix refers to unnecessary attributes being included 

(the entries of 0 are incorrectly specified as 1s), which leads to noise in the parameter 

estimation (Kunina-Habenicht, Rupp, & Wilhelm, 2012). The under-specified Q-matrix 
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refers to the required attributes being omitted (some entries of 1 are incorrectly replaced 

by 0s), which results in fewer item parameters to be estimated. Most studies assumed 

independence of attributes. Some studies assumed dependency between attributes (Rupp 

& Templin, 2008) or ordered relationships among attributes (DeCarlo, 2011; Im, 2007; 

Im & Corter, 2011).  

Baker (1993) first conducted a systematic study of the misspecification of the Q-

matrix using simulation. He investigated sensitivity of the linear logistic test model 

(Fischer, 1973) to misspecification of the Q-matrix, sample size, and density of the Q-

matrix. The LLTM assumes that the difficulty of items is a linear combination of a 

smaller set of latent cognitive attributes, and the entries of the Q-matrix were first 

introduced as the “weights” of cognitive operations in items. Thus, the Q-matrix is 

crucial to accurate parameter estimation in the LLTM. Baker set up six levels of random 

misspecification, which were defined by the percentage of misspecified elements in an 

error-free Q-matrix, from 1% to 10%. This study found that a small degree of Q-matrix 

misspecification (1% to 3%) could lead to a large impact on the item difficulty 

parameters and basic parameters, while a higher misspecification (5% to 10%) seriously 

degraded the parameter estimation. The impact of Q-matrix misspecification was smaller 

with a dense Q-matrix (a matrix with more 1s, that is, solving items required more 

attributes) than with a sparse Q-matrix (a matrix with more 0s). Compared to the Q-

matrix misspecification, the effect of sample size was quite small.  

In the study of a Bayesian framework for the reparameterized unified model 

(RUM), Hartz (2002) evaluated the effectiveness and robustness of RUM parameter 

estimation and examinee classification under the conditions that the user supplied Q-
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matrix was less than ideal or not correct. The RUM is a diagnostic model with parameters 

for both the relationship between items and attributes and examinee attribute profiles. 

The big difference between the RUM and other CDMs, which may be the important 

advantage of the RUM, is that the RUM encompasses attributes that are not included in 

the Q-matrix. In the study, Hartz examined the Q-matrix with a weaker than ideal 

relationship between the attributes and the items (i.e., higher item discrimination for the 

relative attributes r*). She found that although most of the parameters were well 

estimated, the estimation of the attribute completeness index (c) was less accurate and the 

power of the examinees classification was reduced. Normally, a more complex Q-matrix 

resulted in a less accurate estimation of the parameters. After increasing the average 

number of attributes per item from two to three, the parameter estimation of the 40 items 

was still very good; and the examinee classification rates were slightly reduced. Results 

indicated that for both the Q-matrices with two or three attributes per item, the RUM was 

an effective diagnostic model. However, when the entries of the Q-matrix became more 

complex, the accuracy of parameters would be impacted greatly. 

Also, Hartz (2002) investigated the performance of RUM parameter estimation 

with three types of Q-matrix misspecification: inclusion of an extra attribute, exclusion of 

a required attribute, and an item specified with severely incorrect attributes. The first two 

types of misspecification involved change in the total number of attributes, which were 

different from the misspecification in some studies with only a few entries over-specified 

or under-specified while the total number of attributes was fixed. The results showed that 

inclusion of an extra attribute did not affect the item parameter estimation and examinee 

attribute classification; and the extra attribute was excluded from the parameter analysis. 
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Second, eliminating a necessary attribute from the whole Q-matrix significantly impacted 

the completeness indices (c) of the items that required the missing attribute, all of which 

were present in the final model and were significantly under-estimated. Because of the 

inclusion of the c parameter and the examinee ability parameter (θ), the estimation of the 

item parameters to the other attributes were not influenced, and the attribute classification 

rates were slightly reduced, but acceptable. Third, when an item was completely 

misspecified with attributes which did not generate the item’s response, only the 

parameters of the misspecified item were affected. Although this study indicated the 

robustness of RUM to the less-ideal cognitive structure and the misspecified Q-matrix, 

the misspecified Q-matrix, especially missing important attributes, generated less 

satisfactory parameters. 

Im and Corter investigated the statistical consequences of attribute 

misspecification in the rule space method (Im, 2007; Im & Corter, 2011). They examined 

the impact of two types of attribute misspecification (exclusion of an essential attribute 

and inclusion of a superfluous attribute) and the ordered relations of an excluded/included 

attribute with the other attributes. The essential attributes refer to the attributes required 

to solve the problems, whereas the superfluous attributes mean those unnecessary 

attributes. A simulation study displayed the opposite impact of the two kinds of attribute 

misspecification on examinees’ attribute mastery probabilities. Excluding an essential 

attribute tended to lead to underestimation of mastery probabilities, while including a 

superfluous attribute generally led to overestimation of mastery probabilities. The impact 

of attribute exclusion was higher than attribute inclusion on examinees’ mastery 

probabilities and the classification of attribute mastery. Attribute exclusion caused lower 
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classification consistencies of examinees’ attribute mastery. Meanwhile, the impact of 

attribute misspecifications was mediated by the order relations among attributes. When 

an essential attribute in the subset of some remaining attributes was excluded, examinees’ 

mastery probabilities were underestimated or remained the same; whereas when an 

essential attribute in the superset of some remaining attributes was excluded, examinees’ 

mastery probabilities were overestimated or remained the same. 

Rupp and Templin (2008) investigated the effects of Q-matrix misspecification on 

item parameter estimates and respondent classification accuracy for a simple but 

restricted CDM—the DINA model. A simulation study examined four types of Q-matrix 

misspecification: an underfitting, an overfitting, a balanced misfit (exchanging 0s and 1s 

while the overall numbers of 0s and 1s were held constant), and attribute misspecification 

under incorrect assumptions about attribute dependencies. The results showed that when 

the required attributes were incorrectly deleted, the slipping parameter was overestimated 

most strongly; on the other hand, when unnecessary attributes were added, the guessing 

parameter was overestimated most strongly. For those items that did not involve 

misspecified attributes, the item parameters were not affected. Also, the misspecifications 

in the Q-matrix resulted in misclassifying the respondents. Under the context of balanced 

misfit, a large number of misclassifications existed. The four kinds of misspecification 

indicated that omitting certain attribute combinations led to completely misclassifying the 

respondents with such attribute combinations. However, the degrees of misclassification 

for different attribute patterns were not the same. The attribute class with all attributes 

present or absent did not show large elevations in the misclassification rates.  
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Following this, Henson and Templin (2009) explored the impact of a misspecified 

Q-matrix on the item and examinee parameters of a complex model—the RUM (Hartz, 

2002). The RUM involves five parameters: probability of a correct item response (π*) 

when all required attributes are mastered; reduced proportion of item response probability 

(or item discrimination for the relative attributes, r*) when the k
th

 attribute is not 

mastered; attribute completeness index (c); proportion of examinees mastering each 

attributes (pk); correlation of attribute pairs (ρ), which lead to the correct classification 

rate. This study analyzed the three types of Q-matrix misspecifications: over-fit, under-fit, 

and a combination of both. The variation of the estimates was tested by computing the 

mean deviation, mean absolute deviation, and the root mean squared error of all the 

parameters. Also, the study examined the correct classification rates. The results showed 

that robustness of the RUM statistical inference to the misspecified Q-matrix heavily 

depended on the type of misspecifications. Specifically, when the Q-matrix was over-

specified and the parameter c was included, the Q-matrix misspecification had little 

impact on parameter estimation; whereas the under-specified Q-matrix affected seriously 

most parameter estimates such as: underestimating c, and pk, and overestimating r*, ρ, 

and the correct classification rate. When both the over- and under- misspecifications 

existed in the Q-matrices, the parameter estimates were affected moderately or strongly. 

The results also indicated that when the attribute completeness index c was excluded, the 

errors of estimation caused by the Q-matrix misspecification were worse. Based on the 

findings, the researchers suggested that one should identify those required, or possibly 

required, attributes for each item, but being careful not to assign an attribute when much 

uncertainty exists. 
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Within a Bayesian framework, Zhang and Rupp (2009) explored how prior 

informative specification for item parameters compensated for a potential 

misspecification of the Q-matrix, especially for relatively small respondent sample size (n 

= 250 and 500). The study involved two types of Q-matrix misspecification: (a) items 

measuring two attributes were replaced by items assessing one attribute; and (b) balanced 

attribute misspecification (exchanging 0s and 1s while the overall numbers of 0s and 1s 

were held constant). The researchers compared the item and person estimates of two 

Bayesian DINA models, one with and another without informative priors—reasonable 

true values for each item parameter. The simulation analyses showed that the Q-matrix 

misspecification resulted in strong bias in the estimation of the relative item parameters 

(slipping and guessing) and person parameters (the latent class distribution, the correct 

classification rate across attribute patterns, the marginal correct classification rate for 

each attribute, and the tetrachoric correlations between attributes). More respondents 

were incorrectly classified into the group lacking attribute mastery. 

Shu, Henson, and Willse (2010) implemented Q3 (Yen, 1984) to detect 

misspecification of skills/attributes in the Q-matrix within the DINA and DINO models. 

Q3 is a measure of local item dependence in IRT analysis. It is defined as the correlation 

of residuals of the pairwise items, Q3 = rd1.d2 (d1 and d2 are the deviations of two items). 

“Theoretically, the covariance in the response data should be fully explained by the 

underlying attributes and thus Q3 is expected to be zero if the underlying attributes are 

correctly specified in the Q-matrix” (Shu et al., 2010, p. 9). A non-zero Q3 indicated that 

the attributes of the items did not explain the items well; and a large value of Q3 

suggested that local item dependence was violated. In this simulation study, Shu et al. 
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investigated misspecification of the Q-matrix under different conditions: different 

response strategies (the non-compensatory DINA model and the compensatory DINO 

model), attribute correlation, and misspecification types (omitting or adding an attribute). 

The Q3 values of the misspecified Q matrices were compared with that of the random 

and true Q-matrices. The results showed that Q3 was a sufficient index to detect omitting 

an attribute but not to adding an attribute. For both the DINA and DINO models, deleting 

a necessary attribute led to violation of local item independence (mainly for the affected 

items) and deteriorated the estimation of slipping and guessing parameters; adding an 

unnecessary attribute had no impact on local item independence and the parameter 

estimates. In addition, attribute correlation was not an obvious factor mediating the 

relationship between the Q-matrix and Q3 and item parameter estimation. One limitation 

of this study is that it is still hard to evaluate the magnitude of Q3 and the degree of 

violation of local item independence.  

Choi, Templin, and Cohen (2010) analyzed the effect of both Q-matrix 

misspecification and model misspecification on item and structural parameters and 

classification accuracy of attribute mastery with different sample sizes, from 100 to 4,000 

examinees. The model misspecification refers to incorrectly constrained main or 

interaction effects in the DINA model, DINO model, and compensatory RUM. The Q-

matrix misspecification involved underfit and overfit within the framework of log-linear 

cognitive diagnosis model (LCDM). Researchers used bias and root mean square error to 

evaluate parameter estimates, used marginal proportions of mastery profiles, Cohen’s k, 

and correct classification rate to assess accuracy of mastery classification. The simulation 

study of the Q-matrix misspecification showed that with respect to the AIC and BIC, the 
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model with a correct Q-matrix fit better than both models with an overfitted or an 

underfitted Q-matrix, and the model with an overfitted Q-matrix fit much better than the 

model with an underfitted Q-matrix. For the item and structural parameters and mastery 

classification, the impact of excluding necessary attributes was much greater than that of 

including unnecessary attributes, while the impact of including unnecessary attributes 

was negligible. The analyses of the effect of sample size indicated that the larger the 

sample size, the better the parameter estimates and mastery classification (but not for the 

model misspecification). When the sample size was only 100, the attribute mastery was 

accurately classified in a correct model or even in a model with an overfitted Q-matrix. 

However, a sample size of 200 or over was necessary for selecting a correct model; and a 

sample size of 500 or over was needed for reasonably estimating parameters.  

Using a complex simulation study with 32 data-generation conditions, Kunina-

Habenicht, Rupp, and Wilhelm (2012) investigated the impact of Q-matrix 

misspecification (under- and over-specification, and a combination of both) and 

interaction effect misspecification on item and respondent parameter recovery, 

classification accuracy, and sensitivity of selected fit measures in log-linear diagnostic 

classification models. The results showed that the misspecification of interaction effects 

had little impact on classification accuracy, but the misspecification of the Q-matrix 

notably decreased classification accuracy. The misspecification of the Q-matrix also had 

a dramatic effect on parameter recovery of latent class distributions, correlations and 

attribute proportions. The item-fit indexes—mean absolute difference (MAD) and root 

mean square error of approximation (RMSEA) were more sensitive to the over-specified 

Q-matrix than to the under-specified Q-matrix. The relative model fit indexes, Akaike’s 
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information criterion (AIC: Akaike, 1974) and Bayesian information criterion (BIC: 

Schwarzer, 1976), were sensitive to both over- and under-specification, which is in line 

with the studies by Choi, Templin, and Cohen (2010) and Chen et al. (2012). In this study, 

the researchers also found the distributions of MAD and RMSEA values supported 

similar model choices as the AIC and BIC. 

Within the framework of generalized DINA (G-DINA) model and six types of 

CDM, Chen, de la Torre, and Zhang (2012) investigated the sensitivity and usefulness of 

six model fit statistics under different CDM settings, with either Q-matrix 

misspecification, or model misspecification, or both. The model fit indices were of 

absolute or relative fit, including: -2 log likelihood, AIC, BIC, and the residuals based on 

the proportion correct of individual items, correlation of item pairs, and log-odds ratio of 

paired item responses. The six CDMs were the saturated/unconstrained G-DINA model, 

DINA model, DINO model, additive CDM, linear logistic model, and reduced 

reparameterized unified model. Using simulated data and real data, they found that the 

AIC and BIC were useful for identifying the misspecification of the Q-matrix and CDM, 

while the BIC performed better. Under the context of Q-matrix misspecification, the 

saturated G-DINA model could serve as the true model to compare models across the Q-

matrices. The absolute fit statistics—the residual of the correlation of item pairs with the 

Fischer transformation and the residual of log-odds ratios of pair-wise item responses—

were sensitive to most conditions. However, these two fit indices were not sensitive to the 

over-specified Q-matrices unless in a highly constrained CDM, such as DINA model.  

One of goals of the CDMs is to diagnose students’ strengths and weaknesses in 

knowledge and skills and to classify students according to their knowledge states. So, the 
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performance of classification is important for a CDM (de la Torre, 2008; Dogan & K. K. 

Tatsuoka, 2008; K. K. Tatsuoka, 2009). DeCarlo (2011) found, analytically and via 

simulations, that some neglected problems were largely associated with the structure of 

the Q-matrix. He used a widely analyzed data set, the fraction subtraction data of K. K. 

Tatsuoka (1984, 1990), and the popular DINA model to explore the relationship between 

the Q-matrix and classification of examinees. Although K. K. Tatsuoka’s data only 

included 20 simple items, DeCarlo pointed out that “it is still debatable (after 20 years) as 

to the correct specification of the Q-matrix” (p. 21). He employed a partly Bayesian 

approach to estimation, posterior mode estimation. This approach provides more reliable 

parameter estimates and standard errors than either maximum-likelihood estimation or 

parametric bootstrapping (Galindo-Garre & Vermunt, 2006), and can better deal with 

boundary problems in latent class analysis, such as large or indeterminate parameter 

estimates, or a latent class size of zero or one with large or indeterminate standard errors.  

DeCarlo (2011) examined three types of the DINA model: the reparameterized 

DINA (RDINA) model, which is a logistic regression model with latent classes; the 

higher order DINA (HO-RDINA) model (de la Torre & Douglas, 2004), which assumes a 

hierarchical structure among the cognitive attributes; and a restricted version of the HO-

RDINA (RHO-RDINA) model, with an equal discrimination parameter across all 

cognitive attributes. DeCarlo found some potential problems in terms of the classification 

of examinees and the estimated latent class sizes. For instance, the examinees that 

received a zero score for every item were classified as mastering seven of eight attributes; 

the latent class size of the higher level attribute was higher than that of the lower level 

attribute. The researcher argued that classification problems might also exist in other 
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CDMs, which would limit the utility of CDMs, because incorrect classification of 

respondents supplied little useful or wrong feedback for further teaching and learning. 

The analyses also showed that inclusion of an irrelevant skill had little effect on estimates 

of the class size of other attributes in the Q-matrix. However, the RDINA model (and to 

some extent the HO-RDINA model) clearly picked up the irrelevant attributes based on 

the latent class size estimates close to unity, whereas the RHO-RDINA model did not. 

This study provided a useful way to indentify potential misspecification in the Q-matrix. 

The above studies examined the impact of the misspecified Q-matrix on the item 

and person parameters and classification of respondents based on the various CDMs such 

as the LLTM, rule space method, DINA, DINO, G-DINA, RDINA, HO-RDINA, RHO-

RDINA, RUM, and log-linear diagnostic models. It is hard to generate a unified result 

because of the different parameters in the different models. But all studies indicated the 

negative impact of the misspecified Q-matrix on parameter estimation; exclusion of the 

required attributes had more serious impact than inclusion of unnecessary attributes.     

Validation of the Q-matrix. Although the serious consequences of a misspecified 

Q-matrix in the CDMs have been realized by more and more researchers, relatively few 

studies addressed the validation of the Q-matrix. In early studies, researchers used the 

relationship between item difficulty and attributes to validate the attributes and Q-matrix 

(Hartz, 2002; K. K. Tatsuoka, Corter, & C. Tatsuoka, 2004). Dimitrov (2007) used the 

least squares distance method (LSDM) to validate the cognitive structures for a test. More 

validation studies of the Q-matrix were presented in the recent years. Some researchers 

proposed empirical approaches to testing a Q-matrix within the framework of the DINA 

model and generalized DINA model (de la Torre, 2008; de la Torre & Chiu 2009; Tu, Cai, 
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& Dai, 2012). Some studies were based on the RUM and the fusion model (Chen & 

Zhang, 2012; Feng & Habing, 2012). Liu, Xu, and Ying’s studies (2011a, 2011b) built on 

rigorous mathematical analyses. Although these studies provided valuable perspectives or 

approaches to validating a Q-matrix, no uniform standards have been achieved for a 

reliable Q-matrix. However, researchers agreed that the construction of a Q-matrix 

should not be based only on these statistical methods. As K. K. Tatsuoka (2009) pointed 

out, “it is dangerous to rely on a single optimization technique for attribute selection” (p. 

273). These approaches, as well as assessment theory, experts’ views, and analysis of test 

items and examinees’ protocols, should be implemented together (Close, 2012; de la 

Torre, 2008; Dimitrov, 2007; Hartz, 2002; K. K. Tatsuoka, 2009).  

As an important bridge connecting IRT and diagnostic models, Fischer’s LLTM 

(1973) decomposes item difficulty as a combination of the component subtasks, in which 

the Q-matrix was the weight of attributes for item. Based on the concept of the LLTM or 

a similar idea, some researchers employed the relationship between item difficulty and 

attributes to validate the Q-matrix, such as Hartz (2002), K. K. Tatsuoka (2009), K. K. 

Tatsuoka, Corter, and C. Tatsuoka (2004), Dogan and K. K. Tatsuoka (2008), and Rho 

(2010). In the analysis, Hartz implemented the method slightly different from K. K. 

Tatsuoka and her colleagues.  

In developing the RUM, Hartz (2002) proposed an approach to constructing a 

reliable and valid Q-matrix with both substantive meaning and statistical ties to the data. 

Based on the LLTM, Hartz pointed out that the derived attributes should have both 

homogeneous item content, because of cognitive content and process similarity, and 

homogeneous statistical properties such as consistent difficulty. The hard homogeneous 
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cognitive attributes were the attributes frequently occurring in the hard items (item 

difficulty p-value < 0.4); and the easy homogeneous attributes frequently occurred in the 

easy items (p-value > 0.6). The hard items must be related to at least one hard attribute, 

while the easy items cannot involve any hard attributes. Different from most of the 

attributes based on math content, Hartz specified “speededness” as one attribute affecting 

the examinees’ performance. With respect to the relationship between the eight attributes 

and the item difficulty of 60 ACT math items, three attributes were identified as hard 

attributes, and the remaining five attributes as easy attributes. Following this, Hartz 

further refined the Q-matrix to maximize the power to classify the examinees through a 

stepwise parameter reduction algorithm. The item parameters that were not statistically 

significant or determining were deleted. The items without the parameter r* (item 

discrimination for the relative attributes) and the attributes required by less than three 

items were excluded from the Q-matrix. Finally, 21 of the 100 entries (1s) were 

eliminated from the Q-matrix. Using the refined Q-matrix, the well-estimated probability 

of attribute mastery and item parameters indicated strong substantive information 

regarding the cognitive structure; and the expected performance order indicated good 

classification between the masters, high non-masters, and low non-masters.  

In the study of student’s mathematics performance at the attribute level in the 

1999 TIMSS-Revised, K. K. Tatsuoka, Corter, and C. Tatsuoka (2004) validated the Q-

matrix for 23 attributes and 163 items through linear multiple regression. As was done by 

Scheiblechner in 1972 (as cited in K. K. Tatsuoka, 1990), researchers implemented a 

multiple regression of the attributes on the item difficulties; and they examined the 

variance (R
2
 and adjusted R

2
) in item difficulties (mean proportion correct values across 
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all respondents) explained by the entries of the Q-matrix. According to K. K. Tatsuoka 

(2009), item difficulty “should be a function of the cognitive demands that it poses to the 

examinee; therefore, a valid Q matrix should explain a significant portion of the variance 

in item difficulties” (p. 272). A higher adjusted R
2
 indicated that the proposed attributes 

well predicted the item difficulties. K. K. Tatsuoka also used a multiple regression of the 

attribute mastery probabilities on the total scores or the IRT scores to validate the Q-

matrix. Moreover, study of the rule space method indicated that a high-quality Q-matrix 

should explain students’ knowledge states and generate a high classification rate of the 

examinees (Dogan & K. K. Tatsuoka, 2008; K. K. Tatsuoka, 2009). Later, Rho (2010) 

extended this multiple regression analysis to the mixed effects logistic regression analysis, 

in which the item difficulties were predicted by both students (random effects) and the Q 

matrices (fixed effects). 

Dimitrov (2007) investigated the validation of cognitive attributes using the 

LSDM for binary items. The unique features of the LSDM were that (1) score 

information was not required, as long as item parameters were available through IRT 

item calibration; and (2) it displayed the correct probability of attributes across ability 

levels and individual items. With known IRT estimates of item response probability and 

the Q-matrix, the attribute probability was estimated, as an “intact unit” (p. 371), through 

the minimization of matrix norms using the Euclidean least squares distance. For each 

item, the probability of correct item response recovered by the LSDM was equal to the 

product of the probabilities for attributes, which represented the approximation of the 

item characteristic curve (ICC). Compared to the ICC estimated with IRT, the ICC 

recovery with the LSDM displayed how well the specified attributes accounted for the 
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items across ability levels. Also, the attribute probability curves exhibit a logical pattern 

(The LSDM is addressed in detail in the next section).  

As Dimitrov and Atanasov (2011) pointed out, using the LSDM psychometric 

information of both items and their attributes can be illustrated on the IRT logit scale. 

The LSDM can be used for identifying potential Q-matrix misspecifications, validation 

screening of cognitive attributes for IRT bank items before test administration, providing 

additional information on validation of prior tests, and comparing group performance at 

the sub-skill level.  

de la Torre (2008) developed an empirical approach to validating a Q-matrix for 

the DINA model. The selection of Q-matrix was based on the discrimination index delta 

(δj). According to de la Torre, a correctly specified Q-matrix should maximize the 

difference of probabilities of correct response to item j (δj) between examinees who have 

all the required attributes and those who do not. Because δj = 1 - sj - gj, maximizing δj was 

equivalent to minimizing the sum of the slip and guessing parameters, sj and gj. The items 

with a high δj differentiate highly between the examinees, while those items with a low δj 

do not. The study found that omitting required attributes dramatically increases the slip 

parameter and including unnecessary attributes increases the guessing parameter. de la 

Torre elaborated the exhaustive search algorithm and sequential search algorithm. 

However, these two algorithms involve demanding computations. They were not 

practical for a large number of attributes and real data without a clear cut-off of δj.  

Then, de la Torre (2008) proposed the sequential expectation–maximization (EM) 

δ-method for validating the Q-matrix, which set a cut-off point (ε) for the minimum 

increment in the delta index δj resulting from an additional attribute. The liberal criterion, 
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a small ε (e.g., ε = 0), allowed more attributes to be included, which might cause an over-

specified Q-matrix. A stringent criterion (e.g., ε = 0.20) might result in an under-specified 

Q-matrix. In the simulation study, the researcher investigated the proposed method using 

five cut-off points of ε (.00, .01, .05, .10, and .20). In the analyses using real data, the 

proposed approach was employed to K. K. Tatsuoka’s (1984, 1990) fraction-subtraction 

problems and the NAEP 8th grade mathematics assessment. The results showed that the 

sequential EM-based δ-method can identify and correctly replace inappropriate Q vectors 

while retaining appropriately specified Q vectors. For the real data studies, the proposed 

method yielded useful statistical information for constructing or repudiating Q-vector 

specifications. The studies indicated that the proposed approach was potentially viable for 

validating and optimizing a Q-matrix. This study is an initial, but significant, step in 

examining the Q-matrix (Close, 2012).  

Following this study, de la Torre and Chiu (2009) extended the sequential EM-

based delta method to the generalized DINA (G-DINA) model. The G-DINA model uses 

a more flexible parameterization. Based on different parameterizations, the G-DINA 

model can be converted to a class of reduced CDMs such as DINA and DINO models, 

additive CDMs, linear logistic models, and reparameterized unified models. In this study, 

a generalization of the discrimination index δj was proposed, represented by index ςj
2
. 

The researchers pointed out that “a correct q-vector will yield homogeneous latent groups 

in terms of the probability of success [within-group probabilities] and therefore will result 

in groups with the highest variability of probabilities of success given a parsimonious 

subset of attributes” (p.10). Based on the sequential search algorithm and five CDMs, a 

simulation study displayed that all misspecified Q-vectors were accurately identified and 
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replaced while the correct Q-vectors were retained. The findings indicated the viability of 

the general index ςj
2
 for validating the Q-matrix. However, for both indices δj and ςj

2
, the 

researchers also pointed out that these statistical methods cannot be used in isolation, 

whereas they should be implemented with other methods such as information about the 

items, or expert knowledge, to create a more integrative framework for selecting and 

validating a Q-matrix. 

Based on the DINA model, Tu, Cai, and Dai (2012) developed another method (γ 

method) to validate the Q-matrix. The indexes for validating the Q-matrix were the slip 

and guessing parameters and the score differences between the groups mastering and 

without mastering the attributes. Specifically, when (1) the guessing value of an item was 

too big, greater than the critical guessing values, and (2) the item score of the group 

mastering attribute k was not significantly different from that of the group without 

mastering attribute k, that is, the effect size was less than .20, then it suggested that 

attribute k probably was a unnecessary attribute for the item, and the element “1” of the 

Q-matrix was changed to “0”. On the other hand, when (1) the slip value of an item was 

too big, greater than the critical values, and (2) the item score of the group mastering 

attribute k was significantly different from the non-mastering group, with a effect size 

of .20 or greater, then attribute k probably was a necessary attribute for the item, and the 

element “0” of the Q-matrix was changed to “1”. In the third situation, when both the 

guessing and slip were too big, two of more attribute entries for an item needed to be 

changed.  

As the study of Q-matrix misspecification by Baker (1993), Tu et al. (2012) 

designed six Q-matrices with different percents of misspecified elements, from zero, 5%, 
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to 25%. The misspecified entries of the Q-matrices based on the simulated data were 

randomly selected and incorrectely re-specified. The researchers supposed that there were 

three levels of the observed response error ratio, which were 5%, 10%, and 15% of the 

expected examinee response patterns. They also set up five critical values for the slip and 

guessing parameters, from .10 to .30. Through comparing the original Q-matrices with 

the modified Q-matrices, Tu et al. found that (1) there was not any modification for the 

error-free Q-matrix; (2) when the critical values for the slip and guessing were .20, .25, 

and .30, the γ method effectively improved the Q-matrix specifications; and (3) the γ 

method was sensitive to the wrong Q-matrices when the critical values of the slip and 

guessing were small, while it was not sensitive when the critical values were high: the 

lower critical values of the slip and guessing led to more incorrect modifications of the 

Q-matrix, while the higher critical values of the slip and guessing resulted in less or no 

modifications of the wrong Q-matrices. Also, Tu et al. (2012) compared the γ method 

with de la Torre’s (2008) EM-based δ-method using the same Q-matrix. They generated 

the very similar results. Considering the δ-method was based on the complex and 

sequential EM computation, the γ method was relatively simpler. In addition, the γ 

method raised the correct ratios of cognitive diagnosis, which were measured by the 

marginal match ratio and pattern match ratio. The study indicated that the γ method was 

proved to be an effective method for validating a Q-matrix. However, the researchers 

pointed out that the γ method should be used with the experts’ views together; the slip 

and guessing greater than the critical values did not mean the Q-matrix must be wrong. 

Two studies of the Q-matrix validation (Chen & Zhang, 2012; Feng & Habing, 

2012) were within the framework of the RUM. Feng and Habing (2012) implemented a 
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sequential search method with the BIC to validate a Q-matrix based on the reduced RUM 

(Hartz, 2002), which eliminates the response probability (  iCI
P  ) from the model. 

 iCI
P   is the correct response probability associated with the examinee’s ability and the 

skills that were not included the Q-matrix. The researchers pointed out that a correct Q-

matrix maximized the difference (δ) between the response probabilities between the 

examinees who mastered all the required attributes and those who did not. They first 

compared the δ for all single-attribute patterns and chose the attribute with the largest δ
(1)

. 

Then, they found the largest δ
(2)

 for all two-attribute patterns. If δ
(2) 

> δ
(1)

, the second 

attribute was identified and the process was continued to search the three-attribute 

patterns. If δ
(2) 

< δ
(1)

, the search process was stopped. Finally, the reduced RUMs with all 

possible Q-vectors were compared using the BIC. This method can find the wrong Q-

vectors, but it had a low rate for correcting the misspecified Q-matrix. 

Chen and Zhang (2012) investigated an iterative framework of the Q-matrix 

optimization based on the fusion model (Hartz, 2002; Roussos et al., 2007), which is a 

RUM in a hierarchical Bayesian framework. The refined process of the Q-matrix built on 

the estimation of item parameters such as conditional item difficulty (πi*), item 

discrimination (rik*), and the Q-matrix completeness index (ci). The elements of the Q-

matrix were changed, or the ineffective items were deleted, if the items were very 

difficult for the assigned attributes (πi* < .50), or if an item had a low discrimination 

between the groups mastering and not mastering a attribute (rik* > .90), or if a necessary 

attribute was not included in the Q-matrix (0 ≤ ci ≤ 1.50). After multiple times of revising 

the Q-matrix and the items, the model fit with the final optimized Q-matrix was evaluated 

by comparing the observed statistics with the model-predicted statistics.      
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Different from the other studies of the Q-matrix, Liu, Xu, and Ying (2011a, 2011b) 

conducted complex and rigorous mathematical analyses of the identification of the 

underlying Q-matrix within the commonly used DINA model. In the study Theory of 

Self-learning Q-Matrix, Liu et al. (2011a) used a set of mathematical expressions to 

display basic theoretical properties of estimating the Q-matrix in the DINA mode with 

known slipping and guessing parameters. The researchers developed sufficient conditions 

for the Q-matrix to be identifiable up to an explicitly defined equivalence relation, which 

is regarded as a natural partition of the space of Q-matrices. They also showed the 

corresponding consistent estimators. In the continuous study, Liu et al. (2011b) explored 

the estimation of the Q-matrix when both the slipping and guessing parameters were 

unknown in the DINA model; then, they extended the analyses to the DINO model. They 

proposed a principled estimation procedure for the Q-matrix, relative parameters, and 

validation of a Q-matrix. Based on the rigorous theoretical proofs, Liu et al. pointed out 

that the proposed estimation procedure can be applied to a large class of CDMs, and it 

potentially serves as a principled inference tool for the Q-matrix. Liu, Xu, and Ying’s 

studies provided a new prospective to investigate the estimation of the Q-matrix. 

However, it seems to be a challenge for many people to completely understand their 

complex mathematical theorems and methods and apply them into practices.  

Exploratory approach to developing the Q-matrix. In the study of exploratory Q-

matrix discovery procedures, Fall (2009) investigated a probabilistic estimation 

procedure that allowed for uncertainty in the construction of the Q-matrix. The study 

focused on the skills (six attributes) involved in reading comprehension. The items were 

taken from the subtests of three literacy assessments: the Comprehensive Adult Student 
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Assessment System (CASAS), the National NAEP, and the Graduate Equivalency 

Degree (GED). This study compared two types of Q-matrices: a deterministic Q-matrix 

and a probabilistic Q-matrix. The traditional deterministic Q-matrix was developed from 

experts’ ratings the relationship of items and attributes, using “1” or “0”. The 

probabilistic Q-matrix was created using an MCMC estimation algorithm. The prior 

probabilities were equal to the ratios of the number of experts endorsing an attribute on 

an item and the total number of experts (six); then, the elements of the probabilistic Q-

matrix were estimated using a Bayesian algorithm; at each iteration, the elements with a 

value below .50 were specified as zero and those with a value of .50 or over were 

specified as one. Both types of Q-matrices were examined using the conjunctive DINA 

model and the disjunctive DINO model. This study analyzed the model fit, item 

parameters—slipping and guessing, and classification of respondents. The results from 

the fourteen DINA or DINO models showed that most of the models with a probabilistic 

Q-matrix fit better than those with a deterministic Q-matrix; and some models with a 

probabilistic Q-matrix reduced the slipping and guessing parameters. However, overall 

there was limited evidence to support that the CDMs using a probabilistic Q-matrix 

generated more stable parameters and more accurate classification rates. As Fall pointed 

out, the undesirable results partially resulted from using data that did not provide 

sufficient input for cognitive diagnosis of reading comprehension, such as overuse of a 

single attribute (even a Q-matrix with a single attribute) or over-endorsement of a single 

item. So, this study is a useful step in investigating construction of the Q-matrix. Further 

studies of the probabilistic estimation procedure are needed to provide more rigorous 

results, such as using diverse data and inviting more experts to rate skills. 
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Different from the studies of the Q-matrix based on a known number of attributes, 

Close, Davison, and Davenport (2012; also Close, 2012) proposed a potential exploratory 

technique that can be used to supplement theory in deriving the Q-matrix with an 

unknown number of attributes. The researchers reparameterized the skills or attributes of 

the DINA model as components. Then, they used a principal components analysis to 

search for an appropriate Q-matrix. Following a simulation analysis, they evaluated the 

Q-matrix exploratory method using real data, including the widely analyzed fraction 

subtraction data from K. K. Tatsuoka (1984, 1990) and the NAEP 2003 grade eight 

mathematics data. The analyses showed that when a skill is sufficient for some items, 

which means that solving some items need a single skill, the skill in the Q-matrix 

corresponds to a component in the component analysis; whereas if a skill is insufficient, 

which means that the skill must accompany other skills to answer a question, the skill in 

the Q-matrix does not correspond to a component in the component analysis. The 

components analysis method was suggested to be a viable approach to augmenting theory 

in developing a Q-matrix. The study also found that the components analysis method was 

useful when the test items assess narrow content and each skill set was measured by 

multiple items. It cannot be implemented with assessments measuring broad content 

domains. Like many statistical methods, this method should not be used alone, instead 

together with content/domain theory and item task analysis.  

Based on formal concept analysis (FCA: Wille, 1984), Wang, Ding, Song, and 

Liu (2012) proposed an exploratory method to identify cognitive attributes. FCA, also 

called Galois lattice or concept lattice, is an unsupervised learning technique using formal 

contexts for clustering concepts and discovering knowledge (Wikipedia, n.d.). The 
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relation between concepts and attributes in a concept lattice is like the relation between 

items and attributes in a Q-matrix. Wang et al. used the isomorphism relation of lattice to 

reveal a concise structure of items and attributes. This study assessed the effectiveness of 

FCA in identifying cognitive attributes for the DINA model. They implemented the FCA 

method to the simulated data with different sample sizes and with different levels of 

guessing and slipping. However, the sample sizes were too small, only 10, 20, and 30. 

The results of the simulation study showed that on average, the proportion of correctly 

identified attribute vectors was 75.69%. The lower guessing and slipping parameters and 

the smaller sample size, the higher proportion of correctly identified attribute vectors. 

The impact of noise (guessing and slipping) was relatively higher than that of sample size. 

Using the real data—K. K. Tatsuoka's (1990) fraction subtraction data, the study showed 

that on average, only 50% of the attribute vectors identified by FCA were in line with 

those by the experts—de la Torre and Douglas (2004). The low proportion was caused 

partially by the fact that some attribute vectors were indistinguishable in terms of 

attribute patterns. Moreover, the appropriate Q-matrix of these subtraction data was still 

in question by researchers (DeCarlo, 2011). This study indicated that to some degree, 

FCA can be applied for aiding identifying the Q-matrix. Meanwhile, it needs additional 

studies of the application of FCA in developing a Q-matrix.  

Using the DINA and DINO models, the above three studies investigated using 

exploratory approaches to develop a Q-matrix, such as a probabilistic estimation 

procedure, a principal components analysis, and a formal concept analysis. These studies 

provide additional perspectives on exploring the construction of a Q-matrix. However, 

these tentative methods need to be further examined with more items.  
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Cognitive diagnostic models. 

In the present study, validation of the Q-matrix and the TIMSS mathematics test 

was based on Fischer’s LLTM (1973) and Dimitrov’s LSDM (2007). Both the LLTM and 

the LSDM are conjunctive models, assuming that successful response to an item requires 

all relative attributes to be mastered. With respect to the theory of the LLTM, a linear 

multiple regression model was implemented to investigate the relationship of the Q-

matrix and item difficulty. Then, using the LSDM, the probability of correct response to 

each item was recovered by the product of the attribute probabilities.  

The linear logistic test model. Fischer (1973) introduced the LLTM to illustrate 

the relationship of item difficulty and the components (attributes) of test items. He 

pointed out that “the  psychological  complexity  of  compound problems  can  be  

defined  by  means  of  a small number  of  basic  components  (=  cognitive  operations)  

in  the  reasoning  process” (p. 361). Thus, item difficulty (δj) can be decomposed into a 

weighted sum of basic parameters (ηk) and a normalization constant c, with the Q-matrix 

as the weight of attributes in item difficulty as in Equation 1:  

cq k

K

k

jkj 



1

         (1) 

The LLTM bridges cognitive diagnostic models and IRT psychometric models. It 

has been implemented to test the validation of the Q-matrix and the construct validity of a 

test. According to this theory, the present study used a set of multiple regression models 

to investigate how item difficulty was explained by the attributes of the Q-matrices. If a 

higher proportion of variance in item difficulty can be explained by a Q-matrix, that Q-

matrix is more reliable. 
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The least squares distance method. Dimitrov (2007) proposed the LSDM to 

estimate the probability of correct performance on each attribute using the IRT 

parameters and then to recover the probability of correct response to each item across 

ability levels. It assumes that all cognitive attributes covered by an item need to be 

mastered to successfully complete an item, and that performance on one attribute does 

not affect performance on another attribute, that is, local statistical independence for 

attribute performance. Thus, the correct item response probability is assumed to be equal 

to the product of the probabilities of correct performance on all relative attributes, as 

modeled in Equation 2. 

  
jkqK

k

ikij PP 



1

1         (2) 

where Pij —probability of correct response on item j at ability level θi (item probability);  

          P(αk =1| θi) —probability of correct performance on attribute k at ability level θi 

(attribute probability); and, 

          qjk —entry of the Q-matrix for item j and attribute k. αk = 1, indicates attribute k is 

required by an item; otherwise, αk = 0. 

 

Equation 3 is generated by taking the natural logarithm of both sides of Equation 2:  

 



K

k

ikjkij PqP
1

1lnln          (3) 

Then,  Equation 3 is simplified to:  

 L = QX       (4) 

where L is the vector with known elements lnPij (Pij is estimated with the IRT 

parameters); Q is the Q-matrix; and X is the vector with unknown elements lnP(αk =1| θi).  

 

By minimizing the Euclidean norm of the vector ||QX − L||, the unknown vector 

X and the least squares distance (LSD) are estimated. Then, the attribute probabilities are 
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calculated with P(αk =1| θi) = exp(Xk). The attribute probability curves (APCs) display 

the locations of the probability of performance on all attributes across ability levels in a 

diagram. Following this, the item response probability is recovered by the product of the 

attribute probabilities at all selected ability levels, which represents the LSDM 

approximation of the item characteristic curve (ICC). The mean absolute difference 

(MAD) between the recovered ICC and the ICC estimated with the IRT parameters 

indicates the degree that the specified attributes can explain the items. The smaller MADs 

suggest the better the attributes account for the items.     

Dimitrov presented heuristic criteria for evaluating cognitive attributes:  

• The smaller the LSD in minimizing the norm ||QX−L|| at a given ability 

level, the better the cognitive attributes hold together (jointly for all items) 

at this ability level. 

• The attribute probability curves (APCs) should exhibit logical and 

substantively meaningful behavior in terms of monotonicity, relative 

difficulty, and discrimination. (p. 372) 

• The better the ICC recovery for an item, the better the required attributes 

explain the item. (p. 373) 

With respect to the MAD, Dimitrov’s studies suggested using the following 

standards to validate the recovery degree: “(a) very good (0.00 ≤ MAD < 0.02), (b) good 

(0.02 ≤ MAD < 0.05), (c) somewhat good (0.05 ≤ MAD < 0.10), (d) somewhat poor 

(0.10 ≤ MAD < 0.15), (e) poor (0.15 ≤ MAD < 0.20), and (f) very poor (MAD ≥ 0.20)” 

(p. 373). These standards were applied for this study. 
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TIMSS mathematics assessment  

Overview of TIMSS. TIMSS is a series of international assessments that examine 

trends in student achievement in mathematics and science, and collect comprehensive 

background information that affect teaching and learning, such as educational system, 

schools, curricula, instruction, lessons, home contexts, and students’ behaviors and 

attitudes (Mullis, Martin, & Foy, 2005, 2005b, 2008, 2009; National Center for Education 

Statistics, 2011). The projects are dedicated to providing high quality data for policy 

makers and educational reform, and eventually to enhancing student performance in 

mathematics and science through ongoing cross-national comparisons. Since the first 

study in 1995, TIMSS assessments have been administrated every four years by the IEA, 

an international cooperative of national educational research institutions and 

governmental research agencies that has been conducting internationally comparative 

studies in a wide array of subjects since 1959. So far, five waves of assessments (1995, 

1999, 2003, 2007, and 2011) have been conducted. The latest released assessment data is 

TIMSS 2007. Both fourth and eighth graders took the assessments in mathematics and 

science. Also, the students, the school teachers and principals, and the National Research 

Coordinators of the participating countries took part in the studies of backgrounds for 

learning and teaching mathematics and science. Now TIMSS is the most comprehensive 

study of educational achievement around the world. Approximately 425,000 students 

from fifty-nine countries and eight benchmarking jurisdictions participated in TIMSS 

2007 (Gonzales et al., 2008; Mullis & Martin, 2008; Mullis et al., 2008). 

TIMSS is a collaborative product of many experts, professional groups, and 

institutions. To ensure reliability and validity, high quality standards were maintained in 
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the whole process from project planning, assessment design, item development, creation 

of background questionnaires, sampling, test administration, data collection, scoring, data 

analysis, to reporting; besides, comparative validity was assessed for this international 

study (Mullis & Martin, 2008; Mullis et al., 2005a, 2005b, 2008, 2009). One distinct 

feature of TIMSS is that the assessments focus on what students have learned at school. 

TIMSS tests tried to cover an array of topics which align broadly with the mathematics 

and science curricula in the participating countries. Thus, the design of assessments is 

based on the TIMSS curriculum model, which consists of three components: the intended 

curriculum, the implemented curriculum, and the achieved curriculum (Mullis et al., 

2005b, 2009). These broadly-defined curriculums reflect three levels of learning contexts 

and final educational outcomes. The intended curriculum illustrates, at the national 

context, what knowledge and skills students are expected to learn and how the education 

systems facilitate students’ learning. The implemented curriculum addresses, at the 

school and classroom context, what is actually taught and what types of schooling and 

instructions directly affect student learning. The achieved curriculum describes student 

attitudes and what students have learned.   

TIMSS 2007 mathematics assessment for the eighth grade. The mathematics test 

of TIMSS 2007 assessed students’ performance from two dimensions: content dimension 

and cognitive dimension (Mullis et al., 2005b). The content dimension examined the 

mathematical domains and subjects matter at eighth grade. There are four content 

domains: number, algebra, geometry, and data and chance. For each content domain, the 

target percentages of testing time are 30% for number, 30% for algebra, 20% for 

geometry, and 20% for data and chance. The content domains are further classified into 
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several topic areas. Each topic represents a list of objectives required in the mathematics 

curriculum in the majority of participating countries. For example, the algebra content 

domain includes three major topic areas: recognizing patterns and generalizing pattern 

relationships, using and evaluating algebraic expressions, and generating formulas and 

solving linear equations (Mullis et al., 2005b, pp. 26-27). The curricula of the 

participating countries show that the content domains are very consistent (Mullis et al, 

2005a). The content domain scales, as well as the overall mathematics scale, have been 

developed since the first wave of TIMSS in 1995. However, no scales were built for the 

cognitive domains until TIMSS 2003 was administered, while students’ performance in 

the performance expectations relative to cognitive behaviors was reported using an 

average percentage score. 

To meet the growing needs for information about students’ cognitive skills and 

abilities in solving mathematics and science problems, TIMSS experts started to create 

the cognitive domain scales using the mathematics data of TIMSS 2003 (Mullis et al., 

2005a, 2005b). In TIMSS 2007, the cognitive dimension examined students’ abilities to 

know facts, procedures, and concepts, to apply knowledge learned, and to apply intuitive 

and inductive reasoning to solve complex and non-routine problems; that is, there are 

three cognitive domains: knowing, applying, and reasoning. Each domain consists of a 

set of cognitive behaviors or processes involved in responding problems correctly. For 

example, the reasoning domain involves the processing behaviors such as generalizing 

results in more general and more widely applicable terms, synthesizing results to produce 

a further result, justifying a statement, and solving non-routine problems. For each 
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cognitive domain, the target percentages of testing time are 35% for knowing, 40% for 

applying, and 25% for reasoning. 

In the cycle of TIMSS 2007, the mathematics items are well designed to balance 

the assessment for both content and cognitive dimensions. Each domain includes a 

substantial number of items. In total, the test includes 215 items and 238 score points. 

The items were presented in two formats, multiple-choice and constructed-response. Each 

type of item makes up about half of the total score points. Using IRT scaling, the 

psychometric characteristics of each item were evaluated in terms of item difficult and 

discrimination. Then, all mathematics items are assembled into 14 blocks with a good 

balance of assessment domain and item format. Each student completed an assessment 

booklet with two mathematics blocks. To measure the trends in students’ performance, 

only 6 of 14 assessment blocks, for a total of 89 items, have been released into the public 

domain for use in publications, research, and teaching, while the remaining blocks were 

retained securely for the future assessments (Mullis et al., 2005b). In the next cycle of 

TIMSS, new items will be developed to take the released items’ place.  

Research of cognitive constructs of the TIMSS mathematics test. The content 

domains and cognitive domains in the TIMSS mathematics assessment are in line with 

the attributes or sub-skills in the CDM, which indicates that the test experts tried to 

design the assessment based on the idea of cognitive diagnostic assessment. In creating 

scales for the content domains and cognitive domains, the experts conducted a 

comprehensive study to make sure the scales are reliable and valid (Mullis et al., 2005a). 

Although four content domains and three cognitive domains have been generated, as one 

of the most important international assessments, the cognitive structures of the TIMSS 
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mathematics test need to be further explored in order to supply better diagnostic feedback 

for teaching and learning. However, few studies investigated the cognitive constructs in 

the TIMSS mathematics tests.   

 Literature review shows that besides the TIMSS assessment experts, Corter and 

K. K. Tatsuoka (2002) explored the attributes involving in the mathematics test items in 

the TIMSS-Revised 1999 for the eighth-grade. According to the TIMSS-Revised 

assessment framework, the test items were developed based on the content areas and 

performance expectations (behaviors that might be expected of students in school 

mathematics). Corter and K. K. Tatsuoka extended the test framework and identified 27 

attributes for the 163 test items. The attributes were classified into three categories: 

content knowledge attributes, cognitive process attributes, and special skill attributes 

unique to item types. The content knowledge attributes are similar to the content 

domains, while the cognitive process attributes are similar to the topics of the cognitive 

domains in the TIMSS 2007 test framework. Different from the content and cognitive 

domains that are mutually exclusive, there are overlaps among the 27 attributes. Using 

the rule space method with these attributes, K. K. Tatsuoka and her associates compared 

the mathematics sub-skill achievement of eighth-graders from the U.S. Japan, Israel, and 

Singapore or across 20 countries (Birenbaum, C. Tatsuoka, & Xin, 2005; Birenbaum, C. 

Tatsuoka, & Yamada, 2004; K. K. Tatsuoka, Corter, & C. Tatsuoka, 2004); or 

researchers examined students’ attribute mastery profile of the students from Taiwanese 

and Turkish (Y.-H. Chen, 2006; Dogan & K. K. Tatsuoka, 2008). The findings of 

students’ knowledge states from these studies are helpful for providing better remedial 

instructions. 
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As the one of the largest international assessments, the TIMSS assessments play a 

very important role in understanding global students’ perform in mathematics and science 

and then informing better instruction and policies to improve achievement. The reliability 

and validity of the test items are essential in the design of the TIMSS assessments. 

However, studies of the test items using a cognitive diagnostic analysis are relatively 

limited. Thus, this study implemented multiple regression and the LSDM to explore the 

knowledge and sub-skills measured by the TIMSS mathematics assessment and validity 

of the test across assessment booklets.     
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Chapter Two 

Method 

 In this study, construct validity of the item-attribute matrix and the mathematics 

assessment in TIMSS 2007 were explored through a series of diagnostic analyses. The 

data were extracted from the large-scale dataset TIMSS 2007. Over 214,000 eighth-

graders from 50 countries and 7 benchmarking entities of the U.S., Canada, United Arab 

Emirates, and Spain participated in the mathematics assessment. Each student took one of 

the 14 assessment booklets, which included two blocks of mathematics items and two 

blocks of science items in each booklet. In total, there were 14 blocks of mathematics 

items that were assembled rotationally in the 14 booklets. A rotated block design can 

maximize assessment coverage as specified in the assessment framework; also, it ensures 

the assessment generates reliable information about students’ achievement using 

sufficient items while keeping student assessment burden to a minimum (Mullis et al., 

2005b). Because of test security and the reuse of some items for the future waves of 

assessments, only six blocks of mathematics items (M01 to M05 and M07) were released 

to the public for use in publications, research, and teaching. Among them, five blocks of 

items (M01 to M05) were contained in four assessment booklets: Booklets 1 to 4, in 

which no secure items were included. Booklets 2 and 3 include more mathematics items 

than Booklets 1 and 4. So, the present study investigated only the students’ responses to 

the mathematic items in Booklets 2 to 3. As a result, there are two sets of data for the 

analysis. 
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Participants 

To ensure the samples efficiently represented national eighth-grade populations in 

the participating countries, TIMSS implemented a two-stage stratified cluster design 

(Joncas, 2008). The first stage consisted of sampling schools selected using probability 

proportionate to the estimated number of eighth-graders. The second stage consisted of 

sampling intact classrooms within sampled schools using random sampling. However, 

Russia had a preliminary sampling stage—sampling regions before sampling schools 

because of its large population. Singapore also sampled students within sampled 

classrooms. According to the requirement, the sample sizes of all participating countries 

should be more than 4,000 students. Typically, the participating countries sampled 150 

schools and one or two intact classrooms in each school. The participation rates of most 

countries reached acceptable levels: 85% of both the schools and students, or a combined 

rate of 75% (the product of schools’ and students’ participation rates). 

The numbers of students who took Booklets 2 and 3 were 17,717 and 17,769, 

respectively. Only those without missing any mathematics item were included in the 

study. As a result, the current study used the mathematics achievement data of 15,654 

students in Booklet 2 and 15,935 students in Booklet 3. The students’ demographic 

information is shown in Table 1. With respect to the students’ gender, age, and grade, the 

participants who took the two assessment booklets had similar characteristics. On 

average, half of the participants were boys and half were girls. Their average age was 

14.33 years old (SD = .78, range from 9.75 to 18.92 years). More than 96.78% of them 

were eighth-graders, while the remaining 3% were ninth-graders. 
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Table 1 

Characteristics of the Participants 

  Booklet 2 Booklet 3 

Number of Students 15,654 (100%) 15,935 (100%) 

Gender 
Girl 7,909 (50.52%) 7,902 (49.59%) 

Boy 7,745 (49.48%) 8,033 (50.41%) 

Grade 
Grade 8 15,150 (96.78%) 15,424 (96.79%) 

Grade 9 504 (3.22%) 511 (3.21%) 

Age (years) 

Mean 14.33 14.32 

SD 0.78 0.78 

Range 9.83 ~ 18.92 9.75 ~ 18.92 

 

Measures 

 Mathematics test items.  

In total, the present study investigated 49 mathematics items and their attributes. 

Booklets 2 and 3 comprised 31and 33 mathematics items, respectively. Students were 

allowed 45 minutes to complete the mathematics assessment in each booklet (Mullis et al., 

2005b). Table 2 presents the number of items by item type and domain in the two 

booklets. In each assessment booklet, there were two blocks of mathematics items. Using 

a rotated block design, Blocks M02 and M03 were included in Booklet 2, and Blocks 

M03 and M04 in Booklet 3. Each block of items were designed with a balance of item 

difficulty, discrimination, item format, content domain, and cognitive domain (Ruddock 

et al., 2008). Because Item M042304D in Block M04 includes two questions with one 

score per question, it was divided into two items. Thus, there were 49 items for the 

attribute analyses.    

There were two types of items: multiple-choice items and constructed-response 

items. For the multiple-choice items, students needed to select a correct answer from four 
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or five response options. A correct response to a multiple-choice item received one score 

point. For the constructed-response items, students were required to construct a written 

response. A correct response to a constructed-response item received one or two score 

points. Students’ overall mathematics achievement and achievement on the main content 

and cognitive domains were measured using IRT scale scores–plausible values (mean = 

500, standard deviation = 100, ranged from 0 to 1,000). The CDMs were used in the 

present study to analyze binary test items with correct or incorrect responses. Thus, the 

one-score-point items, either multiple choice or constructed response, were automatically 

dichotomously scored. The constructed-response items with two-score-point items were 

dichotomized by treating response with partial credit as incorrect and response with full 

credit as correct.  

 

Table 2 

Number of Items by Booklet 

  Booklet 2 Booklet 3 

Assessment Block M02 & M03 M03 & M04 

Total Number of Items 31 33 

Maximum Score Points 32 35 

Type of Items 
  

Multiple-choice 20 21 

Constructed-response 11 12 

Content Domains 
  

Number 14 16 

Algebra 5 5 

Geometry 7 7 

Data and chance 5 5 

Cognitive Domains 
  

Knowing 12 13 

Applying 15 16 

Reasoning 4 4 
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Table 3 displays the number of items by item type and domain in each assessment 

block. In total, the three assessment blocks (M02, M03, and M04) consisted of 49 items. 

For Block M02, one item (M042273) were excluded because no responses were reported 

to this item. Block M02 included 16 items, nine multiple-choice items and seven 

constructed-response items. Only one constructed-response item had a maximum score of 

two points. All 15 items in Block M03 were one-score-point items, including 11 

multiple-choice items and 4 constructed-response items. Block M04 comprised 18 items, 

10 multiple-choice items and 8 constructed-response items. The maximum score of two 

items was two. For a detailed description of all of the items, please refer to the released 

eighth-grade mathematics items published by the TIMSS and PIRLS International Study 

Center (Foy & Olson, 2009). Two examples of mathematics items are presented in 

Appendix B. 

Students’ mathematics performance was assessed from two dimensions: content 

dimension and cognitive dimension (Mullis et al., 2005b). The mathematics items 

covered four content domains (number, algebra, geometry, and data and chance) and 

three cognitive domains (knowing, applying, and reasoning). According to the report 

about the released items (Foy & Olson, 2009), the number of items that related to each 

domain is exhibited by booklet (Table 2) and by block (Table 3). In each assessment 

booklet, every domain was measured by 4 to 16 items. The items of Blocks M02 and 

M04, which were newly developed for TIMSS 2007, had a better balance of content and 

cognitive domains. These seven domains were treated as the first level of cognitive 

attributes.  
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Table 3 

Number of Items by Assessment Block 

Assessment Block Block M02 Block M03 Block M04 Total 

Number of Items 16 15 18 49 

Maximum Score Points 17 15 20 ─ 

Type of Items 
    

Multiple-choice 9 11 10 30 

Constructed-response 7 4 8 19 

Content Domains 
    

Number 5 9 7 21 

Algebra 5 0 5 10 

Geometry 3 4 3 10 

Data and chance 3 2 3 8 

Cognitive Domains 
    

Knowing 6 6 7 19 

Applying 6 9 7 22 

Reasoning 4 0 4 8 

 

Attributes developed according to the TIMSS assessment framework. 

First, the attributes were constructed with respect to the TIMSS assessment 

domains. Through a series of deeply analyzing 49 test items, the researcher developed 7 

attributes at level one and 20 attributes at level two (see Table 4). 

The seven attributes at level one (a1, a2, a3, and a4—level 1 content attributes 

(contL1); and a5, a6, and a7—level 1 cognitive process attributes (cogL1)) were defined 

with respect to the four content domains (number, algebra, geometry, and data and 

chance) and three cognitive domains (knowing, applying, and reasoning) listed in the 

TIMSS assessment framework (Mullis et al., 2005b, pp. 23-38). Each content domain 

includes several topics that are represented by a list of study objectives. Each cognitive 

domain encompasses a set of expected cognitive processes or behaviors in solving 

mathematics items. 
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 To generate more detailed information about students’ mathematics performance, 

the attributes were further identified at a finer grain size than the first level of attributes. 

There were 8 level 2 content attributes (contL2: b1 to b8) and 12 level 2 cognitive 

process attributes (cogL2: know_a1 to reas_a4). The level 2 content attributes were 

constructed based on the major topic areas. The level 2 cognitive process attributes were 

developed by classifying the three level 1 cognitive process attributes according to the 

four content domains. 

The seven attributes at level one are described below. 

Number (a1): Understand numbers, ways of representing numbers, relationships among 

numbers, and number systems. This domain includes knowledge related to whole 

numbers, integers, fractions, decimals, ratio, proportion, and percent. 

Algebra (a2): Recognize and extend patterns, use algebraic symbols to represent 

mathematical situations, and develop equivalent expressions and solve linear equations. 

This domain comprises three major topic areas: patterns, algebraic expressions, and 

equations/formulas and functions.  

Geometry (a3): Understand the properties and relationships of two and three-dimensional 

geometric figures, use measuring instruments accurately, and select and use formulas for 

perimeters, areas, and volumes. This domain encompasses three geometric areas: 

geometric shapes, geometric measurement, and location and movement. 

Data and Chance (a4): Organize data collected, display data in graphs and charts, 

describe and compare characteristics of data (shape, spread, and central tendency), and 

understand elementary probability. This domain also covers three topic areas: data 

organization and representation, data interpretation, and chance.  
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Knowing (a5): Need to know the mathematical facts and properties, procedures, and 

concepts. This domain embraces six types of cognitive processes: (1) recall definitions, 

terminology, number properties, geometric properties, and notation; (2) recognize 

mathematical objects, shapes, numbers, and expressions; (3) carry out algorithmic 

procedures for add, subtraction, multiplication, and division; (4) retrieve information 

from graphs, tables or other sources, and read simple scales; (5) use measuring 

instruments and units of measurement, and estimate measures; (6) classify/group objects, 

shapes, numbers and expressions according to common properties, and order numbers 

and objects by attributes.  

Applying (a6): Apply mathematical knowledge and conceptual understanding to create 

representations and solve routine problems. This domain contains five types of behaviors: 

(1) select an efficient/appropriate operation, method, or strategy; (2) display 

mathematical information and data in diagrams, tables, charts, or graphs; (3) model the 

problems appropriately with and equation or diagram; (4) follow and execute a set of 

mathematical instructions, or draw figures and shapes; (5) solve routine problems.  

Reasoning (a7): Through logical or systematic thinking, solve multi-steps problems or 

non-routine problems within unfamiliar situations or complex contexts. This domain 

involves five types of behaviors: (1) analyze the information and questions; (2) generalize 

the solving processes in more general and more widely applicable terms; (3) 

synthesize/integrate mathematical knowledge and procedures to establish results and to 

produce a further result; (4) justify a statement by reference to mathematical results or 

properties; (5) solve non-routine problems. 
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Table 4 

Attributes Based on the TIMSS Assessment Framework and Item Type 

  
Content or Cognitive Domains 

(Level 1 Attributes) 

Content Topic or Cognitive Process 

(Level 2 Attributes) 

Content dimension 

(content attributes) 

Number (a1) 
Whole numbers and integers (b1)  

Fractions, decimals, ratio proportion, and percent (b2)  

Algebra (a2) 

Patterns (b3)  

Algebraic expressions and equations/formulas  

functions (b4) 

Geometry (a3) 
Geometric shapes (b5)  

Geometric measurement and location movement (b6) 

Data and chance (a4) 
Data organization and representation (b7)  

Data interpretation and chance (b8) 

Cognitive dimension 

(cognitive process 

attributes) 

Knowing (a5) 

Knowing_a1number (know_a1) 

Knowing_a2algebra (know_a2) 

Knowing_a3geometry (know_a3) 

Knowing_a4data and chance (know_a4) 

Applying (a6) 

Applying_a1number (appl_a1) 

Applying_a2algebra (appl_a2) 

Applying_a3geometry (appl_a3) 

Applying_a4data and chance (appl_a4) 

Reasoning (a7) 

Reasoning_a1number (reas_a1) 

Reasoning_a2algebra (reas_a2) 

Reasoning_a3geometry (reas_a3)  

Reasoning_a4data and chance (reas_a4) 

Comprehensive 

cognitive process 

(Item type—IT 

attributes) 

Multiple steps and/or responses (IT1) 

Complexity (IT2) 

Constructed-response (IT3) 

 

Attributes developed according to item type. 

With the above attributes, some item difficulties were found to be significantly 

different although these items required the same or similar content attributes and 

cognitive process attributes. Then, the researcher identified three types of attributes that 

were related to item type (IT), named the comprehensive cognitive process attributes, or 

the IT attributes (Table 4). These attributes represented more comprehensive cognitive 

processing, which could not be specified according to the TIMSS assessment framework 
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or the following cognitive behaviors defined by the researcher. Specifically, these three 

attributes were: 

Multiple steps and/or responses (IT1): Items involve three or more computing steps, or 

three or more responses.  

Complexity (IT2): Items have relatively complex wording (such as including more 

number of words, “more/less than”, “higher/lower”, and unit conversion), or require 

higher logical reasoning; deal with relatively complex data (such as including more digits 

and relationship of data).  

Constructed-response (IT3): Items are constructed-response items or not.  

The second classification of cognitive process attributes—the new cognitive 

process attributes. 

When specifying the attributes of each item, the researcher found the limitations 

of using the cognitive process attributes based on the TIMSS assessment domains. 

Through further analyzing the procedures required to solve the 49 mathematics items, the 

researcher proposed another classification of the cognitive process attributes. The new 

cognitive process attributes consisted of 4 attributes at level one and 11 attributes at level 

two (Table 5). 

Identifying (c1): Recognize and compare simple numbers, data, and figures. It includes 

two cognitive behaviors: compare the size of numbers and/or order numbers (d1-

comparing numbers); recognize a number, data in plane axis, tables or graphs, and shape 

of a graph/figure (d2-recognizing). 

Computing (or Computational application: c2): Apply basic computational knowledge in 

arithmetic and algebra. This includes three cognitive behaviors: model the problems with 
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arithmetic expressions or algebraic equations according to question descriptions (d3-

formulating); solve computational questions with numbers (d4-computing_number); 

apply algebraic knowledge to solve computational questions (d5-computing_algebra). 

 

Table 5 

The New Cognitive Process Attributes 

Level 1 Attributes Level 2 Attributes 

Identifying (c1) 
Comparing numbers (d1) 

Recognizing (d2) 

Computing (c2) 

Formulating (d3) 

Computing_number (d4) 

Computing_algebra (d5) 

Judging (c3) 

Judging_number (d6) 

Judging_operationRule (d7) 

Judging_geometry (d8) 

Reasoning (c4) 

Reasoning_number (d9) 

Reasoning_algebra (d10) 

Reasoning_geometry (d11)  

 

Judging (or Judgmental application: c3): Need to make judgments in applying 

knowledge in arithmetic, algebra and geometry. It comprises three cognitive behaviors: 

judge the relationship of numbers, such as ratio, “more than”, “times”, “constant speed”, 

data in diagrams (d6-judging_number); judge operation rules in solving arithmetic and 

algebraic equations (d7-judging_operationRule); judge conception, properties, and rules 

in geometry questions (d8-judging_geometry).  

Reasoning (c4): Generalize the solving processes or results with logical or systematic 

thinking. This attribute is the same as the attribute “reasoning” based on the TIMSS 

assessment framework, partially because only a few items involve reasoning. At the 
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second level, according to the reasoning knowledge in number, algebra, or geometry, 

there are three types of reasoning (d9-reasoning_number, d10-reasoning_algebra, and 

d11-reasoning_geometry). There is no the attribute “reasoning in data and chance”, 

which is different from the level 2 reasoning based on the TIMSS assessment framework. 

Procedures for Developing the Attributes and the Q-matrices 

The procedures of developing the attributes and the Q-matrices were exhibited in 

Figure 1. Based on a comprehensive literature review, first, the researcher decided to 

develop an attribute pool according to the TIMSS assessment domains. The four content 

domains and three cognitive domains were used to construct the level 1attributes. The list 

of knowledge topics and cognitive behaviors were used to build the level 2 attributes. 

However, after reviewing each item and the required attributes in Booklets 2 and 3, the 

researcher found that some attributes at level 2 were not related to any item, especially 

the listed cognitive behaviors. Then, the attribute pool was reduced by combining some 

attributes (knowledge topics) and reclassifying the level 1 cognitive process attributes 

with respect to the four content domains. 

Using the proposed attributes, the researcher developed a pilot Q-matrix for the 

49 items and conducted trial analyses based on the linear logistic test model (Fischer, 

1973). This was a time consuming analysis, involving iterative processes. With multiple 

regression, the relationship between the above attributes (content and cognitive process) 

and the item difficulties were investigated for both Booklets 2 and 3. According to the 

LLTM, item difficulty was a linear combination of content and sub-skills; items with 

similar cognitive content and processes should have homogeneous statistical properties 

such as consistent difficulty (Hartz, 2002). The pilot analysis found that a small 
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proportion of the variance in item difficulty was explained by the proposed attributes. 

Also, some items requiring the same content and cognitive process attributes had 

significantly different item difficulties, indicating that other attributes must account for 

the variances in item difficulty. Through closely comparing those items, the researcher 

identified three types of attributes relative to item type: multiple steps and/or responses 

(IT1), complexity (IT2), and constructed-response (IT3). In the opinion of the researcher, 

these attributes are involved in integrated cognitive behaviors, representing more 

comprehensive cognitive processing.  

Through the above analyses, the final attribute pool consisted of 7 level 1 

attributes (4 content and 3 cognitive process), 20 level 2 attributes (8 content and 12 

cognitive process), and 3 comprehensive cognitive process attributes based on item type. 

With these attributes, the relationship between the mathematics items and the required 

attributes were identified to build the Q-matrix of the 49 items. To ensure the Q-matrix 

was reliable, three experts in educational assessment and mathematics teaching were 

invited to develop the Q-matrix, which was approved by the University of Denver’s 

Institutional Review Board (Appendix C).The first expert was a professor in quantitative 

research methods, who had taught course in statistics, psychometrics, and educational 

measurement for about 30 years at graduate level and who had no K-12 teaching 

experience. The second expert had a Ph.D. degree in quantitative research methods; she 

had taught mathematics for Grades 6 to 12 in USA for 27 years. The third expert, with a 

Bachelor degree in elementary education, was a doctoral student in research methods and 

statistics; he had teaching experience for Grades 1 to 5 (including mathematics) in 

Turkey for three years. The three experts and the researcher were from three counties, 
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from whom students participated in the TIMSS assessments. So, the Q-matrices specified 

by the experts and the researcher would show their views of this international 

mathematics test.     

First, the three experts independently specified the Q-matrix according to the 

descriptions of the proposed attributes. Comparing their Q-matrices to the researcher’s 

matrix, the researcher found that the agreement was very low. Among the 49 items, the 

numbers of the items with the same attributes specified by the three experts as those by 

the researcher were: 15, 11, and 2, respectively for the three experts. Then, the researcher 

discussed the discrepancies with the experts separately. The first expert revised her Q-

matrix after reviewing the different attribute entries and the number of agreed items 

became 21. Later, we discussed each of the 28 items with different attributes; the number 

of items with agreed-upon attributes reached to 42 items. The only difference was those 

items with the attributes “complexity” (IT2). She thought that all test items were simple 

and there were no complex items. However, the other two experts had different opinions 

about “complexity” based on their teaching experience for children in elementary and 

middle school.  

In the panel discussion with these two experts, the researcher found that (1) they 

were more likely to agree with each other, while the first expert and the researcher (both 

with teaching experience in college/university) had similar opinions about the required 

attributes; also, they likely identified more attributes required by the test items; (2) the 

students’ background in the U.S. class was more diverse and differences in students’ 

mathematical ability were relatively bigger than for Turkish students and for Chinese 

students, which would result in different cognitive behaviors in solving mathematics 
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items and different teaching approaches; (3) different study and curriculum requirements 

existed among the participating countries. All of these led to our different opinions on the 

relationship between the items and measured attributes and the difficulty in developing 

the Q-matrices. Cumulatively, we took about six hours to discuss and debate each item 

until agreement was reached. However, we still could not agree on two entries of the Q-

matrices, which were decided using a multiple regression analysis. The final Q-matrix of 

the 49 items based on the TIMSS assessment framework is shown in Appendix D. 

The classification of mathematics content is very stable and widely accepted. 

However, no commonly recognized attributes for cognitive processing exist. Thus, the 

cognitive process attributes are more difficult to identify. When specifying the attributes 

for each item, the researcher found limitations in using the cognitive process attributes 

(knowing, applying, and reasoning) based on the TIMSS assessment framework. First, at 

the first attribute level, all items required the attribute “knowing”. A student must master 

“knowing” attributes to implement “applying” and “reasoning” attributes. This indicates 

that the attribute “knowing” cannot be used to discriminate the items and the students’ 

ability. Second, at the second attribute level, the four knowing attributes (know_a1 to 

know_a4) are identical to the four level 1 content attributes (a1 to a4). As a result, there 

are actually only two types of cognitive process attributes (applying and reasoning). So, 

the researcher reclassified the cognitive process attributes (4 level 1 attributes and 11 

level 2 attributes) based on the procedures required to solve the 49 mathematics items; 

also, the researcher referred to the classification of mathematical attributes identified by 

K. K. Tatsuoka, Corter, and C. Tatsuoka (2004). The Q-matrix with the new cognitive 

process attributes is reported in Appendix E. 
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To validate the Q-matrices, a random Q-matrix was generated for each specified 

Q-matrix using the Matlab package (MathWorks, 2005). To avoid random Q-matrices 

were totally artificial, the entries of the Q-matrices specified by the experts and 

researcher were randomly reordered by the type and level of attributes for each booklet. 

Specifically, first, an identified Q-matrix was divided into several blocks, such as QM-

content L1 (except for a1; or QM-knowing, except for know_a1), QM-content L2 (except 

for b1), QM-applying, QM-reasoning, and QM-item type. With respect to the new 

cognitive process attributes, the Q-matrix were separated into four blocks—identifying, 

computing, judging, and reasoning. Then, each block of Q-matrix was randomly 

reordered with the Matlab program. Because the majority of items required the attributes 

“number” (a1 or know_a1) and “whole number or integer” (b1), these three columns 

were randomly ordered separately. The attribute “knowing” (a5) was still required by all 

items. Appendices F and G show the random Q-matrices according to the attributes based 

on the TIMSS assessment framework and item type for Booklets 2 and 3, respectively. 

The random Q-matrices according to the new cognitive process attributes for the two 

booklets are displayed in Appendices H and I. Thus, for each booklet, there were two 

specified Q-matrices and two random Q-matrices. 

Then, the eight Q-matrices of both booklets were validated through eight Q-

matrix models: QM1 ~ QM8. Each Q-matrix model was cross-validated using two 

methods: multiple regression and the LSDM. Based on the analysis results, the attributes 

and the specified Q-matrices were further refined. Some attributes were redefined, 

combined, or deleted. The Q-matrices were re-examined and revised. The Q-matrix 

models were simplified or remodeled. Finally, the revised Q-matrices were further 

assessed with eleven Q-matrix models: QM1 ~ QM11.     
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Figure 1. Procedures for developing the Q-matrices and validating the Q-matrices.  
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Generated an attribute pool based on TIMSS assessments domains 

Reduced the attribute pool through reviewing the items and the covered attributes 

Generated a pilot 

Q-matrix 

Conducted pilot analysis of the attributes and item difficulties 

Grouped and compared the items with the same or similar 

attributes; identified attributes based on item type 

Generated two levels of attributes in content and cognitive process, and three 

attributes in comprehensive cognitive process (item type) 

Discuss the discrepancies between the four Q-matrices through face-to-face talks; 

           Used a multiple regression analysis to solve the unsettled disagreements 

Generated the final Q-matrix for the 49 items 

The researcher’s 

Q-matrix 

 

First expert’s  

Q-matrix 

 

Third expert’s 

Q-matrix 

 

Second expert’s 

Q-matrix 

 

Generated a random 

Q-matrix (1) Generated the new cognitive 

process attributes and the 2nd 

Q-matrix 

 
11 Q-matrix models: QM1~QM11 

  QM3: contL1 + cogL1 + IT 

  QM5: contL1 + cogL2 + IT 

  QM8: contL2 + cogL2 + IT 

Using multiple regression, 

analyzed the relationship of 

Q-matrix and item difficulty 

Using LSDM, analyzed LSD, 

attributes’ probabilities, and 

ICC recovery 

Generated a random 

Q-matrix (2) 

Results for two booklets:  

1. Validate the Q-matrices within each booklet 

    −Compare the Q-matrix models with different levels of attributes (14 × 2 × 2 + 10 models) 

    −Compare the specified Q-matrices to the random Q-matrices (8 × 2 × 2 models) 

    −Compare the TIMSS Q-matrices to the 2nd Q-matrices (6 × 2 × 2 + 10 models) 

2. Validate the test item construction across booklets  

    −Compare results of Booklet 2 to Booklet 3 (15 × 2 × 2 models) 

    −Compare the common items of Block M03 in two booklets (2 × 2 models) 

Reanalyzed the operation 

procedures of all items 
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Analysis 

The validation of the item-attribute matrix and validity of the TIMSS mathematics 

test were explored through a series of comparison studies using a multiple regression 

model and the least squares distance method (Dimitrov, 2007). The framework of 

validating the Q-matrices was displayed in Figure 1. Before the validation analyses, the 

mathematics test parameters (item difficulty and person ability range) were computed 

using an appropriate item-calibration model—the Rasch model with the Winsteps 

program (Linacre, 2013). 

Models of the Q-matrix. 

As described above, there existed three types of attributes: content/knowledge 

(two levels, based on TIMSS assessment framework), cognitive process (two levels, 

based on the TIMSS assessment framework or hypothesized cognitive procedures), and 

comprehensive cognitive process (one level, based on item type). The different 

combinations of the content attributes and the cognitive process attributes were explored 

to search an adequate group of attributes that can effectively explain the item difficulty 

and recover the correct item probability. The three types of attributes were added step by 

step. As a result, there were eight analysis models of the Q-matrix: QM1 ~ QM8 (Table 

6).  

First, QM1 ~ QM3 investigated the combination of the content and cognitive 

process attributes at level one. QM1 included only the level 1 content attributes (contL1: 

a1 ~ a4). Following this, the level 1 cognitive process attributes (cogL1: a6 and a7) were 

added in QM2; and then, the IT attributes (IT: IT1 ~ IT3) were added in QM3. Second, 

QM4 ~ QM5 investigated the combination of the level 1 content attributes and the level 2 
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cognitive process attributes. Based on QM1, some of the level 2 cognitive process 

attributes (cogL2: appl_a1/a2/a3/a4 and reas_a1/a2/a3/a4) were included in QM4; and the 

IT attributes were contained in QM5. Third, QM6 ~ QM8 examined the combination of 

the content and cognitive process attributes at level two. QM6 contain only the level 2 

content attributes (contL2: b1 ~ b8); and then, the eight level 2 cognitive process 

attributes were added in QM7, and the IT attributes were added in QM8. The attributes 

“a5-knowing” had four sub-attributes (know_a1 ~ know_a4), which were equal to the 

four content attributes at level one (a1 ~ a4), respectively. Thus, to avoid overlap among 

the attributes, a5 was not included in QM2 and QM3. Also, because a5 was required by 

all 49 items, it could not account for any variance in item difficulty, and a5 was excluded 

from the analysis using multiple regression. Because in the Q-matrix, the elements of 

“know_a1” to “know_a4” were the same as those of a1 to a4, respectively, the model 

QM4 (contL1 +cogL2: a1 ~ a4, appl_a1/a2/a3/a4, and reas_a1/a2/a3/a4) was actually 

equal to “all cogL2” (including know_a1/a2/a3/a4, appl_a1/a2/a3/a4, and 

reas_a1/a2/a3/a4).  

 

Table 6 

Models of the Q-matrix 

Model Attributes 

QM1 contL1 

QM2 contL1 + cogL1 

QM3 contL1 + cogL1 + IT 

QM4 contL1 + cogL2 

QM5 contL1 + cogL2 + IT  

QM6 contL2 

QM7 contL2 + cogL2 

QM8 contL2 + cogL2 + IT 

Notes: contL1—Level 1 content attributes (a1 ~ a4); contL2—Level 2 content attributes (b1 ~ b8); 

cogL1— Level 1 cognitive process attributes (a6 and a7); cogL2— Level 2 cognitive process attributes 

(appl_a1/a2/a3/a4 and reas_a1/a2/a3/a4); IT—the complex cognitive process attributes (IT1 ~ IT3). 
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Also, these eight analysis models were compared to the corresponding random Q-

matrices. The results from the random Q-matrices provided a baseline for interpretation 

of analysis results for the specified Q-matrices. Better parameter estimates were expected 

from the non-randomly generated Q-matrices than those from the random Q-matrices. 

Specifically, the attributes of the randomly generated Q-matrices were hypothesized to be 

less useful in explaining differences in item difficulties and a larger average least squares 

distance (LSD) was expected to be found. The attribute probability curves (APCs) would 

more likely exhibit non-logical patterns.  

 There were two types of cognitive process attributes: one based on the TIMSS 

assessment framework (knowing, applying, and reasoning—called the TIMSS cognitive 

process attributes, or the TIMSS process attributes) and one based on hypothesized 

cognitive procedures (identifying, computing, judging, and reasoning—called the new 

cognitive process attributes, or the new process attributes). The Q-matrix totally based 

on the attributes from the TIMSS assessment framework (called the TIMSS Q-matrix: 

TIMSS content attributes + TIMSS process attributes + IT attributes) was compared to 

the refined Q-matrix with the new process attributes (called the 2
nd

 Q-matrix: TIMSS 

content attributes + new process attributes + IT attributes) using the analysis models 

shown in Table 6. This analysis examined whether the 2
nd

 Q-matrix provided a better 

explanation of the mathematics items. In addition, each model of the 2
nd

 Q-matrix was 

compared to the relative random Q-matrices.    

Booklets 2 and 3 contained a common assessment Block M03. The construct 

validity of the TIMSS mathematics assessment was cross-validated by comparing all 

results of Booklet 2 to those of Booklet 3. Specifically, the eight analysis models of the 
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TIMSS Q-matrix of the two booklets were contrasted. Then, the eight analysis models of 

the 2
nd

 Q-matrix for the two booklets were compared. Moreover, the recovered item 

probabilities of the 15 common items in Block M03 were exanimated individually. 

Similar results were expected from the multiple regression analyses and the LSDM 

analyses. If substantially different results were found between Booklets 2 and 3, it 

indicated that the items of the two booklets were not equally well explained by the 

proposed attributes and Q-matrices, or the students might apply different cognitive 

strategies.  

Analysis steps. 

For each model of the Q-matrix, the relationship between the attributes and item 

difficulties was tested using a multiple regression model; the item probabilities recovered 

by the attribute probabilities were examined with the LSDM. The analysis procedures 

were as follows.  

First, the relationship between the attributes and item difficulties was investigated 

based on the conception of Fischer’s LLTM (1973)—item difficulty is a linear 

combination of the component subtasks with the Q-matrix as the weight of attributes for 

items. Using a multiple regression model, the variance in item difficulty explained by 

each Q-matrix was analyzed using SPSS. If a higher variance (R
2
) in item difficulty can 

be explained by the identified attributes of a Q-matrix, it indicates that the regression line 

fits the data better and the specified Q-matrix is more reliable. The researcher expected 

that most of the variance in item difficulty (e.g. over 70%) can be accounted for by the 

attributes in the specified Q-matrices, while less variance in item difficulty would be 

explained by the attributes in the randomly generated Q-matrices. The adjusted R
2
 was 
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also reported, which penalizes the variance value when extra variables were added. If the 

adjusted R
2
 increases, it suggests that the added attributes improve the regression model 

(Wikipedia, 2013). 

 Following this, each model of the Q-matrix was contrasted using the LSDM with 

the MATLAB program (MathWorks, 2005). First, a set of fixed ability levels were 

selected based on the parameters generated by Winsteps (Linacre, 2013). The 

probabilities of correct response to each item (item probability, Pij) were calculated at 

selected ability levels (θi) with the Rasch model.  

 Second, through minimizing the Euclidean norm of the vector ||QX − L|| (see 

Equations 3 and 4), the probability of correct performance on every attribute (attribute 

probability, P(αk =1| θi)) was estimated. The attribute probability curves across all ability 

levels were analyzed. Also, the average least squares distance was computed across items 

and ability levels. The validity of the Q-matrix was supported if (1) the values of the 

LSDs decreased monotonically in a relatively small range, and (2) the APCs displayed 

logical and substantively meaningful patterns in terms of monotonicity, relative difficulty, 

and discrimination, that is,   

(a) the APCs would increase with the increase of the underlying verbal 

ability; (b) the relative difficulty of the attributes would make substantive 

sense; and (c) more difficult attributes would discriminate better among 

high-ability examinees and, conversely, relatively easy attributes would 

discriminate better at low ability levels. (Dimitrov, 2007, p. 373) 

Third, based on a series of analyses using multiple regression and the LSDM, 

both the TIMSS Q-matrix and the 2
nd

 Q-matrix were revised. With respect to the problem 
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attributes and results, some attributes were re-defined, classified, or deleted. All elements 

of the Q-matrices were re-examined. In addition, the final analysis models of the Q-

matrix were decided, with some models re-specified.  

Fourth, the revised Q-matrices were further tested using multiple regression and the 

LSDM. The Q-matrix models with reasonable results were used to investigate the ICC 

recovery with the LSDM. The probability of correct response to each item was recovered 

by the product of the attribute probabilities estimated by the LSDM. The recovered ICC 

was compared to the corresponding ICC estimated by the Rasch model. The mean 

absolute difference (MAD) between the two ICCs was examined across ability levels for 

each item. A small MAD suggests that the attributes of a Q-matrix explain the test items 

well. Dimitrov (2007) provided the standards for evaluating the recovery degree: “(a) 

very good (0.00 ≤ MAD < 0.02), (b) good (0.02 ≤ MAD < 0.05), (c) somewhat good 

(0.05 ≤ MAD < 0.10), (d) somewhat poor (0.10 ≤ MAD < 0.15), (e) poor (0.15 ≤ MAD < 

0.20), and (f) very poor (MAD ≥ 0.20)” (p. 373). These standards were implemented in 

the present study.  
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Chapter Three 

Results 

Data Calibration with the Rasch Model 

The data of students’ response to each mathematics item were calibrated using the 

Rasch model for each Booklet. The results generated by Winsteps show that overall, the 

data of two assessment booklets fit the Rasch model well. For Booklet 2, both the mean 

square infit and the mean square outfit were 1.01, and the relative standardized fit 

estimates were 0.0. The person separation reliability was .88. The person logit positions 

ranged from -5.07 to 5.16. For the 31 test items, the item difficulties ranged from -1.95 to 

2.17; the mean square infit estimates were in the .81 to 1.20 range, which suggests that 

the item fit was acceptable (Linacre, 2013). For Booklet 3, the mean square infit was 1.00 

and the mean square outfit was 1.02; both infit and outfit standardized fit estimates were 

0.0. The person separation reliability was .89. The logit person ability ranged from -5.23 

to 5.19. For the 33 mathematics items, the item difficulties ranged from -2.45 to 2.16; the 

mean square infit estimates were in the range of .79 to 1.24.  

Both Booklets 2 and 3 included 15 items of the assessment block M03.  The same 

items had somewhat different item difficulties in the two booklets (Table 7). The average 

difficulty difference of the 15 items was .40. Although overall, the difference of item 

difficulty was not significant based on a t-test, the largest difference was .86 logits.    
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Table 7 

Item Difficulty of the Mathematics Items 

No. Block 
   Block 

   Seq 
     Item ID 

Item Difficulty Difference in  

 Item Difficulty 

(id1-id2) 
Booklet 2 

(id1) 

Booklet 3 

(id2) 

  

  

1 M02 1 M042003 -0.69       

2 M02 2 M042079 -1.18       

3 M02 3 M042018 0.76       

4 M02 4 M042055 0.13       

5 M02 5 M042039 0.19       

6 M02 6 M042199 -0.76       

7 M02 07A M042301A -0.11       

8 M02 07B M042301B 1.08       

9 M02 07C M042301C 2.17       

10 M02 8 M042263 1.85       

11 M02 9 M042265 0.14       

12 M02 10 M042137 0.23       

13 M02 11 M042148 -0.98       

14 M02 12 M042254 -1.95       

15 M02 13 M042250 -1.07       

16 M02 14 M042220 0.99       

17 M03 1 M022097 -0.42 -0.48   0.06 

18 M03 2 M022101 -0.69 -1.07   0.38 

19 M03 3 M022104 -0.62 -0.89   0.27 

20 M03 4 M022105 0.63 0.27   0.36 

21 M03 5 M022106 1.11 1.11   0.00 

22 M03 6 M022108 -0.20 -0.50   0.30 

23 M03 7 M022110 -0.62 -0.89   0.27 

24 M03 8 M022181 -1.18 -1.98   0.80 

25 M03 9 M032307 1.93 1.55   0.38 

26 M03 10 M032523 1.24 0.98   0.26 

27 M03 11 M032701 -1.59 -2.45   0.86 

28 M03 12 M032704 -0.49 -1.13   0.64 

29 M03 13 M032525 -0.16 -0.57   0.41 

30 M03 14 M032579 -0.51 -0.88   0.37 

31 M03 15 M032691 0.80 0.20   0.60 

32 M04 1 M042001   -1.34     

33 M04 2 M042022   -0.10     

34 M04 3 M042082   0.51     

35 M04 4 M042088   -0.43     

36 M04 05A M042304A   -0.92     

37 M04 05B M042304B   2.16     

38 M04 05C M042304C   1.29     

39 M04 05D-1 M042304D-1   0.28     

40 M04 05D-2 M042304D-2   0.19     

41 M04 6 M042267   0.54     

42 M04 7 M042239   1.22     

43 M04 8 M042238   0.80     

44 M04 9 M042279   -0.35     

45 M04 10 M042036   0.69     

46 M04 11 M042130   -0.16     

47 M04 12A M042303A   0.50     

48 M04 12B M042303B   1.72     

49 M04 13 M042222   0.12     
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The TIMSS Q-Matrix with the Attributes Based on the TIMSS Assessment 

Framework and Item Type 

 The final Q-matrix of the 49 items specified by the three experts and the 

researcher is shown in Appendix D, named the TIMSS Q-matrix (TIMSS content 

attributes + TIMSS process attributes + IT attributes). The total number of items relative 

to each attribute is reported.  

For the level one attributes, the four content attributes were required by from 6 to 

28 items of Booklet 2 and by from 6 to 29 items of Booklet 3. A majority of the items (28 

items in Booklet 2 and 29 items in Booklet 3) measured the attribute “number.” In 

Booklet 2, each item required 1 to 3 content attributes, on average 1.58 attributes per item. 

In Booklet 3, each item required 1 to 3 content attributes, on average 1.61 attributes per 

item. Most items (20 items in Booklet 2 and 22 items in Booklet 3) measured the 

cognitive process attribute “a6-applying.” Only four items in each booklet required the 

attribute “a7-reasoning.” On average, each item required .77 of the attributes a6 and a7.  

For the level two attributes and Booklet 2, the eight content attributes (b1 ~ b8) 

were required by from 2 to 28 items. Except for one item requiring 4 attributes, each item 

required 1 to 3 content attributes, on average 2.16 attributes per item. The four “applying” 

attributes (appl_a1 ~ appl_a4) were specified for 3 to 14 items. Three items required the 

attribute “reasoning_a2algebra”. One item required the attribute “reasoning_a3geometry.” 

No item needed the attributes “reasoning_a1number” and “reasoning_a4data and chance.” 

On average, each item required .90 of the six applying and reasoning attributes.  

For the level two attributes and Booklet 3, no item involved the level two 

attributes “b3-pattern” and “reasoning_a2algebra.” The other seven content attributes (b1, 
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b2, b4 ~ b8) were required by from 3 to 29 items. Each item required 1 to 4 content 

attributes, on average 2.18 attributes per item. Two to 17 items required the four 

“applying” attributes. The number of items relative to the attributes “reas_a1”, “reas_a3”, 

and “reas_a4” were 2, 2, and 1, respectively. On average, each item was related to one of 

the six applying and reasoning attributes.   

There was only one level of complex cognitive process attributes based on item 

type (IT1-multiple steps and/or responses, IT2-complexity, and IT3-constructed-

response). For Booklet 2, the three attributes were required by 4, 5, and 11 items, 

respectively. On average, each item of Booklet 2 was identified with .65 attributes. For 

Booklet 3, the three attributes were specified to 9, 8, and 12 items, respectively. On 

average, each item contained .88 attributes.  

The Q-matrix was validated with eight models displayed in Table 8. The three 

types of attributes (content, cognitive process, IT) were added step by step to examine the 

effect of attributes at different levels. 

 

Table 8 

Models of the Q-matrix Based on the TIMSS Assessment Framework and Item Type 

Model Attributes 
# of Attributes 

Booklet 2 Booklet 3 

QM1 contL1 4 4 

QM2 contL1 + cogL1 6 6 

QM3 contL1 + cogL1 + IT 9 9 

QM4 contL1 + cogL2 10 (9) 11 

QM5 contL1 + cogL2 + IT 13 (12) 14 

QM6 contL2 8 7 

QM7 contL2 + cogL2 14 (13) 14 (13) 

QM8 contL2 + cogL2 + IT 17 (16) 17 (16) 

Note: The numbers in parentheses are the numbers of attributes included in the analyses of the 

specified Q-matrix models. 
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 The Specified Q-matrix and item difficulty. 

 The relationship between the specified Q-matrix and item difficulty was examined 

through a series of multiple regression models. Tables 9 to 11 report the results of 

Booklet 2 regression analyses. Tables 12 to 14 show the results of Booklet 3 regression 

analyses. To compare the items of the two booklets, the summarized results for both 

booklets are displayed in Table 15.  

Booklet 2. QM1 ~ QM3 were computed for the Q-matrices with the attributes at 

level one (Table 9). The variance in item difficulty explained by QM1 with the four 

content attributes (a1 ~ a4) was .20 (adjusted R
2
 = .08). When two cognitive process 

attributes (a6 and a7) were added, the variance in item difficulty explained by QM2 was 

as twice as that in QM1 (R
2
 = .45, adjusted R

2
 = .31, R

2
 change = .25). In QM3, when the 

IT attributes (IT1 ~ IT3) were included, most variance in item difficulty was explained by 

the Q-matrix (R
2
 = .78, adjusted R

2
 = .68, R

2
 change = .33). 

 

Table 9 

Results of Multiple Regression of QM1 ~ QM3 for Booklet 2 

Model Attributes 
# of 

Attributes 
R R

2
 

Adjusted 
R

2
 

Change Statistics 

R
2
 

Change 
F 

Change 
df1 df2 p 

QM1 contL1 4 .45 .20 .08 .20 1.67 4 26 .186 

QM2 contL1+cogL1 6 .67 .45 .31 .25 5.38 2 24 .012 

QM3 contL1+cogL1+IT 9 .88 .78 .68 .33 10.36 3 21 .000 

 

QM4 ~ QM5 investigated the combination of the content attributes at level one 

and the cognitive process attributes at level two (Table 10). When the six cognitive 

process attributes (appl_a1/a2/a3/a4 and reas_a2/a3) were added to QM1, the Q-matrix—

QM4 accounted for 51% of the variance in item difficulty (adjusted R
2
 = .30, R

2
 change 
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= .31). When the three IT attributes were contained, QM5 explained 79% of the variance 

in item difficulty (adjusted R
2
 = .65, R

2
 change = .28). Because of collinearity, the 

cognitive process attribute “applying_a2algebra” was excluded from the regression 

analyses in QM4 and QM5. 

 

Table 10 

Results of Multiple Regression of QM4 and QM5 for Booklet 2 

Model Attributes 
# of 

Attributes 
R R

2
 

Adjusted 
R

2
 

Change Statistics 

R
2
 

Change 
F 

Change 
df1 df2 p 

QM4 contL1+cogL2 9 .71 .51 .30 .31 2.62 5 21 .054 

QM5 contL1+cogL2+IT 12 .89 .79 .65 .28 8.14 3 18 .001 

 

QM6 ~ QM8 were computed for the Q-matrices with the attributes at level two 

(Table 11). The Q-matrix of the eight content attributes (b1 ~ b8) accounted for 31% 

variance in item difficulty (adjusted R
2
 = .06). In QM7, when the six cognitive process 

attributes were comprised, the Q-matrix took 52% of the variance in item difficulty 

(adjusted R
2
 = .16, R

2
 change = .21). In QM8, when the three IT attributes were 

encompassed, the variance in item difficulty explained by the Q-matrix 

(contL2+cogL2+IT) increased to .86 (adjusted R
2
 = .70, R

2
 change = .34). Because of 

collinearity, the attribute “applying_a2algebra” was excluded from QM7 and QM8. 

 

Table 11 

Results of Multiple Regression of QM6 ~ QM8 for Booklet 2 

Model Attributes 
# of 

Attributes 
R R

2
 

Adjusted 
R

2
 

Change Statistics 

R
2
 

Change 
F 

Change 
df1 df2 p 

QM6 contL2 8 .56 .31 .06 .31 1.24 8 22 .325 

QM7 contL2+cogL2 13 .72 .52 .16 .21 1.53 5 17 .234 

QM8 contL2+cogL2+IT 16 .93 .86 .70 .34 11.18 3 14 .001 
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Booklet 3. The variances in item difficulty explained by QM1 and QM2 were 

very small (R
2
 = .11, adjusted R

2
 = -.02 by QM1, and R

2
 = .19, adjusted R

2
 = .002, R

2
 

change = .08 by QM2: Table 12). The increase of adjusted R
2
 in QM2 indicated that 

inclusion of the cognitive process attributes improves the regression model. However, an 

adjusted R
2
 of close to 0.0 suggested that the proposed Q-matrices did not predict item 

difficulty well. In QM3, adding the IT attributes significantly increased the explained 

variance, R
2
 = .57, adjusted R

2
 = .40, R

2
 change = .38.  

 

Table 12 

Results of Multiple Regression of QM1 ~ QM3 for Booklet 3 

Model Attributes 
# of 

Attributes 
R R

2
 

Adjusted 
R

2
 

Change Statistics 

R
2
 

Change 
F 

Change 
df1 df2 p 

QM1 contL1 4 .33 .11 -.02 .11 .87 4 28 .496 

QM2 contL1+cogL1 6 .44 .19 .002 .08 1.27 2 26 .298 

QM3 contL1+cogL1+IT 9 .76 .57 .40 .38 6.84 3 23 .002 

 

Table 13 

Results of Multiple Regression of QM4 and QM5 for Booklet 3 

Model Attributes 
# of 

Attributes 
R R

2
 

Adjusted 
R

2
 

Change Statistics 

R
2
 

Change 
F 

Change 
df1 df2 p 

QM4 contL1+cogL2 11 .52 .27 -.11 .16 .65 7 21 .711 

QM5 contL1+cogL2+IT 14 .83 .68 .44 .41 7.85 3 18 .001 

  

Results of QM4 and QM5 are reported in Table 13. In QM4 when the cognitive 

process attributes at level two (cogL2) were added to the content attributes at level one, 

the explained R
2 

value increased  to .27, but the adjusted R
2
 reduced to -.11, indicating 

that adding “cogL2” to the Q-matrix did not improve the regression model after 
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penalizing for the number of predictors—the attributes. In QM5, when the IT attributes 

were included, the R
2
 increased to .68, adjusted R

2
 = .44, R

2
 change = .41.  

Similar results as QM4 and QM5 were found for QM6 ~ QM8 (Table 14). The 

explained variances in item difficulty were .14 (adjusted R
2
 = -.10) by QM6, .30 (adjusted 

R
2
 = -.19, R

2
 change = .15, R

2
 change = .15) by QM7, .71 (adjusted R

2
 = .41, R

2
 change 

= .41) by QM8. The decrease of adjusted R
2
 in QM7, compared to that of QM8, referred 

that the added attributes did not enhance the regression model. The attribute 

“applying_a4data and chance” was excluded from the regression models in QM7 and 

QM8 because of collinearity—the attributes “applying_a4” and “b7-data organization 

and representation” were specified to the same items.  

 

Table 14 

Results of Multiple Regression of QM6 ~ QM8 for Booklet 3 

Model Attributes 
# of 

Attributes 
R R

2
 

Adjusted 
R

2
 

Change Statistics 

R
2
 

Change 
F 

Change 
df1 df2 p 

QM6 contL2 7 .38 .14 -.10 .14 .59 7 25 .758 

QM7 contL2+cogL2 13 .54 .30 -.19 .15 .70 6 19 .657 

QM8 contL2+cogL2+IT 16 .84 .71 .41 .41 7.49 3 16 .002 

 

 Comparing Booklet 2 to Booklet 3. Table 15 provides a summary of the analysis 

results of the eight Q-matrix models for both Booklets 2 and 3. For both booklets, the 

content attributes accounted for a small proportion of the variance in item difficulty (20% 

or less at level one, or 31% or less at level two), while the cognitive process attributes 

and the IT attributes explained much more variance in item difficulty than the content 

attributes. Overall, the effect of the IT attributes on the item difficulty was larger than 

other two types of attributes. Inclusion of the IT attributes resulted in an average increase 
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of 30% or 40% in the R
2
 values for Booklets 2 and 3, respectively. QM8, which included 

the level 2 attributes, accounted for most of the variance in item difficulty, .86 for 

Booklet 2 and .71 for Booklet 3.  

 

Table 15 

Comparison of the Variances in Item Difficulty Explained by the Q-Matrices of Booklets 

2 and 3 

Model Attributes 

Booklet 2   Booklet 3 

# of 
Attributes 

R
2
 

Adjusted 
R

2
 

 # of 
Attributes 

R
2
 

Adjusted 
R

2
   

QM1 contL1 4 .20 .08   4 .11 -.02 

QM2 contL1+cogL1 6 .45 .31 
 

6 .19 .002 

QM3 contL1+cogL1+IT 9 .78 .68 
 

9 .57 .40 

QM4 contL1+cogL2 9 .51 .30 
 

11 .27 -.11 

QM5 contL1+cogL2+IT 12 .79 .65 
 

14 .68 .44 

QM6 contL2 8 .31 .06 
 

7 .14 -.10 

QM7 contL2+cogL2 13 .52 .16 
 

13 .30 -.19 

QM8 contL2+cogL2+IT 16 .86 .70   16 .71 .41 

Note: The bolded numbers indicate less variance explained by a model compared to that in its 

based model. 
 

Compared to Booklet 2, Booklet 3 was found to have less of the variance in item 

difficulty explained by the proposed Q-matrices. All predicted variance values of Booklet 

3 were less than the corresponding explained variances of Booklet 2, especially for the 

five Q-matrices without the IT attributes. On average, the variance in item difficulty of 

Booklet 3 explained by the Q-matrices without the IT attributes was only half of the 

explained variance for Booklet 2; the adjusted R
2
 values were zero or negative. For 

Booklet 3, inclusion of the IT attributes greatly improved the regression model; and most 

of the variance in item difficulty was explained by the proposed Q-matrices, R
2
 = 57% ~ 

71%), which, however, were less than those explained variance of Booklet 2, R
2
 = 78% ~ 
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86%. The adjusted R
2
 estimates of Booklet 3 were 40% ~ 44%, while the adjusted R

2
 

estimates of Booklet 2 were 65% ~ 70%. In sum, the results indicated that the proposed 

Q-matrices did not account for the item difficulties of Booklet 3 as well as the Q-matrices 

for the item difficulties of Booklet 2.  

 The random Q-matrix and item difficulty. 

 The random Q-matrices for Booklets 2 and 3 (Appendices F and H) were 

generated using the Matlab package. The elements of the random Q-matrices were 

balanced by each category of attributes at the two levels through randomly reordering the 

specified Q-matrices of the two booklets. Thus, the number of attributes in each random 

booklet was the same as that in each specified booklet. The total numbers of 0’s and 1’s 

in the random Q-matrices were equal to the numbers of the relative entries in the 

specified Q-matrices. The random Q-matrices served as a baseline to validate the Q-

matrices. 

Booklet 2. Table 16 displays the variances in item difficulty explained by the 

random Q-matrix and the specified Q-matrix for Booklet 2. The results of the eight Q-

matrix models showed that, as expected, all of the variances explained by the random Q-

matrices were smaller than those explained by the specified Q-matrices, especially the 

adjusted R
2
 estimates. The findings indicated that the specified Q-matrix provided a 

stronger explanation of item difficulties than the random Q-matrix. 

The variances in item difficulty explained by the three random Q-matrices with 

the level 1 attributes were .14 (adjusted R
2
 = .01) by QM1, .17 (adjusted R

2
 = -.04) by 

QM2, and .36 (adjusted R
2
 = .09) by QM3. QM4 and QM5 account for .34 (adjusted R

2
 

= .01) and .51 (adjusted R
2
 = .13) of the variance in item difficulty, respectively. For the 



 

 

88 

 

Q-matrices with the level 2 attributes, the explained variances in item difficulty were .25 

(adjusted R
2
 = -.02) by QM6, .50 (adjusted R

2
 = .07) by QM7, and .63 (adjusted R

2
 = .16) 

by QM8. 

 

Table 16 

Variances in Item Difficulty Explained by the Specified and Random Q-Matrices (Booklet 2) 

Model Attributes 

Booklet 2: Specified QM   Booklet 2: Random QM 

# of 
Attributes 

R
2
 

Adjusted 
R

2
 

 # of 
Attributes 

R
2
 

Adjusted 
R

2
   

QM1 contL1 4 .20 .08   4 .14 .01 

QM2 contL1+cogL1 6 .45 .31 
 

6 .17 -.04 

QM3 contL1+cogL1+IT 9 .78 .68 
 

9 .36 .09 

QM4 contL1+cogL2 9 .51 .30 
 

10 .34 .01 

QM5 contL1+cogL2+IT 12 .79 .65 
 

13 .51 .13 

QM6 contL2 8 .31 .06 
 

8 .25 -.02 

QM7 contL2+cogL2 13 .52 .16 
 

14 .50 .07 

QM8 contL2+cogL2+IT 16 .86 .70   17 .63 .16 

 

 Booklet 3. Except for the two random Q-matrix models (QM6 and QM7), the 

other six random models accounted for less variance in item difficulty than the relatively 

specified Q-matrices (Table 17). No explained variance by the random Q-matrices was 

more than 50%, while three identified Q-matrices accounted for 57% ~ 71% of the 

variance in item difficulty. All adjusted R
2
 values were negative. The results suggested 

that overall, the identified relationship of the items by the attributes was more reliable 

than the randomly generated relationship between the items and the attributes.     

With respect to the random Q-matrices, the R
2
 estimates explained by QM1 ~ 

QM3 were .04 ~ .16 (adjusted R
2
 = -.09 ~ -.17). The random QM4 and QM5 accounted 

for .23 and .27 (adjusted R
2
 = -.17 and -.30) of the variance in item difficulty. The R

2
 

explained by the random QM6 was .19 (adjusted R
2
 = -.04), which was higher than the 
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variance explained by the relative specified Q-matrix (R
2
 = .14, adjusted R

2
 = -.10). The 

random QM7 accounted for more variance in item difficulty (R
2
 = .33) than the 

corresponding specified Q-matrix (R
2
 = .30). But the adjusted R

2
 (= -.194) by the random 

QM7 was slight less than the adjusted R
2
 (= -.185) by the specified Q-matrix. When the 

IT attributes were included in the random QM8, the explained variance (R
2 

= .48, 

adjusted R
2
 = -.10) was less than that by the specified Q-matrix.  

 

Table 17 

Variances in Item Difficulty Explained by the Specified and Random Q-Matrices (Booklet 3) 

Model Attributes 

Booklet 3: Specified QM   Booklet 3: Random QM 

# of 
Attributes 

R
2
 

Adjusted 
R

2
 

 # of 
Attributes 

R
2
 

Adjusted 
R

2
   

QM1 contL1 4 .11 -.02   4 .04 -.09 

QM2 contL1+cogL1 6 .19 .00 
 

6 .09 -.12 

QM3 contL1+cogL1+IT 9 .57 .40 
 

9 .16 -.17 

QM4 contL1+cogL2 11 .27 -.11 
 

11 .23 -.17 

QM5 contL1+cogL2+IT 14 .68 .44 
 

14 .27 -.30 

QM6 contL2 7 .14 -.10 
 

7 .19 -.04 

QM7 contL2+cogL2 13 .30 -.19 
 

14 .33 -.19 

QM8 contL2+cogL2+IT 16 .71 .41   17 .48 -.10 

Note: The bolded numbers are the explained variances for the random Q-matrix models higher 

than those for the specified Q-matrix models. 

 

 LSDM: the specified Q-matrix. 

 The Q-matrices were analyzed with the LSDM. The least squares distance (LSD) 

and the attribute probability (P(αk=1|θi)) were examined across ability levels. The Q-

matrices were considered to be reliable if (1) the values of the LSD decreased 

monotonically in a relatively small range, and (2) the attribute probability curves (APCs) 

displayed logical and substantively meaningful patterns in terms of monotonicity, relative 

difficulty, and discrimination. If the LSD and most APCs exhibited logical shapes, the 
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mean absolute difference (MAD) between the recovered ICC and the ICC estimated by 

the Rasch model is reported for each item. The MAD results are reported at the end of all 

LSDM analyses. 

 The analyses found that in a Q-matrix, if the elements of two attributes are the 

same, that is, if two attributes are required by the same items, the attribute probability of 

one attribute is 100% across all ability levels. When the redundant column is excluded 

from a Q-matrix, the LSD, MAD, and the APCs of the rest of the attributes do not change, 

indicating that the attributes with redundant elements could be excluded from the LSDM 

analysis, as are collinear variables in regression analysis. For Booklet 2, the attribute 

“applying_a2algebra” had the same elements as “reasoning_a2algebra;” for Booklet 3, 

the attribute “applying_a4data and chance” had the same elements as “b7-data 

organization and representation.” Thus, the attribute “applying_a2algebra” was excluded 

from the LSDM analysis of QM4, QM5, QM7, and QM8 for Booklet 2. The attribute 

“applying_a4data and chance” was excluded from the analysis of QM7 and QM8 for 

Booklet 3.  

Booklet 2. Figure 2 show that the LSDs of the eight Q-matrix models decreased 

monotonically in a relatively small range (from .312 to .001), with an increase in ability 

level. The two models with only the content attributes had relatively higher LSDs (mean 

LSD = .126 for QM1 (conL1) and .124 for QM6 (conL2): Table 18). When adding the 

cognitive process attributes in the Q-matrices, the LSD became smaller (mean LSD 

= .104 for QM2, .101 for QM4, and .105 for QM7). The three models with the IT 

attributes had the smallest LSDs (mean LSD = .077 for QM5, .078 for QM8, and .81 for 

QM3).  
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Figure 2. Least squares distance for the specified QMs of Booklet 2. 

 

Table 18 

Mean Least Squares Distance for the Specified QMs of Booklet 2 

  QM1 QM2 QM3 QM4 QM5 QM6 QM7 QM8 

Mean LSD  .126 .104 .081 .101 .077 .124 .105 .078 

Order of mean LSD  8 5 3 4 1 7 6 2 

 

Figure 3 displays the probability curve of each attribute for QM1 ~ QM8. Most 

APCs exhibited an acceptable monotonic pattern, relative difficulty, and discrimination. 

But, no model’s APCs were all acceptable. Seven models (QM2 ~ QM8) had at least 2/3 

of their attributes whose APCs were acceptable. Some attributes’ APCs did not display a 

reasonable pattern. First, some attributes’ probability was 100% across ability levels, 

indicating these attributes did not discriminate the students with different mathematical 

abilities. These attributes included those relative to the data and chance content, such as 

“a4-data and chance” (QM1 ~ QM5), “b7-data organization and representation” (QM6 ~ 

QM8), “b8-data interpretation and chance” (QM6 and QM7), and “applying_a4” (QM4, 

QM5, and QM7). The probabilities of “a2-algebra” (QM2 ~ QM4) and its sub-attribute 

“b4-algebraic expressions and equations/formulas functions” (QM7) were, or close to, 
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100%. Also, the probability of the attribute “IT1-multiple steps/responses” was not 

shown logically in the three models with the IT attributes, that is, being 100% across 

ability levels in QM3, QM5, and QM8, suggesting that IT1 might not be a necessary 

attribute for discriminating mathematical sub-skills. Second, some attributes’ 

probabilities at the lowest ability levels were higher than probability at a higher ability 

level, such as “reasoning_a2” in QM5, and “b5-geometric shapes” and “IT2-complexity” 

in QM8.  

The APC results indicated that if the probability of a content attribute did not 

exhibit a logical pattern, the probabilities of the sub-content attributes and the relative 

cognitive process attributes would be affected, such as the attributes “a2-algebra” and 

“a4-data and chance.” Second, the models with more attributes (such as over 10 attributes) 

had more questionable APCs, suggesting that the number of attributes affects the 

parameter estimates. Moreover, the results suggested that the attribute “IT1-multiple 

steps/responses” can be excluded. After completing a series of comparison analyses with 

the new cognitive process attributes and the random Q-matrices, the Q-matrix entries 

related to algebra and data/chance knowledge were further examined.  
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Figure 3. Attribute probability for the specified QM1 to QM8 of Booklet 2. 
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Booklet 3. The LSDs of the eight Q-matrix models decreased monotonically in a 

small range (from .309 to .001), with an increase in ability level (Figure 4). QM1 and 

QM6, with the only content attributes, had high LSDs (Table 19). The LSDs were 

reduced for QM2, QM4, and QM7, which contained both the content and cognitive 

process attributes. QM3, QM5, and QM8 with the IT attributes had the smallest LSDs. 

 

 
Figure 4. Least squares distance for the specified QMs of Booklet 3. 

 

 

Table 19 

Mean Least Squares Distance for the Specified QMs of Booklet 3 

 
QM1 QM2 QM3 QM4 QM5 QM6 QM7 QM8 

Mean LSD  .112 .107 .088 .103 .086 .116 .106 .090 

Order of mean LSD  7 6 2 4 1 8 5 3 

 

Five models (QM1 ~ QM3, QM6, and QM7) had 2/3 or more of their attributes 

whose APCs were acceptable (Figure 5). Among them, all APCs of QM1 QM2, and 

QM6 displayed a clear pattern with respect to monotonicity, relative difficulty, and 

discrimination, although the probabilities of “a6-applying” (QM2) and “b6-geometric 

measurement and location movement” (QM6) at the lowest ability levels (from -5.23 to 



 

 

95 

 

  

  

  

 
Figure 5. Attribute probability for the specified QM1 to QM8 of Booklet 3. 
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-2.0/-2.5) were slightly decreased with an increase in ability level. The results show that 

probability curves of a6 and its sub-attributes did not show a logical pattern in many 

models. The attributes with a probability of 100% across ability levels were a6 (QM3), 

“b7-data organization and representation” (QM7 and QM8), applying_a1 (QM5 and 

QM7), applying_a2 (QM4), applying_a3 (QM4, QM5, QM7, and QM8), and 

applying_a4 (QM4 and QM5). In the three models with the IT attributes (QM3, QM5, 

and QM8), the probability of “IT1-multiple steps/responses” was, or close to, 100% 

across ability levels. The probabilities of the following attributes did not always increase 

with an increase in ability level, such as b6 (QM7), applying_a2 (QM5, QM7, and QM8), 

reasoning_a1 (QM4 and QM5), reasoning_a4 (QM4, QM5, QM7, and QM8), and “IT2-

complexity” (QM3, QM5, and QM8). The Q-matrix elements related to above 

questionable attributes were further examined.  

Comparing Booklet 2 to Booklet 3. With respect to LSD, the eight LSD curves of 

both booklets’ displayed a similar order. For two models with only the content attributes 

(QM1 and QM6), the LSDs of Booklet 2 were higher than those of Booklet 3, while for 

the other six models, the LSDs of Booklet 2 were relatively lower. In terms of APC, more 

APCs of Booklet 2 exhibited a logical style than APCs of Booklet 3. The results indicated 

that overall, the Q-matrix of Booklet 2 explained the test items better than the Q-matrix 

of Booklet 3. However, for Booklet 2, the attributes about the algebra and data/chance 

content did not discriminate different mathematical ability levels. In addition, the APCs 

of both booklets suggested that (1) the more complex Q-matrix, the more APCs that were 

not acceptable; (2) the attribute “IT1-multiple steps/responses” could be omitted. The 

entries of the questionable attributes were re-examined. 
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LSDM: the random Q-matrix. 

Results of both booklets showed that with an increase in ability level, the LSDs of 

the eight random Q-matrix models decreased monotonically in a small range, from .325 

to .002 for Booklet 2 and from .348 to .002 for Booklet 3 (Figures 6 and 7), which were 

slightly higher than the LSD ranges of the specified Q-matrices. Second, the order of the 

eight LSD curves for the random Q-matrices was different from that for the specified Q-

matrices. Comparatively, the order of the LSD curves for the specified Q-matrices was 

more reasonable than that for the random Q-matrices. For Booklet 2, the three random 

models with only the content and cognitive process attributes at level one had relatively 

higher LSDs (= .131, .127, and .124 for QM1, QM2, and QM3, respectively), while the 

three random models with the content and cognitive process attributes at level two had 

relatively lower LSDs (= .109, .103, and .101 for QM6, QM7, and QM8, respectively). 

For Booklet 3, the random models without the IT attributes (QM1, QM2, QM4, and QM5) 

had relatively higher LSDs, while the random models with the IT attributes (QM3, QM5, 

and QM8) had relatively lower LSDs; also, QM7 had small LSDs. Third, except for the 

random QM6 and QM7 of Booklet 2 and the random QM8 of Booklet 3, the mean LSDs 

of other random Q-matrices were higher than the corresponding LSDs of the specified Q-

matrices (Table 20). On average, the LSD values of the random models were higher than 

those of the specified models, suggesting that the specified Q-matrices explained the test 

items better than the random Q-matrices. 
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Figure 6. Least squares distance for the random QMs of Booklet 2. 

 

 
Figure 7. Least squares distance for the random QMs of Booklet 3. 

 

 

Table 20 

Mean Least Squares Distance for the Specified and Random QMs 

    QM1 QM2 QM3 QM4 QM5 QM6 QM7 QM8 

Booklet 2 specified 
Mean LSD  .126 .104 .081 .101 .077 .124 .105 .078 

Order of mean LSD  8 5 3 4 1 7 6 2 

Booklet 3 specified 
Mean LSD  .112 .107 .088 .103 .086 .116 .106 .090 

Order of mean LSD  7 6 2 4 1 8 5 3 

          

Booklet 2 random 
Mean LSD  .131 .127 .124 .116 .116 .109 .103 .101 

Order of mean LSD  8 7 6 5 4 3 2 1 

Booklet 3 random 
Mean LSD  .131 .125 .111 .125 .112 .117 .107 .081 

Order of mean LSD  8 6 3 7 4 5 2 1 

Note: The bolded numbers are the mean LSDs for the random QMs that are lower than those for 

the specified QMs.  



 

 

99 

 

With respect to the APCs, overall, the specified Q-matrix models had more 

reasonable APCs than the random models (Figures 8 and 9). For both booklets, three 

random models (QM1 ~ QM3) had 2/3 or over of their total attributes that were 

acceptable. No model’s APCs were all acceptable.  Thus, the APCs revealed that the 

specified Q-matrices were better than the random Q-matrices.    
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Figure 8. Attribute probability for the random QM1 to QM8 of Booklet 2. 
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Figure 9. Attribute probability for the random QM1 to QM8 of Booklet 3.  
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The 2
nd

 Q-Matrix with the Attributes Based on the TIMSS Content, the New 

Cognitive Processes, and Item Type 

 The Q-matrix was further evaluated with the new cognitive process attributes. The 

three cognitive process attributes based on the TIMSS assessment framework (knowing, 

applying, and reasoning) were replaced by the four cognitive process attributes 

(identifying, computing, judging, and reasoning). There was no change in the two levels 

of content attributes and the IT attributes. The Q-matrix of the 49 items and the new 

cognitive process attributes are displayed in Appendix E. The total number of items 

related to each new attribute is also reported.  

 For the four new cognitive process attributes at level one (c1 ~ c4), most test item 

required the attributes “c2-computing” and “c3-judging”. In Booklet 2, the numbers of 

items requiring the four attributes were 11, 24, 18, and 4, respectively. Each item 

required 1 to 3 attributes, on average 1.84 attributes per item. In Booklet 3, the numbers 

of items measuring the four attributes were 11, 25, 24, and 4, respectively. Each item 

required 1 to 3 attributes, on average 1.94 attributes per item. 

For the 11 new cognitive process attributes at level two (d1 ~ d11), many 

mathematics items measured the attributes “d3-formulating,” “d4-computing_number,” 

and “d6-judging_number.” No item in Booklet 2 required the attribute “d9-

reasoning_number;” and no item in Booklet 3 required the attribute “d10-

reasoning_algebra.” The remaining 10 attributes were required by from 1 to 22 items of 

Booklet 2 and by from 2 to 25 items of Booklet 3, respectively. On average, each item 

required 2.35 attributes for Booklet 2 and 2.70 attributes for Booklet 3. 
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With the new cognitive process attributes, the TIMSS content attributes, and the 

IT attributes, validation of the 2
nd

 Q-matrix was analyzed using the eight Q-matrix 

models exhibited in Table 21. Each type of attributes were added step by step. Because 

there was no change in the Q-matrix models with only the content attributes (QM1 and 

QM6),  only the models with the new cognitive process attributes were analyzed. 

 

Table 21 

Models of the Q-matrix with the New Cognitive Process Attributes 

Model Attributes 
# of Attributes 

Booklet 2 Booklet 3 

QM2 contL1 + cogL1 8 8 

QM3 contL1 + cogL1 + IT 11 11 

QM4 contL1 + cogL2 14 14 (13) 

QM5 contL1 + cogL2 + IT 17 17 (16) 

QM7 contL2 + cogL2 18 (17) 17 (16) 

QM8 contL2 + cogL2 + IT 21 (20) 20 (19) 

Note: The numbers in parentheses are the numbers of attributes included in the analyses of the 

specified Q-matrix models. 

 

 The specified Q-matrix and item difficulty. 

 Using multiple regression models, the relationship between the item difficulty and 

the Q-matrices with different types of attributes was examined.  

Booklet 2. For the attributes at level one, after the four new cognitive process 

attributes (c1 ~ c4) were added to QM1 (contL1), QM2 accounted for 39% of the 

variance in item difficulty (adjusted R
2
 = .16, R

2
 change = .18: Table 22). When the IT 

attributes were included, the variance explained by QM3 increased to .81 (adjusted R
2
 

= .70, R
2
 change = .42). 
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Table 22 

Results of Multiple Regression of QM2 and QM3 for Booklet 2 (with New Process Attributes) 

Model Attributes 
# of 

Attributes 
R R

2
 

Adjusted 
R

2
 

Change Statistics 

R
2
 

Change 
F 

Change 
df1 df2 p 

QM2 contL1+cogL1 8 .62 .39 .16 .18 1.64 4 22 .199 

QM3 contL1+cogL1+IT 11 .90 .81 .70 .42 13.77 3 19 .000 

 

Based on QM1 (contL1), the 10 new cognitive process attributes at level two (d1 

~ d8, d10, and d11) and the three IT attributes were added step by step (Table 23). When 

the cognitive process attributes were encompassed, the variance in item difficulty 

explained by QM4 became .61 (adjusted R
2
 = .27, R

2
 change = .41). In QM5, the 

explained variance was .82 (adjusted R
2
 = .58, R

2
 change = .21). 

 

Table 23 

Results of Multiple Regression of QM4 and QM5 for Booklet 2 (with New Process Attributes) 

Model Attributes 
# of 

Attributes 
R R

2
 

Adjusted 
R

2
 

Change Statistics 

R
2
 

Change 
F 

Change 
df1 df2 p 

QM4 contL1+cogL2 14 .78 .61 .27 .41 1.67 10 16 .175 

QM5 contL1+cogL2+IT 17 .91 .82 .58 .21 5.03 3 13 .016 

 

Based on QM6 (contL2), the 10 new cognitive process attributes at level two were 

added in QM7 and the IT attributes were added in QM8 (Table 24). Addition of the 

cognitive process attributes greatly increased the explained variance in item difficulty by 

QM7 (R
2
 = .71, adjusted R

2
 = .34, R

2
 change = .40). The variance in item difficulty 

explained by QM8 rose to .90 (adjusted R
2
 = .71, R

2
 change = .19). Because of 

collinearity (that is, the attributes “d5-computing_algebra” and “b4-algebraic expressions 
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and equations/formulas functions” were required by the same items), d5 were excluded 

from the regression models of QM7 and QM8. 

Table 24 

Results of Multiple Regression of QM7 and QM8 for Booklet 2 (with New Process Attributes) 

Model Attributes 
# of 

Attributes 
R R

2
 

Adjusted 
R

2
 

Change Statistics 

R
2
 

Change 
F 

Change 
df1 df2 p 

QM7 contL2+cogL2 17 .84 .71 .34 .40 2.02 9 13 .121 

QM8 contL2+cogL2+IT 20 .95 .90 .71 .19 6.60 3 10 .010 

 

Booklet 3. Based on QM1 (contL1), inclusion of the new cognitive process 

attributes (d1 ~ d4) in QM2 and then the IT attributes in QM3 raised the R
2
 values (Table 

25). However, the adjusted R
2
 value of QM2 decreased, suggesting that the added 

cognitive process attributes did not improve the regression model when the variance was 

penalized with respect to the added attributes. The variance in item difficulty explained 

by QM2 was .18 (adjusted R
2
 = -.09, R

2
 change = .07). The variance in item difficulty 

explained by QM3 was .58 (adjusted R
2
 = .36, R

2
 change = .39).  

 

Table 25 

Results of Multiple Regression of QM2 and QM3 for Booklet 3 (with New Process Attributes) 

Model Attributes 
# of 

Attributes 
R R

2
 

Adjusted 
R

2
 

Change Statistics 

R
2
 

Change 
F 

Change 
df1 df2 p 

QM2 contL1+cogL1 8 .43 .18 -.09 .07 .54 4 24 .705 

QM3 contL1+cogL1+IT 11 .76 .58 .36 .39 6.54 3 21 .003 

 

When the 10 cognitive process attributes at level two (d1—d9 and d11) were 

added to QM1 (contL1: Table 26), the R
2
 value explained by QM4 increased to .38 (R

2
 

change = .26); however, the adjusted R
2
 value reduced to -.05, indicating that the added 
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attributes did not improve the regression model. In QM5, the explained variance was .69 

(adjusted R
2
 = .38, R

2
 change = .31). Because of collinearity (the attributes “d5-

computing_algebra” and “a2-algebra”), d5 were excluded from the analysis of QM4 and 

QM5. 

 

Table 26 

Results of Multiple Regression of QM4 and QM5 for Booklet 3 (with New Process Attributes) 

Model Attributes 
# of 

Attributes 
R R

2
 

Adjusted 
R

2
 

Change Statistics 

R
2
 

Change 
F 

Change 
df1 df2 p 

QM4 contL1+cogL2 13 .61 .38 -.05 .26 .89 9 19 .548 

QM5 contL1+cogL2+IT 16 .83 .69 .38 .31 5.40 3 16 .009 

 

Based on QM6 that contained the 7 content attributes (b1, b2, b4—b8), the 10 

cognitive process attributes at level two were added in QM7 (Table 27). QM7 accounted 

for more variance in item difficulty than QM6 (contL2) (R
2
 = .45, R

2
 change = .27). 

However, the value of adjusted R
2
 (= -.10) was almost the same as that of QM6. Inclusion 

of the IT attributes in QM8 greatly increased the explained variance (R
2
 = .75, adjusted 

R
2
 = .39, R

2
 change = .30). Because of collinearity (the attributes “d5-computing_algebra” 

and “b4-algebraic expressions and equations/formulas functions”), d5 were excluded 

from the regression models. 

 

Table 27 

Results of Multiple Regression of QM7 and QM8 for Booklet 3 (with New Process Attributes) 

Model Attributes 
# of 

Attributes 
R R

2
 

Adjusted 
R

2
 

Change Statistics 

R
2
 

Change 
F 

Change 
df1 df2 p 

QM7 contL2+cogL2 16 .67 .45 -.10 .31 1.00 9 16 .477 

QM8 contL2+cogL2+IT 19 .87 .75 .39 .30 5.34 3 13 .013 
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 Comparing Booklet 2 to Booklet 3. Results of the two booklets showed that when 

the new cognitive process attributes and then the IT attributes were added in the models, 

the Q-matrices accounted for more variance in item difficulty (Table 28). The models 

with the IT attributes (QM3, QM5, and QM8) explained most of the variance in item 

difficulty. For Booklets 2 and 3, the three Q-matrices with all types of attributes (QM3, 

QM5, and QM8) accounted for 81% ~ 90% and 58% ~ 75% of the variance in item 

difficulty, respectively.   

 

Table 28 

Comparison of the Variances in Item Difficulty Explained by the Q-Matrices of Booklets 

2 and 3 with the New Cognitive Process Attributes  

Model Attributes 

Booklet 2   Booklet 3 

# of 
Attributes 

R
2
 

Adjusted 
R

2
 

 # of 
Attributes 

R
2
 

Adjusted 
R

2
   

QM2 contL1+cogL1 8 .39 .16 
 

8 .18 -.09 

QM3 contL1+cogL1+IT 11 .81 .70 
 

11 .58 .36 

QM4 contL1+cogL2 14 .61 .27 
 

13 .38 -.05 

QM5 contL1+cogL2+IT 17 .82 .58 
 

16 .69 .38 

QM7 contL2+cogL2 17 .71 .34 
 

16 .45 -.10 

QM8 contL2+cogL2+IT 20 .90 .71   19 .75 .39 

Note: The bolded numbers indicate less variance explained by a model compared to that in its 

based model QM1. 
 

All variance values of Booklet 3 were much less than the corresponding variances 

of Booklet 2. For Booklet 2, the adjusted R
2
 estimates increased as additional predictors 

were included; and all adjusted R
2
 estimates were positive. For Booklet 3, the adjusted R

2
 

estimates did not always increase as more predictors were included; and four adjusted R
2
 

values were negative. In QM2, QM4 and QM6, when the cognitive process attributes (at 

level one or level two) were added, the adjusted R
2
 estimates of Booklet 3 deceased or 
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stayed the same. When all attributes were included, although the identified Q-matrices of 

both Booklets accounted for most of the variance in item difficulty, the adjusted R
2
 

estimates of Booklet 3 were less than 50% (adjusted R
2
 = .36 ~ .39), while the adjusted R

2
 

values of Booklet 2 were .58 ~ .71. The results indicated that the identified Q-matrices of 

Booklet 3 did not account for the test items as effectively as Booklet 2, especially the Q-

matrices without the IT attributes. 

 The random Q-matrix and item difficulty. 

 The random Q-matrices of the new cognitive process attributes are shown in 

Appendices H and I for the two booklets. The elements of the random Q-matrices were 

produced by randomly reordering the specified Q-matrices. Within each of the four 

cognitive process attributes (identifying, computing, judging, and reasoning), the total 

numbers of 0’s and 1’s in the random Q-matrices were equal to the relative numbers in 

the specified Q-matrices. These random elements were combined with the random 

elements of the Q-matrix with the content attributes and the IT attributes as displayed in 

Appendices F and G. Here only the results with the cognitive process attributes were 

reported, because no change existed in QM1 and QM6 with only the content attributes. 

Booklet 2. As shown in Table 29, all variance values (R
2
 and adjusted R

2
) 

explained by the random Q-matrices were less than the corresponding variance estimated 

explained by the specified Q-matrices, as expected. When the attributes (cogL1, cogL2, 

and IT) were added in the models, the R
2
 and adjusted R

2
 values explained by the 

specified Q-matrices increased, while the variances explained by the random Q-matrices 

did not always increase and some adjusted R
2
 values were negative. For the random Q-

matrices, the R
2
 estimates of QM2, QM4, and QM7 without the IT attributes were .24 
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~ .60 (adjusted R
2
 = -.04 ~ -.01). The R

2
 estimates of QM3, QM5, and QM8 with the IT 

attributes were .45 ~ .78 (adjusted R
2
 = .13 ~ .26). The results indicated that the random 

Q-matrices were not as predictive as the specified Q-matrices in interpreting the items’ 

difficulty. 

 

Table 29 

Variances in Item Difficulty Explained by the Specified and Random Q-Matrices with the 

New Cognitive Process Attributes (Booklet 2) 

Model Attributes 

Booklet 2: Specified QM   Booklet 2: Random QM 

# of 
Attributes 

R
2
 

Adjusted 
R

2
 

 # of 
Attributes 

R
2
 

Adjusted 
R

2
   

QM2 contL1+cogL1 8 .39 .16 
 

8 .24 -.04 

QM3 contL1+cogL1+IT 11 .81 .70 
 

11 .45 .13 

QM4 contL1+cogL2 14 .61 .27 
 

14 .45 -.03 

QM5 contL1+cogL2+IT 17 .82 .58 
 

17 .59 .06 

QM7 contL2+cogL2 17 .71 .34 
 

17 .60 -.01 

QM8 contL2+cogL2+IT 20 .90 .71   20 .78 .26 

 

 Booklet 3. Most of the variances explained by the random Q-matrices were less 

than those explained by the specified Q-matrices (Table 30). All adjusted R
2
 values of the 

random Q-matrices were negative. The explained R
2
 value (= .48) by the random QM7 

was a little higher than that by the specified QM7, while both adjusted R
2
 values were 

equal to -.10. The explained variance values by the random QM2 were the same as those 

by the specified QM2 (R
2
 = .18, adjusted R

2
 = -.09). The remaining variance values of the 

random models were less than those explained by the specified Q-matrices. Thus, the 

results of Booklet 3 also indicated that the specified Q-matrices were better than the 

random Q-matrices in accounting for the test item difficulties.  
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Table 30 

Variances in Item Difficulty Explained by the Specified and Random Q-Matrices with the 

New Cognitive Process Attributes (Booklet 3) 

Model Attributes 

Booklet 3: Specified QM   Booklet 3: Random QM 

# of 
Attributes 

R
2
 

Adjusted 
R

2
 

 # of 
Attributes 

R
2
 

Adjusted 
R

2
   

QM2 contL1+cogL1 8 .18 -.09 
 

8 .18 -.09 

QM3 contL1+cogL1+IT 11 .58 .36 
 

11 .23 -.18 

QM4 contL1+cogL2 13 .38 -.05 
 

14 .35 -.16 

QM5 contL1+cogL2+IT 16 .69 .38 
 

17 .37 -.35 

QM7 contL2+cogL2 16 .45 -.10 
 

17 .48 -.10 

QM8 contL2+cogL2+IT 19 .75 .39   20 .52 -.27 

Note: The bolded numbers are the explained variances for the random Q-matrix models higher 

than those for the specified Q-matrix models. 

 

LSDM: the specified Q-matrix. 

The six Q-matrix models with the new cognitive process attributes were 

investigated using the LSDM. The attribute “d5-computing_algebra” was excluded from 

the analyses of QM7 and QM8 for both booklets and QM4 and QM5 for Booklet 3, 

because it had the same elements as the attributes “b4-algebraic expressions and 

equations/formulas functions” or “a2-algebra”. 

Booklet 2. The LSDs of the six models decreased monotonically in a small range 

(from .240 to .001), with an increase in ability level (Figure 10). The three models with 

the IT attributes (QM3, QM5, and QM8) had relatively smaller LSDs, mean LSDs 

=.071, .063, and .056. The three models without the IT attributes (QM2, QM4, and QM7) 

had relatively higher LSDs, mean LSDs =.100, .082, and .075 (Table 31). 

 



 

 

111 

 

 
Figure 10. Least squares distance for the specified QMs of Booklet 2 (with new process attributes). 

 

 

Table 31 

Mean Least Squares Distance for the Specified QMs of Booklet 2 (with New Process 

Attributes) 

  QM2 QM3 QM4 QM5 QM7 QM8 

Mean LSD  .100 .071 .082 .063 .075 .056 

Order of mean LSD  6 3 5 2 4 1 

 

With respect to the APCs, most attributes displayed a reasonable pattern (Figure 

11). However, no model had an acceptable probability curve for every including attribute. 

The two models with the level 1 attributes (QM2 and QM3) had at least 2/3 of the total 

attributes whose APCs were acceptable. In these two models, the attribute probabilities of 

“a2-algebra” and “a4-data and chance” were 100% across ability levels. In QM3, the 

probability of “IT1-multiple steps/responses” was 100% across ability levels. The 

probabilities of a2, a4, and IT1 were also a constant (= 100%) in all involved models 

(QM4, QM5, and QM8). The problem attributes in QM4, QM5, QM7, and QM8 also 

included b4 ~ b8, “d4-computing_number,” “d5-computing_algebra,” “d6-

judging_number,” and “d10-reasoning_algebra”.   
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Figure 11. Attribute probability for the specified QM2-QM5, QM7 and QM8 of Booklet 2 (with 

new process attributes). 
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Booklet 3. The LSDs of the six models decreased monotonically in a small range 

(from .251 to .001), with an increase in ability level (Figure 12). The three models with 

the IT attributes (QM3, QM5, and QM8) had relatively smaller LSDs, mean LSDs 

=.081, .075, and .075. The three models without the IT attributes (QM2, QM4, and QM7) 

had a little higher LSDs, mean LSDs =.101, .087, and .086 (Table 32). 

 

 
Figure 12. Least squares distance for the specified QMs of Booklet 3 (with new process 

attributes). 

 

Table 32 

Mean Least Squares Distance for the Specified QMs of Booklet 3 (with New Process 

Attributes) 

  QM2 QM3 QM4 QM5 QM7 QM8 

Mean LSD  .101 .081 .087 .075 .086 .075 

Order of mean LSD  6 3 5 1 4 2 

 

With respect to the APCs, two models with the level 1 content and cognitive 

process attributes (QM2 and QM3) had over 2/3 of their attributes with an acceptable 

APC (Figure 13). In these two models, the probability of “a4-data and chance” was 100% 

across ability levels. The probability of “IT1-multiple steps/responses” was, or close to, 

100% across ability levels in the models with the IT attributes (QM3, QM5, and QM8). 
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In these three models, the probabilities of “IT2-complexity” at the lowest ability levels 

(from -5.23 to -2) did not rise with an increase in ability level. Moreover, the probability 

of “d6-judging_number” was a constant of 100% in the four relative models (QM4, QM5, 

QM7, and QM8). In these four models, the problem attributes also included b5 ~ b8, “d4-

computing_number,” “d8-judging_geometry,” and “d9-reasoning_number”.   

 

 

  

  

  
Figure 13. Attribute probability for the specified QM2-QM5, QM7 and QM8 of Booklet 3 (with 

new process attributes). 
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Comparing Booklet 2 to Booklet 3. For both booklets, the LSDs displayed 

acceptable curves; the order of the LSD curves was similar to each other, that is, those 

models with the IT attributes had higher LSDs than those without the IT attributes, 

indicating consistency in specifying the Q-matrices for the two booklets. For each model, 

the mean LSD of Booklet 3 was a slightly higher than that of Booklet 2. So, the LSD 

results suggested that Booklet 2’s Q-matrices explained the items better than Booklet 3’s 

Q-matrices.  

According to the APCs, both booklets had similar numbers of attributes whose 

probability exhibited a logical pattern. Meanwhile, only QM2 and QM3 of both booklets 

had over 2/3 of the attributes with an acceptable APC. Thus, the APC results revealed 

that the attributes of the two booklets held the test items as well as each other.  

In addition, both booklets showed that several attributes’ probability curves were 

not acceptable in many models, such as “a2-algebra,” “a4-data and chance,” “d4-

computing_number,” “d6-judging_number,” “IT1-multiple steps/responses,” and “IT2-

complexity,” suggesting that the elements of these attributes needed to be further 

examined, or that some attributes could be revised or even excluded.  

LSDM: the random Q-matrix. 

With an increase in ability level, the LSDs of the six random Q-matrix models of 

both booklets decreased monotonically in a small range, from .289 to .002 for Booklet 2 

and from .270 to .002 for Booklet 3 (Figures 14 and 15). The order of the LSD curves of 

the random models was different from that of the specified models. The order of the LSD 

curves of the specified models was consistent with the multiple regression analysis. 

Except for the random QM2 of Booklet 3, the mean LSDs of other eleven random models 
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were higher than those of the specified models (Table 33), suggesting that overall, the 

specified Q-matrices explained the test items better than the random Q-matrices.  

With respect to the APCs, the random Q-matrices were a little better than the 

specified Q-matrices (Figures 16 and 17).  The following random models had at least 2/3 

of their attributes with an acceptable APC: four models for Booklet 2 (QM2, QM4, QM5, 

and QM8) and five models for Booklet 3 (QM2, QM3, QM4, QM7, and QM8). 

Thus, the results combining both the LSDs and APCs did not reveal if the 

specified Q-matrices were absolutely better than the random Q-matrices.    

 

 

Figure 14. Least squares distance for the random QMs of Booklet 2 (with new process attributes). 

 

 
Figure 15. Least squares distance for the random QMs of Booklet 3 (with new process attributes). 
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Table 33 

Mean Least Squares Distance for the Specified and Random QMs (with New Process 

Attributes) 

    QM2 QM3 QM4 QM5 QM7 QM8 

Booklet 2 
specified 

Mean LSD  .100 .071 .082 .063 .075 .056 

Order of mean LSD  6 3 5 2 4 1 

Booklet 3 
specified 

Mean LSD  .101 .081 .087 .075 .086 .075 

Order of mean LSD  6 3 5 1 4 2 

Booklet 2 
random 

Mean LSD  .119 .118 .105 .103 .085 .080 

Order of mean LSD  6 5 4 3 2 1 

Booklet 3 
random 

Mean LSD  .100 .094 .111 .103 .093 .082 

Order of mean LSD  4 3 6 5 2 1 

Note: The bolded number is the mean LSD for the random QM2 which is lower than that for the 

specified QM2.  
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Figure 16. Attribute probability for the random QM2-QM5, QM7 and QM8 of Booklet 2 (with 

new process attributes) 
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Figure 17. Attribute probability for the random QM2-QM5, QM7 and QM8 of Booklet 3 (with 

new process attributes). 
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Results Summary of the Regression Analysis and the LSDM Analysis for the 

Original Q-Matrices 

 Each Q-matrix was validated using both multiple regression and the LSDM. A 

reliable Q-matrix should be useful with both methods. With respect to multiple regression, 

it was expected that a higher variance in item difficulty was explained by the better-

specified Q-matrices. With respect to the LSDM, small LSDs and reasonable APCs were 

anticipated to be produced for the better Q-matrices. The results of both analyses are 

summarized in Table 34.  

 There were some similar results found for the specified Q-matrices with the 

TIMSS process attributes and the new process attributes. First, the Q-matrices with the IT 

attributes explained most of the variance in item difficulty (.78 ~ .90 for Booklet 2, .57 

~ .75 for Booklet 3). The content attributes explained a very small proportion of the 

variance in item difficulty (e.g. R
2
 = .20 and .11). For Booklet 2, the higher adjusted R

2
 

values for QM2, QM4, and QM7 than those for QM1 and QM6 indicated that the 

cognitive process attributes explained more variance in item difficulty than the content 

attributes. However, for Booklet 3, only the adjusted R
2
 value for QM2 with the TIMSS 

process attributes was slightly higher than that for QM1. The IT attributes explained 

much more variance than both the content and process attributes. Second, the LSDs of all 

models (including the random models) were acceptable. Third, most attributes’ APCs 

were acceptable. However, among 28 specified models, only three models’ APCs were 

all acceptable (QM1, QM6, and QM2 with the TIMSS process attributes for Booklet 3). 

The probabilities of the attributes a2, a4, d6, and IT1 did not exhibited a meaningful 

pattern in many models. Fourth, for the three most complex models—QM5, QM7 and 
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QM8, although the explained variances were relatively higher than those for the other 

models, many APCs did not show logically. Fifth, both regression and LSDM analyses 

showed that the Q-matrices explained the item difficulties for Booklet 2 better than for 

Booklet 3. Sixth, according to the explained variances and the LSDs, the specified Q-

matrices were absolutely better than the random Q-matrices, but the APCs did not 

absolutely distinguish the specified from the random Q-matrices. Overall, the specified 

Q-matrices were still better than the random Q-matrices.  

 In sum, no Q-matrix model was decidedly a good Q-matrix that could adequately 

explained the test items for all analyses. Thus, based on the above analyses, the attributes 

and Q-matrices were further refined. All elements of the Q-matrices were re-examined.  

 

 

 



 

 

 

 

Table 34 

Results Summary of the Analyses Using Multiple Regression and the LSDM 

 
* The difference between the probability at the lowest ability level and the lowest probability was less than .05.  

  

Range Mean LSD probability = 100%
Non-monotonically

increasing curve

Specified (A1) 8 QMs': > A2's variance .312 ~ .001
6 QMs': < A2's LSD

2 QMs': > A2's LSD
 7 QMs (QM2 ~ QM8)

a2 (QM2-QM4), a4 (QM1-QM5), b4 

(QM7), b7 (QM6-QM8), b8 (QM6, 

QM7), appl_a4 (QM4, QM5, QM7), 

IT1 (QM3, QM5, QM8)

b5 (QM8*), reas_a2 (QM5), 

IT2 (QM8)

A1's Random 8 QMs': < A1's variance .325 ~ .002
2 QMs': < A1's LSD

6 QMs': > A1's LSD
 3 QMs (QM1, QM2, QM3)

Specified (A2) .309 ~ .001
 5 QMs (QM1, QM2, QM3, 

QM6, QM7)

a6 (QM3), b7 (QM7, QM8), appl_a1 

(QM5, QM7), appl_a2 (QM4), 

appl_a3 (QM4, QM5, QM7, QM8), 

appl_a4 (QM4, QM5)

a6 (QM2*), b6 (QM7), appl_a2 

(QM5, QM7, QM8), reas_a1 

(QM4, QM5), reas_a4 (QM4, 

QM5, QM7, QM8), IT1 and 

IT2 (QM3, QM5, QM8)

A2's Random
6 QMs': < A2's variance

2 QMs': > A2's variance
.348 ~ .002

1 QMs': < A2's LSD

7 QMs': > A2's LSD
 3 QMs (QM1, QM2, QM3) 

Specified (A3) 6 QMs': > A4's variance .240 ~ .001
5 QMs': < A4's LSD

1 QMs': > A4's LSD
 2 QMs (QM2, QM3)

a2 (QM2 ~ QM4), a4 (QM2 ~ QM5), 

b4 (QM7), b5 (QM8), b6 (QM7), b7 

(QM7, QM8), b8 (QM7), d4 (QM4, 

QM5, QM7, QM8), d5 (QM4, QM5), 

d6 (QM4, QM7), IT1 (QM3, QM5, 

QM8)

b5 (QM7), b6 (QM8), b8 

(QM8), d6 (QM8), d10 (QM5, 

QM7), IT2 (QM8)

A3's Random 6 QMs': < A3's variance .289 ~ .002 6 QMs': > A3's LSD
 4 QMs (QM2, QM4, QM5, 

QM8)

Specified (A4) .251 ~ .001  2 QM (QM2, QM3)

a4 (QM2, QM3), b5 (QM8), b6 (QM7, 

QM8), b7 (QM8), d4 (QM8), d6 

(QM4, QM5, QM7, QM8), IT1 (QM5)

a4 (QM4, QM5), b7 (QM7), b8 

(QM7), d4 (QM7), d8 (QM4, 

QM5), d9 (QM4, QM5, QM8), 

IT1 (QM3, QM8), IT2 (QM3, 

QM5, QM8)

A4's Random
4 QMs': < A4's variance

2 QMs': > A4's variance
.270 ~ .002

1 QMs': < A4's LSD

5 QMs': > A4's LSD

 5 QMs (QM2, QM3, QM4, 

QM7, QM8)

LSDM: Attributes with Problem APC

Booklet 2 

(8 models: 

with TIMSS 

process 

attributes)

Booklet 3 

(8 models: 

with TIMSS 

process 

attributes)

Booklet 2 

(6 models: 

with new 

process 

attributes)

Booklet 3 

(6 models: 

with new 

process 

attributes)

LSDM: Models with at Least 

2/3 Acceptable APCs
Q-matrix

Multiple Regression:

Variance

LSDM: LSD

1
2

2
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Revision of the Q-Matrices 

 Considering the performance of every attribute and the relative high ratios of the 

number of attributes to the number of items, some attributes were redefined or excluded, 

and the Q-matrix models were simplified or remodeled. The entries of the Q-matrices 

were re-examined, especially those attributes with problem APCs.  

First, four attributes were deleted, which were “applying_a4data and chance,” 

“reasoning_ a4data and chance,” “d6-judging_number,” and “IT1-multiple 

steps/responses.” The APCs of “applying_a4” and “reasoning_a4” were not well 

displayed in many models. The attribute “a4-data and chance” contained data 

organization and representation, data interpretation, and chance. Actually, a4 primarily 

involved displaying, reading and calculating the number content (a1). Analyzing the 

items showed that “applying_a4” and “reasoning_a4” could be combined into 

“applying_a1” and “reasoning_a1”, respectively. Also, only one item of the 49 items 

measured “reasoning_a4.” After being revised, three TIMSS reasoning attributes 

(reas_a1/a2/a4) were equal to the three new process attributes (d9-reasoning_number, 

d10-reasoning_algebra, and d10-reasoning _geometry), respectively. Moreover, the 

probabilities of d6 and IT1 were, or very close to, a constant of 100% across ability levels 

in most models, indicating they might be covered by the other cognitive process attributes 

and IT attributes, respectively. In addition, the cancelation of “d6-judging_number” 

resulted in re-specifying the elements of the judging attribute at level one, “c3-judging.”   

Second, the refined validation excluded the models with both content and 

cognitive process attributes at level two (QM7 and QM8). Many attributes’ APCs were 

not clearly displayed because of the model complexity, with too many attributes in one 
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model. Second, LSDM analysis assumed independence of attributes. However, the 

cognitive process attributes at level two were classified in terms of the category of 

content attributes, which led to overlap between the level 2 content attributes and level 2 

process attributes in QM7 and QM8. The model with only the level 2 content attributes 

(QM6) was examined. 

Third, the models of QM4 and QM5 with the new cognitive process attributes 

were redefined. For QM4 and QM5 with the TIMSS cognitive process attributes, the four 

sub-attributes of “a5-knowing” (know_a1/a2/a3/a4) actually were equal to the four 

content attributes at level one (a1-number, a2-algebra, a3-geometry, and a4-data and 

chance). Thus, the combination of the content attributes at level one (a1, a2, a3, and a4) 

and the process attributes at level two (appl_a1/a2/a3/a4 and reas_a1/a2/a3/a4) was equal 

to the combination of all process attributes at level two (contL1 + (partial) cogL2 = all 

cogL2). For the new process attributes, QM4 and QM5 should include only the process 

attributes at level two (d1 ~ d11), without the content attributes at level one. The number, 

algebra, and geometry content had been integrated in the attributes d1 ~ d11, such as “d1-

comparing number,” “d2-recognizing,” “d3-formulating,” “d4-computing_number,” and 

“d5-computing_algebra.” Moreover, when “a4-data and chance” were added, the 

probability of a4 was, or close to, a constant of 100%, and the probabilities of IT2 (QM5 

of Booklet 2) became unreasonable across ability levels; the probabilities of other 

attributes did not change. Thus, a4 also was excluded from QM4 and QM5. The revised 

models reduced overlap between the attributes a1 ~ a4 and d1 ~ d11 and so the risk of 

violating the assumption—independence of attributes. 



 

 

125 

 

Fourth, the elements of “b1-whole numbers and integers” were re-specified. An 

item measuring “b2-fractions, decimals, ratio, proportion, and percent” measured the 

attribute b1, which led to the construction that the elements of b1 were the same as those 

of its level 1 attribute “a1-number.” Thus, if an item required both b1 and b2, only b2 was 

specified; while b1 was specified to the items measuring only whole numbers and 

integers. 

Fifth, two models with the IT attributes (QM3 and QM5) were investigated with 

two number attributes—revised b1 and/or b2. A majority of the items measured “a1-

number” (28/31 items in Booklet 2 and 29/33 items in Booklet 3). As a result, the APC of 

a1 was always close to a perfect S-shape. To effectively display the probability of the 

number attribute and the effect of the attribute involving fractions, decimals, ratio, 

proportion, and percent, a1 in QM1, QM3 and QM5 was replaced by b1 and b2, or b2 

was added to QM5 with the new process attribute at level two.  

Sixth, the two sub-attributes of “a4-data and chance” (b7 and b8) were 

reclassified. B7 measured skills of data organization, representation, and interpretation in 

figures and graphs; b8 measured skills about computing chance and probability. Thus, in 

the model with only the level 2 content attributes (QM6), b1, b7, and b8 were revised; no 

change was made in b2 ~ b6.  

Finally, a few elements of the Q-matrices had been revised after examining the 

relationship between the mathematics items and the attributes. The attributes with a 

changed elements included “a2-algebra” (or “knowing_a2”), “a6-applying,” 

“applying_a1,” “d3-formulating,” “d5-computing_algebra,” “d7-judging_operationRule,” 

and “IT2-complexity.” The refined Q-matrices are displayed in Appendices J and K.   
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Thus, after revisions, there were still four content attributes at level one (a1 ~ a4), 

eight content attributes at level two (b1 ~ b8: b1, b7, and b8 were redefined), three 

TIMSS process attributes at level one, and four new process attributes at level one (Table 

35). But there were only 10 TIMSS process attributes at level two and 10 new process 

attributes at level two; “applying_a4,” “reasoning_a4,” d6, and IT1 were deleted.  

 

Table 35 

Attributes after Revising the Q-Matrices 

  Level 1 Attributes Level 2 Attributes 

Content attributes  a1, a2, a3, a4  b1, b2, b3, b4, b5, b6, b7, b8 

TIMSS cognitive process 

attributes 
 a5, a6 a7   know_a1/a2/a3/a4, appl_a1/a2/a3, reas_a1/a2/a3 

New cognitive process 

attributes 
 c1, c2, c3, c4 

 d1, d2, d3, d4, d5, d7, d8, d9, d10, d11 

(d9 = reas_a1, d10 = reas_a2, d11 = reas_a3) 

Comprehensive cognitive 

process attributes 
 IT2, IT3 

 

Analysis of the Revised Q-Matrices 

 The revised Q-matrix and item difficulty. 

 Variances in item difficulty explained by the revised Q-matrices were analyzed 

using multiple regression. First, relationships among the attributes and the item 

difficulties were examined with the Spearman's rank correlation coefficient (or 

Spearman's rho). “A5-knowing” was not included because it was specified to all items. 

The results are reported in Appendix L.  

For Booklet 2, several attributes (know_a4, apply_a2, reas_a2, a7-reasoning, IT2-

complexity, and IT3-constructed-response) significantly correlated with the item 

difficulty, p < .05 or .01; among them, only the correlation coefficients between two IT 

attributes and the item difficulty were strong, r ≥ .54 (Rosenthal, 2001). Strong 
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relationship (r ≥ .50) also was found between the attributes “a1-number” (or know_a1) 

and “a3-geometry” (or know_a3), a1 and reas_a3, “a2-applying” and appl_a2/reas_a2, 

and a3 and appl_a1/appl_a3. Very strong correlation was observed between “a6-applying” 

and appl_a1, “a7-reasoning” and appl_a2/reas_a2, and “b1-whole numbers and integers” 

and “b2-fractions, decimals, ratio, proportion, and percent”, r ≥ .76. The attributes 

appl_a2 and reas_a2 had the same elements in the Q-matrix, r = 1.00; so, apply_a2 was 

excluded from the regression analysis. For the new process attributes, the following 

attributes strongly correlated to each other: “c1-identifying” and “a4-data and chance” (or 

know_a4), “c2-computing” and a1/a3, “c3-judging” and b2, “d2-recognizing” and a4, and 

“d4-computing_number” and b1/b2. The correlation between “d5-computing_algebra” 

and a2 was very strong, r = .91. Moreover, strong relationship among the IT attributes 

and the cognitive process attributes was noticed only between IT2 and the new process 

attributes “d3-formulating”. 

For Booklet 3, a less strong relationship was found among the attributes and the 

item difficulties than for Booklet 2. Only IT2 and IT3 significantly correlated with the 

item difficulty, r = .60 and .39, respectively. The following attributes strongly (r ≥ .50), 

or very strongly (r ≥ .70), correlated to each other: a3 and appl_a3, a6 and appl_a1, a7 

and reas_a2/reas_a3, b1 and b2, c1 and a4/c2, c3 and b1/b2/a3, d1 and a4, d2 and a4, and 

“d8-judging_geometry” and a3. The attributes a2 and “d5-computing_algebra” had the 

same elements in the Q-matrix, r = 1.00.  

In sum, it is reasonable that the level 1 attributes strongly related to the relative 

level 2 attributes. However, for a Q-matrix model, it is not expected that many attributes 

are highly correlated with respect to the assumption of attribute independence. Results 



 

 

128 

 

indicated that in general, the IT attributes moderately or weakly related to the TIMSS and 

new process attributes. Overall, the relationship of the attributes in the Q-matrices with 

the TIMSS process attributes was stronger than that with the new process attributes. For 

the models with the level 2 new process attribute, except for IT2 and “d3-formulating”, 

the correlations among the other attributes were moderate or low. 

Models with only the content attributes. For Booklets 2 and 3, the variances in 

item difficulty explained by the content attributes at level one (QM1) decreased (R
2
 = .19 

and adjusted R
2
 = .06 for Booklet 2, R

2
 = .05 and adjusted R

2
 = -.09 for Booklet 3: Table 

36). The variances explained by the revised QM6, with the content attributes at level two, 

were the same as those for the original QM6 (R
2
 = .31 and adjusted R

2
 = .06 for Booklet 2, 

R
2
 = .14 and adjusted R

2
 = -.10 for Booklet 3).  

Models with the TIMSS cognitive process attributes. For Booklet 2, the 

variances explained by the revised models (QM2 ~ QM5-2) were higher than those by the 

original models (Table 36). Variance explained by the level 1 attributes (QM3 = 

contL1+cogL1+ IT) was .81 (adjusted R
2
 = .73); variance explained by the level 2 

process attributes (QM5 = contL1+cogL2+ IT) was .81 (adjusted R
2
 = .72). When the 

attribute “a1-number” was divided into two attributes “b1-whole numbers and integers” 

and “b2-fractions, decimals, ratio, proportion, and percent,” no change was observed in 

R
2
 values, while the values of adjusted R

2
 were slightly reduced (adjusted R

2
 = .72 for 

QM3-2, adjusted R
2
 = .70 for QM5-2).  
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Table 36 

Variances in Item Difficulty Explained by the Revised Q-Matrices with the TIMSS 

Process Attributes 

Model Attributes 

Booklet 2   Booklet 3 

# of 
Attributes 

R
2
 

Adjusted 
R

2
 

 # of 
Attributes 

R
2
 

Adjusted 
R

2
   

QM1 contL1 4 .19 .06 
 

4 .05 -.09 

QM2 contL1+cogL1 6 .48 .36 
 

6 .12 -.08 

QM3 contL1+cogL1+IT 8 .81 .73 
 

8 .57 .43 

QM4 contL1+cogL2 8 .54 .37 
 

9 .17 -.15 

QM5 contL1+cogL2+IT 10 .81 .72 
 

11 .64 .45 

QM6 contL2 8 .31 .06 
 

7 .14 -.10 

QM3-2 contL1+cogL1+IT (b1b2) 9 .81 .72 
 

9 .57 .40 

QM5-2 contL1+cogL2+IT (b1b2) 11 .81 .70   12 .64 .43 

Note: The bolded numbers are the explained variances higher than those for the original Q-matrix 

models. 

 

 For Booklet 3, the adjusted R
2
 values explained by the revised QM3 and QM5 

were a little higher than those by the original QM3 and QM5, respectively. No change 

existed in the R
2
 value for QM3. The other variance values explained by the revised 

models decreased. A lower variance explained for QM4 and QM5 might be partially 

caused by the reduced number of the level two process attributes. When a1 was replaced 

by b1 and b2, no change was found in R
2
 values, but a little lower adjusted R

2
 was found 

(= .40 for QM3-2 and .43 for QM5-2). 

Models with the new cognitive process attributes. For Booklet 2, variance 

explained by the revised QM2 was the same as that by the original QM2 (R
2
 = .39 and 

adjusted R
2
 = .17: Table 37). Variance explained by the revised QM3 decreased (R

2
 = .78 

and adjusted R
2
 = .67), partially due to one less attribute included in model. Although 

there was a small number of attributes in revised QM4 and QM5 and lower R
2
 values, the 

adjusted R
2
 values were higher than those for the original QM4 and QM5 (R

2
 = .60 and 
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adjusted R
2
 = .42 for QM4, R

2
 = .78 and adjusted R

2
 = .65 for QM5).  The results of 

QM3-2 and QM5-2 displayed that the use of b1 and b2 almost did not change the R
2
 

values, but reduced the adjusted R
2
 values slightly. 

 

Table 37 

Variances in Item Difficulty Explained by the Revised Q-Matrices with the New Process 

Attributes 

Model Attributes 

Booklet 2   Booklet 3 

# of 
Attributes 

R
2
 

Adjusted 
R

2
 

 # of 
Attributes 

R
2
 

Adjusted 
R

2
   

QM2 contL1+cogL1 8 .39 .17 
 

8 .13 -.16 

QM3 contL1+cogL1+IT 10 .78 .67 
 

10 .62 .44 

QM4 cogL2 9 .60 .42 
 

9 .25 -.04 

QM5 cogL2+IT 11 .78 .65 
 

11 .63 .43 

QM3-2 contL1+cogL1+IT (b1b2) 11 .78 .66 
 

11 .62 .42 

QM5-2 cogL2+IT+b2 12 .79 .64   12 .63 .40 

Note: The bolded numbers are the explained variances higher than those for the original Q-matrix 

models. 

 

For Booklet 3, the revised QM2 accounted for less variance in item difficulty than 

the original QM2. The variance explained by the revised QM3 increased (R
2
 = .62 and 

adjusted R
2
 = .44). With fewer attributes, the R

2
 values explained by QM4 and QM5 

decreased (R
2
 = .25 for QM4 and .63 for QM5), while both adjusted R

2
 values increased 

(adjusted R
2
 = -.04 for QM4 and .43 for QM5), indicating that the new process attributes 

at level two explained more variance in item difficulty than the original models after 

penalizing for the number of attributes. When b2 included in QM3-2 and QM5-2, no 

change was founded in the R
2
 values, while the adjusted R

2
 values declined slightly.  

Results summary of multiple regression analysis. For the revised Q-matrices 

(with the TIMSS process attributes and the new process attributes), first, both booklets 
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showed the variances explained by only the content attributes were lowest (R
2
 = .39 

and .13 for QM1 and QM6, respectively). When the cognitive process attributes were 

added (QM2 and QM4), the four adjusted R
2
 values for Booklet 2 increased; but for 

Booklet 3, only two adjusted R
2
 values increased slightly. For the models with the IT 

attributes (QM3, QM3-2, QM5, and QM5-2), the explained variances were the highest 

(R
2
 = .62 ~ .81) and all adjusted R

2
 values adequately increased. The results suggested 

that the cognitive process attributes, especially those complex process attributes, played 

an important role in explaining the test item difficulties. Second, all variances in item 

difficulty explained by Booklet 2’s Q-matrices were higher than those by Booklet 3’s Q-

matrices. Also, for Booklet 3’s models without the IT attributes (QM1, QM2, QM4, and 

QM6), the adjusted R
2
 values were negative. The results indicated that the Q-matrices of 

Booklet 2 interpreted the items better than the Q-matrices of Booklet 3. Third, when the 

attribute “a1-number” was divided into two sub-attributes b1 and b2 or when b2 was 

added, no substantial change in the explained variance was found.      

LSDM: models with the TIMSS content and TIMSS cognitive process 

attributes.  

Least squares distance of Booklets 2 and 3. For both booklets, the LSDs of the 

eight Q-matrix models decreased monotonically in a small range, from .31 to .001 

(Figures 18 and 19). The orders of eight LSD curves of two booklets were similar to each 

other. The mean LSDs of two models with only the content attributes (QM1 and QM6) 

were the largest (Table 38). When the cognitive process attributes were included in QM2 

and QM4, the LSD values were reduced. The models with the IT attributes (QM3 and 

QM5) had the lowest LSDs. Moreover, when one number attribute a1 was replaced by b1 

and b2, the LSDs of QM3-2 and QM5-2 were further reduced, indicating including b1 
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and b2 helped to recover the items. Compared to Booklet 3, two models’ mean LSDs of 

Booklet 2 (QM1 and QM6) were slightly higher; the other six models’ mean LSDs of 

Booklet 2 were a little lower, suggesting that overall, the attributes recovered the items of 

Booklet 2 better than the item of Booklet 3.    

 

 
Figure 18. Least squares distance for the revised QMs of Booklet 2 (with TIMSS process 

attributes). 

 

 
Figure 19. Least squares distance for the revised QMs of Booklet 3 (with TIMSS process 

attributes). 
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Table 38 

Mean Least Squares Distance for the Revised QMs of Booklet 2 (with TIMSS Process 

Attributes) 

    QM1 QM2 QM3 QM4 QM5 QM6 QM3-2 QM5-2 

Booklet 2 
Mean LSD  .126 .104 .080 .101 .075 .124 .076 .072 

Order of mean LSD  8 6 4 5 2 7 3 1 

Booklet 3 
Mean LSD  .118 .114 .089 .111 .086 .117 .087 .085 

Order of mean LSD  8 6 4 5 2 7 3 1 

Note: The bolded numbers are the mean LSDs for Booklets 2 or 3 that are higher than the 

corresponding mean LSDs for another booklet.  

 

Attribute probability curves of Booklets 2 and 3. For Booklet 2, compared to the 

APCs of the original QM1 ~ QM6, the APCs of three revised models (QM1, QM3, and 

QM6) were improved (Figure 20). No obvious change was noted in APCs of QM2, QM4, 

and QM5. The APCs of QM3-2 and QM5-2 were improved slightly when “a1-number” 

was divided into two sub-attributes b1 and b2. In all eight models, more than 2/3 of the 

included attributes had an acceptable APC. However, problems still existed in the APCs 

of attributes a2, a4, b7, b8, and “reasoning_a2”.  

First, the probability of “a2-algebra” in QM2 was a constant of 100% across 

ability levels. In QM1 and QM5, the probabilities of a2 at the lowest ability levels (-5.07 

~ -3.5 in QM1 and -5.07 ~ -3.0 in QM5) were slightly higher than that at the ability level 

of -3.0 or -2.5, respectively; but the differences in probabilities were less than .05 and 

thus, acceptable. In QM3, the APC of a2 was a U-shaped curve, close to a probability line 

of 100%. Second, the APC of “reasoning_a2” displayed a U-shaped curve in QM4, QM5, 

and QM5-2. Third, the probability of a4 was a constant of 100% across ability levels in 

all eight models, as well as its sub-attributes in QM6. The results indicated that the 

attribute of data and chance did not discriminate the students’ mathematical ability. 
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For Booklet 3, with the revised Q-matrix, the APCs of QM3 were improved 

slightly, while the APCs of a4 in QM2 and QM4 and “b7-data” in QM6 became worse, 

with a value of 100% across ability levels (Figure 21). No substantial change existed in 

the other three models. Among the eight models, five models (QM1 ~ QM3, QM3-2, and 

QM6) had at least 2/3 of their attributes with an acceptable APC. All attributes’ APCs in 

QM1 exhibited a logical pattern. With b1 and b2 instead of a2, the APCs of QM3-2 and 

QM5-2 were not improved. The probability of “a6-applying” was a constant of 100% in 

QM3 and QM3-2. In QM4, QM5, and QM5-2, the probabilities of the level 2 attributes of 

a6 (appl_a1/a2/a3) were not displayed reasonably; also, the probabilities of 

“reasoning_a1” exhibited a U-shaped curve or were close to 100% across ability levels. 

In addition, the probabilities of “IT2-complexity” did not increase with an increase in 

ability level from -5.23 to -2.0/-2.5.  
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Figure 20. Attribute probability for the revised QM1 to QM5-2 of Booklet 2 (with TIMSS process 

attributes). 
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Figure 21. Attribute probability for the revised QM1 to QM5-2 of Booklet 3 (with TIMSS process 

attributes). 
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LSDM: models with the new cognitive process attributes. 

Least squares distance of Booklets 2 and 3. For both booklets, six models’ LSDs 

decreased monotonically in a small range, from .28 to .001, with an increase in ability 

level (Figures 22 and 23). The models with the IT attributes (QM3 and QM5) had lower 

LSDs than QM2 and QM4 (Table 39). Including b1 and b2 in QM3-2 and b2 in QM5-2 

reduced the LSDs. Except for QM4, Booklet 2 had lower LSDs than Booklet 3 in the 

other five models.    

  

 
Figure 22. Least squares distance for the revised QMs of Booklet 2 (with new process attributes) 

 

 
Figure 23. Least squares distance for the revised QMs of Booklet 3 (with new process attributes) 
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Table 39 

Mean Least Squares Distance for the Revised QMs of Booklet 2 (with New Process 

Attributes) 

    QM2 QM3 QM4 QM5 QM3-2 QM5-2 

Booklet 2 
Mean LSD  .103 .076 .096 .078 .066 .074 

Order of mean LSD  6 3 5 4 1 2 

Booklet 3 
Mean LSD  .111 .082 .095 .079 .081 .078 

Order of mean LSD  6 4 5 2 3 1 

Note: The bolded numbers are the mean LSDs for Booklets 2 or 3 that are higher than the 

corresponding mean LSDs for another booklet.  

 

Attribute probability curves of Booklets 2 and 3. For Booklet 2, the APCs of 

QM4 and QM5 were improved with the revised Q-matrix, but no obvious change was 

found in QM2 and QM3 (Figure 24). The addition of b2 refined the APCs of QM5-2, but 

not the APCs of QM3-2. All six models had more than 2/3 of the included attributes with 

acceptable APCs. Among them, all attributes’ probabilities in QM4 and QM5-2 displayed 

a logical pattern in terms of monotonicity, relative difficulty, and discrimination. In QM2 

and QM3, the probabilities of both “a2-number” and “a4-data and chance” were 100% 

across ability levels. In QM5, the probabilities of “d7-judging_operationRule” and “IT2-

complexity” declined with an increase in ability level in the -5.23 ~ -2.0 range.     

For Booklet 3, the APCs of the four models (QM2 ~ QM5) were improved with 

the revised Q-matrix (Figure 25). The use of b1 and b2 did not substantially change the 

APCs of QM3-2 and QM5-2. Every APC in QM4 was acceptable. The other five models 

had one unacceptable APC. No attribute’s probability was 100% across all ability levels. 

The attributes with a problem APC were “a4-data and chance,” “c3-judging,” and “IT2-

complexity,” which did not increase monotonically across ability levels. In QM2, QM3, 

and QM3-2, the APC of a4 displayed a U-shape. In QM2, the probability of c3 decreased 
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slightly in the lowest ability level range (from -5.23 to -3.0) with an increase in ability 

level, but the difference between the probability at the ability of -5.23 and the probability 

at the ability of -3.0 was only .03. In addition, in QM5 and QM5-2, the probability of IT2 

decreased in the lowest range of ability level (from -5.23 to -1.5/-2.0) with an increase in 

ability level.   

 

 

  

  

  
Figure 24. Attribute probability for the revised QM2 to QM5-2 of Booklet 2 (with new process 

attributes). 
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Figure 25. Attribute probability for the revised QM2 to QM5-2 of Booklet 3 (with new process 

attributes). 

 

 

Results summary of LSDM analysis. Table 40 reports the summary results of the 

revised Q-matrices. With respect to LSD, both booklets generated similar results with the 

TIMSS cognitive process attributes and the new cognitive process attributes. The LSDs 

of all models declined monotonically in a small range, with an increase in ability level. 

Adding the process attributes and the complex process (IT) attributes reduced the LSD 
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values. Also, including “b2-fractions, decimals, ratio, proportion, and percent” resulted in 

lower LSDs of four models, and improved the APC pattern of QM5-2 for Booklet 2. 

Although revision of the Q-matrices led to slightly worse LSDs in many models, more 

APCs of the revised models were acceptable. The APC of “a4-data and chance” still was 

not displayed reasonably in most models. A problem APC was also found for the sub-

attributes of a4, such as “b7-data” and “b8-chance.”  The probability of “a2-algebra” was 

not logically exhibited in the models with the level one attributes. Furthermore, the 

probability of “IT2-complexity” in several models declined with an increase in the lowest 

ability levels.  

Comparing the results of Booklet 2 to Booklet 3, the LSDs and APCs indicated 

that the attributes explained the items of Booklet 2 better than the items of Booklet 3. 

Most models of Booklet 2 had lower mean LSDs than those of Booklet 3. With the 

TIMSS attributes, all eight models of Booklet 2 had at least 2/3 of APCs acceptable; but, 

every model had one or two attributes’ probabilities that did not increase with an increase 

in ability level. For Booklet 3, all APCs of QM1 were acceptable; but, only five models 

had at least 2/3 of APCs acceptable. With the new process attributes, all six models of 

both booklets had at least 2/3 of APCs acceptable. Overall, Booklet 3 had slightly more 

acceptable APCs. All QM4’s APCs of both booklets were displayed logically. When b2 

was added, all APCs of QM5-2 for Booklet 2 became reasonable.  



 

 

 

 

 

 

Table 40 

Results Summary of the Revised Q-Matrices Using Multiple Regression and the LSDM 

 
* The difference between the probability at the lowest ability level and the lowest probability was less than .05.  

 

 

Range Mean LSD

Models with at 

Least 2/3 

Acceptable 

Curves

Models: 

Very 

Good

Good Models if 

without considing 

a2, a4, b7 and b8

probability = 100%
Non-monotonically

increasing curve

Booklet 2

(8 models: withTIMSS 

process attributes)

Revised (A5) 8 QMs': > A6's variance .312 ~ .001
6 QMs': < A6's LSD

2 QMs': > A6's LSD
all 8 models

QM1, QM2, QM3, 

QM3-2, QM6

a2 (QM2), a4 (7 models 

excepting QM6), b7 and b8 

(QM6)

a2 (QM1*, QM3, QM5*), 

reas_a2 (QM4, QM5, QM5-2)

Booklet 3

(8 models: withTIMSS 

process attributes)

Revised (A6) .311 ~ .001

5 models (QM1, 

QM2, QM3, 

QM3-2, QM6)

QM1 QM2, QM6

a4 (QM2, QM4), b7(QM6), a6 

(QM3, QM3-2), appl_a1 (QM5, 

QM5-2), appl_a3 (QM4, QM5, 

QM5-2), reas_a1 (QM4)

 b6 (QM6*), appl_a2 (QM4, 

QM5, QM5-2), reas_a1 (QM5, 

QM5-2), IT2 (QM3-2, QM5-2)

Booklet 2—final 

(6 models: with new 

process attributes)

Revised (A7) 6 QMs': > A8's variance .259 ~ .001
5 QMs': < A8's LSD

1 QMs': > A8's LSD
all 6 models

QM4, 

QM5-2
QM2, QM3

a2 (QM2, QM3), a4 (QM2, 

QM3, QM3-2), c2 (QM3-2)
d7 (QM5), IT2 (QM3-2*, QM5)

Booklet 3—final 

(6 models: with new 

process attributes)

Revised (A8) .281 ~ .001 all 6 models QM4 QM2, QM3, QM3-2
a4 (QM2, QM3, QM3-2), c3 

(QM2*), IT2 (QM5, QM5-2)

LSDM: APC

Q-matrix

LSDM: LSD LSDM: Attributes with Problem APC

Multiple Regression:

Variance

1
4

2
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Results summary of the regression analysis and the LSDM analysis for the 

revised Q-matrices. 

For both booklets, the revised Q-matrices with the TIMSS process attributes and 

the new process attributes were validated by 28 models using two methods. The results of 

both analyses are summarized in Table 40. First, results generated from the level 1 

attributes and the level 2 attributes were consistent. Second, most of the variance in item 

difficulty was explained by the Q-matrices with the IT attributes (.78 ~ .81 for Booklet 

2, .57 ~ .64 for Booklet 3), but generally not by those without the IT attributes (.19 ~ .60 

for Booklet 2, .05 ~ .25 for Booklet 3). The variances explained by the Q-matrix with 

only the content attributes were the smallest. Third, the LSDs of all models were small 

and displayed reasonably. Fourth, compared to the original Q-matrices, more revised 

models’ APCs were improved, especially the models with the new process attributes. 

Most attributes’ APCs were acceptable, but the APCs of a2 and a4 still were not logical 

in many models. For the following models, almost all APCs were acceptable: QM1 

(contL1) of Booklet 3 and three models with the new process attributes for both 

booklets—QM4 (cogL2), QM5 (congL2+IT), and QM5-2 (cogL2+IT+b2). Finally, the 

Q-matrices explained the items for Booklet 2 better than for Booklet 3. 

In sum, both the regression analysis and the LSDM analysis indicated that two Q-

matrices (QM5 (congL2+IT) and QM5-2 (cogL2+IT+b2)) could effectively explain the 

difficulties of the mathematics items. These two Q-matrices included the information of 

all three categories of attributes. For QM5, the explained variances in item difficulty were 

R
2
 = .78 and adjusted R

2
 = .65 for Booklet 2, and R

2
 = .63 and adjusted R

2
 = .43 for 
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Booklet 3. For QM5-2, the variances explained were almost equal to those for QM5, 

respectively. For these two models, almost all attributes’ APCs were acceptable.  

Comparing the TIMSS cognitive process attributes to the new cognitive 

process attributes. 

The Q-matrix models of QM2 ~ QM5-2. This study had two sets of cognitive 

process attributes, one based on the TIMSS assessment framework (knowing, applying, 

and reasoning, called the TIMSS process attributes) and another based on hypothesized 

cognitive procedures (identifying, computing, judging, and reasoning, called the new 

process attributes). After revising the Q-matrices, each type of process attributes had 10 

sub-attributes, with three same attributes for reasoning (d9 = reasoing_a1number, d10 = 

reasoning_a2algebra, d11 = reasoning_a3geometry). The Q-matrix models including 

these attributes were QM2 ~ QM5, QM3-2, and QM5-2.      

Multiple regression analyses showed that overall, the Q-matrices with the TIMSS 

process attributes explained more variance in item difficulty than those with the new 

process attributes (Table 41). For Booklet 2, except for QM4, variances explained by the 

other five Q-matrices with the TIMSS process attributes were higher than those with the 

new process attributes. With the TIMSS process attributes, both explained R
2
 values of 

QM3 and QM5 were .81, adjusted R
2
 = .73 and .72. With the new process attributes, both 

R
2
 values of QM3 and QM5 were .78, adjusted R

2
 = 67 and .65. For Booklet 3, Two 

models (QM5 and QM5-2) with the TIMSS process attributes had slightly higher 

variances explained (R
2
 = .64 and adjusted R

2
 = .45 for QM5) than those with the new 

process attributes. Three models (QM3, QM4, and QM3-2) with the new process 
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attributes had higher variances (R
2
 = .62 and adjusted R

2
 = .43 for QM3 and R

2
 = .25 and 

adjusted R
2
 = .43 for QM3) than those with the TIMSS process attributes.   

 

Table 41 

Variances in Item Difficulty Explained by the Revised Q-Matrices: TIMSS Process 

Attributes Vs. New Process Attributes 

Model Attributes 

Booklet 2   Booklet 3 

# of 
Attributes 

R
2
 

Adjusted 
R

2
 

 # of 
Attributes 

R
2
 

Adjusted 
R

2
   

TIMSS Process Attributes 
       

QM2 contL1+cogL1 6 .48 .36 
 

6 .12 -.08 

QM3 contL1+cogL1+IT 8 .81 .73 
 

8 .57 .43 

QM4 contL1+cogL2 (= all cogL2) 8 .54 .37 
 

9 .17 -.15 

QM5 contL1+cogL2+IT 10 .81 .72 
 

11 .64 .45 

QM3-2 contL1+cogL1+IT (b1b2) 9 .81 .72 
 

9 .57 .40 

QM5-2 contL1+cogL2+IT (b1b2) 11 .81 .70   12 .64 .43 

New Process Attributes 

       QM2 contL1+cogL1 8 .39 .17 

 

8 .13 -.16 

QM3 contL1+cogL1+IT 10 .78 .67 

 

10 .62 .44 

QM4 cogL2 9 .60 .42 

 

9 .25 -.04 

QM5 cogL2+IT 11 .78 .65 

 

11 .63 .43 

QM3-2 contL1+cogL1+IT (b1b2) 11 .78 .66 

 

11 .62 .42 

QM5-2 cogL2+IT+b2 12 .79 .64   12 .63 .40 

Note: The bolded numbers are the explained variances (with either the TIMSS process attributes 

or the new process attributes) higher than those for the corresponding models with another type of 

process attributes. 

 

LSDM analyses of a total of 12 models for two booklets displayed that except for 

QM5-2 for Booklet 2, the other 11 models with the new process attributes had a little 

lower LSDs than those with the TIMSS process attributes, LSD differences between two 

booklets = .001 ~ .015. Also, more APCs of the models with the new process attributes 

displayed a logical pattern. QM4 for both booklets and QM5-2 for Booklet 3, which 

included all new process attributes at level two, had all APCs acceptable.  
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The APCs of the two QM4 showed that “d5-computing_algebra,” “d1-comparing 

numbers,” and “d2-recognizing” were relatively easy for students, while “d3-formulating” 

was relatively difficult. QM4 of Booklet 2 also indicated “d8-judging_geometry,” 

“reasoning_a3”, and “reasoning_a2” were relatively difficult. “D7-

judging_operationRule” and “reasoning_a1” were relatively difficult for students who 

took Booklet 3. When two IT attributes were added, “IT3-constructed-response” was 

generally easier than “IT2-complexity.” For those students with ability above the average 

level, IT2 was generally the most difficult attribute. When the IT attributes were added, 

the probability curves of “reasoning_a2” for Booklet 2 and “reasoning_a1” for Booklet 3 

moved up obviously, suggesting there were compound effect between the IT attributes 

and “reasoning_a2” or “reasoning_a2.”   

The Q-matrix models of QM9 ~ QM11. The study further analyzed the models 

with only the two types of cognitive process attributes at level one (QM9 = IT, QM10 = 

cogL1, QM11 = cogL1+IT). This analysis compared effects of individual type of 

attributes on the item difficulties and item performance, and investigated the Q-matrix 

models without the content attributes.  

The multiple regression analysis showed that with only the two IT attributes, the 

Q-matrix (QM9) accounted for .59 of the variance (adjusted R
2
 = .56)  in the item 

difficulties for Booklet 2, and .43 (adjusted R
2
 = .39) for Booklet 3 (Table 42). With only 

the level 1 TIMSS process attributes (QM10), the explained R
2
 and adjusted R

2
 estimates 

were .31 and .26 for Booklet 2, and .06 and .001 for Booklet 3, respectively. When both 

types of the cognitive process attributes—IT and TIMSS process attributes were included 

in QM11, the explained R
2
 and adjusted R

2
 values increased to .64 and .58 for Booklet 2, 
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and .45 and .37 for Booklet 3, respectively. Moreover, for the model with only the new 

process attributes (M10), the explained R
2
 and adjusted R

2
 estimates were .34 and .24 for 

Booklet 2, and .12 and -.01 for Booklet 3, respectively. Following this, when the IT 

attributes were added (M11), the explained variances increased, R
2
 = .74 and adjusted R

2
 

= .68 for Booklet 2, and R
2
 = .55 and adjusted R

2
 = .45 for Booklet 3.  

 

Table 42 

Variances in Item Difficulty Explained by the Q-Matrices for QM1, QM6, and QM9 ~ 

QM11 

Model Attributes 

Booklet 2   Booklet 3 

# of 
Attributes 

R
2
 

Adjusted 
R

2
 

 # of 
Attributes 

R
2
 

Adjusted 
R

2
   

QM1 contL1 4 .19 .06 
 

4 .05 -.09 

QM6 contL2 8 .31 .06 
 

7 .14 -.10 

QM9 IT 2 .59 .56   2 .43 .39 

TIMSS Process Attributes 
       

QM10 cogL1 (a6a7) 2 .31 .26 
 

2 .06 .001 

QM11 cogL1+IT 4 .64 .58   4 .45 .37 

New Process Attributes 

       QM10 cogL1 (c1~c4) 4 .34 .24 
 

4 .12 -.01 

QM11 cogL1+IT 6 .74 .68   6 .55 .45 

Note: The bolded numbers are the explained variances (with either the TIMSS process attributes 

or the new process attributes) higher than those for the corresponding models with another type of 

process attributes. 

 

Comparing the Q-matrix models with each of the three types of attributes, the 

adjusted R
2
 estimates displayed that the variances explained by the cognitive process 

attributes (either TIMSS or new: adjusted R
2
 = .26/.24 for Booklet 2 and .001/-.01 for 

Booklet 3) were higher than those by the content attributes (adjusted R
2
 = .06/.06 for 

Booklet 2 and -.09/-.10 for Booklet 3); and the variances explained by the IT attributes 

(adjusted R
2
 = .56 for Booklet 2 and .39 for Booklet 3) were much higher than those by 
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both the content and process attributes. Compared to the model with only the TIMSS 

process attributes (adjusted R
2
 = .26 for Booklet 2 and .001 for Booklet 3), the new 

process attributes explained slightly less of the variance in item difficulty (adjusted R
2
 

= .24 for Booklet 2 and -.01 for Booklet 3). When the IT attributes were included, the 

adjusted R
2
 by the Q-matrices with the new process attributes were higher than those with 

the TIMSS process attributes.     

 The LSDM analysis showed that for QM10 and QM11 with either the TIMSS or 

new process attributes, the LSDs decreased monotonically in a small range, from .31 

to .001 (Figures 26 to 29). However, the LSDs for QM9 with only the IT attributes were 

within a large range, from .68 to .001, suggesting that it would be not appropriate to 

recover ICC with only the IT attributes although the two APCs for QM9 exhibited good 

patterns in Figures 30 and 31.  

     

  

Figure 26. Least squares distance for QM9 to QM11 of Booklet 2 (with TIMSS process attributes) 
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Figure 27. Least squares distance for QM9 to QM11 of Booklet 3 (with TIMSS process attributes) 

 

 
Figure 28. Least squares distance for QM10 and QM11 of Booklet 2 (with new process attributes) 

 

 
Figure 29. Least squares distance for QM10 and QM11 of Booklet 3 (with new process attributes) 
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The APCs of the new process attributes at level one displayed a better pattern than 

the APCs of the TIMSS process attributes at level one (Figures 30 and 31). Because “a5-

knowing” was specified for all items, its APC was always a perfect S-shape; as a result, it 

could not show its relative difficulty to “a6-applying” and “a7-reasoning.” In general, a6 

was relatively easier than a7. When the IT attributes were added, the probability of a6 

became a constant of 100% across ability levels for Booklet 3, suggesting that a6 might 

not effectively discriminate student skills.  

For the new process attributes at level one , QM10 of Booklet 2 clearly showed 

the order of difficulty of four attributes, from “c1-identifying” (easiest), “c3-judging,” 

“c2-computing,” to “c4-reasoning” (most difficult: Figure 27). QM10 of Booklet 3 also 

revealed that c1 and c3 were easier than c2 and c4. When the IT attributes were added, 

the APCs of the four process attributes changed slightly; but overall, their relative 

difficulty did not change. Both APCs of IT2 and IT3 crossed the other APCs. IT2 was 

still the most difficult attribute. But in QM11 of Booklet 2, the probability of IT2 

decreased with an increase in ability level, from -5.07 to -2.0, suggesting that IT2 did not 

effectively measure the mathematical skills of students at the lowest ability levels.   

In sum, the Q-matrices with the TIMSS process attributes explained a little more 

variance in item difficulty than those with the new process attributes. However, the 

LSDM analyses indicated that the probabilities of the new process attributes exhibited 

more logical patterns in terms of monotonicity, relative difficulty, and discrimination. 

Thus, the new process attributes were better than the process attributes based on the 

TIMSS assessment framework. 
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Figure 30. Attribute probability for QM9 to QM11 of Booklets 2 and 3 (with level 1 TIMSS 

process attributes). 
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Figure 31. Attribute probability for QM10 and QM11 of Booklets 2 and 3 (with level 1 new 

process attributes). 

 

Recovery of item characteristic curve with the LSDM. 

The Q-matrices of QM4 (cogL2) and QM5-2 (cogL2+IT+b2) with the new 

process attributes were used to recover the ICC of every item in the two booklets. The 

reasons for choosing these two models were that (1) almost all APCs in the two models 

were acceptable (excepting IT2 in QM5-2 for Booklet 3, its probability decreased when 

the ability level went up from -5.23 to -2.0); and (2) these two models included all new 

process attributes at level two, which also covered the content attributes at level one. The 

mean absolute difference (MAD) between the ICC recovery and the ICC estimated by the 

Rasch model was calculated for each item of Booklets 2 and 3 (Figures 32 and 33).  
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Figure 32. Mean absolute difference of the Booklet 2 items for QM4 and QM5-2. 

 

 
Figure 33. Mean absolute difference of the Booklet 3 items for QM4 and QM5-2.   

 

Based on the MAD values, numbers of items with different recovery degrees are 

reported, as well as the proportion of items falling into the categories of “somewhat poor,” 

“poor,” and “very poor” (Table 42). For QM4, the ICC recovery of Booklet 3 was better 

than that of Booklet 2. For QM5-2, the ICC recovery of Booklet 2 was slightly better than 

Booklet 3. Overall, the items had lower MAD values when they were recovered by the 

attributes in QM5-2, which had the IT attributes and b2. The recovery of several items 

was improved substantially when adding the attributes IT2 and b2, such as Items M02-7A, 
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M02-13, M03-7, M03-9, M03-11, M03-12, M03-15, M04-5A, and M04-5B. However, 

some items still were not well recovered by the proposed attributes. The two items with a 

poor recovery (both MADs = .19) in QM5-2 had only one attribute; these items were 

M02-6 (measuring “d5-computing_algebra”) and M02-11 (measuring “d2-recognizing”).        

 

Table 43 

Number of Items with Different Recovery Degrees 

Item Recovery 
Degree 

Mean Absolute 
Difference 

Booklet 2 Booklet 3 

QM4 QM5-2 QM4 QM5-2 

Very good       0 ≤ MAD < 0.02 5 3 1 7 

Good  0.02 ≤ MAD < 0.05 9 17 11 10 

Somewhat good  0.05 ≤ MAD < 0.10 10 7 15 11 

Somewhat poor  0.10 ≤ MAD < 0.15 3 2 3 5 

Poor  0.15 ≤ MAD < 0.20 3 2 2 0 

Very poor             MAD ≥ 0.20 1 0 1 0 

Proportion of items with poor MAD* 0.23 0.13 0.18 0.15 

* Proportion of items with poor MAD = number of items within somewhat poor, poor, 

and very poor ÷ total number of items 

 

The 15 items of assessment Block M03 were included in both Booklets 2 and 3. 

These items’ MADs are reported by booklet in Figure 34. For the same model, the MADs 

of the same items in two booklets were different. Overall, the ICC recovery of Booklet 3 

was slightly worse than that of Booklet 2. The results suggested that the required 

attributes held the Booklet 2 items better than the Booklet 3 items.   
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Figure 34. Mean absolute difference of the items in Block M03 for QM4 and QM5-2.   
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Chapter Four 

Discussion 

No matter the kind of assessment, the key point is to improve learning. 

Assessment should serve to improve learning, and provide support for learning and 

instruction, instead of testing for the sake of testing. Although nowadays approaches to 

assessment are much improved over decades past, the educational assessment community 

still faces challenges to integrate assessment into the learning environment. Cognitive 

diagnostic assessment was developed under multiple streams of influence, such as 

educational policy and goals, development of educational measurement, and advances in 

computational science and computational techniques. CDA generates more detailed 

information about students’ performance profiles than the scores derived from traditional 

CTT or IRT approaches; as a result, CDA supports better learning and teaching (Nichols, 

1994; Pellegrino, 2004). Moreover, a useful assessment should be rooted in reliable 

design of the test items, which is vital for widely administrated assessments, such as 

TIMSS. Research on CDA and CDMs aids in advancing the quality of educational 

assessments. As the largest and most comprehensive study of educational achievement, 

TIMSS provides a cross-national perspective on the trends in student achievement, school 

organizational and instructional practices, and education systems. However, studies of 

TIMSS assessment using CDMs are limited.  

For many CDMs, the item-attribute matrix is an essential component. However, 

the construction of attributes and a reliable Q-matrix is a challenge. Study of the Q-
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matrix and CDMs is still at a very beginning stage (Leighton & Gierl, 2007). Researchers 

investigated impacts of the Q-matrix misspecification, approaches to validation of the Q-

matrix, and exploratory methods to develop a Q-matrix using different CDMs. However, 

many issues still are not settled in building a Q-matrix with reliable quality. Thus, the 

present study explored the validation of the Q-matrix based on the TIMSS mathematics 

items using multiple regression and the LSDM.  

This chapter presents a summary of the study, major findings with respect to the 

research questions, limitations of the study, and recommendations for future study. 

Summary of the Study 

The purposes of this study were two-fold: (1) to validate the item-attribute matrix 

using two levels of attributes, and (2) through retrofitting the diagnostic models to the 

TIMSS test, to evaluate the construct validity of TIMSS mathematics assessment by 

comparing the results of two assessment booklets in TIMSS 2007. 

The data used were from the released mathematics items for the 8
th

 grade in 

TIMSS 2007. The present study analyzed the students’ performance on the 49 items of 

three assessment blocks (M02, M03, and M04) in Booklets 2 and 3. According to a 

review of the literature, the TIMSS assessment framework, and the 49 mathematics items, 

an attribute pool were developed with respect to the TIMSS assessment domains: the 

content domains and the cognitive domains. Using the two levels of proposed attributes, 

the researcher conducted a pilot study: specified the relationship between the items and 

the attributes and analyzed the draft Q-matrix based upon the LLTM. Finally, the 

researcher developed 7 level 1 attributes (4 content and 3 cognitive process) and 20 level 
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2 attributes (8 content and 12 cognitive process) based on the TIMSS assessment 

domains and 3 IT attributes based on item type.  

The 7 attributes at level one included four content attributes (contL1: a1-number, 

a2-algebra, a3-geometry, and a4-data and chance) and three cognitive process attributes 

(cogL1: a5-knowing, a6-applying, and a7-reasoning). At level two, every level 1 content 

attribute was divided into two sub-attributes; as a result, there were 8 level 2 content 

attributes (contL2: b1 ~ b8). At level two, every level 1 cognitive process attribute was 

further classified into four sub-skills according to the content domains; thus, there were 

12 level 2 cognitive process attributes (cogL2: know_a1/a2/a3/a4, appl_a1/a2/a3/a4, and 

reas_a1/a2/a3/a4). Moreover, based on item type, three comprehensive cognitive process 

attributes (or called the IT attributes) were identified, which represented integrated and 

more comprehensive cognitive processing that could not be defined with the listed 

cognitive process attributes. There were only one level of the IT attributes: IT1-multiple 

steps and/or responses, IT2-complexity, and IT3-constructed-response.  

Compared to the content attributes, the cognitive process attributes were harder to 

define. Limitations were found for the cognitive process attributes based on the TIMSS 

assessment framework (called the TIMSS cognitive process attributes). Then, the 2
nd

 

classification of cognitive process attributes (called the new cognitive process attributes) 

were produced according to further analyzing the procedures required to solve the 49 test 

items. The new process attributes encompassed 4 level 1 attributes (c1-identifying, c2-

computing, c3-judging, and c4-reasoning) and 11 level 2 attributes (d1 ~ d11).  

In total, four Q-matrices were developed for the 49 items, two of them were 

specified and two of them were randomly produced according to the specified Q-matrices. 
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The TIMSS Q-matrix were specified by three experts and the researcher, using the 

attributes based on the TIMSS assessment framework (with TIMSS content attributes + 

TIMSS process attributes + IT attributes). Then, the TIMSS process attributes were 

replaced by the new process attributes and the 2
nd

 Q-matrix was formed (with TIMSS 

content attributes + new process attributes + IT attributes). The relationship between the 

items and the new process attributes was specified by the researcher. The specified Q-

matrices were cross-validated through comparing results between the specified Q-

matrices and the random Q-matrices, between the Q-matrices with the TIMSS process 

attributes, and with the new process attributes, and also between Booklet 2 and Booklet 3.  

The 49 items were grouped into two booklets. Therefore, four Q-matrices were 

generated for each booklet. Validation of each Q-matrix was investigated with eleven Q-

matrix models (QM1 ~ QM11) using multiple regression and the LSDM. Based on the 

LLTM, multiple regression examined variance in item difficulty explained by the Q-

matrices. A higher variance explained by a Q-matrix suggests that the Q-matrix is more 

reliable. The LSDM investigated performance on the attributes and extent of the item 

characteristic curve (ICC) recovery by the attributes’ probabilities. According to the 

LSDM, the smaller the LSDs, the better the attributes or the Q-matrix explain the items; 

and also, the attribute probability curves (APCs) exhibit a reasonable pattern in terms of 

monotonicity, relative difficulty, and discrimination. In addition, a smaller mean absolute 

difference (MAD) between the recovered ICC and the estimated ICC suggests a good 

recovery. With respect to the MAD, Dimitrov (2007) suggested six recovery degrees, 

from “very good” to “very poor”. 
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Eight Q-matrix models (QM1 ~ QM8) were implemented to explore effect of 

different categories of attributes (content, cognitive process, and IT) at the two levels. 

QM1 ~ QM3 (QM3 = contL1+cogL1+IT) tested the Q-matrices with the attributes at 

level one. QM4 and QM5 (QM5 = contL1+cogL2+IT) investigated the combination of 

the level 1 content attributes and the level 2 process attributes. QM6 ~ QM8 (QM8 = 

contL2+cogL2+IT) analyzed the Q-matrices with the attributes at level two. Each 

category of attributes was added step by step for the comparison analyses.  

Based on a series of analyses, the Q-matrices were further refined with respect to 

the problem APCs of some attributes. Three attributes were re-defined (“b1-whole 

numbers and integers,” “b7-data,” and “b8-chance”). Four attributes were deleted 

(“applying_a4data and chance,” “reasoning_ a4data and chance,” “d6-judging_number,” 

and “IT1-multiple steps/responses”). Due to the complexity, overlap among the attributes, 

and the problem APCs, the Q-matrix models QM7 and QM8 were excluded from the 

final analyses. Also, QM4 and QM5 with the new process attributes were re-modeled 

because of overlap between the level 1 content attributes and the level 2 cognitive process 

attributes. In the two models with the IT attributes (QM3-2 and QM5-2), the attribute 

“a1-number” were replaced by b1 and “b2-fractions, decimals, ratio, proportion, and 

percent” because a1 were required by a majority of the items and so, the APC of a1 did 

not display meaningful. In addition, the relationship between the attributes and the items 

were re-examined; and a few elements of the Q-matrices were revised.  

Following this, the revised Q-matrices were further analyzed using multiple 

regression and the LSDM, with eleven Q-matrix models (QM1 ~ QM8 and QM9 ~ 

QM11). The models of QM9 ~ QM11 compared the Q-matrices with only one type of 
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attributes at level one. The Q-matrices with the three types of attributes accounted for 

most of the variance in item difficulty; and most ACPs exhibited a logical pattern in 

terms of monotonicity, relative difficulty, and discrimination. Overall, the proposed Q-

matrices were acceptable, but with a few unreasonable APCs. For Booklet 3, the Q-

matrices without the IT attributes explained low variances in item difficulty, with 

negative adjusted R
2
 values, and there were more problem APCs, indicating that the items 

of Booklet 3 were not well explained by the proposed attributes and the Q-matrices.  

Except for the attribute “IT2-complexity” for Booklet 3, all APCs of QM4 and 

QM5-2 for both booklets were reasonable. Therefore, QM4 and QM5-2 were chosen to 

analyze degree of the ICC recovery by the LSDM. 

In sum, the present study analyzed 12 Q-matrices for two booklets: 4 originally 

specified Q-matrices, 4 random Q-matrices, and 4 revised Q-matrices. Among them, 6 Q-

matrices involved the TIMSS process attributes and 6 Q-matrices included the new 

process attributes. Each Q-matrix was analyzed with the eight Q-matrix models; also, the 

revised Q-matrix was tested with QM9 ~ QM11. Thus, in total, the validation study 

tested 98 models using multiple regression and the LSDM. The proposed Q-matrices 

were validated and cross-validated through comprehensive analyses.  

Major Findings 

With respect to each research question, major findings are summarized and 

discussed below. 

Research question one: Which type of attributes contributes more to item difficulty: 

content, cognitive process, or complex cognitive process (item type)? To address this 

question, the eleven Q-matrix models (QM1 ~ QM11) were employed; and, each 
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category of attributes (content, cognitive process, and IT) at the two levels were added 

step by step. Consistent results were found from the specified Q-matrices, original and 

revised, with the TIMSS process attributes and the new process attributes. Results 

demonstrated that: the content attributes accounted for a very small proportion of the 

variance in item difficulty; the cognitive process attributes accounted for more variance 

in item difficulty than the content attributes; the complex cognitive process attributes 

accounted for much more variance than both the content and process attributes.  

For Booklet 2, when the cognitive process attributes, at both level one and level 

two, were added to the models with only the content attributes, the explained adjusted R
2
 

values became over twice as high as those of the models with only the content attributes. 

For Booklet 3, when the cognitive process attributes were added to the models with only 

the content attributes, the explained adjusted R
2
 values slight increased or even decreased. 

However, the models with each type of attributes (QM10 vs. QM1/QM6) displayed that 

the adjusted R
2
 values explained by only the cognitive process attributes were higher than 

those by the content attributes. Results suggested that the ability to apply knowledge and 

reasoning with knowledge may be more important than just remembering knowledge. 

However for many assessments, test scores generally are tied to content domains rather 

than cognitive mechanisms (Nichols, 1994); based upon such test scores, it would be hard 

to provide effective support for better teaching and learning. 

Generally, the content attributes and the cognitive process attributes in total 

explained less than 50% of the variance in item difficulty. When the IT attributes were 

included, all explained R
2
 values increased significantly (p ≤ .003); most variance in item 

difficulty (81% for Booklet 2 and about 60% for Booklet 3) was explained by the 
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specified Q-matrices. It could be that the IT attributes were easier to identify than the 

cognitive process attributes; and so, the IT attributes were more predictive. Also, results 

indicated that item type, which represents integrated cognitive processing, played a more 

important role in deciding the item difficulties. Thus, design of test items not only need to 

consider knowledge topics and cognitive skills to be measured, but also should consider 

item type comprehensively, such as wording, length of item, distracting information, and 

use of multiple choice or constructed-response formats.   

Also, as expected, almost all of the variances explained by the random Q-matrices 

were smaller than those explained by the specified Q-matrices. This indicated that the 

specified Q-matrices, which were constructed based upon the underlying content and 

cognitive behaviors, were better the Q-matrices that were randomly generated. The 

development of CDA and CDMs endeavors to integrate cognitive psychology with 

educational assessment. An adequate Q-matrix, to some degree, can reveal factors 

affecting cognitive processing.       

However, the cognitive processing for a problem could be a complex mechanism, 

within which many factors would affect each other reciprocally. As a result, it would be 

difficult to demonstrate the mechanisms of solving some mathematics items with several 

simple content and process attributes, which is supported by the large percentage of 

variance in item difficulty explained by the IT attributes. Also, some items required the 

same attributes; but, their item difficulties were obviously different. For Booklet 3, about 

40% of the variance in item difficulty was not explained by the proposed attributes and 

the models without the IT attributes had negative adjusted R
2
 values, indicating the 
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unfound attributes still largely affect the item difficulties. Thus, there is still room for 

refining the attributes and improving the Q-matrices.  

Moreover, the different attributes’ contribution to item difficulty suggested that 

CDA can generate richer information about students’ strength and weakness than the 

overall scores estimated by the CTT and IRT methods. For the 49 items, a correct 

response to an item received one score point or two score points (only for two items). 

However, the items measured different knowledge and cognitive process; and their 

difficulties were significantly different. Thus, if based on feedback from a CDA, students 

would be provided specific remedial instructions with respect to their skill profiles.  

Research question two: Do the new cognitive process attributes provide an 

explanation of the items? What different results were found between the TIMSS cognitive 

process attributes and the new cognitive process attributes? With respect to the 

limitations of some TIMSS process attributes, the new process attributes were proposed. 

After revision, the TIMSS process attributes included 3 attributes at level one and 10 

attributes at level two; the new process attributes contained 4 attributes at level one and 

10 attributes at level two. These two types of attributes had a common attribute 

“reasoning” at level one and three common reasoning attributes at level two.  

Results of QM2 ~ QM5-2 displayed that the new process attributes explained the 

item difficulties well. For QM3 (contL1+cogL1+IT) and QM5 (cog2+IT), the explained 

variances in item difficulty were about .78 and .62 for Booklets 2 and 3, respectively. The 

LSDs decreased monotonically in a relatively small range. The APCs of all new process 

attributes, at both levels, exhibited a reasonable pattern.  
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Overall, the explained variances in item difficulty by the Q-matrices with the new 

process attributes were close to those with the TIMSS process attributes. For Booklet 2, 

excepting QM4, the variances explained by the Q-matrices with the TIMSS process 

attributes were slightly higher than those with the new process attributes. However, for 

Booklet 3, excepting QM5 and QM5-2, the variances explained by the Q-matrices with 

the new process attributes were a little higher than those with the TIMSS process 

attributes. 

The LSDM analyses of both booklets indicated that the Q-matrices with the new 

process attributes interpreted the items better than those with the TIMSS process 

attributes. Except for QM5 and QM5-2 of Booklet 2, the mean LSDs of the other 10 

models with the new process attributes were less than those with the TIMSS process 

attributes. More APCs of the TIMSS process attributes did not display logically than 

those of the new process attributes. Except for “c2-computing” (QM3-2) and “d7-

judging_operationRule” (QM5) for Booklet 2, the APCs of other new process attributes 

at both levels exhibited a meaningful pattern. Almost all APCs of QM4 and QM5-2 were 

acceptable.   

In sum, according to all analysis results and the limitations of some TIMSS 

process attributes, the new process attributes explained the mathematics items better than 

the TIMSS process attributes.  

Research question three: What differences are generated from the level 1 

attributes and the level 2 attributes? Using attributes at a very small grain size could lead 

to unstable parameters and overly complex diagnostic feedbacks about students’ 

performance. On the other hand, the coarse-grained attributes do not produce detailed 
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information about students’ knowledge states. Thus, choosing an appropriate grain size 

for attributes is very important for a CDM. However, the literature review shows that 

studies of CDM and the Q-matrix generally employed one level of attributes.  

In this study, two levels of attributes were developed for the content attributes and 

the process attributes. There was only one level of the IT attributes. At level two, each 

level 1 content attributes were divided into two sub-attributes. The TIMSS process 

attributes at level two were classified based on the level 1 process attributes and the level 

1 content attributes. At level two, each new process attributes at level one were divided 

into two or three sub-skills, mainly based on the cognitive behaviors in solving the items. 

With respect to the classification, the level 2 process attributes embraced the information 

of both the content and process attributes at level one. Thus, more detailed information 

underlying the item difficulty and the students’ performance could be generated with the 

level 2 attributes. Meanwhile, because models with the level 2 attributes were more 

complex, more attributes’ APCs did not display logical order in these models. 

Results generated from the level 1 attributes and the level 2 attributes were 

consistent and close to each other. Analyses of 28 models for Booklets 2 and 3 found that 

the R
2
 values explained by the level 2 attributes were higher than those by the level 1 

attributes; however, their adjusted R
2
 values were equal to or close to each other, except 

for three QM4 models, which suggested that the same variance was explained by the two 

levels of attributes after penalizing the R
2
 values for adding the extra variables. 

The LSDs of the models with the same type of attributes, but at the different 

levels, were compared (QM1 vs QM6, QM1 vs QM4, QM3 vs QM5, QM3-2 vs QM5-2). 

For the corresponding models with the same type of attributes, their LSDs were close to 
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each other. But, overall, the models with the level 2 attributes had relatively smaller 

LSDs than those with the level 1 attributes.  

With respect to the APC, the pattern of the level 1 attributes’ probabilities would 

affect the pattern of the corresponding level 2 attributes’ probabilities. For example, for 

Booklet 2, the probability of “a4-data and chance” was a constant of 100% across ability 

levels in the seven models; the probabilities of two sub-attributes of a4 (b7-data and b8-

chance) were also 100% across ability levels. For Booklet 3, similar issues were also 

found for “a2-algebra” and its sub-attribute “b4-algebraic expressions and equations,” 

and “a6-applying” and its sub-attribute “appl_a1/a2/a3.” 

Research question four: Are the attributes of the two levels appropriate for 

recovering the students’ mathematics achievement? The LSDM is based on the 

assumption that successful response on an item requires mastery of all underlying 

knowledge and cognitive processes. As a result, the correct item response probability, 

ideally, would be equal to the product of the probabilities of correct performance on all 

relative attributes. Thus, students’ performance on each item would be based on their 

performance on the required attributes. The APCs reflect the performance on attributes of 

students at the different ability levels. The APCs are expected to show a logical pattern in 

terms of monotonicity, relative difficulty, and discrimination. 

Most APCs of QM1 ~ QM8 exhibited a reasonable pattern. Thus, most proposed 

attributes of both levels could be used to recover students’ performance. In the following 

models, almost all APCs were acceptable: QM1 (contL1) for Booklet 3 and five models 

with the new process attributes—QM4 (cogL2), QM5 (congL2+IT), QM5-2 

(cogL2+IT+b2), QM9 (cogL1), and QM10 (cogL1+IT) for both booklets.  
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However, still some attributes’ probabilities showed unreasonable patterns, being 

a constant of 100% across ability levels or being a unexpected curve, such as “a2-algebra,” 

“a4-data and chance,” “b7-data,” “b8-chance,” “a6-applying,” “appl_a1/a2/a3,” 

“reas_a1/a2,” “d7-judging_operation rule,” and “IT2-complexity.” The content attributes 

a2, a4, b7, and b8 were necessary knowledge topics measured by the test; however, their 

APCs did not display logically in many models. The problem APCs indicated that (1) the 

TIMSS data may not completely fit the LSDM; (2) there is still space for improving the 

Q-matrices. Moreover, many models indicated that the attribute IT2 was the most 

difficult attribute. But, at the lowest ability levels, the probability of IT2 did not rise with 

an increase in ability level, suggesting that students at the lowest ability levels might 

implement different cognitive strategies with the difficult attributes, such as guessing, 

and as a result, the performance on the difficult attributes would not match the ability at 

the lowest ability levels.      

Research question five: What attributes combined into a Q-matrix can adequately 

explain the TIMSS mathematics test? According to Borsboom and Mellenbergh (2007), 

“A test is valid for measuring a theoretical attribute if and only if variation in the attribute 

causes variation in the measurement outcomes through the response process that the test 

elicits” (p. 93). In the present study, the Q-matrices were cross-validated by multiple 

regression and the LSDM. With respect to multiple regression, a higher variance in item 

difficulty was expected to be explained by the required attributes and a good Q-matrix. 

With respect to the LSDM, for an adequate Q-matrix, small LSDs and MAD were 

expected to produce well-recovered ICCs; also, the APCs were anticipated to be 

meaningful curves. 
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Based upon a series of analyses with the eleven Q-matrix models, the Q-matrices 

including the level 2 new process attributes and the IT attributes, with or without b2 

(QM5 and QM5-2), were found to be reliable Q-matrices that adequately explained the 

TIMSS mathematics test. First, most of the variance in item difficulty was explained by 

these two Q-matrices (R
2
 ≥ .78 and adjusted R

2
 ≥ .64 for Booklet 2, R

2
 ≥ .62 and adjusted 

R
2
 ≥ .40 for Booklet 3). Second, the mean LSDs for these two models were the smallest 

among the eight models. Third, almost all APCs were acceptable, although the 

probabilities of “IT2-complexity” and “d7-judging_operationRule” at the lowest ability 

levels were slightly higher than those at higher ability levels. Fourth, these Q-matrices 

contained the information of the three types of attributes. All APCs of QM4 (cogL2) with 

the new process attributes were also acceptable, but QM4 did not include the IT attributes. 

Also, for QM4, the variances explained were relatively small (R
2
 = .60 and adjusted R

2
 

= .42 for Booklet 2, R
2
 = .25 and adjusted R

2
 = -.04 for Booklet 3). So, QM4 was not as 

good as QM5 and QM5-2. The recovered ICC also indicated that QM5-2 was better than 

QM4.   

Research question six: Do the two booklets hold the same construct validity in 

mathematics assessment? Reliability and validity are main concerns for a high quality 

measurement. The designers of the TIMSS assessments implemented a series of strict and 

comprehensive procedures to ensure that the tests are reliable and the test validity is 

supported. To maximize assessment coverage while keeping student assessment burden 

to a minimum, the TIMSS assessment applied a rotated block design, that is, 14 blocks of 

mathematics items were assembled rotationally in the 14 booklets (Mullis et al., 2005b). 
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To effectively measure and compare the achievement of the students taking different 

booklets, the same construct validity is expected to hold across the booklets.  

To address the construct validity across the booklets, this study compared the 

results of Booklet 2 and Booklet 3 through the 14 Q-matrix models. The regression 

analyses showed that for all Q-matrix models, the explained variances for Booklet 3 were 

much less than those for Booklet 2. According to the LSDM analyses, 11 models’ mean 

LSDs of Booklet 3 were higher than those of Booklet 2. Overall, Booklet 3 had more 

problem APCs than Booklet 2. With respect to the MAD for QM5-2, the ICC recovery of 

the 15 common items for Booklet 3 were a little worse than those for Booklet 2. Thus, all 

results indicated that the items of Booklet 3 were not explained by the Q-matrices as well 

as the items of Booklet 2. It seems that construct validity was not held constant across the 

two booklets. However, analysis of the shared assessment block M03 does not support 

this statement.  

When the data of students’ response to the items were calibrated using the Rasch 

model for each booklet, only one common item had the same difficulty across the 

booklets. Fourteen common items of Booklet 2 had clearly higher item difficulties than 

the corresponding items of Booklet 3, with a mean difference in item difficulty of .40. A 

regression analysis found that the Q-matrix for the 15 common items accounted for a 

higher variance in the item difficulties for Booklet 2 than that for Booklet 3. Moreover, 

the LSDM analyses employed fixed ability levels. The variance in item probabilities 

estimated with the Rasch model mainly came from the variance in the item difficulties. 

Thus, comparison of the explained variances and the ICC recovery could not demonstrate 

if the same construct validity was supported, or not, across the assessment booklets.    
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Limitations 

This current study implemented a comprehensive analysis to ensure the validation 

of the proposed Q-matrices. However, some limitations were found during the analyses.  

The first limitation is the data used in this study. Retrofitting CDMs to existing 

tests is likely to generate unsatisfactory results (Close, 2012; Gierl, Alves, & Majeau, 

2010; Lee & Sawaki, 2009). This study retrofitted the LSDM to the TIMSS data. The 

probabilities of two content attributes (“a2-algebra” and “a4-data and chance”) were not 

found to be well displayed for many models, suggesting that the data may be not 

completely appropriate for the LSDM. For some attributes (e.g., reasoning), there were 

not enough items measuring them. In addition, the largest MAD between the ICC 

recovery and the estimated ICC indicated that the LSDM could not recover well the items 

requiring only one attribute. 

The second limitation is the number of the random Q-matrices. To compare the 

specified Q-matrices to the random Q-matrices, only one random Q-matrix was generated 

for each specified Q-matrix. Results indicated that the eight specified Q-matrices were 

more reliable than the eight random Q-matrices. But, this did not demonstrate that the 

specified Q-matrices were always better than the random Q-matrices. To demonstrate that 

the superiority of the specified Q-matrices over the random Q-matrices did not depend on 

chance, it is better to generate or simulate more random Q-matrices for the comparison 

analyses.  

The third limitation to be addressed is that the analyses did not consider guessing 

and slip factors. Guessing is known to be a major threat to the validity of a test score 

(Royal & Hedgpeth, 2013), as well as slip. For instance, for the most difficult attribute 
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“IT2-complexity,” the relatively high probabilities at the lowest ability levels suggested 

that those students at the lowest ability levels possibly applied different cognitive 

strategies for IT2, and so, their performance on IT2 was not displayed in a reasonable 

pattern. Moreover, it is possible that the items were calibrated with the Rasch model 

without guessing and slip parameters, which resulted in the large differences in the item 

difficulties of the 14 common items between Booklet 2 and for Booklet 3. This study did 

not consider the effects of guessing and slip and so it is recommended that future work 

include guessing and slip estimates.  

The fourth limitation is the cross-validation between Booklet 2 and Booklet 3. 

One objective of this study was to investigate whether the same validity held across the 

two booklets. All analysis results were compared between Booklet 2 and Booklet 3. 

However, analysis of the 15 shared items found that the regression analysis and the 

LSDM did not indicate that the two booklets had the same construct validity. 

Recommendations for Further Study  

 As researchers pointed out, although statistical methods are useful tools for 

studying CDMs and the Q-matrix, no approach is perfect and so, it is not appropriate to 

rely on one or two methods (Close, 2012; de la Torre, 2008; Tatsuoka, 2009). Also, it is 

impossible to completely reveal complex cognitive mechanisms just using several 

parameters. Therefore, validation of the Q-matrix needs to integrate findings from 

different approaches, as well as relative theories, to generate final conclusions. For 

further study, the Q-matrix could be tested by other statistical methods, such as the 

deterministic inputs, noisy ‘‘and’’ gate (DINA) model (de la Torre & Douglas, 2004; de 

la Torre, 2011; Haertel, 1989; Junker & Sijtsma, 2001; Macready & Dayton, 1977) and 
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the noisy inputs, deterministic ‘‘and’’ gate (NIDA) model (Junker & Sijtsma, 2001; 

Maris, 1999), which include guessing and slipping parameters at the item level or the 

attribute level. Also, the relationship between the TIMSS mathematics items and the 

required attributes could be further examined with the data in different assessment cycles.    

 Second, it may be profitable to invite experts in cognitive psychology and 

cognitive science to aid in building the Q-matrix. Compared to the content attributes, the 

cognitive process attributes are harder to identify. Studies in cognitive science would 

provide useful methods to enhance the construction of the Q-matrix. For example, 

through investigating information processing, protocol analysis was found to be a valid 

approach to illustrate thought sequences via verbal reports (Ericsson, 2002; Newell & 

Simon, 1972). Future study of the Q-matrix would be better to invite experts in 

mathematics teaching, mathematics content, and cognitive psychology to analyze 

students’ protocols of solving mathematics items.   

Third, studies could further investigate the mathematical attribute profile of each 

student or the students at the same ability level. One important function of DCMs is to 

diagnose the attribute profiles of test-takers with empirical data (DeCarlo, 2011; Hartz & 

Roussos, 2008; Rupp, Templin, & Henson, 2010; Yang & Embretson, 2007). An attribute 

profile refers to a combination of attributes mastered and attributes not mastered by a 

student. For the TIMSS test, students’ performance on attributes or their skills profile 

could be compared among the participating countries.  

The LSDM chooses a set of fixed ability levels to analyze the ICC recovery, 

which may be different from the estimated ability levels based on the data. Thus, fourth, 

future study of the Q-matrix could explore the use of the estimated ability levels, which 
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may generate more useful information with respect to the analyzed items and the test-

takers. Also, the relationship between individual students’ performance on each item and 

the attributes is expected to be investigated in future study.  

In addition, the present study examined the relationship of items and required 

attributes in the mathematics assessment. However, the Q-matrix method can be applied 

to assessment in other fields, such as language testing, medical examination, and clinical 

diagnosis (e.g., attention-deficit/hyperactivity disorder or autism). Future study could 

further explore validity of the Q-matrix through analyzing assessments in different 

disciplines.  

Conclusion 

 One of the experts who assisted identifying the Q-matrix for this study has 27 

years of teaching experience in mathematics for Grades 6 to 12. She pointed out that 

every year her students took different mathematics assessments, including TIMSS; the 

students’ scores were often used as a key standard to measure the performance of 

students, teachers, and schools; however, many teachers thought the test scores were not 

very useful for better instruction and improving students’ leaning. Study of CDA and 

CDMs have the potential to address this dilemma through producing richer feedback 

about students’ performance. Constructing a reliable Q-matrix is a critical step for 

effectively implementing CDA and CDMs.  

Moreover, development of assessments with high quality is a very challenging 

task, one that consumes numerous resources in time, funding, expertise, and researchers’ 

efforts. Studying the relationship between test items and required knowledge and 

cognitive skills could greatly improve the efficiency in producing valuable test items. For 
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example, Gierl and his colleagues explored automatic item generation in multiple 

languages based on CDM studies (Fung, Lai, & Gierl, 2013; Gierl & Lai, 2013a, 2013b; 

Gierl, Lai, Fung, & Latifi, 2013), which could substantially advance the construction of 

assessment items. This study explored the relationship between the items and the 

attributes based on the mathematics test of the largest international assessment TIMSS. 

The analyses would generate some useful findings for further enhancing this most 

influential assessment.  
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Appendix A 

Studies of the Item-Attribute Matrix 

Study Main Topics CDM or Index Data 
Number of 
Attributes 

Number 
of Items 

Sample 
Size 

1 Chen, J., de la Torre, J., & Zhang, Z. (2012, April). Relative and absolute fit evaluation in cognitive diagnosis modeling.  

  
Sensitivity of six model fit statistics for 
absolute or relative fit under different CDM 
settings with Q-matrix and model 
missepcification. 

saturated G-DINA, DINA, DINO, 
additive CDM, linear logistic 
model, and reduced RUM 

K.K. Tatsuoka's fraction 
subtraction data 

8 20 536 

  DINA and additive CDM simulated data 5 
15 and 

30 
500 and 
1,000 

2 Chen, C. & Zhang, J. (2012, April). Q-matrix optimization in the cognitive diagnostic assessment.  

  
Establish a refined iterative framework of Q-
matrix optimization. 

fusion model Test of Practical Chinese 4 30 857 

3 Feng, Y., & Habing, B. (2012, April). Q-matrix validation method for the reduced RUM. 

  
The Q-matrix validation based on the 
difference of correct response probabilities 
between the examinees who mastered all 
attributes and those who did not.  

reduced RUM 

simulated data 4 19 1,000 

  
Examination for the Certificate for 
Proficiency in English 

3 28 2,922 

4 Wang, W., Ding, S., Song, L., & Liu, Y. (2012, April). The application of FCA for aiding identifying attributes in cognitive diagnostic assessment. 

  
Assess the effectiveness of the formal 
concept analysis in identifying cognitive 
attributes. 

DINA simulated data 6 6 
10, 20 and 

30 

   
K.K. Tatsuoka's fraction 
subtraction data 

8 8 and 20 536 

1
8
9

 



 

 

 

 

5 Close, C. (2012). An exploratory technique for finding the Q-matrix for the DINA model in cognitive diagnostic assessment: Combining theory with 
data. (also: Close & Davison, 2012) 

  

Evaluate a potential exploratory 
technique that could be used to 
supplement theory in finding the Q-
matrix. 

DINA 

simulated data 3 21 
572 and 

4,000 

  
K.K. Tatsuoka's fraction 
subtraction data 

8 20 536 

  NAEP 2003 grade 8 math 
(no 

interpretable 
skills) 

10, 14 
and 21 

31,588, 
31,420 

and 
31,542 

6 
Kunina-Habenicht, O., Rupp, A. A., & Wilhelm, O. (2012). The impact of model misspecification on parameter estimation and item-fit assessment in 
log-linear diagnostic classification models. 

  

Effects of Q-matrix misspecification 
(under- and over-specification, and a 
combination of both) and interaction 
effect misspecification on item and 
person parameters, classification 
accuracy, two item-fit statistics (MAD 
and RMSEA), and relative model fit 

log-linear diagnostic 
classification models  

simulated data (a complex 
simulation study with 32 data-
generation conditions) 

3 and 5 
25 and 

50 

1,000 
and 

10,000 

7 Tu, D.-B., Cai, Y., & Dai, H.-Q. (2012). A new method of Q-matrix validation based on DINA model.  

  
A modification method of the Q-matrix 
in the DINA model. 

DINA simulated data 5 31 1,000 

8 DeCarlo, L. T. (2011). On the analysis of fraction subtraction data: The DINA model, classification, latent class sizes, and the Q-matrix.  

  
The relationship between the Q-matrix 
and classification of examinees. 

reparameterized DINA, 
higher order DINA, and 
restricted higher order DINA;  
AIC and BIC 

K.K. Tatsuoka's fraction 
subtraction data 

8 20 536 

  simulated data 4 15  

9 Liu, J., Xu, G., & Ying, Z. (2011a). Theory of self-learning Q-matrix. 

  
Provide theoretical analyses on the 
learnability of the underlying Q-matrix. 

DINA (no data analysis)    

1
9
0

 



 

 

 

 

10 Liu, J., Xu, G., & Ying, Z. (2011b). Learning item-attribute relationship in Q-matrix based diagnostic classification models. 

  

Mathematical framework of estimating 
the Q-matrix and the model parameters 
when the slipping and guessing 
parameters were unknown. 

DINA and DINO (no data analysis)    

11 Shu, Z., Henson, R. A., & Willse, J. (2010, May). Q-matrix validation with the DINA and DINO: Implications of incorrectly adding or omitting attributes.  

  
Use Q3 to detect misspecification of 
skills in the Q-matrix. 

DINA and DINO simulated data 4 30 1,000 

12 Choi, H.-J., Templin, J. L., & Cohen, A. S. (2010). The impact of model misspecification on estimation accuracy in diagnostic classification models.  

  Effect of Q-matrix misspecification and 
model misspecification on structural 
parameters and classification accuracy. 

DINA, NIDA, compensatory 
RUM, and log-linear CDM; 
AIC and BIC 

simulated data 4 40 

100, 200, 
500, 

1,000, 
2,000 
and 

4,000 

  
college chemistry test (each 
item with only one attribute) 

3 25 1,465 

13 Rho, Y. J. (2010). Cognitive skill diagnosis in the presence of differential strategy choice: A Bayesian approach. 

  

Effect of multiple-strategy use on 
cognitive skill diagnosis and the 
cognitive diagnosis model for the 
presence of multiple-strategy use. 

Mix-NIDA 
K.K. Tatsuoka's fraction 
subtraction data 

7, 7 and 8 40 536 

14 
Zhang, T., & Rupp, A. A. (2009, April). The impact of prior specification on the estimation of item and respondent parameters under Q-matrix 
misspecification in the DINA model. 

  

The impact of prior specification for 
item parameters on the estimation of 
item and respondent parameters under 
Q-matrix misspecification.  

Bayesian DINA simulated data 3 and 4 (no) 
250 and 

500 

1
9
1

 



 

 

 

 

15 de la Torre, J., & Chiu, C.-Y. (2009, July). Q-matrix validation under the generalized DINA model framework.  

  
A discrimination index to validate Q-
matrix of the generalized DINA model. 

generalized DINA: DINA, 
DINO, additive CDM, and 
the combined models of the 
additive CDM with DINA and 
with DINO 

simulated data 5 30 1,000 

16 Fall, E. (2009). Applications of exploratory Q-matrix discovery procedures in diagnostic classification models. (also: Fall & Templin, 2009) 

  

Explore a probabilistic estimation 
procedure that allows for uncertainty in 
the construction of the Q-matrix. 

DINA 
reading test of the 
Comprehensive Adult Student 
Assessment System 

6 39 312 

  DINO 

reading comprehension 
subtest of the National 
Assessment of Education 
Progress 

2 24 249 

  DINO 
reading test of the Graduate 
Equivalency Degree  

2 20 312 

17 Henson, R. A., & Templin, J. L. (2009). Implications of Q-matrix misspecification in cognitive diagnosis.  

  

Effects of Q-matrix misspecifications 
(under-specification, over-specification, 
and a combination of both) on RUM 
item and examinee parameters. 

RUM simulated data 7 40 3,000 

18 Tatsuoka, K. K. (2009). Cognitive assessment: An introduction to the rule space method. (book) 
   

Validation of attributes; validation of a 
Q-matrix 

 
RSM 

    

1
9
2

 



 

 

 

 

19 de la Torre, J. (2008). An empirically based method of Q-matrix validation for the DINA model: Development and applications. 

  

Developing an empirically based 
method of validating a Q-matrix for the 
DINA model. 

DINA 

simulated data 5 30 5,000 

  
K.K. Tatsuoka's fraction 
subtraction data 

5 15 2,144 

  NAEP 2003 grade 8 math 9 90 3,823 

20 Rupp, A. A., & Templin, J. L. (2008). The effects of Q-matrix misspecification on parameter estimates and classification accuracy in the DINA model. 

  

Effect of Q-matrix misspecification 
(underfiting, overfitting, balanced misfit, 
and incorrect dependency relationships 
between attributes) on parameter 
estimates and misclassification rates. 

DINA simulated data 4 15 10,000 

21 
Dimitrov, D. M. (2007). Least squares distance method of cognitive validation and analysis for binary items using their item response theory 
parameters. 

  Use the LSDM to validate the cognitive 
structures for a test. 

least squares distance 
method (LSDM) 

a mathematics test 8 29 287 

  a reading comprehension test 5 10 234 

22 Im, S. (2007). Statistical consequences of attribute misspecification in the Rule Space Model. (also: Im & Corter, 2011) 

  

Statistical consequences of attribute 
misspecification (exclusion of an 
essential attribute, inclusion of a 
superfluous attribute, and order 
relations between attributes) on 
classification consistence and 
examinees’ attribute mastery 
probability. 

RSM 
simulated data (The Q-matrix 
is from K.K. Tatsuoka's 
fraction subtraction data.) 

7 20 
1,800 ~ 
3,300 

  

1
9
3

 



 

 

 

 

23 Tatsuoka, K. K., Corter, J. E., & Tatsuoka, C. (2004). Patterns of diagnosed mathematical content and process skills in TIMSS-R across a sample of 
20 countries.  

  

Compare the mathematics achievement 
of eighth-grade students at the attribute 
level across a sample of 20 countries in 
the TIMSS-R. 

RSM TIMSS-R 1999 23 163 51,435 

24 Hartz, S. M. (2002). A Bayesian framework for the unified model for assessing cognitive abilities: Blending theory with practicality. 

  Evaluate the effectiveness and 
robustness of RUM parameter 
estimation and examinee classification 
with different Q-matriices. 

RUM 

simulated data 7 40 1,500 

  1992 ACT math section 8 60 1,585 

25 Baker, F. B. (1993). Sensitivity of the linear logistic test model to misspecification of the weight matrix. 

    

Effect of degree of misspecification in 
Q-matrix, sample size, and density of 
Q-matrix on item difficulty parameters 
and basic parameters for the 
contribution of attribute to item difficulty. 

linear logistic test model simulated data 8 21 
20, 50, 

100 and 
1,000 

 

 

1
9
4
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Appendix B 

Examples of TIMSS Mathematics Items 

 

Example 1: Item M042055 (M02-04) 

There are 30 students in a class. The ratio of boys to girls in the class is 2:3. How many 

boy are there in the class? 

    (A) 6     (B) 12     (C) 18     (D) 20 

 

Note: The attributes measured by this item are as follows: 

a. the content attribute: a1-number and b2-ratio  

b. the TIMSS cognitive process attributes: a5-knowing, a6-applying, and 

applying_a1  

c. the new cognitive process attributes: c2-computing, d3-formulating, and d4-

computing_number 

 

Example 2: Item M042263 (M02-08) 

Joe knows that a pen costs 1 zed more than a pencil.  

His friend bought 2 pens and 3 pencils for 17 zeds.  

How many zeds will Joe need to buy 1 pen and 2 pencils? 

Show you work. 

 

Note: The attributes measured by this item are as follows: 

a. the content attribute: a1-number, a2-algebra, b1-whole number, and b4-algebraic 

expressions and equations/formulas functions    

b. the TIMSS cognitive process attributes: a5-knowing, a6-applying, a7-reasoning 

(=c4), applying_a1, applying_a2, and reasoning_a2 (=d10)  

c. the new cognitive process attributes: c2-computing, c3-judging, c4, d3-

formulating, and d4-computing_number, d5-computing_algebra, d7-

judge_operationRule, and d10 

d. the IT attributes: IT2-complexity, and IT3-constructed-response 
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Appendix C 

Informed Consent Form 

Research Project: Validation of the Item-Attribute Matrix in TIMSS–Mathematics Using 

Multiple Regression and the LSDM 

Dear                                    : 

You are invited to participate in a study that will explore validation of the item-attribute matrix of 

the mathematics assessment in the Trends in International Mathematics and Science Study 

(TIMSS). The study is conducted by Lin Ma to fulfill the dissertation requirements for a PhD in 

the Research Methods and Statistics Program at University of Denver. Results will be used (1) to 

validate the item-attribute matrix using multiple regression and the least squares distance method 

and (2) to evaluate the construct validity of the mathematics assessment in TIMSS 2007. Lin Ma 

can be reached at 720-224-5031/ lma3@du.edu. This project is supervised by Dissertation 

Director, Dr. Kathy Green, Research Methods and Statistics Program, Morgridge College of 

Education, University of Denver, Denver, CO 80208 (303-871-2490, kgreen@du.edu).  

Your consent to participate is highly valued. Participation in this study will take about 4-10 hours 

of your time. Participation will involve specifying the 22 cognitive attributes at Level 2 and the 

maybe revised attributes to the 49 mathematics items. Participation in this project is strictly 

voluntary, and the risks associated with this project are minimal. If, however, you experience 

discomfort, you may discontinue participation at any time. Refusal to participate or withdrawal 

from participation will involve no penalty or loss of benefits to which you are otherwise entitled. 

However, as an expression of my appreciation for your participation, you will be rewarded with 

$200 cash if you complete the entire coding and also discuss your coding to agreement with three 

other experts.  

Your responses are not anonymous. The discrepancies between your specified attribute matrices 

and three other persons’ attribute matrices (including the researcher) will be discussed until 

agreement is reached.      

If you have any concerns or complaints about how you were treated during the interview, please 

contact Paul Olk, Chair, Institutional Review Board for the Protection of Human Subjects, at 303-

871-4531, or you may email du-irb@du.edu, Office of Research and Sponsored Programs or call 

303-871-4050 or write to either at the University of Denver, Office of Research and Sponsored 

Programs, 2199 S. University Blvd., Denver, CO 80208-2121. 

You may keep this page for your records. Please sign the next page if you understand and agree 

to the above. If you do not understand any part of the above statement, please ask the researcher 

any questions you have. Your participation is greatly appreciated!   

 

 
I have read and understood the foregoing descriptions of the study called Validation of the Item-

Attribute Matrix in TIMSS–Mathematics Using Multiple Regression and the LSDM. I have asked 

for and received a satisfactory explanation of any language that I did not fully understand. I agree 

to participate in this study, and I understand that I may withdraw my consent at any time. I have 

received a copy of this consent form. 

Signature _____________________ Date _________________ 



 

 

 

 

Appendix D 

The Q-Matrix with the Attributes Based on the TIMSS Assessment Framework and Item Type 

 
 (Continued) 

b1 b2 b3 b4 b5 b6 b7 b8 a1 a2 a3 a4 a1 a2 a3 a4 IT1 IT2 IT3

1 M02 1 M042003 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

2 M02 2 M042079 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

3 M02 3 M042018 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 1

4 M02 4 M042055 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0

5 M02 5 M042039 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0

6 M02 6 M042199 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

7 M02 07A M042301A 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1

8 M02 07B M042301B 1 1 1 0 1 0 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 0 1

9 M02 07C M042301C 1 1 0 0 1 0 1 1 0 0 0 0 1 1 1 0 1 0 0 1 0 0 1 1

10 M02 8 M042263 1 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 1

11 M02 9 M042265 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0

12 M02 10 M042137 1 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0

13 M02 11 M042148 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

14 M02 12 M042254 1 0 0 1 1 1 0 0 0 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0

15 M02 13 M042250 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 1

16 M02 14 M042220 1 0 0 1 1 1 0 0 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 1

17 M03 1 M022097 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

18 M03 2 M022101 1 0 0 1 1 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0

19 M03 3 M022104 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

20 M03 4 M022105 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

21 M03 5 M022106 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1

22 M03 6 M022108 1 1 1 0 1 0 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0

23 M03 7 M022110 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

24 M03 8 M022181 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0

25 M03 9 M032307 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1

a2 a3a1

No. Block
Block

Seq
Item ID

Content―L2 Cognitive Process―L2
Content―L1 

(a5-Knowing) *

a6 a7

a1-

number

a2-

algebra

a3-

geometry

a4-

dataChance

Cognitive 

Process―L1

a6-Applying a7-Reasoning
a5a4

Complex 
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* The four content attributes at level one (a1, a2, a3, and a4) are the same as the four knowing attributes at level two (know_a1, know_a2, 

know_a3, and know_a4). 

  

26 M03 10 M032523 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0

27 M03 11 M032701 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0

28 M03 12 M032704 1 1 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0

29 M03 13 M032525 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

30 M03 14 M032579 1 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0

31 M03 15 M032691 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1

32 M04 1 M042001 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

33 M04 2 M042022 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

34 M04 3 M042082 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

35 M04 4 M042088 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

36 M04 05A M042304A 1 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1

37 M04 05B M042304B 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 1

38 M04 05C M042304C 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 1

39 M04 05D-1 M042304D-1 1 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1

40 M04 05D-2 M042304D-2 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1

41 M04 6 M042267 1 1 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0

42 M04 7 M042239 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

43 M04 8 M042238 1 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0

44 M04 9 M042279 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0

45 M04 10 M042036 1 0 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 1 0 1 0 0

46 M04 11 M042130 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 0 0 0 1 1 1

47 M04 12A M042303A 1 0 0 1 1 1 0 0 0 1 1 1 1 0 1 0 0 1 0 0 0 1 1 1

48 M04 12B M042303B 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1

49 M04 13 M042222 1 0 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 1 0

28 6 9 6 28 14 2 5 7 5 4 2 31 20 4 14 3 4 3 0 3 1 0 4 5 11

29 9 9 6 29 13 0 9 6 7 3 5 33 22 4 17 2 6 3 2 0 2 1 9 8 12number of related items-booklet3

number of related items-booklet2
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Appendix E 

The Q-Matrix with the New Cognitive Process Attributes 

 
       (Continued) 

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11

1 M02 1 M042003 1 0 0 0 1 0 0 0 0 0 0 0 0 0

2 M02 2 M042079 0 1 0 0 0 0 0 1 0 0 0 0 0 0

3 M02 3 M042018 0 1 1 0 0 0 0 1 0 0 1 0 0 0

4 M02 4 M042055 0 1 1 0 0 0 1 1 0 1 0 0 0 0

5 M02 5 M042039 0 1 1 0 0 0 1 1 0 1 0 0 0 0

6 M02 6 M042199 0 1 0 0 0 0 0 0 1 0 0 0 0 0

7 M02 07A M042301A 1 0 0 0 0 1 0 0 0 0 0 0 0 0

8 M02 07B M042301B 0 1 0 1 0 0 0 1 0 0 0 0 1 0

9 M02 07C M042301C 0 1 0 1 0 0 1 0 1 0 0 0 1 0

10 M02 8 M042263 0 1 1 1 0 0 1 1 1 1 1 0 1 0

11 M02 9 M042265 0 0 0 1 0 0 0 0 0 0 0 0 0 1

12 M02 10 M042137 0 1 1 0 0 0 0 1 0 0 0 1 0 0

13 M02 11 M042148 1 0 0 0 0 1 0 0 0 0 0 0 0 0

14 M02 12 M042254 1 1 1 0 0 1 0 1 0 1 0 0 0 0

15 M02 13 M042250 1 1 0 0 0 1 1 1 0 0 0 0 0 0

16 M02 14 M042220 1 1 1 0 0 1 1 1 0 1 0 0 0 0

17 M03 1 M022097 1 1 1 0 0 1 0 1 0 1 0 0 0 0 0

18 M03 2 M022101 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0

19 M03 3 M022104 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0

20 M03 4 M022105 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0

21 M03 5 M022106 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0

22 M03 6 M022108 0 1 1 0 0 0 0 1 1 0 0 1 0 0 0

23 M03 7 M022110 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

24 M03 8 M022181 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0

25 M03 9 M032307 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0

No. Block
Block

Seq
Item ID

Cognitive Process―L1 Cognitive Process―L2

c1 c2 c3 c4
c1-Identifying c2-Computing c3-Judging c4-Reasoning

1
9
9

 



 

 

 

 

 
                       (Continued) 

 
 

  

26 M03 10 M032523 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0

27 M03 11 M032701 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0

28 M03 12 M032704 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0

29 M03 13 M032525 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0

30 M03 14 M032579 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0

31 M03 15 M032691 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

32 M04 1 M042001 1 0 0 0 0 1 0 0 0 0 0 0 0 0

33 M04 2 M042022 0 1 1 0 0 0 0 1 0 1 0 0 0 0

34 M04 3 M042082 0 1 1 0 0 0 0 1 1 0 1 0 0 0

35 M04 4 M042088 0 1 1 0 0 0 1 0 1 1 0 0 0 0

36 M04 05A M042304A 0 1 1 0 0 0 1 1 0 1 0 0 0 0

37 M04 05B M042304B 0 1 1 0 0 0 1 1 1 1 0 0 0 0

38 M04 05C M042304C 0 1 1 0 0 0 1 1 1 1 0 0 0 0

39 M04 05D-1 M042304D-1 0 1 0 0 0 0 1 1 0 0 0 0 0 0

40 M04 05D-2 M042304D-2 1 0 0 1 1 0 0 0 0 0 0 0 1 0

41 M04 6 M042267 0 1 0 0 0 0 1 1 1 0 0 0 0 0

42 M04 7 M042239 0 1 1 0 0 0 0 1 1 0 1 0 0 0

43 M04 8 M042238 0 1 1 0 0 0 0 1 1 0 0 1 0 0

44 M04 9 M042279 0 0 0 1 0 0 0 0 0 0 0 0 0 1

45 M04 10 M042036 0 1 1 1 0 0 0 1 0 0 0 1 0 1

46 M04 11 M042130 1 1 1 0 0 1 0 1 0 1 0 1 0 0

47 M04 12A M042303A 1 1 1 0 1 1 0 1 0 1 0 0 0 0

48 M04 12B M042303B 1 0 1 1 1 1 0 0 0 1 0 1 1 0

49 M04 13 M042222 1 0 1 0 1 0 0 1 0 1 0 0 0 0

11 24 18 4 4 8 17 22 5 11 3 5 0 3 1

11 25 24 4 7 7 11 25 9 15 3 8 2 0 2number of related items-booklet3
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Appendix F 

The Random Q-Matrix with the Attributes Based on the TIMSS Assessment Framework and Item Type (Booklet 2) 

 

b1 b2 b3 b4 b5 b6 b7 b8 a1 a2 a3 a4 a1 a2 a3 a4 IT1 IT2 IT3

1 M02 1 M042003 1 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 1

2 M02 2 M042079 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1

3 M02 3 M042018 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

4 M02 4 M042055 1 1 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0

5 M02 5 M042039 1 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

6 M02 6 M042199 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0

7 M02 07A M042301A 1 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0

8 M02 07B M042301B 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1

9 M02 07C M042301C 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0

10 M02 8 M042263 1 0 1 0 1 1 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0

11 M02 9 M042265 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0

12 M02 10 M042137 1 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

13 M02 11 M042148 1 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0

14 M02 12 M042254 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1

15 M02 13 M042250 1 0 0 1 1 1 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0

16 M02 14 M042220 1 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0

17 M03 1 M022097 1 0 0 0 1 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1

18 M03 2 M022101 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1 0

19 M03 3 M022104 1 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1

20 M03 4 M022105 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0

21 M03 5 M022106 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0

22 M03 6 M022108 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 1

23 M03 7 M022110 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

24 M03 8 M022181 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

25 M03 9 M032307 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0

26 M03 10 M032523 0 0 1 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

27 M03 11 M032701 1 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1

28 M03 12 M032704 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

29 M03 13 M032525 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

30 M03 14 M032579 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0

31 M03 15 M032691 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
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Appendix G 

The Random Q-Matrix with the Attributes Based on the TIMSS Assessment Framework and Item Type (Booklet 3) 

 

b1 b2 b3 b4 b5 b6 b7 b8 a1 a2 a3 a4 a1 a2 a3 a4 IT1 IT2 IT3

17 M03 1 M022097 1 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 0

18 M03 2 M022101 1 1 1 1 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

19 M03 3 M022104 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0

20 M03 4 M022105 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0

21 M03 5 M022106 1 0 0 0 1 0 0 1 0 0 0 1 1 1 0 1 1 1 0 1 0 0 0 0

22 M03 6 M022108 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1

23 M03 7 M022110 1 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1

24 M03 8 M022181 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

25 M03 9 M032307 1 0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1

26 M03 10 M032523 1 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 0 0 0 1 0 1

27 M03 11 M032701 1 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0

28 M03 12 M032704 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0

29 M03 13 M032525 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1

30 M03 14 M032579 1 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0

31 M03 15 M032691 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0

32 M04 1 M042001 1 1 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0 1 1 0

33 M04 2 M042022 1 1 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0

34 M04 3 M042082 1 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 1 1

35 M04 4 M042088 1 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 1

36 M04 05A M042304A 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0

37 M04 05B M042304B 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0

38 M04 05C M042304C 1 1 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1

39 M04 05D-1 M042304D-1 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1

40 M04 05D-2 M042304D-2 1 0 1 0 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0

41 M04 6 M042267 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

42 M04 7 M042239 1 1 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0

43 M04 8 M042238 1 1 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0

44 M04 9 M042279 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0

45 M04 10 M042036 1 0 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

46 M04 11 M042130 1 0 1 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0

47 M04 12A M042303A 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

48 M04 12B M042303B 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0

49 M04 13 M042222 1 1 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0
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Appendix H 

The Random Q-Matrix with the New Cognitive Process Attributes (Booklet 2) 

  

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11

1 M02 1 M042003 1 1 0 0 0 0 1 1 1 1 0 0 0 0

2 M02 2 M042079 0 1 1 0 0 0 0 1 0 0 0 1 0 0

3 M02 3 M042018 0 1 1 0 0 0 0 1 1 0 1 0 0 0

4 M02 4 M042055 0 1 1 0 0 0 0 1 1 1 0 0 0 0

5 M02 5 M042039 0 0 1 0 1 0 1 1 1 0 1 0 1 0

6 M02 6 M042199 1 1 0 0 0 0 0 0 1 0 0 0 0 0

7 M02 07A M042301A 0 0 1 0 0 1 0 0 0 0 1 0 0 0

8 M02 07B M042301B 1 1 0 0 0 0 0 1 0 1 0 0 0 0

9 M02 07C M042301C 1 1 1 0 1 1 0 0 0 0 0 0 0 0

10 M02 8 M042263 0 1 1 1 1 1 0 1 1 0 0 0 0 0

11 M02 9 M042265 1 1 0 0 0 0 0 0 1 0 0 0 0 0

12 M02 10 M042137 0 0 1 0 0 0 0 0 1 0 0 0 0 0

13 M02 11 M042148 0 1 1 0 0 0 0 0 0 1 0 0 0 1

14 M02 12 M042254 1 1 0 0 0 0 1 0 1 0 0 0 0 0

15 M02 13 M042250 0 1 0 0 1 0 0 1 0 0 0 0 0 0

16 M02 14 M042220 0 0 0 0 0 0 0 1 1 0 0 0 0 1

17 M03 1 M022097 0 1 1 0 0 0 0 0 1 0 0 1 0 0

18 M03 2 M022101 1 1 0 1 0 0 0 0 1 0 0 0 0 0

19 M03 3 M022104 1 0 1 0 1 0 0 0 0 0 0 0 0 0

20 M03 4 M022105 0 1 1 0 1 0 1 0 0 0 0 0 0 1

21 M03 5 M022106 0 1 1 1 0 0 1 1 1 0 1 0 0 0

22 M03 6 M022108 0 1 0 0 0 0 0 0 0 0 0 1 0 0

23 M03 7 M022110 0 1 0 0 0 0 0 1 0 0 0 1 0 0

24 M03 8 M022181 0 1 0 0 1 0 0 0 0 0 0 0 0 0

25 M03 9 M032307 0 1 1 0 1 0 1 0 1 0 0 0 0 0

26 M03 10 M032523 0 0 0 0 0 0 0 0 0 0 0 1 0 0

27 M03 11 M032701 0 0 1 0 0 1 1 0 1 0 0 1 0 0

28 M03 12 M032704 0 1 1 0 0 0 0 0 0 1 1 0 0 0

29 M03 13 M032525 1 1 1 0 0 0 1 0 1 1 0 0 0 0

30 M03 14 M032579 1 1 1 0 0 0 1 0 1 0 0 1 0 0

31 M03 15 M032691 1 1 0 1 0 0 0 1 0 1 0 0 0 0

11 24 18 4 8 4 9 12 17 7 5 7 0 1 3
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Appendix I 

The Random Q-Matrix with the New Cognitive Process Attributes (Booklet 3) 

 

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11

17 M03 1 M022097 1 1 0 0 0 0 0 1 1 0 0 0 0 0

18 M03 2 M022101 0 0 1 0 0 0 0 0 1 1 0 0 0 0

19 M03 3 M022104 0 1 1 1 0 0 0 1 0 1 0 0 0 0

20 M03 4 M022105 0 1 1 0 0 0 0 1 0 0 1 1 0 0

21 M03 5 M022106 1 1 1 0 0 0 0 1 1 1 0 0 0 0

22 M03 6 M022108 1 0 0 0 0 0 0 1 0 0 0 1 0 0

23 M03 7 M022110 0 1 1 0 1 0 0 1 1 0 0 0 0 0

24 M03 8 M022181 0 0 1 0 1 0 0 0 1 1 0 0 0 0

25 M03 9 M032307 0 1 1 0 1 1 1 1 0 0 0 0 0 0

26 M03 10 M032523 0 1 0 0 0 0 0 0 1 0 0 0 0 0

27 M03 11 M032701 0 1 1 0 0 1 1 1 0 0 0 0 0 0

28 M03 12 M032704 0 1 1 0 0 0 0 0 0 0 0 1 1 1

29 M03 13 M032525 1 1 0 0 0 0 0 0 1 1 0 0 0 0

30 M03 14 M032579 1 1 1 0 0 0 0 1 0 1 0 0 0 0

31 M03 15 M032691 1 1 1 0 0 0 0 1 0 0 0 1 0 0

32 M04 1 M042001 0 1 1 0 1 1 0 1 1 1 0 0 0 0

33 M04 2 M042022 0 1 1 1 0 0 1 1 0 1 0 0 0 0

34 M04 3 M042082 0 0 0 1 0 0 1 0 1 0 1 1 0 0

35 M04 4 M042088 0 1 0 0 0 1 0 1 0 0 0 0 0 0

36 M04 05A M042304A 0 1 1 0 1 0 0 0 1 1 0 1 0 0

37 M04 05B M042304B 1 1 0 0 1 1 1 1 0 0 0 0 0 0

38 M04 05C M042304C 1 1 1 0 0 0 0 0 0 1 0 0 0 0

39 M04 05D-1 M042304D-1 0 1 1 0 1 0 1 0 0 1 0 0 1 0

40 M04 05D-2 M042304D-2 0 1 1 0 0 0 1 1 0 1 0 0 0 0

41 M04 6 M042267 1 0 0 0 0 1 0 1 0 0 1 0 0 1

42 M04 7 M042239 0 1 1 0 0 0 0 0 1 0 0 0 0 0

43 M04 8 M042238 1 0 0 0 0 1 0 1 1 0 0 0 0 0

44 M04 9 M042279 0 0 1 1 0 0 1 0 1 0 0 1 0 0

45 M04 10 M042036 0 1 1 0 0 0 1 1 0 0 1 1 0 0

46 M04 11 M042130 1 1 1 0 0 0 1 0 0 1 0 0 0 0

47 M04 12A M042303A 0 1 1 0 0 0 1 1 0 0 0 0 0 0

48 M04 12B M042303B 0 1 1 0 0 0 0 0 1 0 0 0 0 0

49 M04 13 M042222 0 0 1 0 0 0 1 0 0 1 0 0 0 0

11 25 24 4 7 7 12 19 14 14 4 8 2 0 2
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Appendix J 

The Revised Q-Matrix with the Attributes Based on the TIMSS Assessment Framework and Item Type 

 
               (Continued) 

b1 b2 b3 b4 b5 b6 b7 b8 a1 a2 a3 a1 a2 a3 IT2 IT3

1 M02 1 M042003 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

2 M02 2 M042079 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

3 M02 3 M042018 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1

4 M02 4 M042055 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0

5 M02 5 M042039 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0

6 M02 6 M042199 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

7 M02 07A M042301A 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1

8 M02 07B M042301B 1 1 1 0 1 0 1 0 1 0 0 0 1 1 1 1 1 0 1 0 0 1

9 M02 07C M042301C 1 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 1 0 1 1

10 M02 8 M042263 1 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 1

11 M02 9 M042265 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0

12 M02 10 M042137 1 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0

13 M02 11 M042148 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

14 M02 12 M042254 1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0

15 M02 13 M042250 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1

16 M02 14 M042220 1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 1

17 M03 1 M022097 1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0

18 M03 2 M022101 1 0 0 1 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0

19 M03 3 M022104 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

20 M03 4 M022105 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

21 M03 5 M022106 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1

22 M03 6 M022108 1 1 1 0 1 0 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0

23 M03 7 M022110 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

24 M03 8 M022181 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0

25 M03 9 M032307 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1
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               (Continued) 

 
          Note. The changed elements and the re-specified attribute b1 were highlighted.  

  

26 M03 10 M032523 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0

27 M03 11 M032701 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0

28 M03 12 M032704 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0

29 M03 13 M032525 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

30 M03 14 M032579 1 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0

31 M03 15 M032691 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1

32 M04 1 M042001 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

33 M04 2 M042022 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

34 M04 3 M042082 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

35 M04 4 M042088 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

36 M04 05A M042304A 1 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1

37 M04 05B M042304B 1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1

38 M04 05C M042304C 1 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1

39 M04 05D-1 M042304D-1 1 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1

40 M04 05D-2 M042304D-2 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1

41 M04 6 M042267 1 1 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0

42 M04 7 M042239 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

43 M04 8 M042238 1 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0 0

44 M04 9 M042279 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0

45 M04 10 M042036 1 1 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 0

46 M04 11 M042130 1 1 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 0 0 0 1

47 M04 12A M042303A 1 0 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1

48 M04 12B M042303B 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1

49 M04 13 M042222 1 0 0 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0

28 7 9 6 14 14 2 5 7 5 5 1 31 21 4 17 3 4 0 3 1 5 11

29 11 9 6 16 13 0 9 6 7 5 3 33 23 4 18 2 6 2 0 2 5 12

number of related items-booklet2

number of related items-booklet3

2
0
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Appendix K 

The Revised Q-Matrix with the New Cognitive Process Attributes 

 
                (Continued) 

d1 d2 d3 d4 d5 d7 d8 d9 d10 d11

1 M02 1 M042003 1 0 0 0 1 0 0 0 0 0 0 0 0

2 M02 2 M042079 0 1 0 0 0 0 0 1 0 0 0 0 0

3 M02 3 M042018 0 1 1 0 0 0 0 1 0 1 0 0 0

4 M02 4 M042055 0 1 0 0 0 0 1 1 0 0 0 0 0

5 M02 5 M042039 0 1 0 0 0 0 1 1 0 0 0 0 0

6 M02 6 M042199 0 1 0 0 0 0 0 0 1 0 0 0 0

7 M02 07A M042301A 1 0 0 0 0 1 0 0 0 0 0 0 0

8 M02 07B M042301B 0 1 0 1 0 0 0 1 0 0 0 1 0

9 M02 07C M042301C 0 1 0 1 0 0 1 0 1 0 0 1 0

10 M02 8 M042263 0 1 1 1 0 0 1 1 1 1 0 1 0

11 M02 9 M042265 0 0 0 1 0 0 0 0 0 0 0 0 1

12 M02 10 M042137 0 1 1 0 0 0 0 1 0 0 1 0 0

13 M02 11 M042148 1 0 0 0 0 1 0 0 0 0 0 0 0

14 M02 12 M042254 1 1 0 0 0 1 0 1 0 0 0 0 0

15 M02 13 M042250 1 1 0 0 0 1 1 1 0 0 0 0 0

16 M02 14 M042220 1 1 0 0 0 1 1 1 0 0 0 0 0

17 M03 1 M022097 1 1 0 0 0 1 0 1 0 0 0 0 0 0

18 M03 2 M022101 1 1 0 0 1 0 0 1 0 0 0 0 0 0

19 M03 3 M022104 1 1 0 0 1 0 0 1 0 0 0 0 0 0

20 M03 4 M022105 1 0 1 0 0 1 0 0 0 0 1 0 0 0

21 M03 5 M022106 0 1 0 0 0 0 1 1 0 0 0 0 0 0

22 M03 6 M022108 0 1 1 0 0 0 0 1 1 0 1 0 0 0

23 M03 7 M022110 0 1 0 0 0 0 0 1 0 0 0 0 0 0

24 M03 8 M022181 1 0 0 0 1 1 0 0 0 0 0 0 0 0

25 M03 9 M032307 0 1 0 0 0 0 1 1 0 0 0 0 0 0

c1-Identifying c2-Computing c4-Reasoningc3-JudgingNo. Block
Block

Seq
Item ID

Cognitive Process―L1 Cognitive Process―L2

c1 c2 c3 c4

2
0
7

 



 

 

 

 

 
               (Continued) 

 
               Note. The changed elements and the re-specified attribute c3 were highlighted.     

  

26 M03 10 M032523 0 1 0 0 0 0 1 1 0 0 0 0 0 0

27 M03 11 M032701 0 1 0 0 0 0 1 1 0 0 0 0 0 0

28 M03 12 M032704 0 1 0 0 0 0 1 1 1 0 0 0 0 0

29 M03 13 M032525 0 1 1 0 0 0 0 1 1 1 0 0 0 0

30 M03 14 M032579 0 1 1 0 0 0 0 1 0 0 1 0 0 0

31 M03 15 M032691 0 0 1 0 0 0 0 0 0 0 1 0 0 0

32 M04 1 M042001 1 0 0 0 0 1 0 0 0 0 0 0 0

33 M04 2 M042022 0 1 1 0 0 0 0 1 0 1 0 0 0

34 M04 3 M042082 0 1 1 0 0 0 0 1 1 1 0 0 0

35 M04 4 M042088 0 1 0 0 0 0 1 0 1 0 0 0 0

36 M04 05A M042304A 0 1 0 0 0 0 1 1 0 0 0 0 0

37 M04 05B M042304B 0 1 0 0 0 0 1 1 1 0 0 0 0

38 M04 05C M042304C 0 1 0 0 0 0 1 1 0 0 0 0 0

39 M04 05D-1 M042304D-1 0 1 0 0 0 0 1 1 0 0 0 0 0

40 M04 05D-2 M042304D-2 1 0 0 1 1 0 0 0 0 0 0 1 0

41 M04 6 M042267 0 1 0 0 0 0 0 1 1 0 0 0 0

42 M04 7 M042239 0 1 1 0 0 0 0 1 1 1 0 0 0

43 M04 8 M042238 0 1 1 0 0 0 0 1 1 0 1 0 0

44 M04 9 M042279 0 0 0 1 0 0 0 0 0 0 0 0 1

45 M04 10 M042036 0 1 1 1 0 0 0 1 1 0 1 0 1

46 M04 11 M042130 1 1 1 0 0 1 0 1 1 0 1 0 0

47 M04 12A M042303A 1 1 0 0 1 1 0 1 0 0 0 0 0

48 M04 12B M042303B 1 0 1 1 1 1 0 0 0 0 1 1 0

49 M04 13 M042222 1 0 0 0 1 0 0 1 0 0 0 0 0

11 24 8 4 4 8 16 22 6 3 5 0 3 1

11 25 12 4 7 7 10 25 11 4 8 2 0 2

number of related items-booklet2

number of related items-booklet3

2
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Appendix L 

Correlation Coefficients among the Item Difficulties and All Attributes (1) ~ (8) 

 

(1) Correlation Coefficient among the Item Difficulty and the Attributes for QM1 ~ QM5-2 of Booklet 2 (with TIMSS Process Attributes) 

  Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 ItemDifficulty 1.00 
               

2 b1integer -.03 1.00 
              

3 b2decimal -.09 -.82
**
 1.00 

             
4 know_a1 -.21 .30 .30 1.00 

            
5 know_a2 .22 .44

*
 -.34 .18 1.00 

           
6 know_a3 .14 .28 -.58

**
 -.51

**
 -.01 1.00 

          
7 know_a4 -.36

*
 -.12 .21 .16 -.26 -.31 1.00 

         
8 appl_a1 .23 -.22 .43

*
 .36

*
 .03 -.56

**
 .44

*
 1.00 

        
9 appl_a2 .46

**
 .36

*
 -.30 .11 .61

**
 .03 -.16 .30 1.00 

       
10 appl_a3 .09 .23 -.35 -.20 .02 .60

**
 -.19 -.42

*
 -.13 1.00 

      
11 reas_a2 .46

**
 .36

*
 -.30 .11 .61

**
 .03 -.16 .30 1.00

**
 -.13 1.00 

     
12 reas_a3 .06 -.17 -.17 -.56

**
 -.10 .29 -.09 -.20 -.06 -.07 -.06 1.00 

    
13 a6applying .31 -.07 .21 .24 .04 -.17 .34 .76

**
 .23 .27 .23 -.26 1.00 

   
14 a7reasoning .44

*
 .23 -.35 -.20 .48

**
 .18 -.19 .16 .85

**
 -.15 .85

**
 .47

**
 .06 1.00 

  
15 IT2complexity .62

**
 -.05 .13 .14 .18 -.28 .01 .40

*
 .45

*
 -.17 .45

*
 -.08 .30 .35 1.00 

 
16 IT3constructed .54

**
 .14 -.13 .01 .08 -.03 -.02 .27 .44

*
 -.08 .44

*
 -.14 .22 .32 .41

*
 1.00 

  * p < .05, ** p < .01 

(2) Correlation Coefficient among the Item Difficulty and the Content Attributes for QM6 of Booklet 2 

  Variables 1 2 3 4 5 6 7 8 9 

1 ItemDifficulty 1.00                 

2 b1integer -.03 1.00               
3 b2decimal -.09 -.82

**
 1.00             

4 b3pattern .37 .29 -.24 1.00           
5 b4formula .15 .31 -.22 .24 1.00         

6 b5shape .19 .29 -.49
**
 .17 -.03 1.00       

7 b6geomMeas -.04 .31 -.40
*
 -.12 .05 .39

*
 1.00     

8 b7dataRepre -.31 -.05 .13 -.12 -.19 -.24 -.19 1.00   
9 b8chance -.15 -.17 .20 -.05 -.08 -.10 -.08 -.08 1.00 

  * p < .05, ** p < .01   

2
0
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(3) Correlation Coefficient among the Item Difficulty and the Attributes for QM2 ~ QM3-2 of Booklet 2 (with New Process Attributes)  

  Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 ItemDifficulty 1.00                         
2 b1integer -.03 1.00 

           
3 b2decimal -.09 -.82

**
 1.00 

          
4 know_a1 -.21 .30 .30 1.00 

         
5 know_a2 .22 .44

*
 -.34 .18 1.00 

        
6 know_a3 .14 .28 -.58

**
 -.51

**
 -.01 1.00 

       
7 know_a4 -.36

*
 -.12 .21 .16 -.26 -.31 1.00 

      
8 c1identifing -.41

*
 .00 .00 .01 -.40

*
 -.03 .66

**
 1.00 

     
9 c2computing .10 -.13 .49

**
 .61

**
 .29 -.50

**
 .07 -.41

*
 1.00 

    
10 c3judging .28 .35 -.54

**
 -.31 .21 .43

*
 -.29 -.28 -.03 1.00 

   
11 c4reasoning .44

*
 .23 -.35 -.20 .48

**
 .18 -.19 -.29 -.02 -.01 1.00 

  
12 IT2complexity .62

**
 -.05 .13 .14 .18 -.28 .01 -.14 .24 -.06 .35 1.00 

 
13 IT3constructed .54

**
 .14 -.13 .01 .08 -.03 -.02 -.13 .08 .02 .32 .41

*
 1.00 

  * p < .05, ** p < .01 

(4) Correlation Coefficient among the Item Difficulty and the Attributes for QM4 and QM5-2 of Booklet 2 (with New Process Attributes) 

  Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 ItemDifficulty 1.00                                 
2 b2decimal -.09 1.00 

               
3 know_a1 -.21 .30 1.00 

              
4 know_a2 .22 -.34 .18 1.00 

             
5 know_a3 .14 -.58

**
 -.51

**
 -.01 1.00 

            
6 know_a4 -.36

*
 .21 .16 -.26 -.31 1.00 

           
7 d1compareNum -.36

*
 .04 .13 -.21 -.25 .30 1.00 

          
8 d2recognizing -.28 -.09 -.06 -.32 .11 .64

**
 -.01 1.00 

         
9 d3formulating .39

*
 .41

*
 .24 .08 -.47

**
 -.02 -.29 -.13 1.00 

        
10 d4compu_numb .05 .58

**
 .51

**
 .01 -.37

*
 .13 -.18 -.27 .33 1.00 

       
11 d5compu_alge .14 -.28 .16 .91

**
 -.13 -.24 -.19 -.29 .15 -.05 1.00 

      
12 d7judg_rule .24 -.30 .11 .35 -.21 -.16 -.13 -.19 -.01 .21 .39

*
 1.00 

     
13 d8judg_geom .14 -.40

*
 -.45

*
 -.03 .69

**
 -.21 -.17 -.06 -.33 -.11 .01 -.14 1.00 

    
14 reas_a2 .46

**
 -.30 .11 .61

**
 .03 -.16 -.13 -.19 .21 -.03 .39

*
 .26 -.14 1.00 

   
15 reas_a3 .06 -.17 -.56

**
 -.10 .29 -.09 -.07 -.11 -.14 -.29 -.09 -.06 -.08 -.06 1.00 

  
16 IT2complexity .62

**
 .13 .14 .18 -.28 .01 -.17 -.06 .59

**
 .09 .23 .15 -.19 .45

*
 -.08 1.00 

 
17 IT3constructed .54

**
 -.13 .01 .08 -.03 -.02 -.29 .02 .30 .03 -.02 .21 -.14 .44

*
 -.14 .41

*
 1.00 

  * p < .05, ** p < .01   
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(5) Correlation Coefficient among the Item Difficulty and the Attributes for QM1 ~ QM5-2 of Booklet 3 (with TIMSS Process Attributes)  

  Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 ItemDifficulty 1.00 
               

2 b1integer -.01 1.00 
              

3 b2decimal .03 -.78
**
 1.00 

             
4 know_a1 .02 .36

*
 .30 1.00 

            
5 know_a2 .18 .34 -.31 .07 1.00 

           
6 know_a3 .13 .22 -.49

**
 -.40

*
 .14 1.00 

          
7 know_a4 -.10 -.14 .26 .18 -.33 -.11 1.00 

         
8 appl_a1 .14 -.21 .49

**
 .41

*
 -.26 -.40

*
 .43

*
 1.00 

        
9 appl_a2 .21 .26 -.20 .09 .36

*
 .13 -.12 -.02 1.00 

       
10 appl_a3 .07 .33 -.38

*
 -.07 .17 .77

**
 -.02 -.20 -.12 1.00 

      
11 reas_a1 .21 .26 -.20 .09 -.18 .13 .21 .23 -.06 .21 1.00 

     
12 reas_a3 .07 .01 -.20 -.29 .09 .41

*
 -.12 -.28 -.06 .21 -.06 1.00 

    
13 a6applying .19 -.02 .26 .36

*
 -.09 .11 .31 .72

**
 .17 .31 .17 -.11 1.00 

   
14 a7reasoning .20 .20 -.30 -.15 -.07 .40

*
 .07 -.03 -.09 .31 .68

**
 .68

**
 .04 1.00 

  
15 IT2complexity .60

**
 -.24 .35

*
 .16 -.12 -.07 .02 .39

*
 -.11 .02 .25 -.11 .28 .10 1.00 

 
16 IT3constructed .39

*
 -.10 .16 .09 -.27 -.04 -.03 .44

*
 -.19 .13 .34 -.19 .36

*
 .11 .38

*
 1.00 

  * p < .05, ** p < .01 

(6) Correlation Coefficient among the Item Difficulty and the Content Attributes for QM6 of Booklet 3 

  Variables 1 2 3 4 5 6 7 8 

1 ItemDifficulty 1.00               

2 b1integer -.01 1.00             
3 b2decimal .03 -.78

**
 1.00           

4 b4formula .29 .09 -.08 1.00         
5 b5shape -.07 .17 -.38

*
 -.11 1.00       

6 b6geomMeas .15 .38
*
 -.42

*
 .02 .52

**
 1.00     

7 b7dataRepre -.02 .10 .01 -.26 .02 .19 1.00   

8 b8chance .03 -.10 .18 -.19 -.15 .09 .16 1.00 

  * p < .05, ** p < .01  
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(7) Correlation Coefficient among the Item Difficulty and the Attributes for QM2 ~ QM3-2 of Booklet 3 (with New Process Attributes)  

  Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 ItemDifficulty 1.00                         
2 b1integer -.01 1.00 

           
3 b2decimal .03 -.78

**
 1.00 

          
4 know_a1 .02 .36

*
 .30 1.00 

         
5 know_a2 .18 .34 -.31 .07 1.00 

        
6 know_a3 .13 .22 -.49

**
 -.40

*
 .14 1.00 

       
7 know_a4 -.10 -.14 .26 .18 -.33 -.11 1.00 

      
8 c1identifing -.23 -.04 .09 .07 -.36

*
 .00 .67

**
 1.00 

     
9 c2computing .08 -.02 .31 .44

*
 .40

*
 -.29 -.28 -.50

**
 1.00 

    
10 c3judging .21 .53

**
 -.61

**
 -.11 .40

*
 .67

**
 -.19 -.13 -.01 1.00 

   
11 c4reasoning .20 .20 -.30 -.15 -.07 .40

*
 .07 .13 -.44

*
 .11 1.00 

  
12 IT2complexity .60

**
 -.24 .35

*
 .16 -.12 -.07 .02 -.12 .04 -.14 .10 1.00 

 
13 IT3constructed .39

*
 -.10 .16 .09 -.27 -.04 -.03 .00 -.01 -.18 .11 .38

*
 1.00 

  * p < .05, ** p < .01 

(8) Correlation Coefficient among the Item Difficulty and the Attributes for QM4 and QM5-2 of Booklet 3 (with New Process Attributes) 

  Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 ItemDifficulty 1.00                               
 

2 b2decimal .03 1.00 
               

3 know_a1 .02 .30 1.00 
              

4 know_a2 .18 -.31 .07 1.00 
             

5 know_a3 .13 -.49
**
 -.40

*
 .14 1.00 

            
6 know_a4 -.10 .26 .18 -.33 -.11 1.00 

           
7 d1compareNum -.12 .19 .19 -.37

*
 -.15 .72

**
 1.00 

          
8 d2recognizing -.10 -.11 -.03 -.21 .18 .52

**
 .27 1.00 

         
9 d3formulating .17 .41

*
 .04 -.05 -.40

*
 -.31 -.34 -.34 1.00 

        
10 d4compu_numb .11 .46

**
 .66

**
 .25 -.29 -.10 -.23 -.40

*
 .22 1.00 

       
11 d5compu_alge .18 -.31 .07 1.00

**
 .14 -.33 -.37

*
 -.21 -.05 .25 1.00 

      
12 d7judg_rule .10 -.30 .14 .33 -.23 -.18 -.19 -.19 -.24 .21 .33 1.00 

     
13 d8judg_geom .16 -.46

**
 -.22 .20 .92

**
 -.08 -.12 .23 -.37

*
 -.18 .20 -.21 1.00 

    
14 reas_a1 .21 -.20 .09 -.18 .13 .21 .49

**
 .18 -.17 -.45

**
 -.18 -.09 .15 1.00 

   
15 reas_a3 .07 -.20 -.29 .09 .41

*
 -.12 -.13 -.13 -.17 -.15 .09 -.09 .15 -.06 1.00 

  
16 IT2complexity .60

**
 .35

*
 .16 -.12 -.07 .02 -.01 -.01 .46

**
 .04 -.12 -.16 -.04 .25 -.11 1.00 

 
17 IT3constructed .39

*
 .16 .09 -.27 -.04 -.03 .07 .07 .32 -.01 -.27 -.28 .01 .34 -.19 .38

*
 1.00 

  * p < .05, ** p < .01  

2
1
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