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Abstract
Falls are one of the greatest threats to elderly health in their daily living routines

and activities. Therefore, it is very important to detect falls of an elderly in a timely

and accurate manner, so that immediate response and proper care can be provided,

by sending fall alarms to caregivers.

Radar is an effective non-intrusive sensing modality which is well suited for this

purpose, which can detect human motions in all types of environments, penetrate

walls and fabrics, preserve privacy, and is insensitive to lighting conditions. Micro-

Doppler features are utilized in radar signal corresponding to human body motions

and gait to detect falls using a narrowband pulse-Doppler radar. Human motions

cause time-varying Doppler signatures, which are analyzed using time-frequency

representations and matching pursuit decomposition (MPD) for feature extraction

and fall detection. The extracted features include MPD features and the principal

components of the time-frequency signal representations. To analyze the sequential

characteristics of typical falls, the extracted features are used for training and testing

hidden Markov models (HMM) in different falling scenarios. Experimental results

demonstrate that the proposed algorithm and method achieve fast and accurate fall

detections.

The risk of falls increases sharply when the elderly or patients try to exit beds.

Thus, if a bed exit can be detected at an early stage of this motion, the related

injuries can be prevented with a high probability. To detect bed exit for fall preven-

tion, the trajectory of head movements is used for recognize such human motion.

A head detector is trained using the histogram of oriented gradient (HOG) features
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of the head and shoulder areas from recorded bed exit images. A data associa-

tion algorithm is applied on the head detection results to eliminate head detection

false alarms. Then the three dimensional (3D) head trajectories are constructed by

matching scale-invariant feature transform (SIFT) keypoints in the detected head

areas from both the left and right stereo images. The extracted 3D head trajectories

are used for training and testing an HMM based classifier for recognizing bed exit

activities. The results of the classifier are presented and discussed in the thesis,

which demonstrates the effectiveness of the proposed stereo vision based bed exit

detection approach.
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Chapter 1. Introduction

1.1 Motivation and background

Population aging has already become a global issue, and health care issues of

elderly people attract many researchers’ attention. Falls of the elderly cause major

public health concerns as they often result in injuries, disability, and even death

[19,22]. Almost 30 percent of elderly older than 65 years fall each year and about 10

percent of falls can lead to serious injuries when falls happen to those elderly people.

Immediate assistance after a fall can reduce related complications [18]. Therefore,

it is very important to detect elderly falls in a timely and accurate manner, so that

immediate responses and proper care can be provided. When the elderly or patients

try to get out of bed in the nursing homes or wards, the likelihood of falls increases

sharply [3]. Bed exit alarms warn caregivers when movements related to bed exit

are detected. The bed exit detection can be implemented in various ways with the

common goal of informing caregivers to ensure the safety of a person who is trying

to get out of the bed, and thus to reduce the risk of falls. To achieve this goal, it

is necessary and urgent to develop reliable approaches to detect and predict related

human motion and issue early warnings to reduce or prevent fall injuries.
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1.2 Contribution

The contribution of the research work is summarized as following.

• Radar signal based fall detection. The matching pursuit decomposition

(MPD) algorithm and the short time Fourier transform (STFT) are used for

extract signal features, respectively. The principle component analysis (PCA)

and time sequence decimation are used for dimension reduction of STFT fea-

tures, which preserves information for classification and also reduce computa-

tional complexity. Hidden Markov model (HMM) and support vector machine

(SVM) based classification algorithms are utilized for classification of fall and

non-fall activities and both achieve satisfying classification performance.

• Stereo image based bed exit detection. The three-dimensional (3D) head

tracks are used for recognizing bed exit activities. Specifically, first a head-

shoulder area image model is trained using through histogram of oriented

gradients (HOG) features, which can offer effective information for shape or

edge detection. The head detection results are then processed by a data asso-

ciation algorithm to generate correct recognition of human head areas. Based

on the resulted head detection areas, the 3D head trajectories are constructed

using frames recorded by stereo camera through matching scale invariant fea-

ture transform (SIFT) keypoints in head areas of both left and right stereo

frames. The resulted 3D head trajectories are used for recognizing bed exit

activities and the performance is investigated in the thesis.
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Chapter 2. Literature review

The existing fall detection approaches fall into three categories, the radar based

approaches, vision based approaches and physical sensor based approaches. The

literature review for each of the categories is provided as following.

2.1 Radar based approaches

Radar signals can provide valuable human body motion information. Radar based

gait characterization using various machine learning algorithms shows effective and

satisfying performance [10, 14]. [10] collects data of seven different activities, i.e.,

running, sitting still, walking, crawling, walking while holding a stick, boxing while

standing in place and boxing while moving forward, uses six features to represent the

micro-Doppler signatures of the radar signals in their short-time Fourier transform

(STFT) results, and utilizes those features to train an SVM for the classification

of the seven activities,. In [14], the Doppler signatures of human activities are

extracted using the mel-frequency cepstral coefficients (MFCC). Based on these

features, two different machine learning algorithms, SVM and k-nearest neighbor

(KNN), are employed to detect falls. [5] introduces a continuous wave radar to

record radar signatures according to the gait of a walking man. The received signal

consists of Doppler shifted signals reflected by legs, arms and torso during human

body movements. Short-time Fourier transform and chirplet transform are applied

to extract parameters of human gait from the signal.
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2.2 Vision based approaches

Vision based approaches are widely used in classifying human falls. [21] develops

an human fall detection systems using the combination of human shape variation

and motion history images (MHI). An MHI is an image calculated from a sequence

of motion images, the pixel intensity of MHI images represent the information of

recent motion in the images sequence. In [28] the velocity profile features of nor-

mal and abnormal activities are identified. The horizontal and vertical velocities

of different body components are measured, which exhibits different characteristic

patterns for falls. [2] proposes a fall detector monitoring system using image stream

of a thermal camera. Measured vertical velocities of the subject is analyzed by the

colored segmentation algorithm, and motion features are identified in different pat-

tern of velocities over time. The authors use a neural network based fall detector

to identify the characteristic patterns of human body component velocities during

a fall.

The information of posture is valuable during fall detection. [9] applies an SVM

to classify balance impairments based on minimum foot clearance (MFC) principle.

A two-dimensional (2D) motion analysis system collects the foot clearance data, and

a high speed camera records the unobstructed walking. The authors apply wavelet

transform to extract the features of MFC signals, which is used for SVM models

to classify for an elderly subject as being within healthy range or being a balance

impaired. In [7] four types of posture, lying ,sitting, standing and bending, are

classified by a fuzzy neural network. After extracting human body from background,

projection histograms and discrete Fourier transform are applied to extract feature

from the silhouette, which are invariant to size and position of a silhouette. The

results show that the four postures can be identified with high accuracy.
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2.3 Physical sensor based approaches

The physical sensors include accelerometer sensors, acoustic sensors and vibra-

tional sensors. The accelerometer sensor is widely used in wearable devices for fall

detection, the essence of wearable device based methods is that garments with em-

bedded sensors detect the moving motion and position change of the human body.

Acoustic sensors and vibrational sensors are usually applied in environmental de-

vices.

Wearable device: Accelerometry is used to measure the accelerations of differ-

ent human body parts, which is widely applied for measuring the human movement

to detect activity patterns. [17] utilizes a waist mounted accelerometry to detect the

change of body movements, during a fall the body will suddenly change from an

upright position to a lying position and the sharply changing acceleration will be

detected by the sensor, and the system will issue a fall alarm. In [11], fall detec-

tion system is constituted of a belt-worn sensor composed of three accelerometers

to detect human body movement denoted by an acceleration vector in a 3D space,

and the vector is classified into different types according to different body activi-

ties. [23] introduces a fall detection system consisted of a wearable angular velocity

monitor and an airbag. When the values of acceleration and angular velocity ex-

ceed a threshold, the system trigger the airbag inflation for protecting people by

reducing fall related injuries. In [27] an accelerometer sensor is placed on the head.

Comparing a reference velocity, this system is able to distinguish falls form nor-

mal daily activities. Changes of body postures and physical activities can lead to

physiological fluctuations such as heart rate variation or muscle contracting and

stretching. [6] demonstrates a system consists of a motion sensor and several Elec-

tromyogram (EMG) sensors. The core device of the motion sensor is a triaxial
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accelerometer, and the EMG sensors are used for recording the electric information

of muscle during its contractions for performing the motion.

Environmental device: Human activities in daily life also lead to changes of

physical environments, such as acoustic and vibrational variations. Those varying

physical quantities contain the information for recognizing human activities, based

on which many methods are developed for recording and analyzing those physical

quantities to classify falls and non-falls. [12] proposes an acoustic-FADE system

consist of a circular microphone array and data processing software. The software is

firstly applied to confirm the position of the sound source, and then if the height of

the location of the sound source is larger than a predefined threshold, it is considered

as caused by a non-fall, otherwise the sound signal will be enhanced and extracted

its MFCC features, and the a nearest neighbor classifiers will confirm whether it

is caused by a fall. In [1] a piezoelectric sensor is attached to the floor surface,

which is used for transforming the vibration signals into electrical signals. The

different floor vibration pattern will be produced by fall and normal activities, which

generate different electrical signal patterns for classification. [30] introduces a system

consisting of an accelerometer and a microphone, which are attached to the floor

and used for detecting for vibration and sound signals. Using a microphone along

with a accelerometer is able to reduce the false alarm rate. [24] introduces a system

fusing the multitude of vibration, sound and passive infrared sensors. The features

of the sensor measurements are extracted by wavelet analysis and used for hidden

Markov Models based classification.

2.4 Discussion

The advantages and disadvantages of existing fall detection technologies are

discussed as following.
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Radars can acquire data under various weather, lighting and ambience condi-

tions, e.g., in a cloudy day, during day and night, in messy living conditions with

obstructing furniture existing, or even through a wall. The radars can collect returns

at a longer distance from potential targets, and can cover a large surveillance area.

Another unparalleled ability of radar is the high frame rate measuring of velocities

without intrusive device to human bodies with a reasonable equipment cost. How-

ever, the main disadvantage of most main stream radars is that the radar returns

contain information from different human body components, and sophisticated radar

signal processing and machine learning techniques are required to extract meaningful

inferences from the radar signal returns.

Camera vision based approaches analyses human motion features using recorded

images or videos, which contains abundant and micromesh information on the hu-

man body motion. With the flourishing of image processing techniques, the camera

vision based approaches can be applied to learn, recognize and distinguish the mo-

tions with subtle differences. The shortcomings of vision based approaches include

privacy issues that the subject under study would perceive the existence of camera

and feel uncomfortable when being watched, lighting issues as cameras may require

of lighted environments, and also cost issues caused by high price of high frame rate

cameras.

Wearable devices are easy to operate and install in general, and the cost ef-

ficiency of these devices is obviously resulting in wide application. However, the

most significant disadvantage is that these devices are intrusive and need to be fixed

physically with the users, which also easily causes disconnection of the device. Also

the wearable devices lead to inconvenience of the users in daily life. Environmental

sensor based approaches do not need the users to wear the devices so that these

approaches can provide a regular and convenient lifestyle. However those methods

limit user activities into the areas under monitoring, and also the environmental

7



devices often generate results with high false alarm rate due to a large number of

ambient interference sources.

Based on the characteristic of human fall and bed exit motions, we determine to

use radar and stereo imagery based approaches for investigating the motion analysis

application, respectively. As we discussed above, radars possesses high sensitivity

and a high frame rate in sensing , which is ideal for detecting objects with dramatic

velocity changing during a very short time period, also radars can decrease privacy

concerns of the patients. For the above reasons, a radar based approach is proposed

and implemented for fall detection in this thesis. For bed exit detection, we notice

that subtle movements of different human body components need to be analyzed for

effective detection and prediction such human motion, which leads us to explorer

image based techniques. We also aim to investigate 3D trajectories of human body

components which is invariant to view angles, which results in the use of 3D image

sensors. We utilize stereo image sensors also with the considerations that stereo

image sensors can be used outdoor in direct sunshine. In this thesis, we propose to

use both 2D and 3D trajectories of head and shoulder movements to identify bed exit

motions based on stereo camera. We also have the considerations for future work

to fuse the two modalities of radar and image based sensing techniques, aiming to

provide high accuracy in both spatial and time domains with a reasonable device

cost so that such equipment can be used for enhancing elderly or patients life quality

in their living environments.
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Chapter 3. Fall detection based on se-

quential modeling of radar

signal time-frequency fea-

tures

In this chapter, we utilize the HMM to characterize the time-frequency features

of radar signals for the purpose of fall detection, and the feasibility of early warn-

ing is investigated. We separately use two time-frequency analysis methods, i.e.,

matching pursuit decomposition (MPD) and Short-time Fourier transform (STFT),

to extract sequential feature vectors from radar signals. The vector sequences are

then transformed to symbol sequences by k-means clustering for HMM training and

testing, we also train SVM model and classify the experimental data.

This chapter consists of four sections. In Section 3.1, we provide radar signal

processing and sequential feature extraction using MPD and STFT. The training

and testing of HMMs are described in Section 3.2. Section 3.3 presents SVM based

classification and corresponding results. In Section 3.4, we discuss our experimental

results.
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Figure 3.1: Radar application scenario.

3.1 Radar signal processing and feature extraction

We denote the received narrowband radar signal in Figure 3.1 in the continuous-

time domain as

r(t) = a(t)eiθ(t), (3.1.1)

where a(t) is the amplitude and θ(t) is the phase of the received signal.

In our experimental studies, the radar data are collected at the Radar Imag-

ing Laboratory of the Center for Advanced Communications, Villanova University.

The record time is 10 second for each experiment. Background subtraction was

performed before processing the data. In this case, we apply an elementary expo-

nential averaging, which is a background subtraction technique that subtracts the

time invariant background radar signals reflected from surrounding objects, so that

only the radar signal reflected by human body is preserved. An example of the

radar signals is shown in Figure 3.2. The periodic sampling results in discrete-time

observations r[k] = r(kT ), where T = 10−3 s is the sampling interval.

10
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Figure 3.2: Example of the collected radar signal. The upper plot is the amplitude
a[k] and the under plot is the phase θ[k] of a received signal.

3.1.1 Radar signal feature extraction using Matching Pursuit De-

composition

In this section, we use the MPD algorithm to obtain the features of the radar

signal u[k] which is the real part of r[k], i.e., u[k] = <{r[k]} = a[k] cos(θ[k]), where

<{·} denotes the real part.
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Figure 3.3: A Gaussian atom.
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Figure 3.4: Signal analysis using MPD. (a) The original signal (blue) vs. the syn-
thesized signal (red) using 50 MPD iterations, and (b) The residual signal energy
ratio after each iteration.
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The MPD algorithm decomposes the signal into a series of signal atoms which

belong to an atom dictionary denoted by D [16]. Specifically, a Gaussian atom in

Figure 3.3 is described as

gϕ[k] = ξϕe
−σ2(kT−τ)2 cos(2πυkT ), (3.1.2)

where ξϕ is a normalizing constant for unit energy, ϕ = {τ, υ, σ} represents the time-

shift, frequency-shift and scaling parameters. The signal u[k] can be decomposed

iteratively as

u[k] =
J−1∑
j=0

ωjgϕj [k] + rJ [k], (3.1.3)

where rJ [k] is the residue after J MPD iterations, and r0[k] ≡ u[k]. The atom used

in the jth iteration, gϕj [k], is described by parameter set ϕj = {τj , υj , σj}. The

expansion coefficient ωj is calculated as following:

ωj =
∑
k

rj [k]gϕj [k], j = 0, ..., J − 1. (3.1.4)

Combining the atom parameter set ϕj and atom amplitude parameter ωj results

in an expanded parameter vector ej = [τj , υj , σj , ωj ]
T for 1 ≤ j ≤ J , where (·)T

denotes matrix or vector transpose. Stacking ej for all the J iterations yields the

feature sequence, denoted as E = [e1 e2 . . . eJ ].

In Figure 3.4(a), we compare an original radar signal u[k] (blue curve) with its

MPD representation obtained after J = 50 iterations of decomposition (red curve),

which shows that the MPD can synthesize the radar signal well. Figure 3.4(b) shows

that, after 50 iterations, the residual signal energy is below 10% of the original signal

energy. The generated atoms are sorted in accordance with time-shift τ from small

to large to form the radar signal feature vector sequence E.
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3.1.2 Radar signal feature extraction using STFT

During daily activities, velocities of different human body components assume

unique patterns. For a monostatic radar, the Doppler principle states that the

frequency shift of a radar signal reflected from a target is related with the target

velocity as following

∆f =
2fcν

c
cos(α), (3.1.5)

where ∆f is the frequency shift, ν is the velocity of target, c is the speed of light,

fc is the carrier frequency, and α is the angle between the target moving direction

and the radar line-of-sight direction. Because falls usually cause a high acceleration,

they will generate different Doppler frequency patterns in received signals from those

corresponding to non-fall activities.

The radar signal r[k] is converted into the time-frequency domain by STFT,

given by

R(m,n) =
K∑
k=1

r[k]w∗(kT −mT )e−j2πnFk, (3.1.6)

where both m and n are integers, m is the time index, n = −200, ..., 0, ..., 200 is the

frequency index, T = 10−3 s is sampling period, F is frequency step size, w(·) is a

window function, and (·)∗ denotes complex conjugate. Figure 3.5 show the STFT

results of the three human movements, Figure 3.5(a) is the result of sit down and

stand up, Figure 3.5(b) is fall backward and Figure 3.5(c). There are two peaks

in the Figure 3.5(a), the left peak is overall below the time axe which is caused

by human body moving away from radar during sit down, and the right peak is

overall positive which is due to human body moving forward to radar during stand

up. We can easily identify what are differences between Figure 3.5(a) and Figure

3.5(b) 3.5(c). In both Figure 3.5(b) and 3.5(c) there is a main peak separately

which is caused by fall backward, and the amplitude of the peak is larger than
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Figure 3.5: STFT Spectrograms of three human movements. (a) sit down and stand
up ; (b) fall backward; and (c) fall backward with 45◦.
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the peak caused by sitting in Figure 3.5(a). This phenomenon verifies the velocity

of human body components moving away from radar during fall backward is larger

than the velocity of human body components moving away from radar during sitting.

Carefully comparing the main peaks in Figure 3.5(b) with Figure 3.5(c), we can see

the peak in Figure 3.5(b) is stronger than the peak in Figure 3.5(c), which is cause

by the smaller angle of the fall to the line of sight direction of radar. If this angle is

smaller, the peak is stronger, which is consistent with Doppler principle.

Because the STFT transforms one-dimensional time-domain data to a two-

dimensional representation in the time-frequency domain, the size of the result-

ing time-frequency matrix is very larger. Figure 3.5 shows the spectrogram matrix

S = [sn,m] whose (n,m)th element sn,m = |R(m,n)|2 has a dimension of 400×10000,

where |·| denotes the module operation. To facilitate HMM modeling and classifi-

cation, we consider below the reduction of the matrix dimension in both time and

frequency domains.

Dimension reduction in frequency domain

To choose a frequency range for analysis, we calculate the relative energy burst

curves as [14]

W1(m) =
−1∑

n=−200
s2n,m +

200∑
n=1

s2n,m, (3.1.7)

W2(m) =
−25∑

n=−200
s2n,m +

200∑
n=25

s2n,m. (3.1.8)

Comparing Figure 3.6(a), 3.6(b) and 3.6(c), we find that the pattern of W2(m) in

Fig. 3(c) is more representative for the spectrogram result depicted in Figure 3.6(a).

It means that the Doppler frequency ranges of -200 to -25 Hz and 25 to 200 Hz

contain more useful information. As such, spectrogram entries corresponding to

Doppler frequency from -24 to 24 Hz are excluded from processing as they contain
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high clutter energy. The spectrogram matrix S of dimension 400 × 10000 is then

converted into matrix P = [pn,m] of dimension 352× 10000.

After the effective frequency range is determined, we further use the PCA for fea-

ture dimension reduction. The essence of PCA is that, through an orthogonal linear

transformation, data are converted to new orthogonal coordinates which ensure the

variance of the projection of the data to the first coordinate to be the greatest, then

the second greatest variance to the second coordinate, and so on. Those coordinates

with major variances are called the principal components.

We use Ω to denote the frequency range used in the analysis, and Φ to represent

the new coordinate space spanned by the principal components of P. The PCA is

performed in the following steps.

1) Calculate the mean value zm of the mth column of P, and subtract it from the

mth column. Repeating this procedure for all the columns results in a new

matrix Q = [qi,m] with dimension 352× 10000.

2) Calculate the sample covariance matrix H = QQT .

3) Calculate the eigenvalues and the corresponding eigenvectors of H.

4) Select the first n largest eigenvalues sorted in a descending order. The corre-

sponding n eigenvectors constitute a new principal component matrix Y with

dimension 352× n.

5) Calculate the projection matrix as B = YTP, where the dimension of matrix

B is n× 104.

As a result, we are able to use principal components in space Φ to preserve the

information in frequency space Ω.

In Figure 3.7, the energy bursts constructed from the first 10 principal compo-

nents Φ (red curve) are compared with those of the original signal in Ω (blue curve).
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Figure 3.6: Spectrogram and energy burst results of the radar data. (a) Spectro-
gram; (b) Energy burst curve of W1(m); and (c) Energy burst curve of W2(m).
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Figure 3.7: Comparison of the energy bust curves.

It is evident that space Φ consisting of the first 10 principal components preserves

the information very well. As a result, matrix P of dimension 352×10000 is reduced

to matrix B = [bk,m] whose dimension is only 10× 10000.

Dimension reduction in time-domain

Because the spectrogram transforms the one-dimensional data into a two-

dimensional representation, it has a higher correlation in the time-frequency do-

main. We decimate the spectrogram in the time domain without noticeable change

by compromising the quality of time-frequency representations. In the following,

we choose to retain 50 samples per second, B is converted into a new matrix

U = [uj ] = [uk,j ] = [bk,20j ]k=1,...,10,j=1,...,500 with dimensions 10× 500.

After feature reduction in the frequency and time domains as described above,

the spectrogram matrix S with dimensions 400× 10000 is transformed to a feature

matrix U with dimensions 10 × 500, whose columns contain the radar signal time-

frequency sequences.
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3.2 Hidden Markov model based classification and re-

sults

In our study we use discrete HMMs to classify falls and non-falls. Applications of

HMMs can recognize various sequential patterns by automatically learning from the

data sequence and optimizing model parameters [20,29]. Through the two processing

methods described before, we obtain two types of feature sequence, Eα,β by MPD

and Uα,β by spectrogram, where α = 1, 2, 3 is the model index, and β = 1, ..., 10 is

the sequence index. We use the k-means clustering [8] to convert a feature vector

sequence into a symbol sequence for HMMs.

All the HMM training and testing are accomplished based on the leave-one-

subject-out cross validation in this chapter.

3.2.1 Radar data collection

In our field experiment, two subjects perform three types of activities facing a

radar system, sit-stand, fall backward to floor along the radar radiation direction,

and fall backward to floor with a 45◦ angle to the radar radiation direction. We

collected 5 data sets for each of the three motion models from each subject, 10 data

sets for each motion type, and 30 data sets in total. In each data set, 10 s of radar

signal returns are collected.

3.2.2 Model training

An HMM λ is described by the following parameters as

λ = {A,B,π}, (3.2.1)
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where A is the state transition matrix, B is the observation probability matrix, and

π is the initial state probability distribution vector.

Model training based on MPD features: We cluster the observation vectors gen-

erated by the MPD into 25 clusters. A feature vector, eα,βj , is transformed into a

feature symbol as following:

cα,βj = arg min
i

∣∣∣eα,βj − ci

∣∣∣2 ,
j = 1, ..., 50, i = 1, ..., 25,

(3.2.2)

where cα,βj is the feature symbol corresponding to the MPD feature sequence eα,βj ,

and ci is the centroid of the ith cluster generated by the k-means algorithm. The

feature symbol cα,βj is concatenated into a symbol sequence as cα,β = [cα,β1 , ..., cα,β50 ]T .

We use the symbol sequence to train the corresponding model as

λ̂MPD
α = arg max

λMPD
α

Pr(cα,β|λMPD
α ), (3.2.3)

where λMPD
α is the HMM corresponding to the αth motion class. After training

the HMM with the symbol sequences, we obtain the trained model parameter set

λMPD = {λMPD
1 , λMPD

2 , λMPD
3 }.

Model training based on STFT: We cluster the observation vectors generated

by the spectrogram into 50 clusters. A feature vector, uα,βj , is transformed into a

feature symbol as following:

zα,βj = arg min
i

∣∣∣uα,βj − zi

∣∣∣2 ,
j = 1, ..., 500, i = 1, ..., 50,

(3.2.4)

where zα,βj is the feature symbol corresponding to the processed STFT feature se-

quence uα,βj , and zi is the centroid of the ith cluster generated by the k-means
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algorithm. The feature symbol zα,βj is concatenated into a symbol sequence as

zα,β = [zα,β1 , ..., zα,β500 ]T . We use the symbol sequences to train corresponding model

as

λ̂STFT
α = arg max

λSTFT
α

Pr(zα,β|λSTFT
α ), (3.2.5)

where λSTFT
α is the HMM corresponding to the αth motion class. After training

the HMM with the symbol sequences, we obtain the trained model parameter set

λSTFT = {λSTFT
1 , λSTFT

2 , λSTFT
3 }.

3.2.3 HMM based classification

Classification based on MPD features: The classification of the motion classes

based on the MPD feature vectors is given as

α̂ = arg max
α

Pr(c|λMPD
α ), (3.2.6)

where c is a feature sequence from an unknown motion class.

Classification based on STFT: the classification of the motion classes based on

the STFT feature vectors is given as

α̂ = arg max
α

Pr(z|λSTFT
α ), (3.2.7)

where z is a feature sequence from an unknown motion class.

In this paper, we also present results of early fall detection, where we use the

first sections of the feature sequence with various lengths to predict and detect falls.

3.2.4 HMM based classification results

The radar signal data are collected using a narrowband pulse-Doppler radar

implemented using a network analyzer, which is operated at a carrier frequency of
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8 GHz. The network analyzer is triggered at 1 kHz sampling rate, and the record

time of each experiment is 10 seconds. We build and test the HMM algorithm based

on the following human motion classes: 1) repeated sitting and standing, 2) falling

backward to floor along the radar radiation direction, and 3) falling backward to

floor with a 45◦ angle to the radar radiation direction. Each category of motion

class has 10 experimental data sets.

Tables 3.1 and 3.2 demonstrate the confusion matrix of the HMM based classi-

fication by respectively exploiting the MPD and STFT features. In Table 3.1, the

element of the confusion matrix corresponding to Fi,β and λMPD
j represents the ratio

of the feature vectors from motion class i being classified into class j. The entries in

Table 3.2 are similarly defined. Tables 3.1 and 3.2 clearly show that both MPD and

STFT extract the features sequences for the HMM-based methods to yield reliable

classification results.

Table 3.1: HMM recognition results based on MPD features

λMPD
1 λMPD

2 λMPD
3

F1,β 0.9 0 0.1

F2,β 0 1 0

F3,β 0 0.1 0.9

Table 3.2: HMM recognition results based on STFT features

λSTFT
1 λSTFT

1 λSTFT
1

U1,β 1 0 0

U2,β 0 1 0

U3,β 0.1 0 0.9

Next, we explore the early fall detection with the observation sequences Uα,β

extracted from the spectrogram. From the 10-second data in each collected data

set, we separately use the first k seconds to study the classification performance.
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Figure 3.8: The global recognition rate using initial segments of the feature symbol
sequence.

The global recognition rate is defined as

c(k) =
Nc(k)

N
, (3.2.8)

where Nc(k) is the number of correct recognitions using the first k seconds of data,

and N is the total number of recognitions. The results are shown in Figure 3.8 as a

function of k.

3.3 Support vector machine based classification and re-

sults

3.3.1 SVM classification

In this section, we present a brief introduction of SVM, which is widely applied

for classification and regression analysis. The form of SVM’s training data can be

denoted as G = {(xi, yi), i = 1, ...,M}, where xi = [xi,1, xi,2, ..., xi,m]T ∈ <m is a

feature vector and yi ∈ {+1,−1} denotes a class label of the vector xi. Kernel-based

SVM can separate the set of training data G into two classes by a hyperplane. In
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our paper, we use the the C-SVM model to find the optimal hyperplane by solving

the following minimization problem [13]:

min
w,b,ξi,i=1,...,M

1

2
wTw + C

M∑
i=1

ξi

subject to yi(w · xi) + b ≥ 1− ξi,

ξi ≥ 0,

(3.3.1)

where w is the direction vector of a optimal separation hyperplane, C > 0 denotes

the penalty parameter of the error term, and ξi, i = 1, ...,M , are slack variables.

Minimizing the object function yields the optimal separation hyperplane. Thus, for

test data vector x, the decision function is expressed as

∑
i∈Z

yiαi〈x · xi〉+ b = 0, (3.3.2)

where Z is a subset of the indices {1, ...,M}, which means that not all of training

data G can be the support vectors, and αi is the Lagrangian multiplier. Substituting

〈x·xi〉 by the kernel function K(x,xi) in the above expression results in the following

decision function:

f(x) = sgn

(∑
i∈Z

yiαiK(x,xi) + b

)
. (3.3.3)

We use the MPD features of the radar signal as the training and testing data for

the SVM. The MPD feature vector can be denoted as a 1 × 200 row vector xi =

[τ1 ν1 σ1 ω1 τ2 ν2 σ2 ω2 . . . τ50 ν50 σ50 ω50].

3.3.2 SVM based results

In this thesis Gaussian radial basis function is used as the kernel for SVM clas-

sification. The obtained results are summarized in Table 3.3 with Type 1 denoting

the repeated sitting and standing, Type 2 falling backward to floor along the radar
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radiation direction, and Type 3 falling backward to floor with a 45o angle to the

radar radiation direction.

Table 3.3: SVM classification results based on MPD features

Type 1 Type 2 Type 3

Type 1 0.7 0 0.2

Type 2 0.1 0.8 0.1

Type 3 0.1 0.3 0.6

3.4 Discussion

In Figure 3.8, we regard the entire 10 seconds of the radar recording as an

event, and use the early information of an event to forecast which motion is going

to take place. As we can see from Figure 3.8, the results improve as more number

of observations of an event becomes available. A 75% forecast accuracy is achieved

using the information of the first 5 seconds, whereas the accuracy is increased to

85% when the first 8 seconds of the observed data are used.

In Table 3.3, the correct recognition rate of Type 3 is the worst compared with

other two types. Type 3 is easily mis-classified as Type 2, which is caused by

similarity of human activities, falling backward and falling backward with 45◦ angle,

by contrast, Type 2 is not similar to Type 1 and 3, so they can be distinguished

with a high recognition rate. Overall, the average correct classification rate based on

SVM is lower than that based on HMM, the reason is that the feature extracted from

radar signal is a sequence in time domain and the HMM based approach is more

suitable to describe and analyze time-varying and variational state based sequential

features.
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Chapter 4. Bed exit detection based on

sequential modeling of 3D

head movement trajectories

Figure 4.1: The algorithm and data flow of stereo vision motion tracking.

This chapter consists of six sections. Section 4.1 introduces the procedure of

calibrating the stereo camera used in this project. Section 4.2 introduces keypoint

matching based on SIFT features in stereo images. In Section 4.3, a procedure for

training a feature model for human head areas based on HOG features is explained.
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In Section 4.4 the 3D head movement trajectories are constructed and evaluated. In

section 4.5 HMM based bed exit detection is introduced using 2D and 3D trajectories

of head movements. In section 4.6, the discussion of the results is presented.

4.1 Camera calibration

Camera calibration is to confirm the intrinsic parameters which describe camera’s

geometric and optical characteristics, and the extrinsic parameters representing the

relationship between the camera frame’s 3D position, orientation and a world coor-

dinate system. The camera calibration is, based on known image coordinates and a

3D world coordinate, to solve the model parameters of the camera including intrinsic

and extrinsic parameters [25,26].

Calibration images

Figure 4.2: The twelve input images with the chessboard for camera calibrating.

In our project, we utilize the Matlab camera calibration toolbox developed by

Bouguet. We complete the calibration based on 12 images of an A3 size chessboard.

Figure 4.3 shows the spatial relationship between left camera and right camera, and
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Figure 4.3: The spatial relationship between the stereo camera and the chessboard
for calibration.

also the position and orientation of chessboard in camera coordinates. The resluts

of calibration will be saved for latter stereo triangulation.

4.2 Keypoints matching based on scale invariable fea-

ture transform

The SIFT features own the following characteristics. (1) SIFT features are

the local features of an image, which keep invariant to rotation, translation, and

image scaling, and are highly robust to viewpoint and illumination changes. (2)

The quantity of the features are very large even in a image with a few objects.

(3) The SIFT features have a high expansibility that they can be combined with

other type feature vectors. Those characteristics make the SIFT features to be

the best choice to identify common feature points between left and right images

from a stereo camera. Feature matching based on SIFT features can be described

as following [15]: (1) Constructing scale space, (2) space-scale extrema detection,

and recording the localizations and scales of keypoints, (3) assigning orientation
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parameters of keypoints, (4) extracting descriptor on keypoints, and (5) matching

keypoints through the descriptors.

In Figure 4.4, 246 keypoints are extracted in the image from the left camera. In

Figure 4.5, 137 keypoints are extracted in the image from the right camera.
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Figure 4.4: SIFT keypoints extracted in the image of left camera.

After extracting the keyoints in the image, the parameters of each keypoint’s

position, magnitude, orientation were recorded, and the next step is to extract

keypoint descriptors. In order to obtain orientation invariance, SIFT rotates the

coordinates relative to the keypoint orientation, and the descriptor, or SIFT feature

vector, is with 128 elements obtained from 4 × 4 histogram in the 16 × 16 pixel

region. Each the histogram contains 8 directions is the projections from the 4 × 4

pixel region.

After obtaining all the keypoint descriptors in the left and right camera images

separately, we can use the Euclidean distance of the keypoint descriptors as the

measure of keypoint similarity. We assume that point A is a keypoint in the left

camera frame, and we need to find two keypoints in the right camera frame with the

smallest Euclidean distances d1 and d2 to the point A. If
d1
d2

is less than a threshold
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Figure 4.5: SIFT keypoints extracted in the image of right camera.

Figure 4.6: Match of a keypoint pair.

value, the keypoint with the smallest Euclidean distance d1 can be considered as

the matched keypoint for A.

In Figure 4.6 we assume L1 is the keypoint in the image of left camera, and

R1, R2 and R3 are the keypoints in the image of the right camera. Firstly, we find

two keypoints from R1, R2 and R3 with the smallest distance to L1, and assuming

they are R1, R2, and the distances are d1 and d2. Then we calculate the ratio of d1

and d2, if the ration is less than a threshold value, we can confirm this point R1 is

matched with L1.
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Figure 4.7: Feature points matching of left and right camera images based on SIFT.

Figure 4.7 shows the result of keypoints matching. Totally 75 keypoint pairs are

matched which are connected with cyan lines.

4.3 Training and testing human head detector with HOG

features

4.3.1 Train a head detector with HOG features

The method of extracting HOG [4] features is similar to SIFT, however, the HOG

descriptors are extracted from a dense grid of cells with same pixel size without

smoothing in the Gaussian scale space.

The 3D head position is crucial information in bed exit detection, and the head

recognition is the foundation for 3D trajectory of head movements. Matlab offers

some detectors that could be used for head detection, for example, detectors for

Frontal Face, Upper Body, Eye pair, Single Eye, Profile Face, Mouth and Nose,
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however those detectors can not be applied in our bed exit project because they

are trained with general purposes and are not consistent with the view angle in

our application. In our bed exit detection application, the view angle of the cam-

eras to subjects’ face, eyes, mouth and nose changes unpredictably when subject is

rolling in the bed or getting out of the bed, so it is necessary to train a customized

detector to identify the head. We utilize the Computer Vision System Toolbox in

Matlab R2013a to train a custom classifier. Three options, Haar, Local Binary Pat-

terns(LBP), and HOG are provide as the features for the detector. HOG features

are better for acquiring the edge or shape of an object [9]. The Computer Vision

System Toolbox offers a concise and intuitionistic method to train custom detector

as the following steps, and Figure 4.9 demonstrates the GUI interface.

Figure 4.8: Five types of positive images.

(1) Select positive images: The positive images used for training are selected

from the videos recording various postures of the subject, including lying, lying to

the left side, lying to right side on the bed, getting out of the bed from left-side and
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getting out of the bed from right-side. The target object for detection is the area

including head and shoulder,

(2) Select Region of Interest (ROI) : The ROI is selected as the area of head and

shoulder,

(3)Select negative images : The negative images are generated using positive

images with ROI deleted from the images.

(4)Train the detector : The detector is trained with the following parameters:

Per-stage True Positive Rate 0.995, Number of Cascade stage 8, Feature Type HOG.

(5)After training the detector, an xml file is generated which can be used for

recognizing head area.

Figure 4.9: The GUI interface for training.

4.3.2 Data association

During detection, false alarms interfere correct decisions. We apply a simplified

data association algorithm to overcome this problem. The detected results of the

nth frame are recorded in a set Rn = {rnj } including false alarms and one correct

detection, the vector rnj = [rn1,j r
n
2,j ] is the position of the jth detected object in the

nth frame, rn1,j and rn2,j are the x coordinate and y coordinate, respectively. Let

34



rnc represent the position of the correct object in the nth frame. The relationship

between rn−1c and rnc should satisfy as follow,

r̂nc = arg min
rnj

∣∣rnj − rn−1c

∣∣2
rnj ∈ Rn

(4.3.1)

where r̂nc is the estimate of rnc . This simplified method works well for our scenar-

ios because of the slow movement of subjects’ heads. For more complicated head

movements, more advanced data association algorithms will be considered.

Figure 4.10: Data association for eliminating false alarms.

4.4 Stereo vision motion tracking

4.4.1 3D head position estimation

Stereo vision can determine the 3D location of an object in a scene by comparing

images of two separated cameras.
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In the research work of the thesis, stereo camera is used to record the human

activities of rolling in bed or getting out of bed and then the acquired stereo images

are used for extracting the 3D trajectory of the target objects. To achieve this goal,

first we need to calibrate the stereo camera, then extract the SIFT feature keypoints

in both the left and right images, and match the keypoints. Specifically, the detailed

process is described as following. A sample tracking result is displayed in Figure

4.11.

1) Collect videos using stereo camera, perform camera calibration.

2) Detect the head area using the trained custom detector, perform data associ-

ation and the results are displayed with a red boundary in the left image.

3) Extract feature points within the head area with SIFT algorithm, which are

displayed with red points on both of the left and right images.

4) Based on the extracted feature keypoints and stereo camera parameters, cal-

culate the 3D trajectory of the head movement using the mean of the 3D point

positions. The generated trajectories are displayed in the lower figures in Figure

4.11. The color of trajectory changes with time, and the same color represents the

same time.

4.4.2 Position estimation performance

To evaluate the performance of the 3D position estimation, we use a cuboid

as ground truth for evaluation. In Figure 4.12, the four points, A, B, C, D of the

cuboid are marked with different colors, the length AC is 29.7 cm, and the width

AD is 21.3 cm, the height AB is 14.2 cm. During the evaluation we test performance

when it is 1 m, 1.5 m and 2 m far away from camera.

The size of the cuboid is measured as following: firstly the disparities of those 4

points in stereo images with the size of pixel 0.352 mm on a reference image plane,

then the 3D coordinates of those points were calculated by stereo triangulation based
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Figure 4.11: A 3D head movement trajectory extracted from a stereo video.

on the disparities and stereo camera parameters, at last the Euclidean distances is

calculated between those points with their 3D coordinates. The evaluation results

are shown in Table 4.1.

Table 4.1: The measured size of the box compared with the actual size

AC AD AB

Actual value 29.7 cm 21.3 cm 14.2 cm

Distance 1 m 32.2 20.1 15.1

Distance 1.5 m 31.8 19.3 16.2

Distance 2 m 33.2 18.8 16.7

Average value 32.4 19.4 16
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Figure 4.12: The ground truth cuboid.

Table 4.1 shows us the cuboid size and the measured values. The mean of the

dimension measurments is 32.4 cm in length, 19.4 cm in width, and 16 cm is height.

The deviation are 2.7 cm, 1.9 cm and 1.8 cm, respectively.

4.5 HMM based bed-exit detection using 2D and 3D

trajectories of head movements

Following a similar procedure as in chapter 3, we obtain the HMM based clas-

sification using 2D and 3D head movement trajectories. We use the Leave-One-

Subject-Out cross-validation method in the thesis training and testing the HMMs.

The types and the number of the motion videos are described in Table 4.2, a dataset

Table 4.2: The types and number of motion videos

Bed exit left side Bed exit right side Rolling in the bed

Number of action 18 16 29
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of 63 videos of three different motions performed by five subjects is used for training

and testing, the three types of human motions are, bed exit at left side, bed exit at

right side, and rolling in the bed.

Table 4.3: HMM classification results based on 2D trajectories of head movements

Bed exit left side Bed exit right side Rolling in the bed

Bed exit left side 94.44% 0 5.56%

Bed exit right side 12.5% 87.5% 0

Rolling in the bed 13.79% 17.24% 68.97%

Table 4.4: HMM classification results based on 3D trajectories of head movements

Bed exit left side Bed exit right side Rolling in the bed

Bed exit left side 88.9% 0 11.1%

Bed exit right side 18.75% 81.25% 0

Rolling in the bed 10.34% 3.45% 86.21%

Table 4.3 shows the HMM classification results based on 2D trajectories of head

movements, Table 4.4 show the HMM classification results basd on 3D trajectories

of head movements.

4.6 Discussion

In Table 4.3 we notice that the recognition rates of bed exit at left side and bed

exit at right side are 94.44% and 87.5% which are higher than the recognition rate

of rolling in bed. This is due to the reason that the head movements are obvious

during the bed exit that the subjects’ heads will move from the middle to the either

of the two sides. The recognition rate of rolling in the bed is less than 70%, which

may cause many false alarms of bed exit during human body rolling in the bed. The

reason is that head movements of rolling is similar with the head movements of bed
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exit in 2D views, for example, in face up rolling to left and face up exiting left, the

head will move toward left side in the image in both scenarios.

Comparing Table 4.4 with Table 4.3, the recognition rates of bed exit left and

right side decrease, however the recognition rate of rolling in the bed increases from

68.97% to 86.21%, due to the reason that the head position is close to bed in 3D

view during rolling, while the head moves away from bed during bed exit. In the 3D

view based classification, the issue caused by the similar head movements between

face up rolling to left and face up exiting left can be solved. The recognition rates of

bed exit decreases, however, we are not able to explain the detection rate decrease.

The decrease in detection rates may be due to inaccuracy of head trajectory or

insufficient number of training data sets.

The average of recognition rate based on 2D trajectories is 83.63%, the average

based on 3D trajectories is 85.45%. The performance of both 3D based and 2D

based classification can be improved using a more precise and robust detection and

tracking approach.
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Chapter 5. Conclusions and future work

5.1 Conclusions

In this thesis, two human motion analysis approaches are developed based on

sequential modeling of radar signal and stereo image features, respectively. The

target applications of the developed approaches include detection of elderly falls

and prediction of bed exit for fall injury prevention.

The radar-based fall detection technique is developed based on time-frequency

analysis and hidden Markov models (HMMs). We first presented two techniques, the

matching pursuit decomposition and the STFT, for extracting features from radar

signals reflected by human body component to detect falls. Based on these features,

HMM based classification approaches are utilized for classifying fall and non-fall

activities. The classification results show that the proposed radar-based approach

is very effective in detecting and classifying human falls. We also investigate early

indication of a fall event and demonstrated promising results. The support vector

machine (SVM) is also used for solving this problem, and the resulting recognition

rate using matching pursuit decomposition (MPD) features shows that the SVM is

also an effective classifier for the fall detection application.

A stereo image based approach for detection and prediction of bed exit activities

is proposed and investigated in this thesis. This approach combines techniques

from image processing, tracking, stereo vision, and machine learning aiming at bed
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exit detection using 3D human head trajectories. We train a head detector using

HOG features of head-shoulder areas. The head detector is used to obtain the 2D

trajectory of head movement. In the meanwhile 3D trajectories of head movements

are constructed from stereo images using SIFT keypoint matching, HMM are trained

based on both 2D and 3D trajectory of head movement, and respectively the results

of classification are investigated and compared. We conclude that this proposed

approach is an effective classifier for bed exit activities and further improvement

can be expected.

5.2 Future work

Although the target applications of the proposed approaches are fall detection

and bed exit prediction, the technical framework that comes with the research can

be extended to various human motion analysis, such as markerless human posture

analysis, sport performance evaluation, injury rehabilitation evaluation, etc. Some

future work we propose is summarized as the following:

• Fusion of radar signal features and stereo image features for high performance

in human motion analysis

• Improvement of image based detection for better trajectory extraction and

classification

• Synchronization of the stereo vision camera and the vicon motion capture

system for accurate system performance evaluation
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