
University of Denver University of Denver

Digital Commons @ DU Digital Commons @ DU

Electronic Theses and Dissertations Graduate Studies

1-1-2011

Memory Access Patterns for Cellular Automata Using GPGPUs Memory Access Patterns for Cellular Automata Using GPGPUs

James Michael Balasalle
University of Denver

Follow this and additional works at: https://digitalcommons.du.edu/etd

 Part of the Computer Sciences Commons, and the Plant Sciences Commons

Recommended Citation Recommended Citation
Balasalle, James Michael, "Memory Access Patterns for Cellular Automata Using GPGPUs" (2011).
Electronic Theses and Dissertations. 756.
https://digitalcommons.du.edu/etd/756

This Thesis is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital
Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu.

https://digitalcommons.du.edu/
https://digitalcommons.du.edu/etd
https://digitalcommons.du.edu/graduate
https://digitalcommons.du.edu/etd?utm_source=digitalcommons.du.edu%2Fetd%2F756&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.du.edu%2Fetd%2F756&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/102?utm_source=digitalcommons.du.edu%2Fetd%2F756&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.du.edu/etd/756?utm_source=digitalcommons.du.edu%2Fetd%2F756&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jennifer.cox@du.edu,dig-commons@du.edu

Memory Access Patterns for Cellular Automata Using GPGPUs

A Thesis

Presented to

the Faculty of Engineering and Computer Science

University of Denver

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

James Balasalle

March 2011

Advisor: Dr. Matthew J Rutherford

Author: James M Balasalle
Memory Access Patterns for Cellular Automata Using GPGPUs
Advisor: Dr. Matthew J Rutherford
Degree Date: March 2011

ABSTRACT

Today’s graphical processing units have hundreds of individual processing cores that

can be used for general purpose computation of mathematical and scientific problems.

Due to their hardware architecture, these devices are especially effective when solving

problems that exhibit a high degree of spatial locality. Cellular automata use small,

local neighborhoods to determine successive states of individual elements and there-

fore, provide an excellent opportunity for the application of general purpose GPU

computing. However, the GPU presents a challenging environment because it lacks

many of the features of traditional CPUs, such as automatic, on-chip caching of data.

To fully realize the potential of a GPU, specialized memory techniques and patterns

must be employed to account for their unique architecture. Several techniques are

presented which not only dramatically improve performance, but, in many cases, also

simplify implementation. Many of the approaches discussed relate to the organization

of data in memory or patterns for accessing that data, while others detail methods of

increasing the computation to memory access ratio. The ideas presented are generic,

and applicable to cellular automata models as a whole. Example implementations

are given for several problems, including the Game of Life and Gaussian blurring,

while performance characteristics, such as instruction and memory accesses counts,

are analyzed and compared. A case study is detailed, showing the effectiveness of

the various techniques when applied to a larger, real-world problem. Lastly, the rea-

soning behind each of the improvements is explained, providing general guidelines for

determining when a given technique will be most and least effective.

ii

Acknowledgments

I sincerely wish to thank my advisor, Dr. Matthew Rutherford, for not only his
continued patience, but also a strong interest in my research, academic career, and
professional future.

I would also like to express my gratitude to Dr. Mario Lopez whose enthusiasm
for teaching made the transition back to academia much easier.

Dr. Paulius Micikevicius provided a significant amount of technical help and guidance
related to Nvidia graphics cards; his feedback made it possible to pass through some
difficult barriers.

Lastly, I want to acknowledge my wife, Aileen. Without her support, encourage-
ment and reassurance, none of this would be possible.

iii

Table of Contents

1 Introduction 1

2 Background 5
2.1 Parallel Computing . 5

2.1.1 Supercomputers . 7
2.1.2 Parallelism via Interconnected Independent Machines 7
2.1.3 Multicore Processors . 9

2.2 Software Support for Parallelism . 11
2.2.1 Operating System . 11
2.2.2 MPI - Message Passing Interface 12
2.2.3 OpenMP . 12

2.3 Cellular Automata Models . 13
2.3.1 Conway’s Game of Life . 13
2.3.2 Image Processing: Scale Invariant Feature Transform (SIFT) . 14
2.3.3 Surface Water Flow . 18

2.4 Nvidia GPU Architecture . 18
2.4.1 Single Instruction Multiple Data (SIMD) 19
2.4.2 Memory Regions . 20

3 Related Work 27
3.1 Cellular Automata Theory . 27

3.1.1 CA Models for Physical Science 28
3.2 GPGPU Computing . 30
3.3 Cellular Automata Using GPUs . 33

4 Memory Access Patterns 35
4.1 Näıve Implementations . 36
4.2 Memory Organization . 36

4.2.1 Shared Memory . 37
4.2.2 Memory Alignment . 39
4.2.3 Halos . 40
4.2.4 Effective Memory Region Shape 42

4.3 Multiple Data Per Thread . 43
4.3.1 Two Elements Per Thread . 44

iv

4.3.2 Data Packing and Interleaving 45
4.3.3 Multiple Generations Per Kernel 46

5 Experimental Analysis 51
5.1 Method / Setup . 52
5.2 Game of Life . 54

5.2.1 Global Memory . 55
5.2.2 Shared Memory . 58
5.2.3 Multi-generational Kernels . 70

5.3 Image Processing Methods . 78
5.3.1 Gaussian Blur . 78
5.3.2 Difference of Gaussians . 81
5.3.3 Extrema Detection . 82

6 Surface Water Flow: A Case Study 87
6.1 Method / Setup . 88
6.2 Overview of Existing Work . 88
6.3 Initial GPU Implementation . 90
6.4 Surface Water Flow: Revisited . 93
6.5 Final GPU Implementation . 94
6.6 Surface Water Flow: Final Thoughts 97

7 Discussion 99
7.1 Improvement Overview . 99

7.1.1 Shared Memory . 100
7.1.2 Memory Alignment . 100
7.1.3 Halos . 101
7.1.4 Rectangular Memory regions 101
7.1.5 Two Elements Per Thread . 102
7.1.6 Data Packing and Interleaving 103

7.2 Multi-Generational Kernels . 103
7.3 Compromises . 104
7.4 Observations and Intangible Results 104
7.5 Conclusion . 105

v

List of Figures

2.1 The # 2 super computer on the Top500 list: Jaguar 8
2.2 Game of Life Cellular Automaton . 14
2.3 Neighborhood extrema detection in SIFT, from [23]. 17
2.4 High-level architecture of an Nvidia GPU 19
2.5 CUDA threadblocks and the grid into which they are organized; from [27]. 24

4.1 A depiction of how cells share neighbors. The shaded cells are neigh-
bors of BOTH A and B. The diagonally lined cells are neighbors of A,
and the dotted cells are the neighbors of B. 38

4.2 16x16 Effective Region with a one cell halo 41
4.3 The cost of loading a halo element: when loading the right most halo

element, possibly only 2 or 4 bytes, the memory system returns a full
bus transaction worth of data which is 32 bytes. 43

4.4 Using a rectangular kernel reduces the number of right-side halo ele-
ments, thus reducing wasted bytes. The width of the region in this
image is abbreviated: it is actually 64 elements wide, thereby equaling
a 16x16 region in total elements while reducing halo traffic. 44

4.5 Each additional generation that a kernel computes requires more data
to be read from memory. In this example, the effective region is 36
elements, but the kernel reads almost 3 times that amount: 100 elements. 49

5.1 Multi-generational timing. 53
5.2 Conditional loading from global memory. 56
5.3 CA rules implementation. 56
5.4 CA computation using a one cell memory halo. 57
5.5 Plots of (a) execution time and (b) application memory bandwidth for

conditional memory loading and using a one cell halo. 58
5.6 Shared memory staging, assumes one cell halo. 60
5.7 CA computation using shared memory. 61
5.8 (a) total time and (b) application bandwidth for global and shared

memory. 61
5.9 Padding memory to maximize aligned memory accesses. 62

vi

5.10 A comparison of different memory alignments. 32-byte alignment is
considered to be unaligned while 128-byte alignment is maximally
aligned. Total time is shown in (a) and application bandwidth is shown
in (b). 64

5.11 Rectangular vs. square regions: (a) total time, (b) application band-
width. 66

5.12 Loading shared memory such that each thread processes two elements. 68
5.13 A comparison of a two-element kernel, a rectangular region kernel and

a basic 128 byte aligned kernel: (a) shows total time and (b) depicts
application bandwidth. 69

5.14 Execution times of all the major kernels discussed to this point; (a)
is total time while (b) is application bandwidth. The two-element
rectangular region kernel is the clear winner 70

5.15 The complicated process of staging shared memory in preparation for
a two-generation kernel. 71

5.16 Comparing the two-element rectangular kernel against a baseline two-
generation kernel: (a) is total time and (b) is application bandwidth. 72

5.17 Calculation of first generation halo cells. 74
5.18 Linear loading method. 76
5.19 Performance of the two-generation kernels. (a) total time and (b) ap-

plication bandwidth. 78
5.20 Core of the convolution kernel. 79
5.21 Comparison of blur kernels: aligned rectangular and two-element aligned

rectangular; (a) is total time and (b) is application bandwidth. 80
5.22 Entirety of the difference of Gaussians kernel. 81
5.23 (a) shows total time while (b) shows application bandwidth for differ-

ence of Gaussian kernels. 83
5.24 Extrema shared memory staging, note the 3 dimensional array. 84
5.25 (a) diagrams total time and (b) application bandwidth: extrema de-

tection. 84

6.1 Viewing the result of the CA model 91
6.2 Kernel that adds rain water to each cell. 92
6.3 Illustration of all the cells that are accessed during the computation

of incoming volume for the center cell. Lightly shaded cells respresent
those which must be accessed in-order to compute the incoming water
for the center cell. 94

6.4 Surface Water Total Time . 96

vii

List of Tables

5.1 Two-element and two-generation Visual Profiler Results 73
5.2 Visual Profiler Results for two-generation Game of Life kernels. . . . 77
5.3 Visual Profiler results for difference of Gaussians. 82
5.4 Extrema detection: Visual Profiler results. 85

6.1 Initial Surface Water Implementations 93
6.2 Revised Surface Water Implementations 95
6.3 Comparison of Visual Profiler results for surface water kernels. 97

viii

Chapter 1

Introduction

General Purpose Graphics Processing Unit (GPGPU) computation is quickly becom-

ing an important area in the field of high performance computing. However, the

use of a GPU for general computation requires a significant change not only in al-

gorithm development but also in programming environments. This work describes

several performance improving techniques and patterns that apply when implement-

ing algorithms for GPGPU environments. Specifically, the performance improvements

presented here apply to problems normally organized in the form of a Cellular Au-

tomaton.

Problems modeled using cellular automata were chosen because they span a wide

range of disciplines: economics[15], biology[10], cryptography[25], and imaging[32], as

well as many others. The work presented here does not include algorithms for imple-

menting specific cellular automata, but it presents generic methods applicable to the

implementation of all cellular automata using GPGPUs. The main focus is on data

organization and patterns for accessing that data. Because the execution environment

of GPGPUs is considerably different from that of traditional processors, alternative

methods for simple operations like memory access must be employed to fully realize

1

the capabilities of the underlying hardware. Memory access is a fundamental aspect

of all computing problems, and the optimization of such can be beneficial to memory

intensive applications such as those modeled by cellular automata.b In addition, the

price of modern GPUs is extremely attractive, as they can be several thousand times

cheaper than more traditional high performance computing platforms. These factors

are the motivating force behind the work presented here. It is clear that GPGPU

processing can enable researchers, scientists, and engineers to achieve a level of perfor-

mance previously attainable only by governments and large corporations. The main

goal of this work is to aid in the advancement of science and technology by increasing

computational power without a significant cost.

Cellular automata models are the backdrop for this work because, as stated above,

they span an wide range of disciplines. The main focus is to enable as many people as

possible to benefit, not just those in a specific area. Also, cellular automata naturally

lend themselves to parallel processing due to their state based definitions and neighbor

calculations. Lastly, cellular automata models are intended to model complex systems

with relatively simple rules. This allows us to focus on cellular automata theory and

techniques that apply to it as whole, instead of being mired in the details of complex

systems.

Many cellular automata are computationally simple, and because of that the main

performance hurdle for implementing them is memory throughput. A large portion

of this work is dedicated to describing certain techniques that improve memory per-

formance. To illustrate that these techniques do, in fact, increase performance they

have been implemented in various cellular automata models. Three different models

have been implemented: Conway’s Game of Life [6], elements of Lowe’s SIFT al-

gorithm [23], and finally a “real world” application that models surface water flow

initially presented by Parsons in his Masters Thesis [30]. A baseline implementation

2

is presented for each CA, successive techniques are applied, and execution time as

well as memory throughput are compared. Theoretical details of each technique are

also presented and the different problems are classified by their arithmetic intensity.

A major concentration of ideas presented here is related to the ratio of the number

of memory accesses to the number of instructions. Due to the hardware platform and

execution environment this ratio can be an important in optimizing performance.

They key contribution made by this work is the analysis of the memory-access-to-

instruction ratio and the presentation of ideas that minimize the number of memory

accesses that must be made. Properties of generic cellular automata are exploited to

realize certain improvements. There are two central ideas that repeat in this work: 1)

memory organization to increase alignment and 2) reduce the number of instructions

and compute multiple elements whenever possible. Ultimately, however, this work

aims to present a set of improvements that can be applied across a wide range of

disciplines and applications.

In the short term, the methods presented in this work are intended to aid re-

searchers, scientists, and engineers in achieving real and significant performance im-

provements. These improvements will allow a much faster turn-around time on com-

putational runs or allow the processing of more data in an acceptable amount of time

to reach more accurate results. In many cases it is possible to modify existing appli-

cations or create new applications that utilize GPGPUs in that short term; that is,

within two or three years.

A longer term benefit of this work is the study of cellular automata in a parallel

processing environment. CA models are both simple and widely applicable, and thus

attractive to a broad audience. Modeling complex systems as cellular automata has

many benefits, one of these being ease of simulation. Cellular automata models are

inherently parallelizable; as the number parallel processors continues to grow and the

3

research community begins to move in a more parallel direction, the performance

improvements presented herein will become increasingly important.

This body of research is presented as follows. First, in Section 2, a substantial

amount of background is given: parallel computing, GPU architecture, cellular au-

tomata, Conway’s Game of Life, Lowe’s SIFT algorithm, and Parsons’ surface water

model are all discussed in detail. Relevant work is then discussed and investigated in

Section 3: similar research is presented and analyzed and parallels are drawn, where

applicable, to this work. Next, in Section 4, the two central themes are expounded

upon, those being memory organization and multiple data processing. During the

course of describing these two themes, tangible techniques are presented and dis-

cussed in detail. Once a sufficient understanding of the techniques has been achieved

their performance characteristics are presented in Section 5. This is done through ex-

perimental comparison of different implementations of each technique. Performance

improvements are also given. Section 6 details a case study, in which the techniques

and patterns are applied to a real-world problem. Lastly, Section 7 concludes this

work with some higher-level discussion of certain observations made while completing

this research.

4

Chapter 2

Background

2.1 Parallel Computing

Moore’s Law states that the number of transistors that can be placed on an microchip,

in a non-cost-prohibitive manner, will double every two years [36]. The first 1GHz

processor was released in March of 2000, approximately 10 years ago. One may wonder

why, then, do we not yet have 32GHz processors? Transistor count does not equate

to processor clock rate. More transistors often means more features, not just more

speed. In the last few years, new transistor space has been primarily dedicated to

improving parallel execution. Modern processors have multiple sources of parallelism,

hyper-threading and multicore architectures being chief among them [19]. A multicore

processor is one that contains two or more full, but independent, standard processors

on a single chip die. The different cores may or may not share the memory subsystem,

caches, or system resources depending on their design and intended use. Multicore

processors are becoming more prevalent and the number of cores on a single chip die

continues to increase. At the time of this writing, 6-core processors are available for

desktop use. The growth of multicore processors is also present in embedded systems

5

applications. Processors such as the XMos [34] continue to bring multicore solutions

to resource constrained environments. The drawback to such processors is that to

reap their benefits, applications must be written (or modified) to specifically harness

the extra processing power, and a high percentage of today’s software does not do

this.

In addition to multicore processors, there is also a class of newer processors called

many-core processors. These processors have on the order of hundreds of individual

cores. The main difference between these and desktop multicore processors is that

many-core processors are limited in both their capabilities and independent execu-

tion [26] [37] [38]. Modern graphics processing units (GPU) are many-core processors.

GPUs are extremely efficient at floating point math used for graphical computations

such as pixel shading; however there are many other applications that require floating

point arithmetic. In the last half of the 2000 - 2009 decade, researchers have been try-

ing to use the inherent parallelism of GPUs to solve problems other than pixel shading.

Initially this was done by attempting to deceive the hardware into thinking it was

still doing graphical computations by packing data into already defined structures

and executing computation by using existing graphics APIs [29]. While this method

did garner notable performance improvements, it was not an easy or maintainable

solution. In 2007 Nvidia released a software development kit that enabled the use of

their GPUs specifically for non-graphical computation, and with this release the field

of General Purpose (GPGPU) computing was born [21]. They released a framework,

called CUDA (Compute Unified Device Architecture), that allows developers to use

the GPU as a computation engine without having to use the existing graphics APIs:

OpenGL [49] or DirectX [2] [3]. Current Nvidia cards offer over a teraflop [41] of

computing power at a reasonable price, while the limit of an Intel hexa-core CPU is

108 gigaflops [47]; an order of magnitude less than the Nvidia GPU.

6

Moore’s Law also applies to GPUs. The parallelism achieved by these processors

will only continue to increase. It is clear that as processors move towards a higher

level of parallelism, the software that runs on them must also evolve to keep pace.

2.1.1 Supercomputers

The definition of a supercomputer is constantly changing. Generally, it implies one

of the “fastest” computers in the world. Typically these are inordinately expensive

machines funded by governments and used to solve simulation problems in the fields

of nuclear physics or astrophysics. A project called The TOP500 tracks and ranks the

current fastest computers in the world. Figure 2.1 depicts the current # 2 machine on

the TOP500 list: Jaguar. It is not surprising that every single one of the computers

currently on this list utilizes more than one processing core. Some computers have

hundreds of thousands of standard CPUs, while others are a hybrid of CPU and GPU

cores. Several of these machines break the petaflop barrier: one quadrillion floating

point operations per second. Because many of these computers are 1) built for solving

a specific problem and 2) cost prohibitive they are not a focus of this work. However,

since many of these machine utilize GPUs as building blocks for their computations

the work presented here is still relevant.

2.1.2 Parallelism via Interconnected Independent Machines

Parallelism does not have to be achieved via transistors and hardware. Multiple,

independent computers can be used to solve a problem in parallel. A classic and

well known example of this is the SETI@Home project [1]. The SETI@home project

allows any person with a computer connected to the Internet to donate the unused

CPU cycles of that computer to be used in the search for extraterrestrial intelligence.

7

Figure 2.1: The # 2 super computer on the Top500 list: Jaguar

Through software, the SETI@Home project is able to achieve almost a petaflop level

of computing power without the need for expensive hardware. SETI@Home, and

projects like it, utilize distributed computing to increase computational throughput

and increase parallelism. Grid computing is another example of utilizing multiple

machines to increase parallelism and ultimately performance [8]. Typically a com-

puting grid is a variegated collection of machines used in concert to accomplish either

a single task or a group of related or unrelated tasks. Globus [12] is a specific software

system used to enable the construction of computing grids.

Clusters

Clusters use the same principles of distributed computing as SETI@home to increase

parallelism. A cluster is a group of independent machines that are interconnected via

8

a fast medium, usually a high-speed network such as InfiniBand [22], etc. A cluster

can be built with off-the-shelf components, making it thousands of times cheaper than

a single machine that is comparable in performance. The term “cluster” is a general

term which encompasses several types of solutions. These solutions range from a

group of heterogeneous, off-the-shelf servers running a parallel operating system to

several independent computing nodes communicating via a message passing system

such as MPI [45].

2.1.3 Multicore Processors

Most of today’s desktop and laptop computers utilize some form of a multicore proces-

sor. At the time of this writing the prevalent desktop processors are Intel’s Nehalem

architecture and AMD’s Phenom architecture. Both of these processors are multi-

core, offering 2 to 6 cores. Personal computers also contain a video device or graphics

card consisting of one or more many-core processors with gigaflops of raw comput-

ing power. Also, gaming devices, such as Sony’s Playstation 3 are built on top of a

multiprocessor: IBM’s Cell Processor [18].

PC Multicore Processors

Multicore processors increase parallelism by allowing the processor to execute multiple

threads of execution at the same time. These threads of execution are managed by

the operating system and can be full processes or lighter weight threads. However,

it is important to note that the use of multiple cores does not come for free. Special

software and operating system support must be present to allow the simultaneous use

of all computing cores.

9

Cell Processors

Another processor architecture worth noting, created by IBM, Sony, and Toshiba, is

the Cell Processor [18]. This is a hybrid processor that incorporates a moderately

powered central processor and several dedicated, functional units. The central unit is

called a “Power Processor Element” and is similar to 64-bit PowerPC architectures.

The various functional units are called “Synergistic Processing Elements” and exhibit

a SIMD architecture. Typically, the SPE units are each loaded with different code

and then linked together, with the output of one SPE serving as the input to the next

SPE. Because each SPE is a separate SIMD processor, more parallelism is possible.

The most notable application of the Cell Processor is in Sony’s gaming console, the

Playstation 3. Researches have created clusters of PS3 devices to further increase the

throughput of these processors, seen in [33]. The widespread adoption of the Cell

Processor is still under question, due to the challenging programming environment

caused by its hybrid architecture.

GPUs

GPUs, the focus of this work, are many-core processors, currently with up to 500

cores. These cores are not as full featured as a standard CPU core. For example,

Nvidia’s Tesla architecture does not offer layer 2 caching features. GPU cores use

a Single Instruction Multiple Data (SIMD) architecture. This means that each core

executes the same instruction, but operates on different data. Certain problems, such

as graphics processing, require that the same calculations be performed on a large

set of data. It is in such circumstances where SIMD processors excel. A GPU is not

a standalone unit, however. GPUs are co-processors with their own memory space,

which require a standard CPU and chip-set controller to function. GPUs do not run a

10

typical operating system, nor do they provide a multi-process environment. Instead,

the GPU manages its administrative tasks in hardware reducing overhead costs by a

significant amount. Since the GPU is an external device from the perspective of the

CPU, data must be sent to the GPU via the system bus. This is a non-negligible cost

which can have serious performance impacts. However, this work focuses on memory

performance during execution on the GPU and not interactions between the host

computer and the GPU.

2.2 Software Support for Parallelism

2.2.1 Operating System

Operating systems have long provided support for simulating parallel execution of

user programs. For many years, most computers only contained one processing unit.

However, even computers with only one CPU were able to service the requests of

multiple users. This is done by multiplexing not only user programs onto the CPU, but

also operating system execution. The multiplexing of programs is largely transparent

to the user. The same principle exists in a multicore system, except the operating

system now has additional resources (more CPUs) on which it can schedule jobs.

In either environment, programmers can utilize logical execution abstractions known

as threads to increase parallelism and reduce overhead [5]. A classical example is a

producer-consumer model where a producer thread generates some set of data upon

which the consumer thread operates. A benefit of this model is that both threads

can be implemented in such a way that if there is no work to be done the CPU is

relinquished to allow other processes to run. Threads of execution can be provided

by the operating system as separate processes or system libraries such a pthreads [9].

11

Languages such as Java provide their own implementation of threads.

2.2.2 MPI - Message Passing Interface

MPI is an application programming interface that allows communication between

computational elements running on separate physical machines [45]. MPI is a mech-

anism for creating clusters as described in Section 2.1.2. The MPI specification is

language and platform independent, allowing clusters to expand across a collection

of heterogeneous hardware. In addition to increasing parallelization through the use

of multiple processors, MPI also provides a distributed memory environment. Be-

cause MPI is defined through the specification of an API, it must be specifically

incorporated by the programmer.

2.2.3 OpenMP

OpenMP is a compiler framework that allows the programmer to easily utilize all of

the processing cores in a multicore environment [7]. The central idea is to automat-

ically spawn multiple threads for parallelizable sections of code through the use of

simple compiler directives. OpenMP is implemented as a compiler extension, thus

removing much of the burden of multi-threaded programming. A feature of OpenMP

is portability: the ability to dynamically determine the number of available cores,

removing the need for platform specific implementations. OpenMP also allows for

programmer controlled granularity through the definition of work units, and handles

data dependencies via standard semaphore and mutex concepts.

12

2.3 Cellular Automata Models

A cellular automaton (CA) is a discrete mathematical model used to calculate the

global behavior of a complex system using (ideally) simple local rules [44]. The space

of interest is tessellated into a grid of cells and the behavior of each cell is captured

in state variables whose values at any instant are functions of the state of a small

neighborhood around the cell. The dynamic behavior of the system is modeled by

the evolution of cell states, which are computed repeatedly for all cells in discrete

time steps. CA-based models are highly parallelizable as, in each time step, the new

state is determined completely by the neighborhood state in the previous time step.

When parallelized, these calculations are generally memory-bound since the number

of arithmetic operations performed per memory access is relatively small (i.e., the

arithmetic intensity is low). A benefit of using a CA to model a given problem is that

implementing a CA is usually a straightforward task. CA models generally exhibit

less complexity than other models because the next generation is based on a small

neighborhood of cells instead of a complicated mathematical function or system of

differential equations.

2.3.1 Conway’s Game of Life

The Game of Life is a simple cellular automaton created by John Conway in 1970 [6].

It is interesting because of the large amount of different patterns that can arise, many

even self replicating. In the Game of Life, cells exist in one of two states: alive (black),

or dead (white). The Game of Life uses an octile neighborhood when determining

the next state of a cell. There are four simple rules that determine the state of a cell

in the Game of Life1:

1http://en.wikipedia.org/wiki/Conway’s Game of Life

13

1. Live cells with fewer than 2 live neighbors die (under-population);

2. Live cells with more than 3 live neighbors die (over-crowding);

3. Live cells with exactly 2 or 3 live neighbors live to the next generation; and

4. Dead cells with exactly 3 live neighbors become alive (reproduction).

In Figure 2.2, the cell in the center transitions from dead to alive through the appli-

cation of rule #4 while the alive cells at ti transition to dead at ti+1 due to under-

population (assuming cells outside the boundary are dead). As with all CA, these

rules are applied to each cell for every generation that is calculated – typically using

two memory regions, one for the “current” state, and one for the “next” state that

are swapped as the system evolves over many generations. In the simple CUDA im-

plementation of this algorithm, each thread calculates the state of one cell in the next

array by accessing values in the current array (handling boundary values appropri-

ately).

t i t i+1

Figure 2.2: Game of Life Cellular Automaton

2.3.2 Image Processing: Scale Invariant Feature Transform

(SIFT)

In the study of image processing there are certain methods that are used frequently,

to solve many different problems. For example, convolution is widely used for apply-

ing image filters, while scale spaces are used in both edge and blob detection [23].

14

Also, both image filtering and scale spaces are used extensively in feature match-

ing and tracking problems. The work presented here concentrates on several utility

methods, such as convlolution and scale space usage, since they are so widely appli-

cable. However, these methods are studied and presented in the context of a larger,

computationally intensive image processing pipeline: Lowe’s scale-invariant feature

transform (SIFT) algorithm.

The SIFT algorithm has many applications, most of which involve some form of

feature recognition. The detection of these features, known as keypoints, is not sus-

ceptible to changes in scale or illumination, nor is it affected by image noise. For these

reasons, SIFT is a staple in computer vision applications. However, the algorithm

itself is a complicated pipeline of successive steps, each of which is computationally

intensive, making it problematic for use in real-time or near-real-time environments.

A real-time implementation of the SIFT algorithm would have actual and immediate

benefit to many applications, therefore this work focuses on several aspects of the

SIFT pipeline, and how these different aspects can be viewed as cellular automata

models, subject to the various performance improvements described herein. SIFT is

representative of many image processing and computer vision algorithms, making its

study widely applicable.

Algorithm Overview

The SIFT algorithm is a multi-step process which identifies certain pixels of an image

as keypoints, and assigns those points a vector of values which describes the keypoint

and its orientation. The central idea is that keypoints will occur at minima and

maxima of the image; in fact finding these extrema is the first of 4 main steps of

the SIFT pipeline. The second step is a refinement step where sub-pixel accuracy is

used to find even stronger keypoints. After refinement, an orientation is calculated

15

for each keypoint, making the point robust to changes in rotation. Lastly, the vector

of values comprising the keypoint is generated; this vector is used for matching one

image against another. This work concentrates on step one of the SIFT pipeline; in

particular the treatment of Gaussian blurring (a convolution operation), difference

of Gaussians, and neighborhood extrema detection operations as cellular automata

models.

Extrema Detection. The first step of the algorithm is to find these extrema as

possible keypoints. A scale space is created by successively applying Gaussian filters,

convolving the image. As the image is blurred it is also downscaled, creating a set of

blurred images of different sizes. Each different size category of the image is called an

octave; and each successively blurred image in the octave is called an interval. Once

the intervals and octaves have been generated a subtraction operation is performed

on adjacent intervals, producing a number of difference of Gaussians appearing at the

different octaves. Minima and maxima found in the difference of Gaussians results

are the initial set of keypoints; see Figure 2.3.

Keypoint Refinement. Once the initial set of keypoints has been found it must

be refined by removing unstable keypoints. A simple check is to compare the contrast

of each keypoint pixel to a threshold; those keypoints with a contrast below a given

threshold are ignored because they are susceptible to noise. Another refinement step

is to find the actual subpixel location of the keypoint. The image itself is discrete, but

the actual location of the extrema may lie somewhere between pixels. Finding the

actual location improves stability. The actual location is found by interpolation of the

pixels surrounding the one in question; interpolation is done using the Taylor series

expansion of the difference of Gaussian function applied in the previous step. The

16

Figure 2.3: Neighborhood extrema detection in SIFT, from [23].

last refinement step is to eliminate edges which are not robust to image noise. Edges

are eliminated by inspecting the principle curvature of the difference of Gaussian

function, finding points whose curvature is larger than some threshold.

Orientation. Now the set of keypoints has been defined, an orientation must be

calculated for each point, making the point robust to changes in rotation. This is

done by examining the image gradient around each keypoint. The magnitude and

direction of the image gradient around each keypoint is calculated; this is done for

a neighborhood of points around the keypoint. These magnitudes and directions are

stored in a histogram, allowing the dominant vectors to be easily found and assigned

as orientations.

Keypoint Descriptor. The last step in the SIFT algorithm is to create a keypoint

descriptor for each keypoint. A keypoint descriptor is an identifier of a pixel that is

robust to changes in scale, rotation, and illumination. The descriptor is generated by

17

another histogram operation which calculates magnitude and orientation values in a

region around the keypoint. These values are then used to create the descriptor.

2.3.3 Surface Water Flow

In his Masters thesis, Parsons proposes a cellular automaton model that uses digital

elevation maps to predict surface water flow resultant from a rain event [30]. This

method is further refined in [31]. Using a digital elevation map discretizes an area

of land into a grid of cells, each with a known elevation above sea level. From this

map, not only are relative distances easy to calculate, but also the slope of the land

from one cell to another. Using this information Parsons can predict how water will

flow over the map. The input to this model is a digital elevation map of the area in

question and rainfall rates. The output is the amount of water remaining in each cell

after the rainfall has ended. The model also takes into account geological properties

of the land such as surface infiltration rates based on the content of the soil. Our

work uses the CA presented by Parsons, and his Java based implementation, as a

case study to apply a collection of the techniques presented here and evaluate both

effectiveness and facility of each.

2.4 Nvidia GPU Architecture

At a very high level the Nvidia GPU consists of one or more streaming multiprocessors

(SM), each with 8 processing cores, two special functional units, and access to a global

DRAM space [21]. Each processing core contains a single 32-bit floating point unit

that can also operate on integers. Each core must share the two functional units

which handle operations such as transcendentals and double precision operations.

The architecture of Nvidia’s 8800 GPU can be seen in Figure 2.4; the Nvidia 8000 is

18

a GPU with 128 distinct processing cores cores and also one of more powerful CUDA

enabled processors when it was first released.

Figure 2.4: High-level architecture of an Nvidia GPU

2.4.1 Single Instruction Multiple Data (SIMD)

Nvidia GPUs utilize a single instruction multiple data, or SIMD, architecture for

executing instructions across their multiple cores. SIMD means that, on a given SM,

every processing core executes the same instruction at the same time. Forcing every

core to execute the same instruction may seem highly restrictive, but it enables the

hardware to maintain only one set of instruction registers, thereby improving context

switching performance and lowering the amount of thread management data required.

For problems with a high degree of data parallelism, SIMD architectures perform very

well. The SIMD architecture provides a basis upon which the CUDA threading model

19

is built. This architecture also influences implementation details such as the use of

conditionals and other branching constructs.

To understand the power of parallelism that the Nvidia SIMD architecture af-

fords, consider a CA that computes the next generation for a single cell in 10ms, on

average for a CPU. When this CA runs on a data-set of 10,000,000 items, it takes

approximately 100,000,000ms or about 27.78 days to execute. If we implemented this

CA in a GPU environment with 500 cores where it took 100ms to compute the next

generation of a single cell, execution would take approximately 33.33 minutes. This

is simply due to the fact that the GPU can calculate the next generation of 500 cells

at one time. This is a theoretical example meant to illustrate the power of a SIMD

architecture in the context of a CA model.

2.4.2 Memory Regions

There are several different memory regions available for use on the GPU. Each of these

regions has special characteristics and is used for different purposes. The available

memory regions are, a generic global memory, a small, on-chip, user-managed cache

memory called shared memory, texture memory, and constant memory. This work

primarily deals with global memory and shared memory.

Global Memory

Global memory for the GPU is analogous to main memory for a CPU: it is an off-chip

piece of hardware that provides storage for data and must be accessed via a system

bus. Global memory access is expensive and must be carefully managed. However,

it is the only large memory area available to application developers. Typically, data

is copied from the host, to the graphics device and stored in global memory; ker-

20

nels executing on the GPU then access that memory over the dedicated bus on the

graphics device, perform some calculations, and finally write results back to this same

global memory region. The results are then copied back from the graphics device and

inspected or further processed by applications running on the CPU. A single memory

load request on the GPU is issued in 4 clock cycles, but there is also an additional

400 - 600 cycles of latency to access global memory [27]. Global memory is not auto-

matically cached in the Tesla architecture, and each access request pays this latency

penalty; the Fermi architecture does offer an L2 cache of 768KB intended to add

better memory performance for applications that do not have a high degree of spatial

locality in their memory access patterns, and as such, is beyond the scope of this

work.

Shared Memory

In the Tesla architecture, shared memory is a 16KB, on-chip, user managed cache.

This has been increased to 64KB in the Fermi architecture. Shared memory is used

when a set of threads need to access the same piece of data. The data element is read

from global memory and copied into the shared memory region where all threads can

then access that element in 4 clock cycles (subject to read-after-write delays). Using

shared memory eliminates the need to repeatedly request data from global memory,

thus improving performance. In a typical kernel, shared memory is first staged. This

means that each thread loads one or more values from global memory, copying them

to the shared memory space. Once all the required values have been copied the

computation commences, reading data from shared instead of global memory.

21

Texture Memory

Texture memory is an area frequently used by the GPU when doing graphics opera-

tions. This memory region provides a two dimensional locality caching mechanism:

when a processing core requests an element from texture memory the surrounding

elements are automatically read and loaded into the cache, improving access times

for subsequent requests from different threads. Texture memory also has attached

hardware called texture units which are capable of doing certain floating point op-

erations, such as linear interpolation, in specialized hardware. Surprisingly, a major

drawback of texture memory is the cache. When writing to texture memory there

is no guarantee of cache coherence, so subsequent reads from the same kernel will

not reflect the latest modifications. Texture memory does not exist in different phys-

ical hardware than global memory; in fact, texture memory is mapped onto global

memory, thus changing the access mechanism. This work does not employ texture

memory due to its specialized nature.

Constant Memory

Constant memory is a cached region for unmodifiable data. Since the data cannot

be modified, maintaining cache coherence is simpler and there is no read-after-write

problem as with texture memory. For constant memory to be employed effectively

however, each thread must request the same location of constant memory. The cost

scales linearly with the number of different addresses requested [27]. Due to this

limitation, the work present here does not use constant memory.

22

Kernels

A kernel is a programmer defined unit of work that is executed on each of the pro-

cessing cores of a streaming multiprocessor. The same instruction runs on each core,

only the data upon which it operates is different. The kernel is the portion of the

algorithm that is actually run on the GPU. Different kernel implementations are the

main contribution of this work.

Blocks and Threads

CUDA accomplishes a high degree of parallelism by supporting thousands of threads

in hardware. The organization of these threads is an important task. Even though

each thread is going to execute the same instructions, there must be a mechanism that

instructs each thread which element to load, increment, or modify. In CUDA, threads

are grouped into one, two, or three dimensional units called thread blocks. These

dimensions facilitate mapping each thread to a particular data layout. For example,

data that are naturally oriented in a grid will usually require a two dimensional

threadblock. Threadblocks are organized into a one or two dimensional grid. When

a streaming multi-processor is ready to begin execution, a block is scheduled on that

SM, and execution commences. The threads in the threadblock run, each deriving

a unique identifier from the location within the threadblock and the location of the

threadblock within the grid. A graphical representation of threadblocks can be seen

in Figure 2.5; note, this example shows a two dimensional grid of blocks where each

block contains a two dimensional organization of threads. It is also possible to arrange

the threads in three dimensions, thus facilitating mapping to three dimensional data.

23

Figure 2.5: CUDA threadblocks and the grid into which they are organized; from [27].

Warps and Half Warps

Threads are further broken up into warps and half-warps, which are simply groups

of 32 threads or 16 threads, respectively. Warps are artifacts of the SIMD architec-

ture: the smallest unit of threads that the hardware is able to execute. Warps are

not programmer controlled or accessible, but they are important to understand be-

cause many instructions are implemented in the hardware on a half-warp boundary,

especially memory instructions.

24

Coalescence

Memory coalescence is an important topic in the Tesla and Fermi architectures. A

natural result of the single-instruction-multiple-data paradigm is that when a memory

load instruction is executed, all 8 processing cores on a streaming multiprocessor issue

a memory load request. Waiting on 8 memory requests would waste a considerable

amount of time. To overcome this problem, the memory subsystem offers a significant

performance improvement known as coalescence. When specific criteria are met, 8

separate loads are coalesced into a single request, thus reducing the total memory

latency and improving memory throughput. To fully understand when coalescence

is achieved it is important to know something of the underlying memory hardware.

Memory is divided into multiple, equally sized modules called banks. Each bank can

be accessed simultaneously [27]. Therefore, if each thread accesses a different bank,

coalescence is possibile. However, if two threads access the same bank, there is a

bank-conflict, and the requests must then be serialized. The details of coalescence are

described in Section 4.2.2.

Branching and Divergence

Another result of using a SIMD architecture is that conditional logic becomes prob-

lematic. When a conditional instruction that is dependent on data is executed, each of

the eight processing cores could return a different result forcing the processor to jump

to different places. This is called branch divergence and impacts performance because

all eight processors are executing a single instruction. For example, an if-statement

may cause 31 threads of warp to branch one way, and a single thread to branch to a

different execution path. When the half-warp that contains the solitary thread exe-

cutes, only 1 processing core executes a meaningful instruction, thereby wasting 15

25

cores over two clock cycles. This work does not focus on how the hardware deals with

this problem, but only tries to minimize the number of branch divergent situations

that could possibly arise.

26

Chapter 3

Related Work

In general, the work presented here can be categorized into two large areas: (1) cellular

automata and (2) GPGPU computing; the focus being the intersection of these two

areas. Much research has been done on CA theory, as well GPGPU computing;

however, the current body of work involving CA models using GPGPU computing

is rather small. In this section, existing CA theory is discussed, in particular, the

optimization thereof, followed by a selection of current GPGPU research. The small

collection of work comprising the intersection of these two areas is also described,

thereby putting the work presented here into an appropriate context.

3.1 Cellular Automata Theory

The study of cellular automata theory hearkens back to the initial days of computer

science, when Alan Turing and John Von Neumann were busy discovering the fun-

damental principles of computation. Cellular automata grew out of Von Neumann’s

fascination with Turing’s computing machine, while he was studying self-replicating

entities. Von Neumann’s seminal paper “The General and Logical Theory of Au-

27

tomata” [44] gave rise to a whole new class of modeling tools and enabled scientists

from many domains (chiefly physics, at the time of Von Neumann’s initial article) to

study their areas from a different perspective.

Because of their simplicity, CA models are used in fields such as economics,

physics, chemistry, biology, computer science, and mathematics. The intent of this

work is not to survey example CA models from each of these concentrations, but

to study the basic definition of a CA so that improvements proposed herein can be

applied to CA in many different fields. As such, classical examples, which exemplify

CA and their rules, are given from several fields of study.

In 2002 Stephen Wolfram released a book entitled “A New Kind of Science,” [48]

in which he discusses the importance of mathematically modeling the complexity of

various systems and argued that traditional methods are not sufficient to describe

the complexity found in many realistic systems. He uses different cellular automata

as examples of these systems. “A New Kind of Science” exposed cellular automata

to a wider audience, and put CA into the context of computation, making CA more

attractive to researchers and thus more widely used.

3.1.1 CA Models for Physical Science

In [43], Vichniac describes several topics in physics which can be modeled by a cellular

automaton. He discusses the topic of nucleation, where physical particulates cause the

growth or attraction of other physical particulates and form a nucleus or centralized

collection of that material. An example of nucleation is the seemingly spontaneous

generation of carbon dioxide bubbles in a carbonated beverage: these bubbles form

around minute particles suspended in the solution. Vichniac postulates that this

can be modeled by a simple neighborhood voting mechanism: the function which

28

determines the value of a region does so by analyzing the “popularity” of a given

state in the surrounding neighborhood. An example of a voting rule is: when the

number of neighbors is above a given threshold, the rule always returns a one or true

value. Vichniac goes on to say that this type of rule causes the growth of clusters,

until a stable state is achieved.

Toffoli, a contemporary of Vichniac, makes an even stronger claim in [42]: in

physics models, the mathematical tools typically used contain too much formality,

and that because of this formality, physicists spend much of their time working around

the nuances of the mathematical base and not enough time working on the physics of

the problem. Toffoli’s main argument is for the replacement of differential equations

by cellular automata models. He argues that because many differential equations do

not have a closed form solution and the only means of solving them rely on numerical

computation using a computer, why then should the physics models themselves be

based on a mathematical system that may or may not be related to the physics at

hand? Toffoli gives the example of the heat equation: c∂T
∂t

= k∇2T which does not

perform well for small volumes or time steps. He proposes that partial differential

equations whose independent variables are space and time can be viewed as CA

models. The continuous elements of the equation, space and time, are replaced by

a discrete grid, but the state at each point (cell) remains a continuous entity (i.e.

value). The derivatives are then replaced by the differences of the values of each cell.

Ermentrout and Edelstein-Keshet in [10] define three classes of CA models, de-

terministic, lattice gas, and solidification models that represent different examples of

certain natural biological phenomena. The deterministic model is one that most rele-

vant to the patterns and techniques discussed herein; predator-prey interactions and

excitable media are modeled using a deterministic model. A deterministic model is

also readily described by evolution equations, which are frequently expressed as par-

29

tial differential equations. A lattice gas model is similar, but includes the introduction

of random events which further modify the state of each cell. Lastly, the solidification

model is one where a cell cannot change once it has reached a certain, predetermined

state; fungus growth can be modeled with this type of CA. Ermentrout and Edelstein-

Keshet’s work defines the states space and rules for several different domains such

as the predator-prey problem, bacteria growth, self organizing ant trails, and occular

dominance columns in the visual cortex of the brain. In each of these example, they

use the CA to generate grid-based visual data and compare that with data gained

by experimental means. The visual data generated by each of the CA models closely

match that which is collected empirically. Their conclusions maintain the need for

strict mathematical models, but suggest that CA models may, and should, be used

at first to quickly ascertain a general understanding of the processes involved.

3.2 GPGPU Computing

General Purpose GPU computing is a relatively new field, yet many researchers are

utilizing these many-core processors to investigate new methods of achieving previ-

ously unattainable goals. For example, Szerwinski and Güneysu have investigated the

feasibility of using a GPU to offload cryptographic operations to reduce CPU work-

load and increase throughput for client-server applications [40]. Their goal focuses

on using the GPU to replace cryptographic accelerator cards, which are significantly

more expensive than GPUs. To that end, they present multiple algorithms for imple-

menting modular arithmetic in a SIMD environment. An important element of their

work is manipulating very large numbers and doing so efficiently in an environment

that does not natively support numbers of the required size. For example, on the

Nvidia platform the division operation is a computationally expensive operation and

30

it is suggested that it should be avoided [27]. Therefore Szerwinski and Güneysu have

used techniques which do not require division, such as Montgomery’s Technique [16]

and using a Residue Number System [14]. Implementation details are also discussed,

such as the decision to use shared memory, the number of registers used by each

thread, and thread synchronization. Of particular relevance is their decision to use a

more computationally expensive modulus in order to reduce the number of memory

accesses. The results are presented in terms of throughput: modulo operations per

second. The throughput performance achieved by their methods is better than many

other methods described in the literature; however, the GPU implementations suffer

from a higher latency.

Graph theory is used in a host of different applications, from network flows and

connectivity to, more recently, social engineering. However, pervasive as graph theory

problems are, they are traditionally difficult to parallelize [40]. Recently, GPUs have

been used to narrow this gap: in [17], Harish and Narayanan have devised multiple

graph search algorithms that run on Nvidia GPUs. The authors introduce several

searching algorithms: breadth first search, single source shortest path, and all pairs

shortest path. The authors state that spacial locality information is difficult to derive

from the graph itself, therefore the use of shared memory is not feasible. The BFS

version presented is a two part method which uses a GPU kernel that is repeatedly

called by CPU code which determines when the graph has been completely searched.

The algorithm uses a “frontier” to determine which vertices of the graph it should

consider next. The single source shortest path implementation is actually two separate

kernels; these are called successively to deal with synchronization problems. These

synchronization problems are artifacts of the hardware platform and CUDA driver

version used in the publication; newer versions of the drivers offer synchronization

features which obviate the need for a two step kernel. The all pairs shortest path

31

implementation presented is a GPU version of the Floyd-Warshall [11] [46] method

algorithm. However, this method is O(V 3) in memory, so it is not useful for large

graphs due to the memory constraints of today’s graphics cards. The results gained by

the above methods are compared to serial implementations run on an AMD processor

platform and the GPU versions achieve up to a 70x speed up. These results clearly

show promise for the continued research into parallel graph algorithms using GPUs.

In Section 2.3.2 the SIFT algorithm was introduced as being computationally

expensive, thereby making it a good candidate for performance improvements using

GPUs. This fact has not escaped the research community. In [39] Sinha et al.

present a GPU-based SIFT implementation that runs at a real time frequency of 10Hz,

approximately 10 times faster than known CPU implementations. They present this

work in the context of object tracking through successive image frames supplied by

a video feed. The focus of [39] is an implementation of the SIFT algorithm that is as

fast as possible; whereas our approach is to apply cellular automata theory to specific

steps of the SIFT algorithm thus highlighting the benefits and features of CA theory

in the context of a real world problem. Also, the implementation presented by Sinha

et al. is a full implementation, whereas our work concerns only portions of the SIFT

pipeline. Specifically, our work does not complete any of the orientation calculations

and is therefore not used for any keypoint matching. Sinha et al. use techniques and

methods of the Nvidia platform that we intentionally avoid: texture memory is heavily

used as is a separable convolution kernel. Also, Sinha et al. implement portions of

the pipeline on the CPU due to the serial nature of the latter steps of the SIFT

algorithm. Lastly, their work does not use the CUDA environment, but instead they

utilize OpenGL and various shading languages for their implementation. Another

example of SIFT is the work of [20] wherein the authors use SIFT as a mechanism

for eye blink detection. Their work uses the OpenVIDIA [13] GPU implementation

32

of SIFT which is readily available and they report good results.

3.3 Cellular Automata Using GPUs

The above literature discusses cellular automata theory and GPGPU programming

in mutually exclusive contexts as the body of research in the union of these two areas

is currently small. There has been, however, some notable work that incorporates

topics from both CA theory and GPUs. In [35], the authors compare different CA

models implemented using various techniques on both single core, multi-core, and

GPU processors. Seven different algorithms are presented which implement a generic

CA model in different ways. For example, the authors differentiate a brute force

algorithm that computes the next state for every cell from the case where computation

is only done for those cells whose neighbors changed. Multi-threaded versions of these

two cases are also presented and tested, while two GPU algorithms are given. The

only difference in the two GPU algorithms is that intermediate generations are read

back from the device. In their results, the GPU implementations are clearly superior

in several cases. However, the authors have found certain situations where the CPU

versions can outperform GPU ones: namely, when the number of candidate cells to

be processed is small. For example, in their Game of Life results, the CPU version

has a much higher throughput for small game boards because a relatively stable

state is reached after only a few generations and therefore the number of possible

changes from one generation to the next is small. However, for large boards, the

GPU implementations are superior.

The research most related to ours is that of Micikevicius [24] in which he presents

a method to compute three dimensional finite differences. This method uses succes-

sive 2D slices of 3D data to compute the difference over a whole volume. A large

33

portion of this work is dedicated to memory organization in order to maximize data

reuse and increase throughput. Micikevicius presents a novel approach to utilizing

shared memory to store required data, including data halos. A redundancy metric

is introduced that relates the number of elements read from (or written to) memory

and the number of elements that are actually processed. We use this metric in several

cases, and it is especially useful while analyzing the multi-generation technique de-

scribed in Section 4.3. Also, we use the non-square threadblock technique he presents

in order to reduce the required number of halo elements and increase bus utilization.

The nature of the 3D finite difference computations is similar to CA models in terms

of the memory organization and access patterns, hence our interest.

34

Chapter 4

Memory Access Patterns

For cellular automata, the detailed memory access patterns proposed here fall into

two broad categories. First discussed are those that are related to memory layout

and organization. Due to the differences in memory architecture discussed above,

aligning the data in memory on a 16-byte boundary is critical. In addition, because

most cellular automata models operate on a grid of data, special care must be taken

when computing values at or near the edges because a certain cell’s neighbors might

not exist. For example, it is completely reasonable for a CA implementation to be

implemented in the following way:

1i f (row == 0 | | row == width − 1) {

2// some s p e c i a l case hand l ing here

3} else {

4// load the data

5}

However the if-statement in the above code contains on the order of 10 processor

instructions. If the application ultimately launches 100,000 threads then around

1,000,000 instructions are executed just to handle this edge case. Threads that are

35

not executing on the boundary still execute this code. One way to remove this logic

is to pad the data in memory and then fill these padded neighbors with a reasonable

sentinel or default value so that the cells on the edges do, in fact, have neighbors. This

added padding is called a halo and we shall see that adding halos can significantly

reduce instruction count but also decrease memory throughput, so care must be taken

in how we access them.

The second broad category of optimizations deals with reducing the memory-

access-to-instruction ratio by doing more computation per memory load, or con-

versely, reusing previously computed values to reduce instruction count. These tech-

niques require each thread to compute the values for more than one cell.

4.1 Näıve Implementations

Due to the parallel nature of GPUs, an initial implementation of a CA model may

yield a significant performance improvement over a serial implementation of the same

model. The performance gain is a direct result of the increase in processing cores.

Where a CPU can calculate the result of only one cell at a time, the GPU can

calculate many. Because the GPU is operating on many elements at the same time,

more simultaneous data access is required leading to a situation where performance

becomes memory bound. These memory bound situations can be further improved

by the techniques described in the following sections.

4.2 Memory Organization

This section presents four different methods of organizing memory to maximize band-

width and increase arithmetic intensity. Discussed first is the use of shared memory.

36

While, relatively obvious, the use of shared memory can make a dramatic difference in

performance. Second, padding data with halos to reduce edge case logic is presented.

Next, the effects of aligned memory access are analyzed in detail. Lastly, the shape

of an effective memory region and its impact on performance is disserted.

4.2.1 Shared Memory

As mentioned above, the memory system of the Nvidia Tesla architecture has no

caching for general global memory accesses. The Fermi architecture contains two

levels of caching but these are relatively small caches which do not scale with the

number of possible threads. Therefore, if the same memory location is accessed

multiple times, each request results in a bus transaction to retrieve the value from

main memory and bring it into a register on the processor. Thinking about a CA

model that is based on neighboring cells, it is easy to see that this situation would

arise immediately. Many cellular automata consist of rules which operate on an octile

neighborhood of each cell. An octile neighborhood is defined as the 8 cells which

immediately border a central cell. Another way to visualize this is as a 3x3 grid of

cells with a singular central cell and its surrounding 8 neighbors. In an octile neighbor

environment, two adjacent cells share six neighbors, a fraction of 2/3 when the cells

in question are included. The neighborhood of two cells and their shared neighbors

can be viewed in Figure 4.1.

The Nvidia memory architecture addresses this by supplying something called

shared-memory. This is an on-processor memory area to which all threads in single

threadblock have access. Once a value is written to this area, it can be retrieved

in about 4 cycles; a new bus transaction to global memory, by contrast, can take

37

Figure 4.1: A depiction of how cells share neighbors. The shaded cells are neighbors
of BOTH A and B. The diagonally lined cells are neighbors of A, and the dotted cells
are the neighbors of B.

hundreds of cycles. Typically, shared memory is explicitly staged before computation

takes place; this is a manual step whereby the programmer instructs each thread to

load a value from global memory into shared memory. Shared memory amounts to

a user-managed cache. Once the required values have been loaded and all threads

synchronized, computation can commence, requesting those values from the shared

memory region local to the processor. Following is an example of staging shared

memory:

1int g l oba l Idx = r ∗ dataSt r ide + c ;

2int sharedRow = threadIdx . y ;

3int sharedCol = sharedIdx . x ;

4int sharedIdx = sharedRow ∗ blockDim . x + sharedCol ;

5s h a r e d f loat shared [blockDim . x ∗ blockDim . y] ;

6

7shared [sharedIdx] = data [g l oba l Idx] ;

38

8

9sync th r ead s () ;

10

11// s t a r t computation

Clearly, maximizing the use of shared memory is a good practice. However, there

is one major downside to using shared memory: there is a limited amount of space.

Not only is it limited, but it also draws from the same pool of resources as the register

file. Therefore, complicated kernels which require many registers have reduced shared

memory capacity. At the time of this writing Nvidia has two different architectures

in the field: Tesla and Fermi. Tesla has 16KB of shared memory while Fermi supplies

64KB. This memory fills up quickly, especially when dealing with CA models that

have several pieces of data associated with each cell.

4.2.2 Memory Alignment

One of the drawbacks of the SIMD architecture is that memory load instructions are

issued at the same time, putting a significant strain on the memory bus. As discussed

in Section 2.4.2, a memory load request can take up to several hundred cycles. If all 16

memory load requests from a half-warp were serialized, performance would suffer. To

get around this problem, the Nvidia memory architecture provides a concept known

as memory coalescence. When certain criteria are met, the memory bus can coalesce

16 separate memory load instructions into one bus transaction, thereby considerably

reducing the time required to service all the memory requests of a half-warp. The

criteria for memory coalescence are as follows [27]:

• Threads must access

– Either 32-bit words, resulting in one 64-byte memory transaction,

39

– Or 64-bit words, resulting in one 128-byte memory transaction,

– Or 128-bit words, resulting in two 128-byte memory transactions

• All 16 words must lie in the same segment of size equal to the memory transac-

tion size (or twice the memory transaction size when accessing 128-bit words).

This means that for a 64-byte memory transaction, for example, all word must

lie in a contiguous 64-byte area of memory.

• Threads must access the words in sequence: The kth thread in the half-warp

must access the kth word.

Memory coalescence is critical for memory bound applications like cellular automata.

Incorrect alignment of data can cause performance degradation and render most other

techniques discussed in this work ineffective.

4.2.3 Halos

Memory halos are used to minimize instruction count caused by logic dealing with

edge or boundary cells. For example, the cells in the top row of a grid of data do not

have a neighbor above them. Instead of checking to see if each cell is on the top row,

an extra row of data is inserted above the top row, so that now each cell in the top

row does contain a top neighbor. The padding can also be added on each side of the

memory region, removing the need for almost all edge case code for loading memory

and neighbors. Not only are these instructions removed, but removing the condi-

tionals that encompass these instructions prevents divergent branches which further

reduce efficiency.

40

Figure 4.2: 16x16 Effective Region with a one cell halo

Halos and Alignment

The importance of memory alignment is discussed above, however, when halos are

added to data, does this affect the alignment? The answer is yes, and care must be

taken to maintain alignment. The trouble lies not with the top and bottom rows of

the halo, but the new left and right columns that are added. A whole row of data can

be easily aligned, but when one cell is added, maintaining alignment is more difficult.

The central idea is that the actual data is aligned along the correct memory

boundaries, while the halo cells are in unaligned positions. Since the bulk of memory

accesses are for actual data and not halo cells, the ratio of aligned to unaligned accesses

will be high. It is only when a halo cell is loaded that the cost of an unaligned access

41

is paid. Unfortunately, it is impossible to avoid all unaligned accesses when using

memory halos. However, when dealing with a large enough data set the cost of the

unaligned accesses is generally hidden by the latency of the memory system: even

aligned memory requests can take up to two hundred cycles. The central hypothesis

of this work is that this is a cheaper price to pay than increasing the instruction count

by adding special logic to handle the edge cases.

Halos and Bus Usage

As stated above, adding a halo changes the memory alignment characteristics of a

data set. From Figure 4.2, it is clear that actual data is completely aligned. But the

halo cell has, in effect, become part of each row’s padding. This means that whenever

an edge cell thread requests one of the halo cells a complete memory transaction

occurs, receiving a full 32 bytes from the system bus. If each halo cell is only 4 bytes

then 7/8 of this bus transaction is wasted for every halo cell request. The wasted bytes

are, unfortunately, unavoidable. However, the number of halo bytes which causes this

waste can be minimized, as we shall see below.

4.2.4 Effective Memory Region Shape

When using a memory halo, loading the right-most halos from memory incurs a signif-

icant throughput penalty because though only one data element has been requested

the memory subsystem returns a full 32 bytes across the system bus. However, it

is possible to fetch the same number of effective data elements while reducing the

number of right-edge bytes requested. This is done by changing the shape of the

effective memory region upon which the warp is operating. Up to this point, square

threadblocks have been discussed and demonstrated. A 16x16 threadblock operates

42

Effective Data Halo Cell

Bus Transaction

Figure 4.3: The cost of loading a halo element: when loading the right most halo
element, possibly only 2 or 4 bytes, the memory system returns a full bus transaction
worth of data which is 32 bytes.

on 256 elements. A 64x4 threadblock also operates on 256 elements. The main differ-

ence is that the 64x4 thread block is much wider than it is tall. Also, only the right

edge halo bytes incur the bus throughput penalty. In a 16x16 threadblock there are

16 such halo cells, but in a 64x4 threadblock there are only 4 such cells. By simply

“reshaping” the effective memory region, the number of bus transactions with wasted

data has been significantly reduced. Figure 4.4 illustrates this.

4.3 Multiple Data Per Thread

All of the techniques described thus far have either reduced the number of memory

requests required, or ensured that each memory request returns a minimum of super-

fluous data. The following methods attempt to increase the arithmetic intensity of

43

Effective Data Halo Cell

Bus Transaction

Figure 4.4: Using a rectangular kernel reduces the number of right-side halo elements,
thus reducing wasted bytes. The width of the region in this image is abbreviated: it
is actually 64 elements wide, thereby equaling a 16x16 region in total elements while
reducing halo traffic.

a kernel. As discussed above, the arithmetic intensity measure indicates what ratio

of a kernel’s instructions are devoted to actual computation as opposed to memory

operations.

4.3.1 Two Elements Per Thread

One method of increasing the arithmetic intensity of a kernel is to reduce the number

of overhead instructions that kernel executes. For example, almost every kernel that

operates on a large set of data has an index calculation to determine which element

a thread should process. Typically, that calculation is implemented in the following

manner:

1unsigned int r = blockIdx . y ∗ blockDim . y + threadIdx . y ;

2unsigned int c = blockIdx . x ∗ blockDim . x + threadIdx . x ;

3const unsigned int idx = r ∗ s t r i d e + c ;

When this code is compiled it produces on the order of 10 to 12 machine instructions.

This overhead must be paid by every thread executing in every block. Once this

calculation is completed, however, it is comparatively inexpensive to compute relative

indices. A relative index can be generated by adding a constant value to the already

computed index in one machine ADD instruction. By reusing index computations the

44

number of overall instructions is reduced, resulting in noticeably better performance.

It is important to note that elements found at relative indices must still be requested

from global memory and the memory patterns in Section 4.2 still apply.

4.3.2 Data Packing and Interleaving

As discussed in Section 4.2.2, memory coalescence merges several memory load re-

quests into one or two bus transactions with a maximum of 128 bytes per bus trans-

action. It is common for each thread to load an element from global memory and

then perform some operations on that element. Many kernels, such as the blur kernel

discussed in Section 5.3.1, operate on elements of type float. Assuming memory is

correctly aligned, when all the threads in a half-warp request an element from global

memory, one 64-byte request is sent to the memory subsystem. However, the maxi-

mum number of bytes in a single transaction is 128, and the 64-byte request causes 64

bytes to go unused even though it is coalesced. The Nvidia architecture provides some

built in vector data types which allow the full utilization of the bus. For example, the

float2 data type consists of two 4-byte floats in the form of a struct. However, since

the float2 type is native to the GPU the memory subsystem accesses the float2

type as one 8-byte word instead of two 4-byte words. The float2 type can be easily

used to increase bus utilization and improve memory throughput. If the blur kernel

requests elements of float2 instead of simply float, the 16 memory requests of the

half-warp are coalesced into one 128 byte request, thus not only fully realizing the

data throughput of the bus but also reducing the number of total memory request

by a factor of 2. While this is an appreciable improvement, it does not come without

cost. Storing the 8-byte float2 type in local registers or shared memory requires

twice as much space as storing a 4-byte float. For kernels that require a large amount

45

of data to process a single element, using the float2 type may not be practical due

to register pressure.

4.3.3 Multiple Generations Per Kernel

A GPU kernel that implements the logic of CA model normally computes a single

generation, outputting the results in to an area of memory separate from the input

data. The output of a single generation can be used as the input to the same kernel

for the next successive generation. When a large number of generations is to be

computed, it is possible to reduce the number of kernel launches if the kernel computes

more than one generation. Computing multiple generations in a single kernel launch

has two main benefits:

• reduce the number of instructions, reusing already computed indices, similar to

the idea presented in Section 4.3.1

• reduce the number of global memory load instructions

To illustrate this point, Conway’s Game of Life is used for a small example. Con-

sider a 16x16 game board (for the more conventional single generation approach),

where each thread loads a cell into shared memory. Once shared memory has been

populated, the computation takes place, writing the results to an output area of

memory. To compute the next generation, that output area is then staged into

shared memory by the next launch of the same kernel, and the computation takes

place again. This processes is repeated until the desired number of generations has

been reached. In order to compute two generations, the kernel makes 768 total global

memory loads, since each 16x16 region requires an 18x18 area (18 ∗ 18 ∗ 2 = 768).

Now consider the case where the kernel computes two generations: shared memory

46

is similarly staged and the computation is done, this time writing the results to a

temporary area of shared memory. The computations are then repeated using the

temporary shared memory as input, and the results are written back to global mem-

ory, thus completing the second generation with only 400 global memory loads. To

see why a two generation approach for a 16x16 area requires 400 unique memory loads

see Section 4.3.3.

Instruction Reduction

In Section 4.3.1 the number of instructions were reduced by leveraging the spatial

locality of data as it resides in memory. That is, once the index of a single element

has been computed, indices of other elements can be computed as an offset from this

element in a single add or subtract instruction. A multi-generational approach is

appealing for a slightly different reason: the number of kernel launches is reduced by

a factor of the number of generations the kernel computes. If a kernel computes 4

generations in a single launch, then number of overall launches is reduced by a factor

of 4. Since the kernel is executing fewer times, the number of index calculations

that kernel computes over all the generations is reduced. However, the kernel still

computes the specific CA logic four times, thus increasing the arithmetic intensity.

For the Game of Life the arithmetic intensity is increased by executing the following

line 4 times in the same kernel:

1next [idx] = (l iveCount == 3) | | (l iveCount == 2 && t i l e [sharedIdx]) ;

Memory Load Reduction

Similar to the instruction reduction effects of the previous section, multi-generational

kernels also realize a reduction in the number of memory loads required to compute

47

the desired number of generations. Initially, the kernel loads each element from global

memory into shared memory; the subsequent generational computations operate on

values existing in shared memory. Because the kernel uses shared memory as tempo-

rary data store, the need to read and write to global memory is removed. As with

instruction reduction, the number of memory loads is also reduced by a factor of the

number of generations computing by the kernel.

Multi-Generational Pitfalls

There are several aspects of the multi-generational method which require more dis-

cussion. First, the next generation of a cell is dependent on that cell’s current state

and that of its neighbors. Therefore, to compute the next generation of a 16x16 block

of cells, an 18x18 input area is needed. We refer to the resultant generation as the

effective region of computation. That is, 324 elements are required to be input in

order to compute an effective region of 256 elements. The ratio of effective computed

region size to the number of required memory loads is simple to calculate: 256/324.

However, if the desired effective region is 64x4 the ratio becomes 256/396, indicating

that the ratio is dependent upon the effective region shape. Since this ratio is calcu-

lated for the computation of one generation it can be used as an upper bound when

comparing the performance of kernels that compute multiple generations.

In the process of computing multiple generations, the number of cells used during

computation of the same 16x16 region is even larger. It is easier to analyze this

problem by working backwards. As stated above, an 18x18 region is required to

compute the next generation for a 16x16 region. However this 18x18 region must be

the result of computing the first generation; meaning that in order to compute the

18x18 region, a 20x20 region is required. Unfortunately, as the number of generations

a kernel computes rises, so too does the amount of input data required. The ratio

48

GENERATION 2 Halo

GENERATION 1 Halo

Effective Region

Figure 4.5: Each additional generation that a kernel computes requires more data to
be read from memory. In this example, the effective region is 36 elements, but the
kernel reads almost 3 times that amount: 100 elements.

of effective region size to the number of required memory loads for a kernel that

computes two generations of a 16x16 effective region is 256/400, which is significantly

less than the ratio for only a single generation.

The amount of shared memory used by the kernel increases when computing

multiple generations because temporary space is allocated in the shared memory area

removing the need to write to and then read the intermediate generation from global

memory. Depending on the application, this increase in shared memory usage may

make multiple generations infeasible.

Another important consideration is that of thread organization; there are two

49

methods which can be employed. Each threadblock can be allocated to match the

effective region: a 16x16 effective region could be allocated with a 16x16 threadblock

or a 64x4 region could be allocated with a 64x4 threadblock. Since an 18x18 region

is required to compute an effective region of 16x16, then a threadblock with 16x16

threads requires that some threads load more than one element from global memory.

Determining which threads load one element and which threads load two elements can

be difficult and lead to divergent branching. The alternative is to size the threadblock

based on the input region size. Creating an 18x18 threadblock ensures that each

thread loads only one element from global memory, however, only 16x16 threads are

required for computation, thus under-utilizing the threads in subsequent generations.

50

Chapter 5

Experimental Analysis

To further investigate the patterns and techniques presented in Chapter 4, a number

of computations are considered, and the methods are applied successively to mea-

sure the improvements, or lack thereof. The computational models investigated, and

henceforth known as subjects, are (1) Conway’s Game of Life, and three steps of the

SIFT pipeline, namely (2) Gaussian blurring implemented as a non-separable con-

volution, (3) the difference of Gaussians, and (4) extrema detection. This chapter

introduces each subject, shows key elements from their implementations, and also

presents the result of applying each technique. Results are presented for each subject

independently, that is, Game of Life performance is not compared with Gaussian blur-

ring performance. Lastly, techniques are applied in order of increasing complexity:

simpler methods were attempted first, working up to the more complicated meth-

ods. Certain techniques are either not beneficial or not practical so these were not

implemented for every subject; using global memory exclusively is an example of this.

51

5.1 Method / Setup

The machine on which all of the following experiments were run contains 2 CPUs, each

of which is a 64 bit quad-core Intel Xeon E5504 processor running at 2GHz. The CPUs

each have 4MB of on-chip cache and 4 hardware threads. A total of 8GB of memory

is available. The GPU used in the experiments is an Nvidia GeForce GTX 285,

running CUDA version 3.20. The GPU has 30 streaming multiprocessors for a total

of 240 computing cores, running at 1.48 GHz. The theoretical memory bandwidth

limit of this card is 159 GB / sec1 and the card has 1GB of physical memory. At the

time this research began, this was one of the more capable GPUs available; however

during the course of our research, Nvidia released the Fermi architecture. It was

decided that switching to a Fermi-based card would constitute a large task with few

gains and therefore it was avoided. The ideas presented here are still applicable to

the Fermi architecture and it is left for further work to investigate the effects of the

Fermi changes such as the global memory caching facility.

Performance is measured in the standard way: ThroughputA/ThroughputB. This

results in a mechanism where A can be said to be X times faster than B. In most cases,

however, it makes more sense to give percentage improvements: a 20% improvement

is easier to comprehend than a 1.2x speedup. Percentage improvements are calculated

as follows: (TimeB − TimeA)/T imeB. Also, performance metrics are given for the

largest data sets, and smaller data sets are only shown to indicate how each kernel

scales. Using a GPU for computation enables the solving of much larger problems,

and this is reflected by reporting metrics on the largest problems solved.

The implementations presented here are timed using features supplied by the

CUDA libraries. The times given are averages of ten runs of each kernel. It is

1http://http://www.nvidia.com/object/product geforce gtx 285 us.html

52

important to note that data transfers between the host and graphics device are not

included in any of the timing; only the execution time of the kernels is considered.

Generally, when comparing a GPU implementation of an algorithm to a serial, CPU

implementation, this time must be considered; for it is an unavoidable cost of using

the GPU. It is not included here because the focus of this work is on techniques

to improve memory access time on the GPU. For multi-generational execution, as

in the Game of Life, the whole of the execution is counted in the timing as seen

in 5.1. The memory bandwidth metrics presented measure application bandwidth,

not the raw bandwidth on the bus. Certain factors, such as halo cell retrieval and

memory coalescence, cause the application bandwidth and bus bandwidth to differ.

This discussed in more detail in Section 5.2.2.

1cudaEvent t startEv , stopEv ;
2cudaEventCreate(&startEv) ;
3cudaEventCreate(&stopEv) ;
4cudaEventRecord (startEv , 0) ;
5
6for (int i = 0 ; i < numGen ; i++) {
7golKernel<<<dimBlocks , dimThreads>>>(dCurrent , dNext , width) ;
8checkCUDAError (” launch”) ;
9CUT CHECK ERROR(”Kernel execut ion f a i l e d \n”) ;
10
11// always swap the memory reg ions
12unsigned int ∗tmp = dCurrent ;
13dCurrent = dNext ;
14dNext = tmp ;
15}
16
17// s top the t iming
18cudaEventRecord (stopEv , 0) ;
19cudaThreadSynchronize () ;
20f loat elapsedTime = 0 .0 f ;
21cudaEventElapsedTime(&elapsedTime , startEv , stopEv) ;

Figure 5.1: Multi-generational timing.

For large data sets, the inclusion of the small amount of host code in the time

53

values is imperceptible and ignored. It is only mentioned here because other kernels,

such as the SIFT extrema detection, do not exhibit this behavior.

An important tool that was employed is the CUDA Visual Profiler [28]. This is

a tool provided by Nvidia that allows for detailed inspection of various performance

parameters of the kernels running on the GPU. The Visual Profiler reports data such

as the number of instructions a kernel executes as well as the number of coalesced and

uncoalesced memory loads. These metrics are collected using special hardware coun-

ters available on one of the streaming multiprocessors. Since the hardware counters

that enable these metrics are not available on every SM, the results cannot be treated

as absolute. It is possible that collection happened from a block that accomplished

less work due to the data on which it was operating. While the information provided

by the Visual Profile is not exact, it is still useful for analyzing trends and tendencies

of the kernel. The Visual Profiler is an invaluable tool in confirming that a change

made to the memory alignment does indeed result in better memory coalescence.

5.2 Game of Life

The Game of Life was chosen as a subject for two reasons: first, it is simple to

understand and implement and second, it is a well known problem. This section first

presents improvements that are implemented in the context of kernels that use only

global memory; this is the only time that global memory exclusive implementations

are provided. Next, in Section 5.2.2, improvements due to the use of shared memory

are presented. Also included here are kernels with differing effective region shapes

and increased arithmetic intensity. Following is Section 5.2.3, which details the

experiments dealing with multi-generational kernels.

54

5.2.1 Global Memory

The first kernel investigated is a global memory implementation that does not include

any data halo and therefore uses conditional statements to handle edge cases. This

is called our baseline kernel for the Game of Life subject. The kernel is split into two

functions: one that counts the live neighbors of a given cell and the main kernel which

uses the number of live neighbors to compute the next generation. Counting the live

neighbors is the step that accesses the neighborhood of a given cell, and is therefore

subject to restraints dealing with the size of the memory region in question. There

are two concerns here: first, if the cell is on the top or bottom row then the neighbors

above and below, respectively, do not exist. Second, if a cell is in the first or last

column of the data grid, then cells to the left and right, respectively, should not be

considered because even though they are adjacent in memory they are not neighbors

in the game world. The GETVALUE macro handles the top and bottom row cases

by checking for invalid memory addresses. An abbreviated form of the conditional

memory loading is shown in Figure 5.2. The contents of memory are values of 0

(representing a dead cell) and 1 (a live cell), randomly assigned by the host code and

copied to the GPU memory before kernel execution begins. Since live cells contain a

value of 1, counting them only requires the addition of neighbor values.

Every thread executes this code, even threads that are not on grid boundaries,

which are the vast majority of threads for large dimensions. The conditional state-

ments seen in Figure 5.2 are indicative of all CA models that operate on finite grid.

The kernel itself is extremely simple: it uses the number of live shared neighbors to

determine the value of the next generation. The rules of the Game of Life CA are

such that they can be expressed with only 4 logic operations, and implemented in

one line of C code as shown in Figure 5.3. Note the first three lines of Figure 5.3, as

55

1d e v i c e int countLiveNeighbors (unsigned int ∗ current , int idx ,
2int width , unsigned int s i z e)
3{
4unsigned int count = GETVALUE(current , idx − width , s i z e) // above
5+ GETVALUE(current , idx + width , s i z e) ; // below
6i f ((idx + 1) % width == 0) {
7// count ne i ghbor s to the RIGHT
8}
9else i f (idx % width == 0) {
10// count ne i ghbor s to the LEFT
11}
12else {
13// count ALL ne ighbor s
14}
15return count ;
16}

Figure 5.2: Conditional loading from global memory.

they show 6 arithmetic instructions used in the computation of a single index value.

This subject is revisted in Section 5.2.2.

1g l o b a l void go lCond i t i ona l (unsigned int∗ current ,
2unsigned int∗ next , int width , int s i z e)
3{
4unsigned int row = blockIdx . y ∗ blockDim . y + threadIdx . y ;
5unsigned int c o l = blockIdx . x ∗ blockDim . x + threadIdx . x ;
6int idx = row ∗ width + co l ;
7char cu r r en tS ta t e = cur rent [idx] ;
8
9char l iveCount = countLiveNeighbors (current , idx , width , s i z e) ;
10next [idx] = (l iveCount==3) | | (l iveCount==2 && cur r en tS ta t e) ;
11}

Figure 5.3: CA rules implementation.

To illustrate the effect that conditional statements have on this kernel, another

implementation is presented, in Figure 5.4, that relies on a one cell memory halo. A

visual description of a one cell memory halo is shown in Figure 4.2. Not only does this

kernel obviate the need for several conditional statements, it is easier to implement

and understand. Without a halo, a statement such as current[idx - stride] may

56

refer to an undefined memory location if the thread executing it is processing any

element in the top row. The conditionals in Figure 5.2 are used to prevent this type

of erroneous access. For implementation purposes, the pointer to the data, current in

this case, actually points to the first memory location containing actual data; that is,

to a location in memory just after the halo. Therefore, when accessing current with

a negative index, such as current[idx - stride], the resultant memory address

is one that corresponds to an element in the halo. This is only possible if the halo

region is bigger than the value of stride, which it is. Ensuring that every cell has

a full complement of legal neighbors makes for a much simpler neighborhood access

pattern with no conditional statements. See Figure 5.4, lines 8 - 12.

1g l o b a l void golPadded (unsigned int∗ current , unsigned int∗ next ,
2int s t r i d e)
3{
4unsigned int row = blockIdx . y ∗ blockDim . y + threadIdx . y ;
5unsigned int c o l = blockIdx . x ∗ blockDim . x + threadIdx . x ;
6unsigned int idx = row ∗ s t r i d e + co l ;
7
8unsigned int l iveCount =
9cur rent [idx − s t r i d e − 1] + cur rent [idx − s t r i d e] +
10cur rent [idx − s t r i d e + 1] + cur rent [idx − 1] +
11cur rent [idx + 1] + cur rent [idx + s t r i d e − 1] +
12cur rent [idx + s t r i d e] + cur rent [idx + s t r i d e + 1] ;
13
14next [idx] = (l iveCount==3) | | (l iveCount==2 && current [idx]) ;
15}

Figure 5.4: CA computation using a one cell memory halo.

The timing results of running these two kernels are shown in Figure 5.5, times are

given in milliseconds and the largest problem solved contains 1600x1600 (2,560,000

cells), and 100 generations are executed. In the largest problem, 256,000,000 itera-

tions of the Game of Life rules are executed in approximately 100ms. As expected,

the kernel that uses a one cell halo performs better. In fact, the halo-based kernel is

57

approximately 18% faster (for large data sets) than the one that uses conditional state-

ments to deal with the data boundaries. The reason for this is due to the decreased

number of instructions. The CUDA Visual Profiler reports that the conditional ker-

nel executes approximately 354,114 instructions more than the halo based kernel.

The kernel that uses a halo actually executes more memory load instructions (due

to loading those halo cells), but it is still faster because of the significantly reduced

instruction count and lack of divergent warps caused by the conditional statements.

 0

 20

 40

 60

 80

 100

 120

 140

 200 400 600 800 1000 1200 1400 1600

T
im

e
 (

m
s)

Width

Global: Baseline
Global: Halo

(a)

 40

 50

 60

 70

 80

 90

 100

 200 400 600 800 1000 1200 1400 1600

B
a
n
d
w

id
th

 (
G

B
/s

)

Width

Global: Baseline
Global: Halo

(b)

Figure 5.5: Plots of (a) execution time and (b) application memory bandwidth for
conditional memory loading and using a one cell halo.

5.2.2 Shared Memory

Shared vs. Global Memory

Since many threads access a single cell, a clear improvement is the use of shared

memory. Section 4.2.1 gives a detailed description of shared memory. The next

kernel presented, in Figure 5.6, utilizes a one cell halo and stages all of the data

required for a threadblock into shared memory before executing the computation of

the next generation. The shared memory region is defined in line 1 of Figure 5.6

58

and its dimensions are a square region with BLOCK WIDTH + 2 on each side: there are

(BLOCK WIDTH)x(BLOCK WIDTH) threads and each boundary has a halo row or column,

hence the two additional rows and columns. Lines 3 and 4 offset the indices into shared

memory, so that the calculated row and column for each thread match an actual data

element and not a halo element; note that the index into global memory idx does

not contain this same offset, because the halos exist only on the boundaries of shared

memory. The shared memory region is of size (BLOCK WIDTH + 2)x(BLOCK WIDTH +

2), but there are only (BLOCK WIDTH)x(BLOCK WIDTH) threads in the threadblock; it

follows then, that some threads need to load more than one element into shared

memory. The conditional statements of lines 8 - 23 accomplish this extra loading.

Threads with a column index of 0 (within the threadblock) load the halo elements

immediately to their left and also at the right-side of the memory region, lines 10 -

11. Two elements are loaded in this case, and doing so reduces the need for additional

conditional logic. Threads with a row index of 0 are used to load the halo elements

to the top and bottom of the region, lines 15 - 16. Lastly, a single thread is used to

load the 4 corners elements of the halo. The use of the syncthreads() function, in

line 27, acts as a barrier and forces all the threads to wait until every thread in the

threadblock has reached the barrier. This ensures that shared memory is completely

staged before computation begins.

Once shared memory is staged, computation can begin; the code, in Figure 5.7,

is similar to the halo-based global memory kernel except that the next generation

is computed using shared memory instead of global memory. Even though shared

memory is being accessed, approximately 15 additional arithmetic instructions are

used in the index calculations of the neighbors. The issue of unnecessary index

calculations is discussed in more detail in Section 5.2.2.

59

1s h a r e d int s i npu t [BLOCK WIDTH + 2] [BLOCK WIDTH + 2] ;
2
3int tx = threadIdx . x + 1 ;
4int ty = threadIdx . y + 1 ;
5
6s i npu t [ty] [tx] = input [idx] ;
7
8i f (threadIdx . x == 0)
9{
10s i npu t [ty] [0] = input [idx − 1] ;
11s i npu t [ty] [blockDim . x+1] = input [idx + blockDim . x] ;
12}
13i f (threadIdx . y == 0)
14{
15s i npu t [0] [tx] = input [idx − width] ;
16s i npu t [blockDim . y + 1] [tx] = input [idx + blockDim . y ∗ width] ;
17}
18i f (threadIdx . x == 0 && threadIdx . y == 1)
19{
20s i npu t [0] [0] = input [idx − 2∗ width − 1] ;
21s i npu t [0] [blockDim . x+1] = input [idx − 2∗ width + blockDim . x] ;
22s i npu t [blockDim . y +1] [0] = input [idx + (blockDim . y−1)∗width − 1] ;
23
24s i npu t [blockDim . y+1] [blockDim . x+1] =
25input [idx + (blockDim . y−1)∗width + blockDim . x] ;
26}
27sync th r ead s () ;

Figure 5.6: Shared memory staging, assumes one cell halo.

The introduction of shared memory significantly increases performance, as de-

picted in Figure 5.8. Since these kernels both use a one cell halo around the data,

the performance difference is accounted for solely by the use of shared memory. The

introduction of shared memory garners an approximately 30% performance improve-

ment. A closer inspection is required to determine the source of the performance

improvement. In the global memory version each thread makes 9 read requests of

global memory, resulting in a total of 9 ∗ 256 = 2304 total requests. In the shared

memory kernel, each thread requests one element, resulting in a total of 256 global

memory requests. Therefore, due to the high latency of each global memory request,

60

1int ne ighbor count = s inpu t [ty −1] [tx−1] + s inpu t [ty −1] [tx] +
2s inpu t [ty −1] [tx+1] + s inpu t [ty] [tx−1] + s inpu t [ty] [tx] +
3s inpu t [ty] [tx+1] + s inpu t [ty +1] [tx−1] + s inpu t [ty +1] [tx] +
4s inpu t [ty +1] [tx +1] ;
5
6output [idx] = (ne ighbor count==3) | |
7(ne ighbor count==2 && s input [ty] [tx]) ;

Figure 5.7: CA computation using shared memory.

the shared memory kernel spends significantly less time waiting for data to be re-

turned thus improving performance. The shared memory implementation exploits

the spatial locality pattern of a neighbor based calculation.

 0

 20

 40

 60

 80

 100

 120

 200 400 600 800 1000 1200 1400 1600

T
im

e
 (

m
s)

Width

Global
Shared

(a)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 200 400 600 800 1000 1200 1400 1600

T
h
ro

u
g
h
p
u
t

(G
B

/s
)

Width

Global
Shared

(b)

Figure 5.8: (a) total time and (b) application bandwidth for global and shared mem-
ory.

Aligned Memory

The next improvement to discuss is that of memory alignment, which is explained in

Section 4.2.2. The kernels described above use a halo, but do not add lead or row

padding, thus rendering the bulk of data unaligned. The idea is to pad the memory so

61

that all accesses to the actual data are aligned, but the requests for the halos access

unaligned memory. To accomplish this an initial lead pad is added to the beginning of

the memory area, and each row has padding at the end. An example of how padding

is implemented can be seen in Figure 5.9. To include a halo, the width and height

of the region are increased, as seen in line 1. The row pad variable, in lines 3 - 4, is

used to represent the bytes that get added to the end of the row. For example, if a

row contained 60 bytes, 4 bytes are added to the end ensuring that every element in

the next row is aligned. The right-side halo is incorporated in the row pad. Lines 5

and 6 contain a lead pad element that handles the left-side halo element. The halo

in question is one cell and the lead pad variable establishes that this initial halo cell

is the last byte in an aligned region. Adding the lead pad causes the byte after the

first halo element to be the first byte of an aligned region. In line 8, an offset to

the first element of actual data is calculated, and this offset is used when passing the

memory address of the data region to the kernel.

1unsigned int actualWidth = width + 2 ;
2
3int row pad = ((actualWidth + segmentWidth − 1) / segmentWidth) ∗
4segmentWidth − actualWidth ;
5int l ead pad = segmentWidth − 1 ;
6int num bytes = (actualWidth ∗ (actualWidth + row pad) + lead pad) ∗
7s izeof (unsigned int) ;
8int o f f s e t = 1 + lead pad + actualWidth + row pad ;
9unsigned int ∗dCurrent , ∗dNext , ∗hostRegion ;
10CUDA SAFE CALL(cudaMallocHost ((void∗∗)&hostRegion , num bytes)) ;
11
12// o ther i n i t i a l i z a t i o n
13
14golPadded<<<dimBlocks , dimThreads>>>(dCurrent+o f f s e t , dNext+o f f s e t ,
15actualWidth +row pad) ;

Figure 5.9: Padding memory to maximize aligned memory accesses.

A benefit of aligning the memory in such a fashion is that, assuming the kernel is

62

expecting the presence of a halo, the implementation of the kernel does not change.

What changes is the alignment of the data in global memory, but that is transparent

to the kernel. Now, a thread in column 0 reads an element that exists on a 64-byte

boundary. The next thread, column 1, reads the next element, which is contiguous to

the previous element on the 64-byte boundary. Each successive thread requests the

next element, resulting in a single, contiguous 64-byte block of memory that starts

on 64-byte boundary, to be requested. The memory subsystem coalesces all these

requests into a single response, returning the data in a single bus transaction. How-

ever, the halo cells are in unaligned positions, and reading them results in uncoalesced

accesses. But, since halo access only happens for threads on the boundary, the cost

is small over lifetime of the kernel.

The code in Figure 5.6 is also used for an aligned memory kernel, and it is useful

to indicate the aligned and unaligned accesses that this kernel makes. Since the

input variable points to the first element of real data, and exists on an aligned 64-

byte boundary, the initial load in line 6, results in coalesced memory access for the

entire block, resulting in 16 bus transactions. Loading the halos is more complicated.

Threads with a column index of 0 load the halo element immediately to their left and

also at the right-side of the memory region, lines 10 - 11. These memory loads are

uncoalesced: the element to the left is not aligned on an even boundary; the element

to the right is on an even byte boundary, but the following bytes are not requested

or used. These unused bytes are further investigated in Section 5.2.2. Threads with

a row index of 0 load the halo elements immediately above and below, lines 15 - 16.

Loading the above and below halo elements results in coalesced reads because these

bytes begin on a 64-byte boundary. The 4 corners of the halo are loaded by a single

thread, resulting in 4 uncoalesced memory reads, lines 20 - 25. Reading the halo

values increases the number of uncoalesced memory accesses, however, the increase

63

is small because these loads only happen for threads on the perimeter of the memory

region.

Aligning the memory on a larger boundary, for example 32 bytes vs. 64 bytes,

enables the memory subsystem to return the data in fewer requests, thus reducing

latency and execution time. Figure 5.10 shows the times for alignment boundaries;

as expected, 128-byte alignment performs the best while 32-byte alignment is the

slowest. Reading 256 bytes from unaligned memory requires 256 bus transactions,

while reading from a 64-byte aligned region requires just 16 bus transactions, and a

128-byte aligned region incurs only 2 bus transactions. Clearly, memory alignment is

a critical element in improving performance. The remainder of the kernels presented

for Game of Life are aligned on a 128-byte boundary.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 200 400 600 800 1000 1200 1400 1600

T
im

e
(m

s)

Width

Shared Baseline
Shared 64 Byte Aligned

Shared 128 Byte Aligned

(a)

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 200 400 600 800 1000 1200 1400 1600

T
h
ro

u
g
h
p
u
t

(G
B

/s
)

Width

Shared Baseline
Shared 64 Byte Aligned

Shared 128 Byte Aligned

(b)

Figure 5.10: A comparison of different memory alignments. 32-byte alignment is
considered to be unaligned while 128-byte alignment is maximally aligned. Total
time is shown in (a) and application bandwidth is shown in (b).

64

Memory Region Shape

A further improvement implemented is modifying the “shape” of the threadblocks,

thereby changing the specific cells that are accessed. The technique involves using

wider rectangularly shaped threadblocks, for example, 4 threads high by 64 threads

wide, while the above kernels use a 16x16 threadblock. Both threadblocks contain

a total of 256 threads, therefore both kernels still process the same number of ele-

ments. However, as shown in Section 4.2.4 the wide rectangular kernels cause less

halo traffic over the bus. Section 5.2.2 demonstrated that right-side halos incurred

unaligned memory access and wasted bus traffic. Each bus transaction transfers a

minimum of 32 bytes and right-side halo accesses are requesting only 1 element, or

4 bytes, incurring a waste of 28 bytes. Therefore, minimizing the ratio of right-side

halo loads to above/below halo loads will reduce the amount of wasted bus traffic,

thus improving throughput and performance. Similar to the move from unaligned to

aligned memory as described in Section 5.2.2, the code for a wide rectangular kernel

is almost exactly the same as a square kernel, except that dimensions of the shared

memory arrays are different; the rest of the changes are handled by the hardware

because the threadblocks are sized differently. There is one minor drawback to this

approach: more shared memory is used. A 16x16 effective region requires an 18x18

shared memory array, or 324 elements. A 64x4 rectangular region requires a 66x6

shared memory region, or 396 elements. Depending on the type of data being used

this slight increase could cause a reduction in occupancy, a metric further discussed

in Section 5.3.3. Using a rectangular region yields positive results that can be seen

in Figure 5.11.

The plot in Figure 5.11 also contains the baseline shared memory implementation

65

 0

 10

 20

 30

 40

 50

 60

 70

 80

 200 400 600 800 1000 1200 1400 1600

T
im

e
(m

s)

Width

Shared Baseline
Shared 128 Byte Aligned

Shared 32x8
Shared 64x4

(a)

 15

 20

 25

 30

 35

 40

 45

 50

 200 400 600 800 1000 1200 1400 1600

T
h
ro

u
g
h
p
u
t

(G
B

/s
)

Width

Shared Baseline
Shared 128 Byte Aligned

Shared 32x8
Shared 64x4

(b)

Figure 5.11: Rectangular vs. square regions: (a) total time, (b) application band-
width.

and the 128-byte aligned implementation, since it had been the fastest one shown.

However, it is clear that the 64x4 rectangular region is now the winner; it has 4 less

rows, and thus 4 times less halo data than the 8x32 implementation, and is therefore

just slightly faster. The 64x4 implementation is approximately 16% faster than the

128-byte aligned kernel, a significant improvement. A closer analysis reveals the

actual savings a rectangular region achieves: a 16x16 block makes 16 right-side halo

element requests, resulting in 16 ∗ 28 = 448 wasted bytes, per block, while a 64x4

block only makes 4 right-side halo requests, resulting in 4 ∗ 28 = 112 wasted bytes.

Both kernels require 10,000 blocks, but the rectangular block wastes only 1,120,000

bytes via right-side halo loading, while the square block wastes 4,480,000, yielding

a 75% reduction in wasted bus traffic. The rectangular region kernels operate on

aligned data, so this method is used in conjunction with the aligned memory method.

66

Two Elements Per Thread

The final technique employed for shared memory is one that increases the arithmetic

intensity and reduces index calculation overhead, and is fully detailed in Section 4.3.1.

Implementation of this techniques requires a shared memory region that is twice the

size of the one used in previous techniques because each thread processes two separate

elements. Loading twice the data into shared memory is straightforward but requires

additional code that is detailed in Figure 5.12. As shown in Section 5.2.2, using a

wider region reduces wasted bus traffic and improves performance. A similar approach

is taken here: a 32x16 block, or in the case of a rectangular block, a 128x4 region is

staged into shared memory. Note that in line 4, the rows to accommodate halo cells

are still included, resulting in a 34x18 or 130x6 region for square and rectangular

kernels, respectively. Each thread calculates the index of the element upon which

it will operate (line 1), that element is then loaded, as demonstrated in previous

kernels, resulting in a coalesced memory access. A new index is then calculated as

shown in line 10, and the element at the new index is loaded. Note that the new

index is relative to the initial index and is exactly BLOCK WIDTH elements away;

since BLOCK WIDTH is defined to be a multiple of 16, this next memory load is also

coalesced. The additional cells must also be loaded for the halos as well (not shown).

The loading of the halo cells follows a similar pattern to that shown in Figure 5.6:

left and right halos incur uncoalesced loads, while the top and bottom halo loads are

coalesced. For the computation step, after the original index is computed and results

written to global memory, the second element is computed using the new indices in

the same fashion, also not shown.

Processing two elements per thread significantly reduces the number of instruc-

67

1unsigned int row = blockIdx . y ∗ blockDim . y + threadIdx . y ;
2unsigned int c o l = blockIdx . x ∗ blockDim . x + threadIdx . x ;
3int idx = row ∗ width + co l ;
4s h a r e d int s i npu t [BLOCK WIDTH + 2] [2 ∗ BLOCK WIDTH + 2] ;
5
6// load the f i r s t e lement
7s i npu t [ty] [tx] = input [idx] ;
8
9// load the second element
10s i npu t [ty] [tx + BLOCK WIDTH] = input [idx + BLOCK WIDTH] ;
11
12. . .

Figure 5.12: Loading shared memory such that each thread processes two elements.

tions executed over the life of the kernel launch. To illustrate this, an example is

given. Assume that each index calculation takes 15 total instructions, including

load instructions. Over the life of kernel operating on a 1600x1600 data set, there

are 2,560,000 such index calculations that require a total of 38,400,000 instructions.

When processing two elements per thread, the initial index calculation still remains,

15 instructions, and the second index calculation must occur resulting in a total of

16 instructions. However, since each thread processes two elements, half as many

threads are required, resulting in a total of 20,480,000 instructions dedicated to index

calculations: approximately a 47% improvement. The two-element kernel presented

here also operates on an aligned memory, making it suitable to compare to both the

basic 128-byte aligned version and the rectangular region. A comparison of these

techniques is depicted in Figure 5.13.

From the plot in Figure 5.13, it is clear that the two-element kernel is much faster.

In fact it is approximately 44% faster than the base 128 byte aligned kernel and 36%

faster than the 64x4 rectangular region kernel. The improvement stems from the

significant reduction in executed instructions.

Each technique has now been illustrated, however there is still one further im-

68

 0

 10

 20

 30

 40

 50

 60

 70

 80

 200 400 600 800 1000 1200 1400 1600

T
im

e
(m

s)

Width

Shared Baseline
Shared 128 Byte Aligned

Shared 32x8
Shared 64x4

Shared 2 Element

(a)

 15

 20

 25

 30

 35

 40

 45

 50

 200 400 600 800 1000 1200 1400 1600

T
h
ro

u
g
h
p
u
t

(G
B

/s
)

Width

Shared Baseline
Shared 128 Byte Aligned

Shared 32x8
Shared 64x4

Shared 2 Element

(b)

Figure 5.13: A comparison of a two-element kernel, a rectangular region kernel and
a basic 128 byte aligned kernel: (a) shows total time and (b) depicts application
bandwidth.

provement to make: combining the two-element and rectangular region techniques

in a single kernel. Implementation of this simply entails modifying the two-element

technique kernel to operate on a differently sized shared memory region as well as

modifying the threadblock allocation. The results of this combination are shown in

Figure 5.14.

The combination of these two techniques yields an addition 5% speed increase over

the two-element kernel. The combination of these two results accomplishes two things:

first, a significant reduction in the number of overhead instructions dedicated to index

calculations; and second, a reduction in the number of wasted bytes due to right-side

halo loading. The instruction reduction is significantly larger than the wasted bytes,

and as such, dominates the improvement, resulting in only a small improvement over

the two-element technique alone.

69

 0

 10

 20

 30

 40

 50

 60

 70

 80

 200 400 600 800 1000 1200 1400 1600

T
im

e
(m

s)

Width

Shared Baseline
Shared 128 Byte Aligned

Shared 32x8
Shared 64x4

Shared 2 Element

(a)

 15

 20

 25

 30

 35

 40

 45

 50

 200 400 600 800 1000 1200 1400 1600

T
h
ro

u
g
h
p
u
t

(G
B

/s
)

Width

Shared Baseline
Shared 128 Byte Aligned

Shared 32x8
Shared 64x4

Shared 2 Element

(b)

Figure 5.14: Execution times of all the major kernels discussed to this point; (a) is
total time while (b) is application bandwidth. The two-element rectangular region
kernel is the clear winner

5.2.3 Multi-generational Kernels

Before concluding the Game of Life investigation, there is one more topic that must

be covered: multi-generation kernels. The details of multi-generational kernels are

given in Section 4.3.3, and the essence of this technique is to increase arithmetic

intensity by reducing the number of memory transactions. For example, if a kernel can

compute one generation by loading 324 elements then it takes 768 loads to compute

two generations. But, it is possible to compute the first generation and since the

results are readily available, immediately compute the generation. This requires more

memory loads initially, 400 for example, but still less than two iterations of a single

generation kernel. In Section 4.3.3, it is stated that there are two methods of loading

the required extra data in the two generation kernel: (1) 256 threads load 400 elements

or (2) 400 threads load 400 elements, but only 256 thread are used for computation.

The data presented here is the result of implementations where the effective region

matches the threadblock dimensions; meaning that there are only 256 threads, some

70

of which load, and process, more than one value. The extra bytes are halo bytes, and

they are loaded as shown previously.

1s i npu t [ty] [tx] = input [idx] ;
2
3i f (threadIdx . x == 0) {
4s i npu t [ty] [0] = input [idx − 2] ;
5s i npu t [ty] [1] = input [idx − 1] ;
6s i npu t [ty] [blockDim . x+1] = input [idx + blockDim . x] ;
7s i npu t [ty] [blockDim . x+2] = input [idx + blockDim . x + 1] ;
8}
9i f (threadIdx . y == 0) {
10// s im i l a r to prev ious i f s ta tement excep t g e t above/ below
11}
12// now load the corners
13i f (threadIdx . x == 0 && threadIdx . y == 1) {
14// column 0
15// the s e l oads are UNCOALESCED
16s i npu t [0] [0] = input [idx − 3∗ width − 2] ;
17s i npu t [1] [0] = input [idx − 2∗ width − 2] ;
18s i npu t [blockDim . y +1] [0] = input [idx + (blockDim . y−1)∗width − 2] ;
19s i npu t [blockDim . y +2] [0] = input [idx + (blockDim . y)∗width − 2] ;
20
21// column 1
22// the s e l oads are UNCOALESCED
23s i npu t [0] [1] = input [idx − 3∗ width − 1] ;
24s i npu t [1] [1] = input [idx − 2∗ width − 1] ;
25s i npu t [blockDim . y +1] [1] = input [idx + (blockDim . y−1)∗width − 1] ;
26s i npu t [blockDim . y +2] [1] = input [idx + (blockDim . y)∗width − 1] ;
27
28// s im i l a r f o r column blockDim . x andy blockDim . x + 1
29. . .
30}
31sync th r ead s () ;

Figure 5.15: The complicated process of staging shared memory in preparation for a
two-generation kernel.

A portion of the code for loading shared memory can be seen in Figure 5.15. Line

1 starts with a standard memory load, which retrieves an actual data element from

the effective area. The following loads are dedicated to the halo, which is a now a two

cell halo: one for the first generation and another for the second generation. Lines 4

71

- 7 show that instead of loading only the left halo element, a single thread now loads

the two elements on the left, and two elements on the right. These additional loads

are uncoalesced. Since a two cell halo is being used, each corer now consists of 4 cells,

resulting in a total 16 cells at the corners, shown in lines 16 and following. Notice,

the index calculations that are computed when loading the corners of the halos: up

to 5 extra arithmetic instructions are required per index. These extra index calcu-

lations play an important role in explaining the results, shown below in Figure 5.17.

The loading of only two corners is shown in Figure 5.15. Also, it is important to

point out that all of the two-generational kernels operate on a rectangular memory

region, due to the benefits detailed in Figure 5.13. Figure 5.16 shows a comparison of

the baseline two-generation implementation and the two-element rectangular kernel

implementation detailed in Section 5.2.3.

Even with half the kernel launches, the two-generational kernel takes considerably

 0

 10

 20

 30

 40

 50

 60

 70

 200 400 600 800 1000 1200 1400 1600

T
im

e
(m

s)

Width

Shared 2 Element Rectangular
2 Gen

(a)

 10

 20

 30

 40

 50

 60

 70

 80

 200 400 600 800 1000 1200 1400 1600

T
h
ro

u
g
h
p
u
t

(G
B

/s
)

Width

Shared 2 Element Rectangular
2 Gen

(b)

Figure 5.16: Comparing the two-element rectangular kernel against a baseline two-
generation kernel: (a) is total time and (b) is application bandwidth.

longer than the two-element rectangular kernel. To further investigate the perfor-

mance of each kernel, the CUDA Visual Profiler tool was used. This tool is described

72

in Section 5.1. A quick analysis using the Visual Profiler reveals a likely cause: one

launch of the two-generation kernel executes more instructions than two launches

of the two-element, single-generation, rectangular kernel. Table 5.1 shows the data

captured by the Visual Profiler; the two-element kernel executes 100 times, while the

two-generation kernel executes 50 times, both resulting in 100 generations.

Table 5.1: Two-element and two-generation Visual Profiler Results

Two-Element Two-Generations

Instructions 259,276 563,418
Coalesced Memory Loads 36,000 32,000

Uncoalesced Memory Loads 36,000 32,000

The data shows that the number of coalesced and uncoalesced memory reads each

kernel makes is similar, however the two-generation kernel executes a significantly

larger number of instructions. Code analysis shows that these instructions are the

result of index calculations, which arise from two places: (1) loading of more than one

element (all of which are halo elements) by the majority of threads, and (2) calculating

the first generation which requires calculating the values for the inner-most halo. The

halo elements are not represented by their own thread, therefore each access to a halo

element incurs up to 5 extra instructions of index calculations. An added problem is

that there are more halo elements to process: the rectangular one generation kernels

process 140 halo cells, but the recantular two-generation kernel processes 286 halo

cells: a 100% increase. The code for calculating the first generation of the halos

can be seen in Figure 5.17. Line 2 shows the standard Game of Life computation

to compute the elements in the effective region. Line 10 starts the calculations for

the halos: note this process is repeated for each of the first generation halo cells (not

shown). The number of index calculations required is significantly higher.

Any access to a halo cell requires some form of index calculation; some of these

73

1// f i r s t gen f o r e f f e c t i v e reg ion
2int ne ighbor count = s inpu t [ty −1] [tx−1] + s inpu t [ty −1] [tx] +
3s inpu t [ty −1] [tx+1] + s inpu t [ty] [tx−1] + s inpu t [ty] [tx] +
4s inpu t [ty] [tx+1] + s inpu t [ty +1] [tx−1] + s inpu t [ty +1] [tx] +
5s inpu t [ty +1] [tx +1] ;
6
7s temp [ty − 1] [tx − 1] =
8(ne ighbor count==3) | | (ne ighbor count==2 && s input [ty] [tx]) ;
9
10// now s e t the ha lo s f o r the f i r s t gen r e s u l t .
11i f (threadIdx . x == 0)
12{
13// count f o r the c e l l to the l e f t
14ne ighbor count = s inpu t [ty −1] [tx−2] + s inpu t [ty −1] [tx−1] +
15s i npu t [ty −1] [tx] + s inpu t [ty] [tx−2] + s inpu t [ty] [tx−1] +
16s i npu t [ty] [tx] + s inpu t [ty +1] [tx−2] + s inpu t [ty +1] [tx−1] +
17s i npu t [ty +1] [tx] ;
18
19s temp [ty − 1] [tx − 2] =
20(ne ighbor count==3) | | (ne ighbor count==2 && s input [ty] [tx −1]) ;
21}
22
23. . .
24
25ne ighbor count = s temp [ty −2] [tx−2] + s temp [ty −2] [tx−1] +
26s temp [ty −2] [tx] + s temp [ty −1] [tx−2] + s temp [ty −1] [tx−1] +
27s temp [ty −1] [tx] + s temp [ty] [tx−2] + s temp [ty] [tx−1] +
28s temp [ty] [tx] ;
29
30output [idx] = (ne ighbor count==3) | |
31(ne ighbor count==2 && s temp [ty −1] [tx −1]) ;

Figure 5.17: Calculation of first generation halo cells.

74

calculations require 5 or more arithmetic operations. It is easy to see why this kernel

has such a high number of instructions. One way to reduce the number of instructions

is to use constant values where possible. Notice that some of the code refers to

blockDim.x which is a built-in variable that stores the number of threads in the x-

direction. However, the number of threads is known at compile-time, so it is possible

to replace these with constant values, and doing so achieves a modest performance

improvement.

The above multi-generational kernels use the shared loading scheme presented in

the shared memory Section 5.2.2. The scheme uses threads on the top row to load

the top halo, threads on the bottom row to load the bottom halo, and similar for left

and right. It then uses a single thread to load the corners. This mechanism maxi-

mizes memory coalescence, however, as seen above, it requires a substantial increase

in arithmetic operations due to index calculations. An alternative is to “re-center”

the threads so they start at the first cell of the halo. This creates a stencil that covers

the first 64x4 rows and columns of a 68x8 region. Once those cells have been loaded,

a relative index is calculated and the threads each load one more value. This method

reduces memory coalescence but improves instruction count and is known as linear

loading. An example implementation of this method can be viewed in Figure 5.18.

The relative index calculation is similar to the two-element kernels presented in Sec-

tion 5.2.2. Lines 14 - 15 show the relative index calculation. Since the number of halo

cells required is not exactly 2 ∗ numThreads a conditional statement is required, as

shown in line 17. The linear loading method removes the need to check if a thread is

on the top row, left column, or bottom row, and in doing so reduces the number of

conditional statements.

Performance results of the linear method are shown in Figure 5.19, and the per-

formance improvement is clear. Using the Visual Profiler it is easy to see why the

75

1unsigned int srow = 1 + threadIdx . y ;
2unsigned int s c o l = 1 + threadIdx . x ;
3
4int ne ighbor count
5= s inpu t [srow −1] [s co l −1] + s inpu t [srow −1] [s c o l] +
6s i npu t [srow −1] [s c o l +1] + s inpu t [srow] [s co l −1] +
7s inpu t [srow] [s c o l +1] + s inpu t [srow +1] [s co l −1] +
8s inpu t [srow +1] [s c o l] + s inpu t [srow +1] [s c o l +1] ;
9
10s temp [srow − 1] [s c o l − 1] =
11(ne ighbor count==3) | | (ne ighbor count==2 && s input [srow] [s c o l]) ;
12
13// now the second va lue f o r the f i r s t generat ion , based on index
14srow += blockDim . y ;
15s c o l += blockDim . x ;
16
17i f (srow <= HEIGHT && s c o l <= WIDTH){
18ne ighbor count =
19s i npu t [srow −1] [s co l −1] + s inpu t [srow −1] [s c o l] +
20s i npu t [srow −1] [s c o l +1] + s inpu t [srow] [s co l −1] +
21s i npu t [srow] [s c o l +1] + s inpu t [srow +1] [s co l −1] +
22s i npu t [srow +1] [s c o l] + s inpu t [srow +1] [s c o l +1] ;
23
24s temp [srow − 1] [s c o l − 1] =
25(ne ighbor count==3) | | (ne ighbor count==2 && s input [srow] [s c o l]) ;
26}

Figure 5.18: Linear loading method.

76

performance of the linear loading method is better. Table 5.2 shows a comparison

of these two methods, for a single execution of the kernel. Linear loading executes

approximately 110,000 less instructions, for a single kernel launch. This equates to ap-

proximately 5,500,000 less instruction over the course of computing 100 generations.

The number of uncoalesced memory accesses does not change, thus owing the entirety

of the improvement to the reduction in instructions. Also shown in Figure 5.19, is

a two-element version of linear loading. This two-element kernel is a combination

of the linear loading method and the two-element kernel presented in Section 5.2.2,

which stated that the performance improvement is largely due instruction reduction

due to fewer index calculations. The reason for the drastic improvement of the two-

element linear method has not changed: after executing all those index calculations,

a single add instruction enables the kernel to correctly access another element at

lower instruction cost. However, the two-element linear loading for two-generation

kernels does not perform quite as well as its single generation counterpart, although

it does come close. Table 5.2 gives some insight as to what is slowing down the two

generation kernel: instruction count. The single generation kernel still execute less

instruction across the computation of all generations, and since the number of mem-

ory loads, coalesced and otherwise, is virtually identical, the number of instructions

is the limiting factor for the two generation kernel. Further work should investigate

the alternative method of using more threads to compute a smaller effective region:

16x16 threads that compute two-generations of a 12x12 region, for example.

Table 5.2: Visual Profiler Results for two-generation Game of Life kernels.

Two-element 2 Gen. 2 Gen. Linear 2 Gen. Two-element Linear

Instructions 259,276 528,483 410,595 269,925
Coalesced Loads 36,000 32,000 32,000 30,720

Uncoalesced Loads 36,000 32,000 32,000 15,360

77

 0

 10

 20

 30

 40

 50

 60

 70

 200 400 600 800 1000 1200 1400 1600

T
im

e
(m

s)

Width

Shared 2 Element Rectangular
2 Gen

2 Gen Linear
2 Gen Linear 2Per

(a)

 10

 20

 30

 40

 50

 60

 70

 80

 200 400 600 800 1000 1200 1400 1600

T
h
ro

u
g
h
p
u
t

(G
B

/s
)

Width

Shared 2 Element Rectangular
2 Gen

2 Gen Linear
2 Gen Linear 2Per

(b)

Figure 5.19: Performance of the two-generation kernels. (a) total time and (b) appli-
cation bandwidth.

5.3 Image Processing Methods

In the previous Section 5.2, all of the techniques and patterns are detailed and source

code is supplied where appropriate, save one: data packing. The research into the

SIFT pipeline was completed after the Game of Life work and therefore the lessons

learned while implementing the various kernels were applied; meaning that less effec-

tive techniques were not included here. For example, none of the rectangular kernels

operate on a 32x8 region since that is not effective as a 64x4 region. This section

does not repeat information presented previously, and source code is only provided

when it makes sense to do so. Also, this section is not organized by technique, but

by subject: Gaussian blur, difference of Gaussians, and extrema detection.

5.3.1 Gaussian Blur

Gaussian blurring is an example of a convolution operation. When a function is

convolved with the Gaussian function, P(x) = 1
σ
√

2π
e−(x−µ)2/2σ2

, the result is a general

smoothing of the data. The Gaussian function is used in many computer vision

78

applications, including SIFT, to reduce initial image noise and soften edges, and it is

integral in creating the scale space. SIFT requires that Gaussian blurring is done on

an image, 48 times under normal circumstances, before the difference of Gaussians

can be computed.

Convolution operations have been implemented many different ways, even on

GPUs. In fact, the CUDA SDK released by Nvidia contains a sample convolution

kernel. Fast Fourier transforms have been used, as well as standard matrix multipli-

cation. To compute a convolution, one multiplies what is known as a kernel (different

than GPGPU programming), which is simply a square matrix of values, by the value

of a function, and its neighbors. In the case of an image, the value of the function is

a pixel value, and its neighbors are the surrounding pixels. This operation has a very

similar pattern to cellular automata computations, especially with respect to mem-

ory access, which is why it has been included here. It is important to note that the

Gaussian blurring implementation presented here is not implemented as a separable

convolution. A separable implementation would indeed be faster, but the techniques

presented here would not be quite as effective and their effects less demonstrable.

1f loat value =
2k0∗ t i l e [sharedIdx − SHARED WIDTH − 1] +
3k1∗ t i l e [sharedIdx − SHARED WIDTH] +
4k2∗ t i l e [sharedIdx − SHARED WIDTH + 1] +
5k3∗ t i l e [sharedIdx − 1]+k4∗ t i l e [sharedIdx] + k5∗ t i l e [sharedIdx + 1] +
6k6∗ t i l e [sharedIdx + SHARED WIDTH − 1] +
7k7∗ t i l e [sharedIdx + SHARED WIDTH] +
8k8∗ t i l e [sharedIdx + SHARED WIDTH + 1] ;
9
10output [idx] = fabs (va lue) ;

Figure 5.20: Core of the convolution kernel.

The core of the convolution kernel can be viewed in Figure 5.20. Each thread

79

multiplies elements of the convolution kernel (the supplied 3x3 matrix of values) by a

data element and its neighbors, and the result is written to global memory. Lines 2 -

8 access the shared memory area named tile, which contain a cell and its neighbors,

by the appropriate value of the convolution kernel. The absolute value of the result is

then written to appropriate address in global memory. Figure 5.20 does not display

the shared memory loading, which is done exactly as demonstrated in the Game Of

Life kernels, e.g. Figure 5.6. The Gaussian blur kernel operates on a 64x4 rectangular

region of aligned memory. The only improvement to be made, based on the Game of

Life results, is processing two elements per thread. Figure 5.21 depicts a comparison

of the two blur kernels: aligned rectangular vs. two-element aligned rectangular. As

expected, the two-element kernel performs significantly better. The reason for this

improvement is the same as above: a significant reduction in instruction count. The

two-element blur kernel executes 166,270 instructions less than the single element

variant while incurring less than half the uncoalesced memory loads.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 200 400 600 800 1000 1200 1400 1600

T
im

e
(m

s)

Width

Aligned Rectangular
2 Element

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 200 400 600 800 1000 1200 1400 1600

T
h
ro

u
g
h
p
u
t

(G
B

/s
)

Width

Aligned Rectangular
2 Element

(b)

Figure 5.21: Comparison of blur kernels: aligned rectangular and two-element aligned
rectangular; (a) is total time and (b) is application bandwidth.

80

5.3.2 Difference of Gaussians

Computing a “difference of Gaussians” involves taking the output of one blurring op-

eration and performing a cell-by-cell subtraction with the output of another blurring

operation. Implementation of such an operation, serially or on the GPU, is trivial

and is shown in Figure 5.22.

This kernel is so compact there is not much that can be optimized. Since this kernel

1g l o b a l void d dogGlobal (f loat ∗ img1 , f loat ∗ img2 , f loat ∗out ,
2int h , int s t r i d e)
3{
4int r = blockIdx . y ∗ blockDim . y + threadIdx . y ;
5int c = blockIdx . x ∗ blockDim . x + threadIdx . x ;
6int idx = r ∗ s t r i d e + c ;
7i f (r < h && c < s t r i d e)
8out [idx] = img2 [idx] − img1 [idx] ;
9}

Figure 5.22: Entirety of the difference of Gaussians kernel.

does not require a halo, many of the techniques, including the rectangular region, do

not apply. Assuming the memory is already aligned, the only technique demonstrated

so far that can be applied is the two-element technique, and the results of applying

this technique are shown in Figure 5.23. However, there is one last technique men-

tioned in Section 4.3.2 that has not yet been detailed: data interleaving and packing.

Data packing allows each memory request to return more data. Memory requests are

made on a half-warp boundary and there are 16 threads in a half warp thus it follows

that when requesting float data, 64 bytes are returned. The Nvidia memory bus

can support 128 bytes in one request, however. To fully realize this bandwidth, each

thread must request not 4, but 8 bytes of data. CUDA provides a float2 which packs

two floats into one 8 byte word as a vector type. Using a float2 reduces the number

of bus transfers by half for the difference of Gaussians kernel. Figure 5.23 also includes

81

the performance data for the data packing kernel. The different implementations are

barely discernable in Figure 5.23 due to multiple reasons. First, the effective com-

putation of the kernel is just one instruction, a subtract instruction. Second, there

are no halos to introduce an easily measurable latency. Third, there is no need for

shared memory. The kernel is so simple that once the memory is aligned only small

improvements can be made. However, the CUDA Visual Profiler can provide a clear

approximation to what is happening on the device and from that information it is

possible to extrapolate the results for more complicated and mathematically intensive

kernels. Table 5.3 shows exactly what is expected: the two-element kernels execute

fewer instructions and the packed data kernels require half the memory loads. There-

fore, we surmise that these techniques, when applied to more intensive problems, will

yield positive results.

Table 5.3: Visual Profiler results for difference of Gaussians.

1 Element Two-element Packed Two-element Packed

Instructions 64,160 39,712 61,304 35,872
Coalesced Loads 32,000 30,270 16,000 30,720

Uncoalesced Loads 36,000 32,000 16,000 15,360

5.3.3 Extrema Detection

Once the difference of Gaussians has been computed, each element in the difference is

tested for the presence of an extrema. This is done by checking that element against

all of its neighbors, both in its own interval and the two surrounding intervals: if an

element is the maximum or minimum value of its neighborhood, it is considered to be

an extrema. The detection is a shown more closely in Figure 2.3, and based on the

figure it is natural to implement the neighborhood as a three dimensional array. In

implementing the extrema detection, 4 separate kernels were written: aligned, aligned

82

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 200 400 600 800 1000 1200 1400 1600

T
im

e
(m

s)

Width

Aligned
2 Element

Packed
2 Element Packed

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 200 400 600 800 1000 1200 1400 1600

T
h
ro

u
g
h
p
u
t

(G
B

/s
)

Width

Aligned
2 Element

Packed
2 Element Packed

(b)

Figure 5.23: (a) shows total time while (b) shows application bandwidth for difference
of Gaussian kernels.

two-element, aligned rectangular, and aligned rectangular two-element. Since each

cell requires checking against all neighbors, a one cell halo is added to the data. In

most previously demonstrated kernels, not of the two-element variety, each thread

loads a single element into shared memory. For the extrema detection, however,

each thread must load 3 elements: the element being checked for extremity and

the elements “above” and “below” in the same scale space, as shown in Figure 2.3.

Shared loading can be seen in Figure 5.24. Halo loading is not shown, but is similar

to Figure 5.6, except that in the extrema kernel, each halo load is replaced by 3 halo

loads.

The performance results for the various extrema detection kernels are somewhat

surprising, and can be viewed in Figure 5.25. The most obvious discussion point

about these results is that the two element rectangular kernel is not the fastest ker-

nel, as it has consistently been in the previous experiments. To further investigate

these findings, the CUDA Visual Profiler is useful. Table 5.4 contains selected fields

83

1int r = blockIdx . y ∗ blockDim . y + threadIdx . y ;
2int c = blockIdx . x ∗ blockDim . x + threadIdx . x ;
3int idx = r ∗ s t r i d e + c ;
4int x = threadIdx . x + 1 ;
5int y = threadIdx . y + 1 ;
6s h a r e d f loat s [3] [SHARED WIDTH] [SHARED WIDTH] ;
7
8s [0] [y] [x] = in [idx − h ∗ s t r i d e] ;
9s [1] [y] [x] = in [idx] ;
10s [2] [y] [x] = in [idx + h ∗ s t r i d e] ;

Figure 5.24: Extrema shared memory staging, note the 3 dimensional array.

 0

 5

 10

 15

 20

 25

 200 400 600 800 1000 1200 1400 1600

T
im

e
(m

s)

Width

Aligned
2 Element

Rectangular
2 Element Rectangular

(a)

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 200 400 600 800 1000 1200 1400 1600

T
h
ro

u
g
h
p
u
t

(G
B

/s
)

Width

Aligned
2 Element

Rectangular
2 Element Rectangular

(b)

Figure 5.25: (a) diagrams total time and (b) application bandwidth: extrema detec-
tion.

from the Visual Profiler output (many fields are not displayed because they display

non-performance related information). The table contains one row that requires ex-

planation: occupancy. Occupancy is the ratio of active warps to the maximum number

of active warps. If the number of active warps is less than the maximum, it is usually

due to some form of space constraint: a kernel uses too many registers per thread

and therefore one warp takes more than half of the register file. An occupancy of

less than 1 is not necessarily a terrible thing, however, all things being equal a kernel

with a higher occupancy will usually perform better. The rows entitled Register per

84

Thread and Shared Mem. Per Block give an indication as to the occupancy value.

Kernels that use lots of shared memory will have a smaller occupancy ratio.

Table 5.4 indicates that the occupancy for the 2 element rectangular kernel is low.

Table 5.4: Extrema detection: Visual Profiler results.

Aligned two-element Rect. two-element Rect.

Instructions 371,686 192,755 356,474 185,343
Coalesced Loads 54,000 54,000 71,964 69,120

Uncoalesced Loads 108,000 54,000 32,285 17,280
Branches (Divergent) 50218 (3754) 25751 (1951) 63,739 (2016) 24,785 (855)

Occupancy 1 0.5 0.75 0.25
Registers Per Thread 14 13 12 13

Shared Mem. Per Block 3,942 7,388 4,796 9,404

In fact, the occupancy value is significantly different from the next fastest kernel:

the two-element kernel. The reason for this low occupancy is because the shared

memory per block for the two-element rectangular kernel is so high. Only one block

is able to fit on the SM at a given time. This means if all the threads are waiting

for memory requests, there is no other block that can be executed, and the SM is

essentially idle. Table 5.4 demonstrates that the two-element kernel has the best per-

formance, and that is reflected in Figure 5.25. The table also clearly shows that the

two-element rectangular kernel is being held back by its occupancy since all the other

values are comparable to the two-element kernel. Note the use of primitives such as

blockDim.x, blockDim.y, threadIdx.x, and threadIdx.y. These are built-in vari-

ables made available by the CUDA run-time system, and they utilize space in the

register file which increases the number of registers in use by each thread. For many

cases, block dimensions are known at compile time, enabling these primitives to be

replaced by constant values. Doing so would reduce the register need of each thread,

and possibly allow more threadblocks to fit on an SM, thus increasing occupancy.

However, replacing the primitives with constants causes code that is harder to read

85

and maintain. The rectangular kernel executes approximately 150,000 more instruc-

tions than the two-element kernel slowing it down, a result consistent with previous

experiments. The standard aligned kernel performs the worst due to the high num-

ber of uncoalesced memory loads, as this is to be expected with a one cell halo. The

extrema kernels are interesting because they incorporate issues found in real world

problems, such as available memory space. Sometimes, due to various issues the best

techniques are not always feasible.

86

Chapter 6

Surface Water Flow: A Case Study

A cellular automaton model is proposed in [30], and further refined in [31], that mod-

els the movement of water over an area of land during and after a rain event. In [30]

Parsons presents a Java program which implements this CA, resulting in a digital

elevation map that indicates the depth of the water in each cell. Cells which repre-

sent areas in the bottom of valleys or riverbeds, for example, contain the most water,

since they are, in effect, local minima. Intuitively, this makes sense, since water flows

downhill. Computing exactly where the water will be, however, and estimating how

much water there is becomes a much more complicated problem. The implementation

by Parsons is intended to be clear and simple; no consideration is given to perfor-

mance. The reason for conducting this case study is simple: apply the techniques and

patterns described in Section 4 to an existing, real-world problem, to further deter-

mine their validity and usefulness. The intent of this section is to explain the process

of implementing Parsons CA on a GPU and is organized thus: Section 6.1 explains

the details of the environment and experiment setup. In Section 6.2 a brief overview

is given, followed by an explanation of porting the supplied code to C++. Next,

in Section 6.3 an initial GPU implementation is discussed, which leads to in-depth

87

analysis of the existing rules and implementation given in Section 6.4. Section 6.5

explains a second GPU implementation, completed after the analysis done in 6.4.

Lastly, Section 6.6 contains a conclusion and sums up the lessons learned during the

process.

6.1 Method / Setup

Due to technical issues related to driver versions, the machine used to run the code

described in this chapter is different from the one on which the previous experiments

were run. The CPU is a 64 bit Intel T9400 Core2 Duo processor running at 2.53GHz.

The CPUs each have 6MB of on-chip cache and 2 hardware threads. A total of 3.5GB

of memory is available. The GPU used in the surface water experiments is an Nvidia

GeForce 770M, running CUDA version 2.20. The GPU has 4 streaming multiproces-

sors for a total of 32 computing cores, running at 1.25 GHz. The theoretical memory

bandwidth limit of this card is 35.6 GB / sec and the card has 500MB of physical

memory. The surface water case study requires more data to complete computations

than either the Game or Life or SIFT kernels. Also, the surface water application,

is a complete application and the performance timing is focused on execution from

start to finish.

6.2 Overview of Existing Work

The main contribution of [30] is the development of a CA model; the Java implemen-

tation is secondary contribution that validates the first. Our works focuses on the

geological theories presented in [30] only insofar as they help in understanding the

implementation and ways to enhance performance. The Java implementation can be

88

broken down into 5 major steps:

1. Add rainwater to each cell.

2. Remove the necessary amount of “infiltration,” that is, water absorbed by the

soil.

3. Calculate how much water each cell “discharges:” inspect neighbors and de-

termine which are at a lower elevation, and based on the elevation difference,

determine what fraction of the discharge volume each neighbor will receive.

4. Iterate through all cells: for each cell, iterate through its neighbor list adding the

appropriate amount of water to each neighbor. This step modifies the volume

of a neighbor cell.

5. Iterate through all cells a second time, adding the aggregated, temporary amount

of water to each cell, and subtracting the discharge volume.

Parson’s Java implementation contains a two-dimensional array of cell objects and 5

main methods, one for each element in the above list. Each method loops over every

cell in the two-dimensional array, applying the specific rules. Once all 5 methods

have executed, a new amount of rain fall for the next time-step is calculated, and the

process begins again. The implementation also includes a complicated set of timing

rules that only “release” water from a cell after certain conditions are met. These

conditions deal with water velocity and volume, only moving the water if there is

enough critical mass, in effect. The timing rules do not change how much water

moves from cell to cell, only when it moves. The initial port was done for two

reasons: (1) to gain a better understanding of the Java code, and (2) to create a

serial implementation whose performance could be compared to a GPU version, since

comparing a GPU based program to a Java program is not very useful. The port is

89

implemented in C++, mimicking the Java class hierarchy and tested to ensure both

versions produce the same results, within a certain tolerance.

6.3 Initial GPU Implementation

Implementation using C++ showed the aspects of the original code that would benefit

from parallelization: namely the 5 steps listed in Section 6.2 that iterate over all the

cells. These computations could, for the most part, be done in parallel. The first two

steps, adding the rain water, and then removing the infiltration volume are trivially

implemented in GPU kernels. The addition of the water can be seen in Figure 6.2.

In fact, the add and remove kernels are so similar that they could be combined into

a single kernel, or the amount of water to be removed could simply be subtracted

from the rain fall, eliminating the need for a second kernel. It was decided that, for

the purposes of generality, each cell could possibly contain a different soil type and

therefore a different amount of water would be lost to infiltration. For this reason,

the add and remove kernels remain separate. Note the index calculations in lines 4 -

6: they are the same as those presented in the Game of Life an SIFT kernels depicted

in Section 5. The conditional statement in lines 7 and 8 is an artifact of discretizing

a digital map. Since the boundary cells have no neighbors, no water would leave or

enter these cells, essentially creating an artificial dam, therefore the boundary cells

are not processed. An external viewer was also written to aid in verifying correctness

of the implementations and its output can bee seen in Figure 6.1.

For steps (3), (4), and (5), the initial GPU kernels simply calculate the index of

the cell to be processed and then replicate the implementation in the serial version;

the only difference being the GPU kernels operate on only one cell. The goal of this

implementation was to get the code running on the GPU as fast as possible, while

90

Figure 6.1: Viewing the result of the CA model

producing correct results. While this goal was achieved, in hindsight, this was a poor

choice. In Parson’s original implementation there is a single design decision that adds

a significant amount of complexity: in steps (3) and (4), while processing a cell, the

code modifies state values of other, neighboring cells. Strictly speaking, doing such

does not fall under the cellular automata definition, and when our CA techniques and

patterns are applied to such a situation, results are mixed, at best. Because one cell

is modifying the value of another cell, the order in which operations are performed is

important. It became very difficult to correctly implement these rules, and while a

working implementation was finally created, the code was difficult to understand and

unmaintainable, making it arduous to apply performance improvements.

Due to the neighbor based nature of the computations, the initial GPU imple-

91

1g l o b a l void stat ic addPrecipKernel (int rows , int co l s ,
2f loat tmpVol , GpuTCell ∗data)
3{
4int r = blockDim . y ∗ blockIdx . y + threadIdx . y ;
5int c = blockDim . x ∗ blockIdx . x + threadIdx . x ;
6int idx = r ∗ c o l s + c ;
7i f (r != 0 && r != (rows − 1) && c != 0 && c != (c o l s − 1) &&
8r < rows && c < c o l s)
9{
10data [idx] . vo l += tmpVol ;
11data [idx] . newVolume = true ;
12}
13}

Figure 6.2: Kernel that adds rain water to each cell.

mentation used shared memory. Memory alignment and rectangular kernels were

not implemented. Table 6.2 contains a comparison of total time between the initial

GPU version and serial C++ version, the times are given in seconds. The experiment

consists of running the different implementations against a digial elevation map of

Golden, Colorado, for 500 generations. The map of Golden is furnished by the U.S.

Department of the Interior and measures 463x358 cells. The initial results indicate

that the GPU version is approximately 3.9 times faster than serial version. This speed

up is gained from simply porting the C++ version to a GPU version, not many of

the techniques described herein were used. Performance improvements such as this

are artifacts of using a SIMD architecture and further discussed in Section 2.4.1. Ta-

ble 6.2 also shows the performance of various steps in the process; the data is meant

only as an indicator of performance trends. Since the serial and GPU implementa-

tions perform different work at the various steps, the most useful data point is the

total time.

92

Table 6.1: Initial Surface Water Implementations

Serial C++ GPU Shared

Total time 77.2817 20.3935
Add time 2.9500 0.6700

Remove time 26.6331 1.9606
Process time 47.6751 17.7561

6.4 Surface Water Flow: Revisited

Due to reasons given in Section 6.3, it was determined that the original implementa-

tion was not a true CA. Because of this, attempts to add performance improvements

were either too difficult to implement, or yielded poor results. To address these is-

sues, the original algorithms were simplified, and each step was constructed to fit a

CA model: the state of cell is solely based on the current state and the state of its

neighbors. Steps (3), (4), and (5) listed above, were condensed into two, logically

simple, steps: calculate how much water a cell discharges, and calculate how much

water is gained from neighbor cells:

1. Add rainwater to each cell.

2. Remove the necessary amount of “infiltration,” that is, water absorbed by the

soil.

3. Calculate how much water each cell loses, and subtract this volume.

4. Calculate how much water each cell gains, and add this volume.

The calculation of how much water a cell discharges remains largely the same as

the initial implementation. However, determining the amount of incoming water is

significantly different from the original model. The amount of incoming water is the

sum of the water a cell receives from each of its neighbors. To determine the volume

93

of water received from a neighboring cell, all of the neighbors of that neighboring cell

must be analyzed. Figure 6.3 depicts a visual representation of this calculation. The

initial reason for separating out these steps was to reduce the number of cells that

are accessed. However, on the GPU, this type of operation is typical and fast with

the use of shared memory.

Figure 6.3: Illustration of all the cells that are accessed during the computation of
incoming volume for the center cell. Lightly shaded cells respresent those which must
be accessed in-order to compute the incoming water for the center cell.

6.5 Final GPU Implementation

Because the revised model is a standard CA, implementing the various performance

improvements is a straightforward process that does not lead to error-prone or un-

maintainable code. The final implementation includes many of the techniques de-

scribed in Section 4. A complete list is presented here:

• Basic global memory

94

• Shared memory

• Aligned shared memory, with halo

• Aligned rectangular, with halo

• Two-Generation

A bar graph, depicting the total time for each method is shown in Figure 6.4.

At a high-level, these results are expected: rectangular regions perform the best, fol-

lowed by aligned memory, shared memory, and global memory. Since each of these

techniques builds on the previous one, these results are expected. The two-generation

kernel result is surprising, insofar as it is much worse than expected. From previous

results, the two-generation kernel is expected to be slower due to a high instruction

count, but 7x slower is significantly worse than seen in previous experiments. The

largest performance increase is due to the introduction of shared memory: a 21% per-

formance improvement over global memory. The other successive techniques, aligned

and rectangular, garner .35 and .28 second improvements, respectively. The process

kernel consumes the largest amount of time, as is expected, since this kernel imple-

ments the complicated CA rules and contains more arithmetic operations than the

add and remove kernels, which both entail a single add or subtract instruction. The

add and remove kernels benefit only from the addition of aligned memory as they do

not complete any neighbor oriented tasks.

Table 6.2: Revised Surface Water Implementations

Global Shared Aligned Rect. 2 Gen.

Total time 5.5995 4.4027 4.0500 3.7669 25.6975
Add time 1.2948 1.1211 0.7374 0.7046 0.8410

Remove time 1.0488 1.0488 0.5991 0.5778 0.6723
Process time 3.2047 2.2308 2.7106 2.4820 24.1815

95

 0

 5

 10

 15

 20

 25

 30

Global Shared Aligned Rect. 2 Gen

T
im

e
(s

)

Kernel

Figure 6.4: Surface Water Total Time

Further investigation is required to determine the cause of the two-generation

performance. Table 6.3 contains output from the CUDA Visual Profiler. The most

telling statistic for the two-generation performance problem is instruction count: the

two-generation kernel executes over 3x as many instructions as the rectangular ker-

nel. Code inspection reveals a considerable number of index calculations to be the

cause of such a high instruction count. While this is a significant amount, it cannot

account for all of the performance degradation. One may suspect that large number

of branches contributes to the problem, however only a small fraction of the branches

cause divergence. The occupancy of the two-generation kernel, 0.167, is exactly half

of all the other kernels. Twice as many threadblocks for the rectangular kernel can fit

on an SM. When a threadblock for the two-generation kernel is waiting on a memory

request, the number of waiting and ready threadblocks that can be context switched

is much lower, causing the SMs to be idle. The occupancy of the two-generation

kernel is lower because it uses 54 registers per thread; registers are allocated in the

same physical space as shared memory, which is very limited. The more registers a

96

thread uses, the fewer threads can be allocated to an SM. The reason the register

count is so large stems from the extra index calculations. The lower occupancy and

high instruction count are the reasons the two-generation kernel performs poorly.

Table 6.3: Comparison of Visual Profiler results for surface water kernels.

Global Shared Aligned Rect. 2 Gen.

Instructions 719,888 1,081,273 1,086,864 1,145,703 3,866,277
Coalesced Loads 9,166 2,792 53,440 55,680 69,368

Uncoalesced Loads 431,616 431,616 63,408 66,096 63,072
Branches 108,757 273,657 272,270 290,542 992,429
Divergent 11,209 22,924 23,093 27,812 37,903

Occupancy 0.333 0.333 0.333 0.333 0.167
Registers Per Thread 20 23 21 20 54

Shared Mem. Per Block 56 6,456 6,460 8,764 7,868

6.6 Surface Water Flow: Final Thoughts

The case study of a surface water flow problem provides some useful insights. Chief

among these insights is that using a properly defined cellular automata model is

important. If the next generation is dependent upon more than the current state and

neighbor states, or if during the course of processing a single cell the state values of

another cell are modified, complications arise which are difficult and tedious to handle.

It was shown that a GPU implementation of poorly defined model could, indeed,

achieve performance gains. However, a revised implementation built upon a strict

CA model realizes a much larger improvement. Specifically, the initial GPU version

is approximately 3.9x faster than the serial version while the revised implementation

is approximately 30x faster.

Another insight concerns the multi-generational kernels. The multi-generational

surface water kernel is similar to the Game of Life kernels in that less threads are

97

used to load and subsequently manipulate more values. In both situations, a high

instruction count an low occupancy cause performance problems. Future research in

the area of multi-generational kernels should attempt to use a paradigm where there

is a thread for each required piece of data, but not all those threads are used for

calculations.

Lastly, due to the large amount of data required to process each generation, tech-

niques that use additional shared memory, such as the two-element approach, prove

to be infeasible. However, several further improvements could still be made: packing

the various input data into native vector types, such as float2, float3, and float4,

would reduce the number of global memory transactions, while constant memory,

described in Section 2.4.2, could be used for static input data, such as the elevation

of each cell. The amount of shared memory required does not, however, affect the

implementation of memory alignment, which achieves a substantial gain. The data

shows that these techniques, do in fact, realize a notable performance improvement,

even in the precedence of complicating factors.

98

Chapter 7

Discussion

This chapter gives an overview of the salient points that have been learned from the

research presented herein. Section 7.1 enumerates each of the performance techniques

while providing some comments about their implementation, feasibility, and overall

usefulness. Section 7.2 discusses the multi-generation kernels and also indicates areas

of future work. Next, Section 7.3 presents some of the compromises encountered while

implementing various techniques. Finally Section 7.4 discusses more subjective topics

such as ease of use and return-on-investment.

7.1 Improvement Overview

Due to the parallel nature of many-core processors such as GPUs, a first-pass parallel

implementation of a serial, CPU-based application is likely to achieve acceptable

results; in the case of our surface water application, a 4x speedup. Section 2.4.1

discusses this phenomenon in more detail. However, to fully realize the potential of

GPGPU computing, additional techniques must be applied.

99

7.1.1 Shared Memory

The technique typically exhibiting the largest performance improvement over a base-

line implementation is the use of shared memory. Section 4.2.1 details the workings

and reasons for the performance improvement resulting in the use of shared memory.

In the Game of Life environment, the introduction of shared memory results in a 30%

speed increase. For applications that take weeks or months to run, a performance

increase of this size is dramatic. In the surface water application, the introduction

of shared memory results in a 21% speed increase. Since cellular automata are, by

definition, neighbor based models, the employment of shared memory is critical. How-

ever, the surface water case study shows that an application may require more space

than is available on the current hardware. In such cases, it may be possible to trade

the use of one technique for another. For example, one could forgo the use of shared

memory altogether, but instead, implement a rectangular two-element kernel, thereby

significantly reducing instruction overhead. Future work should compare the effects

of each technique individually.

7.1.2 Memory Alignment

The hardware implementation of global memory directly affects the performance of

GPU kernels, mostly because this memory is not cached. Improper memory access

patterns seriously inhibit performance and application throughput. Memory align-

ment is critical for minimizing memory latency. Section 4.2.2 explains the details

of memory alignment. For Game of Life, memory alignment increases performance

by approximately 8% over unaligned memory. While 8% is not quite as impressive

as the 30% achieved by shared memory, it is still worth implementing. The surface

water application also sees an 8% speed increase from using aligned memory. In the

100

case of surface water, the increase is application wide: all GPU kernels benefit. An

ancillary benefit of memory alignment is that GPU kernels do not need to change in

order to enjoy the benefit. Host CPU code is responsible for correct alignment. One

downside of using aligned memory is that it may require some initial processing to

set the alignment and add any required padding. Some software libraries, such as

OpenCV [4], complete this step, but others may not.

7.1.3 Halos

Adding a memory halo to a set of data removes the need for conditional logic while

processing cells that lie on the edges of the memory region, as these edge cells do not

have certain neighbors. In a GPU implementation, the presence of a halo simplifies

logic, by removing conditional instructions, and in doing so, reduces the total instruc-

tion count of a kernel significantly. Section 5.2.1 shows that using a halo increases

speed by 18% for Game Of Life. It is also shown that this increase is due to the

reduced number of instructions: the halo-based kernels actually make more requests

to global memory. Adding a memory halo is trivial, but unlike memory alignment,

the kernel must be implemented in such a way as to take advantage; that is, remove

conditional logic for memory boundary cells.

7.1.4 Rectangular Memory regions

The use of a memory halo causes additional global memory requests to read the

extra halo data. Not only is this extra data essentially unused, only a portion of

these memory requests are aligned. To mitigate these consequences, it is possible to

structure threadblocks in such a way that significantly reduce the amount of unused or

wasted data that is transferred across the bus. As stated in Section 4.2.4 each left-side

101

and right-side halo load request incurs a throughput penalty, but the top and bottom

halo cells do not. The results in Section 5.2.2 indicate that structuring threadblocks

that are much wider than they are high, increases performance by 16% for The Game

of Life. Section 6.5 demonstrates that the use of a rectangular threadblock increases

performance by approximately 7%. Using a rectangular threadblock is not difficult; in

fact, it is possible to implement kernels in such a way that the shape of the threadblock

does not matter, essentially realizing this performance improvement for free.

7.1.5 Two Elements Per Thread

It has been stated in Section 5.2.2 and again in Section 6.5 that index calculations

constitute a large portion of the overhead for a GPU kernel. Once an index has been

calculated, deriving more indices from it is relatively inexpensive. Processing two

elements in one thread re-uses the initial index calculation to obtain a new index,

relative to the first. The end result is a substantial reduction in instructions. For

the Game of Life, introduction of this technique resulted in a 44% improvement over

kernels processing only one element per thread. The convolution kernel achieved

a 37% performance improvement from processing two-elements per thread. Clearly

this technique is powerful, but it does not come without cost. Twice as much data

is processed which means twice as much memory is used. Because shared memory

is limited, it may not be possible to implement a two-element kernel without an

unacceptable decrease in occupancy. See Section 7.3 for more discussion on this

point.

102

7.1.6 Data Packing and Interleaving

Section 7.1.2 gives an overview of why memory alignment is important. Many kernels

operate on floating point data, a 4-byte type, which results in coalesced memory

transactions of 64 bytes for each half-warp. However the current hardware can support

128-byte memory transactions. Packing the data into native 8-byte types can further

reduce the number of memory transactions by half. In the CUDA environment this is

done by using the float2 native type. Initial results from Section 5.3.2 indicate this

to be a promising technique, however, more investigation is required. The surface

water application would benefit from this technique since multiple sources of data are

needed: elevation, volume, etc. The data elements could be packed into the native

vector types, such as float2, to reduce the number of total memory accesses.

7.2 Multi-Generational Kernels

In theory, computing multiple CA generations per kernel increases the arithmetic in-

tensity and improves throughput. However, in practice, no substantial performance

improvement is made. Investigation in Sections 5.2.3 and 6.5 indicate that a sub-

stantial amount of overhead is required when computing multiple generations. This

overhead manifests itself in the form index calculations. The multiple generation

kernels implemented herein use a paradigm of one thread for each effective cell; this

results in a situation where many threads not only load more than one element,

but they also process multiple elements during the computation of the first genera-

tion. This paradigm was chosen because, initially, it was thought that keeping all the

threads busy would result in better performance than a situation where many threads

were idle. The results show that using fewer threads to load and processes more data

incurs too much overhead to be effective. Future work in this area should investigate

103

the alternative solution where each thread loads a value (including the halo values),

but only those threads representing effective data actually execute CA computations.

7.3 Compromises

As is the case with every software project, certain decisions must be made to ac-

commodate application specific parameters. In the surface water case study, a large

quantity of data is required to compute each generation, thus significantly reducing

the occupancy of the kernels. In this case, the impact of a reduced occupancy is lower

memory throughput. However, for another application that is bound by instructions,

a lower occupancy may have little effect. Many such situations can arise, and a clear

understanding of the problem at hand can help in deciding which techniques to apply

and which to forgo. For example, implementing both shared memory in conjunction

with a two-element kernel may not be possible due to the limited amount of shared

memory. For a memory intensive application, the performance gained from repeat-

edly accessing values in shared memory far outweighs the reduction of instructions

a two element kernel achieves. However, the opposite is true for an application that

requires little in the way of memory bandwidth. The results of this work do not in-

dicate that any one technique is more valuable than another, but instead, illuminate

situations where each technique realizes the largest benefit.

7.4 Observations and Intangible Results

During the course of the research presented in this work, many observations were

made not directly related to the performance data. Results clearly show that GPGPU

computing has the capacity to significantly improve performance for many cellular

104

automata applications. However, for these improvements to be of use to the research

community as a whole, they must be relatively easy to attain; that is, the introduction

of GPGPU computing should not make the lives of researchers harder. As such, the

bulk of the techniques presented here are not difficult to implement and should be

attainable by others. Multi-generation kernels may be an exception, however. Imple-

mentation of multi-generational kernels is tedious, error-prone, and time consuming.

Even if a multi-generational solution produced better improvements, the work re-

quired to build, debug, and verify such a kernel may far outweigh the performance

benefit.

This work presents techniques and patterns that are specifically applicable to

problems modeled by cellular automata theory. The main benefit of using a CA model

over more complicated mathematical models is simplicity. An important observation

made while completing this research is that the simplicity achieved via the use of CA

models is real. Therefore, it is our belief that CA theory should be applied to more

areas and problems, at least initially, because model implementation and simulation

results can be achieved quickly. However, it is important to maintain strict adherence

to CA rules and definitions, lest the simplifications inherent in CA models be lost.

7.5 Conclusion

This work presents a series of performance enhancements that apply to implementa-

tions of cellular automata models using GPGPUs. These improvements include: the

use of shared memory, the addition of memory halos, aligning data to maximize mem-

ory coalescence, processing multiple elements per thread, and modifying the shape

of memory regions to improve bus utilization. Performance improvements are imple-

mented in the contexts of Game of Life, convolution operations, difference of Gaussian

105

computations, local extrema detection, and finally a surface water flow model case

study. Experimental results are shown, comparing the improvements made by each

technique while giving a detailed analysis of their applications. An in-depth look at

a real world problem is presented as a case study, highlighting many of the proposed

techniques while discussing application specific details. Lastly, an overview of the

techniques is given, emphasizing the importance of each. Future work is also de-

scribed, indicating further areas of research to be conducted. The results indicate

the improvements described herein are not only beneficial, but also applicable to a

wide range of areas, making the subject of cellular automata models and GPGPU

computing a worthwhile endeavor.

106

Bibliography

[1] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer.

Seti@home: an experiment in public-resource computing. Commun. ACM,

45:56–61, November 2002.

[2] D. Blythe. The direct3d 10 system. ACM Trans. Graph., 25:724–734, July 2006.

[3] D. Blythe. The direct3d 10 system. In ACM SIGGRAPH 2006 Papers, SIG-

GRAPH ’06, pages 724–734, New York, NY, USA, 2006. ACM.

[4] G. Bradski and A. Kaehler. Learning openCV: computer vision with the openCV

library; electronic version. O’Reilly, Sebastopol, CA, 2008.

[5] D. R. Butenhof. Programming with POSIX threads. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1997.

[6] J. Conway. The game of life. Scientific American, 1970.

[7] L. Dagum and R. Menon. Openmp: An industry-standard api for shared-memory

programming. Computing in Science and Engineering, 5:46–55, 1998.

[8] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su,

K. Vahi, and M. Livny. Pegasus: Mapping scientific workflows onto the grid. In

M. D. Dikaiakos, editor, Grid Computing, volume 3165 of Lecture Notes in Com-

puter Science, pages 131–140. Springer Berlin / Heidelberg, 2004. 10.1007/978-

3-540-28642-4-2.

[9] B. Dreier, M. Zahn, and T. Ungerer. Parallel and distributed programming

with pthreads and rthreads. In High-Level Parallel Programming Models and

Supportive Environments, 1998. Proceedings. Third International Workshop on,

pages 34 –40, Mar. 1998.

107

[10] B. G. Ermentrout and L. Edelstein-Keshet. Cellular Automata Approaches to

Biological Modeling. Journal of Theoretical Biology, 160(1):97–133, January

1993.

[11] R. W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5:345–, June 1962.

[12] I. Foster. Globus toolkit version 4: Software for service-oriented systems. Journal

of Computer Science and Technology, 21:513–520, 2006. 10.1007/s11390-006-

0513-y.

[13] J. Fung and S. Mann. Openvidia: parallel gpu computer vision. In Proceedings of

the 13th annual ACM international conference on Multimedia, MULTIMEDIA

’05, pages 849–852, New York, NY, USA, 2005. ACM.

[14] H. L. Garner. The residue number system. In Papers presented at the the March

3-5, 1959, western joint computer conference, IRE-AIEE-ACM ’59 (Western),

pages 146–153, New York, NY, USA, 1959. ACM.

[15] J. Gómez and G. Cantor. A population scheme using cellular automata, cambrian

explosions and massive extinctions. In GECCO ’09: Proceedings of the 11th

Annual Conference on Genetic and Evolutionary Computation, pages 1849–1850,

New York, NY, USA, 2009. ACM.

[16] T. Granlund and P. L. Montgomery. Division by invariant integers using multipli-

cation. In Proceedings of the ACM SIGPLAN 1994 conference on Programming

language design and implementation, PLDI ’94, pages 61–72, New York, NY,

USA, 1994. ACM.

[17] P. Harish and P. J. Narayanan. Accelerating large graph algorithms on the gpu

using cuda. High Performance Computing HiPC 2007, 4873(LNCS):197–208,

2007.

[18] H. P. Hofstee. Power efficient processor architecture and the cell processor.

In Proceedings of the 11th International Symposium on High-Performance Com-

puter Architecture, pages 258–262, Washington, DC, USA, 2005. IEEE Computer

Society.

[19] G. Koch. Discovering multi-core: Extending the benefits of moore’s law. Tech-

nology, 2005.

108

[20] M. Lalonde, D. Byrns, L. Gagnon, N. Teasdale, and D. Laurendeau. Real-time

eye blink detection with gpu-based sift tracking. In Computer and Robot Vision,

2007. CRV ’07. Fourth Canadian Conference on, pages 481 –487, May 2007.

[21] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. Nvidia tesla: A unified

graphics and computing architecture. Micro, IEEE, 28(2):39 –55, march-april

2008.

[22] J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. Kini, W. Yu, D. Buntinas,

P. Wyckoff, and D. K. Panda. Performance comparison of mpi implementa-

tions over infiniband, myrinet and quadrics. In IN PROCEEDINGS OF INT’L

CONFERENCE ON SUPERCOMPUTING, (SC’03, 2003.

[23] D. G. Lowe. Distinctive image features from scale-invariant key-

points. International Journal of Computer Vision, 60:91–110, 2004.

10.1023/B:VISI.0000029664.99615.94.

[24] P. Micikevicius. 3d finite difference computation on gpus using cuda. In Proceed-

ings of 2nd Workshop on General Purpose Processing on Graphics Processing

Units, GPGPU-2, pages 79–84, New York, NY, USA, 2009. ACM.

[25] S. Nandi, B. K. Kar, and P. P. Chaudhuri. Theory and applications of cellular

automata in cryptography. IEEE Trans. Comput., 43:1346–1357, December 1994.

[26] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming

with cuda. Queue, 6:40–53, March 2008.

[27] Nvidia. nvidia cuda c programming guide, version 3.1, 2010.

[28] Nvidia. nvidia cuda visual profiler, version 3.1, 2010.

[29] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. KrÃ1
4
ger, A. E. Lefohn,

and T. J. Purcell. A survey of general-purpose computation on graphics hard-

ware. Computer Graphics Forum, 26(1):80–113, 2007.

[30] J. A. Parsons. A COMPUTATIONAL CELLULAR AUTOMATON FOR MOD-

ELING SURFACE WATER FLOW IN THE ROCKY MOUNTAIN NATIONAL

PARK AND THE WALNUT GULCH EXPERIMENTAL WATERSHED. un-

kown, 2004.

109

[31] J. A. Parsons and M. A. Fonstad. A cellular automata model of surface water

flow. Hydrological Processes, 9999(9999):n/a+, 2007.

[32] J. Preston, K., M. Duff, S. Levialdi, P. Norgren, and J. Toriwaki. Basics of

cellular logic with some applications in medical image processing. Proceedings of

the IEEE, 67(5):826 – 856, may 1979.

[33] C. Reynolds. Big fast crowds on ps3. In Proceedings of the 2006 ACM SIG-

GRAPH symposium on Videogames, Sandbox ’06, pages 113–121, New York,

NY, USA, 2006. ACM.

[34] G. M. A. M. M. J. Rutherford and K. P. Valavanis, 2011.

[35] S. Rybacki, J. Himmelspach, and A. Uhrmacher. Experiments with single core,

multi-core, and gpu based computation of cellular automata. In Advances in

System Simulation, 2009. SIMUL ’09. First International Conference on, pages

62 –67, september 2009.

[36] R. R. Schaller. Moore’s law: past, present, and future. IEEE Spectr., 34:52–59,

June 1997.

[37] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junk-

ins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and

P. Hanrahan. Larrabee: a many-core x86 architecture for visual computing. In

ACM SIGGRAPH 2008 papers, SIGGRAPH ’08, pages 18:1–18:15, New York,

NY, USA, 2008. ACM.

[38] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junk-

ins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and

P. Hanrahan. Larrabee: a many-core x86 architecture for visual computing.

ACM Trans. Graph., 27:18:1–18:15, August 2008.

[39] S. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Genc. Feature tracking and matching

in video using programmable graphics hardware. Machine Vision and Applica-

tions, 22:207–217, 2011. 10.1007/s00138-007-0105-z.

[40] R. Szerwinski and T. GÃ1
4
neysu. Exploiting the power of gpus for asymmetric

cryptography. In E. Oswald and P. Rohatgi, editors, Cryptographic Hardware and

110

Embedded Systems - CHES 2008, volume 5154 of Lecture Notes in Computer

Science, pages 79–99. Springer Berlin / Heidelberg, 2008. 10.1007/978-3-540-

85053-3-6.

[41] A. C. Thompson, C. J. Fluke, D. G. Barnes, and B. R. Barsdell. Teraflop per

second gravitational lensing ray-shooting using graphics processing units. New

Astronomy, 15(1):16 – 23, 2010.

[42] T. Toffoli. Cellular automata as an alternative to (rather than an approximation

of) differential equations in modeling physics. Physica D: Nonlinear Phenomena,

10(1-2):117 – 127, 1984.

[43] G. Y. Vichniac. Simulating physics with cellular automata. Physica D: Nonlinear

Phenomena, 10(1-2):96 – 116, 1984.

[44] J. von Neumann. The general and logical theory of automata. In Cerebral

Mechanisms in Behavior, pages 1–41. pub-WILEY, pub-WILEY:adr, 1941.

[45] D. W. Walker. The design of a standard message passing interface for distributed

memory concurrent computers. Parallel Computing, 20(4):657 – 673, 1994. Mes-

sage Passing Interfaces.

[46] S. Warshall. A theorem on boolean matrices. J. ACM, 9:11–12, January 1962.

[47] Wikipedia. Floating point operations per second, Feb. 2011.

[48] S. Wolfram. A New Kind of Science. Wolfram Media, May 2002.

[49] M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL Programming Guide:

The Official Guide to Learning OpenGL, Version 1.2. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 3rd edition, 1999.

111

	Memory Access Patterns for Cellular Automata Using GPGPUs
	Recommended Citation

	Introduction
	Background
	Parallel Computing
	Supercomputers
	Parallelism via Interconnected Independent Machines
	Multicore Processors

	Software Support for Parallelism
	Operating System
	MPI - Message Passing Interface
	OpenMP

	Cellular Automata Models
	Conway's Game of Life
	Image Processing: Scale Invariant Feature Transform (SIFT)
	Surface Water Flow

	Nvidia GPU Architecture
	Single Instruction Multiple Data (SIMD)
	Memory Regions

	Related Work
	Cellular Automata Theory
	CA Models for Physical Science

	GPGPU Computing
	Cellular Automata Using GPUs

	Memory Access Patterns
	Naïve Implementations
	Memory Organization
	Shared Memory
	Memory Alignment
	Halos
	Effective Memory Region Shape

	Multiple Data Per Thread
	Two Elements Per Thread
	Data Packing and Interleaving
	Multiple Generations Per Kernel

	Experimental Analysis
	Method / Setup
	Game of Life
	Global Memory
	Shared Memory
	Multi-generational Kernels

	Image Processing Methods
	Gaussian Blur
	Difference of Gaussians
	Extrema Detection

	Surface Water Flow: A Case Study
	Method / Setup
	Overview of Existing Work
	Initial GPU Implementation
	Surface Water Flow: Revisited
	Final GPU Implementation
	Surface Water Flow: Final Thoughts

	Discussion
	Improvement Overview
	Shared Memory
	Memory Alignment
	Halos
	Rectangular Memory regions
	Two Elements Per Thread
	Data Packing and Interleaving

	Multi-Generational Kernels
	Compromises
	Observations and Intangible Results
	Conclusion

