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ABSTRACT 

 

Aluminum/carbon composite systems can have outstanding mechanical 

properties. Aluminum and carbon fiber reinforced polymer matrix composites (CFRP) 

are typically considered corrosion resistant when used alone, but can develop severe 

galvanic corrosion when in physical contact in the same component or structure.  

General engineering practice is to avoid contact between aluminum and CFRP in 

any application where moisture may be present, but it is still of great importance to 

understand the consequences if the two materials accidentally become in contact. There 

may also be applications where a low rate of galvanic corrosion is acceptable.  

This dissertation contributes unique experimental and numerical approaches to 

improve the fundamental understanding of galvanic corrosion in aluminum/carbon 

composite systems, with particular focus on rate limiting control mechanisms in a high-

temperature low-sag bare overhead transmission line conductor utilizing a CFRP load 

bearing core. 

The improved understanding was accomplished partially by the development of a 

novel assessment method for the in-situ galvanic corrosion testing of bare overhead 

conductors of various designs. The method allows for real-time measurements of 

galvanic corrosion currents while retaining the original geometry of the conductors. 

One of the most important findings is that the galvanic corrosion is under 

cathodic control, which means that the total galvanic corrosion rate is determined by the 
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exposed carbon area, and independent of the exposed aluminum area. Another important 

finding is that the galvanic corrosion process is under diffusion control, which means that 

the total galvanic corrosion rate is mainly controlled by the rate at which oxygen arrives 

at the carbon surface. The implication of these findings is that the geometry of the 

component or structure can affect the galvanic corrosion rate by orders of magnitude.  

The dissertation work has also included the development of a structural health 

monitoring method for CFRP supported overhead conductors using Time Domain 

Reflectometry (TDR). 

This comprehensive research has significantly contributed to the increased 

acceptance of CFRP supported bare overhead conductors in both the United States and 

worldwide. The knowledge gained in this study is already aiding the evaluation of 

existing conductor designs and the development of future ones.  
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CHAPTER ONE: INTRODUCTION 

 

Corrosion is like the red-headed step child; it is often ignored until the will is to 

be settled, or in the engineering case, until the component is already in service and 

problems are discovered. Galvanic corrosion is a particularly problematic form of 

corrosion. Two materials that are considered corrosion resistant while used alone - such 

as aluminum and carbon fiber reinforced polymer matrix composite (CFRP) - can 

develop severe galvanic corrosion when in physical contact in the same component or 

structure. The carbon fibers in CFRP are often not fully embedded in the polymer matrix, 

and fracture, wear or aging can also expose the carbon fibers. A high fiber volume 

fraction is common in high-performance composites, which typically makes the entire 

composite component sufficiently conductive to participate in galvanic corrosion. The 

result can be severely accelerated corrosion of the less noble material, which in this case 

would be the aluminum.  

General engineering practice is to avoid contact between aluminum and CFRP or 

similar carbon-containing materials in any application where moisture may be present. 

This includes structures used outdoors such as transmission line conductors and airplane 

fuselages. Although the general solution is to insulate the CFRP from the aluminum with 

a layer of glass fiber reinforced composite or a polymer coating, it is of great importance 
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to understand the consequences if the two materials accidentally get in contact. There 

may also be applications where a low rate of galvanic corrosion is acceptable.  

The cost of corrosion is also visible on the bottom line; the annual cost of 

corrosion in the world is estimated to $2.2 trillion. In the United States alone, the cost of 

corrosion is estimated to $276 billion, of which the cost for the electrical utilities is $6.9 

billion (NACE 2002).  

 

1.1 Applications of aluminum/carbon composite systems in high voltage engineering 

Aluminum/carbon composite systems are found in many different applications. 

The material combination is typically used where high mechanical performance is 

required, such as in airplanes, race cars, and high-end bicycles. One specific application 

of CFRP together with aluminum in the same component has been used as the example in 

this study: the High-Temperature Low-Sag (HTLS) conductor design Aluminum 

Conductor Composite Core (ACCC ®)
1
 manufactured by CTC Global. Although this 

dissertation is largely focused on this application, the findings are applicable to many 

other applications utilizing aluminum/carbon composite systems.  

This next generation bare overhead transmission line conductor utilizes a Polymer 

Matrix Composite (PMC) core that carries the mechanical load. The core is surrounded 

by helically wound aluminum strands, which carry the electrical current. The core is 

composed of CFRP with an outer layer of unidirectional fiberglass composite that serves 

as a galvanic corrosion barrier. This hybrid composite with a high temperature epoxy 

                                                 
1
 The generic name Aluminum Conductor Composite Supported (ACCS) has been suggested because  

“ACCC” is a registered trademark. Reference (Håkansson E. et al., In Review) uses the acronym ACCS, 

while this dissertation will use ACCC consistently.  
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matrix is manufactured through simultaneous pultrusion. The final core is a straight, 

solid, and stiff but bendable rod, very similar to a composite fishing rod or golf club 

shaft.  

The ACCC design differs from traditional bi-metallic transmission line 

conductors such as Aluminum Conductor Steel Reinforced (ACSR), which feature 

galvanized steel wires surrounded by hard-drawn 1350 alloy aluminum strands (Figure 

1). Due to the higher mechanical strength and lower mass of the PMC core, the ACCC 

conductor can have a larger aluminum cross-sectional area. Because the PMC core 

carries all the mechanical load, the aluminum can be fully annealed which has lower 

strength but higher conductivity. Combined  with the low thermal expansion of the PMC 

and the higher allowed operating temperature compared to ACSR, an ACCC conductor 

has up to twice the current-carrying capacity compared to an ACSR conductor with the 

same outer diameter without exceeding the amount of allowed sag (EPRI 2002), 

(Clairmont 2008), (Chan, Clairmont et al. 2008). 

 

 

Figure 1: ACCC vs. ACSR.  

Left) ACCC conductor with a hybrid composite core with fully annealed aluminum strands.  

Right) Conventional conductor with galvanized steel wires surrounded by hard drawn aluminum strands. 

 

 

Bare overhead transmission line conductors are exposed to the surrounding 

environmental conditions without any additional protective covers or coatings. 
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Traditional conductor designs have a known inherent problem with galvanic corrosion 

between the galvanized steel and the aluminium that may drastically reduce the service-

life in corrosive environments, whereas the ACCC conductor design has no inherent 

galvanic corrosion problem  (Håkansson 2013), (Håkansson, Predecki et al. 2015).  

However, galvanic corrosion can develop in the ACCC conductor if the fiberglass 

barrier is compromised and CFRP-to-metal contact is present anywhere in the conductor. 

The fiberglass barrier can be damaged by over-bending (Burks, Armentrout et al. 2009), 

impact (see Figure 2), fatigue (Burks, Armentrout et al. 2011) (see Figure 3), or aging 

(Burks, Armentrout et al. 2011), (Hoffman, Middleton et al. 2015). With a high fiber 

volume fraction, the entire composite component is sufficiently conductive to participate 

in galvanic corrosion. 

 
Figure 2: Laboratory induced damage through low-velocity impact.  

The composite core fails in shear resulting in a long crack extending into the conductor. Photo courtesy of 

Daniel Waters. 
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Figure 3: Cracks in the ACCC conductor corrosion barrier caused by Aeolian vibrations (high cycle 

fatigue).  

Photo from (Burks, Armentrout et al. 2011).  

 

Table 1: Materials potentially active in the corrosion of the ACCC conductor 

Component: Active 

material:  

Chemical composition:  Comment:  

Aluminum 

strands 

Al 1350-O Aluminum (≥ 99.5 %) 

Iron (≤ 0.40 %) 

Silicon (≤ 0.10 %)    

(Matweb 2013) 

Only components 

≥0.10 % listed 

here.  

CFRP core Carbon fibers Carbon (approx. 65 % volume 

fraction of the composite) 
 

 

Galvanic corrosion is both a power transmission problem and a safety problem. 

Significant loss of aluminum cross-section due to localized corrosion as well as corrosion 

of splices and joints can increase the resistance, resulting in a local elevation of the 

temperature. The increased temperature represents both a loss of power and potential 

problem of overheating of the conductor. Overheating can cause breakdown of the epoxy 

matrix in the core, which eventually can lead to catastrophic failure of the conductor. 
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Failure of the conductor presents a risk for people and property, as well as a risk for 

power blackouts (Brennan 2004).  

 

1.1.1 The transmission line service environment  

Transmission line refers in this case to the part of the electrical grid that is 

designed to transmit large quantities of electricity from power plants to substations (not 

to be confused with transmission line theory that will be presented in chapter 8). 

Transmission lines can be placed underground or in the air. Overhead transmission lines 

consist of large metallic conductors hung from tall towers. In contrast to underground 

cables and wiring used in buildings that has a continuous outer layer of an insulating 

polymer, the overhead conductors are typically bare. The conductors are insulated from 

the towers with large insulators made of fiberglass composite, porcelain, or glass, while 

the air insulates the conductor from the surrounding environment. The system voltages 

are typically from 96 000 V up to 765 000 V, but can be even higher.  

 

 Figure 4: Transmission line structure in New Zealand.  

The salt laden ocean winds cause large problems with corrosion.  
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Figure 5: Schematic of the generation, transmission and distribution system.  

Source: Public domain Creative Commons 3.0, DOE, J J Messerly.  

 

 

 

Figure 6: The author standing on the foundation (circled) shows the scale of a typical transmission line 

tower located in New Zealand. 
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One of the most corrosive environments in the world for transmission lines is 

New Zealand due to the salt laden ocean winds (Renton 2013). Figure 7 through Figure 

11 show the corrosion damage to ACSR conductors after 35 years in service. The 

aluminum strands exhibit severe pitting corrosion and the conductor has started to bulge 

in places due to build-up of corrosion products between the strands. The steel strands in 

the bulges have lost a large fraction of the aluminum cladding.    

 

 

Figure 7: Bulging of ACSR conductor due to build-up of corrosion products.  

From (Renton 2013) 
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Figure 8: Severe corrosion damage on ACSR conductor after 35 years in service in New Zealand.  

From (Renton 2013) 

 

 

Figure 9: Sectioning of the conductor in previous figures.  

Left: Sectioning in a bulge. Right: Sectioning of a much less bulging section.  
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 Figure 10: Close-up of the steel strands in previous figure. 

 A large fraction of the aluminum cladding on the steel strands is lost. The red arrows point out areas 

where the loss is particularly large.     

 

 

Figure 11: Close-up of pitting corrosion of the aluminum strands in Figure 9.  

The red arrows point out two particularly deep pits.  
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1.1.2 Results from previous galvanic corrosion research  

This dissertation is a continuation from the author’s master’s thesis (Håkansson 

2013), which was a comparative study of the galvanic corrosion performance of several 

different bare overhead transmission line conductors. One of the conductors was ACCC, 

and this section will summarize the findings regarding the ACCC and how it compares 

with other conductor designs, namely ACSR, ACSS (Aluminum Conductor Steel 

Supported) and ACCR (Aluminum Conductor Composite Reinforced). ACSS can be 

considered an improved version of ACSR, which was presented above. ACCR has a core 

of unidirectional metal matrix composite consisting of aluminum oxide (Al2O3) fibers 

embedded in an aluminum matrix. The surrounding strands are made from Al-Zr alloy. 

Figure 12 summarizes the galvanic corrosion rate in 3 mass % NaCl solution at room 

temperature and 85°C.  

 

Figure 12: Anodic galvanic corrosion current density in 3 mass % NaCl solution.  

From (Håkansson 2013).  
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The galvanic corrosion rates were measured using an early version of the unique 

sample design presented in chapter 3. The extremely low galvanic corrosion rate 

exhibited by the ACCC was both intriguing and a reason for concern. It was a pleasant 

surprise that the galvanic corrosion rate was so low, but there was also a concern that the 

immersed testing was not giving an accurate prediction of the performance in the 

atmospheric service environment. The extremely high galvanic corrosion rate of the 

ACCR at 85°C also indicated that the testing methodology was neither fair nor generating 

accurate predictions for the real service environment. These results prompted a deeper 

analysis of the corrosion mechanisms in ACCC, and the result of this study is presented 

in this dissertation.  

 

1.2 Applications of aluminum/carbon composite systems in aerospace  

The combination of CFRP and lightweight metals such as aluminum is attractive 

for aerospace use due to its excellent mechanical properties. The amount of composite 

material in commercial aircraft is increasing, with Boeing 787 as a prime example where 

composites are used extensively in the airframe and primary structures (see Figure 13) 

(Hale 2006). However, the attitude towards galvanic corrosion appears to be quite 

different in the aerospace industry than in the power transmission industry. While 

galvanic corrosion is undesirable but accepted in power transmission, galvanic corrosion 

is rarely tolerated in aerospace. CFRPs present a particularly challenging situation due to 

the high conductivity of the carbon fibers and large potential difference between the 

carbon fibers and the aluminum alloys used in aircraft structures. The only practical 
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method to prevent galvanic corrosion is to keep moisture from bridging the two materials 

by use of coatings, sealants, and proper drainage (Banis, Marceau et al. 1999).  

 

Figure 13: Materials used in the Boeing 787 Dreamliner.  

From (Hale 2006) 

 

 

Figure 14: Traditional distribution of materials in airplanes.  

From (Banis, Marceau et al. 1999)  

 

The aircraft manufacturer, Boeing, groups materials into four categories based on 

the galvanic properties (Figure 15). Unless considered necessary from a cost or weight 
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perspective, Boeing’s objective is to avoid coupling materials from different groups. If 

coupling cannot be avoided; finishing and sealants are used to prevent corrosion (Banis, 

Marceau et al. 1999). Aluminum is found in group 2 while CFRP (with a graphite base) is 

in group 4, indicating that this is a material combination that should be avoided  

 

Figure 15: Rating of material from a galvanic corrosion perspective.  

From (Banis, Marceau et al. 1999) 

 

 

Because the tolerance for galvanic corrosion in aerospace applications is very 

low, the research presented in this dissertation is more applicable to areas where a low 

level of galvanic corrosion may be tolerated, such as in power transmission. However, 

some of the findings may be useful for the aerospace sector anyway.  

 

1.3 Research objective  

The objective of this research was to improve the fundamental understanding of 

galvanic corrosion in aluminum/carbon composite systems through experimental work 

and numerical modeling. The objective was also to develop a method to quantify the 

galvanic corrosion in a specific application of aluminum/carbon composites, namely a 

high-temperature low-sag bare overhead transmission line conductor utilizing a carbon 

fiber reinforced composite core. In addition, the objective was to develop a monitoring 



15 

method for the named conductor. The galvanic corrosion has been studied from a 

mechanical engineering perspective, with the motivation to develop methods to predict 

and prevent this threat to the mechanical integrity of the system.  

 

1.4 Research sponsors  

This research was funded by the NSF I/UCRC Center for Novel High Voltage 

Materials and Structures under #IIP 1362135 and by the NSF Grant Opportunities for 

Academic Liaison with Industry program under #CMMI-123252. The work was 

performed at the University of Denver over the period 2011-2016. This dissertation is a 

continuation of the author’s master’s thesis (Håkansson 2013) that was completed in June 

2013.  
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CHAPTER TWO: FUNDAMENTALS OF GALVANIC CORROSION 

 

Corrosion is a natural phenomenon. Most metals occur in nature as minerals and 

ores, which are more favorable forms from an energy perspective because of their lower 

energy states. Large amounts of energy are needed to covert, for example, aluminum ore 

to aluminum. The high energy state in the metallic form is the driving force of corrosion. 

The energy used in the production of the metal is returned when the metal corrodes and 

reverts back to its original state in which it was found or another low-energy state. The 

energy stored in the metal is relatively large for metals such as aluminum and iron, and 

relatively low for metals such as gold, silver, and copper (see Table 2). The higher the 

energy, the higher is the metal’s tendency to release this energy by corrosion (Roberge 

2008). 

A metal’s tendency to corrode can be determined from the perspective of the 

Gibbs free energy change as the material goes from reactants to reaction products. Only 

when the change in Gibbs free energy is negative (ΔG°T < 0), can the corrosion reaction 

happen spontaneously. However, the negative value of the Gibbs energy change only 

points out the possibility of the reaction, not its probability or rate. Kinetic restrictions 

typically prevail over thermodynamic possibilities (Groysman 2010).  
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Figure 16: Trailer license plate lost due to galvanic corrosion between the steel screws and the Al plate.  

The corrosion was caused by exposure to NaCl, MgCl2 and other salts during several trips to the 

Bonneville Salt Flats, Utah. The original green paint from the license plate can still be seen on top of the 

aluminum corrosion products.  

 

 

Galvanic corrosion may occur when two metals or other conductive materials of a 

different nature are in contact with each other and an electrolyte such as rain, ocean spray 

or moisture is present and bridges the two materials. The galvanic corrosion is caused by 

Table 2: Positions of some metals in order of energy required to convert their 

oxides to produce 1 kg of metal.  
Source: (Roberge 2008) 

 Metal Oxide Energy (MJ/kg) 

Highest Energy Li Li2O 40.94 

Al Al2O3 29.44 

Mg MgO 23.52 

Ti TiO2 18.66 

Cr Cr2O3 10.24 

Na Na2O 8.32 

Fe Fe2O3 6.71 

Zn ZnO 4.93 

K K2O 4.17 

Ni NiO 3.65 

Cu Cu2O 1.18 

Pb PbO 0.92 

Pt PtO2 0.44 

Ag  Ag2O 0.06 

Lowest Energy Au Au2O3 -0.18 
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the difference in the susceptibility of two metals to corrode (Roberge 2008). Galvanic 

corrosion can also occur between a metal and a nonmetallic conductor such as graphite, 

CFRP, or other carbon-filled polymer that is sufficiently conductive. 

Galvanic corrosion is named after Luigi Galvani, who discovered the effect in the 

1700s (Roberge 2008). The word “corrosion” comes from the Latin’s “corrodere”, which 

means “to eat away”(Groysman 2010). 

 

Forms of corrosion 

Galvanic corrosion is often listed as a form of corrosion - Figure 17 from Davis 

(Davis 1999) is no exception - but it is more accurate to describe it as a mechanism that 

accelerates other forms of corrosion, rather than a form of corrosion itself. The galvanic 

action simply accelerates the corrosion rate, making an existing corrosion problem even 

worse, but does not otherwise change the type of corrosion (Davis 1999).  

 

Figure 17: Forms of corrosion.  

Source: (Davis 1999). 
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During galvanic corrosion, the rate of corrosion of one member of the galvanic 

couple is increased above that which would occur if the material were exposed to the 

same environment but without galvanic coupling. The rate of corrosion of the other 

member will be reduced or even cease completely. The change in corrosion rates when 

the two materials are galvanically coupled is the galvanic corrosion. The effect of 

galvanic corrosion is often localized to the joint of the two materials. The severity of the 

galvanic corrosion may vary significantly from a negligible increase in corrosion rate for 

one of the materials to a large increase in corrosion, causing rapid failure (Francis 2000).  

Galvanic corrosion can be compared to the function of a battery with its two 

electrodes and the electrolyte. Three conditions must be met simultaneously for galvanic 

corrosion to take place (Vargel 2004): 

1) two metals of different nature, or one metal and a conductive non-metal,  

2) presence of an electrolyte,  

3) electrical continuity. 

 

Figure 18: Requirements for galvanic corrosion to occur.  

 

If even one of these three conditions is not met, galvanic corrosion will not occur. 

Figure 18 illustrates scenarios where galvanic corrosion will and will not take place. For 
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example, if the two metals are not in direct electrical contact with each other, no electrons 

can flow and no anodic or cathodic reaction will take place. If there is no electrolyte 

present, no ions can flow and no reaction will take place.  

Galvanic corrosion is typically associated with dissimilar metals or materials, but 

galvanic corrosion can under certain conditions also occur on the same metal. 

Acceleration of corrosion can be caused by the phenomena known as differential aeration 

cells and concentration cells. The difference in concentration of some component in the 

electrolyte leads to discrete cathodic and anodic regions on the same metal, which 

accelerates the corrosion (NACE/ASTM 2012, Goch 2013). Pitting and crevice corrosion 

can be seen as galvanic corrosion on a micro scale where the difference between the 

environment in the deep pit or crevice and the surroundings drives the corrosion.  

 

2.1 Thermodynamics of galvanic corrosion 

Galvanic corrosion is a redox-reaction where at least one reduction reaction and at 

least one oxidation reaction occur simultaneously. The reactions are spatially separated 

with reduction occurring on the cathode and oxidation on the anode. For galvanic 

corrosion to occur, the galvanic circuit has to be complete with both a direct metallic 

connection, and an ionic contact through the electrolyte bridging both materials, as 

illustrated in Figure 19 (Roberge 2008), (Delmonte 1981), (Francis 2000). 
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Figure 19: Schematic illustration of the galvanic corrosion between CFRP and Al.   

 
 

2.1.1 Electrode potential and Nernst equation 

 In the absence of a galvanic coupling, a metal immersed in an electrolyte will 

take up an electric potential, known as its corrosion potential. The potential is determined 

by the equilibrium between anodic and cathodic corrosion reactions occurring on the 

surface of the metal, which are dependent on the material and the nature of the electrolyte 

that is present (Francis 2000). The dilemma is that the absolute value of this potential 

cannot be measured. Only potential differences across spatial separations can be 

measured. Hence, the corrosion potential must be measured against a standard reference 

electrode, which has been chosen for its stable potential (Munn and Devereux 1991).  

When two metals with different corrosion potentials are in electrical contact while 

immersed in an electrolyte, galvanic corrosion will occur. The metal with the most 

negative potential will become the anode, while the metal with the most positive potential 

will become the cathode. Because of the potential difference, a current will flow from the 

cathode to the anode to equalize the potentials. The current flow will increase the 

corrosion on the anodic material. The additional corrosion caused by the coupling is the 

galvanic corrosion, while the corrosion that would occur in the same environment in 
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absence of the galvanic coupling is often called self-corrosion (Francis 2000):   

Self-corrosion + Galvanic corrosion = Total corrosion   (2.1.1-1)  

 At the same time as the corrosion of the anode increases, the corrosion of the 

cathode decreases. Hence, a material can be protected by coupling to a more anodic 

material. The anodic material is then called a sacrificial anode and is the principle of 

cathodic protection (Francis 2000). Cathodic protection is often used on ships by 

mounting sacrificial anodes of aluminum or magnesium on the steel hull. The zinc 

coating on galvanized steel does both serve as a water-tight barrier as well as a sacrificial 

anode.  

The corrosion potential is sometimes also called electromotive force. It is 

symbolized either with E or ΔU. The potential is related to Gibbs free energy by the 

Nernst equation (Groysman 2010):   

 

ΔG = - n * F * E        (2.1.1-2) 

where  

ΔG = the change of Gibbs free energy [J/mol], 

n = valency [e
-
/ion] (3 for aluminum),  

F = Faraday’s constant [C/mol] (9.6483399 x 10
4
 C/mol), and  

E = the potential [V].  
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It is easy to see that the potential is a measure of a metal’s susceptibility to 

corrode; the larger the energy differences between the reactants and the reaction products, 

the larger the potential.  

It should be noted that the potential is affected by many factors and does not have 

a fixed value even in a specific electrolyte. The potential can vary with changes in the 

temperature, aeration, and flow rate.  

 

2.1.2 Galvanic series 

A galvanic series is created by listing the potentials of metals in a specific 

environment in decreasing order (Figure 20 and Figure 21). If two of the metals are 

galvanically coupled, the material further down in the galvanic series will be the anode 

and the material further up will be the cathode. It is important to note that the galvanic 

series can only be used to predict the possible direction of galvanic corrosion. The 

potential difference is grossly inadequate for predicting the magnitude of galvanic 

corrosion since it does not take into account factors such as polarization and area ratio 

effects (Roberge 2008). However, experience shows that galvanic corrosion may be a 

problem if two metals in direct contact have a difference in corrosion potential (ΔU) of 

more than 100-250 mV (Groysman 2010), (Vargel 2004). The difference between CFRP 

and aluminum in Figure 21 is 800 mV, which is well above these rule-of-thumb values.   

Seawater is the most extensively studied electrolyte in galvanic corrosion 

systems. Figure 20 shows a typical galvanic series for common engineering materials in 

seawater. Figure 21 shows a galvanic series created in this study of conductor materials 
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in 3.5 mass % (0.6 M) NaCl solution (the process of generating the galvanic series is 

presented in chapter 4). The absolute values of the potentials are slightly different since 

the two series were created using different types of reference electrodes (Saturated 

calomel vs. Silver/Silver Chloride), but the relative rankings are identical.  

As illustrated by their position in the galvanic series, the CFRP takes the role as 

the cathode and the aluminum as the anode. Coupling may cause accelerated corrosion of 

the aluminum, while the carbon fibers are inert and will not be affected. The role of the 

CFRP can be compared with a catalyst; it increases the reaction rate without being 

consumed. (There is a concern that the corrosion products may affect the polymer matrix, 

but that is outside the scope of this dissertation.)   
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Figure 20: Galvanic series in seawater. 

Electromotive force series for metals and alloys in seawater at 5-30°C (dark boxes indicate active behavior 

of active-passive alloys). Source: (Groysman 2010) 

 



 

26 

 
 

Figure 21: Galvanic series of interest in this study in 0.6 M NaCl at room temperature, vs. Ag/AgCl 

reference electrode. 

The process of generating the galvanic series is presented in chapter 4. (Acronyms refer to common 

conductor types and are explained in Appendix A.) The difference in corrosion potential between the CFRP 

and aluminum in the ACCC conductor is highlighted. 

 

 



 

27 

2.1.3 Corrosion reactions in aluminum/carbon galvanic couples 

The focus of this study is galvanic corrosion in the presence of aqueous 

electrolytes containing NaCl and with a pH close to neutral, but corrosion can also occur 

in the presence of non-aqueous electrolytes such as jet fuel, O2, Cl2, or acetone 

(Groysman 2010).  

Galvanic corrosion is a redox reaction, which means that oxidation and reduction 

occur simultaneously. The oxidation reaction occurs mostly, or totally, on the anode and 

the reduction reaction occurs mostly, or totally, on the cathode. There can be multiple 

cathodic reactions, as well as multiple anodic reactions occurring simultaneously  

(Roberge 2008). This section will present the most common reactions in the studied 

aluminum/carbon galvanic couples.   

 

Anodic reaction  

The general anodic reaction during corrosion is the dissolution of metal where the 

corroding material is transformed into ions:  

M (solid)  M
n+

 + ne
-
       (2.1.3-1) 

where the value of n depends on the nature of the metal (it is always 3 for aluminum, 

while the valence can vary for other metals) (Vargel 2004), (Roberge 2008), (Francis 

2000).   

 

For aluminum, the anodic reaction is: 

Al (solid)  Al
3+

 + 3e
-
       (2.1.3-2)  
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Cathodic reactions  

The anodic reaction must be balanced by the cathodic reaction(s). There are a 

number of different possible cathodic reactions. All the cathodic reactions have one thing 

in common – they consume the electrons released in the anodic reaction(s). The reaction 

depends both on the metals involved and environmental factors such as pH and dissolved 

oxygen. The anodic corrosion of aluminum in neutral electrolytes sometimes develops 

enough energy to split water directly on the cathodic site. Figure 22 illustrates this 

process. Water splitting cathodic reaction (Roberge 2008), (Francis 2000):   

2H2O (liquid) + 2e
-
  H2 (gas) + 2OH

-    
(2.1.3-3)  

 

Another very common cathodic reaction in neutral or basic solutions exposed to 

the atmosphere is oxygen reduction (Roberge 2008), (Francis 2000), which is illustrated 

in Figure 23:  

O2 + 2H2O + 4e
-
  4OH

-
       (2.1.3-4) 

 

The cathodic reaction in acidic electrolytes is often the reduction of hydrogen ions 

to hydrogen gas (Roberge 2008), (Francis 2000):  

3H
+
 + 2e

-
  H2        (2.1.3-5) 

 

It is important to note that the cathodic reactions take place on the cathode in an 

aluminum/carbon galvanic couple, but may take place on the aluminum surface if no 

other cathode is present. This is the case in pitting corrosion that will be described later. 
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The difference is that carbon is a much more efficient cathode, and the contact with it 

will increase the total corrosion rate.  

 

Figure 22: Splitting of water during corrosion of aluminum.  

Note: the reaction is not balanced.  
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Figure 23: Reduction of oxygen during corrosion of aluminum.  

Note: the reaction is not balanced. 

 

 

Combined reactions 

On a global level, the corrosion reaction is the sum of the anodic and cathodic 

reactions (Vargel 2004). The two most likely combined reactions for corrosion of the 

aluminum components studied in this work are the following:  

 

Splitting of water:         (2.1.3-6) 

Anodic reaction:    Al (solid)  Al
3+

 + 3e
-
   

Cathodic reaction:    2H2O (liquid) + 2e
-
  H2 + 2OH

-
   

Overall corrosion reaction (balanced): 2Al + 6H2O (liquid)  2Al(OH)3 + 3H2  
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Reduction of oxygen:         (2.1.3-7) 

Anodic reaction:    Al (solid)  Al
3+

 + 3e
-
   

Cathodic reaction:    O2 + 2H2O + 4e
-
  4OH

-
     

Overall corrosion reaction (balanced): 4Al + 3O2 + 6H2O (liquid)  4Al(OH)3  

 

Both reactions result in the formation of aluminum hydroxide Al(OH)3, which is 

the most likely corrosion product in the corrosion of aluminum (Vargel 2004), (Francis 

2000). Newly formed Al(OH)3 precipitates as a gelatinous substance on the surface of the 

corroding material (Vargel 2004). The Al(OH)3 may eventually crystallize and dry to a 

white solid, which can be seen in Figure 24. Powder X-ray Diffraction (XRD) of dried 

corrosion products from testing of high voltage conductors in this study supports the 

suggested reactions. The pattern displayed matches for gibbsite, boehmite and bayerite, 

which are all forms of aluminum hydroxide. However, the XRD pattern was somewhat 

inconclusive since there was also a large amorphous phase present. There could therefore 

have been other corrosion products present that could not be identified with XRD. 

   
 

Figure 24: Formation of Al(OH)3 on the aluminum strands in a transmission line conductor sample. 

Left) Sample that is still wet; Right) Dried sample.  
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Local change in pH in the galvanic corrosion of aluminum and graphite 

The anodic and cathodic reactions can result in local changes of the pH. The 

cathodic reactions presented above create hydroxyl ions (OH
-
) which can drastically 

increase the pH. The anodic reactions can cause a local decrease of the pH because of 

hydrolysis. Al
3+

 ions cannot exist in water, they form complex ions with water and 

become [Al(H2O)6]
3+

. This aluminum complex acts like an acid and donates an H
+
 

(Vargel 2004):  

[Al(H2O)6]
3+

 + H2O ↔ [Al(H2O)5(OH)]
2+

 + H3O
+
   (2.1.3-8) 

 

The Al
3+ 

ions soon react with the OH
-
 ions generated by the cathodic reactions, 

but until then they will cause a local decrease in pH. In the same way, the generation of 

OH
-
 ions at the cathode causes a local increase in pH.  

The experiment shown in Figure 25 illustrates the local change in pH. The 

aluminum and graphite are connected to each other by drilling and tapping a hole in each 

piece. A screw joins the two pieces and ensures good electrical connection. The galvanic 

couple is then embedded in agar gel with 3.5 mass % NaCl and an added pH indicator. 

The pH is 3-4 around the anode and 9-10 around the cathode, with a sharp interface 

between the two areas.  

 

 



 

33 

 

Figure 25: Graphite-Al galvanic corrosion couple embedded in 3.5 mass % NaCl agar gel with added pH 

indicator.  

Color key to the right in the picture.  
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Autocatalytic reactions and active-passive cells  

Pitting corrosion can be envisioned as galvanic corrosion on a micro-scale, and 

can be transformed to a macro-scale and severely accelerated if a cathode in the form of a 

conductive carbon containing material is present. When no external electrode such as 

carbon is present, pitting corrosion is an example of an active-passive cell, in which the 

anode is the metal in the active state and the cathode is the same metal in the passive state 

(typically in the form of Al2O3) (NACE/ASTM 2012). The cathodic material can also 

present as inclusions or other microscopic contaminants. When this is the case, the 

reaction is a galvanic action on a micro-scale, but would still be called pitting corrosion 

and not galvanic corrosion. Figure 26 illustrates pitting corrosion with two different 

cathodic reactions caused by microscopic inclusions and Figure 27 shows typical pitting 

corrosion damage. Pitting corrosion accelerated by galvanic coupling will have the same 

characteristic pattern.  

 A similar phenomenon can also occur on a more global level between two similar 

or identical aluminum alloys. If one of the materials has a problem maintaining its 

passivity for some reason, the difference in corrosion potential (Ecorr) between the two 

metals can result in an electromotive force that accelerates the corrosion. The result will 

be more severe corrosion of the active material, which will work as a sacrificial anode 

and protect the more passive material. This was observed in the master’s work 

(Håkansson 2013) preceding this study, where the ACCR conductor with an aluminum 

matrix composite core was galvanically attacked by the surrounding aluminum alloy 

strands. This did only occur at 85°C, and did not occur at room temperature. This is an 
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example of a test procedure that changed the corrosion mechanism in a way that was not 

representative for the real service environment.  

The decrease in pH, as explained above, can sometimes cause localized 

breakdown of the passive film resulting in accelerated corrosion of the underlying 

material. This mechanism is called autocatalytic and is the cause of pitting and crevice 

corrosion. Once the passive film is broken and the pit starts to grow, the local 

environment is altered in such a way that further pit growth is promoted. The pit growth 

rate is often limited by the mass-transport of metal ions from the pit (Frankel G.S. 2003).  

 

 

Figure 26: Mechanism of pitting corrosion.  

Based on (Vargel 2004)  
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Figure 27: Typical pitting corrosion of aluminum.  

The strands of an ACCC conductor after 3 months submersion in 85°C, 3 mass % NaCl aqueous solution. 

 

Aluminum is prone to pitting and crevice corrosion in aqueous electrolytes with 

neutral or close to neutral pH (4.0 to 8.5) (Davis 1999), which basically includes all 

natural environments such as seawater, surface water, and moist air (Vargel 2004). The 

passive layer of Al2O3 is stable in pH between 4.0 and 8.5, but becomes unstable and 

breaks downs when the pH locally goes below 4.0 (Frankel G.S. 2003).   

In the case of galvanic corrosion of an aluminum/carbon galvanic couple in a 

neutral electrolyte, the total corrosion rate will be a combination of corrosion damage 

where the carbon acts as a cathode and where the aluminum itself, or inclusions in the 

aluminum, acts as a cathode. This will be shown in chapter 4.  

 

Passivation and effect of microstructure  

The formation of a stable aluminum oxide (mostly Al2O3) film on the aluminum 

surface is called passivation. The oxide film prevents further corrosion, and this naturally 

forming layer is the reason for aluminum being considered a corrosion resistant material. 
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The phenomenon of passivation can cause the galvanic corrosion current to change by six 

orders of magnitude during a corrosion experiment, as will be shown later. If the oxide 

layer breaks locally, significant corrosion can occur in a small area. This is the 

mechanisms behind pitting corrosion, that was described in the previous section (Vargel 

2004).  

The alloying and microstructure can strongly affect the breakdown of the passive 

film. Physical or chemical inhomogeneities on the surface form initiation sites for 

corrosion pits. The same is the case for scratches, inclusions, second-phase particles, 

intermetallic particles, and grain boundaries (Vargel 2004), (Frankel G.S. 2003). An 

aluminum alloy or component that is susceptible to pitting corrosion is of course also 

susceptible to galvanic corrosion in contact with carbon containing materials, as the 

galvanic coupling provides an even better cathode. The inclusions in aluminum-matrix 

composites make these materials highly susceptible to corrosion (Davis 1999).  

 

2.2 Kinetics of galvanic corrosion  

The thermodynamics determine if a corrosion process can occur, but the kinetics 

controls the rate of the corrosion process. The kinetics often prevail over 

thermodynamics. Corrosion mechanisms are also often quite complex, and a 

comprehensive understanding of both the thermodynamics and the kinetics is necessary 

to predict the corrosion rate in the real service environment (Roberge 2008), (Delmonte 

1981), (Francis 2000), (Ricker 1995). 
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Corrosion processes are not equilibrium reactions; instead, competing processes 

are common and the corrosion system is typically stochastic and small perturbations can 

cause large changes in the galvanic corrosion rate. This section will present the kinetics 

of galvanic corrosion with a focus on the galvanic coupling between aluminum and 

carbon.  

2.2.1 Polarization and electrode efficiency 

The rate of the anodic and cathodic reactions in a galvanic couple varies from 

metal to metal. The faster the reaction rate, the higher the electrode efficiency (Francis 

2000). The electrode efficiency can also be illustrated by the shift in the potential of the 

two metals when they are galvanically coupled. The two potentials want to equilibrate 

and this is what drives the current flow. The anode will shift to a more electropositive 

value while the cathode will shift to a more electronegative value. This shift is called 

polarization, and is one of the most important phenomena in corrosion kinetics (Francis 

2000). As the two metals approach the same potential, the final potential difference 

between them will be equal to the product of the current and the resistance through the 

electrolyte. The potential difference is called the IR drop after Ohm’s law U=I*R, (where 

U is the potential, I is the current and R is the resistance) (Francis 2000). 

The extent of the polarization depends both on the metals and the electrolyte, but 

the cathode is almost always much more polarized than the anode in neutral electrolytes. 

The efficiency of the cathodic reaction usually has a more significant impact on the 

galvanic corrosion rate than the efficiency of the anodic reaction. This is also the case in 

aluminum/carbon galvanic couples studied in this research, and will be discussed in depth 
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in chapter 4.  The more a particular metal (or other conductive material such as CFRP) is 

polarized, the more effective it is as a cathode to drive the corrosion of the anode (Francis 

2000). 

2.2.2 Polarization curves and Tafel behavior  

The polarization behavior of a metal can be investigated using common 

electrochemical testing methods such as the potentiodynamic polarization scan. The 

metal is immersed in the electrolyte of interest and a potential is applied. The potential is 

slowly changed (1-5 mV/sec) and the change in current between the sample and a counter 

electrode is measured (the method will be used in chapter 4). The result is also called a 

polarization curve (Monk 2001).   

The polarization curve for a material in an electrochemical system is somewhat 

analogous to the stress-strain curve for a mechanical material. The polarization curve 

represents how the corrosion kinetics responds to a change in the potential, in a similar 

way to the stress-strain curve describing how the material strain changes with applied 

stress. The polarization curve is, however, more complicated than the stress-strain curve 

since the system consists of both a metal and an electrolyte, with a distinct interface 

between the two. The polarization curve is affected by the properties of the material and 

the electrolyte, but also by, for example, agitation of the electrolyte. The polarization 

curve is a necessary part of the input data for most forms of galvanic corrosion modeling. 

Figure 29 shows the polarization curves for the CFRP and aluminum from an ACCC 

conductor.  
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Equilibrium potential, Tafel slope, and exchange current density  

The equilibrium potential Eeq (also known as the rest potential), is the potential 

where the current response is zero. This is the potential the material would have if there 

were no applied current or potential. It can easily be found in the polarization scan. The 

equilibrium potentials are marked with dotted lines in Figure 29.  

The Tafel equation, named after the Swiss chemist Julius Tafel, describes how the 

corrosion current on an electrode depends on the electrode potential, and is one of the 

most fundamental relationships in corrosion kinetics (Monk 2001). The Tafel equation is 

often stated in the following form:   

Δ𝑉 = 𝐴 ∙ 𝑙𝑛 (
𝑖

𝑖0
)       (2.2.2-1) 

where  

ΔV = over-potential [V] (note that the graph in Figure 28  uses η),    

A = is the “Tafel slope” [V/decade],   

i = current density [A/m
2
],  

i0 = exchange current density [A/m
2
].  
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Figure 28: Overpotential η as a function of log i.  

Source: Dr Rob CM Jakobs, Eindhoven Technical University, Creative Commons 3.0.  
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Figure 29: Tafel slopes and equilibrium potential (dotted lines) for aluminum and CFRP in the ACCC 

conductor.  

 

 

Figure 29 shows the potentiodynamic polarization curves for the aluminum and 

CFRP from an ACCC conductor. Note that the independent variable is the applied 

potential that is plotted on the y-axis, while the dependent variable is the resulting current 

which is plotted on the x-axis. This is opposite to the standard convention for plotting 

mathematical relations, but follows the convention commonly used in corrosion science.  
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The Tafel slopes were extracted from the polarization curves by fitting linear 

trendlines to the selected regions of the curves. The selected region for the cathode is 

marked in red, while the selected region for the anode is marked in blue.   

Figure 30 illustrates how the exchange current density is determined by the 

intercept of the Tafel slope line with a horizontal axis going through the equilibrium 

potential. This is most easily accommodated by plotting the lower half of the polarization 

curve for cathodic material and the upper half of the curve for the anodic material on the 

same axis as in Figure 30.  

 
 

Figure 30: Exchange current density for aluminum and CFRP in the ACCC conductor.  
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2.2.3 Control type  

 

The polarization behavior and the shape of the polarization curves are highly 

influenced by the control type of the specific galvanic couple.  

1. Diffusion control means that the rate of the reaction is controlled by the rate at 

which reactants arrive at the reacting surface(s). The diffusion of oxygen at the 

cathode is often not fast enough to sustain the highest possible rate of corrosion. 

In that case, the corrosion rate is diffusion limited and the reaction is under so 

called cathodic control. If the anodic reaction is the rate limiting reaction, the 

process is said to be under anodic control.  

2. Oxide formation or Resistance controlled.  The formation of an oxide layer on 

the aluminum, which may or may not lead to passivation, can introduce a high 

electrical resistance which limits the rate of the corrosion. 

3. A mixed process where more than one cathodic or anodic reaction occurs at the 

same time might complicate the model and the interpretation. One example is the 

simultaneous reduction of oxygen and hydrogen ions (Zhang 2011).  

 

Figure 31: Schematic illustration of the potentiodynamic polarization curves for 4 different control types:  

a) cathodic control, b) anodic control, c) resistance control, and d) mixed control.  

The current is the responding corrosion current when a potential is applied. Source: (Revie 2000) 
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As it will be shown in subsequent chapters, the corrosion of ACCC and 

aluminum/carbon couples in general appears to be under cathodic control.   

 

2.2.3 Faraday’s Law – mass loss calculations from galvanic current  

The mass loss due to galvanic corrosion can be calculated using Faraday’s law 

(2.2.3-1), which supplies a direct relation between the corrosion current and the mass loss 

due to corrosion (Vargel 2004):  

𝑚 =
1

𝐹
∙

𝑊

𝑛
∙ 𝐼 ∙ 𝑡       (2.2.3-1) 

where  

m = mass lost [g], 

W = atomic mass of the metal [g/mol] (27 g/mol for aluminum),  

n = valency [e
-
/ion] (3 for aluminum),  

I = current [A], 

t = time [s], 

F = Faraday constant [C/mol] (96 485 C/mol). 

 

To use Faraday’s law to calculate loss of thickness due to corrosion, the corrosion 

has to be uniform. This is typically not the case for aluminum in neutral saltwater. 

Faraday’s law can still be used to calculate the loss of mass, but the results have to be 

interpreted with caution and one must keep in mind that the law may dramatically 

underestimate the problem when localized corrosion occurs (Vargel 2004), 

(GamryInstruments 2011).  
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The corrosion current is also often translated into loss of thickness per unit time. 

Table 3 contains common units for corrosion of aluminum. The table should be read from 

left to right, i.e.: 1 mA/m
2
 = 0.00109 mm/year. 

 

Table 3: Conversion of corrosion rates for aluminum.   

Source: (CorrosionDoctors 2014) 

 A/m
2
 mA/m

2
 mm/year g/(m

2
*day) 

A/m
2
 1 1000 1.09 8.05 

mA/m
2
 0.001 1 0.00109 0.00805 

mm/year 0.917 917 1 7.40 

g/(m
2
*day) 0.124 124.2 0.135 1 

 

 

2.3 Environmental factors  

2.3.1 Temperature 

The effect of temperature on galvanic corrosion is complex. In general, all metals 

become more electronegative in saltwater with increased temperature (Schumacher 

1979). An increase in temperature is often expected to increase the galvanic corrosion 

rate. However, an increase in temperature decreases the solubility of oxygen, which will 

decrease the corrosion of steel and other metals. Increased temperature can also promote 

the formation of the natural oxide layer. Extended periods of high temperature can also 

change the microstructure and thereby also the corrosion behavior (Vargel 2004).  

While an increase in temperature causes acceleration of most chemical reactions 

according to the Arrhenius equation, an increased temperature may also cause 

evaporation of the water. The effect of temperature on atmospheric galvanic corrosion is 

therefore even more complex than in immersed conditions. Increased evaporation of the 

electrolyte decreases the electrolyte thickness but increases the salt concentration. 
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Changes in ambient temperature also cause simultaneous changes in relative humidity. At 

high levels of relative humidity, a small decrease in temperature can result in exceeding 

the dew-point, causing condensation which promotes corrosion. This has been 

investigated by, for example, Van den Steen (Van den Steen, Simillion et al. 2016).  

While the increased salt concentration may increase the conductivity of the 

electrolyte and potentially increase the corrosion rate, increased temperature and salt 

concentration limits the solubility of oxygen. The decreased presence of water may also 

inhibit corrosion. This may result in an overall reduced corrosion rate (Syed 2006). This 

is particularly true for transmission line conductors that may have a temperature increase 

due to high electrical loads without any changes in the ambient temperature. Experiments 

conducted in this study indicate that the galvanic corrosion ceases due to drying at a 

conductor temperature of approximate 45°C in an ambient condition of 100 % RH and 

25°C. The corrosion rate is negligible at temperatures below the freezing point of the 

electrolyte (Syed 2006).  

 

2.3.2 Conductivity of the electrolyte  

The conductivity of the electrolyte is an important parameter in galvanic 

corrosion because the electrical resistance of the electrolyte may affect the corrosion rate. 

The corrosion current through the electrolyte is a flow of ions, not electrons. Therefore, 

the electrical conductance (the inverse of the resistance) in aqueous solutions is 

determined by the mobility of ions, not electrons. The higher the mobility of ions and the 

higher the valence, the higher the ability to carry the electric corrosion current between 
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the anodic and cathodic sites, and the greater the galvanic corrosion and the more 

aggressive the solution is towards the metals (Groysman 2010), (Vargel 2004), 

(RadiometerAnalytical 2004). Not all ions carry charge (conduct electricity) equally. H
+
 

and OH
-
 have very high mobility and are very good charge carriers, while Na

+
 and Cl

-
 

move at a slower rate and are not as good conductors. Table 4 shows the molar 

conductivity of some common ions.  

 

Table 4: Molar conductivity of some common ions at 25°C  
Source: (Zoski 2007) 

Type of ion Ion  Molar conductivity [S*L/(mol*m)] 

Cations H
+
 34.982 

Na
+
 5.011 

NH4
+
 7.35 

K
+
 7.35 

Anions  OH
-
 19.86 

Cl
-
 7.635 

CH3COO
-
 4.09 

Br
-
 7.81 

 

The conductivity can be measured with a conductivity meter, but no equipment of 

this kind was available during this study. The conductivity was instead calculated using 

Kohlrausch’s law. The conductivity varies greatly with the ion concentration and the 

types of ions present. The molar conductivity is the sum of the conductivities for the 

cations and the anions (Boyes 2009), (Zoski 2007):  

𝜅 = 𝑧+ ∙ 𝑛+ ∙ 𝜆+
° + 𝑧− ∙ 𝑛− ∙ 𝜆−

°       (2.3.2-1) 

where:  

κ = limiting molar conductivity [S/m],  

z+ = the charge of each cation,  

n+ = number of moles of cations dissolved [mol/m
3
],  
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λ°+ = the limiting molar conductivity for the cations [S*m
2
/mol],  

z- = the charge of each anion,  

n- = number of moles of anions dissolved [mol/m
3
],  

λ°- = the limiting molar conductivity for the anions [S*m
2
/mol]. 

 

The most common electrolyte used in this study is an aqueous solution with 3.5 

mass % NaCl, which also can be expressed as 0.6 M NaCl.  Assuming that the NaCl is 

fully dissociated, the conductivity of 0.6 M NaCl would be: 

𝜅0.6 𝑀 𝑁𝑎𝐶𝑙 = 1 ∙ 600 [
𝑚𝑜𝑙

𝑚3 ] ∙ 5.01𝐸(−3) [
𝑆∙𝑚2

𝑚𝑜𝑙
] + 1 ∙ 600 [

𝑚𝑜𝑙

𝑚3 ] ∙ 7.64𝐸(−3) [
𝑆∙𝑚2

𝑚𝑜𝑙
] = 7.59 [

𝑆

𝑚
]   

(2.3.2-2) 

The conductivity of seawater is in the literature stated to be 5.4 S/m 

(RadiometerAnalytical 2004). Although the salinity of a 0.6 M NaCl solution is similar to 

that of seawater, the latter also contains other salts such as MgCl2 and KCl, resulting in a 

slightly different conductivity. The high conductivity of seawater is a main reason for the 

corrosiveness of marine environments.  

The conductivity of an electrolyte is also a function of temperature. The 

temperature correction can be estimated as a linear function in moderately and highly 

conductive solutions. The temperature coefficient Θ is often expressed as a conductivity 

variation in %/°C. The temperature coefficient of salt solutions generally fall into the 

range 2.2-3.0 %/°C, where the conductivity increases with temperature 

(RadiometerAnalytical 2004). Because the vast majority of the tests presented in this 
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dissertation were performed at room temperature, the effect of temperature has been 

neglected.  

While 0.6 M NaCl has been the most common electrolyte in this study, several 

lower concentrations have also been used. Table 5 lists the calculated conductivities and 

resistivities for additional electrolyte concentrations used in this study. Note that the 

resistivity is the inverse of the conductivity.  

 

Table 5: Conductivity and resistivity of select electrolytes 

NaCl concentration 

[mass %] 

NaCl molarity [M] Conductivity [S/m] Resistivity [Ω*m] 

3.5 0.6 7.59 0.132 

1.0 0.17 2.17 0.461 

0.1 0.017 0.217 4.61 

0.01 0.0017 0.0217 46.1 

 

The conductivity of the thin layer of electrolyte in atmospheric corrosion is 

discussed in detail in chapter 5.    

 

2.3.3 Dissolved oxygen  

Oxygen plays an important role in corrosion in general and in the galvanic 

corrosion in aluminum/carbon composite systems in particular. It will be shown in this 

study that the transport of oxygen to the cathode is the dominant rate controlling 

mechanism. The corrosion of other materials is also highly dependent on the presence of 

dissolved oxygen. For example, the corrosion of iron occurs only if dissolved oxygen is 

present (Vargel 2004), (Roberge 2008). The dissolved oxygen concentrations in the 

electrolytes used in this study are presented in chapter 4 and 5.  
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Although the thin layer of electrolyte often can be considered saturated with 

oxygen in atmospheric conditions, it will be shown in chapter 7 that the electrolyte film 

still may be a restriction for the oxygen transport. The deposition of corrosion products 

may have even greater influence on the oxygen transport, which also will be shown in 

chapter 7. 

 

2.3.4 Effect of pH  

The pH is a very important factor in corrosion. Steel has poor corrosion resistance 

in acidic aqueous solutions, while aluminum has poor corrosion resistance both in highly 

acidic and highly alkaline media (Vargel 2004). Unless otherwise stated, all experiments, 

analyses and discussions in this dissertation assumes the electrolyte pH to be close to 

neutral (approximately pH 6.0 to 8.0).  

The corrosion process itself can also cause a local change in pH, even if the 

starting pH was neutral, which was discussed in section 2.1.3. The local change in pH 

will help promote the corrosion process.  

 

2.4 Geometry and area ratio  

The anodic and cathodic processes happen simultaneously, and the electrons 

released at the anodic site are immediately consumed at the cathodic site. There is no net 

accumulation of charges anywhere. The anodic current is always equal to the cathodic 

current. However, this does not mean that the current densities are equal. If the anodic 
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and cathodic surfaces have different areas, they will have different current densities 

(Roberge 2008). 

The implications of the surface area ratio can be severe in certain corrosion 

situations. The effect of a certain amount of anodic current will be much greater when 

concentrated in a small area than spread over a much larger area. Another possible 

implication of a much smaller anodic area is less cathodic polarization, which will help 

maintain the voltage of the galvanic couple at a value close to the open circuit potential. 

The much smaller anodic area gives rise to a particularly vicious form of galvanic 

corrosion. A very large cathode area connected to a very small anode area is the most 

unfavorable ratio in most practical corrosion situations (Roberge 2008). The importance 

of area ratios and geometry will be investigated in chapter 4 and 5.Atmospheric corrosion 

is one of the most common forms of corrosion.  

 

2.5 Atmospheric galvanic corrosion  

Galvanic corrosion in atmospheric conditions follow the same fundamental 

principles as immersed conditions, but it is a special case because the galvanic corrosion 

processes take place in a thin layer of electrolyte on the surface of the materials. The 

layer thickness is often less than 100 μm. Atmospheric corrosion is often intermittent 

since it can only occur when water is present (Vargel 2004), (Linares 2006). The 

existence of a very limited amount of electrolyte makes the description of the kinetics 

particularly difficult. The formation, composition and destruction of the thin electrolyte 

layer are influenced by many different factors, making it difficult to understand the 
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kinetics of the individual processes. The kinetics can also change rapidly, for example a 

chemically controlled process may suddenly become mass-transport controlled due to 

buildup of corrosion products (Barton 1973, Cole, Ganther et al. 2004).  

 

Figure 32: Schematic illustration of atmospheric galvanic corrosion.  

 

 

2.5.1 Presence of salt and its effect on the electrolyte layer thickness  

The electrolyte in atmospheric corrosion is typically neutral or slightly acidic. 

This chapter and the remaining dissertation will assume that the pH of the electrolyte is 

close to neutral. Although there likely can be low pH present on transmission lines due to 

nitric acid from corona discharges and from sulfur pollution, that would be the subject for 

another study. 

Because of the limited amount of electrolyte, the solubility of reaction products is 

easily exceeded and the products are either precipitated as solids or given off as gases. 

Periodic renewal of the electrolyte layer due to rain can wash off the corrosion products 

and change the properties of the electrolyte drastically. Rain may promote corrosion by 
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providing water for the electrolyte, but may also inhibit the corrosion by washing away 

soluble stimulation species such as salt from the surface. Fog and high relative humidity 

may in some cases be more corrosive than rain, because they provide the necessary 

moisture without the cleaning effect (Barton 1973). 

The common occurrence of NaCl and other salts on outdoor structures can result 

in the presence of an electrolyte layer if the relative humidity (RH) of the air is 

sufficiently high; precipitation is not needed. NaCl forms a liquid electrolyte when the 

RH exceeds 76 %, which is also known as the Deliquescence Relative Humidity (DRH) 

(Cole, Ganther et al. 2004, EncyclopediaBritannica 2014, OmegaInstruments 2014). 

NaCl and other salts are particularly common in coastal regions and near highways 

treated with de-icing salts (Barton 1973, EPRI 2000, Cole, Ganther et al. 2004, Vera, 

Delgado et al. 2006, Moreira 2008, Van den Steen, Simillion et al. 2016). The thickness 

of the electrolyte layer is a function of the type and amount of salt present, and the 

relative humidity. These relations have been described, for example, by Van den Steen et 

al. (Van den Steen, Simillion et al. 2016), Thébault et al. (Thébault, Vuillemin et al. 

2011), and Chen et al. (Chen, Cui et al. 2008) and have been extensively investigated in 

this dissertation. The findings are presented in chapter 5.   
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CHAPTER THREE: DEVELOPMENT OF A NEW IN-SITU METHOD FOR 

EVALUATION OF GALVANIC CORROSION IN BARE OVERHEAD 

TRANSMISSION LINE CONDUCTORS 

 

This chapter will present the development of a novel assessment method for the 

in-situ galvanic corrosion testing of bare overhead transmission line conductors of 

various designs, but with particular focus on impact damaged ACCC conductors. The 

assessment method was originally developed during the author’s master’s work 

(Håkansson 2013), but has been further improved as described in this chapter. 

The method can be used for real-time measurements of galvanic corrosion 

currents while retaining the original geometry of the conductors. It will be shown that the 

original geometry of the conductors cannot be ignored when evaluating for galvanic 

corrosion performance.   

 

3.1 The importance of new transmission conductor designs  

The demand for more reliable electricity supply and the expansion of renewable 

energy sources are generating an increasing interest in High-Temperature Low-Sag 

(HTLS) overhead high voltage transmission line conductors. HTLS conductors offer 

several advantages compared with the standard designs, as briefly described in chapter 1. 

Higher operating temperatures, significantly less sag at high temperature, and reduced 



 

56 

resistance can result in up to twice the current-carrying capacity for the same diameter 

and weight conductor. The retained conductor diameter and conductor mass enables the 

use of the same right-of-ways (ROWs) and the same towers while increasing the power 

transmission capacity. The ability to use the same ROWs is of great importance to the 

power utilities due to the public opposition to new ROWs. Thus, HTLS conductors can 

enable an increase of the transmitted power by existing structures with minimal licensing 

requirements (EPRI 2002), (Chan, Clairmont et al. 2008). 

Most HTLS conductors use materials that are relatively new to the power 

industry, such as PMC and Metal Matrix Composites (MMC). Even if these materials 

have a proven track record in other applications, there is a concern about the corrosion 

performance in the harsh service environment of power transmission conductors.  

Of particular interest to the power utilities is an Aluminum Conductor Composite 

Core (ACCC) design with a mechanical load bearing core of a hybrid PMC, which also 

was presented in chapter 1. Potential forms of damage that could result in galvanic 

corrosion are found in Figure 2 and Figure 3. Other improved versions of more traditional 

conductor designs such as the Aluminum Conductor Steel Supported (ACSS) with a zinc-

5 % aluminum-mischmetal coated high-strength steel core and the Aluminum Conductor 

Composite Reinforced (ACCR) with a core of MMC, are also of significant interest for 

the power utilities. 

The standard conductor design - the Aluminum Conductor Steel Reinforced 

(ACSR) - has a core of galvanized steel wires surrounded by aluminum strands. This 

design has been in use for over one hundred years and completely dominates the existing 
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high voltage grid, while HTLS conductors have been in service for a much shorter time. 

ACSR has an inherent galvanic corrosion problem due to the direct contact of the 

dissimilar metals. However, the galvanic corrosion performance of the present ACSR 

design is considered acceptable for most applications. Mono-metallic All Aluminum 

Conductors (AAC) are sometimes used in highly corrosive environments, but they have 

lower strength which limits the span length. AAC will not be covered further in this work 

but is included in Figure 33.   

 

Figure 33: Common designs for bare overhead transmission line conductors.   

 

In common for all these new designs is the largely unknown corrosion 

performance, particularly when it comes to ACCC with a compromised corrosion barrier. 

In order for the HTLS conductors to gain the confidence of the power utilities, a better 

understanding of the corrosion mechanisms and the corrosion performance is necessary. 

The first step is to develop a measurement method that can quantify the influence of 

environmental conditions on galvanic corrosion for a large number of environmental 

variables in a reasonable time frame. A method of this type could be used to directly 
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compare different conductor designs for their resistance to galvanic corrosion and to 

make service-life predictions. This chapter will describe the development of such a 

method.  

 

3.2 Traditional galvanic testing of bare conductors  

Atmospheric corrosion measurement techniques consist primarily of long-term 

exposure tests. The quantification of the corrosion damage is either measured 

gravimetrically or geometrically at the end of a pre-determined exposure period, or the 

time to failure is measured for a fixed set of exposure conditions (Ricker and Fink 1997). 

Long exposure times on the order of years are necessary to get a significant mass loss in a 

high voltage conductor in a non-accelerated environment. This is very time-consuming 

and often reveals little or no information regarding galvanic corrosion currents. The 

exposure time can be decreased by an accelerated environment such as high temperature 

or high salt concentrations, which is used in the popular standard test ASTM B117-11 

”Standard Practice for Operating Salt Spray (Fog) Apparatus” (ASTM 2011). The 

drawback of the accelerated testing is that numerical interpretation of the results becomes 

uncertain. For example, changes in temperature, pH, or halide ion concentration may 

influence different materials differently and alter the galvanic relationships in ways that 

do not occur in service. These aspects make traditional exposure tests unsuitable for 

numerical service-life predictions (Ricker 1995). 

The ASTM G116-99 “Standard Practice for Conducting Wire-on-Bolt Test for 

Atmospheric Galvanic Corrosion” (ASTM 2010) is a test designed to specifically 



 

59 

evaluate galvanic corrosion where the evaluation is based on mass loss. While it is quite 

popular, its very specific requirements for the cathodic material being in the shape of a 

threaded bolt and the anodic material being a wire (see Figure 34), makes it unsuitable for 

evaluation of PMCs and MMCs in conductor applications or to evaluate the effects of 

sample or crevice geometry.   

 

Figure 34: Wire-on-bolt test ASTM G116-99.  

Left) Immediately after installation at the Kennedy Space Center beach corrosion test site.  

Right) After 30 days. Source: (CorrosionDoctors 2014) 

 

There is a wide range of electrochemical techniques for estimating corrosion rates 

that can be performed using standard size samples immersed in electrolytes. These 

methods, however, require immersion in a conductive electrolyte and are difficult to 

apply to atmospheric conditions (Ricker and Fink 1997).  

Galvanic corrosion can be estimated by measuring the galvanic corrosion current 

between two materials and assuming that it is directly proportional to the mass loss. To 

measure galvanic corrosion current, the materials must to be in ionic contact through an 

electrolyte while the electric connection must be through an external measurement 

circuit. This is usually accomplished by separating the two materials and immersing them 
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in an electrolyte. ASTM G71-81 “Standard Guide for Conducting and Evaluating 

Galvanic Corrosion Tests in Electrolytes” (ASTM 2014) is an example of a standard 

practice for this kind of testing.  

However, by disassembling a conductor specimen, the unique geometry of the 

conductor is lost. This means that the influence of the geometry and the influence of 

corrosion product hydrolysis on passivity and corrosion mechanisms in the crevices are 

also lost. The immersed environment may also be a poor simulation of the atmospheric 

conditions in the real service environment, as we will show in the next section. It is 

believed that a reliable evaluation of the galvanic corrosion performance of a bare 

overhead conductor has to be performed using a method that retains the original 

geometry of the conductor sample. The importance of retaining the geometry will be 

demonstrated in subsequent sections.  

 

3.3 Development of the proposed method  

3.3.1 Basic principles behind the proposed method 

It was apparent early in this study that geometry was critical in the corrosion 

performance and should not be ignored (Håkansson 2013, Håkansson, Predecki et al. 

2015). The influence of geometry on galvanic corrosion both in service and in testing is 

also well known from the literature, particularly if crevices are present (Barton 1973),  

(Hack 1993), (Revie 2000), (Francis 2000). The stranded geometry of bare overhead 

conductors forms a large number of crevices of varying size. Water and pollutants will 

collect in the crevices, promoting the corrosion. Liquid electrolyte may also form in 
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environments with high humidity due to the hygroscopic nature of commonly present 

salts such as NaCl (Ricker and Fink 1997). The trapped electrolyte combined with the 

two or more conductive materials in direct electrical contact will result in varying degrees 

of galvanic corrosion.  

The development work started with long-term exposure tests by immersing 

ACCC (with a compromised galvanic corrosion barrier), ACSR, and ACCR conductor 

samples into an aerated aqueous solution of 3.0 mass % NaCl at 85°C. This is a highly 

aggressive environment and corrosion damage was evaluated using measurements of 

mass loss. It soon became evident, however, that the results were very difficult to 

interpret. It could not be determined if the galvanic corrosion was purely accelerated, or if 

the corrosion mechanisms had changed in a way that would not occur in real service. It 

was concluded that testing in a non-accelerated, or at least a much less accelerated 

environment, was needed for an accurate evaluation of galvanic corrosion performance. 

In order to measure the corrosion rate in a non-accelerated environment, a much more 

sensitive measurement method than mass loss was needed. Electrochemical measurement 

methods, such as direct measurement of galvanic corrosion current, offered the needed 

sensitivity.  

The in-situ method presented in this chapter was originally developed for bi-

metallic conductors such as ACSR (Håkansson 2013), (Håkansson, Predecki et al. 2015). 

Obviously, direct measurement of galvanic corrosion current is not possible in unaltered 

bi-metallic conductor samples because the different materials are in direct electrical 

contact. The objective was to enable the direct measurement of galvanic corrosion 
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currents while retaining the original geometry of the conductor. Because the development 

of the method for bi-metallic conductors laid the base for the measurement technique that 

later was used for the ACCC conductor, the principles for using the method for bi-

metallic conductors will be presented here. The alternative sample design for ACCC is 

presented in the next section. The respective designs were used to compare the corrosion 

performance of ACCC (with a compromised galvanic corrosion barrier) to ACSR and 

ACSS. The comparison in presented later in this chapter.  

 

Sample design for bi-metallic conductors  

The key innovation in the proposed method is to insert a thin separator material 

that only allows ionic conduction between the materials that participate in the galvanic 

corrosion. The electrical connection that completes the galvanic circuit is then 

reestablished through an external measurement circuit. It was found that the separator 

material may be any thin, porous, non-conductive material such as filter paper, fabric, or 

a woven polymer mesh sleeve. The woven polyester mesh sleeve appeared to work best 

for the tested materials, but other materials may offer similar or improved performance. 

The chosen sleeve was originally manufactured as abrasion protection for electrical wire 

harnesses. Combined with the preparation process described in subsequent sections, the 

sleeve provides a physical separation of approximately 0.5 mm between the dissimilar 

materials in ACSR conductors.  
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To protect the electrical connections against corrosion, the ends of the sample are 

potted in epoxy or covered with room temperature vulcanizing (RTV) silicone, or both. 

This also encloses the ends and simulates a continuous conductor sample.  

The finished sample is placed in a simulated representative environment such as 

wetting with NaCl solution or another electrolyte and being placed in humid air. It can 

also be placed in salt fog, using for example a testing chamber conforming to ASTM 

B117-11 (ASTM 2011). The interactions between the conductor materials can be now be 

studied by real-time measurements of the galvanic corrosion current in the external 

circuit. Other electrochemical measurements are also possible. If the sample is immersed, 

a reference electrode can be used.  

It is believed that this method can also be used to evaluate samples in the actual 

service environment by placing the samples and the measurement equipment in the 

vicinity of a transmission line. This would expose the samples to an environment that is 

very close to real service conditions (perhaps with the exception of the conductor 

temperature in case that is higher than ambient).  

 

Sample design for ACCC conductor samples 

The ACCC conductor required a slightly modified approach. The unaltered 

conductor has a galvanic corrosion barrier of glass fiber reinforced PMC, serving both as 

a physical and electrical barrier between the aluminum and the CFRP. Therefore, the 

intact conductor should not have issues with galvanic corrosion. However, as described 

earlier, the galvanic barrier may be compromised by impact damage, fatigue, aging, 
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improper installation, or manufacturing flaws. Therefore, it is of importance to assess the 

galvanic corrosion performance with a compromised barrier.  

To simulate damage from for example over-bending, the hybrid PMC core was 

split in half along the axial direction to simulate possible impact damage (see Figure 52). 

Loose carbon fibers were trimmed off to avoid direct electrical contact with the 

aluminum. With the split core, the fiberglass composite layer still provided a physical 

separation between the CFRP and the aluminum, making the woven polyester mesh 

redundant in this case. A more detailed description of the preparation of the ACCC 

samples can be found in the next section.  

 

Figure 35: Demonstration samples of the two different conductor designs showing the internal features. 

A) Unaltered ACSR conductor; B) ACSR with separator mesh and electrical connections; C) Unaltered 

and undamaged ACCC conductor; D) ACCC conductor with induced damage and electrical connections. 

 

3.3.2 Electrical connections  

The electrical connections proved to be the greatest challenge in the development 

of the proposed method. Since the method is based on electrochemical measurements, 

good electrical connections are necessary for meaningful measurements. Electrical 

connections should be made without altering the properties of the tested materials, with a 
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minimum electrical resistance, and without applying additional galvanic potentials or 

currents that would influence the test results. The connections must also withstand the 

corrosive testing environment.  

For short-term experiments, electrical connections can be bonded directly to the 

materials with silver-filled epoxy and covered with a layer of RTV silicone to prevent the 

silver from imposing galvanic currents or potentials (simple connections shown in Figure 

36). However, this design proved to be insufficient for long-term testing. During long-

term testing, the corrosion damaged the interface between the aluminum and the silver-

filled epoxy. Because corrosion products usually have a greater volume than the metal 

they replace, the build-up of corrosion products lifted up the silver-filled epoxy which 

eventually resulted in a complete separation (Figure 37). The time-to-failure for these 

electrical connections depends on the severity of the testing environment and varied from 

days, for severely corrosive environments, to weeks for less corrosive conditions.  

 

 

Figure 36: Simple electrical connections for short-term corrosion testing.  

The connections will be covered with silicone RTV before exposure to the corrosive environment.  
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Figure 37: Corrosion of electrical connection.  

The corrosion has crept underneath the silver-filled epoxy and separated it from the aluminum.  

 

 

The solution to the above problems with electrical connections was to pot the 

ends of the sample in epoxy before making the electrical connections. The potting turned 

out to be a critical step where the epoxy created a protective barrier for the electrical 

connection. The electrolyte cannot move between the strands and attack the vulnerable 

interface between the tested material and the electrical connection. After several 

iterations, the sample preparation techniques described below were found to work well 

for even highly corrosive testing environments.  

 

Electrical connections on bi-metallic conductors  

1) The core is removed from the conductor and held together with hose clamps (tape 

can be used under the hose clamps to protect the coating on the steel strands). The 

core is pre-heated to approximately 60°C and the ends are dipped in fast curing 

epoxy to cover the exposed steel surface and prevent it from participating in 
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galvanic reactions. The pre-heating ensures fast curing and prevents the epoxy 

from wicking up between the strands. The ends are then wrapped with a thin 

polyimide tape to add an extra insulating barrier.  

 

Figure 38: Pre-heating the core.  

 

 

Figure 39: Ends dipped in fast-curing epoxy.  

 

2) The core is covered with the polyester mesh and inserted back into the 

surrounding aluminum strands. The core is offset so it sticks out approximately 10 

mm and allows access to only the steel on one side and aluminum on the other. 

The sample is held together with stainless steel wire or hose clamps. The 
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insulation is checked with an electric continuity meter to ensure there is no 

electrical connection between the core and the aluminum strands.  

 

Figure 40: The core partially covered with the polyester mesh.   

 

 

Figure 41: The re-assembled conductor sample with the steel core off-set.    

 

3) The ends of the re-assembled conductor sample are potted in a fast-curing epoxy. 

The thickness is not critical; approximately 5 mm is enough. A 3-minute casting 

epoxy was used in this study. The samples were pre-heated to approximately 

60°C to ensure fast and even curing. Fast curing is important to prevent the liquid 

from wicking up between the strands.  
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Figure 42: The conductor ends are potted in fast-curing epoxy.     

 

4) The ends are sanded on a belt sander until the metal is exposed. 

 

Figure 43: The ends are sanded on a belt sander until the metal is exposed.  
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5) A hole is drilled and tapped in the center of the “aluminum end” and next to the 

core on the “steel end”.  

 

Figure 44: Holes are drilled and tapped.   

 

6) A stainless steel washer is bonded to the ends of the exposed strands with silver-

filled epoxy. The wire is wrapped around a screw which is threaded into the hole. 

More silver-filled epoxy is added to make contact between the washer, screw and 

wire. The screw is tightened to secure the electrical connection (see Figure 45).  
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Figure 45: Procedure for making the electrical connection on the “aluminum end”.  
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Figure 46: The electrical connection on the “steel” end.   

 

7) The wire electrical connection is either covered with RTV silicone or potted in 

epoxy again.  

 

 

Figure 47: Sectioned view of the electrical connection to the steel core.  
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Figure 48: Sectioned view of the electrical connection to the aluminum strands.  

 

 

 

Figure 49: The finished sample with the electrical connections covered in epoxy.  

 

 

It has been observed that it is very important to check the isolation between the 

two materials after each step with an electrical continuity meter. If an undesirable 

metallic connection is made between the two materials inside the sample, the sample will 

be rendered inadequate. 
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Figure 50: Control of continuity. 

 

It is also recommended that all hardware should be clean, de-greased and 

preferably polished or sanded to remove oxide layers before assembly. Furthermore, 

corrosion resistant 316 stainless steel alloy is recommended for washers, wires, screws 

etc. High-quality electrical wire (tin or silver-coated copper) has been shown to increase 

the reliability and durability of the electrical connections. If special preparation of some 

materials is desired such as pickling of the aluminum, it should preferably be done before 

assembly since chemicals may damage the potting material or wires.  

 

Figure 51: Cleaning of hardware using a polishing wheel.   
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Electrical connections on ACCC conductors  

1) The sample is cut to desired length and held together with either stainless steel 

wire or stainless steel hose clamps.  

2) The composite core is removed from the conductor sample. A hole is drilled 

axially into the center of the CFRP to a depth of approximately 5 mm (exact size 

and depth depends on the screw size to be used for the electrical connection). The 

core is split in half along the axial direction to simulate impact or over-bending 

damage. Loose carbon fibers are trimmed off to avoid direct electrical contact 

with the aluminum.  

 

Figure 52: Splitting of the ACCC core to simulate damage. 
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Figure 53: The split core (right) and the surrounding aluminum strands (left) 

 

3) The core is inserted back into the aluminum strands. The core is off-set 

approximately 10 mm, with the end with the hole in the CFRP protruding.   

4) The “aluminum end” of the ACCC sample is potted in fast-curing epoxy (a 3-

minute casting epoxy was used in this study). The thickness is not critical; 

approximately 5 mm is enough. The samples were pre-heated to approximately 

60°C to ensure fast and even curing. Fast curing is important to prevent the liquid 

from wicking up between the strands.  
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Figure 54: The conductor ends are potted in fast-curing epoxy. 

The uncured epoxy is a brown translucent liquid, while the cured epoxy is opaque beige.       

 

 

Figure 55: The ACCC sample removed from the mold.  

 

5) The “aluminum end” is sanded on a belt sander until the metal is exposed. 

6) A hole is drilled and tapped in the center of the “aluminum end”.  
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Figure 56: Holes are drilled and tapped.   

 
 

7) A stainless steel washer is bonded to the ends of the exposed strands with silver-

filled epoxy. A wire is wrapped around a screw and threaded into the hole. More 

silver-filled epoxy is added to make contact between the washer, screw and wire. 

The screw is tightened to secure the electrical connection.  

8) The wire electrical connection is either covered with RTV silicone or potted in 

epoxy again.  

 

Figure 57: Demo-sample with only half of the end covered with RTV.  
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9) On the CFRP side, a stainless steel screw is bonded to the core by dipping it 

silver-filled epoxy and threaded into the pre-drilled hole. More silver-filled epoxy 

is used to cover the screw head and ensure a good connection.  

 

Figure 58: ACCC samples ready for the electrical connection to the core. 

 

 

Figure 59: Close-up of the core before the electrical connection is made.  
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10) The electrical connection is either covered with RTV silicone or potted in epoxy 

again.  

 

Figure 60: Electrical connection covered in silicone RTV.   

 

 

Figure 61: The finished ACCC sample.  

Note: the connected wire is not a thermo-couple, it is a regular copper wire with a mono-metallic 

connector of thermo-couple style which offered a convenient system.  
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Varieties of sample designs 

Additional mesh sleeves can be added to conductors that have several layers of 

strands to provide further information about the corrosion mechanisms. This concept is 

illustrated in Figure 62 for both ACCC and ACSR. 

 

 
 

Figure 62: ACCC and ACSR samples with additional mesh sleeves. 

 

 

A variety of ACCC samples were prepared for different purposes. Figure 63 

shows the manufacturing of three different varieties: Left) ACCC with sampling tube for 

measurement of pH in the center during immersion; Middle) ACCC sample with only ½ 

core; Right) ACCC with extra mesh to pin-point the anodic reaction.  
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Figure 63: Varieties of the ACCC samples. 

Left) With a thin tube connected to the center for sampling and/or modification of the environment inside 

the core during testing, Middle) With only half of a core to study the effect of anode-to-cathode area ratios, 

Right) With the aluminum strands separated into two zones to provide additional information about the 

details of the corrosion mechanism.  

 

 

3.3.3 Measurements circuits  

The most straightforward measurement is the direct measurement of galvanic 

corrosion currents. This can be done very accurately with a Zero Resistance Ammeter 

(ZRA). However, ZRAs are costly and have typically only one channel. A much less 

expensive alternative, but still accurate enough for many applications, is to measure the 

galvanic current using a high-quality voltmeter and a precision shunt resistor (1 % 

tolerance or better). This approach is described by Francis (Francis 2000). If a 1.0 Ω 

resistor is chosen, the magnitude of the measured current is the same as the magnitude of 

the voltage measured over the resistor. This method introduces a small resistance in the 

measurement circuit, but experiments performed in this study have shown that the effect 

of a 1 Ω resistor is well within the normal scatter of the measurements and can be 

considered negligible. The 1 Ω added by the shunt resistor should be compared to wires 

and electrical connections in the measurement instrument that can have several ohms of 

resistance. A shunt resistor array was built in order to exploit this capability in a common 
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data acquisition and switch unit and resulted in a 19 channel instrument with minimal 

additional cost. This setup was used to generate the data presented below.  

 
 

Figure 64: Measurement using precision shunt array with 10 channels. 

 

 
Figure 65: A reference electrode can be used in an immersed environment. 
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Figure 66: Schematic of multiple channel measurement circuit using shunt resistors and a multi-zone 

sample. 

 

 
 

Figure 67: Finished ACCC samples in the humidity chamber.  
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3.3.4 Importance of retaining the original geometry  

The author’s previous research (Håkansson 2013, Håkansson, Predecki et al. 

2015) had indicated that the geometry of the sample highly affected the measured 

corrosion rate during immersion testing. To illustrate the importance of retaining the 

original geometry, ACCC samples were used to demonstrate the effect of a complete 

separation of the different materials in the conductor during immersion testing. An 

ACCC conductor specimen was disassembled and the following samples were prepared 

from the materials (Figure 68):  

i) a 100 mm long sample prepared as described above with impact damage 

simulated by splitting the core along the centerline while retaining the original geometry   

ii) a 100 mm long sample, as above, but with a woven polyester sleeve placed, 

over the aluminum and the two halves of the core placed on the outside of the sleeve with 

the exposed CFRP facing the aluminum (instead of inside the aluminum strands as it 

would be in its original geometry), 

iii) a 100 mm long sample with the split core (prepared as described above) but 

with the two core halves completely separated from the aluminum,  

iv) a pair of aluminum and CFRP samples with an 1:1 exposed surface area (each 

area was 700 mm
2
).  
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Figure 68: Four different samples prepared to quantify the geometry effect. 

 

 

The galvanic corrosion current between the CFRP and the aluminum was 

measured with a potentiostat in ZRA mode during immersion in an aqueous 0.6 M NaCl 

solution at room temperature (22°C). The duration of each test was 2 hours, and an 

average of the corrosion current was calculated for the last 0.5 hours. The tests were 

performed in both agitated (aerated, 15 ml/s) and stagnant electrolyte. The stagnant tests 

were conducted immediately after agitation ceased to ensure presence of dissolved 

oxygen. The electrolyte volume was 1800 ml.  

The anodic corrosion current densities for the four different configurations are 

presented in Table 6. The corroding material was in all cases the aluminum. The anodic 

current density in the agitated electrolyte was almost 1500 times higher for the 

completely separated 1:1 area ratio couple than for the conductor sample with the original 

geometry and simulated impact damage. The difference was 200 times in the stagnant 

electrolyte. This test illustrates the importance of retaining the original geometry. A 

complete separation of the materials would in this case have caused a severe 

overestimation of the corrosion rate.  
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Figure 69 illustrates the consequences of such over-estimation by using a failure 

criterion of 20 % loss of aluminum cross-section and the assumption that the corrosion 

rate will remain constant. Depending on the area ratio, geometry and the testing 

environment, the time to failure when the samples are tested in immersed conditions is 

predicted to be 0.039 years (2 weeks) to 66 years. The atmospheric data is from chapter 

7. The large difference in corrosion rate in different geometries is believed to be due to 

the different mass transport of oxygen. An in-depth analysis of the oxygen transport 

through the ACCC conductor in immersed and atmospheric conditions can be found in 

chapters 5-7. The two green bars to the right represent the same sample design but in 

atmospheric conditions. The data is from chapter 7 and illustrates that it is not only 

important that a sample design should represent the actual component, but that the 

surface preparation and test duration also need to reflect the real service environment.  

 

Table 6: Anodic galvanic corrosion current density in ACCC samples  
Configuration 

# 

(see figure 3) 

Configuration of galvanic couple/sample Anodic corrosion current 

density, mA/m
2
 (uncertainty) 

Stagnant Agitated 

i) Complete ACCC conductor with simulated 

impact damage  

0.63 (0.020) 0.73 (0.083) 

ii) ACCC conductor sample with composite 

core halves on outside, facing the aluminum  

1.9 (0.017) 14.9 (0.25) 

iii) ACCC conductor sample with composite 

core halves completely separated from the Al  

7.2 (0.012) 42 (0.91) 

iv) Pair of aluminum and CFRP samples with an 

1:1 area ratio 

130 (12) 1064 (28) 
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Figure 69: Predicted time to loss of 20 % of aluminum cross-section based on different testing methods.   

 

 

3.4 Application of proposed method to galvanic testing of conductors 

The suitability of the proposed assessment method to quantify changes in the 

galvanic corrosion rate in an atmospheric environment was evaluated by subjecting salt-

loaded conductor specimens to varying RH. Three different conductor types were tested: 

ACCC, ACSR, and ACSS. All specimens were of the conductor specifications known as 

“Drake” (EPRI 2002) and had an outer diameter of approximately 28.5 mm. The supplied 

specimens of ACCC had trapezoidal aluminum strands, while the strands in the ACSR 

and ACSS specimens were round. All three conductor types had strands of aluminum 

alloy 1350. To eliminate potential undesirable effects of different strand geometries, the 

ACSS and ACSR samples were re-stranded in this research using trapezoidal strands 
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from the ACCC. Eleven samples were tested: including three samples of ACSR, three of 

ACSS, and five of ACCC. All samples had a length of 100 mm. The samples were 

prepared as described in previous sections.  

The samples were immersed in a 3.5 mass % NaCl aqueous solution for 

approximately 10 minutes to allow penetration of the electrolyte into the crevices. 

Excessive electrolyte was wiped off from the outer surface and the mass of each of the 

wet samples was registered. The samples were left to dry in room air overnight (RH 

31.5 % (σ = 2.4 %), temperature 26.1 °C (σ = 1.0 °C, elevation 1609 m above sea level). 

The salt load density (the mass of salt per unit surface area of the entire sample) was on 

average 3.1 g/m
2 

(σ=0.85 g).  

The dry samples were placed in a controlled humidity chamber at room 

temperature and exposed to increasing levels of RH over the next 8 days. The samples 

were held at each humidity level for 20-25 hours. Starting at 50 % RH, the RH was 

increased in increments of 10 %. The room temperature was on average 25.9 °C (σ = 

1.2°C). The RH levels were controlled to within ± 2 %. The samples were given 12 hours 

to stabilize at each level of RH. The averages of the anodic corrosion current densities 

were calculated for the remaining 8-13 hours of each humidity level period.  

 

3.5 Results and discussion  

Aluminum was found to be the anodic material in all cases and was thus the 

material that experienced accelerated corrosion due to the presence of galvanic corrosion. 

This was unexpected for ACSR and ACSS because published galvanic series for these 

metals in NaCl aqueous solutions identify Zn and Zn alloys as being anodic to Al and Al 
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alloys (Cramer and B. S. Covino 2005). While the corrosion behavior of these alloys 

during plain exposure without crevices in aerated environments agrees with the galvanic 

series, the electrochemical series indicates that bare Al can be anodic to Zn and its alloys 

under certain conditions (Pourbaix 1974). The ability of Al alloys to assume more active 

potentials when the passive film is damaged has been confirmed by measuring potential 

transients during scratching (Stoudt, Vasudevan et al. 1992). During plain exposure, Al 

alloys form a continuous passive film that insulates the underlying metal from the 

environment. This passive film makes Al the cathode in the galvanic corrosion reaction 

between Al and Zn. However, in a heterogeneous assembly, the passive film may be 

locally attacked by chemical or physical means and this can reverse the galvanic 

relationship between these metals. A reversed relationship would explain why the 

aluminum was the material that experienced galvanic corrosion. This illustrates the 

importance of an in-situ technique, such as the one developed here, in understanding 

galvanic corrosion in heterogeneous assemblies. In the ACCC sample, the CFRP was - as 

expected - the more noble material and caused accelerated corrosion of the aluminum.   

Figure 70 illustrates the galvanic corrosion current density of the corroding 

aluminum strands as a function of RH. The data points are based on an average for 3-5 

samples. Error bars present one standard deviation in the average values over the 8-13 

hour measurement period. In general, the corrosion current displays an exponential 

dependency on the RH, a behavior that also has been reported in the literature (Ricker 

2008). The galvanic corrosion rate rapidly increases at RH levels approximately 80 %. A 

RH of at least 80 % and an ambient temperature above 0°C are the fundamental 
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requirements for the Time of Wetness (TOW) parameter used to estimate atmospheric 

corrosion rates. The higher the TOW, the more corrosive an environment is considered to 

be. The rule-of-thumb is that the atmospheric corrosion is typically negligible at relative 

humidity levels below 80 % (Francis 2000, Roberge 2008). As mentioned in chapter 3, 

the Deliquescence Relative Humidity (DRH), which is the limit for a salt to form a liquid 

electrolyte by absorbing moisture from the surrounding air, is 76 % for NaCl at room 

temperature (EncyclopediaBritannica 2014, OmegaInstruments 2014). The correlation of 

the DRH for NaCl and the rule-of-thumb limit for atmospheric corrosion is likely no 

coincidence as NaCl is often present in outdoor atmospheric environments. The rapid 

increase in galvanic corrosion current density in Figure 70 shows that the rule-of-thumb 

of 80 % RH is indeed a good indicator of a critical level where the galvanic corrosion 

becomes significant under the tested conditions.   

The data also suggest that the galvanic corrosion in impact damaged ACCC is 

lower than the inherent galvanic corrosion in ACSR and ACSS. This is good news for the 

ACCC conductor and illustrates that retaining the geometry is very important in the 

evaluation of aluminum/carbon composite systems. If the geometry is not retained, the 

testing can severely over-estimate or under-estimate the corrosion rate. In the first case a 

superior component may not be used due to fear of corrosion. In the latter case 

catastrophic failure may occur. In either case, retaining the geometry is critical for a fair 

evaluation.   
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Figure 70: Galvanic corrosion current density of corroding aluminum strands as a function of relative 

humidity for three different conductor designs. 
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CHAPTER FOUR: EVALUATION OF CRITICAL FACTORS AFFECTING 

GALVANIC CORROSION 

 

Numerical modeling of galvanic corrosion requires a larger number of input 

variables than a typical mechanical system, even for a simple model. This chapter 

describes the input data and how the data was collected for the modeling presented in 

subsequent chapters. In addition, the chapter also presents experimental investigations of 

the control mechanisms in both atmospheric and immersed conditions. Most of the work 

on control mechanisms was prompted by observations during the experimental 

characterization of the studied materials, of which some were presented in the previous 

chapter. The observed control mechanisms will be further discussed in the numerical 

modeling chapters 6-7. A discussion about possible measurement errors can be found in 

Appendix B.  

 

4.1 Input data for numerical modeling  

4.1.1 Equilibrium potentials and galvanic series   

A galvanic series was generated for materials of interest to this study. The 

galvanic series (described in chapter 2) lists the equilibrium potentials for different 

materials in a specific electrolyte in decreasing order. A combination of potentiodynamic 

polarization scans (also described in chapter 2) and measurements of free corrosion 
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potential was used. The electrolyte was 0.6 M NaCl at room temperature. Figure 71 

displays the results of all tested samples, while the bars in Figure 21 (repeated below) 

represent the average potential +/- one standard deviation. The difference in corrosion 

potential between CRFP and aluminum from the ACCC conductor is highlighted.  From 

the CFRP’s relative placement in the galvanic series, it can be determined that it is 

cathodic to aluminum, steel, and zinc, and may cause accelerated corrosion of these 

materials.  

 
 

Figure 71: Galvanic series for materials of interest in this study in 0.6 M NaCl at room temperature, vs. 

Ag/AgCl reference electrode.  

Acronyms refer to common conductor types and are explained in Appendix A.   
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Figure 21 (repeated): Galvanic series of interest in this study in 0.6 M NaCl at room temperature, vs. 

Ag/AgCl reference electrode.  

The difference in corrosion potential between CRFP and aluminum from the ACCC conductor is 

highlighted.  Acronyms refer to common conductor types and are explained in Appendix A.  
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4.1.2 Tafel slopes and exchange current density   

Tafel slopes and exchange current densities are used to describe the kinetics of a 

corrosion process and are necessary in the numerical modeling of galvanic corrosion. The 

process of extracting Tafel slopes and exchange current densities from potentiodynamic 

polarization curves was explained in section 2.2.2.  

Figure 73 through Figure 77 show the polarization scans for CFRP and aluminum 

from ACCC, as well as solid graphite and aluminum alloy 6061-T6. Table 7 summarizes 

the Tafel slopes and exchange current densities extracted from these polarization curves. 

The curves were acquired by using potentiodynamic polarization scans of individual 

samples immersed in 0.6 M (3.5 mass %) NaCl aerated aqueous solution at room 

temperature. A stainless steel mesh surrounding the sample was used as the counter 

electrode as shown in Figure 72.  

 

Figure 72: Potentiodynamic polarization scan with stainless steel mesh counter electrode (reference 

electrode barely visible in the background).  
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Figure 73: Tafel slopes and equilibrium potential for aluminum and CFRP in the ACCC conductor.  
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Figure 74: Exchange current density for aluminum and CFRP in the ACCC.  
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Figure 75: Tafel slopes and equilibrium potential for aluminum and graphite. 
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Figure 76: Exchange current density for aluminum 6061-T6 and graphite.   

 

 

Figure 77: Zoomed in: exchange current density for aluminum 6061-T6 and graphite.   
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Table 7: Input values for numerical modeling  

(obtained experimentally from polarization curves in 0.6 M NaCl at RT)  

Variable 

name  

Variable Value Unit 

Values for grahite/Al-6061 galvanic couple  
Eeq,graphite Equilibrium potential, graphite -0.140 V 

Eeq,Al-6061 Equilibrium potential, aluminum 6061-T6 -0.690 V 

Ac,grahite Tafel slope, graphite -1.9558 V 

Aa,Al-6061 Tafel slope, aluminum 6061-T6 0.0153 V 

i0,graphite Exchange current density, graphite 0.09351 A/m
2
 

i0,Al-6061 Exchange current density, Al 6061-T6 0.1668 A/m
2
 

Values for the ACCC conductor 

Eeq,C-ACCC Equilibrium potential, CFRP -0.0605 V 

Eeq,Al-ACCC Equilibrium potential, Al  -0.952 V 

Ac,C-ACCC Tafel slope, CFRP -1.4949 V 

Aa,Al-ACCC Tafel slope, aluminum  0.1307 V 

i0,C-ACCC Exchange current density, CFRP 0.0547 A/m
2
 

i0,Al-ACCC Exchange current density, aluminum  0.004232 A/m
2
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4.1.3 Electrolyte oxygen content  

The dissolved oxygen concentration in the electrolytes used for both the 

experimental characterizations presented in this chapter and the validation models 

presented in subsequent chapters was measured with a Milwaukee MW600 hand-held 

dissolved oxygen meter. All tests were performed at room temperature. The dissolved 

oxygen concentrations and the oxygen saturation limits were corrected for altitude and 

salinity per instructions in the meter manual (Milwaukee 2010). The values can be found 

in Table 8 below. The table also includes the conductivity and resistivity values, which 

were calculated using Kohlrausch’s law as described in chapter 2.  

The increased NaCl concentration limits the solubility of oxygen, a phenomenon 

sometimes called “salting out” (Syed 2006). This pattern can be seen in the table below.   

 

Table 8: Conductivity, resistivity, and dissolved oxygen concentration of the 

electrolytes 
Molarity 

[M] 

NaCl conc. 

[% mass 

fraction] 

Conductivity 

[S/m] 

Resistivity 

[Ω*m] 

Measured 

dissolved 

oxygen 

concentration 

(altitude and 

salinity 

corrected) 

[mg/liter]   

Oxygen 

saturation 

limit 

(altitude and 

salinity 

corrected) 

[mg/liter] 

(Milwaukee 

2010) 

% of 

oxygen 

saturation 

limit 

0.0017 0.01 0.0217 46.1 6.4 6.9 93 % 

0.017 0.1 0.217 4.61 6.4 6.9 93 % 

0.17 1.0 2.17 0.461 6.3 6.6 95 % 

0.6 3.5 7.59 0.132 5.1 5.6 91 %  
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4.2 Investigation of control mechanisms  

As illustrated in the previous chapter, the galvanic corrosion rate in an ACCC 

conductor with a compromised fiberglass barrier is highly dependent on the geometry 

when evaluated in immersed conditions. This raised a question about the corrosion 

control mechanisms and how predictions from immersed testing would translate to an 

atmospheric service environment. When no satisfying answers were found in the 

literature, this study was initiated to investigate the control mechanisms. Fundamental 

understanding of the control mechanisms is a first step towards prediction of the galvanic 

corrosion performance. 

 

4.2.1 Experimental setup  

Multiple experiments were conducted to identify the control mechanisms in the 

galvanic corrosion of Al/CFRP in general, and of the ACCC conductor with a 

compromised corrosion barrier in particular. Five different tests were conducted to study 

the individual characteristics of the galvanic corrosion process during immersed and 

atmospheric conditions (illustrated in Figure 78): 

I. Potentiodynamic polarization scans of the individual materials 

II. Galvanic corrosion current measurement in bulk solution of the separated 

materials with different area ratios  

III. Galvanic corrosion current and potential measurements of the 

representative area ratios (1:28) in different geometries in immersed 

conditions  
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IV. Galvanic corrosion current measurements of the fully assembled 

conductor samples in immersed and in simulated atmospheric conditions  

V. Mass gain/loss of fully assembled conductors with and without galvanic 

corrosion in simulated atmospheric conditions.  

 
Figure 78: Illustration of tests. 

 

Sample design  

Two different sample designs were used: samples made from the individual 

materials and samples consisting of fully assembled ACCC conductors with a 

compromised galvanic corrosion barrier. The fully assembled conductor samples were 

prepared as described in chapter 3. This sample design results in a CFRP-to-aluminum 

surface area ratio of 1:28 (total surface area of exposed CFRP to total surface area of 

aluminum conductor strands). The lengths of the samples were ~100 mm.  
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Figure 79: ACCC samples with simulated damage.  

 Left) Damage introduced by splitting the composite core along the centerline.  

Right) Finished sample of ACCC with simulated damage. 

 
 

Potentiodynamic polarization scans were conducted using samples of the 

individual materials with an exposed surface area of 100 mm
2
. Galvanic corrosion 

measurements of the fully separated materials used samples of the different materials 

ranging from 0.0007 m
2
 to 0.039 m

2
. An Ag/AgCl reference electrode was used for all 

measurements.  

With exception of nine samples tested at atmospheric conditions in test group IV 

and all 10 samples in test group V, the aluminum material in all samples was either 

sanded or treated with phosphoric acid to remove grease, scale, and thick oxide layers 

originating from the manufacturing of the aluminum strands. The nine samples not 

treated this way were only degreased with isopropyl alcohol. The fully assembled 

samples where the aluminum was treated with phosphoric acid are called “Acid Prep” in 

the subsequent sections. The fully assembled samples where the aluminum was only de-

greased with isopropyl alcohol are called “As Received”.  
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Electrolytes  

All immersed tests were performed in 0.6 M NaCl aqueous solution unless 

otherwise stated. The pH of the electrolyte was approximately 6.5. Three levels of 

agitation/aeration of the electrolyte were used: heavily agitated and aerated, stagnant (but 

still oxygen-rich), and stagnant and oxygen-deprived. An additional fourth level was 

added for certain tests: a jet of electrolyte was directed onto the sample surface to create 

the highest possible transport of reactants and reaction products. The agitation/aeration 

levels were accomplished using the following methods:  

1) Heavily agitated and aerated electrolyte: Forcing air through the 

electrolyte (0.8 liter/min through a volume of 4500 ml). 

2) Stagnant and oxygen-rich electrolyte: Forcing aie through the electrolyte 

as above and turning off the air-flow just before the measurement was 

started.   

3) Oxygen-deprived electrolyte: Boiling the electrolyte and sealing the 

container before cool down, and keeping the test cell free from air during 

the tests. Small cell volume (<1000 ml electrolyte) and long test duration 

(>20 hours) ensured that remaining dissolved oxygen was consumed 

before measurements were taken. 

4) Electrolyte jet: A submerged pump was used to create a jet of electrolyte 

that was directed onto the sample surface. The volumetric flow was 70 

ml/second, which generated a flow velocity of 1 m/s at the sample surface.  



 

107 

Tests were also conducted in atmospheric conditions where the samples were first 

immersed in the electrolyte, dried, and the then subjected to different levels of relative 

humidity. All experiments were conducted at room temperature (average 25.2°C, 

σ=2.1°C).  

 

Testing protocol and number of samples  

Previous test series have shown a much larger scatter in the galvanic corrosion 

rate in simulated atmospheric conditions than in immersed conditions. A test set of 18 

samples was used for the galvanic corrosion measurements in atmospheric conditions in 

test group IV. Two sets of 5 samples each were used for test group V. Experience has 

shown that polarization scans give very consistent results, so one sample per material per 

environment was measured. All other test series used at least 3 samples for each 

condition.  

Due to the dynamic nature of the corrosion process, the corrosion potential of the 

galvanic couple can fluctuate drastically over time without any obvious perturbations of 

the environment. A strict testing protocol was followed to obtain the corrosion potentials 

and corrosion currents in test group III. For every environment and sample type, the 

potential was first measured in agitated electrolyte, and subsequently in stagnant 

electrolyte using the same samples. Measurements were taken every 10 seconds for 1 

hour. The average and spread was calculated for the last 30 minutes. The tests were 

repeated three times. For the oxygen-deprived electrolyte, measurements were taken 

every 5 minutes for 20 hours with averages and spreads calculated for the last 5 hours. 
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The longer test duration for the oxygen-deprived environment was chosen to ensure that 

any remaining oxygen would be consumed before the measurements were made that 

would be used to calculate the averages.  

 

Test cycle for Groups IV and V  

A test cycle including both atmospheric and immersed conditions was used in test 

Group IV and V. The samples were immersed in the electrolyte and complete penetration 

was ensured by applying a small under-pressure with a handheld vacuum pump during 

immersion Figure 80. Excessive electrolyte was wiped off the outside of the samples. 

After drying for 48 hours in ~20 % relative humidity (RH), the samples were subjected to 

a test cycle at room temperature consisting of 30 days at 85 % RH, 14 days at 100 %, 3 

days of drying (15-20 % RH), 4 days of immersion (0.6 M NaCl), 2 days of drying (15-

20 % RH), and finally back to 100 % RH for 15 days, making the total duration of the 

test cycle 70 days. The methods used for calculating averages and errors vary for 

different phases and are described in the results section.  
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Figure 80: Applying vacuum to ensure complete electrolyte penetration of the conductor sample. 

 

 
 

Figure 81: The atmospheric conditions were created in a humidity chamber. 
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4.2.2 Results  

Test Group I: Polarization scans  

Overlaying of the polarization curves for aluminum and CFRP (Figure 82) 

provides evidence that the galvanic corrosion is under cathodic control in all three 

environments (agitated, stagnant, and oxygen-deprived electrolyte) included in this test 

series. The steep slope of the cathodic curves (red lines) where they intersect the anodic 

curves (blue lines) is characteristic of cathodic control, which is obvious when Figure 82 

is compared with Figure 31 (repeated below) (Hack 2005), (Revie 2000). This means that 

the corrosion rate on the cathodic site will set the total galvanic corrosion rate.  

 

 
 

Figure 82: Polarization scans of CFRP and Al in agitated, stagnant, and oxygen-deprived 0.6 M NaCl. 
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The intersection between the polarization curve for the cathodic material and for 

the anodic material provides a rough estimate of the galvanic corrosion rate. There is an 

eight- or nine-fold difference in this estimate (marked with green circles) between the 

agitated electrolyte and the stagnant or oxygen-deprived electrolyte (2,470 mA/m
2
 

compared to 320 and 270 mA/m
2
 respectively). This dramatic shift indicates that the 

cathodic reaction is dependent on transport of oxygen to the electrode-electrolyte 

interface, or transport of reaction products from the interface, or both.  

 

 

Figure 31 (repeated): Schematic illustration of polarization curves for four different control types.  

a) cathodic control, b) anodic control, c) resistance control, and d) mixed control. Source: (Revie 2000)  

 

A small shift in the rest potential for the CFRP was noticed between the aerated 

and oxygen-deprived conditions. The rest potential shifted from -0.186 V for agitated and 

stagnant to -0.215 V in the oxygen-deprived environment. The aluminum displayed a 

larger shift from -0.800 V in the agitated to -0.915 V in stagnant and -0.935 V in oxygen-

deprived environments. In general, it can be observed that a lower concentration of 
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dissolved oxygen and less agitation of the electrolyte results in a shift of the rest potential 

to more negative levels for both materials.  

 

Test Group II: Galvanic corrosion current measurement in bulk solution of the 

separated materials with different area ratios  

The eight- to nine-fold difference in predicted galvanic corrosion rate between 

agitated and stagnant electrolyte observed in the polarization scans is also apparent in 

galvanic corrosion current measurements of the separated materials immersed in bulk 

solution. Figure 83 illustrates how the area ratio, NaCl concentration, and level of 

agitation of the electrolyte affect the galvanic corrosion current density. The dependency 

on agitation points to mass transport of reactants, or corrosion products, or both, as the 

dominating control mechanism for separated materials immersed in bulk solution.  

The figure also illustrates that the total corrosion rate is dominated by the exposed 

CFRP area, and is essentially independent of the Al area. The salt concentration also 

influences the total corrosion rate because a decrease in concentration will result in an 

increase in the resistance of the electrolyte. However, the effect is relatively weak, as 

demonstrated by the corrosion rates measured in 0.6 M NaCl and 0.017 M (0.1 mass %) 

NaCl. 
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Figure 83: Galvanic corrosion current as a function of area ratio (CFRP:Al), NaCl concentration, and 

agitation level of separated materials immersed in bulk solution.  

Main bars represent the average value and error bars show the spread within each group of three or more 

samples. 
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Test Group III:  

Galvanic corrosion current and potential, 1:28 area ratio, different geometries  

 

Corrosion current 

Figure 84 adds additional support for the mass transport of as the main limiting 

mechanisms. In the fully assembled conductor samples, the mass transport is largely 

limited by the narrow gaps between the aluminum strands (average gap width is 180 μm). 

The two bars to the very left in Figure 84 represent the galvanic corrosion rate for two 

samples in the same environment and with the same area ratio. The only difference is that 

the second bar represents a sample where the split composite core is on the inside of the 

aluminum strands, as it would be in-service. The move of the core from the inside of the 

sample to the outside resulted in a 32-fold increase in galvanic corrosion rate in agitated 

bulk solution. The difference was nine-fold in the stagnant solution and five-fold in the 

oxygen-deprived electrolyte.  
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Figure 84: Galvanic corrosion rate for separated and fully assembled conductor samples with 1:28 

CFRP/Al area ratios in different environments.  

 

All of the four bars to the right in Figure 85 represent stagnant electrolytes. The 

large difference between the oxygen-rich electrolyte and the oxygen-deprived electrolyte 

provides strong evidence that the oxygen reduction reaction is the dominant cathodic 

reaction.  

The non-zero galvanic corrosion rate and the evolution of gas bubbles (believed to 

be H2) in the oxygen-deprived electrolyte provides support for the presence of the water 

splitting reaction on the cathode. The difference in galvanic corrosion rate between the 

original and separated sample designs could indicate two things: 1) the electrolyte was 

not completely oxygen free, or 2) the accumulation of corrosion products such as H2 at 

the cathode decreases the galvanic corrosion rate, or both.  
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Corrosion potential 

The corrosion potential (measured with respect to a reference electrode (RE)) of 

the galvanic couple will always lie between the equilibrium potentials of the anodic and 

cathodic half-reactions. If there is more than one cathodic reaction taking place, the 

potential will depend on both of them (Landolt 1995).  

Figure 85 reveals that less agitation, lower levels of dissolved oxygen, and more 

restriction in the mass transport cause a shift in the corrosion potential towards a more 

negative level.  

 
 

Figure 85: Galvanic corrosion potential vs. Ag/AgCl RE. Main bars represent the average value and error 

bars show the spread within each group of three or more samples.  
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The two probable cathodic reactions and the anodic aluminum dissolution 

reaction have the following corrosion potentials under standard conditions (with 

reference to Ag/AgCl RE) (Roberge 2008), (Vargel 2004):  

 

Oxygen reduction  O2  (g) + 2H2O (liq.) + 4e
-
  4OH

-
 (ion) +0.179 V 

Water splitting   2H2O (liq.) + 2e
-
  H2 (g) +2OH

-
 (ion)  -1.05 V  

Aluminum dissolution   Al (solid)  Al
3+

 (ion) + 3
e-

   -1.882 V  

 

Although these potentials may not translate directly to the testing environment, 

the shift of the corrosion potential of the galvanic couple towards more negative levels 

indicate that the water-splitting cathodic reaction is becoming more dominant.  

The formation of gas bubbles - believed to be H2 - emerging from the gaps 

between the aluminum wires supports the suggestion that the water splitting reaction is 

taking place on the cathode (see Figure 86). The volume of the gas was too small to 

analyze with available equipment. The gas formation was much more prominent under 

the oxygen-deprived conditions than under stagnant conditions. The presence of gas 

evolution could not be determined during agitated conditions. The tube-like structures in 

Figure 86 had grown on a sample subjected to a long-term immersion test in 0.5 M NaCl 

at 85°C performed in the master’s thesis work preceding this dissertation work 

(Håkansson 2013). The openings of the tubes are all pointing upwards, indicating that the 

structures of deposited Al(OH)3 were influenced by escaping hydrogen gas bubbles.  
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Although the data presented in and the gas bubbles in Figure 86 suggest that 

water-splitting takes place, the galvanic corrosion rate in the oxygen-starved environment 

was very low, as can be seen in Figure 84. The tunnels of Al(OH)3 in Figure 86 were 

created in a high-temperature environment (85°C). It is completely possible that the 

dominant cathodic reaction is dependent on the temperature, but that has not been 

investigated in this study. Because of the low galvanic corrosion rates measured in the 

oxygen-starved environment, the galvanic corrosion caused by the water-splitting 

reaction will be considered negligible from here on, unless otherwise stated.  

 

   
 

Figure 86: Reaction products.  

Left) Gas evolution under oxygen-deprived conditions.  

Right) Tube-like structures of corrosion products on a sample subjected to a long-term immersion test at 

85°C in 0.5 M NaCl.  

 

Test Group IV: Original geometry, different environments 

Figure 87 compares the galvanic corrosion rate to the water evaporation during 

drying after being immersed in 0.6 M NaCl. The galvanic corrosion rate was measured in 

the 18 fully assembled conductor samples (nine of them “Acid Prep” and nine of them 
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“As Received”), while the mass loss was measured in an additional five samples 

subjected to the same conditions. The galvanic corrosion rate increased rapidly as the 

samples were drying. A hypothesis is that as soon as any continuous air path from the 

outside of the sample to the carbon surface is established (which may occur as soon as the 

sample is removed from the bulk solution), the cathodic reaction rate increases rapidly as 

transport of oxygen to the surface is no longer restricted by the electrolyte. As the sample 

dries further, the galvanic corrosion rate decreases with the decreasing electrolyte layer 

thickness. When the amount of electrolyte is no longer sufficient to bridge the two 

materials, the galvanic corrosion ceases completely.  

 
 

Figure 87: Galvanic corrosion rate vs. mass loss during drying of an ACCC sample with compromised 

corrosion barrier after immersion in 0.6 M NaCl solution.  

Average for corrosion rate is for 18 samples and shaded region indicates one standard deviation. Average 

for mass loss is for five samples and error bars display the spread within the group. 

 

 

The drying experiment pointed to mass transport as being the dominant control 

mechanism. Figure 88 compares the galvanic corrosion rates measured in immersed and 
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atmospheric conditions (atmospheric corrosion rates were recorded during the last phase 

of the 70 day cycle). The drastically higher galvanic corrosion rates under atmospheric 

conditions support the hypothesis that mass transport of oxygen may be a major limiting 

mechanism. During immersion, the gaps between the aluminum strands are filled with 

electrolyte. The diffusion coefficient for oxygen is 10 800 times higher in air than it is in 

water (Giambattista, Richardson et al. 2004), which could explain the lower corrosion 

rate when the gaps are filled with electrolyte. 

The figure also indicates another limiting mechanism under certain conditions: the 

scale and oxide layer on the as-received conductors originating from the manufacturing 

process and over 10 years of storage outdoors appears to drastically limit the galvanic 

corrosion rate during steady humid conditions. The presence of this passive layer also 

decreases the scatter. During constant humidity conditions, the scatter is very large for 

the acid treated samples, indicating a much more active-passive behavior for these 

samples. The atmospheric galvanic corrosion will be re-visited in chapter 7, where it will 

be shown that the deposition of Al(OH)3 can drastically affect the galvanic corrosion rate. 

Because the data presented here comes from a long-term test, the scatter may have been 

caused by deposition of corrosion products, causing different corrosion rates in different 

samples.  
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Figure 88: Cathodic galvanic corrosion current density for fully assembled samples in different 

environments and with different surface preparation.  

 

 

Test Group V: Mass gain in presence and absence of galvanic corrosion 

Figure 89 displays the mass change of ten “As Received” ACCC conductor 

samples during 44 days of atmospheric conditions and 8 days of drying. Five of the 

samples have a compromised galvanic corrosion barrier and five of them are intact. The 

mass gain does not include the salt load resulting from the initial exposure to 0.6 M NaCl 

solution (salt load density 2.7 g/m
2
 (σ=0.65)). The corrosion products are trapped inside 

the conductor sample, resulting in an overall mass gain despite aluminum being lost due 

to corrosion.  
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The mass increased rapidly in the beginning as the salt present on the surface of 

the strands and core absorbed moisture from the atmosphere forming a liquid electrolyte. 

The mass also changed rapidly when the humidity was increased. The higher mass gain 

for the samples without galvanic corrosion during the 100 % RH phase is believed to be 

an artifact of their placement in the humidity chamber. The humidity was generated with 

ultrasonic humidifiers, and samples nearby the humidifiers may have had some water 

particles landing on them. Due to the small values measured, a thin layer of water on the 

surface would have likely skewed the values during the 100 % RH phase.  

 

 
 

Figure 89: Mass gain [g/m] in addition to the salt load of ~100 mm long ACCC samples with and without 

galvanic corrosion.  

Initially exposed to 0.6 M NaCl solution resulting in a salt load density of 2.7 g NaCl/m
2
 (σ=0.65).  

Five samples of each kind. Error bars display max and min values within each group. 
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When the samples were thoroughly dried, only salt and corrosion products 

remained. The samples with galvanic corrosion had twice the mass gain compared to the 

samples without galvanic corrosion. The corrosion product is mainly aluminum 

hydroxide (Al(OH)3), confirmed by X-ray diffraction in previous studies. The difference 

in mass gain demonstrates that the presence of galvanic corrosion had doubled the 

corrosion rate of the aluminum under these conditions.  

Assuming that the increase in mass is due to a build-up of aluminum hydroxide 

only, the average galvanic corrosion current density needed to generate the difference 

between the two sets can be calculated.   

The difference in mass gain is 1.3 g per meter of conductor during a period of 44 

days. The molecular weight is 27 g/mol for Al and 78 g/mol for Al(OH)3. That is a mass 

increase of 2.89 times, which means that 0.45 g of Al was lost to corrosion to create 1.3 g 

of Al(OH)3. Knowing that every Al atom will release 3 electrons, 0.45 g of Al lost to 

galvanic corrosion will equal 1608 C (coulombs). 1 A equals 1 C/s, and 44 days is 

3.801E6 seconds, so the average current would be 0.000423 A. The trapezoidally 

stranded ACCC conductor used in this study has an exposed aluminum area of 0.389 m
2
 

per meter of conductor. The current calculated from the mass gain would result in an 

average anodic galvanic corrosion current density of 1.1 mA/m
2
.  

During the same period, the nine As Received samples placed in the same 

environment had an average measured anodic corrosion current density of 0.85 mA/m
2
 

(shown as 24 mA/m
2
 cathodic current density in Figure 88; dividing by 28 gives the 
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anodic current density).  The current density calculated from the mass gain is a bit higher 

than the current density that was measured directly, but it is within the measured range.  

The corrosion in the absence of galvanic corrosion is also known as the self-

corrosion. Assuming a uniform corrosion of the aluminum, the calculated self-corrosion 

corrosion rate is equal to a penetration rate of 0.007 mm/year or 7 μm/year. At this rate, it 

would take 40 years to lose 20 % of the aluminum cross-section due to the galvanic 

corrosion. The presence of the galvanic corrosion resulted in a doubling of the total 

corrosion rate of the aluminum from approximately 7 μm/year to 14 μm/year.  

Francis (Francis 2000) states that a typical penetration rate for self-corrosion of 

aluminum in marine atmospheres is 0.6 μm/year. The average self-corrosion rate 

calculated from the mass gain is one order of magnitude higher. This means that the 

testing environment can be considered a severely corrosive - and likely an accelerated - 

environment. In order to use laboratory evaluation to predict service life, this large 

discrepancy between typical corrosion rates and measured rates in the laboratory has to 

be addressed. The testing environment likely needs to be adjusted, but this is outside the 

scope of this dissertation. 

The twice as high mass gain of the samples with a galvanic coupling provides 

strong evidence that the galvanic coupling accelerates the total corrosion of the 

aluminum, and does not merely move the cathodic processes from the aluminum to the 

CFRP.  
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4.2.3 Discussion and conclusions about control mechanisms  

 

Control mechanisms in immersed conditions  

The study has confirmed that the galvanic corrosion is under cathodic control in 

immersed conditions (Hack 2005) and that the dominating cathodic reaction is the 

reduction of oxygen. The total galvanic corrosion rate is primarily dominated by the 

cathodic half-reaction, which is common for corrosion in immersed environments. 

Because of the cathodic control, the cathodic reaction rate controls the total galvanic 

corrosion rate, independent of the area ratio of cathode and anode. The galvanic corrosion 

rate is weakly dependent on the NaCl concentration, but highly dependent on the oxygen 

content and agitation.  

 
Figure 90: The pathway for oxygen to reach the cathodic reaction on the CFRP.  

The hydrogen gas will travel the same path, but in the opposite direction, when the water splitting reaction 

takes place.  

 

The strong effect of agitation indicates a concentration polarization control type, 

also known as diffusion control, where the rate of the reaction is controlled by the rate at 

which reactants arrive at the CFRP surface. In stagnant electrolyte, the diffusion of 
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oxygen to the cathode is not fast enough to sustain the highest possible rate of corrosion, 

which makes the corrosion rate diffusion limited. The drastically lower galvanic 

corrosion rate in the fully assembled conductor samples compared to the separated 

samples with identical area ratio also supports this conclusion.  

 

Control mechanisms in atmospheric conditions  

The control mechanisms are much more complex in atmospheric galvanic 

corrosion. As shown in chapter 3 (and will be discussed further in chapter 5), the galvanic 

corrosion rate is highly dependent on electrolyte layer thickness, which is a function of 

salt load density and relative humidity.  

The literature (Barton 1973) states that because the electrolyte layer is so thin, the 

transport rate of oxygen to the cathode surface is so fast that the corrosion rate is in no 

way controlled by the cathodic oxygen reduction process. However, the ACCC conductor 

with introduced damage is a special case because the cathode is buried deep inside the 

component with only thin gaps for the oxygen transport, which is quite different from 

typical structures subjected to atmospheric corrosion such as bridges and roofs. High 

humidity and high salt load density can result in enough electrolyte to completely fill the 

crevices. The buildup of corrosion products also appears to limit the corrosion rate over 

time, perhaps due to restrictions in mass transport. This observation will be re-visited in 

chapter 7.  

The scale and oxide layer on the as-received conductor samples that had been 

stored outdoors for over a decade drastically limited the corrosion rate under steady, 
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humid conditions in some of the test series. The difference between conductor sample 

with a thick oxide layer originating from the manufacturing and samples where this layer 

has been removed will be re-visited in chapter 7. It will be shown that this layer has less 

of an effect if the test is run over a long time period. It is known that the formation of an 

oxide film, which can be formed during dry conditions, can change the course of 

corrosion under other conditions (Barton 1973). This is the principle behind anodizing of 

aluminum components. The protective layer on the aluminum would not affect the 

kinetics of the cathodic reaction, which means the decrease in total galvanic corrosion 

rate would be due to resistance control caused by the insulating oxide layer.  

 

Galvanic corrosion rates and time-to-failure 

The effect of the control mechanisms identified above can be seen in Figure 91. 

The galvanic corrosion rates are expressed in average anodic galvanic corrosion current 

density for area ratios, geometries, and electrolyte properties that were of particular 

interest. Compared to the situation where an electrolyte jet was directed onto the sample 

surface, the corrosion rates in all other conditions are extremely low.  
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Figure 91: Summary of measured anodic galvanic corrosion current densities, mA/m
2
.  

 

 

In Figure 92, the galvanic corrosion rates are translated into average corrosion 

penetration rate of the aluminum. This assumes that the corrosion is uniform. Aluminum 

in neutral electrolytes develops pitting corrosion, which means that the corrosion is 

localized. The local corrosion penetration can therefore be much deeper than the plot 

indicates, but the average corrosion rates still represent the total mass loss of the 

aluminum.  
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Figure 92: Summary of measured galvanic corrosion rates, mm/year.  

 

It may be hard to comprehend what these rates would mean to a transmission line 

conductor. Using a failure criterion that assumes that a transmission line conductor is 

considered failed when it has lost 20 % of its aluminum cross-section, we can translate 

the above corrosion rates into time-to-failure. Figure 93 illustrates the time-to-failure 

using this criterion. The importance of a suitable testing method is obvious in the plot. 

Just by changing the area ratio, geometry, electrolyte agitation, surface preparation, and 

level of dissolved oxygen, the same materials in the same electrolyte will have a 

predicted time-to-failure of 35 hours to 130 years. That is a difference of 32,500 times, or 

more than three orders of magnitude! The difference in atmospheric conditions is also 
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more than an order of magnitude depending on the surface preparation. The atmospheric 

corrosion will be discussed in detail in the next section.  

 

Figure 93: Summary of measured galvanic corrosion rates translated into time-to-failure for an overhead 

transmission line conductor.  

The prediction assumes that the galvanic corrosion rate remains unchanged.   
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4.3 Summary of input data for numerical modeling  

Table 9 summarizes the input data obtained in this chapter that will be used for 

the numerical modeling in chapters 6 and 7.  

 

 

Table 9: Input values for parallel electrode model in 0.6 M NaCl at RT 

(obtained experimentally) 

Input data for parallel plate model in chapter 6 with Al 6061-T6 and graphite 

Variable 

name  

Variable Value Unit 

Eeq,graphite Equilibrium potential, graphite -0.140 V 

Eeq,Al-6061 Equilibrium potential, aluminum 6061-T6 -0.690 V 

Ac,grahite Tafel slope, graphite -1.9558 V 

Aa,Al-6061 Tafel slope, aluminum 6061-T6 0.0153 V 

i0,graphite Exchange current density, graphite 0.09351 A/m
2
 

i0,Al-6061 Exchange current density, Al 6061-T6 0.1668 A/m
2
 

Input data for parallel plate model in chapter 7, steady-state atmospheric model of 

the ACCC conductor 

Eeq,C-ACCC Equilibrium potential, CFRP from ACCC -0.0605 V 

Eeq,Al-

ACCC 
Equilibrium potential, 1350-O Al from ACCC  -0.952 V 

Ac,C-ACCC Tafel slope, CFRP from ACCC -1.4949 V 

Aa,Al-ACCC Tafel slope, 1350-O Al from ACCC 0.1307 V 

i0,C-ACCC Exchange current density, CFRP from ACCC 0.0547 A/m
2
 

i0,Al-ACCC Exchange current density, 1350-O Al from 

ACCC  

0.004232 A/m
2
 

Econd Electrolyte conductivity  24.4 S/m 

dfilm  Electrolyte layer thickness 

(formatted for Comsol) 

D_NaCl*2.15E-

11*exp(6.03E-

4*RH) 

m 

O2,solubility Oxygen solubility in water 3.0E-4*e
(6.59*RH)

 mol/m
3
 

ilim Limiting current density based on oxygen 

diffusion through the electrolyte layer 

(formatted for Comsol) 

D_O2*(O2_solubil

ity)/(d_film* 

2.59E-6) 

A/m
2
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CHAPTER FIVE: EVALUATION OF ELECTROLYTE LAYER FORMATION 

AND OXYGEN TRANSPORT IN ATMOSPHERIC CONDITIONS 

 

The necessity of retaining the original geometry during galvanic corrosion testing 

of the ACCC conductor was shown in chapter 3, and it was concluded in section 4.2 that 

the geometry affects the transport of oxygen to the cathode which in turn affects the total 

galvanic corrosion rate. In an atmospheric environment, the galvanic corrosion reactions 

take place in a very thin layer of electrolyte bridging the anode and the cathode. This 

section will analyze how the electrolyte layer thickness and composition is dependent on 

the salt load density and relative humidity, and how the layer thickness affects the oxygen 

transport to the reacting CFRP surface.  

 

5.1 Oxygen consumption by the cathodic reaction 

If we know the cathodic reaction(s), the oxygen consumption for a certain 

corrosion current can be calculated. It was shown in previous sections that the reduction 

of oxygen appears to be the dominant cathodic reaction. There was also evidence of the 

water splitting reaction taking place, but at a rate that is orders of magnitude lower. The 

work presented in this section will therefore be based on the assumption that reduction of 

oxygen is the only cathodic reaction.  
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Reduction of oxygen:  

O2 + 2H2O + 4e
-
  4OH

-
     (2.1.3-4) (repeated) 

 

For every 4 electrons consumed at the cathode, one oxygen molecule is reduced. 1 

A is equal to 1 C/s (coulomb per second) which is the same as 6.241×10
18

 electrons per 

second. With one oxygen molecule reduced per 4 electrons, 1.560 ×10
18

 oxygen 

molecules will be reduced per second. This is equivalent to 2.59×10
-6

 moles of O2 or 82.9 

μg per second. The oxygen consumption can thus be expressed as 82.9×10
-6

 [(g/s)/(C/s)] 

= 82.9×10
-6

 [g/(A*s)] = 2.59×10
-6

 [mol/(A*s)].  

If we know the limits of the diffusion, we can also calculate a theoretical 

maximum corrosion current density, also known as the diffusion-limited oxygen reduction 

current density, ilim (Chen, Cui et al. 2008). The following section will present the 

development of an expression for the electrolyte layer thickness as a function of salt-load 

density and relative humidity (RH), which in turn will be used to generate an expression 

for the diffusion-limited oxygen reduction current density. These expressions will be used 

for the numerical modeling of atmospheric galvanic corrosion in chapter 7.  
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5.2 Presence of salt and its effect on the electrolyte layer thickness  

A fundamental requirement for galvanic corrosion to occur is the presence of a 

liquid electrolyte. The amount of electrolyte on a surface subjected to atmospheric air is 

strongly dependent on the presence of salt on the surface. While the amount of salt 

matters, the type of salt may be even more important, particularly in drier conditions.  

Hygroscopy is a substance’s ability to attract and hold water molecules through 

absorption or adsorption from the surrounding environment. Many salts are hygroscopic, 

but the level of hygroscopy differs significantly. Some salts are so hygroscopic that they 

dissolve in the water they absorb in their crystal lattice and form a solution; a property 

called deliquescence (EncyclopediaBritannica 2014). This property is often exploited in 

products used to control humidity and in dust control.  

In a closed container with sufficient amount of salt to keep the solution saturated, 

the vapor pressure of water above the saturated solution will have a unique value that is 

dependent on the type of salt (and weakly dependent on the temperature). This results in a 

relative humidity in the closed container of a certain value, which is often used to 

calibrate humidity sensors (the calibration application is discussed more in Error Analysis 

in Appendix B). As described in earlier chapters, this relative humidity level is known as 

Deliquescence Relative Humidity (DRH) (EncyclopediaBritannica 2014). This means that 

at ambient relative humidity levels above DRH, liquid electrolyte may be present on a 

salt-loaded conductor.  

Although NaCl and MgCl2 are chemically similar substances and are both used 

for deicing of highways, they have drastically different DRH. They are both deliquescent, 
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but the vapor pressure of an MgCl2 solution is much lower than the vapor pressure of a 

NaCl solution. The result of this difference is that MgCl2 deliquesces at room temperature 

at RH of 33 %, while NaCl requires 76 % RH to deliquesce (OmegaInstruments 2014), 

(QuantifoilInstruments 2014).  

 

Table 10: Salts included in the test of hygroscopic properties, their Deliquescence 

Relative Humidity (DHR) at 25°C, and common uses 
Sources: (OmegaInstruments 2014), (QuantifoilInstruments 2014), (ASTM 2008),  

Compound Full name DHR  Common use/common 

presence 

Chemical form used in 

experimental work 

(according to 

supplier) 

LiCl  Lithium 

Chloride 

11 % Feedstock for 

manufacturing of lithium 

Not specified 

CaCl2  Calcium 

Chloride 

32 % Dust control, deicing  Anhydrous 

MgCl2  Magnesium 

Chloride 

33 % Deicing, dust control / 

major compound in 

seawater 

Hexahydrate 

NaCl  Sodium 

Chloride 

76 % Deicing / major 

compound in seawater 

Anhydrous 

KCl  Potassium 

Chloride 

85 % Feedstock in process 

industry / major 

compound in the Utah 

Salt Flats 

Anhydrous 

Mixture of NaCl, 

MgCl2, Na2SO4, 

CaCl2, KCl, 

NaHCO3, KBr,  

H3BO3, SrCl2, NaF  

ASTM 

D1141 

Artificial 

Seasalt 

N/A Used for corrosion testing Not specified 

 

Because atmospheric galvanic corrosion only can occur if there is a liquid 

electrolyte present, the difference in deliquescence between the common deicing salts 

MgCl2 and NaCl may have large implications for the corrosion of transmission line 

conductors in the proximity of highways treated with de-icing salts or that are exposed to 

these salts for other reasons.   
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The DRH for common salts can be found in the literature (see Table 10), but it 

was also of interest to know the water absorption at levels below and above DRH. 

Experiments were performed both with pure salts in free air, and with salt-loaded 

conductor samples. For the test in free air, five different salts were used: CaCl2, MgCl2, 

NaCl, KCl and ASTM D1141 artificial seasalt
2
. Only NaCl was used in the tests with 

salt-loaded conductor samples.   

 

5.2.1 Hygroscopic properties of different salts – experimental procedure 

The salts were dried and then exposed to increasing humidity levels, staying at 

each level for a minimum of 24 hours. Figure 95 shows how the MgCl2 and CaCl2 

samples are completely liquid already at 44 % RH (blue and red circles), while it takes 80 

% RH for the NaCl sample to almost completely dissolve (green circle). KCl is starting to 

dissolve at 90 % (purple circle), but did not fully dissolve before the test was completed. 

The ASTM D1141 artificial seawater started to dissolve at 44 % RH, but was not 

completely dissolved until 100 % relative humidity was reached. The observed DRHs 

agree well with the table values.  

After the test was finished, the samples were left in room air at 50 % RH for 10 

days. As expected, the NaCl and KCl samples had dried again while MgCl2 and CaCl2 

were still completely liquid. The ASTM seasalt had large crystals in the electrolyte, likely 

                                                 
2
 ASTM D1141 Artificial Seasalt is sea salt mix containing elements found in natural seawaters in 

quantities greater than 0.0004 %: 58.490 % NaCl, 26.460 % MgCl2*6H20, 9.750 % Na2SO4, 2.765 % 

CaCl2, 1.645 % KCl, 0.477 % NaHCO3, 0.238 % KBr, 0.071 % H3BO3, 0.095 % SrCl2*6H20, and 0.007 % 

NaF). 
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of NaCl (no chemical analysis was performed, but their appearance indicated that they 

were likely NaCl).  

 

Detailed procedure for investigation of hygroscopic properties of different salts  

1. 10-20 g of each salt was placed in a glass container. The mass of the container 

and the salt respectively was recorded.  

2. The open glass containers with salts were placed in ~100°C atmosphere for 2 

hours to ensure dryness (the MgCl2 arrived moist from the supplier). The 

containers were sealed to keep the salts dry.  

3. The mass of each sample was recorded.  

4. 1 g of each salt was placed in a black bowls. The black bowls were chosen to 

give a good contrast to the white salt. A photo was taken of the dry salts.  

5. The salts were subjected to increasing levels of relative humidity in room air 

at room temperature. Due to the difficulties to achieve steady control at a 

humidity level below room air humidity, the test was started at room air 

humidity (44 % RH). The humidity was kept at each level for 48 hours. The 

humidity levels and temperature were logged. A new photo was taken at the 

end of each humidity level.  

6. Photos were taken and the mass of each sample was recorded at the end of 

each humidity level period.  
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Figure 94: Deliquescence of different salts in free air.   
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Figure 95 shows the mass gain of each salt as a function of the relative humidity. 

The dotted line marks the 80 % RH level that is generally considered the critical humidity 

level for atmospheric corrosion to take place (Roberge 2008), (Francis 2000),  

(CorrosionDoctors 2014). The mass gain of NaCl (green markers) is rapidly increasing 

above 80 % RH, which perhaps could be the original reason for the 80 % rule-of-thumb.  

At 80 % relative humidity the CaCl2, MgCl2, and ASTM artificial seasalt had 6.3, 

4.1 and 3.5 times higher mass gain than NaCl respectively. As a result, there would be 

drastically more electrolyte present for the same salt load density.  

 

 
 

Figure 95: Mass gain due to deliquescence of different salts in free air as a function of relative humidity. 
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5.2.2 Electrolyte layer thickness as a function of relative humidity  

and salt load density 

A function for the electrolyte layer thickness as a function of humidity and NaCl 

salt load density was generated through experiments using salt-loaded conductor samples. 

ACCC samples prepared according to the method described in chapter 3 were immersed 

in different concentration NaCl aqueous solutions. The amount of electrolyte trapped 

inside each sample was measured. Based on the known salt concentration of the 

electrolyte and the geometry of the sample, the average salt load density (the mass of salt 

per unit exposed surface area) was calculated. The samples were dried and then subjected 

to increasing levels of relative humidity at room temperature. The average electrolyte 

layer thickness was calculated from the mass gain. Note that this section is only valid for 

NaCl; if other salts are present the expressions may be different. It is also only valid at 

room temperature (~25°C).  

The same sample was used for all but one test series to eliminate errors caused by 

the variation of gap sizes between the aluminum strands on different samples. The sample 

was new at the beginning of the test, and showed no apparent signs of corrosion at the 

end of the test. An additional sample with apparent corrosion damage was subjected only 

to the 0.6 M NaCl solution. Due to the corrosion products on the surface, this sample 

trapped a much greater amount of electrolyte which resulted in a much higher salt load 

density. The test procedure was the same as for the salt samples in free air: the sample 

was subjected to increasing levels of relative humidity, staying at each level for a 

minimum of 24 hours.  
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Table 11: Electrolyte concentrations and resulting salt load densities 

NaCl concentration in immersion 

electrolyte [wt. %] 

Resulting salt load density on the 

sample surface [g/m
2
] 

0.017 M (0.1 mass %) 0.0572 

0.085 M (0.5 mass %) 0.273 

0.17 M (1 mass %)  0.571 

0.6 M (3.5 mass %) 1.80 

3.16* 
* for sample with apparent corrosion damage 

 

The average electrolyte layer thickness is plotted as a function of salt load density 

for each humidity level in Figure 96. Linear trendlines with 0,0 intercept were fitted to all 

plots and the R
2
 values ranged from 0.97 to 0.99.  

 

 

Figure 96: Average electrolyte layer thickness as a function of salt load (NaCl) and relative humidity.  
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The linear fits can be expressed as a general equation for the electrolyte layer 

thickness as:  

𝑡𝐿 = 𝑆𝐿(𝑅𝐻) ∗ 𝐷𝑁𝑎𝐶𝑙     (5.2.2-1) 

where 

tL = thickness of the electrolyte layer [m],  

SL(RH) = slope for layer thickness gain as function of humidity [m/(g/m
2
)], 

DNaCl = salt load density of NaCl [g/m
2
].   

 

The electrolyte layer thickness slopes for each humidity level were then plotted 

against the relative humidity in Figure 97. An exponential trendline was fitted with good 

agreement (R
2
 = 0.987).  

 

Figure 97: Electrolyte layer thickness gain slope as a function of relative humidity. 
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Thus, the exponential fit can be expressed as a general equation for the electrolyte 

layer thickness gain slope as:  

𝑆𝐿(𝑅𝐻) = 2.15𝐸(−8) ∗  𝑒6.03𝐸(−2)∗𝑅𝐻  (5.2.2-2)  

where  

SL = slope for layer thickness gain as function of humidity [m/(g/m
2
)],  

RH = relative humidity [%]. 

By substituting equation (5.2.2-2) into (5.2.2-1), we get a general equation for the 

electrolyte layer thickness as a function of salt load density and relative humidity:  

𝒕𝑳 = 𝑫𝑵𝒂𝑪𝒍 ∗  𝟐. 𝟏𝟓𝑬(−𝟖) ∗ 𝒆𝟔.𝟎𝟑𝑬(−𝟐)∗𝑹𝑯  (5.2.2-3)  

where  

tL = thickness of the electrolyte layer [m],  

DNaCl = salt load density of NaCl [g/m
2
], 

RH = relative humidity [%]. 

 

Equation (5.2.2-3) will be used in the finite element modeling in chapter 7 as the 

expression for the electrolyte layer thickness, where DNaCl and RH can be input as 

variables.  

 

Comparison with literature data  

The modeling software package Comsol Multiphysics (more about Comsol in 

chapter 6) uses data from reference Chen et al. (Chen, Cui et al. 2008) in its corrosion 
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module tutorials. This data is based on the documented deliquescence behavior of NaCl 

and presents the following function for the thickness of the electrolyte layer:  

 

𝑊𝐿 =
𝐷𝐷(24.90+14.80𝑅𝐻−22.80𝑅𝐻2)

5811.94+23909.82𝑅𝐻−3291.21𝑅𝐻2−57990.86𝑅𝐻3+31576.80𝑅𝐻4
      (5.2.2-4) 

where 

WL = thickness of the electrolyte layer [m],  

DD = amount of deposited NaCl particles [kg/m
2
].  

 

Figure 98 and Figure 99 show the plotting of equation (5.2.2-3) generated by 

experimental measurements performed in this study and equation (5.2.2-4) obtained from 

the literature.    
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Figure 98: Electrolyte layer thickness – comparison of expression obtained from experimental data and 

from literature.  

 

At a first glimpse, there appears to be very little agreement between equation 

(5.2.2-4) and the expression obtained in this study (5.2.2-3) in Figure 98. However, 

zooming in on the plots reveals that the agreement is fairly good to approximately 90 % 

RH, as can be seen in Figure 99.  

 

Figure 99: Electrolyte layer thickness – comparison of expression obtained from experimental data and 

from literature (zoomed in). 
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Above 90 % RH, the expression from Chen et al. (Chen, Cui et al. 2008) deviates 

severely from the expression obtained from experimental values. This could be caused by 

the difference in geometry; the experimental data is from a stranded conductor sample 

while the literature data is assumed to be for a flat surface in free air. To investigate if 

this is a possible explanation, the mass gain of the electrolyte in the conductor sample is 

compared to the mass gain of NaCl in free air in Figure 95. While comparing the two 

plots in Figure 100, it is clear that the mass gain of the electrolyte on the conductor 

sample follows a similar function as in free air. The expression obtained from the 

experimental data appears to be closer to the free air volume gain than the expression 

from the literature. From here on, the expression obtained from the experimental data will 

be used for the electrolyte layer thickness in the modeling. 

 

Figure 100: Mass gain for NaCl in free air and on conductor sample.  

 



 

147 

Salt concentration for maximum layer thickness 

The average crevice width in an ACCC sample with damaged corrosion barrier 

prepared using the method described in chapter 3 was estimated to 180 μm. This value 

was found by measuring the maximum amount of liquid that could be trapped inside a 

sample and then calculating the average gap width based on the geometry.  

Because the electrolyte layer is assumed to be uniform on all surfaces of the 

sample, the maximum theoretical electrolyte layer thickness would be half the crack 

width, which means 90 μm. Using equation (5.2.2-3), we can calculate that a salt load 

density of 10.1 g/m
2
 NaCl at 100 % RH would generate the maximum layer thickness and 

completely fill the gaps with electrolyte. A higher salt load density would overfill the 

sample and cause the electrolyte to drip off.  

 

Diffusion of oxygen through air versus electrolyte 

The cathode area inside an ACCC sample with simulated impact damage is 0.014 

m
2
 per m length of conductor. Assuming that the average gap width is 180 μm, the total 

area of the openings between the 14 outer strands in the ACCC is 0.0032 m
2
 per meter 

length of conductor. The cathode area is 4.4 times larger than the outer opening that the 

oxygen has to diffuse through. Due to the stranded nature, the opening for diffusion will 

get smaller deeper into the sample. The area of the openings between the inner 8 strands 

is only 0.0018 m
2
 per meter length of conductor. The average of the two areas is 0.0025 

m
2
 per meter or 5.7 times smaller than the cathode area. The average path length for the 

oxygen to diffuse to cathode is 0.0147 m (illustrated in Figure 101) in this simplified 

model.  
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Figure 101: The pathway for oxygen to reach the cathodic reaction.  

 

The diffusion of oxygen through air is 10,800 times faster than the diffusion of 

oxygen through water (see Table 12). There is some dependency on temperature and a 

very weak dependence on relative humidity, but the difference between air and water is 

so large that the effect of temperature and relative humidity will be neglected.  

 

 Table 12: Diffusion coefficients for oxygen at 20°C  

Source: (Giambattista, Richardson et al. 2004) 

Medium Diffusion coefficient [m
2
/s] 

Oxygen through air, 100 % RH (15 % O2 conc.) 2.14 E-05 

Oxygen through water 1.97 E-09 

 

Starting with the crevices filled with air, we can calculate the oxygen flux and 

thus also the maximum possible cathodic corrosion current density (assuming that the 

only cathodic reaction taking place is the reduction of oxygen). The molar concentration 

of oxygen at 20°C at atmospheric pressure is 8.714 mol/m
3
 (Denny 1993). Assuming a 

linear concentration gradient from ambient oxygen concentration at the opening to zero 
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of the ambient oxygen concentration at the cathode, the following equation for the 

maximum flux of oxygen through the conductor can be generated using Fick’s first law:  

𝐽 = −𝐷𝑂2
∗

∆𝑐

∆𝑥
          (5.2.2-5a) 

With values for air:  

𝐽 = −𝐷𝑂2,𝑎𝑖𝑟 ∗
∆𝑐

∆𝑥
=  −(2.14𝐸(−5)) [

𝑚2

𝑠
] ∗

−8.714[
𝑚𝑜𝑙

𝑚3 ]

0.0147 [𝑚]
= 0.0127 [

𝑚𝑜𝑙

𝑠∗𝑚2 ]   (5.2.2-5b) 

where  

J = flux of oxygen in air [mol/(s*m
2
)],  

DO2 = diffusion coefficient for oxygen in water [m
2
/s],  

DO2,air = diffusion coefficient for oxygen in air [m
2
/s],  

Δc = the change in concentration [mol/m
3
],  

Δx = diffusion path length [m].  

 

 With the above assumptions, the total maximum oxygen diffusion through the air 

in the gaps would be 1.59×10
-5

 mol/s per meter ofconductor. Divided by a cathode area 

of 0.014 m
2
 per m length of conductor, the maximum oxygen supply would be 1.14×10

-3
 

mol/(s*m
2
). Using the oxygen consumption per As (ampere second) calculated in the 

previous section, the maximum cathodic corrosion current density would be 440 A/m
2
. 

The calculation was repeated for the crevices filled with a water-based electrolyte. 

The electrolyte was assumed to be saturated at the crevice openings, which equals an 

oxygen concentration of  0.40 mol/m
3
 (U.S.GeologicalSurvey 1998), and assumed to 

have zero oxygen content at the reacting CFRP surface. With a linear gradient, the 

maximum theoretical cathodic current density would be 0.0037 A/m
2
 = 3.7 mA/m

2
 (0.13 
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mA/m
2
 if expressed as anodic current density). The cathodic corrosion current densities 

measured in chapter 3 for an immersed environment were 17.6 to 20.4 mA/m
2
 (0.63 to 

0.73 mA/m
2
 if expressed as anodic current densities, but this section will use cathodic 

corrosion current densities throughout).  

The measured values are approximately five times higher than the calculated 

values. The discrepancy likely has two different causes. One is the simplified geometry. 

The other is the additional cathodic reaction – the water splitting – that does not depend 

on oxygen supply. The cathodic corrosion current density measured in oxygen-starved 

conditions was 9 mA/m
2
. Adding the calculated cathodic current density to the measured 

cathodic current density for oxygen-starved conditions, the resulting value is 12.7 

mA/m
2
. This value is 28 to 38 % lower than the measured values in oxygen-rich 

electrolyte, which has to be considered a very good agreement for a very simple model. 

This provides additional support to the hypothesis that oxygen transport is the dominant 

control mechanism.  

The theoretical maximum cathode current density with air in the gaps is 119,000 

times higher than in immersed conditions. However, the calculated maximum cathodic 

corrosion current density of 440 A/m
2
 when the diffusion of oxygen through the air is the 

only limiting mechanisms, is 1630 times higher than the highest measured cathodic 

current density in this study of 0.27 A/m
2
 for a fully assembled ACCC sample (see Figure 

88). The calculated maximum value is still 41 time higher than the all-time-high cathodic 

corrosion current density of 10.6 A/m
2
  measured in this study when a jet of oxygen-rich 
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electrolyte was directed onto the surface (shown as anodic corrosion current density I in 

Figure 91, but the cathodic current density will be identical due to the 1:1 area ratio).  

This indicates that there are additional limiting mechanisms. These will be 

discussed in the following sections. 

 

Effective gap size as a function of electrolyte layer thickness 

One reason for the difference between the calculated maximum cathodic current 

density and the measured result is that the calculated value assumed that the gaps in the 

conductor were completely filled with air. If this were the case, no corrosion could take 

place because there is no electrolyte present. As the electrolyte layer grows due to 

increased salt load density and/or humidity, the available cross-sectional area for oxygen 

diffusion will decrease. At a salt load density of 3.1 g/m
2
, the electrolyte layer thickness 

grows as a function of relative humidity. At 100 % RH, the average electrolyte layer 

thickness is 28 μm thick. This would decrease the average gap width to 124 μm. 

Assuming that there still would be a continuous path of air from the conductor surface to 

the cathode, the maximum cathodic current density would decrease to 278 A/m
2
.  

 

Oxygen diffusion through the electrolyte layer in atmospheric conditions  

 In reality, there cannot be an air path all the way to the reacting surface. The 

cathode is covered with an electrolyte layer where the reduction reaction is taking place. 

Due to the much lower diffusivity of oxygen through water, there may be a bottleneck in 

the oxygen’s path to the cathode. Assuming that this electrolyte layer also is 28 μm and 
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the concentration goes from the maximum solubility in fresh water at the surface of the 

electrolyte layer to zero at the surface of the cathode, the diffusion through the electrolyte 

layer would limit the cathode current density to 11 A/m
2
.  

There is, however, another error in this calculation. It is based on the solubility of 

oxygen in freshwater. The solubility of oxygen goes down as salt concentration goes up. 

As shown in previous sections, the salt concentration in the thin layer of electrolyte is 

quite high. The salt concentration at 100 % RH of the electrolyte in the samples in  

Figure 70 was 10.3 mass % NaCl. This high salt concentration is outside the 

tables available for this study, but the saturation limit at 3.5 mass % NaCl is 0.18 mol/m
3
, 

compared to 0.4 mol/m
3
 for freshwater. It would be expected that this limit decreases 

further as the NaCl concentration goes up. The Comsol tutorial (COMSOL 2014) and 

Chen et al. (Chen, Cui et al. 2008) use the following equation for the oxygen solubility in 

the electrolyte layer as a function of relative humidity:  

𝑂2,𝑠𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 = 0.0003 ∗ 𝑒(6.95∗𝑅𝐻)   (5.2.2-6) 

Using equation (5.2.2-6), the maximum theoretical current density will instead be 

6.0 A/m
2
 at 100 % RH. This value is two orders of magnitude smaller than the first 

presented value based solely on the diffusion of oxygen through air, but it is still 

approximately one order of magnitude larger than the actually measured values for these 

conditions. There are obviously additional limiting mechanisms other than just the 

diffusion of oxygen. The values presented here will be used as the limiting cathodic 

current density ilim, an important variable in modeling that sets the theoretical limit for the 
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current density. Table 13 compares the calculated maximum theoretical cathode current 

densities with measured values. 

 

Table 13: Maximum theoretical cathodic current density vs. measured cathodic 

current density  
 Theoretical maximum based 

on diffusion of oxygen [A/m
2
] 

Measured (data from 

chapter 3)[A/m
2
] 

For assembled ACCC samples with compromised corrosion barrier  

(prepared as described in chapter 3) 

Immersed in liquid 0.0037 0.017 to 0.020 

Gaps completely filled with 

air 

440 ------ 

28 μm layer of electrolyte 6.0 0.076  

Highest value measured in 

atmospheric conditions  

(see Figure 88) 

------ 0.27 

For CFRP sample immersed in electrolyte 

Highest value overall in 

immersed conditions  

(see Figure 91) 

------ 10.7 

 

Using the findings in this and previous sections, we can create a function for ilim. 

Because the oxygen has to diffuse through both air and liquid under atmospheric 

conditions, we will actually get two functions.  

Limiting current due to diffusion of oxygen through air:  

𝑖𝑙𝑖𝑚 [
𝐴

𝑚2
] =  𝐽 [

𝑚𝑜𝑙

𝑠∗𝑚2
] ∗

𝐴𝑜𝑝𝑒𝑛𝑖𝑛𝑔[
𝑚2

𝑚
]

2.59∗10−6[
𝑚𝑜𝑙

𝐴∗𝑠
]
/𝐴𝑐𝑎𝑡ℎ𝑜𝑑𝑒 [

𝑚2

𝑚
]   (5.2.2-7) 

where  

ilim = theoretical maximum cathodic corrosion current [A/m
2
], 

J = flux of oxygen based on Fick’s first law [mol/(s*m
2
)],  

 



 

154 

Aopening = total area of the opening between the strands per meter of conductor 

[m
2
/m], and 

Acathode = area of the cathode per meter conductor [m
2
/m]. 

 

Knowing that J is a function of concentrations and diffusion path length, the 

opening is a function of the geometry and layer thickness, the equation can be expanded 

to include these variables:  

𝑖𝑙𝑖𝑚 [
𝐴

𝑚2] =

  −𝐷𝑂2
[

𝑚2

𝑠
] ∗

∆𝑐 [
𝑚𝑜𝑙

𝑚3 ]

∆𝑥 [𝑚]
∗

(𝑊𝑔𝑎𝑝−(2∗ 𝑡𝐿))[𝑚]∗
(𝑛𝑠,𝑖+ 𝑛𝑠,𝑜)

2
∗𝐿𝑔𝑎𝑝[

𝑚

𝑚
] 

2.59∗10−6[
𝑚𝑜𝑙

𝐴∗𝑠
]

/𝐴𝑐𝑎𝑡ℎ𝑜𝑑𝑒 [
𝑚2

𝑚
]    (5.2.2-8) 

where  

ilim = theoretical maximum cathodic corrosion current [A/m
2
], 

DO2 = diffusion coefficient for oxygen in air [m
2
/s],  

Wgap = the average width of the gaps between the aluminum strands [m],  

Δc = the change in concentration [mol/m
3
],  

Δx = diffusion path length [m],  

tL = thickness of electrolyte layer [m],  

ns,i = number of inner strands,  

ns,o – number of outer strands, 

Lgap = the length of the strands per meter of conductor (takes into account the 

helical stranding) [m/m],  

Acathode = area of the cathode per meter of conductor [m
2
/m].  
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Expression for diffusion of oxygen under atmospheric conditions  

Assuming a linear concentration profile and using expression (5.2.2-3) for the 

electrolyte layer thickness as a function of RH and salt load density, the final expression 

for the limiting current density due to diffusion of oxygen through the air and electrolyte 

layer to the cathode will be the following:   

𝒊𝒍𝒊𝒎,𝒂𝒊𝒓 [
𝑨

𝒎𝟐] =

  −𝑫𝑶𝟐
[

𝒎𝟐

𝒔
] ∗

𝒄𝒂𝒎𝒃𝒊𝒆𝒏𝒕
𝟐

 [
𝒎𝒐𝒍

𝒎𝟑 ]

𝜟𝒙 [𝒎]
∗

  
(𝑾𝒈𝒂𝒑−(𝟐∗𝑫𝑵𝒂𝑪𝒍∗ 𝟐.𝟏𝟓𝑬−𝟎𝟖∗ 𝒆𝟔.𝟎𝟑𝑬−𝟎𝟐∗𝑹𝑯))[𝒎]∗

(𝒏𝒔,𝒊+ 𝒏𝒔,𝒐)

𝟐
∗𝑳𝒈𝒂𝒑[

𝒎

𝒎
] 

𝟐.𝟓𝟗∗𝟏𝟎−𝟔[
𝒎𝒐𝒍

𝑨∗𝒔
] ∗ 𝑨𝒄𝒂𝒕𝒉𝒐𝒅𝒆[

𝒎𝟐

𝒎
] 

    (5.2.2-9) 

where  

ilim,air = theoretical maximum cathodic corrosion current due to diffusion of 

oxygen through air [A/m
2
], 

DO2 = diffusion coefficient for oxygen in air [m
2
/s],  

Cambient = concentration of oxygen in the ambient air [mol/m
3
],  

Wgap = the average width of the gaps between the aluminum strands [m],  

Δx = the total path length for the oxygen to reach the cathode [m], 

DNaCl = salt load density [g/m
2
],  

RH = relative humidity of the surrounding air [%],  

ns,i = number of inner strands,  

ns,o  = number of outer strands, 
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Lgap = the length of the strands per meter of conductor (takes into account the 

helical stranding) [m/m], and 

Acathode = area of the cathode per meter conductor [m
2
/m].  

 

We can generate a similar expression for the limiting current density due to the 

diffusion of oxygen through the electrolyte layer when the oxygen reaches the cathode:  

𝒊𝒍𝒊𝒎,𝒆 [
𝑨

𝒎𝟐] =   −𝑫𝑯𝟐𝑶 [
𝒎𝟐

𝒔
] ∗

𝑺𝑶𝟐  [
𝒎𝒐𝒍
𝒎𝟑 ]

𝒕𝑳[𝒎] ∗ 𝟐. 𝟓𝟗 ∗ 𝟏𝟎−𝟔 [
𝒎𝒐𝒍
𝑨 ∗ 𝒔]

=

= −𝑫𝑯𝟐𝑶 [
𝒎𝟐

𝒔
]

∗
𝟎. 𝟎𝟎𝟎𝟑 ∗ 𝒆(𝟔.𝟓𝟗∗

𝑹𝑯
𝟏𝟎𝟎

)  [
𝒎𝒐𝒍
𝒎𝟑 ]

(𝑫𝑵𝒂𝑪𝒍 ∗  𝟐. 𝟏𝟓𝑬 − 𝟎𝟖 ∗ 𝒆𝟔.𝟎𝟑𝑬−𝟎𝟐∗𝑹𝑯)[𝒎] ∗ 𝟐. 𝟓𝟗 ∗ 𝟏𝟎−𝟔 [
𝒎𝒐𝒍
𝑨 ∗ 𝒔]

  

(5.2.2-10)  

ilim,e = theoretical maximum cathodic corrosion current due to the diffusion of 

oxygen through the electrolyte [A/m
2
], 

DH20 = diffusion coefficient for oxygen in water [m
2
/s],  

SO2 = concentration (max solubility) of oxygen in the surface layer of the 

electrolyte [mol/m
3
] (function for SO2 from (COMSOL 2014), (Chen, Cui et 

al. 2008)),  

tL = thickness of electrolyte layer [m],  

DNaCl = salt load density [g/m
2
],  

RH = relative humidity of the surrounding air [%],  
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Depending on the thickness of the electrolyte layer, the diffusion of oxygen 

through the air or through the electrolyte layer may dominate. The lowest ilim will be the 

theoretical limit for the cathode reaction due to oxygen diffusion. Figure 102 is a surface 

plot of equation (5.2.2-9) showing that the salt load density and the relative humidity both 

have to be high in order for the oxygen diffusion through air to really affect ilim,air.  

 

Figure 102: ilim as a function of oxygen diffusion through the air in the gaps between the strands. 

 

The reason for the drastic drop in ilim,air at a salt load density of approximately 10 

g/m
2
 is that the electrolyte layer grows so thick that there is no opening for the oxygen to 

diffuse into the conductor.  

Figure 103 displays the electrolyte layer thickness as a function of humidity and 

salt load density. When the electrolyte layer exceeds 90 μm (marked with the dashed red 

line), the gaps are full of liquid and equation (5.2.2-9) illustrated in Figure 102 would 

actually become negative. We can thus conclude that equation (5.2.2-9) for ilim,air is only 

valid when tL < 90 μm.  
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Figure 103: Electrolyte layer thickness as a function of relative humidity and salt load density.  

 

Figure 104 is a surface plot of equation (5.2.2-10) for in ilim,electrolyte as a function 

of the diffusion of oxygen through the electrolyte layer under atmospheric conditions.  

 

Figure 104: ilim as a function of oxygen diffusion through the electrolyte layer on the cathode. 
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Comparing Figure 102 and Figure 104, we can conclude that the diffusion of 

oxygen will always be slower or dramatically slower through the electrolyte than through 

the air inside the conductor. We can therefore ignore the diffusion of oxygen through the 

gaps between the strands, and concentrate on the diffusion through the electrolyte layer as 

the rate limiting mechanism.   

Expression (5.2.2-10) generates a value for ilim that is approximately twice as high 

as compared to the function used in the Comsol tutorial (Chen, Cui et al. 2008), 

expression (5.2.2-10) . The higher value is a result of a slightly thinner electrolyte layer 

and a slightly higher diffusion coefficient. Despite this deviation, the agreement can still 

be considered quite good. Equation (5.2.2-10) will be used in the modeling of 

atmospheric galvanic corrosion in chapter 7.  

 

5.2.3 Salinity as a function of relative humidity  

The conductivity of the electrolyte is an important parameter in galvanic 

corrosion. This section will discuss the conductivity’s dependence on salt load density 

and relative humidity.  

The conductivity of the electrolyte is a function of the salt concentration. Using 

data from the experiment discussed in the previous section, the concentration of NaCl in 

the electrolyte layer as a function of relative humidity is plotted in Figure 105. Because 

NaCl starts to deliquesce at 76 % RH, all values for salt concentration below 76 % have 

no practical meaning from a galvanic corrosion perspective. The salt will be solid with 
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some water absorbed in its crystal lattice. The values below 76 % RH (marked with a 

dotted line) will therefore be excluded from the following discussion. 

The maximum solubility of NaCl in water is approximately 36 grams/100 ml at 

room temperature, which is equal to 26 mass %. If the calculated salt concentration is 

higher than 26 mass %, it means that there will be solid salt crystals in the electrolyte. 

The solubility limit of 26 mass % is also marked in Figure 105 with a dotted line. Any 

values exceeding 30 mass % were excluded from the subsequent analysis. Although the 

solubility limit is 26 %, a few values between 26 and 30 mass % were included to 

account for uncertainty in the mass measurement and to get a sufficiently large data set 

for the trendline fits. 

 

Figure 105: Salinity of the electrolyte as a function of salt load density and relative humidity.   
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Focusing on relative humidity levels of 85 % or higher and salinities below 30 

mass %, we can fit linear functions to all the plots. As seen in Figure 106, the linear fits 

are quite good. With exception of one salt load density – 0.57 g/m
2
 – the slope of the 

functions are all approximately -1.0 %/%. (The data set for 0.57 g/m
2
 has in general quite 

a bit of irregularities in the values compared to the other samples, perhaps caused by 

large uncertainties due to the very low mass measured).  

The salinity decreases approximately 1 % for each percentage point increase in 

relative humidity. There is no clear relation between salt load density and salinity, 

although the lowest salt load density (0.27 g/m
2
) had the lowest salinity and the NaCl in 

free air had the highest salinity. The salinities stayed within 11 percentage points for all 

RH levels between 85 and 100 %. The salinity should be independent of salt load density, 

and the differences in Figure 106 can likely be attributed to measurement errors as 

measured masses are very small.  
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Figure 106: Salinity of the electrolyte as a function of salt load density and relative humidity.   

 

Conductivity as a function of relative humidity  

The conductivity of an electrolyte can be calculated using Kohlrausch’s law, 

which was presented in section 2.3.2. Using an average of the relations presented in 

Figure 106 and the relations between relative humidity, salt load density, and electrolyte 

layer thickness presented above, the conductivity of the electrolyte as a function of 

humidity can be calculated. Figure 107 illustrates the results.  
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Figure 107: Conductivity as a function of RH for non-saturated electrolytes. 

 

Figure 107 highlights a problem with Kohlrausch’s; it generates conductivity 

levels higher than the conductivity of a saturated solution. The maximum conductivity of 

a NaCl solution is 24.4 S/m and it occurs in saturated state (Foxboro 1999) (marked with 

a dotted line in Figure 107). Only at relative humidity levels above 99.9 % would the 

conductivity be lower than the conductivity of a saturated solution. At 99.9 %, the 

conductivity would be 24.4 S/m, but at 70 % it would be 148 S/m and at 40 % it would be 

902 S/m. The linear model used to generate this function clearly does not work on these 

high concentrations, which is a known problem with Kohlrausch’s law. Nevertheless, we 

can conclude that if there is liquid electrolyte present, it will always have conductivity 

that is somewhere between that of seawater and that of a saturated electrolyte, which 

means that the conductivity is very high. Also, it was concluded in chapter 4 that the 
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conductivity has a very weak effect on the galvanic corrosion rate as long as the 

conductivity is sufficiently high. In the conditions presented here, the electrolyte 

conductivity will always be sufficiently high.  

 

Comparing with data used in Comsol tutorials: 

Reference (Chen, Cui et al. 2008), which is the source of data for the Comsol 

tutorials, shows a quite different conductivity function. It shows the conductivity and the 

NaCl concentration both approaching zero at 100 % RH, which does not agree at all with 

the measurements performed in this study. The Comsol tutorial gets around this problem 

by conveniently using the range 80 % 98 % for its examples. The procedure for obtaining 

the data in the literature is not specified and it does not agree with the measurements 

conducted in this study. Due to the large deviation between the literature values and the 

unreasonable claim that the salt concentration and conductivity is zero at 100 % RH, the 

fixed value of 24.4 S/m will be used for modeling atmospheric conditions in this study 

instead of references (COMSOL 2014), (Chen, Cui et al. 2008). The rationale for this 

decision was presented above.   
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Figure 108: Data from the literature (Chen, Cui et al. 2008) for a) NaCl concentration, b) density, c) 

oxygen solubility, and d) conductivity. 
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CHAPTER SIX: NUMERICAL MODELING OF GALVANIC CORROSION – 

IMMERSED CONDITIONS 

 

There are several numerical methods that can be used to model and predict 

galvanic corrosion. The non-linear electrode kinetics makes numerical modeling 

attractive and interest in these methods has existed for at least seven decades, with rapid 

development starting in the 1970s (Munn and Devereux 1991). 

The literature reports several different numerical methods such as the finite 

difference method, the boundary element method (also called the integral equation 

method), and the finite element (FE) modeling (Munn and Devereux 1991), (Bardal, 

Johnsen et al. 1984). The FE modeling is often considered the most advantageous method 

and appears to be the most popular these days (Munn and Devereux 1991), (Turner 

2012), (Munn 1986) perhaps due to the availability of commercial software such as the 

COMSOL® Multiphysics (from here on only referred to as “Comsol”) with modules for 

corrosion and electrochemistry.  

The basic procedure for FE modeling of galvanic corrosion involves solving the 

partial differential equations that describe the electric fields in the conductive medium, 

and applying the boundary conditions which describe the non-linear electrode kinetics of 

the corroding materials (Munn and Devereux 1991). The dissolution (corrosion) rate may 

then by calculated using Faraday’s law. Although Comsol takes care of the computational 
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part, it still requires a significant amount of input data for the specific system being 

modeled that needs to be acquired either experimentally or from the literature. 

This chapter will present the fundamental mathematical relations for numerical 

modeling of galvanic corrosion. It will also compare the different numerical approaches 

with physical validation models for immersed galvanic corrosion, while the next chapter 

will present numerical modeling of atmospheric galvanic corrosion.  

 

6.1 Basic procedure for Finite Element Modeling of galvanic corrosion 

The rate and distribution of the corrosion attack on the corroding electrode is 

correlated to the electrochemical potential distribution within the electrolyte and the 

reacting surfaces (Zhang 2011). The potential distribution is governed by the Fourier 

equation for a conductive medium (Munn and Devereux 1991).  

 

6.1.1 Common assumptions  

Several assumptions have to be made to perform FE modeling of corrosion. Here 

are some of the most common:  

 The properties of the metal-electrolyte system must be known.  

 The chemical reactions must be known (the most common reactions 

were presented in chapter 2).  

 The process must be considered quasi-steady state (Munn and 

Devereux 1991).  
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 A function has to be fit to the electrode kinetics, which is typically 

non-linear (see chapters 2 and 5).   

 The corrosion process is often assumed to not be mass-transport 

limited, but it will be shown later in this dissertation that this 

assumption is only valid under certain conditions.   

 

6.1.2 Step-by-step procedure  

The basic procedure for FE modeling of galvanic corrosion is the following:  

Step 1) Input data  

Obtaining input data. 

Step 2) Electrical potential  

Numerical prediction of the electrical potential distribution in the electrolyte. The 

potential is due to the presence of dissimilar metals (or other conductive 

materials) connected through an electrolyte and through metallic contact. The 

potential can also be caused by an externally applied current or potential, but that 

is outside the scope of this work.  

Step 3) Current density  

The net current density is calculated using the polarization curve (typically 

experimentally acquired) for that particular metal-electrolyte system.  

Step 4) Corrosion rate  

The metal dissolution rate can be calculated using Faraday’s law.  
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6.2 Fundamental mathematical relations  

Numerical modeling of galvanic corrosion is a boundary value problem governed 

by several different equations and boundary conditions.  

 

6.2.1 Differential equation for conductivity of the electrolyte  

The rate and distribution of the corrosion attack on the corroding electrode can be 

correlated to the electrochemical potential distribution within the corrosion system 

(Zhang 2011). To calculate the potential distribution in the electrolyte, the flow of 

electrical charge through the electrolyte first has to be calculated. The governing equation 

for any field problem in a conductive medium is the Fourier-Ohm law. The Fourier-Ohm 

law has the same base as the Fourier law for conductive heat transfer, and the flow of 

charge (Q) can be compared to the flow of energy in heat transfer (the two applications 

are compared in section 6.2.1.1) .  

When the medium is linearly conductive, the flow of electrical charge can be 

written as a one-dimensional continuum expression of Ohm’s law (Munn and Devereux 

1991):  

𝑄 =  −𝜎𝐴
𝜕𝜙

𝜕𝑥
∆𝑡     (6.2.1-1) 

where  

Q = amount of charge transferred across the medium boundary,  

σ = electrical conductivity of the electrolyte (assumed to be uniform),  

A = area of the boundary,  

ϕ = electrical potential at a point,  
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x = linear dimension in the x-direction (orthogonal to the boundary), and  

t is time.  

 

The electrical potential ϕ is the potential at the center of the infinitesimal element 

of the electrolyte shown below in Figure 109.  

 

Figure 109: Infinitesimal element of the electrolyte.  

Based on (Munn and Devereux 1991).  

 

The element can be divided into two halves, where the potential over the right-

hand half-thickness of the element is (Munn and Devereux 1991):  

 

∆𝜙𝑅 =  
𝜕𝜙

𝜕𝑥
(

1

2
∆𝑥)      (6.2.1-2) 
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Because ϕ is the potential at the center of the element, the potentials over the two 

half-thicknesses can be written as:  

𝜙𝐿 = 𝜙 −
𝜕𝜙

𝜕𝑥
(

1

2
∆𝑥)       (6.2.1-3a)  

𝜙𝑅 = 𝜙 +
𝜕𝜙

𝜕𝑥
(

1

2
∆𝑥)       (6.2.1-3b)  

 

Using equations (6.2.1-1) and (6.2.1-3b), we can write the charge entering the left 

side of the element as (Munn and Devereux 1991):  

𝑄𝐿 =  −𝜎𝐴
𝜕

𝜕𝑥
(𝜙𝐿)∆𝑡 =  −𝜎 ∆𝑦 ∆𝑧

𝜕

𝜕𝑥
  ( 𝜙 −

1

2

𝜕𝜙

𝜕𝑥
∆𝑥) ∆𝑡  (6.2.1-4) 

We can similarly express the charge leaving the element on the right-hand side as 

(Munn and Devereux 1991):  

𝑄𝑅 =  −𝜎 ∆𝑦 ∆𝑧
𝜕

𝜕𝑥
 ( 𝜙 +

1

2

𝜕𝜙

𝜕𝑥
∆𝑥) ∆𝑡    (6.2.1-5)  

The net gain of charge in the element is then (Munn and Devereux 1991):  

𝑄 =  𝑄𝐿 −  𝑄𝑅  

=  −𝜎 ∆𝑦 ∆𝑧 [
𝜕

𝜕𝑥
 ( 𝜙 −

1

2

𝜕𝜙

𝜕𝑥
∆𝑥) −  

𝜕

𝜕𝑥
 ( 𝜙 +

1

2

𝜕𝜙

𝜕𝑥
∆𝑥)] ∆𝑡 

=  𝜎 ∆𝑦 ∆𝑧
𝜕2𝜙

𝜕𝑥2  ∆𝑥 ∆𝑡          (6.2.1-6)  

In three dimensions, the net gain of charge is (Munn and Devereux 1991):  

𝑄 =  𝜎 (
𝜕2𝜙

𝜕𝑥2 + 
𝜕2𝜙

𝜕𝑦2 +
𝜕2𝜙

𝜕𝑧2 ) ∆𝑥 ∆𝑦 ∆𝑧∆𝑡        (6.2.1-7)  

 

If the charge is stored in the element, the potential of the element will change in 

the following way (Munn and Devereux 1991):  
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∆𝜙 =
𝑄

𝜌 𝑐 ∆𝑥 ∆𝑦 ∆𝑧
       (6.2.1-8) 

where  

ρ = density of the electrolyte, and  

c = specific capacitance of the electrolyte. 

 

Rearranging equation (6.2.1-8) gives an independent expression for charge:    

𝑄 =  𝜌 𝑐 ∆𝑥 ∆𝑦 ∆𝑧 ∆𝜙      (6.2.1-9)  

If we equate the net gain of charge in (6.2.1-7) with the charged stored in (6.2.1-

9), Δx, Δy, and Δz will cancel out, and we will get (Munn and Devereux 1991):  

 𝜎 (
𝜕2𝜙

𝜕𝑥2 +  
𝜕2𝜙

𝜕𝑦2 +
𝜕2𝜙

𝜕𝑧2 ) ∆𝑡 =  𝜌 𝑐 ∆𝜙   (6.2.1-10) 

As Δt→0, equation (6.2.1-10) becomes:  

𝜎 

𝜌 𝑐
(

𝜕2𝜙

𝜕𝑥2 +  
𝜕2𝜙

𝜕𝑦2 +
𝜕2𝜙

𝜕𝑧2 ) =
𝜕𝜙

𝜕𝑡
   (6.2.1-11) 

To simplify the notation, we can replace 
𝜕2𝜙

𝜕𝑥2 +  
𝜕2𝜙

𝜕𝑦2 +
𝜕2𝜙

𝜕𝑧2  with the Laplacian 

operator ∇2. Equation (6.2.1-11) then becomes (Munn and Devereux 1991):  

𝜎 

𝜌 𝑐
∇2𝜙 =

𝜕𝜙

𝜕𝑡
    (6.2.1-12) 

Equation (6.2.1-12) is the field equation, which is also known as the Fourier 

equation. It describes the electrical potential distribution in a conductive medium (Munn 

and Devereux 1991). Because most electrochemical problems are considered to be quasi-

steady state (δ/δt = 0), the governing equation becomes (Munn and Devereux 1991):  

∇2𝜙 = 0     (6.2.1-13) 
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6.2.1.1 Analogy with heat conduction  

As mentioned in the introduction, Fourier’s law also governs conductive heat 

transfer. Table 14 below illustrates the similarity between the Fourier’s law for 

conductive heat transfer and the Fourier-Ohm law for ionic conduction. The comparison 

below assumes that both the thermal conductivity k and the electrolyte conductivity σ are 

constants, but both variables can be replaced with functions.  

Table 14: Conductive heat transfer vs. Ionic conduction – the same mathematical base 

Sources: (Munn 1986), (Incropera, Dewitt et al. 2007).   

Phenomenon  Conductive heat transfer Ionic conduction 

Quantity being 

transferred  

[unit in SI system]  

Energy  

[joule, J]  

Charge (as positively or 

negatively charged ions) 

[coulomb, C]  

Governing equation Fourier’s Law 

𝑞"𝑥 =  −𝑘
𝜕𝑇

𝜕𝑥
 

where 

q”x = heat flux [W/m
2
] 

k = thermal conductivity 

[W/(m*K)]  

T(x) = temperature distribution [K] 

Fourier-Ohm’s Law  

𝑞"𝑥 =  −𝜎
𝜕𝜙

𝜕𝑥
 

where 

q”x = charge flux [C/(s*m
2
)] 

σ =  conductivity of the 

electrolyte [S/m] or [1/(Ω*m)] 

𝜙 (x) = potential distribution 

[V] 

Accumulation of energy 

or charge in a finite 

element 

 

∆𝑇 =
𝑄

𝜌 𝑐𝑝 ∆𝑥 ∆𝑦 ∆𝑧
 

where 

ΔT = change in temperature [K] 

Q = accumulation of energy in the 

element [J] 

ρ = density of the material [kg/m
3
] 

cp = specific heat capacity of the 

material [J/kg*K] 

ΔxΔyΔz = volume of the element 

[m
3
] 

 

∆𝜙 =
𝑄

𝜌 𝑐 ∆𝑥 ∆𝑦 ∆𝑧
 

where 

Δϕ = change in potential [V]  

Q = accumulation of charge in 

the element [C] 

ρ = density of the electrolyte 

[kg/m
3
] 

c = specific capacitance of the 

electrolyte [F/kg] 

ΔxΔyΔz = volume of the 

element [m
3
] 
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6.2.2 Boundary conditions  

The next step in the numerical modeling is to select suitable boundary conditions. 

Munn and Devereux (Munn and Devereux 1991), and Kasper (Kasper 1940) have 

described five generic boundary conditions for modeling of corrosion and other 

electrochemical systems:  

1) First boundary-value problem (constant potential) 

A constant potential over a portion of the boundary is specified. In a corrosion 

system, this could be a suitable boundary condition for a non-polarizing metal 

electrode.  

2) Secondary boundary-value problem (constant current) 

A constant current flow – the so called Newmann boundary condition – 

characterizes this boundary condition. A constant-current cathodic protection 

system would be an example of a corrosion system that exhibits this behavior.  

3) Mixed boundary-value problem 

A combination of 1) and 2), as well as systems containing any combinations 

of these and the following types of boundary conditions.  

4) Third boundary-value problem (linear) 

A linear relation exists between the applied boundary current and the 

polarization potential. Real electrodes exhibit this polarization behavior only 

within a few tens of millivolts of the reversible corrosion potential.  

5) Fourth boundary-value problem (non-linear) 

The relation between the current through the boundary and the boundary 
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potential does not obey a linear relationship. This is the general case for 

polarization behavior and will be the focus of this chapter. There are two 

general types of non-linear boundary conditions: logarithmic (Tafel) and 

exponential (Volmer-Butler). Tafel boundary conditions will be used in the 

models presented in this dissertation.  

 

6.3 Comsol Multiphysics Corrosion Module 

The commercial software package Comsol has been used for the finite element 

models presented in this dissertation. The software is convenient and takes care of all the 

heavy computational work, but a relatively large amount of input data still has to be 

supplied by the user. This section will present the software and its features.  

 

6.3.1 Comsol electrochemistry modules  

Comsol has four different electrochemistry modules: Batteries and Fuel Cells, 

Electrodeposition, Corrosion, and Electrochemistry (Figure 110). All modules rest on the 

same physics, but the user interfaces are tailored for the particular applications. Only the 

Corrosion module was used in this study.   
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Figure 110: The Comsol electrochemistry modules. 

Source: (Comsol 2014). 

 

Comsol supplies a large selection of example problems and tutorials, many of 

them based on real cases. These fill two functions: they display the capability of the 

software package, and they help the user to get started with the software. Figure 111 

through Figure 113 illustrate some of the capabilities of the Comsol Corrosion module.   

 

Figure 111: Comsol example problem: corrosion prevention. 

Source: (Comsol 2014). 
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Figure 112: Comsol example problem: crevice corrosion. 

Source: (Comsol 2014). 

 

 

Figure 113: Comsol example problem: corrosion with deformed geometry. 

Source: (Comsol 2014). 
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6.3.2 Current distribution  

The main ‘physics’ type the user has to select in the Comsol corrosion modeling 

is the current distribution. It also has choices of Electroanalysis, Shell electrode and 

Corrosion with deformed geometry. 

 

Figure 114: The available ‘physics’ types in the Comsol Corrosion module interface.  

Source: Screenshot of the Comsol interface. 

 

Primary current distribution  

The primary current distribution is used to estimate the ohmic losses in simplified 

models of electrochemical cells. It defines the transport of ions in an electrolyte of 

uniform composition. It neglects over-potentials and reaction kinetics.  

 

Secondary current distribution  

Secondary current distribution is used for generic modeling of electrochemical 

cells. The relation between charge transfer and overpotential can be described using 

Butler-Volmer, Tafel, or other kinetic expressions. The conduction of currents in the 

electrodes and electrolytes are described by Ohm’s law in combination with a charge 

balance. Secondary current distribution has been used in the model presented in this 

section.  
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Tertiary current distribution (Nernst-Planck) 

Individual transport of ions in the electrochemical cell is taken into account to 

describe the current and potential distribution in the Nernst-Planck interface in the 

tertiary current distribution alternative. This physics interface can be used to model 

significant concentration gradients of current-carrying species (ions).  

 

Figure 115: Applications for the different current distribution alternatives in the Comsol corrosion module. 

Source: (Comsol 2014). 

 

6.3.3 Study type  

Comsol has four different preset ‘study types’ in the corrosion module: AC 

impedance stationary, AC impedance time dependent, Stationary, and Time dependent. 

There is also the option to create custom studies.  
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Figure 116: The available ‘study’ types in the Comsol Corrosion module interface. 

 Source: Screenshot of the Comsol interface. 

 

AC impedance stationary  

This study type is used to model stationary electrochemical impedance 

spectroscopy (EIS) in electrochemical cells.  

AC impedance time dependent  

This study type is used to model time dependent electrochemical impedance 

spectroscopy (EIS) in electrochemical cells.  

Stationary  

The stationary study type is used when field variables can be assumed to not 

change over time. This study type has been used in the Comsol models presented in this 

dissertation.  

Time dependent  

The time dependent study type is used when field variables change over time.  
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6.3.4 Step-by-step procedure  

The basic procedure for finite element modeling of galvanic corrosion in Comsol 

is the following:  

Step 1) Input data and model geometry 

The software requires a minimum input of Tafel slopes, equilibrium potentials, 

exchange current density, and electrolyte conductivity. The geometry has to be 

built and meshed.  

Step 2) Electrical potential  

The software computes the electrical potential distribution in the electrolyte. The 

potential is due to the presence of dissimilar metals (or other conductive 

materials) connected through an electrolyte and through metallic contact. The 

potential distribution can also be calculated for externally applied currents, but 

this feature has not been used in this study.   

Step 3) Current density  

The net current density is calculated using the input specified above for the 

particular metal-electrolyte system.  

Step 4) Corrosion rate  

The metal dissolution rate can be calculated using Faraday’s law.  
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The step-by-step procedure is illustrated in Figure 117 below.  

 

Figure 117: Step-by-step procedure for FE modeling of galvanic corrosion in Comsol.  

 

 

Note that the basic process described above is based on the assumption that the 

process is not mass-transport limited. Mass-transport limitations will be discussed in later 

sections.  
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6.4 Immersed model: Parallel electrodes, resistance dominated 

This section will describe a simple galvanic corrosion model consisting of two 

parallel electrodes with the space between filled with an electrolyte. The model is solved 

in this section using both an analytical approach and FE modeling. The simple geometry 

was chosen because analytical solutions are often only available for simplistic systems. 

The results from these two numerical models will be compared with experimental 

measurements. The galvanic corrosion rate is assumed to not be mass transport limited. 

The FE model is two-dimensional with electrodes of aluminum (6061-T6 alloy) 

and solid graphite, see Figure 118. The analytical and physical model has planar 

electrodes that are 50 mm high and 6 mm wide (Figure 119). Solid graphite was chosen 

instead of CFRP because it allows for more accurate estimations of the exposed carbon 

surface. Four different distances between the electrodes were used: 25 mm, 50 mm, 100 

mm, and 200 mm. Four different NaCl aqueous solutions were also used: 0.6 M (3.5 

mass % NaCl), 0.17 M (1 mass % NaCl), 0.017 M (0.1 mass % NaCl), and 0.0017 M 

(0.01 mass % NaCl).  

 

Figure 118: Illustration of the finite element model geometry. 

 

 

Anode  

(Al 6061-T6) 

Cathode 

(Graphite) 50 mm 

25 to 200 mm 

0.0017 to 0.6 M 

NaCl (aq.), 25°C 
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Figure 119: Validation experiment for parallel electrode model.  

 

6.4.1 Input data  

The data in Table 15 were used as input data for the numerical models presented 

in this chapter. The method for obtaining the input data was presented in chapter 4. The 

polarization curves used to obtain the data are repeated below.  

 

Table 15: Input values for parallel electrode model in 0.6 M NaCl at RT 

(obtained experimentally) 

Variable 

name  

Variable Value Unit 

Eeq,Al Equilibrium potential, aluminum 6061-T6 -0.690 V 

Eeq,C Equilibrium potential, graphite -0.140 V 

Ac,C Tafel slope, graphite -1.9558 V 

Aa,Al Tafel slope, aluminum 6061-T6 0.0153 V 

i0,Al Exchange current density, Al 6061-T6 0.16681 A/m
2
 

i0,C Exchange current density, graphite 0.093521 A/m
2
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Figure 75 (repeated): Tafel slopes and equilibrium potential for aluminum and graphite. 

 

 
 

Figure 76 (repeated): Exchange current density for aluminum and graphite.   
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Figure 77 (repeated): Exchange current density for aluminum and graphite (zoomed in).   
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6.4.2 Analytical solution 

The analytical solution assumes that the galvanic corrosion rate is solely 

controlled by the electrode kinetics and the resistance of the electrolyte.  

 

Potential gradient 

The potential gradient through the electrolyte is caused by the so called IR drop. 

In this case, the Fourier-Ohm’s law (described in section 6.2.1) simplifies to Ohm’s law 

where the voltage drop is a linear function of the resistance through the electrolyte and 

follows Ohm’s law (Boyes 2009): 

𝐸𝐼𝑅 = 𝐼 ∙ 𝑅          (6.4.2-1) 

where  

EIR = potential drop through the electrolyte [V],  

I = galvanic corrosion current through the electrolyte [A], and  

R = resistance of the electrolyte [Ω]. 

 

The resistance of the electrolyte is a constant set by the conductivity of the 

electrolyte, the area of the electrodes, and the distance between the electrodes (this 

assumes that the composition of the electrolyte is uniform and does not change over 

time):  

𝑅 [𝛺] =
𝜌𝑒𝑙 [𝛺𝑚]∙𝑑[𝑚]

𝑤 [𝑚]∙ℎ [𝑚]
       (6.4.2-2) 

where 

R = resistance [Ω],  
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ρel = resistivity of the electrolyte [Ω*m],  

d = distance between the parallel electrodes [m],  

w = width of the electrodes [m], and  

h = height of the electrodes [m].  

 

0.6 M NaCl (3.5 mass % NaCl) has a conductivity of 7.59 S/m, which is equal to 

a resistivity of 0.132 Ω m. With this resistivity and electrode areas as described above, 

and a distance of 25 mm, the resistance of the electrolyte will be:  

𝑅 =
𝜌𝑒𝑙 [𝛺𝑚]∙𝑑[𝑚]

𝑤 [𝑚]∙ℎ [𝑚]
=

0.132 [𝛺𝑚]∙0.025[𝑚]

0.006 [𝑚]∙0.05 [𝑚]
 = 11.0 Ω   (6.4.2-3) 

 

Table 16 below lists the calculated resistances for additional electrolyte 

concentrations and electrode distances used in the model (conductivity based on 

Kohlrausch’s law, presented in section 2.3.2).  
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Galvanic corrosion current from overlaying polarization curves 

Overlaying of the potentiodynamic polarization curves provides a rough estimate 

of the expected galvanic corrosion current, but it neglects the IR drop (more about that 

problem below) (Zhang 2011). A similar estimate can also be obtained by finding the 

intersection between the two linear curve fits that were used to generate the Tafel slopes 

(Figure 75, repeated above). This approach assumes that the IR drop through the 

electrolyte can be neglected. Setting the two equations extracted from the figure equal to 

each other yields the following result:  

0.0153𝑥 − 0.6781 = −1.9558𝑥 − 2.1527      →      𝑥 = −0.748110192 

𝑖 = 10𝑥 = 10−0.748110192 =  0.1786 [
𝐴

𝑚2] = 178.6 [
𝑚𝐴

𝑚2]   (6.4.2-4) 

Table 16: Resistance of selected electrolytes 

NaCl concentration 

[mass %] 

NaCl molarity 

[M] 

Distance between 

electrodes [mm] 

Resistance [Ω] 

3.5 0.6 25 mm 11.0 

3.5 0.6 50 mm 22.0 

3.5 0.6 100 mm 43.9 

3.5 0.6 200 mm 87.8 

1.0 0.17 25 mm 38.4 

1.0 0.17 50 mm 76.9 

1.0 0.17 100 mm 154 

1.0 0.17 200 mm 307 

0.1 0.017 25 mm 384 

0.1 0.017 50 mm 769 

0.1 0.017 100 mm 1537 

0.1 0.017 200 mm 3074 

0.01 0.0017 25 mm 3843 

0.01 0.0017 50 mm 7686 

0.01 0.0017 100 mm 15371 

0.01 0.0017 200 mm 30742 
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Because the two electrodes have the same exposed area, the galvanic corrosion 

current densities will be equal. The value calculated above will be compared to a solution 

also taking into account the IR drop through the electrolyte at the end of this section. 

  

Over-potentials 

The over-potential is the measurement of how far the corrosion potential of a 

material is shifted from its equilibrium potential (marked with a dotted line in Figure 75). 

The greater the over-potential, the further away from the equilibrium potential, and the 

more polarized the material is said to be. Assuming that the corrosion potential of the 

aluminum-graphite couple during galvanic coupling is represented by the intersection of 

the two Tafel slopes (first part of eq. 6.4.2-4), the corrosion potential of the galvanic 

couple with respect to the Ag/AgCl reference electrode is the following:  

𝐸𝑐𝑜𝑟𝑟 = 𝑦 = −1.9558𝑥 − 2.1527 = −1.9558 ∙ (−0.74811) − 2.1527 =

−0.689546 𝑉          (6.4.2-5) 

Using the value above for the corrosion potential and the equilibrium potentials 

for both materials, the over-potentials for graphite and aluminum would be:  

∆𝑉𝐶 =    𝐸𝑐𝑜𝑟𝑟 − 𝐸𝑒𝑞,𝐶 = (−0.689546) − (−0.140) =  −0.549546 𝑉  (6.4.2-6a) 

∆𝑉𝐴𝑙 =    𝐸𝑐𝑜𝑟𝑟 − 𝐸𝑒𝑞,𝐴𝑙 = (−0.689546) − (−0.690) =  0.000454 𝑉  (6.4.2-6b) 

where  

ΔV = over-potential [V],  

Ecorr = corrosion potential [V], and  

Eeq = equilibrium potential [V].  
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The potential of the graphite is shifted to a much more negative level, while the 

potential of the aluminum is shifted to a more positive level. The large polarization of the 

cathode is common under immersed conditions. 

 

Galvanic corrosion current from over-potential  

The galvanic corrosion current can also be estimated from the over-potentials 

using the Tafel equation (Revie 2000):  

∆𝑉 = 𝐴𝑇 ∙ 𝑙𝑜𝑔 (
𝑖

𝑖𝑜
)         (6.4.2-7) 

where  

ΔV = over-potential [V],  

AT = Tafel slope [V],  

i = current density [A/m
2
], and 

i0 = exchange current density [A/m
2
].  

 

Solving for the current density gives:  

𝑖 = 𝑖0 ∙ 𝑒
(

∆𝑉

𝐴𝑇
)
        (6.4.2-8) 

Using the values from above:  

𝑖𝐶 = 𝑖0,𝐶 ∙ 10
(

∆𝑉𝐶
𝐴𝑇,𝐶

)
= 0.093521 [

𝐴

𝑚2
] ∙ 10[

−0.549546

−1.9558
] = 0.1786 [

𝐴

𝑚2
] = 178.6 [

𝑚𝐴

𝑚2
]  

 

(6.4.2-9a) 
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𝑖𝐴𝑙 = 𝑖0,𝐴𝑙 ∙ 10
(

∆𝑉𝐴𝑙
𝐴𝑇,𝐴𝑙

)
= 0.16681 [

𝐴

𝑚2
] ∙ 10[

0.000454

0.0153
] = 0.1786 [

𝐴

𝑚2
] = 178.6 [

𝑚𝐴

𝑚2
]  

 

(6.4.2-9b) 

This method gives the same results as the intersection of the functions used to 

generate the Tafel slopes, which is expected as they are mathematically equivalent.  

 

Accounting for the IR drop 

The calculations of galvanic corrosion current above were assuming a negligible 

IR drop through the electrolyte. This may be a reasonable assumption when the 

electrolyte conductivity is high and the distance between the electrodes is short. With 

lower conductivity or larger distance, or both, the IR drop cannot be neglected. The IR 

drop decreases the over-potential that drives the galvanic corrosion, resulting in a lower 

galvanic corrosion current (see Figure 120). Because the IR drop is a function of the 

galvanic corrosion current, the final solution has to be found through numerical iteration.  

Let us use the already presented configuration as an example. With an electrode 

area of 300 mm
2
, the total galvanic corrosion current is:  

𝐼 = 𝑖 ∙ 𝐴 =  0.1786 [
𝐴

𝑚2] ∙ 0.006 [𝑚] ∙ 0.05 [𝑚] = 53.6 [𝜇𝐴]  (6.4.2-10) 

 

At this current, the IR drop through the electrolyte with 11 Ω resistance (from 

Table 16, for 0.6 M NaCl and 25 mm distance) would be:  

𝐸𝐼𝑅 = 𝐼 ∙ 𝑅 =  53.6 [μA] ∙ 11[Ω] =  0.5896 [mV]   (6.4.2-11) 
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Figure 120: Illustration of the IR drop. 

From (Zhang 2011).   

 

This means that the galvanic corrosion current is not represented by the 

intersection of the two curves, but by the location to the left of the intersection where the 

distance between the two curves is 0.5896 mV.  

Adding the IR drop of 0.5896 mV to equation (6.4.2-4) will result in the 

following galvanic corrosion current density:  

0.0153𝑥 − 0.6781 + 0.0005896 = −1.9558𝑥 − 2.1527       

→      𝑥 = −0.748409  

𝑖 = 10𝑥 = 10−0.78409 =  0.17848 [
𝐴

𝑚2] = 178.5 [
𝑚𝐴

𝑚2]   (6.4.2-12) 
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By including the IR drop in the calculation, the calculated galvanic corrosion rate 

decreased from 178.6 mA/m
2
 to 178.5 mA/m

2
 because there was a slightly lower over-

potential available to drive the galvanic corrosion reactions. Because the IR drop is a 

function of this current density, we need to re-calculate the IR drop again. Repeating this 

iteration will eventually make the solution converge, as can be seen in Table 17. 

Table 17: Iterations to solve galvanic corrosion current, parallel electrode model 

in 0.6 M NaCl with 25 mm electrode distance  

Iteration x 

Galvanic 

current 

density 

[A/m
2
]  

Galvanic 

current 

density 

[mA/m
2
]  

Galvanic 

current 

[A] 

Galvanic 

current 

[μA] 

IR drop 

[V] 

1 -0.748110192 0.1786 178.60 5.36E-05 53.58 5.883E-04 

2 -0.747811737 0.1785 178.48 5.35E-05 53.54 5.879E-04 

3 -0.747811942 0.1785 178.48 5.35E-05 53.54 5.879E-04 

 

As illustrated in the table above, the galvanic corrosion current converges (to four 

significant figures) after the second iteration in this case. This is because the conductivity 

of the electrolyte is high and the distance short, which results in a very small IR drop. As 

it will be shown below, many more iterations will be needed if the conductivity is low 

and the distance large.  

 

Final analytical solution  

The final equation for the analytical solution for the galvanic corrosion current 

density in the parallel electrode model presented in this section is:  

𝑖 = 10
(

−1.4746−𝐼∙𝑅

1.9711
)

= 10
(

−1.4746−𝑖∙𝐴∙𝜌
𝑑
𝐴

1.9711
)

=  10
(

−1.4746−𝑖∙𝜌∙𝑑

1.9711
)
 (6.4.2-13) 

where 
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i = galvanic corrosion current density [A/m
2
],  

I = galvanic corrosion current [A],  

R = resistance of the electrolyte [Ω],  

A = area of each electrode (assumes 1:1 area ratio) [m
2
],  

ρ = resistivity of the electrolyte [Ω*m], and 

d = distance between electrodes [m]. 
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Analytical results 

Figure 121 illustrates the results for four different electrolytes and four different 

electrode distances solved through numerical iteration. The combination of the electrolyte 

with the highest conductivity (0.6 M NaCl) and the smallest distance (25 mm) converged 

after two iterations. The electrolyte with the lowest conductivity (0.0017 M NaCl) and 

the largest distance (200 mm) took 60 iterations to converge to the third decimal.  

 

 

Figure 121: Analytical solution for parallel electrode model for four different electrolytes and four 

different electrode distances.  
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6.4.3 Finite Element model 

A two-dimensional FE model was created in Comsol using the geometry in Figure 

118 (repeated below) and the input values in Table 15 (repeated below).  

The FE model is based on the following assumptions:  

 The electrolyte is only defined by its conductivity which follows Kohlrausch’s 

law (2.3.2-1).  

 The electrolyte composition and conductivity is uniform.  

 The current distribution is secondary, which assumes that the reaction rate is 

not limited by mass transport.  

 The two half-cell reactions and their characteristics are defined in the 

electrode-electrolyte boundary interfaces. Both reactions are assumed to 

follow Tafel behavior.  

 The upper and lower boundaries are insulated by applying a zero-flux 

boundary condition.  

 A mapped meshing was used with a finer mesh closer to the electrodes and a 

coarser mesh towards the center. 

 The electrodes are semi- infinitely wide.  
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Table 15 (repeated): Input values for parallel electrode model in 0.6 M NaCl 

at RT 

(obtained experimentally) 

Variabl

e name  

Variable Value Unit 

Eeq,Al Equilibrium potential, aluminum 6061-T6 -0.690 V 

Eeq,C Equilibrium potential, graphite -0.140 V 

Ac,C Tafel slope, graphite -1.9558 V 

Aa,Al Tafel slope, aluminum 6061-T6 0.0153 V 

i0,Al Exchange current density, Al 6061-T6 0.16681 A/m
2
 

i0,C Exchange current density, graphite 0.093521 A/m
2
 

 

 

Figure 118 (repeated): Finite element model. 

 

Parametric sweeps 

The model was built with a fixed distance between the electrodes, and the study 

was performed through a parametric sweep of the four different electrolyte 

conductivities. The model was then re-built for each of the electrode distances (25, 50, 

100, and 200 mm) and the parametric sweep was repeated.  
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Finite element results  

Figure 122 illustrates the results from the sixteen different combinations of 

electrolytes and electrode distances. The trend is very similar to the analytical results 

shown in Figure 121, but the values are consistently a bit higher for the FE model.   

 

Figure 122: Finite element solution for parallel electrode model for four different electrolytes and four 

different electrode distances.  

 

Figure 123 displays the potential gradient through the electrolyte for an electrode 

distance of 100 mm. The IR drop increases with decreased electrolyte conductivity due to 

the increased resistance. The figure clearly illustrates a linear gradient, supporting the 

assumption made in the analytical solution.  
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Figure 123: Potential gradient through the electrolyte for the parallel electrode model with 100 mm 

electrode distance.  

Sigma represents the conductivity of the electrolyte in S/m.  

 
 

6.4.4 Experimental validation models   

Two physical validation models were built as in Figure 119 (repeated below) and 

Figure 124. The second validation model was added after initial results indicated that the 

mass transport from the bulk electrolyte affected the results. Figure 125 shows the actual 

physical setup. The aluminum was washed and polished before each test series to avoid 

build-up of corrosion products and contamination between different electrolyte 
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compositions (this was particularly important while going from a strong electrolyte to a 

weak electrolyte).   

The galvanic corrosion current was measured for the same conditions that were 

used in the numerical models: four different electrode distances (25, 50, 100, and 200 

mm), and four different electrolytes (0.0017, 0.017, 0.17, and 0.6 M NaCl). The dissolved 

oxygen concentration in all electrolytes was 91% to 95 % of the saturation limit (Table 8, 

repeated below). All tests were performed at room temperature. The galvanic corrosion 

current was measured every 10 seconds during 30 minutes for each condition, and an 

average was calculated for the last 10 minutes. The measurements were repeated three 

times for each condition. 

 

Table 8 (repeated): Conductivity, resistivity, and dissolved oxygen 

concentration of the electrolytes 
Molarit

y [M] 

NaCl conc. 

[% mass 

fraction] 

Conductivity 

[S/m] 

Resistivit

y [Ω*m] 

Measured 

dissolved 

oxygen 

concentration 

(altitude and 

salinity 

corrected) 

[mg/liter]   

Oxygen 

saturation 

limit 

(altitude 

and salinity 

corrected) 

[mg/liter] 

(Milwaukee 

2010) 

% of 

oxygen 

saturation 

limit 

0.0017 0.01 0.0217 46.1 6.4 6.9 93 % 

0.017 0.1 0.217 4.61 6.4 6.9 93 % 

0.17 1.0 2.17 0.461 6.3 6.6 95 % 

0.6 3.5 7.59 0.132 5.1 5.6 91 %  
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Figure 119 (repeated): Validation experiment for parallel electrode model with open electrolyte volume.  

 

 

Figure 124: Validation experiment for parallel electrode model with enclosed electrolyte volume. 
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 Figure 125: Setup for physical validation model (case A).   

 

Figure 126 through Figure 128 show a comparison of galvanic corrosion current 

density from the analytical solution, the finite element model, and the two validation 

models for all sixteen different combinations of electrolyte composition and electrode 

distance.  
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Figure 126: Comparison of analytical solution, finite element model, and experimental measurements. 
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Figure 127: Comparison of analytical solution, finite element model, and experimental measurements. 
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Figure 128: Comparison of analytical solution, finite element model, and experimental measurements for 

each NaCl concentration.  

 

The sixteen charts above are all plotted on the same scale, and the agreement is 

quite good. The trends in the two numerical models are the same, but the values from the 

FE model are consistently higher than from the analytical solution. The difference is 11 

to 21 %, with an average difference of 19 % and a median difference of 21 %. The two 

models are based on the same fundamental assumptions, but the FE model uses a more 
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sophisticated method of calculating the potential distribution and IR drop, which results 

in slightly higher values for the corrosion current density.  

The experimental results straddle the results from the two numerical models. 

Validation model A with an open electrolyte volume generated generally higher 

corrosion current densities than the two numerical models, while validation model B with 

an enclosed electrolyte volume typically generated lower corrosion current densities. The 

results for the enclosed volume were on average 37 % lower than for the open electrolyte 

volume.  

The general trend with lower corrosion rate in the enclosed volume indicates that 

ion mobility is important in the control mechanisms. Figure 129 contains representative 

measurements from both case A and B. The generally higher galvanic corrosion rates and 

more volatile nature of the corrosion current with the open electrolyte volume indicate 

that the open electrolyte volume affects the galvanic corrosion rate. The most likely way 

that the open electrolyte volume would affect the corrosion rate is by allowing for 

transfer of reactants or reaction products, or both, to the bulk electrolyte. This agrees with 

previous results that indicated that the galvanic corrosion reaction rate between aluminum 

and carbon in an immersed environment is highly dependent on the mass transport of 

reactants and reaction products. In both configurations, the highest experimental values 

can be found for the 0.17 M (1 mass %) NaCl electrolyte. This can likely be attributed to 

a combination of high conductivity and high level of dissolved oxygen. With mass 

transport appearing to be the most dominant control mechanism, a high level of dissolved 

oxygen (which is consumed in the cathodic reaction) should result in an increased 
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galvanic corrosion rate. This is confirmed in Figure 128 which shows consistently high 

galvanic corrosion rates for the 0.17 M NaCl electrolyte.  

 

     

 
 

Figure 129: Open electrolyte volume vs. enclosed electrolyte volume.  

Representative experimental curves as a function of time for galvanic corrosion current and corrosion 

potential of the aluminum (versus Ag/AgCl reference electrode) for open electrolyte volume (left) and 

enclosed electrolyte volume (right). Electrode distance: 100 mm; electrolyte: 0.017 M (0.1 mass %) NaCl; 

exposed area: 300 mm
2
; duration: 30 minutes. Note that the data for the corrosion current is not 

normalized for the exposed area. 

 

The main reason that the FE model and analytical model agree fairly well with the 

closed volume validation model can be found in the input data and assumptions for these 

models. The data for electrode kinetics was obtained in oxygen-rich, stagnant electrolyte, 

which is the same condition as for the validation model with the enclosed volume. With 

the electrolyte being enclosed and stagnant, the mass transport limitations are already 

accounted for in the electrode kinetics. However, these presented models are only 

representative for stagnant environments.  

The importance of mass transport is also evident in Figure 130. The open or 

closed volume affects the corrosion current density to a much greater extent than the 
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electrolyte conductivity or the electrode distance. This suggests that the most important 

control mechanism in the immersed galvanic corrosion between aluminum and graphite 

is mass transport of reactants, reaction products, or both, but not resistance. Additional 

evidence for this hypothesis is that the test setup was very sensitive to agitation of the 

electrolyte. Any motion of the electrolyte caused an immediate increase in corrosion 

current. This type of control mechanism is known as diffusion control.  

 

 

Figure 130: Comparison of analytical solution, finite element model, and experimental measurements for 

each NaCl concentration.  
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6.5 Chapter conclusions 

This work has shown that a commercial software package can be used to quickly 

generate models with good agreement with experimental measurements. Simple 

geometries can also be solved manually through iteration. However, it is important to 

understand the mechanistic nature of models based on a few electrode kinetics input 

variables. The models may only be valid when the physical conditions are very close to 

the conditions used when the input data was obtained. It is also important to understand 

the control mechanisms because that will reveal which variables that highly affect the 

results and which will not. It was shown in the previous chapter that relatively small 

changes in the electrolyte agitation and in sample geometry can affect the galvanic 

corrosion rate with orders of magnitude due to changes in the oxygen transport. The 

parallel plate models showed that the electrolyte conductivity plays a much less important 

role than the oxygen transport. This agrees well with previous observations.   
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CHAPTER SEVEN: NUMERICAL MODELING OF ATMOSPHERIC 

GALVANIC CORROSION 

 

The focus in this chapter is the ACCC transmission line conductor presented in 

chapter 1. It has a core of PMC that carries the mechanical load. The core is surrounded 

by helically wound aluminum strands, which carry the electrical current. The core has a 

center of unidirectional carbon fiber reinforced polymer (CFRP) and an outer layer of 

unidirectional fiberglass composite that serves as a galvanic corrosion barrier.  

 

Figure 1 (repeated): ACCC vs. ACSR.  

Left) ACCC conductor with a hybrid composite core with fully annealed aluminum strands.  

Right) Conventional conductor with galvanized steel wires surrounded by hard drawn aluminum strands. 

 

The fiberglass barrier can be damaged by, for example, over-bending, impact, 

fatigue (Burks, Armentrout et al. 2011), or aging (Hoffman, Middleton et al. 2015). If the 

conductor is bent to a too small radius, or subjected to severe low-velocity impact, the 

composite core may fail as in Figure 2 (repeated below). It is possible that an installation 

crew would simply trim off the damaged section and re-splice the conductor, not noticing 
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the crack along the centerline extending into the conductor core. The crack could 

potentially grow through Aeolian vibrations resulting in a large area of exposed CFRP. 

Fatigue may also be the source of a crack, as shown in Figure 3 (repeated below).  

 
Figure 2 (repeated): Laboratory induced damage through low-velocity impact. The composite core fails in 

shear resulting in a long crack extending into the conductor. Photo courtesy of Daniel Waters. 

 

 

 

Figure 3 (repeated): Cracks in the ACCC conductor corrosion barrier caused by Aeolian vibrations (high 

cycle fatigue) (Burks, Armentrout et al. 2011).  

 

Numerical modeling is important for the understanding and prediction of galvanic 

corrosion. This chapter presents two numerical models that were developed in this study 
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for the quantitative prediction of the galvanic corrosion rate between aluminum and 

CFRP in the presence of an electrolyte under atmospheric conditions. The first model 

assumes a steady-state situation while the second model is time-dependent.  

Both models have focused on one type of damage to the conductor: a split in the 

composite core along the centerline (Figure 79, repeated below), simulating potential 

damage caused by over-bending or low-velocity impact. This damage results in a large 

exposed area of the CFRP. The development of a physical sample design mimicking this 

type of damage was presented in chapter 3.  

 

 
 

Figure 79 (repeated): Left) Damage introduced by splitting the composite core along the centerline.  

Right) Finished sample of ACCC with simulated damage.  
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7.1 Steady-state finite element modeling of atmospheric galvanic corrosion  

7.1.1 Model geometry and reactions  

In order to generate accurate results, the model geometry must be representative 

of the system being analyzed; although it typically needs to be simplified. This case is no 

exception. The relatively complex 3D geometry of the damaged conductor was simplified 

to a two-dimensional model (Figure 131). The model was simplified further by modelling 

only ¼ of the conductor; an approach that is common with symmetrical objects. This 

results in a two-dimensional geometry containing aluminium, the fiberglass barrier, and 

the exposed CFRP. The width of the modelled CFRP (3.5 mm) is half the diameter of the 

CFRP section of the core and the barrier width (1.5 mm) is the thickness of the fiberglass 

barrier.  

The effective length of the aluminum was calculated in two different ways, as 

illustrated in Figure 131. Model a) is using the shortest possible path length through the 

strands, which gives an aluminum electrode length of 10 mm. It gives an area ratio of 

~1:3 (CFRP:aluminum). In model b), the interfacial lengths (the red dotted lengths) are 

tied to ¼ of the exposed CFRP. With this approach, the aluminum electrode length would 

be 98 mm to reflect the 1:28 area ratio between the CFRP and the aluminum in the 

ACCC conductor with simulated impact damage. Because it is of great interest to 

understand the effect of the area ratios, both of these models will be used and the results 

will be compared.  
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Figure 131: Two ways of creating a 2D model from a 3D structure. 

 

A thin film of electrolyte will be modeled to span the three materials. The 

thickness of the electrolyte layer is a function of salt load density and the relative 

humidity (RH) of the surrounding air, using the expressions derived earlier in chapter 5. 

Figure 132  illustrates the model geometry. The chemical reactions will be modeled using 

the parameters discussed in chapter 4. The chemical reactions are illustrated in Figure 

133.  
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Figure 132: Model geometry. 

 

 

Figure 133: Illustrations of the chemical reactions taking place on anode and cathode.  

From (Håkansson 2013). 
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It was also assumed that:   

1) The thin film of electrolyte is in equilibrium with the surrounding air.  

2) The electrolyte film is uniform both in thickness and concentration.  

3) The reactions are at steady-state. 

4) The anodic reaction is metal oxidation (Al (s)  Al
3+

 + 3e
-
) and the 

cathodic reaction is oxygen reduction (O2 (g) + 2H2O (l) + 4e
-
  4OH

-
), 

resulting in the formation of aluminium hydroxide as the corrosion 

product (4Al (s) + 3O2 (g) + 6H2O (l)  4Al(OH)3 (s) ).  

 

Secondary current distribution was chosen as the ‘study physics’, which assumes 

that the reaction rate is not limited by mass transport. However, the diffusion of oxygen is 

incorporated in the equation for the theoretical maximum cathodic corrosion current 

(ilim), which makes the model indirectly incorporate a mass transport limitation.  
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7.1.2 Comsol model geometry and boundary conditions 

The Comsol model was built as three rectangles representing the three areas of 

electrolyte spanning the three different materials (Al, CFRP, and the fiberglass barrier). 

The rectangles do not represent the materials themselves. Instead, the material properties 

and the reaction kinetics are represented by the electrode-electrolyte boundary interfaces. 

The two half-cell reactions and their characteristics are defined in by their equilibrium 

potentials, Tafel slopes and exchange current densities. The input data for Tafel slopes, 

exchange current density, and equilibrium potentials were obtained through 

potentiodynamic polarization scans of the individual conductor materials in 0.6 M NaCl 

aqueous solution at room temperature (RT). The experimental procedure for obtaining the 

input data was described in chapter 4, and the input values are found in table 1. Both half-

cell reactions are assumed to follow Tafel behavior. 

Figure 134 and Figure 135 show the finished geometry. Note that the aspect ratio 

could not be kept in the figures because the electrolyte layer is only a tiny fraction (a few 

micrometers) compared to the length of the geometry. Boundary 2 (blue) is the anode and 

represents the dissolution of metal from the aluminum surface. Boundary 8 (gray) is the 

cathode and represents the reduction of oxygen on the CFRP surface. Corrosion damage 

is only occurring on the aluminum surface. The fiberglass barrier is defined as an 

insulator and does not participate in the process. All outer boundaries of the geometry 

except 2 and 8 are assumed to be insulated by applying a zero-flux boundary condition. 

The rate and distribution of the corrosion attack on the corroding electrode is 

correlated to the electrochemical potential distribution within the electrolyte and the 
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reacting surfaces (Zhang 2011). The potential distribution is governed by the Fourier 

equation for a conductive medium (Munn and Devereux 1991). The galvanic corrosion 

rate is limited by ilim, which is a function of the oxygen diffusion through the electrolyte 

layer (described in chapter 5). The thickness of the electrolyte layer is in turn a function 

of salt-load density and relative humidity, which also was developed in chapter 5.  

 

Figure 134: The finished geometry for the 1:28 area ratio (98 mm anode) as displayed in the Comsol user 

interface.  

Units are in meters. Note that the figure is not to scale.  
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Figure 135: The finished geometry with boundaries (in red) and domains (in black).  

Electrolyte volume in green. Note that the figure is not to scale. 

7.1.3 Electrolyte  

The electrolyte is the same in all three domains. The electrolyte is only defined by 

its conductivity, which was set to a constant value of 24.4 S/m, as discussed in chapter 5. 

The electrolyte layer thickness is a function of relative humidity and salt load density. 

The expression for the electrolyte layer can be found in Table 18. 

 

7.1.4 Current distribution  

Secondary current distribution was chosen as ‘study physics’ (discussed in 

chapter 6). The secondary current distribution assumes that the reaction rate is not limited 

by mass transport rate. However, the diffusion of oxygen is incorporated in the ilim 

equation, so there is a mass transport limitation integrated indirectly in this approach.  

 

7.1.5 Global definitions and parameters 

The parameters are used to define reactions, geometry, electrolyte properties etc. 

A summary of the parameters are found below.  
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Table 18: Input values and functions for COMSOL  

(formatted for Comsol) 

Variable 

name  

Variable Function or value Unit 

RH Relative humidity [varying from 0.8 to 1.0]  -- 

D_NaCl Salt load density  [varying from 0.5 to 7.0] g/m
2
 

E_cond Electrolyte conductivity 24.4 S/m 

d_film  Electrolyte layer thickness D_NaCl*0.0000000000215 

*exp(0.000603*RH) 

m 

D_O2 Diffusion coeff. for O2 in the electrolyte 

at 20°C 

1.97E-09 m
2
/s 

O2_solubility Oxygen solubility in water 0.0003*exp(6.59*RH) mol/m
3
 

Eeq_Al Equilibrium potential, Al surface -0.952 V 

Eeq_C Equilibrium potential, CFRP surface -0.0605 V 

ilim Limiting current density based on oxygen 

diffusion through the electrolyte layer 

D_O2*(O2_solubility)/(d_film

* 0.00000259) 

A/m
2
 

i0_Al Exchange current density, Al surface 0.004232 A/m
2
 

i0_C Exchange current density, CFRP surface 0.0547 A/m
2
 

Ac_C Tafel slope, CFRP surface -1.4949 V 

Aa_C Tafel slope, Al surface 0.1307 V 

 

7.1.6 Average and maximum operators 

The average and maximum corrosion currents can be displayed in the post-

processing by using average and maximum operators. The operators are created using the 

function “Component couplings”. Average and maximum component couplings were 

added both to the anode and the cathode boundary.  

 

7.1.7 Initial values  

Initial values were added to shorten the number of iterative steps by the solver. 

The electrolyte potential in domains 12 and 13 were set to the negative equilibrium 

potential of the CFRP surface (-Eeq,C). The electrolyte in domain 11 was set to the 

negative equilibrium potential of the aluminum surface (-Eeq,Al). 
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7.1.8 Meshing  

A so called Mapped meshing was used. Because the electrolyte layer thickness is 

so small compared to the length of the geometry, we can assume a negligible potential 

gradient through the thickness of the electrolyte. The meshing was therefore defined with 

only one element in the vertical direction. The mesh was defined so the element was very 

small close to the boundary interfaces and larger further away. Figure 144 shows the 

mesh zoomed in on the domain interfaces. The black area is where the mesh is so fine it 

cannot be seen at this zoom level.  

 

 

Figure 136: Mesh at the domain boundaries.  

 

7.1.9 Parametric sweeps  

The model was computed using two simultaneous parametric sweeps at RT. The 

salt load density was swept using the values 0.5, 1. 2, 3.1, and 7 g/m
2
. The relative 

humidity was swept from 80 % to 98 % in 2 % increments. 
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7.1.10 Results: Comparison of 10 mm and 98 mm anode 

This section will present the results from the model and compare them to 

experimental measurements.  

 

Potential distribution 

One of the important questions in the development of the model was if the length 

of the aluminum electrode would affect the result. It is known that atmospheric galvanic 

corrosion acts locally due to the low conductivity of the electrolyte (Barton 1973), and it 

was suspected that the length of the aluminum electrode may have a minor influence on 

the results.  

Figure 137 shows the potential distribution through the electrolyte for four 

different combinations of relative humidity (RH) and salt load density (LD): 7 g/m
2
 and 

98 % RH, 7 g/m
2
 and 80 % RH, 0.5 g/m

2
 and 98 % RH, and 0.5 g/m

2
 and 80 % RH. The 

lowest salt load density and the lowest humidity result in the steepest potential gradient. 

This is expected because the thin electrolyte layer gives a high resistance and a high 

current limit, both resulting in a high potential drop. The potential drop over the length of 

the anode is larger with the 98 mm anode, which would be expected due to the longer 

distance, but the potential drop over the first 10 mm appears to be similar in Figure 137. 

Note that it appears that the electrolyte extends outside the domain, but this is only an 

artefact of changing the modeling parameters without re-building the model. It does not 

affect the results.  
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Figure 137: Potential distribution with different anode size, humidity, and salt load density.  
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Current density distribution  

Inspection of the current density distribution supports the findings in previous 

section: the first 10 mm are very similar for both geometries (Figure 138). The highest 

anodic current density is just at the interface to the fiberglass barrier, and the difference 

between the two models is only approximately 30 %.   

 

Figure 138: Local current density.  

Left) 10 mm anode; Right) The first 10 mm of the 98 mm anode.   

 

 
Figure 139: Current density with the 98 mm anode.  

 

 

 

10 mm anode 
The first 10 mm of the  

98 mm anode 
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Maximum current density  

 The cathode areas in the two models are identical, and the maximum cathode 

current densities are within 12 % (Figure 140).  

 

Figure 140: Maximum cathodic current density.  

Left) 10 mm anode (model a); Right) 98 mm anode (model b).  

 

Although the anode area in model b) is almost 10 times larger than in model a), 

the maximum local anode current densities were within 25 % (Figure 141). This supports 

the hypothesis that atmospheric galvanic corrosion is local and predominantly occurs 

close at the contact place between the two materials, mostly independent of the size of the 

anode.  

 
 

Figure 141: Maximum anodic current density.  

Left) 10 mm anode (model a); Right) 98 mm anode (model b).  
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Average current densities 

The average cathodic corrosion current densities show a very similar pattern to 

the maximum cathodic current densities (Figure 142). The similarities in the average 

cathodic corrosion current despite the 10-fold difference in anode size, supports the 

previous hypothesis that the corrosion process is under cathodic control. The limitation in 

the reaction rate for the cathode reaction limits the total galvanic corrosion rate. The 

variations in humidity and salt load density have a much greater effect on the total 

galvanic corrosion rate than the relative size of the anode, because the dominating control 

mechanism in the diffusion of oxygen through the electrolyte layer on the CFRP.  

 

 

Figure 142: Average cathodic current density.  

Left) 10 mm anode (model a); Right) 98 mm anode (model b).  

 

The average anodic current density is a very different situation. The almost 10 

times larger anode area in model b) results in an average anode current density that is 

only approximately 1/10
th

 of model a). This points out an important feature of 
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atmospheric galvanic corrosion: the average current density may say very little about the 

local damage. The previous plots indicate that the local corrosion rate near the CFRP is 

approximately the same for both model a) and model b). The average anode current 

density would highly underestimate the local corrosion damage.  

 

Figure 143: Average anodic current density.  

Left) 10 mm anode (model a); Right) 98 mm anode (model b).  

 

The conclusion from the comparison of the 10 mm and 98 mm anode is that the 

results from the area close to the interface between Al and CFRP are similar, but the 

average anodic corrosion rates are widely different. This supports the earlier observations 

that the galvanic corrosion is under cathodic control. It also supports the existing 

knowledge that atmospheric galvanic corrosion is mainly localized close to the cathode 

(Barton 1973). 

Although both the 10 mm and the 98 mm anode model can be considered fairly 

good representations of the damaged ACCC conductor, the 98 mm anode model was 

chosen for the remainder of this section.  
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7.1.11 Discussion   

A further analysis of the data reveals that increased relative humidity results in 

reduced corrosion at the interface, but the more widespread corrosion increases the total 

corrosion rate. The increased local corrosion current density is most apparent with the 

lowest salt load density (0.5 g NaCl/m
2
), which is shown in Figure 144.  

 

Figure 144: Local corrosion current density for a salt load density of 0.5 g NaCl/m
2
  

 

Figure 144 shows the general trend of increased total galvanic corrosion rate (best 

seen by comparing the local current density) with increased humidity and increased salt 

load density. This trend is present for all salt load densities in the parametric sweep 

except the highest (7 g NaCl/m
2
). Figure 145 illustrates the relation for additional salt 

load densities.  
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Figure 145: Average anodic and cathodic galvanic corrosion current densities (model b, 98 mm anode).  

Note that LD represents as DNaCl (salt load density) in the Comsol interface.  

 

 
 

Figure 146: Average anodic corrosion current density as a function of salt load density at 100 % RH 

 (model b, 98 mm anode). The dark marker illustrates the salt load density of 3.1 g/m
2
 that is discussed 

further below.   

 

The highest galvanic corrosion rate is predicted at approximately 3.1 g NaCl/m
2
. 

This is also the salt load density in the experimental validation model that will be 
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presented in the next section. The trend indicates that there may be a shift in control 

mechanism at really high salt load densities. At low salt load density, the electrolyte layer 

is very thin and the main limiting mechanism is the high resistance of the electrolyte. At 

high salt load density, the electrolyte layer is thick and the main limiting mechanism is 

the diffusion of oxygen through the electrolyte layer. In the extreme case of immersion of 

the sample, the galvanic corrosion rate is lower than in atmospheric conditions, which has 

been shown in previous chapters and will be revisited in the next sections.  
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7.1.12 Comparison with experimental measurements  

Experimental measurements were performed to validate the numerical model. Ten 

samples of ACCC with damaged corrosion barriers were prepared as described in chapter 

3. For five of the samples, the aluminum strands were treated with the commercial 

aluminum cleaning product named AlumaPrep that contains phosphoric acid. This 

removed all scale, thick aluminum oxide, and grease from the aluminum strands before 

the sample was assembled again. These samples are called “Acid Prep” in subsequent 

sections. The aluminum strands for the other five samples were only cleaned with 

isopropyl alcohol. These samples are called “As Received”.  

The ten samples were immersed in 0.6 M NaCl aqueous solution. A light vacuum 

was applied to ensure full penetration. This resulted in an average salt load density of 3.1 

g NaCl/m
2
. The samples were dried for 24 hours, and then subjected to 100 % RH at RT.  

 

 

Figure 147: Validation samples in the humidity chamber.  
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The galvanic corrosion rates during the first day were excluded from the averages 

to allow sufficient time for the NaCl to deliquesce and for the corrosion to initiate (Figure 

148). The average for days 2-5 was 10.1 mA/m
2
 (σ=1.7) for the Acid Prep samples and 

5.5 mA/m
2
 (σ=1.1) for the As Received samples (expressed as anodic galvanic corrosion 

current density).  

 

Figure 148: Averages for anodic galvanic corrosion current densities for days 0 to 5.  

The error bars represent one standard deviation.  

 

The steady-state model generates an anodic galvanic corrosion current density of 

6.8 mA/m
2
 Figure 146 for the same conditions as used in the experimental measurements. 

Figure 149 shows that there is a fairly good agreement between the experimental 

measurements and the numerical model.  
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Figure 149: Comparison of experimental data and steady-state numerical model 

 

The FE model described in this work is the first numerical model of galvanic 

corrosion in an ACCC conductor with a compromised galvanic corrosion barrier. The 

results from the model agree well with the laboratory measurements. The model shows 

that the galvanic corrosion in atmospheric conditions is localized near the interface of the 

two reacting materials. The galvanic corrosion is highly localized at low salt load 

densities, and becomes more evenly distributed over the aluminium surface at higher salt 

load densities and higher RH levels. The model has also shown that for higher salt load 

densities and higher humidity levels the total galvanic corrosion rate increases, but the 

effect is not linear. At very high salt load densities, the total galvanic corrosion rate 

decreases, which is believed to be due to the restricted oxygen diffusion through the 

electrolyte layer.  
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7.2 Time-dependent numerical model of atmospheric galvanic corrosion  

While the numerical model presented in the previous section agrees with short-

term validation measurements, it cannot explain the long-term decrease in galvanic 

corrosion current shown in Figure 150. The average from day 2 through 5 were used to 

validate the steady-state model presented in previous section, but beyond the first few 

days, the galvanic corrosion rates drops rapidly for both sample groups.  

The average anodic galvanic corrosion current density for day 22 through 62 was 

0.26 (σ=0.09) mA/m
2
 for the As Received samples and 0.28 (σ=0.11) mA/m

2
 for the 

Acid Prep samples. The values for day 22 through 62 are similar to the values measured 

for the same sample design in immersed environments: 0.63 mA/m
2
 for stagnant 

electrolyte and 0.73 mA/m
2
 in agitated electrolyte (see chapter 3).  

 

Figure 150: Average galvanic corrosion current for two sets of five samples in 100 % RH.  

The error bars show one standard deviation.   
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It was determined in chapter 4 and 5 that the galvanic corrosion in damaged 

ACCC samples appears to be mainly controlled by the transport of oxygen to the cathode 

(the exposed CFRP surface). The much faster diffusion of oxygen through air would 

explain why higher galvanic corrosion rates were measured in humid environments than 

in immersed environments. It would also explain why really high galvanic corrosion rates 

could occur for a short time during the drying of a sample when a continuous air path 

existed into the sample, but it was still wet enough for ion conduction between the 

cathode and anode. This was illustrated in Figure 87 (repeated below).  

The build-up of corrosion products between the aluminum strands appears to 

cause an effect similar to immersion. The hypothesis that the buildup of Al(OH)3 gel will 

restrict the diffusion of oxygen to the cathode and thus limit the galvanic corrosion rate 

will be explored in this section.  

 
 

Figure 87 (repeated): Galvanic corrosion rate vs. mass loss during drying of an ACCC sample with 

compromised corrosion barrier after immersion in 0.6 M NaCl solution.  

Average for corrosion rate is for 18 samples and shaded region indicates one standard deviation. Average 

for mass loss is for five samples and error bars display the spread within the group. 

 



 

237 

7.2.1 Galvanic corrosion knee-point and formation of Al(OH)3 gel 

Figure 151 shows both the average anodic galvanic corrosion current densities 

and the cumulative galvanic corrosion charge (expressed as mAh). There is a knee-point 

approximately at day 13 where the galvanic corrosion current levels out. At that point, the 

Acid Prep samples had an average cumulative galvanic corrosion charge of 539 mAh 

(1940 C) per meter of conductor and the As Received samples had an average of 342 

mAh (1230 C) per meter of conductor.   

 

Figure 151: Average galvanic corrosion current for two sets of five samples in 100 % RH and the 

cumulative galvanic corrosion charge per meter of conductor. 

 The shaded areas represent one standard deviation in the measurements.   

 

 

Using Faraday’s law (2.2.3-1, repeated below with values for aluminum), 0.180 g 

of aluminum per meter of conductor had to be lost to corrosion to generate the 
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cumulative galvanic corrosion charge of 539 mAh in the Acid Prep samples. 0.114 g was 

lost to generate the 342 mAh of cumulative charge in the As Received samples.   

𝑚𝐴𝑙 = 𝐶𝐴ℎ ∙
1

𝐹
∙

𝐴𝐴𝑙

𝑛𝐴𝑙
 ∙ 3600     (7.2-1) 

where  

mAl = mass loss of aluminum [g], 

CAh = accumulated corrosion charge [Ah],  

F = Faraday constant (96 485 C/mol), 

AAl = atomic mass of aluminum (27 g/mol),  

nAl = valency of aluminum [e
-
/ion] (3),  

3600 = number of seconds in 1 hour. 

 

Assuming that all aluminum was transformed to Al(OH)3, it would form 0.52 g 

and 0.34 g respectively of Al(OH)3. Newly formed Al(OH)3 precipitates as a gelatinous 

substance on the surface of the corroding sample. It will over time crystallize and if the 

humidity is low enough the gel will dry to a white powder or solid mass. However, at 100 

% RH the Al(OH)3 will remain in gel form for a long time.  

Some of the gel was removed and its mass was measured before and after drying. 

The presence of air bubbles and solid particles, as well as the small volume and viscous 

texture made it difficult to perform an exact density measurement, but it was determined 

to be approximately 1 g/cm
3
. The gel had a mass that was 47.8 times higher than the dry 

Al(OH)3, which gives a mass ratio of solid aluminum to Al(OH)3 gel of 1:138. Assuming 

that all of the 0.18 g aluminum lost to galvanic corrosion per meter of conductor of the 
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Acid Prep samples (as calculated above) was transformed into Al(OH)3 gel, it would 

form 24.8 cm
3
 of gel. The volume would be 15.7 cm

3
 for the As Received samples.  

 

Figure 152: Al(OH)3 gel formation on a coplanar aluminum-graphite couple.  

Left) Start; Right) Gel has formed on the aluminum.  

 

With an average volume of the crevices inside the samples of 27.7 cm
3
 per meter 

of conductor, it can be calculated that the crevices in the Acid Prep samples will be close 

to completely filled with Al(OH)3 gel after 13 days based on the cumulative charge in 

Figure 151. This is also consistent with the visual observations of gel protruding from the 

crevices in Figure 153. 

  

Figure 153: Al(OH)3 gel protruding from the crevices during corrosion testing. 

Left) Day 5, the first observation of Al(OH)3 protruding.  

Right) Day 62, just before the test was stopped. Large amounts of Al(OH)3 are visible on the outside of the 

sample, of which some has started to crystallize.   
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The gel volume formed in the As Received samples would not be large enough to 

fill the crevices. However, aluminum can also experience self-corrosion even when 

galvanic corrosion is present. The amount of self-corrosion could not be estimated in this 

test setup, but because the corrosion reactions and the corrosion products can be assumed 

to be the same as those of galvanic corrosion, the presence of self-corrosion would add to 

the deposition of Al(OH)3.  

 

7.2.2 Assumptions for numerical model  

The numerical model consists of two main components: the deposition of 

corrosion products generated from the galvanic corrosion and a mass transfer process. 

The two processes are directly linked to each other and therefore inseparable. The 

galvanic corrosion is generated by the mass transfer of oxygen from the air outside the 

sample to the CFRP. The galvanic corrosion in turn generates corrosion products, which 

deposit on the surface and limit the mass transfer of oxygen.  

The fundamental assumptions are:  

1) The galvanic corrosion rate is directly proportional to the mass transfer of 

oxygen to the CFRP from the surrounding environment.  

2) There is only one cathodic reaction taking place: the reduction of oxygen. 

O2 (gas) + 2H2O (liquid) + 4e
-
  4OH

-
     (7.2-2) 

3) The cathodic reaction is taking place solely on the CFRP surface.  
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4) There is only one anodic reaction taking place: the dissolution of 

aluminum.  

Al (solid)  Al
3+

 + 3e
-
     (7.2-3)  

5) The only corrosion product is gelatinous Al(OH)3. The balanced reaction 

is: 4Al + 3O2 + 6H2O  4Al(OH)3     (7.2-4) 

6) The self-corrosion rate is zero.  

7) The diffusion coefficient for oxygen through the Al(OH)3 gel is assumed 

to be the same as for water (1.97E-9 m
2
/s (Giambattista, Richardson et al. 

2004)) and does not change over time.  

8) The oxygen does not react with anything else on the way to the CFRP 

surface.  

 

7.2.3 Model geometry  

The stranded geometry of the ACCC conductor with two layers of aluminum 

wires results in a fairly complex geometry. There are 14 strands in the outer layer and 8 

in the inner layer, wound in an opposing helical pattern. Thus the oxygen diffuses 

through a maze of crevices where the effective cross sectional area gets smaller further 

towards the center of the conductor.  

To simplify the complex geometry, the total volume of the crevices was combined 

into a rectangular block. The volume of the block is equal to the volume of all the 

crevices per meter of conductor (27.7 cm
3
). The cross-sectional area of this simplified 

rectangular block is equal to the total opening of the crevices per meter of conductor. The 
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average crevice width was calculated to be 180 μm by measuring how much electrolyte 

was left inside the samples after immersion due to the capillary effect. With the 14 outer 

strands, an average crevice width of 180 μm, and a helical stranding, the total opening 

area is 0.0032 m
2
 per meter of conductor. The length of the block would be 8.6 mm. This 

represents the maximum path length for the oxygen diffusion through the Al(OH)3 gel, 

which occurs when the crevices are completely full.  

The formation of gelatinous Al(OH)3 due to the galvanic corrosion is assumed to 

take place at the aluminum edge closest to the CFRP cathode. It pushes outwards to fill 

up the crevice as the corrosion progresses. As the block grows, the diffusion path length 

gets longer. The diffusion path length is represented by Δx in Figure 154. 
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Figure 154: Model geometry. 

 

7.2.4 Diffusion of oxygen through the corrosion products 

The rate controlling mechanism in this model is solely the mass transport of 

oxygen through the gelatinous Al(OH)3 to the CFRP surface, as illustrated in Figure 154. 

Because the gel consists mainly of water, the diffusion coefficient for oxygen through the 

Al(OH)3 gel is assumed to be the same as for water (1.97E-9 m
2
/s (Giambattista, 
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Richardson et al. 2004)). The concentration gradient of oxygen in the Al(OH)3 gel is 

assumed to be linear, and goes from 0.40 mol/m
3
 (saturation level for water at sea level at 

20°C (U.S.GeologicalSurvey 1998)) at the outer edge to zero at the inner edge.  

Because the growth of the gel layer is so slow, the problem will be considered 

quasi-steady-state and Fick’s 1
st
 law will be applied.  

 

7.3.5 Mathematical expression for galvanic corrosion rate  

Based on the assumptions stated above, the oxygen flux, the diffusion path length, 

and the average galvanic corrosion current densities can be expressed as in (7.2-5)-(7.2-

8).  

For all the following equations:   

ianode = anodic galvanic corrosion current density [A/m
2
],  

icathode = cathodic galvanic corrosion current density [A/m
2
], 

JO2 = flux of oxygen [mol/(s*m
2
)],  

ΩO2 = oxygen consumption per unit of galvanic corrosion charge [mol/(A*s)] (2.59E-6 

mol/(A*s)), 

DO2,Al(OH)3,gel = diffusion coefficient for oxygen through Al(OH)3 gel [m
2
/s] (1.97E-9 

m
2
/s), 

Δc = the change in concentration of oxygen [mol/m
3
] (-0.40 mol/m

3
),  

Δx = diffusion path length [m],  

ρAl(OH)3, gel = density of the Al(OH)3 gel [kg/m
3
] (1000 kg/m

3
),  

138 = the mass increase from Al to Al(OH)3 gel,  
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WAl = atomic mass of aluminum [g/mol] (27 g/mol),  

F = Faraday’s constant [C/mol] (96 485 C/mol), 

nAl = valency of aluminum [e
-
/ion] (3),  

VAl(OH)3,gel = total volume of Al(OH)3 deposited [m
3
],  

Aopening = the cross-section of the Al(OH)3 gel exposed to the surrounding air [m
2
] 

(0.0032 m
2
), and 

Acathode = the area of the exposed CFRP per meter conductor [m
2
] (0.014 m

2
). 

 

Flux of oxygen though the deposited corrosion products:  

𝐽𝑂2 = −𝐷𝑂2,𝐴𝑙(𝑂𝐻)3 ∗
∆𝑐

∆𝑥
=  −(1.97𝐸(−9)) [

𝑚2

𝑠
] ∙

−0.40[
𝑚𝑜𝑙

𝑚3 ]

∆𝑥 [𝑚]
=

7.88𝐸(−10)

∆𝑥 
 [

𝑚𝑜𝑙

𝑠∙𝑚2 ]     

(7.2-5) 

 

Average cathodic corrosion current density:  

𝑖𝑐𝑎𝑡ℎ𝑜𝑑𝑒 [
𝐴

𝑚2] =
𝐽𝑂2

Ω𝑂2
∙

𝐴𝑜𝑝𝑒𝑛𝑖𝑛𝑔

𝐴𝑐𝑎𝑡ℎ𝑜𝑑𝑒
=

7.88𝐸(−10)∙
1

∆𝑥 
[

𝑚𝑜𝑙

𝑠∙𝑚2 ]

2.59E(−6)[
𝑚𝑜𝑙

𝐴∙𝑠
 ]

∙
0.0032 [𝑚2]

0.014 [𝑚2] 
=  

6.95𝐸(−5)

∆𝑥 
 [

𝐴

𝑚2 ]  

  (7.2-6) 
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Diffusion path length:  

Δx [𝑚] =
𝑉𝐴𝑙(𝑂𝐻)3,𝑔𝑒𝑙

𝐴𝑜𝑝𝑒𝑛𝑖𝑛𝑔
=

(
138∙𝑊𝐴𝑙

𝐹∙𝑛𝐴𝑙∙𝜌𝐴𝑙(𝑂𝑙𝐻)3,𝑔𝑒𝑙
) ∙∫ (𝑖𝑐𝑎𝑡ℎ𝑜𝑑𝑒)𝑑𝑡∙𝐴𝑐𝑎𝑡ℎ𝑜𝑑𝑒

𝑡
0

𝐴𝑜𝑝𝑒𝑛𝑖𝑛𝑔
=

(
138∙0.027 [

𝑘𝑔
𝑚𝑜𝑙

]

96485 [
𝐶

𝑚𝑜𝑙
]∙3∙1000[

𝑘𝑔

𝑚3]
)∙ 0.014[𝑚2]∙∫ (𝑖𝑐𝑎𝑡ℎ𝑜𝑑𝑒[

𝐴

𝑚2])𝑑𝑡
𝑡

0

0.0032[𝑚2]
 = 5.61𝐸(−8) ∙ ∫ (𝑖𝑐𝑎𝑡ℎ𝑜𝑑𝑒)𝑑𝑡

𝑡

0
 [𝑚]   

(7.2-7) 

 

Average anodic corrosion current density: 

𝑖𝑎𝑛𝑜𝑑𝑒 [
𝐴

𝑚2] =
𝑖𝑐𝑎𝑡ℎ𝑜𝑑𝑒[

𝐴

𝑚2]

28
       (7.2-8) 

 

7.2.6 Solving technique  

The growth of the Al(OH)3 gel layer is a function of the galvanic corrosion 

current density, while the galvanic corrosion current density is in turn a function of the 

gel layer thickness.  

Substituting (6) into (7) and changing the variable of integration gives: 

Δx(𝑡) = 5.61𝐸(−8) ∙ ∫ ( 
6.95𝐸(−5)

∆𝑥(𝑢)
 ) 𝑑𝑢

𝑡

𝑡0
= 3.90𝐸(−12) ∙ ∫ ( 

1

∆𝑥(𝑢)
 ) 𝑑𝑢

𝑡

𝑡0
 

 (7.3-9) 

(Note that 1/∆x is undefined at t=0, which will be handled by a boundary 

condition later.)  

Taking the derivative of both sides with respect to t, using the fundamental 

theorem of calculus, gives:  
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𝑑(∆𝑥)

𝑑𝑡
=

3.90(𝐸−12)

∆𝑥(𝑡)
       (7.2-10) 

⟹ ∆𝑥𝑑(∆𝑥) = 3.90𝐸(−12)𝑑𝑡     (7.2-11) 

⟹
(∆𝑥)2 

2
= 3.90𝐸(−12)𝑡 + 𝐾0  (K0 is a constant)   (7.2-12) 

⟹ ∆𝑥 = √7.80𝐸(−12)𝑡 + 𝐾 (K=2 K0,but still a constant)  (7.2-13) 

⟹  𝑖𝑐𝑎𝑡ℎ𝑜𝑑𝑒 =
6.95𝐸(−5)

√7.80𝐸(−12)𝑡+𝐾
      (7.2-14) 

⟹  𝑖𝑎𝑛𝑜𝑑𝑒 =
𝑖𝑐𝑎𝑡ℎ𝑜𝑑𝑒

28
=

2.48𝐸(−6)

√7.80𝐸(−12)𝑡+𝐾
    (7.2-15) 

 

7.2.7 Initial condition  

An initial condition is needed for two reasons: 1) the numerical model is 

undefined at t=0, and 2) there are additional galvanic corrosion rate controlling 

mechanisms that are dominant when there is no deposited gel.  

Two different initial conditions were used for the anodic galvanic corrosion 

current density: one experimental value and one value from a previous numerical model.  

In the first case (A), the initial value for the anodic galvanic corrosion current 

density was taken as 10.1 mA/m
2
, which is the average for day 2 through 5 in the test 

series presented above (repeated in Figure 155 below).  
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Figure 155: Experimentally measured galvanic corrosion rates.  

Left) Average corrosion rate for 10 samples. Right) Average corrosion rate for day 2-5.  

 

In the second case (B), the initial value was calculated using the steady-state finite 

element model presented in section 7.1. That model predicted an average anodic galvanic 

corrosion current of 6.8 mA/m
2
. This is slightly lower than the three day average 

presented in this section, but within the range of the measurements presented in this 

dissertation.  

These initial values establish the upper boundary for the anodic current density.  

Using the boundary condition from case A, we solve for K at time t=0: 

𝐾 = 6.03𝐸(−8)      (7.3-16) 

Thus:  

𝑖𝑎𝑛𝑜𝑑𝑒 =
2.48𝐸(−6)

√7.80𝐸(−12)𝑡+6.03𝐸(−8)
    (7.3-17) 

For case B, with the initial value for ianode = 6.8 mA/m
2
, the corresponding 

equation is: 

 𝑖𝑎𝑛𝑜𝑑𝑒 =
2.48𝐸(−6)

√7.80𝐸(−12)𝑡+1.33𝐸(−7)
    (7.3-18) 
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7.2.8 Results and discussion  

The numerical results are compared with experimental measurements in Figure 

156 and Figure 157. Because it takes time for the NaCl to absorb water and form a 

continuous film, and because it takes time for the galvanic corrosion to initiate, the first 

days of experimental measurements showed erratic corrosion currents. The numerical 

model does not take into account these factors, so the first three days from the 

experimental measurements were removed from the comparison below.  

Figure 156 shows a fairly nice agreement between the numerical model and the 

experimental data over 59 days. Figure 157compares the numerical and experimental data 

for days 1-14. Although the predicted galvanic corrosion current is lower than the 

experimental values for the first 10 days, the agreement is very good beyond day 10. By 

day 13, the numerical models for both initial values predict an anodic current density of 

0.83 mA/m
2
. The experimental measurement for day 13 in Figure 156 and Figure 157 

(which corresponds to day 16 in Figure 151) was 0.73 mA/m
2
 (σ=0.18). These are the 

same levels observed in the immersed tests presented in section 1. Although the slab 

model is a crude simplification of the conductor geometry, these results strongly suggest 

that the deposited gelatinous corrosion products in atmospheric conditions result in a 

similar oxygen mass transport limiting effect as the electrolyte in immersed conditions. 
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Figure 156: Average anodic galvanic corrosion current densities as a function of time.  

The shaded region represents one standard deviation of the experimental measurements 

 

However, the calculated diffusion path length in Figure 157 shows that the 

crevices are less than half full by day 13 in the numerical model (Δx = 2.7 mm, compared 

to full crevices of 8.6 mm in the slab model). From the calculations of the gel formation 

based on measured galvanic corrosion currents, the sample should be close to full at this 

time. Because the first three days of the experimental data were removed in the 

comparison with the numerical model, Δx can be calculated in several different ways. 

Using the cumulative corrosion charge from the start of the test, Δx would be 7.8 mm by 
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day 13 (corresponds to day 10 in Figure 157). Using only the cumulative galvanic 

corrosion charge shown in Figure 157 and neglecting the first three days of the 

experimental test, Δx would be 4.9 mm.  

 

Figure 157: Average anodic galvanic corrosion current densities and thickness Δx. for the first 14 days.  

The shaded region represents one standard deviation of the experimental measurements.   
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Although the value of Δx is smaller in the numerical model than estimated from 

the experimental data, these results still strongly support the hypothesis that the 

restriction of oxygen transport due to corrosion product deposition is the dominant 

control mechanism in this case.  

 

7.2.9 Conclusions regarding this model  

A new look at the role of corrosion product deposition in the galvanic corrosion 

between aluminum and CFRP has been presented in this paper. The focus was on an 

assembly consisting of a CFRP rod surrounded by tightly wound aluminum wires, 

namely a CFRP supported bare overhead high voltage transmission line conductor. The 

results from experimental measurements and numerical modeling suggest that the 

dominant rate controlling mechanism is the diffusion of oxygen to the CFRP surface. 

Strong evidence has been presented that the deposition of corrosion products in the form 

of gelatinous Al(OH)3 restricts the diffusion of oxygen, which drastically reduces the 

galvanic corrosion rate.  

The formation of Al(OH)3 on samples initially immersed in 0.6 M NaCl and then 

subjected to 100 % RH at RT was observed to coincide with the decay in the galvanic 

corrosion current. The galvanic corrosion current decreased by one order of magnitude 

over a period of 13 days. The resulting galvanic corrosion rate after approximately two 

weeks was similar to the rate measured when the assembly was immersed in a NaCl 

containing electrolyte. The hypothesis was that the deposition of Al(OH)3 gel restricted 
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the oxygen transport in a similar manner as the electrolyte would in the immersed 

environment. 

A good correlation has been obtained between experimental measurements of 

galvanic corrosion current and a numerical model, where the deposition of Al(OH)3 and 

the diffusion of oxygen through the gelatinous Al(OH)3 were the only rate-limiting 

mechanisms.  

The findings suggest that the deposition of corrosion products may be the most 

important rate controlling mechanisms in certain Al/CFRP assemblies where the CFRP is 

surrounded by the aluminum and where the path of diffusion for the oxygen is relatively 

long and narrow. The implications of these findings are that the galvanic corrosion rate in 

assemblies of this kind may be much lower than typically expected. To avoid a 

potentially severe over-estimation of the galvanic corrosion rate, the sample design and 

test conditions must represent the original geometry of the sample and the actual service 

environment as closely as possible. In addition, the results presented in this dissertation 

suggest that the test duration must be sufficiently long to allow for deposition of 

corrosion products.   

7.3 Discussion and chapter conclusions  

Several conclusions can be drawn from the two numerical models and the 

experimental validations presented in this chapter. First the results at 100 % RH will be 

compared, and second the results at varying relative humidity will be compared.  

The steady-state Finite Element model described in section 7.1 predicted that the 

galvanic corrosion rate should be the highest near the cathode. This is known from 
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literature and could also be observed through microscopy of corroded samples. The 

predicted galvanic corrosion rates for one specific salt load density were compared to 

experimental measurements. The chosen salt density was 3.1 g/m
2
, which is the resulting 

salt load density when an ACCC conductor sample is immersed in 0.6 M NaCl (similar 

salinity to seawater) and then dried. The predicted galvanic corrosion rate at 100 % RH is 

within the range of measured values, as can be seen in Figure 158. However, the 

measured values vary dramatically depending on the exact testing conditions.   

When the samples are brand new and initially treated with phosphoric acid to 

remove the oxide layer (“Acid Prep” in the above figure), the measured value is higher 

than the predicted. When the original oxide layer and scale is left intact, the value is 

lower than the predicted. The test series presented in Chapter 3 generated drastically 

lower values than the prediction. Those samples were from a conductor reel that had been 

stored outdoors for over 10 years and may have formed a thick passive layer. Figure 158 

also includes values from conductors that had been exposed to 100 % RH for several 

weeks and were filled with Al(OH)3 gel. These generated much lower galvanic corrosion 

rates than the numerical model.  
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Figure 158: Comparison of the steady-state FE model with experimental values.  

 

 

It can be concluded that the steady-state model provided a prediction that was 

within the range of the measured values at 100 % RH and 3.1 g/m
2
. The predicted rate is 

good for a new sample with a very early stage of corrosion, but is not accurate for 

samples that have accumulated corrosion products or formed a stable oxide layer on the 

aluminum surface. This illustrates the active-passive behavior of aluminum and the 

difficulty to predict its corrosion rate. This model can only represent the ACCC 

conductor with a compromised galvanic corrosion barrier when it is brand new. Because 

the conductor is full of narrow crevices that will collect corrosion products, and 

pollutants, additional limiting mechanisms will soon appear. This will make the model 

inadequate beyond the first few days or perhaps weeks.  
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Comparing the shape of the curve for the finite element model results with the 

measured values indicates that there are additional control mechanisms that are not 

considered in the model. The experimental data exhibits an exponential trend with rapidly 

increasing galvanic corrosion with increased RH levels. The numerical data, on the other 

hand, increases with increasing RH, but the function has a slightly convex shape. This 

numerical model can clearly not fully explain the galvanic corrosion mechanism for these 

conditions. A likely cause for the discrepancy for values below 100 % RH could be the 

very thin electrolyte layer not being able to form a continuous electrolyte film between 

the CFRP and the aluminum, resulting in a much higher resistance than predicted, but this 

hypothesis has not been studied in any further detail.  

 

Figure 159: Comparison of the steady-state FE model with experimental values.  
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As mentioned several times before, the galvanic corrosion in the ACCC conductor 

with exposed CFRP appears to be mostly or completely dominated by the transport of 

oxygen to the cathode. Experimental measurements indicate that the accumulation of 

corrosion products in the form of Al(OH)3 gel appears to very effectively limit this 

transport. Within a short amount of time (10-14 days in 100 % RH at RT, with a salt load 

density of 3.1 g/m
2
), the conductor was filled with gel and the galvanic corrosion rate 

decreased one order of magnitude from 6-10 mA/m
2
 to approximately 1 mA/m

2
. This 

resulting galvanic corrosion rate is similar to the rate measured during immersion.  

The galvanic corrosion in the ACCC conductor with exposed CFRP appears to be 

completely dominated by the transport of oxygen to the cathode. The accumulation of 

corrosion products in the form of Al(OH)3 gel very effectively limits this transport. 

Within a short amount of time (10-14 days in the conditions used here), the conductor 

will be filled with gel and the galvanic corrosion rate will have decreased one order of 

magnitude. The resulting galvanic corrosion rate is similar to the rate measured during 

immersion. While the agreement isn’t perfect between the model and the experimental 

data in Figure 156 (repeated below), this time-dependent numerical model presented in 

section 7.2 provides support that the rapid decay in galvanic corrosion rate is mainly 

caused by the deposition of galvanic corrosion products in the form of gelatinous 

Al(OH)3.  
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Figure 156 (repeated): Average anodic galvanic corrosion current densities as a function of time.  

The shaded region represents one standard deviation of the experimental measurements 
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CHAPTER EIGHT: MONITORING FOR GALVANIC CORROSION IN 

CARBON FIBER COMPOSITE CORE OVERHEAD CONDUCTORS USING 

TIME DOMAIN REFLECTOMETRY 

 

A reliable inspection and monitoring method for evaluating the structural health 

of ACCC conductor is crucial for large-scale acceptance of this relatively new 

technology. Several different methods for structural health monitoring of composites 

have been attempted, including acoustic emissions (Barré and Benzeggagh 1994, Grosse 

and Ohtsu 2008), embedded fiber optics (Rao 1999, Ling, Lau et al. 2006), x-ray 

inspection (Aymerich and Meili 2000), eddy-current measurements (Valleau 1990, 

Mook, Lange et al. 2001), and ultrasonics (Aymerich and Meili 2000), (Cantwell and 

Morton 1985). All these methods suffer from weaknesses that so far have made them 

impractical in the service environment of power transmission conductors. Fiber optics 

sensors are invasive as they have to be embedded during the manufacturing of the 

composites. The required instrumentation is also complicated and expensive. Ultrasonic 

and acoustic emission methods are prone to high interference. X-ray inspection methods 

are unsuitable for in-service inspection due to the large size of the equipment. Inspections 

with ultrasonics, x-ray, and eddy-currents provide only local inspection, meaning that the 

equipment would have to be moved along the entire length of the conductor to inspect it. 

Time Domain Reflectometry (TDR), on the other hand, offers distributed sensing from a 
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single point of inspection. This chapter presents a new application of TDR for the 

inspection of ACCC bare overhead transmission line conductors. 

The composite core in the ACCC transmission line conductor has an electrically 

conductive center consisting of a unidirectional carbon fiber reinforced polymer (CFRP), 

surrounded by an electrically insulating unidirectional glass fiber reinforced polymer. 

Together with the surrounding aluminum strands, the conductor geometry forms a coaxial 

cable: a conductor inside another conductor with an insulator in between. Although the 

CFRP never was intended to be used as a conductor, this study has shown that it is still 

sufficiently conductive that TDR can potentially be used to detect faults. 

TDR was developed during the 1950s to locate and identify faults in cables in 

telecom and power distribution. These industries are still the major users of the TDR 

technology and cable testers are considered standard equipment by engineers and 

technicians. For coaxial cables, TDR enables non-invasive surveillance of a large cable 

with one single instrument from one single location and may replace many single-point 

measurement instruments (Riser-Bond 1997, O’Connor and Dowding 1999). 

The telecom industry is the most frequent user of TDR, but it is far from the only 

user. TDR is used in geo-measurements, for example, to estimate the density and 

moisture content of soil, to monitor soil and rock deformation in mines, and to detect the 

water level in wells (O’Connor and Dowding 1999). TDR is also used for monitoring the 

hydration of cement (Hager and Domszy 2004). In the field of composites, TDR is, for 

example, used to monitor the curing of resin in laminates (Dominauskasa, Heider et al. 

2007, Pandey, Deffor et al. 2013) for damage detection in laminates (Pandey, 
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Thorstenson et al. 2013, Todoroki, Ohara et al. 2015), and for automated measurement of 

crack propagation during testing of composites (Obaid, Yarlagadda et al. 2006).  

TDR for coaxial cables includes a broad range of remote sensing techniques to 

determine the location and nature of various reflectors. It is in principle similar to radar, 

but is confined to one dimension. For inspection of a coaxial cable, an ultra-fast rise time 

voltage step is launched into the cable (the voltage is applied between the inner and outer 

conductor). The electromagnetic pulse travels down the conductor at nearly the speed of 

light. When the pulse encounters a change in the characteristic impedance, a reflected 

pulse is returned back to the instrument. The time between the transmitted pulse and the 

reflection uniquely determines the fault location (O’Connor and Dowding 1999). 

This chapter presents the theoretical foundation for use of TDR for structural 

integrity evaluation of ACCC, estimates of its viability, and the results of experiments 

performed to evaluate the potential of the method.  

 

  
 

Figure 160: Typical coaxial cable vs. ACCC.  
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8.1 Circuit theory for TDR and application in ACCC 

8.1.1 Transmission line theory 

A coaxial cable, or any two insulated conductors placed close together such as a 

twisted pair of wires, forms a so called transmission line with a characteristic impedance 

(“transmission line” in this sense should not be confused with “high voltage transmission 

lines” which refers to the part of the electrical grid that transmits power over long 

distances at high voltage). The two conductors behave like a long continuous network of 

capacitors, inductors, and resistors which together make up the characteristic impedance. 

The inherent impedance of the coaxial cable is a function of the conductor diameter, the 

spacing between the conductors, and the dielectric constant of the insulation. If the 

conductor diameter, spacing, and dielectric constant are uniform, the impedance will be 

constant. Any sudden change in capacitance, inductance, resistance, dielectric constant, 

or conductance of the insulator will result a sudden change in impedance, which will 

cause a partial or total reflection of the wave. A larger change in impedance causes a 

larger reflection (Riser-Bond 1997). 

Changes in impedance can have many causes: including a change in the conductor 

spacing caused by pinching or bird caging, local moisture absorption or aging of the 

polymer affecting the dielectric constant, or thinning of the insulation due to rubbing. 

Other potential causes are direct contact between carbon fibers and aluminum, partial 

fracture of one or both conductors, manufacturing flaws, and likely many other issues. 

Galvanic corrosion requires there to be an electrolytic contact in place between the CFRP 

and aluminum, and it is shown in this chapter that it too can be detected. 



 

263 

Figure 161 illustrates the reflection caused by a change in conductor spacing, 

using a twisted pair as an example (twisted pairs behave similar to coaxial cables). The 

upper waveform shows the constant impedance of the perfect twisted pairs. Only the 

open end changes the impedance and causes a reflection. The lower waveform shows the 

change in impedance caused by a separation of the conductors. The twisted pair can be 

compared to a network of capacitors where one of them has a greater separation of the 

plates. The change in impedance causes some of the energy to be reflected. 

 
Figure 161: Reflection caused by change in conductor spacing. 

Based on (Radiodetection 1997).  

 

 

By analyzing the sign, length, and amplitude of the reflected pulse, additional 

information about the fault can be obtained (Radiodetection 1997). Figure 162 illustrates 

different TDR trace examples. Open circuit is the same as an open end of the conductor, 

which means that there is no electrical connection between the CFRP and aluminum, 

while a short circuit means that there is electrical contact between the CFRP and 

aluminum.   
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Figure 162: Examples of common TDR reflections in coaxial cables. 

Based on (Radiodetection 1997).  
 

 

The propagation of the pulse along the cable, as well as the characteristics and 

creation of the reflections, can be described using Maxwell’s electromagnetic wave 

theory or circuit theory (O’Connor and Dowding 1999). Using circuit theory, the coaxial 

cable with its inner and outer conductor (Figure 163a) can be represented by an ideal, 

two-wire transmission line having forward and return conductors to represent the outer 

and inner conductor (Figure 163b).  

As the launched voltage pulse propagates along the coaxial cable, the potential 

difference (V) creates a current (I). The propagation can be described using the following 

four parameters in the circuit network in Figure 163c-d (O’Connor and Dowding 1999):  

 The potential between the inner and outer conductor represents the coaxial 

cable’s capacity to store electric energy. This is expressed as capacitance, 

C [F/m].  

 The current flowing in the conductors induces a magnetic field. The 

strength of the field is controlled by the coaxial cable’s inductance, L 

[H/m].  
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 The dissipation of energy is caused by the resistance, R [Ω/m].  

 The dielectric separating the two conductors has a small conductivity, G 

[S/m], which also causes some dissipation of energy. 

 
Figure 163: Lumped transmission line parameters: 

a) coaxial cable; b) parallel wire transmission line; c) lumped parameters with short circuit; d) lumped parameters 

with open circuit. (O’Connor and Dowding 1999) 

 

 

By connecting many of these circuits together and using classical transmission 

line theory, a long piece of the conductor can be modeled. Lobry and Guery (Lobry and 

Guery 2012) used a similar approach to calculate the potential between the core and the 

strands in ACCC due to the resistance of the aluminum. They needed 30 to 100 circuits 

(depending on the initial assumptions) to get a correct answer compared. 
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A similar network could be used to calculate a fault’s response to a pulse input, 

but according to TDR theory there is a much easier way. The circuit networks haven been 

analyzed and solved, and there are theories available, all proven through experience to 

work very well (Hewlett-Packard 1988). 

 Table 19: Data for the ACCC cable of the size “Drake”   

Parameter Value Unit Comment/Reference: 

d, outside diameter of 

inner conductor 

6.65 mm  Average, varies between 6.2 and 7.1 

mm along the conductor 

D, inside diameter of 

outer conductor  

9.5 mm  

εr, Relative dielectric 

constant of fiberglass 

epoxy composite 

4.5  - (Matweb.com 2015) For FR4 printed 

circuit material  

ρrd, inner conductor 

material (unidirectional 

carbon fiber reinforced 

epoxy), resistivity relative 

to copper  

1470 - (Matweb.com 2015, Matweb.com 

2015) Assuming 60 % volume fiber 

fraction, at room temp. Based on 

1.5E-5 Ω-m resistivity for the carbon 

fibers, and 1.7E-8 Ω-m for copper.  

ρrD, outer conductor 

material (Al) resistivity 

relative to copper 

1.66 - (Matweb.com 2015, Matweb.com 

2015) At room temperature. Based on 

2.83E-8 Ω-m resistivity for Al.  

δ, loss tangent 0.008 

 

0.02 

- (Agilent.com 2013) Data for G10 

(fiberglass composite) at 100 MHz 

(Technologies 2013) Data for FR4 

(fiberglass composite), frequency not 

specified 

 

 

8.1.2 Characteristic impedance 

The characteristic impedance of coaxial cable is the value of impedance presented 

at its input of an infinite length of the cable. A finite length of the cable will present the 

same impedance if it is terminated with a load with the impedance equal of that of the 

characteristic impedance. When the cable is infinitely long, or terminated with the same 

impedance, all energy sent down the line is absorbed and no energy is reflected (Butler 
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1989). A continuous section of ACCC conductor installed in service can be up to 2000 m 

or longer, and will in the subsequent calculations be considered as having infinite length.  

Assuming an infinitely long coaxial cable, the characteristic impedance is then 

(Hewlett-Packard 1988, Strickland 1997):  

𝑍0[Ω] = √
𝑅+𝑗𝜔𝐿

𝐺+𝑗𝜔𝐶
         (8.1-1) 

 

where  

Z0 = characteristic impedance [Ω],  

R =  resistance [Ω/m] (ohms/meter), 

L = inductance [H] (henry),  

G = conductance of the dielectric [S/m] (siemens/meter), 

C = capacitance [F/m] (farads/meter), and  

ω = frequency [Hz]. 

 

 G can often be left out in equation (8.1-1) for normal coaxial cables (Strickland 

1997). It is also common to only use the real parts of the inductance (L) and capacitance 

(C), and to ignore the resistance of the conductors (R).That gives the following simplified 

equation for the impedance (DigiKey 2013):  

𝑍0[Ω] = √
𝐿

𝐶
=  

138

√𝜀𝑟
∙ 𝑙𝑜𝑔 (

𝐷

𝑑
)             (8.1-2A) 

where  

Z0 = characteristic impedance [Ω],  

C = capacitance (F/m),  
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L = inductance (H/m),  

d = outside diameter of inner conductor (m),  

D = inside diameter of outer conductor (m), and 

εr = Relative dielectric constant of fiberglass epoxy. 

  

Applying equation (8.1-2A) on the ACCC using values from Table 19:  

𝑍0,𝐴𝐶𝐶𝐶 =  
138

√4.5
∙ 𝑙𝑜𝑔 (

9.5

6.65
) = 𝟏𝟎. 𝟏 Ω     (8.1-2B) 

 

 

8.1.3 Coefficient of reflection 

Any abrupt change in the electrical impedance of the cable will cause a reflection 

of the pulse. The strength and sign of the reflection and can be calculated using the 

following equations.  

The reflection coefficient, ρ, is defined as:  

ρ = Vr/Vi         (8.1-3) 

where  

ρ = reflection coefficient (unitless),  

Vi = voltage of the input pulse [V], and 

Vr = voltage of the reflection [V].  

 

The reflection coefficient (ρ) can have the value from -1 to 1. It is related to the 

characteristic impedance (Z0) and the impedance of a fault (ZL) by the following 

equation:  
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𝜌 =
𝑍𝐿−𝑍0

𝑍𝐿+𝑍0
        (8.1-4) 

where  

ρ = reflection coefficient (unitless),  

ZL = impedance of the fault [Ω], and  

Z0 = characteristic impedance [Ω]. 

 

The reflected pulse is identical to the initial pulse if the cable has open ends (an 

open end can be considered a fault with infinite impedance), and the coefficient of 

reflection will in that case be 1. If the cable has a hard short circuit either at the end or 

anywhere along its length, the impedance of the fault will be zero. Equation (8.1-4) 

shows that the coefficient of reflection will be -1, which means that the pulse will come 

back inverted (shown in Figure 162). For resistive faults that are in-between perfect 

shorts and perfect opens, the reflection will be a fraction of the initial wave. If the fault 

has complex impedance (it is inductive, reactive etc.), the reflection can have a different 

waveform than the initial pulse. It has been assumed in this work that faults in ACCC 

cables cannot have complex impedance, as this is most common where the TDR detects 

active equipment connected to the coaxial cable, such as tapping equipment (Hewlett-

Packard 1988).  
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8.1.4 Velocity of propagation  

The velocity of propagation (VOP) is necessary to be known in order to locate a 

fault. The VOP is expressed as percent of the speed of light in vacuum. The equation for 

VOP is (DigiKey 2013):  

𝑉𝑝 =
100

√𝜀𝑟
    [%]        (8.1-5A) 

where  

Vp = velocity of propagation [% of speed of light in vacuum], and  

εr = relative dielectric constant of the fiberglass epoxy (unitless).  

   

Applying (8.1-5A) to ACCC using values from Table 19:  

𝑉𝑝 =
100

√4.5
= 𝟒𝟕. 𝟏 %        (8.1-5B)  

 

8.1.4 Attenuation 

To calculate the reflection that the actual measurement instrument will record, the 

attenuation (loss) of the pulse on the way to the fault and on the way back has to be taken 

into account. The cable attenuation is the sum of conductor losses and dielectric losses, 

and is a very strong and non-linear function of frequency. The “frequency” of the TDR 

can be seen as the inverse of the pulse length.  

The equations for the loss of power in a coaxial cable are the following (Lobry 

and Guery 2012):  

𝛼𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟𝑠 = 𝛼𝑐 =
11.39

𝑍0
∙ √𝑓 ∙ [

√𝜌𝑟𝑑

𝑑
+

√𝜌𝑟𝐷

𝐷
]                   [

𝑑𝐵

𝑚
]  (8.1-6) 

𝛼𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 = 𝛼𝑑𝑖𝑒𝑙 = 90.96 ∙ 𝑓 ∙ √휀𝑟 ∙ tan(𝛿)                     [
𝑑𝐵

𝑚
]  (8.1-7) 
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where  

αconductors = attenuation in the conductor [dB/m] (expressed as loss of power),  

αdielectric = attenuation in the dielectric [dB/m] (expressed as loss of power),  

f = frequency [GHz],  

Z0 = characteristics impedance [Ω],  

ρrd = resistivity of CFRP compared to copper (unitless),  

ρrD = resistivity of aluminum compared to copper (unitless),  

d = outer diameter of CFRP [m],  

D = inner diameter for Al [m],  

εr = relative dielectric constant of fiberglass reinforced epoxy matrix composite 

(unitless),  

δ = loss tangent of fiberglass reinforced epoxy matrix composite (unitless).  

 

Note that (8.1-6) and (8.1-7) are expressed as power, which is common practice 

because one is typically concerned with power loss in radio frequency applications. The 

loss in voltage (in dB) is half of the loss of power (in dB). In this case, the loss of voltage 

is of greater interest because that is the measured reflection.    

A high voltage transmission line can have a continuous conductor section of 2000 

m or more. The conductor can be accessed from both ends, so the system has to be able to 

inspect a minimum of 1000 m of cable. During inspection of 1000 m cable, the pulse will 

travel a total length of 2000 m. 
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Table 20 and Figure 164 illustrate the result of applying (8.1-6) and (8.1-7) on a 

2000 m section of ACCC, and shows that an increase in frequency (a decrease in pulse 

length) dramatically increases the attenuation. The high resistivity of the CFRP is the root 

cause of the high attenuation. The attenuation in the CFRP is responsible for 69 to 97 % 

of the total losses, depending on the pulse frequency (see Table 20). Because the ACCC 

conductor is designed to be operated at temperatures over 100°C, it is important to note 

that the calculated losses are based on values for resistivity and relative dielectric 

constant at room temperature. The resistivity of aluminum goes up with temperature 

while the resistivity of carbon goes down. Since the carbon dominates the attenuation, a 

higher temperature should mean lower attenuation. The temperature dependency for the 

relative dielectric constant of the specific fiberglass reinforced epoxy matrix composite 

used in the ACCC is currently not known, and would have to be measured in order to 

make a more accurate prediction of the attenuation at elevated operating temperatures.  

 
 

Figure 164: Attenuation in ACCC as a function of frequency 
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Table 20: Predicted attenuation in ACCC as function of frequency (expressed as 

loss of voltage) 
Pulse length 1 ms 100 μs 10 μs 4 μs 1 μs 100 ns 10 ns 1 ns 

Frequency 500 Hz 5 kHz 50 kHz 125 kHz 500 kHz 5 MHz 50 MHz 500 MHz 

Attenuation in Al [dB/m] 5.0E-5 1.7E-4 5.4E-4 8.6E-4 1.7E-3 5.4E-3 1.7E-2 5.4E-2 

Attenuation in CFRP [dB/m] 1.6E-3 5.1E-3 1.6E-2 2.6E-2 5.1E-2 0.16 0.51 1.6 

Attenuation in dielectric 

[dB/m] 

7.0E-7 6.8E-6 6.8E-5 1.7E-4 6.8E-4 6.8E-3 6.8E-2 0.68 

Total attenuation [dB/m] 1.7E-3 5.3E-3 1.7E-2 2.7E-2 5.3E-2 0.17 0.59 2.3 

Total attenuation [dB/2000 m] 3.3 11 33 53 107 347 1190 4686 

% of attenuation caused by 
CFRP 

97 % 97 % 96 % 96 % 96 % 93 % 86 % 69 % 

 

 

The largest difference between ACCC and typical coaxial cables is the high 

resistance inner conductor. While this does not change the direct nature of the conductor 

from a coaxial theory perspective, it will cause losses that can be problematic in a long 

structure such as a high voltage transmission line.  

The way around the problem is to inject a higher voltage pulse, or use a longer 

pulse length, or both. The typical commercial TDR equipment has an output voltage of 

approximately 3 V. The big advantage of using a longer pulse is that the attenuation is 

significantly less because attenuation is a function of frequency. Increase in voltage does 

not decrease the attenuation; it only increases the amplitude of the reflected pulse in 

proportion to the increase in the initial pulse. However, both a higher voltage and longer 

pulse may be needed.  

It is a common misunderstanding that a long pulse results in a less accurate 

measurement of the fault location than a short pulse. The TDR uses the rising edge of the 

pulse to locate the fault. The distance measurement is performed from the rising edge of 

the initial pulse to the leading edge of the reflected pulse, and the accuracy is not affected 

by the pulse length. However, a longer pulse can make it more difficult to locate separate 

faults that are close to each other. This still does not decrease the resolution or the 



 

274 

sensitivity; the only difference is that the two reflections might overlap each other to 

some extent (see Figure 165) (Radiodetection 1997).  

 

 

 
 

Figure 165: Reflections from a short pulse and a long pulse for the same two faults. 

Based on (Radiodetection 1997). 

 

8.2 Experimental work  

Experiments were performed to evaluate the viability of TDR for structural health 

inspection and monitoring of ACCC conductors, and to validate the calculations for 

characteristic impedance, VOP, and attenuation. The TDR used was a Riser-Bond model 

1205 with WaveView software installed on a laptop computer. A Fluke ScopeMeter 

model 162 was used to confirm the voltage of the pulses and reflections.  

All the experimental work was performed using a 22 m long section of ACCC. 

The pulse lengths used were 1 ns, 10 ns, and 100 ns. The available equipment can also 

generate pulse lengths between 1 μs, and 4 μs.  The pulse takes a certain amount time – 

and thus distance – to launch. This distance is called the “blind spot”. It is much more 

difficult to locate a fault in the blind spot, as the reflection and the initial pulse will be 

combined in the final waveform. Therefore, the ACCC was connected to the 
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measurement equipment with a commercial metallic coaxial cable to overcome this blind 

spot. For pulse lengths of 100 ns and lower, a 15 m long impedance-matched metallic 

coaxial cable was used. For pulse lengths of 1-4 μs, an additional 250-1000 m of standard 

metallic coaxial cable would be needed between the instrument and the ACCC to 

accommodate the longer pulse length. At a pulse length of 4 μs, the blind spot is 

approximately 600 to 800 m.  

The waveforms presented in this dissertation are single measurements from the 

TDR. The waveforms are not averaged, filtered, or conditioned in any other way. The 

repeatability is very high, as expected from a setup that is basically an electric circuit.  

 

Figure 166: Connection between metallic coaxial cable and ACCC cable. 
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Figure 167: Experimental setup 

 

 

8.2.1 Characteristic impedance 

The characteristic impedance was measured using a commercial impedance 

analyzer. Table 21 lists the measured impedance as a function of frequency. The 

measured impedance of 13 Ω at 70 Hz agrees well with the calculated value of 10.1 Ω, 

which was calculated using 8.1-2A that ignores the frequency part on 8.1-1. The results 

from the higher frequencies indicate that the characteristic impedance may be affected by 

frequency. This will be discussed further in subsequent sections. It is important to note 

that the values presented in the table below are affected by the metallic coaxial cable 
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connecting the impedance analyzer to the ACCC, but it is unknown how and to what 

degree it has affected the measurements.  

 

Table 21: Measured characteristic impedance  

Frequency [Hz] Impedance, Z [Ω] 

71 13 

143 21 

287 46 

 

 

8.2.2 VOP and attenuation  

The reflections from the open end and the shorted end of the ACCC were used to 

validate the calculations for VOP and attenuation. The VOP in the ACCC conductor was 

estimated to be 47.1 % of the speed of light in section 8.1.4.   

Figure 168 shows the waveforms from open and shorted ends at sub-nanosecond, 

10 ns pulse length, and 100 ns pulse length. When VOP is set to 47.1 % in the software, 

the distance from the beginning to the end of the ACCC shows the correct length of 22 m. 

This confirms that the calculated VOP is correct.  
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Figure 168: Waveforms for sub-nanosecond, 10 ns, and 100 ns pulse lengths.   



 

279 

The reflected pulse was also used to estimate the attenuation in the ACCC cable. 

The waveforms in Figure 168 are plotted on the same scale. With a similar amplitude of 

the initial pulse, the 10 ns (50 MHz) pulse generates a much larger reflection from the 

end of the ACCC conductor than the 1 ns (500 MHz) pulse, and the 100 ns (5 MHz) 

pulse generates an even larger reflection. This agrees with the assumption that the 

attenuation is strongly dependent on frequency.  

Further analysis of the reflections from the open end gives a quantitative 

measurement of the attenuation. Figure 169 and Figure 170 compare the reflections from 

1 ns, 10 ns and 100 ns pulse lengths. The reflection from the 1 ns pulse is so weak that it 

is only visible at large magnification (Figure 170). 99.8 % of the signal was lost with a 

pulse length of 1 ns, 95.3 % at 10 ns, and only 53.1 % at 100 ns. According to the 

calculations based on (8.1-6) and (8.1-7) that were presented in Table 2, the predicted 

loss of signal strength over 44 m (22 m times two as the signal has to travel both ways) is 

2.0 to 3.8 times higher than the measured loss (Table 22).   

The calculation discrepancy likely originates from the assumption that the 

characteristic impedance is independent of frequency. The measurement with a 

commercial impedance analyzer showed that this is an incorrect assumption; the 

characteristic impedance of ACCC is clearly a function of frequency. This is good news 

for the viability of the TDR as a method for structural health monitoring of composite 

core conductors; higher characteristic impedance means lower attenuation, as can be seen 

in (8.1-6) and (8.1-7).  
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Figure 169: Reflections from open and shorted end of ACCC cable. 

 

 

 
 

Figure 170: Reflection from open and shorted end of ACCC cable with 1 nanosecond pulse length. 
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Figure 171: Predicted vs. Experimental attenuation, extrapolated to 2000 m of travel distance through an 

ACCC cable. 

 

8.2.3 Detection of galvanic corrosion and other faults  

The next experiment assesses the capability of the method to detect faults in the 

conductor. Small holes were drilled through the aluminum and the fiberglass barrier of 

the ACCC cable at two locations: 9.1 m (30 ft) and 18.3 m (60 ft), measured from the 

beginning of the ACCC cable. Three different materials were inserted in the holes to 

create short circuits between the CFRP and the aluminum: a metal probe (Figure 172), a 

paper rod soaked in 3.5 mass % NaCl aqueous solution (Figure 173), and a paper rod 

Table 22: Measured vs. Predicted attenuation (expressed as loss in voltage) 

Pulse length 100 ns 10 ns 1 ns 

Frequency 5 MHz 50 MHz 500 MHz 

Ratio Vin/Vrefl 2.13 21.5 484 

Loss of signal  53.1 % 95.3 % 99.8 % 

Attenuation: 

Experimental [dB/m] 0.075 0.30 0.61 

Predicted [dB/m] 0.17 0.60 2.3 

Attenuation over 200 m: 

Based on experimental data [dB] 150 606 1220 

Predicted [dB] 347 1190 4686 

Ratio Predicted/Experimental 2.3 2.0 3.8 
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soaked in saturated NaCl solution. The fault detection measurements were performed 

using 100 ns pulse length.  

 
 

Figure 172: Metal probe inserted to make electrical contact between the Al and the CFRP. 

 

 

Figure 173: Paper rod soaked in NaCl solution inserted to make electrical contact between the Al and the 

CFRP. 
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Figure 174: Reflections from different introduced faults. 

 

 

Figure 174 shows the reflected waveforms from the introduced faults. The metal 

probes 2) and 3) give distinct reflections, very similar to a shorted end 8). The electrolyte 

bridges, created by making contact between the CFRP and aluminum with a paper rod 

soaked in aqueous NaCl solution, give much weaker reflections. This is expected as these 

bridges have much higher resistance than the metal probes. The area within the red box in 

figure 11 calls for a closer analysis, which is found in Figure 175. 
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Figure 175: Reflections from different introduced faults. 

 

The reflections from the electrolyte bridges are quite intriguing. Although much 

weaker than those from the metal probe, the reflections are distinct. The difference 

between 4) and 5) demonstrates that a higher NaCl concentration, and thus higher 

conductivity, gives a stronger reflection. In the case of the saturated NaCl solution 5), the 

solution left in the hole after the wet paper rod had been removed resulted in a very 

similar but slightly weaker reflection 6). After careful cleaning of the hole with distilled 

water, the reflection 7) is indistinguishable from the original state with no fault 1).   
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8.3. Discussion  

ACCC is quite different from normal coaxial cables used for cable-TV and other 

radio frequency applications. Its inner conductor was never intended to be used as a 

conductor, and the complete cable has a much higher attenuation than coaxial cables with 

all-metal conductors. The high resistivity of the CFRP core is responsible for the very 

high attenuation. However, based on the data presented in this dissertation, inspection 

and monitoring of ACCC using TDR appears to still be possible.  

The main solution to the attenuation is a longer pulse length. The trend in the 

experimental data is that the actual attenuation is approximately half of the 

mathematically predicted attenuation. Assuming that this relation holds for pulse lengths 

longer than 100 ns, the attenuation would be 26.5 dB over 2000 m for 4 μs pulse length 

and 16.5 dB for 10 μs pulse length. Because the coaxial cable connecting the TDR to the 

ACCC conductor has to be at least as long as the blind spot, 10 μs is perhaps the longest 

practical pulse length. The pulse travels approximately 1500 meter in 10 μs (exact value 

depends on the VOP of the specific cable used). Although there are coaxial cables that 

are lighter than normal cable-TV cables, 1500 m of coaxial cable will still be 

cumbersome to transport. However, there may be a better engineering solution other than 

an extension cable that will allow for a longer pulse length, but this is yet to be 

determined. 16.5 dB loss over 2000 m means that the amplitude of the return reflection 

from a hard short circuit such as a shorted end is 1/10
1.65

, or 1/45
th

 of the original voltage 

of the signal. This is of the same order of magnitude as the ratio of input voltage to 
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reflection voltage for the 10 ns pulse length in Figure 171, which was 1:21.5. This ratio 

was clearly measurable, and a ratio of 1:45 is most likely also measurable.  

An additional challenge is that faults of interest such as galvanic corrosion may 

give a weaker reflection. However, it needs to be emphasized that the voltage used in the 

measurements in this study was only approximately 3 V. Electrolytes are non-linearly 

conductive, and a higher voltage will most likely result in a stronger reflection. Because 

this is a high-voltage power line system and does not contain sensitive equipment such as 

phones which are typically found in regular coaxial cable systems, the pulse amplitude 

for a TDR used in ACCC can be hundreds of volts or even higher. Other techniques such 

as filtering and averaging of multiple measurements can also be used to increase the 

sensitivity and reduce noise.  

The ability to detect other faults that do not result in an electrical connection 

between the CFRP and aluminum needs to be further investigated. Such faults are for 

example partial fractures, loss of aluminum or fiberglass, water absorption of the 

fiberglass, gunshot damage, crushing or bird-caging. All these faults will cause a local 

change of the conductor impedance, and should theoretically be detectable. However, no 

firm conclusions about these kinds of faults can be drawn from the data presented here.    

 

8.3.1 Applications of TDR on ACCC and similar cables  

Figure 176 illustrates four potential uses of TDR in the evaluation and monitoring 

of ACCC transmission line conductors: 
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 In case a), the conductor is inspected on the reel as delivered from the 

manufacturer. The inspection only needs to be performed from one end of 

the conductor. 

 In case b), the conductor is monitored in real-time as it is rolled off the 

reel and installed on the towers. The inspection needs to be done from the 

inner reel end of the conductor. The monitoring can be continuously 

recorded. The system can, for example, include an alarm that will sound if 

the device detects a new fault. Time and place of the fault can be recorded 

so it can be repaired.  

 Inspection of the conductor after installation but before energizing is 

illustrated in case c), while case d) illustrates continuous monitoring 

during service.  

Monitoring of energized transmission lines will require modifications and 

adaptations of the TDR such as protection from electromagnetic interference. The 

equipment must also be designed to protect the operator.  

The TDR apparatus needs to have electrical access to the carbon core. This can 

easily be provided in future installations through the design of the so called “dead end” 

(the end sleeve where the conductor is crimped and then attached to the insulator which 

in turn is connected to the tower). In already installed conductors, the core can potentially 

be accessed without compromising the strength by making a hole through the dead end to 

access the conductor end. Alternatively contact can be made by drilling a tiny hole 
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through the dead end into the core and make a so called “vampire tap” by inserting a 

probe to the core that is insulated with the exception of the very tip.  

 

 
 

Figure 176: Potential applications of TDR on ACCC. 
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8.4 Chapter conclusions  

It has been shown in this chapter that TDR can be used to find faults such as short 

circuits and electrolyte bridges between the CFRP and aluminum in in a 22 m section of 

ACCC cable. Numerical modeling predicts that at least 1000 m of ACCC conductor can 

be inspected using a pulse length of approximately 10 μs. 

It is likely that TDR can be used to detect other faults of interest such as partial 

fractures, loss of aluminum or fiberglass, water absorption of the fiberglass, gunshot 

damage, crushing or bird-caging, but this has to be studied further.  

Several potential future applications of TDR for structural health monitoring of 

overhead transmission lines with ACCC conductors have also been presented in this 

chapter:  

1) Inspection of the conductor before installation to detect manufacturing 

faults or damage due to mishandling, and to determine the exact location 

of the fault on the reel. It can also be used to measure the length of the 

conductor on the reel.  

2) Monitoring of the conductor during installation. If the conductor is for 

example over-bent and fractured, this can be detected in real time. 

3) Inspection after installation but before energizing.  

4) Continuously monitoring a conductor in service.  

The method will likely also work for transmission line cables of other brands with 

similar geometry and electrical properties.
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CHAPTER NINE: GENERAL DISCUSSION AND FINAL CONCLUSIONS 

 

Components and structures containing both aluminum and CFRP can have 

outstanding mechanical properties, but can also be susceptible to galvanic corrosion 

causing accelerated corrosion of the aluminum. It is well known that aluminum and 

carbon (in the form of graphite, CFRP, or similar carbon containing, conductive non-

metallic materials) form a strong galvanic couple, but it was observed early in this study 

that the measured galvanic corrosion rate was highly dependent on the testing conditions. 

It was determined later in the study that the dominating control mechanism was in most 

cases the transport of oxygen to the cathode (the carbon containing material), which is 

highly affected by area ratio, geometry, electrolyte agitation and oxygen content. This 

result, and the work leading up to this conclusion, will be discussed in this chapter.   

The combination of aluminum and CFRP is used in many different applications. 

Two important examples are airplanes and the next generation high-voltage power 

transmission lines. In the case of the latter, a new design of a HTLS bare overhead 

transmission conductor has been of particular interest in this study. Due to the higher 

specific strength, relatively high operating temperature, and the low thermal expansion of 

the CFRP, the transmission line conductor ACCC utilizing a CFRP core for mechanical 

strength has greatly improved properties compared to the traditional designs. ACCC can 
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transmit up to twice the current through the same size and mass conductor, allowing for 

an increased power transfer without having to upgrade or add more towers.   

General engineering practice is to avoid contact between aluminum and CFRP or 

similar materials in any application where moisture may be present. Although a typical 

solution is to insulate the CFRP from the aluminum with a layer of fiberglass composite 

or a polymer coating, it is of great importance to understand the consequences if the two 

materials accidentally become in contact.  

Bare overhead transmission line conductors are exposed to the surrounding 

environmental conditions without any additional protective covers or coatings. 

Traditional bare overhead conductor designs such as the bi-metallic ACSR have a known 

inherent problem with galvanic corrosion between the galvanized steel and the 

aluminium. As opposed to ACSR, the ACCC conductor design has no inherent galvanic 

corrosion problem. The CFRP and aluminum in ACCC are separated with an insulating 

layer of fiberglass composite surrounding the CFRP. However, galvanic corrosion can 

develop in the ACCC conductor if the fiberglass barrier is compromised and CFRP-to-

metal contact is present anywhere in the conductor. As shown by previous research at the 

University of Denver, the fiberglass barrier can be damaged by over-bending (Burks, 

Armentrout et al. 2009), impact, fatigue (Burks, Armentrout et al. 2011), or aging (Burks, 

Armentrout et al. 2011), (Hoffman, Middleton et al. 2015).  

While it was suspected that the ACCC can develop galvanic corrosion if the 

fiberglass galvanic barrier is compromised, no systematic research had been performed in 

this area before this study was initiated. The rate controlling mechanisms in the corrosion 
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between aluminum and carbon were also not well understood. Neither was there a good 

method available to evaluate the problem of galvanic corrosion in bare overhead 

conductors. Thus, this dissertation set out to find methods to measure the galvanic 

corrosion performance and to understand the fundamental control mechanisms, which 

included both innovative experimental and numerical approaches. Additionally, it also set 

out to find a method of detecting galvanic corrosion in ACCC conductors.  

This chapter will summary and discuss the findings in each of these areas, but will 

first describe the impact that this work has already had on the field of knowledge.  

 

Impact of this work 

Overall, this dissertation presents a broad array of innovative methods, numerical 

analyses, and experimental results that has led to an improved understanding of the 

galvanic corrosion of aluminum/carbon composite systems. The work has also provided 

much needed methods for the evaluation of galvanic corrosion in current and new 

transmission line conductor designs. It has also provided a promising proposal for the 

structural health monitoring of carbon fiber composite core conductors, for which a 

patent application is being prepared. The possibility of inspection and monitoring is 

crucial for the wider acceptance of the ACCC conductor and similar designs.  

This comprehensive research has significantly contributed to the increased 

acceptance of composite core supported bare overhead transmission line conductors in 

both the United States and worldwide. The knowledge gained in this study is already 

aiding the evaluation and design of future conductor designs. It is also helping to predict 
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and prevent galvanic corrosion in many applications utilizing aluminum/carbon 

composite systems. 

 

In-situ measurement of galvanic corrosion currents 

The first part of this study was focused on developing a method for the in-situ 

galvanic corrosion testing of bare overhead transmission line conductors of various 

designs, but with particular focus on impact damaged ACCC conductors. The assessment 

method was originally developed during the author’s master’s work (Håkansson 2013), 

(Håkansson, Predecki et al. 2015), but was further improved in this dissertation work 

(Håkansson 2015), (Håkansson, Ricker et al. June 2016), (Håkansson, Hoffman et al. In 

preparation). This work was presented in Chapter 3. The outcome of the work was a 

method for real-time measurements of galvanic corrosion currents in conductor samples 

while retaining the original geometry of the conductors.   

The damage to the fiberglass composite barrier was introduced by splitting the 

conductor core in the axial direction. This resulted in a large exposed area of CFRP (the 

area ratio of aluminum to CFRP was 1:28). The conductor sample was assembled to the 

original geometry (with the core being surrounded by the aluminum strands) and the 

galvanic corrosion current density rate was measured. A similar sample design was 

utilized for the traditional bi-metallic conductors ACSR and ACSS, but an insulating 

polyester mesh sleeve was inserted between the steel core and the surrounding aluminum 

strands to separate the materials while retaining the original geometry. The electric circuit 

was completed through an external measurement instrument.  
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Figure 70 (repeated): Galvanic corrosion current density of corroding aluminum strands as a function of 

relative humidity for three different conductor designs. 

 

Figure 70 above illustrates the galvanic corrosion current density of the corroding 

aluminum strands as a function of RH after exposure to 3.5 mass % NaCl aqueous 

solution and drying in room air. In general, the corrosion current displays an exponential 

dependency on the RH, a behavior that also has been reported in the literature. The 

results from the tested environments showed that even with a severely compromised 

galvanic corrosion barrier, the galvanic corrosion rate in ACCC was similar or lower than 

the inherent galvanic corrosion in ACSR. This is all good news for the ACCC conductor 
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from a corrosion perspective. With an intact corrosion barrier, the ACCC cannot develop 

galvanic corrosion because there cannot be an electrolytic contact between the CFRP and 

the aluminum.  

It was also found that for the ACCC conductor with a compromised fiberglass 

barrier, humid corrosive environments may result in a higher galvanic corrosion rate than 

immersed conditions. This observation prompted intensified work to determine the rate 

controlling mechanisms in the galvanic corrosion process.  

 

Experimental characterizations 

Before starting the work to determine the rate controlling mechanisms, an 

experimental characterization was performed on the materials of interest for this study. 

The focus was on four different materials: CFRP from the ACCC conductor, Al 1350-O 

from the ACCC conductor, Al 6061-T6, and solid graphite. Materials from several other 

transmission line conductors were also included in the galvanic series (Figure 71, 

repeated below). The experimental characterization determined that CFRP and graphite 

were both more noble than all the tested metals.  
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Figure 71(repeated): Galvanic series for materials of interest in this study in 0.6 M NaCl at room 

temperature, vs. Ag/AgCl reference electrode. Acronyms refer to common conductor types and are 

explained in Appendix A. The difference in corrosion potential between CRFP and aluminum from the 

ACCC conductor is highlighted.     

 

Cathodic control 

Through the extensive experimental work presented in Chapter 4, it was 

concluded that the galvanic corrosion of the aluminum/carbon couple (“carbon” 

represents both solid graphite and CFRP) is under cathodic control. This means that the 

total galvanic corrosion rate is controlled by the rate at which dissolved oxygen arrives at 
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the carbon surface. A large number of galvanic corrosion measurements were performed 

in 0.6 M NaCl aqueous solution. The lowest cathodic galvanic corrosion current density 

was measured in oxygen-starved electrolyte, while the highest was measured when a jet 

of electrolyte with a velocity of 1 m/s was directed onto the cathode surface. The lowest 

cathodic current density was 9 mA/m
2
, while the highest was 10 662 mA/m

2
. The 

difference is a factor of 1 184, or more than 3 orders of magnitude! This clearly illustrates 

the necessity of designing the test setup to closely simulate the real service environment. 

If the test setup does not represent the service environment for the component, the 

galvanic corrosion rate may be grossly over or under estimated. 

Cathodic control also means that the total galvanic corrosion rate is determined by 

the exposed carbon area, and is independent of the exposed aluminum area. The 

implication of this discovery is that in order to prevent corrosion damage, the exposed 

carbon area should be minimized. Decreasing the carbon area will decrease the total 

galvanic corrosion rate, and thus decrease the loss of aluminum. If the aluminum area is 

decreased and the carbon area is left unchanged, the total galvanic corrosion rate will 

stay the same. The result would be an increased corrosion penetration rate of the 

aluminum because the same amount of mass loss will occur on a smaller aluminum 

surface. This is an important finding.  

 

Effect of geometry, area ratios, and oxygen supply 

A selection of galvanic corrosion rates measured in this work is summarized in 

Figure 177. The galvanic corrosion rates are expressed in average anodic galvanic 
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corrosion current density for area ratios, geometries, and electrolyte properties that were 

of particular interest.  

 

Figure 177: Summary of measured galvanic corrosion rates, mA/m
2
.  

 

In Figure 178, the galvanic corrosion rates are translated into average corrosion 

penetration rate of the aluminum. This assumes that the corrosion is uniform. Aluminum 

in neutral electrolytes develops pitting corrosion, which means that the corrosion is 

localized. The local corrosion penetration can therefore be much deeper than the plot 

indicates, but the average corrosion rates still represent the total mass loss of the 

aluminum.  
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Figure 178: Summary of measured galvanic corrosion rates, mm/year.  

 

It may be hard to comprehend what these rates would mean to a transmission line 

conductor. Using a failure criterion that assumes that a transmission line conductor is 

considered failed when it has lost 20 % of its aluminum cross-section, we can translate 

the above corrosion rates into time-to-failure. Figure 179 illustrates the time-to-failure 

using this criterion. The importance of a suitable testing method is obvious in the plot. 

Just by changing the area ratio, geometry, electrolyte agitation, surface preparation, and 

level of dissolved oxygen, the same materials immersed in the same electrolyte will have 

a predicted time-to-failure of 35 hours to 130 years. That is a difference of more than four 
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orders of magnitude! The difference in atmospheric conditions is also more than an order 

of magnitude depending on the surface preparation.  

 

Figure 179: Summary of measured galvanic corrosion rates translated into time-to-failure for an overhead 

transmission line conductor.   

 

Numerical modeling 

Four different numerical models were developed to further investigate the rate-

controlling mechanisms in aluminum/carbon couples. Two of the models were for 

immersed conditions and two were for atmospheric conditions.    

Chapter 6 presented the two numerical models for immersed conditions along 

with two physical validation models. They all had an identical parallel plate configuration 
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and represented an immersed service environment such as an offshore oil drilling rig. 

There were two variables in both the numerical models and the physical validation 

models: 1) the distance between the electrodes that was varied from 25 mm to 200 mm, 

and 2) the NaCl concentration in the electrolyte that was varied from 0.0017 M (0.01 

mass %) to 0.6 M (3.5 mass %) NaCl. The first numerical model was designed with an 

analytical approach, but had to be solved through numerical iteration because of the IR 

drop being a function of the galvanic corrosion current, which in turn is dependent on the 

IR drop. The second numerical model had the identical configuration and input values, 

but was a finite elements model solved with the commercial software package Comsol 

Multiphysics.  

In the first validation model, the two electrodes were immersed in a bulk 

electrolyte. This allowed for possible mass transfer between the electrolyte volume 

separating the electrodes and the bulk electrolyte through direct and indirect paths. This is 

referred to in this section as the open electrolyte volume. In the second validation model, 

the electrolyte volume separating the electrodes was enclosed so that transfer could only 

occur in a direct path between the parallel electrodes. This is referred to as the enclosed 

volume. The two models are shown in Figure 119 and Figure 124, which are repeated 

below.  

There was good agreement between the numerical models and the physical 

validation models. The galvanic corrosion rates measured in the physical validation 

models straddled the results from the two numerical models. The physical model with the 

open electrolyte volume resulted in galvanic corrosion rates that were higher than both 
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numerical models. The general trend for the physical model with the enclosed electrolyte 

was lower galvanic corrosion rates than both numerical models. The enclosed volume 

generated consistently lower galvanic corrosion rates than the open volume. This is 

believed to be due to the enclosure preventing self-convection of the electrolyte and thus 

eliminating the supply of oxygen-rich electrolyte from the bulk volume. This observation 

provides additional support that the oxygen transport is the dominant rate-limiting 

mechanism.  

 

Figure 119 (repeated): Validation experiment for parallel electrode model.  

 

 

Figure 124 (repeated): Validation experiment for parallel electrode model with enclosed electrolyte 

volume. 
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Chapter 7 presented the two different numerical models for atmospheric 

conditions. While atmospheric galvanic corrosion follows the same fundamental 

principles as immersed galvanic corrosion, it is a special case where the reactions take 

place in a very thin electrolyte layer with a thickness on the order of a few μm. The first 

model was a static steady-state model with resistance and oxygen diffusion as the rate 

controlling mechanisms. The input values for the reaction kinetics were experimentally 

obtained. The second model was time-dependent with corrosion product formation 

increasing the oxygen diffusion path length as the rate controlling mechanism. The model 

used an experimentally obtained galvanic corrosion rate as its upper boundary condition, 

and experimentally obtained values for corrosion product generation.  

The steady-state model predicted that the galvanic corrosion rate should be the 

highest near the cathode. This is known from literature and could also be observed 

through microscopy of corroded samples. The predicted galvanic corrosion rates for one 

specific salt load density were compared to experimental measurements. The chosen salt 

density was 3.1 g/m
2
, which is the resulting salt load density when an ACCC conductor 

sample is immersed in 0.6 M NaCl and then dried. The predicted galvanic corrosion rate 

at 100 % RH is within the range of measured values, as can be seen in Figure 158 

(repeated below). However, the measured values vary dramatically depending on the 

exact testing conditions.  
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Figure 158 (repeated): Comparison of the steady-state FE model with experimental values.  

 

 

When the samples are brand new and initially treated with phosphoric acid to 

remove the oxide layer (“Acid Prep” in the above figure), the measured value is higher 

than the predicted. When the original oxide layer and scale is left intact, the value is 

lower than the predicted. The test series presented in Chapter 3 generated drastically 

lower values than the prediction. These samples were from a conductor reel that had been 

stored outdoors for over 10 years and may have formed a thick passive layer. Figure 158 

also includes values from conductors that had been exposed to 100 % RH for several 

weeks and were filled with Al(OH)3 gel. These generated much lower galvanic corrosion 

rates than the numerical model.  

It can be concluded that the steady-state model provided a prediction that was 

within range of the measured values at 100 % RH and 3.1 g/m
2
. The predicted rate is 
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good for a new sample in a very early stage of corrosion, but is not accurate for samples 

that have accumulated corrosion products or formed a stable oxide layer on the aluminum 

surface. This illustrates the active-passive behavior of aluminum and the difficulty to 

predict its corrosion rate. This model can only represent the ACCC conductor with a 

compromised galvanic corrosion barrier when it is brand new. Because the conductor is 

full of narrow crevices that will collect corrosion products and pollutants, additional 

limiting mechanisms will soon appear. This will make the model inadequate beyond the 

first few days or perhaps weeks.  

Comparing the shape of the curve for the finite element model results with the 

measured values indicates that there are additional control mechanisms that are not 

considered in the model. The experimental data exhibits an exponential trend with rapidly 

increasing galvanic corrosion with increased RH levels (see Figure 159, repeated below). 

The numerical data, on the other hand, increases with increasing RH, but the function has 

a slightly convex shape. This numerical model can clearly not fully explain the galvanic 

corrosion mechanism for these conditions. The discrepancy for values below 100 % RH 

could be caused by the very thin electrolyte layer not being able to form a continuous 

electrolyte film between the CFRP and the aluminum, resulting in a much higher 

resistance than predicted, but this hypothesis has not been studied in any further detail.  
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Figure 159 (repeated): Comparison of the steady-state FE model with experimental values.  

 

 

As mentioned several times before, the galvanic corrosion in the ACCC conductor 

with exposed CFRP appears to be mostly or completely dominated by the transport of 

oxygen to the cathode. Experimental measurements indicate that the accumulation of 

corrosion products in the form of Al(OH)3 gel appears to very effectively limit this 

transport. Within a short amount of time (10-14 days in 100 % RH at RT, with a salt load 

density of 3.1 g/m
2
), the conductor will be filled with gel and the galvanic corrosion rate 

will have decreased one order of magnitude from 6-10 mA/m
2
 to approximately 1 

mA/m
2
. The resulting galvanic corrosion rate is similar to the rate measured during 

immersion.  
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A numerical model was developed based on the hypothesis that the accumulation 

of corrosion products described above limits the oxygen transport. The predicted values 

beyond about 10 days agreed well with experimental measurements (see Figure 156, 

repeated below) and provided very strong support for the hypothesis.  

 

Figure 156 (repeated): Average anodic galvanic corrosion current densities as a function of time.  

The shaded region represents one standard deviation of the experimental measurements 

 

The observation that the accumulation of corrosion products appears to limit the 

galvanic corrosion rate is quite interesting. For many metals, such as iron, the 

accumulation of corrosion products may accelerate or sustain the corrosion by holding 

moisture or by creating a concentration gradient, or both. In the ACCC case, however, the 

effect appears to be the opposite. The accumulation of corrosion products is slowing 

down the galvanic corrosion process. This is thanks to the cathode being located deep 
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inside a crevice. If the positions were switched – the anode was buried deep inside a 

crevice – the galvanic corrosion would be rapidly accelerated. This is, for example, the 

driving mechanism in crevice corrosion. The unique geometry of the ACCC conductor 

(with compromised corrosion barrier) appears to be very favorable from a galvanic 

corrosion perspective.   

 

Monitoring for galvanic corrosion and other faults in ACCC conductors 

This work has shown that the potential galvanic corrosion rate resulting from a 

compromised galvanic barrier in an ACCC conductor appears to be similar or less than 

the inherent galvanic corrosion rate in ACSR, and is probably not a threat to the ACCC’s 

electrical properties. However, a damaged corrosion barrier is still an indication of a 

potentially serious structural problem. One of the fundamental conditions for galvanic 

corrosion to occur is that there exists an electrolyte bridge between the two participating 

materials, which in this case would be the CFRP core and the aluminum. This electrolytic 

contact between the two materials can be utilized in the structural health monitoring of 

the conductor, because it will locally change the electrical properties of the conductor.  

The CFRP core with the fiberglass barrier and the surrounding aluminum strands 

form a coaxial geometry: a conductor surrounded by another conductor with an 

electrically insulating layer in-between. Although the CFRP was never intended to be 

used as a conductor, the high fiber fraction makes it sufficiently conductive for the use of 

electrical Time Domain Reflectometry (TDR) for inspection and monitoring. The 

principle of TDR is similar to radar, but is confined to one dimension. An ultra-fast rise 
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time voltage step is launched into the cable by applying a voltage between the inner and 

outer conductor. The electromagnetic pulse travels down the conductor at nearly the 

speed of light. When the pulse encounters a change in the characteristic impedance - 

which could be caused, for example, by an electrolyte bridge causing galvanic corrosion - 

a reflected pulse is returned back to the instrument. The time between the transmitted 

pulse and the reflection uniquely determines the fault location.  

In the field of composites, TDR is, for example, used to monitor the curing of 

resin in laminates, for damage detection in laminates, and for automated measurement of 

crack propagation during testing of composites, it was not found that it had been used in 

the inspection of ACCC.  

Experimental work using a 22 m long section of ACCC cable demonstrated that 

TDR can be used to find faults such as short circuits and electrolyte bridges between the 

CFRP and aluminum. Numerical modeling predicts that spans of at least 1000 m of 

conductor cable can be inspected using the method. It is likely that longer sections can be 

inspected utilizing a higher voltage (the test equipment utilized in this study had an 

output voltage of only 3 V) and signal processing such as filtering or integration.  

It is likely that TDR can be used to also detect other faults of interest in the 

ACCC such as partial fractures, loss of aluminum or fiberglass, water absorption of the 

fiberglass, gunshot damage, crushing or bird-caging, but it is yet to be determined. There 

are several potential future applications of TDR for structural health monitoring of 

overhead transmission lines with ACCC conductors:  
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1) Inspection of the conductor before installation to detect manufacturing 

faults or damage due to mishandling, and to determine the exact location 

of the fault on the reel. It can also be used to measure the length of the 

conductor on the reel because the end of the cable gives a reflection 

similar to a fault.  

2) Monitoring of the conductor during installation. If the conductor is, for 

example, over-bent and fractured, this may be detected in real time.  

3) Inspection after installation but before energizing.  

4) Continuous monitoring or intermittent inspection of an energized 

conductor in service (this would require the development of equipment 

that can withstand the high voltage environment).  

The method will likely also work for non-ACCC transmission line cables with 

similar geometry and electrical properties.   

 

Final conclusions 

Based on the results presented in this dissertation, the following final conclusion 

can be drawn regarding the galvanic corrosion of aluminum/carbon composite systems in 

general and the ACCC conductor in particular.  

Conclusions regarding the galvanic corrosion of aluminum/carbon couples in general:  

- Aluminum and carbon (such as CFRP, graphite or other non-metallic carbon 

containing materials) form a strong galvanic couple in the presence of an 

electrolyte. 
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- The galvanic coupling can lead to severely accelerated corrosion of the 

aluminum.  

- If possible, the contact between aluminum and carbon should be avoided. The 

two materials may be insulated from each other by fiberglass composites, 

polymers, polymer coatings or other non-conductive materials.  

- The galvanic corrosion is under cathodic control. 

- The galvanic corrosion process is also mainly under diffusion control, where 

the total galvanic corrosion rate is controlled by the rate at which oxygen 

arrive at the carbon surface.  

- The total galvanic corrosion rate is determined by the exposed carbon area, 

and independent of the exposed aluminum area.  

- Galvanic corrosion can occur even if no oxygen is present through the water 

splitting reaction, although the rate is much lower. This rate of galvanic 

corrosion can likely be considered negligible in many applications.   

- The testing conditions and sample design can affect the results by orders of 

magnitude. The test setup must be designed to closely simulate the real 

service environment. If the test setup does not represent the service 

environment for the component, the galvanic corrosion rate may be grossly 

over or under estimated. 

Conclusions regarding the ACCC conductor:  

- The ACCC conductor cannot develop galvanic corrosion if the fiberglass 

galvanic corrosion barrier is intact.  
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- ACCC can only develop galvanic corrosion if the following three conditions 

are met simultaneously: 1) the fiberglass barrier is compromised in a way that 

results in exposed CFRP, 2) there is direct CFRP to aluminum contact 

somewhere in the conductor span, and 3) there is an electrolyte such as salt 

fog or polluted rain bridging the two materials.  

- The formation of a stable layer of oxide on the aluminum surface decreases 

the galvanic corrosion rate in an ACCC conductor with a compromised 

corrosion barrier, and will also limit the pitting corrosion of ACCC conductors 

with an intact corrosion barrier.  

- The measured galvanic corrosion rates in salt-loaded ACCC conductor 

samples with a compromised corrosion barrier in 100 % RH at room 

temperature were similar or lower than the galvanic corrosion rate in ACSR.  

- The accumulation of corrosion products will limit the galvanic corrosion rate 

by restricting the diffusion of oxygen to the cathode (the CFRP) in an ACCC 

conductor with a compromised corrosion barrier.  

- Thanks to the favorable geometry of an ACCC conductor (with a 

compromised corrosion barrier) with a much larger aluminum area than CFRP 

area and with the CFRP located in the center of the conductor, the galvanic 

corrosion rate is drastically limited due to the restricted transport of oxygen to 

the CFRP.  

- Time Domain Reflectometry (TDR) can be used for detecting galvanic 

corrosion and short circuits between the aluminum and CFRP in a short 
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section of ACCC conductor. Numerical modeling predicts that the method can 

be used for inspection and monitoring of full conductor spans.  
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APPENDIX A: ACRONYMS, TERMINOLOGY AND SYMBOLS 

A  Ampere  

AAC  All-Aluminum Conductor 

ACCC  Aluminum Conductor Composite Core 

ACCR   Aluminum Conductor Composite Reinforced 

ACCS  Aluminum Conductor Composite Supported (suggested generic name for 

ACCC) 

ACSR   Aluminum Conductor Steel Reinforced 

ACSS  Aluminum Conductor Steel Supported 

ASTM  American Society for Testing and Materials, an international standards 

organization that develops and publishes technical standards 

Ag  Silver 

Ag/AgCl Silver-Silver Chloride (a type of reference electrode) 

Al  Aluminum  

Al
3+

  Aluminum Ion  

Al(OH)3 Aluminum (tri) hydroxide 

Al2O3  Aluminum oxide, also known as Alumina 

BPA  Bonneville Power Administration  

CFRP  Carbon Fiber Reinforced Polymer matrix composite 

Cl  Chlorine 

Cl
- 

 Chloride ion  

ΔG  Change in Gibb’s Free Energy  

e
-
  electron  

E  Potential [V] 
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F Faraday’s constant (96 485 C/mol)  

GOALI  Grant Opportunities for Academic Liaison with Industry  

HTLS  High Temperature Low Sag (Conductor)  

H
+
  Hydrogen ion 

H2   Hydrogen gas  

i  Current density [A/m
2
] 

I  Current [A] 

KCl  Potassium Chloride  

MMC  Metal Matrix Composite 

NaCl  Sodium Chloride  

O2  Oxygen gas 

OH
-
  Hydroxyl ion  

PMC  Polymer Matrix Composite  

RE  Reference Electrode 

ROW  Right-of-way 

RTV  Room Temperature Vulcanizing silicone rubber  

SHE  Standard Hydrogen Electrode (a type of reference electrode)  

TOW Time of wetness – the number of hours per year that the relative humidity 

is over 80 % and the temperature is ≥0⁰C.   

V Volts  

ZRA  Zero Resistance Ammeter 
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APPENDIX B: ERROR ANALYSIS 

 

All experimental measurements contain errors. This section will discuss possible 

errors in the measurements presented in this dissertation, and how errors were minimized.  

 

B.1 Effect of temperature and temperature control, and errors in temperature 

measurements  

Budget restrictions excluded the purchase of NIST calibrated temperature sensors 

and temperature loggers. Since no NIST calibrated transfer standard was available, all 

temperature sensors and loggers were calibrated using a two-point calibration consisting 

of an ice-bath and boiling water prepared with distilled water. The offsets were assumed 

to be linear between 0°C and 100°C. Temperature data as well as temperature controllers 

were adjusted according to the calibration results.  

 
Figure 180: Specified accuracy in the temperature loggers.  

Source: (LascarElectronics 2012) 
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Room temperature vs. Controlled (elevated) temperature 

It is very common to perform tests at room temperature (RT). RT is a convenient 

choice since it excludes the need for temperature control. However, the test results can be 

affected if there are significant fluctuations in the temperature of the laboratory. The tests 

presented in this dissertation were all performed in Denver, Colorado, USA. Denver is 

located 1609 m above sea level and the semi-arid climate results in cold winters and hot 

summers. The high altitude causes also a large temperature difference between day and 

night. Many HVAC systems cannot keep up with these large temperature fluctuations, 

which was the case for the building where these tests were performed. The ambient 

conditions in the laboratory were logged continuously for most of this study. Analysis of 

the data from May 22, 2014 through January 3, 2015 revealed temperature fluctuations of 

up to 18°C (Figure 181). The lowest temperature registered was 15°C and the highest was 

33°C, while the average temperature was 23.7°C (σ=3.2°C). During the same period, the 

relative humidity fluctuated between 10 and 72.5 % with an average of 33.9 % (σ=12.7 

%), but this did not affect the testing as it was performed in a humidity controlled 

chamber.  

A comparison of the ambient temperature and the galvanic corrosion 

measurements in 100 % RH during that period showed clear oscillations following the 

change of the ambient temperature in 24 hour cycles (Figure 182). The highest 

temperatures inside the corrosion testing chamber were registered between 2 PM and 8 

PM. The lowest temperatures occurred between 6 AM and 10 AM. The temperature 

inside the corrosion chamber followed closely the ambient temperature of the laboratory.  
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Figure 181: Temperature, relative humidity, and dew point fluctuations in the laboratory from May 22, 

2014 to January 3, 2015.  

 

 

Figure 182: Example of ambient temperature and fluctuations in the galvanic corrosion current registered 

from July 11 to July 14 2014. 
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It is obvious that these fluctuations make the test results much more difficult to 

interpret and increases the uncertainties. The simplest solution to this problem is to 

temperature control the corrosion testing chamber itself. It is practically much easier to 

adjust the temperature to a level above room temperature than to below room 

temperature. Several standard tests such as the ASTM B117 are performed at a slightly 

elevated temperature (in the B117 case at 35°C). A temperature of 35°C can be 

accomplished with simple means. Our experiments have shown that even very 

inexpensive PID temperature controllers (<$35) will stay within ±2°C (sometimes even 

±1°C) with proper tuning. Temperature controlled testing environments - provided that 

the controllers are properly tuned - could result in much smaller temperature fluctuations 

than if the tests are conducted at ambient temperature.  

However, temperature control may cause interference with the galvanic corrosion 

current measurements due to electromagnetic noise. Figure 183 and  

Figure 184 display electromagnetic noise affecting the galvanic corrosion 

measurements. The amplitude of the noise is low and does not pose a dramatic problem at 

high galvanic corrosion currents, as shown in Figure 183. The noise can be distinguished 

from the current signal by its distinct behavior and can be removed from the data.  

At really low corrosion currents, the amplitude of the noise is large enough to 

shift the polarity of the measurement. The effect of the noise is obvious in  

Figure 184.  

After several failed attempts to keep the electromagnetic noise to an acceptable 

level, the decision was made to perform all tests at room temperature. As shown in Figure 
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182, the changes in corrosion rate due to temperature fluctuations are approximately 20 

%. This is negligible compared to the changes of several orders of magnitude reported in 

section 5.2.  

 

Figure 183: Noise from heaters in METC.  

The red arrows point out the noise in the upper two plots.  

 

 

 
 

Figure 184: High degree of electrical noise in a test series with low corrosion currents.   

 

Heaters on Heaters off Heaters on 
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B.2 Errors in humidity measurements  

As with all sensors, humidity sensors also require calibration. Humidity is 

inherently difficult to measure. Even high-quality sensors (such as the Lascar EL-USB-2-

LCD humidity loggers used in this study) have a specified typical overall error of ±3 % 

and a maximum error of ±5 % (LascarElectronics 2012).   

 

Figure 185: Specified accuracy in the humidity loggers 

From: (LascarElectronics 2012)  

 

 

The humidity sensors used in this study were subjected to a two-point calibration 

using saturated salt baths, and they were typically within the specified error of ±3 % (in 

the few cases were they were not, they were not used). Figure 186 shows an ongoing 

calibration of a humidity control sensor. The controller should read 76 %, but reads 72 %. 

A 2-point calibration was performed, and the set-point was adjusted accordingly 

assuming a linear relation.  

It was discovered that the humidity sensors for the humidity controllers used in 

this study could be damaged by long periods of high levels of humidity (>90 % RH) and 

by direct exposure to condensate water. The problem was minimized by frequent 
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calibration using the saturated salt baths and by replacing the sensors whenever 

necessary. The humidity loggers were much less sensitive and did not need to be 

replaced.  

 

Figure 186: Calibration of humidity meter and humidity controller.  

 

 

B.3 Errors caused by reference electrodes  

Silver-silver chloride (Ag/AgCl) reference electrodes were chosen due to their 

ease of use and absence of toxic metals. The open circuit potential for a Ag/AgCl 

reference electrode at 25⁰C is +0.222 V compared to the standard hydrogen electrode 

(SHE) that is traditionally used for electrochemical measurements (Bates 1978). There is 
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a weak temperature effect in the open circuit potential, but because all measurements 

were made at room temperature, the temperature effect was assumed to be negligible.  

The reference electrodes are filled with silver-saturated 4M KCl solution. The 

reference electrodes were flushed and filled with new KCl solution when crystal became 

visible in the electrode body, as shown in Figure 187. When not in use, the tips of the 

reference electrode were kept in silver-saturated KCl.  

For long-term testing (weeks or longer), the reference electrode was placed in a 

silver-saturated KCl bath which was connected to the testing by a salt bridge. The use of 

a separate bath with KCl solution decreased the risk of foreign ions diffusing into the 

reference electrode.   

Figure 188 shows the salt bridge used in this study.  

A total of three reference electrodes were used throughout the study. The electrodes were 

periodically checked against each other by using the potentiostat to make sure the 

difference in the readings were no more than a few mV.  

 

Figure 187: Crystals forming in the Ag/AgCl reference electrode.  
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Figure 188: Salt bridge. 

The salt bridge made of a cotton string in a plastic tube (left), the reference electrode in silver-saturated 

4M KCl connected to the actual testing environment through a salt bridge (right).  

 

 

B.4 Calibration of potentiostat  

The potentiostat used in this study – a Gamry Series G 300 with the DC105 

software suite – has a quite sophisticated built-in calibration procedure. This procedure 

was run when the potentiostat software requested it.  

 

B.5 Errors in mass measurements  

The mass losses and gains were measured using a high-quality digital scale with 

0.0001 g resolution (Ohaus Voyager V12140 Digital Balance scale). The scale data sheet 

specifies a repeatability of 0.0001 g. With a typical sample mass of approximately 150 g, 

this means an error of ±0.00007 %, which can be consider negligible.  

A larger source of error is the drying of wet or humid samples during the mass 

measurement process. The drying can be observed while the sample is sitting on the scale 
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as a decrease in mass. A typical sample can lose 0.0010 g or more during the time it takes 

to record the mass. A wet 100 mm long conductor sample contains approximately 3 

grams of electrolyte. In this case, the drying during the mass measurement causes an error 

of approximately 0.03 %. 

 

B.6 Errors in galvanic corrosion current measurements  

The potentiostat used in this study has extremely high accuracy. The specified 

accuracy in both current and potential is 0.2 %. The multichannel precision shunt setup 

utilized for the larger test series uses 1 % precision resistors. The HP 34970A DASU 

used for the data logging has a specified accuracy of 0.004 %.  

 

B.7 Conclusions about measurement errors  

As shown in this section, the measurement errors are much smaller than the 

variations in corrosion rate of orders of magnitude caused by variations in geometry and 

environment presented in this dissertation. The errors caused by the measurement 

equipment and ambient conditions will therefore be considered negligible in this study.  
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