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Abstract

In this dissertation, we consider notions of equivalence between minimal Cantor sys-

tems, in particular strong orbit equivalence. By constructing the systems, we show

that there exist two nonisomorphic substitution systems that are both Kakutani

equivalent and strongly orbit equivalent. We go on to define a metric on a strong

orbit equivalence class of minimal Cantor systems and prove several properties about

the metric space. If the strong orbit equivalence class contains a finite rank system,

we show that the set of finite rank systems is residual in the metric space. The last

result shown is that set of systems with zero entropy is residual in the strong orbit

equivalence class of any minimal Cantor system.
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Chapter 1

Introduction

There are two main parts of this dissertation. The first main part, found in Chapter

3, is essentially the content of [16]. The main theorem of [16] was motivated by [4]

in which Dartnell, Durand, and Maass posed the following question: If two minimal

Cantor systems are orbit equivalent and Kakutani equivalent, are they necessarily

conjugate? In their paper, they showed that this is true for Sturmian systems.

In [11], Kosek, Ormes, and Rudolph answered this question negatively by finding

two orbit equivalent and Kakutani equivalent substitution systems that are not

conjugate. The question under consideration in [16] is the following: If the orbit

equivalence condition is strengthened to strong orbit equivalence, is the statement

then true? We answer this question negatively by finding two Kakutani equivalent

and strongly orbit equivalent substitution systems that are not conjugate.

The second main part of this dissertation is found in Chapter 4. In this chap-

ter, we consider strong orbit equivalence classes of minimal Cantor systems. In the

measure-theoretic category, Dye’s Theorem states that any two ergodic measure-

preserving transformations on nonatomic probability spaces are orbit equivalent.

In [13], Rudolph introduced the idea of restricted orbit equivalence. By defining a

notion of the size of an orbit equivalence, Rudolph gave a natural way to more pre-
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cisely distinguish between measure-theoretic systems. In the topological category,

even within the category of minimal Cantor systems, there are several nontrivial

systems which are not orbit equivalent. However, serving the same purpose as

Rudolph’s restricted orbit equivalence in the measure-theoretic setting, strong orbit

equivalence provides a more precise way to distinguish between topological systems.

Strong orbit equivalence was first introduced by Giordano, Putnam, and Skau in [7]

where they proved the following theorem:

Theorem 1.0.1. Two minimal Cantor systems are strongly orbit equivalent if and

only if their associated dimension groups are order isomorphic by an order isomor-

phism preserving the distinguished order unit.

In [10], Hochman considered a metric on the space of homeomorphisms of the

Cantor set and proved several genericity results about the metric space. In particu-

lar, Hochman showed that the universal odometer is residual in the space of transi-

tive systems. Along the same lines, we define a metric on a strong orbit equivalence

class of minimal homeomorphisms of a Cantor space. We prove several properties

about the resulting metric space including that it is complete and separable but

not compact. These results are also related to the work done in [2] where Bezug-

lyi, Dooley, and Kwiatkowski considered several different topologies on the space of

homeomorphisms of the Cantor set. We go on to show that finite rank systems, as

defined in [5] by Downarowicz and Maass, are residual in any strong orbit equiva-

lence class containing a finite rank system. In particular, we show that odometers

are residual in any class containing an odometer. Finally, we show that systems

with zero entropy are residual in the strong orbit equivalence class of any minimal

Cantor system. These residuality results are related to the measure-theoretic re-

sults of Rudolph found in [14]. To help the reader understand the results in this

dissertation, we begin by introducing much of the needed background information

in Chapter 2.
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Chapter 2

Minimal Cantor Systems

A Cantor space is a nonempty topological space that is perfect, compact, totally dis-

connected, and metrizable. It is well known that any two such spaces are homeomor-

phic. A minimal Cantor system is an ordered pair (X,T ) where X is a Cantor space

and T : X → X is a minimal homeomorphism. The minimality of T means that ev-

ery orbit under T is dense in X, i.e. if for x ∈ X we define OT (x) = {T kx | k ∈ Z},

then for all x ∈ X, OT (x) is dense in X. Because X is metrizable, we can define a

metric on X that induces the topology of X. We will denote this metric by dX .

2.1 Notions of Equivalence in Minimal Cantor Systems

There are several notions of equivalence in minimal Cantor systems that we will

consider. The strongest notion of equivalence is conjugacy. Two minimal Cantor

systems (X,T ) and (Y, S) are conjugate if there exists a homeomorphism h : X → Y

such that h ◦ T = S ◦ h. A weaker notion of equivalence is orbit equivalence. Two

systems (X,T ) and (Y, S) are orbit equivalent if there exists a homeomorphism

h : X → Y that preserves orbits between the systems. Stated more explicitly, a

homeomorphism h : X → Y is an orbit equivalence if there exist functions a, b :

X → Z such that for all x ∈ X, h ◦ T (x) = Sa(x) ◦ h(x) and h ◦ T b(x)(x) = S ◦ h(x).
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We call a and b the orbit cocycles associated to h. If the orbit cocycles associated

to h each have at most one point of discontinuity, we say the systems (X,T ) and

(Y, S) are strongly orbit equivalent.

The last notion of equivalence we will consider is Kakutani equivalence. Let

(X,T ) be a minimal Cantor system and let A ⊂ X be clopen. Then because T is

minimal, each a ∈ A returns to A in a finite number of T -iterations. This allows

us to define a function rA : A → N+ where rA(a) = min{n ≥ 1 | Tna ∈ A}. It

is easily verified that rA is a continuous function, and we say that rA(a) is the

return time of a to A. If we define the map TA : A → A by TA(a) = T rA(a)(a),

then the system (A, TA) is another minimal Cantor system. We say that (A, TA)

is an induced system of (X,T ). Two systems are Kakutani equivalent if they have

conjugate induced systems.

2.2 Tower Partitions

Tower partitions provide a visual representation of minimal Cantor systems. Let

(X,T ) be a minimal Cantor system and let A ⊂ X be clopen. As discussed when

defining Kakutani equivalence, the return time map rA : A → N+ is continuous.

Because A is compact, rA takes on only finitely many values. Therefore, we can

partition A into finitely many clopen sets A1, A2, . . . , Ak such that the return time

to A is constant on each Aj . For j = 1, . . . , k, let rj denote the return time of

Aj to A. For each j, we construct a tower over Aj by vertically stacking the sets

Aj , TAj , . . . , T
rj−1Aj , which we will call the floors of the tower over Aj . An example

with A partitioned into three sets A1, A2, and A3 with return times of 4, 3, and 5,

respectively, is shown in Figure 2.1. We define the height of the tower over Aj to

be rj , the return time of Aj to A. If 0 ≤ i ≤ rj−1, we will say that the height of

the tower floor T i(Aj) is i. The floors of these towers create a clopen partition of

X, and we will call this a tower partition of (X,T ) over A. If P is a tower partition
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A1

TA1

T 2A1

T 3A1

A2

TA2

T 2A2

A3

TA3

T 2A3

T 3A3

T 4A3

Figure 2.1: Tower partition

of (X,T ) over A, notice that the bottom floors of P partition A. We will denote

this partition of A by P(A). Also notice that the top floors of P partition the set

T−1(A). An important property of a tower partition that we will consider is the

minimum height of a tower in the partition. If P is a tower partition, we will let

H(P) denote the minimum height of a tower in P. For example, if P is the tower

partition shown in Figure 2.1, then H(P) = 3.

Let {An} be a sequence of clopen sets in X such that An+1 ⊂ An for all n.

For every n, let Pn be a tower partition of (X,T ) over An such that for all n ≥ 1

the tower partition Pn+1 is a refinement of Pn. We say that the tower partition

sequence {Pn} generates the topology of X if for any clopen set C ⊂ X, there exists

an N > 0 such that if n ≥ N , then C can be written as a finite union of sets

in Pn. Suppose the sequence {Pn} generates the topology of X and in addition

diam(An) → 0. Then
⋂
An = {x1} for some x1 ∈ X, so we will say that {Pn} is a

generating sequence of tower partitions over x1.

Proposition 2.2.1. If {Pn} is a sequence of finite clopen partitions of a Cantor

space X, then {Pn} generates the topology of X if and only if limn→∞ diam(Pn) = 0.

Proof. Since there are clopen sets of arbitrarily small diameter contained in X, if

{Pn} generates the topology of X, then clearly diam(Pn)→ 0. Conversely, assume

diam(Pn)→ 0 and let C be a clopen set in X. Because X \ C is also clopen, there
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exists an ε > 0 such that dX(C,X \ C) > ε. Pick N such that if n ≥ N , then

diam(Pn) < ε. Fix n ≥ N and suppose P ∈ Pn. We will show that either P ⊂ C

or P ⊂ X \ C. Assume P ∩ C 6= ∅, so there exists some x ∈ P ∩ C. Now suppose

y ∈ P . Since diam(P ) ≤ diam(Pn) < ε, this means dX(x, y) < ε and thus y ∈ C.

So P ⊂ C. Therefore, either P ⊂ C or P ⊂ X \ C. Since P was chosen arbitrarily,

we can conclude that each set of Pn is either contained in C or contained in X \C.

Since Pn has finitely many sets and covers X, C can be written as a finite union of

sets in Pn.

Proposition 2.2.2. Let (X,T ) be a minimal Cantor system and let x1 ∈ X. If {Pn}

is a generating sequence of tower partitions over x1, then limn→∞H(Pn) =∞.

Proof. For all n, let An be the clopen set in X such that Pn is a tower partition over

An, so
⋂
An = {x1}. Fix k ∈ N+ and let B be the clopen set in Pk with x1 ∈ B.

Since diam(An) → 0, there exists an N > 0 such that if n ≥ N , then An ⊂ B.

Then for n ≥ N , the tower height of every tower in Pn is greater than or equal to

the tower height of the tower over B in Pk . Therefore, if we let Pn(x1) denote the

tower of Pn that contains x1, it suffices to show that the height of Pn(x1) grows

arbitrarily large as n → ∞. The height of the tower Pn(x1) is the return time of

x1 to An, which we will denote rn. Because rn ≤ rm for all n ≤ m, it suffices to

show that for all n ∈ N+, there exists an m > n such that rm > rn. Fix n ∈ N+

and let T rn(x1) = y1 ∈ An. Let dX(x1, y1) = p > 0. Then pick m > n such that

diam(Am) < p. Because dX(x1, y1) = p, T rn(x1) = y1 /∈ Am, so rm 6= rn. We must

have that rm > rn finishing the proof.

2.3 Bratteli Diagrams

Bratteli diagrams give us another way to visually represent minimal Cantor systems.

We refer the reader to [9] for a complete discussion of of this topic. A Bratteli
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diagram B = (V,E) consists of a vertex set V and an edge set E, where V and E

can be written as the countable union of finite disjoint sets:

V = V0 ∪ V1 ∪ V2 ∪ . . . and E = E1 ∪ E2 ∪ . . . .

The set Vk represents the vertices at level k and Ek represents the set of edges

between the vertices at level k−1 and level k. Furthermore, the following properties

hold.

(1) V0 = {v0} is a one point set;

(2) there is a range map r and a source map s with r, s : E → V such that

r(Ek) ⊂ Vk and s(Ek) ⊂ Vk−1. We also require that s−1(v) 6= ∅ for all v ∈ V

and r−1(v) 6= ∅ for all v ∈ V \ V0.

2.3.1 Ordered Bratteli Diagrams

An ordered Bratteli diagram B = (V,E,≤) is a Bratteli diagram along with a partial

order ≤ on E such that two edges are comparable if and only if they have the same

range. The first three levels of an ordered Bratteli diagram are shown in Figure

2.2. For k, l ∈ N, k < l, we denote the set of all edge paths from Vk to Vl by

E[k, l]. There are natural extensions of the range and source maps to E[k, l] by

defining s(ek+1, . . . , el) = s(ek) and r(ek+1, . . . , el) = r(el). We can extend the

partial order on the edges to a partial order on E[k, l] by ordering paths that begin

at the same level and have the same range. The partial order ≤′ induced on E[k, l]

is a reverse lexicographical ordering given by (ek+1, . . . , el) <
′ (fk+1, . . . , fl) if and

only if r(el) = r(fl) and there exists a j with k + 1 ≤ j ≤ l such that ei = fi for

j < i ≤ l and ej < fj .

7
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1
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V0

V1

V3

E1

E2

Figure 2.2: Ordered Bratteli diagram

2.3.2 Telescoping

Given a Bratteli diagram, we can create a new Bratteli diagram by a process called

telescoping. Let B = (V,E,≤) be an ordered Bratteli Diagram and remove E[k, l]

and Vk+1, Vk+2, . . . , Vl−1. We then reconnect Vk and Vl by single edges, one edge for

each of the paths in E[k, l], beginning and ending at their corresponding source and

range, respectively. Ordering these edges by the partial order ≤′ described above,

we call this new diagram a telescoping between levels k and l. A telescoping between

two levels of a Bratteli diagram is shown in Figure 2.3. Let {nk}∞k=0 be a sequence

in N with n0 = 0 and nk < nk+1 for all k. If we telescope B between levels nk and

nk+1 for all k ordering the edges according to ≤′, we have a new ordered Bratteli

diagram B′ = (V ′, E′,≤′). We say that B′ is a telescoping of B. If the telescoping

is done by telescoping a finite number of levels, i.e. there exists K ∈ N such that

for all j ∈ N, nK+j = nK + j, we say that B′ is a finite telescoping of B.

8
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1
2 31 2 2 1

1 2

1
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3

Telescoping

Figure 2.3: Telescoping of a Bratteli diagram

2.3.3 Dimension Groups

For a Bratteli diagram B = (V,E), let Vk = {v(k, j) | 1 ≤ j ≤ |Vk|}. For each k, we

define the incidence matrix Mk = [mij ], i = 1, . . . , |Vk|, j = 1, . . . , |Vk+1|, where mij

is the number of edges between the vertices v(k, i) and v(k+ 1, j). We can associate

a dimension group K0(V,E) to the Bratteli diagram by taking the inductive limit

of groups lim−→(Z|Vk|,Mk). This can be made into an ordered group by declaring that

[v] ∈ K0(V,E)+ if there is a w ∈ [v] such that each coordinate of w is non-negative.

We distinguish an order unit in K0(V,E) as the element associated to 1 ∈ Z|V0| = Z.

2.3.4 Bratteli Diagrams to Minimal Cantor Systems

Definition 2.3.1. An ordered Bratteli diagram B = (V,E,≤) is properly ordered

if

(1) there is a telescoping (not necessarily finite) B′ of B such that any two

vertices at consecutive levels in B′ are connected by an edge;

(2) there are unique infinite edge paths xmax and xmin in B such that each

edge of xmax is maximal in ≤ and each edge of xmin is minimal in ≤.

Given a properly ordered Bratteli diagram B = (V,E,≤), we let XB be the

set of all infinite paths in B. We topologize XB by letting the family of cylinder

sets be a basis for the topology. A cylinder set is the set of paths that begin

9



with a given finite edge path. We will let [e1, . . . , ek] represent the cylinder set

{(x1, x2, . . .) ∈ XB | xi = ei ∀ i ≤ k}. The space XB along with this topology is

a Cantor space. We define the Vershik map VB : XB → XB in the following way.

If x = (x1, x2, . . .) ∈ XB \ {xmax}, there is smallest k such that xk is not maximal.

If we let yk be the successor of xk and let (y1, . . . , yk−1) be the minimal path from

v0 to s(yk), we define VB(x) = (y1, y2, . . . , yk, xk+1, xk+2, . . .). The tails of x and

VB(x) agree past level k, so we say they are cofinal. We define VB(xmax) = xmin.

The system (XB, VB) is a minimal Cantor system and we refer to it as a Bratteli-

Vershik system. It is shown in [9] that any minimal Cantor system is conjugate to

a Bratteli-Vershik system.

2.3.5 Minimal Cantor Systems to Bratteli Diagrams

We will now describe the construction of a Bratteli-Vershik system from a minimal

Cantor system. Let {Pk} be a generating sequence of tower partitions of a minimal

Cantor system (X,T ). For all k, let Ak be the clopen set contained in X such that

Pk is a tower partition over Ak. Let Pk(Ak) = {A(k, 1), . . . , A(k, nk)}, where each

A(k, j) is a bottom floor of Pk. For j = 1, . . . , nk, denote the return time of A(k, j)

to Ak by r(k, j).

We insert one vertex v0 at the top level (level 0) of the diagram. For k ≥ 1, at

level k we insert nk vertices, one corresponding to each set in Pk(Ak). If 1 ≤ j ≤ nk,

we will let v(k, j) denote the vertex in Vk corresponding to the set A(k, j). If

1 ≤ j ≤ n1, the number of edges in E1 from v0 to the vertex v(1, j) at level 1 is

r(1, j). We will now describe how to construct and order the edges in Ek for k ≥ 2.

For k ≥ 2, fix 1 ≤ j ≤ nk. Fix x0 ∈ A(k, j) and find i1 such that 1 ≤ i1 ≤ nk−1

and x0 ∈ A(k − 1, i1). Because Pk is a refinement of Pk−1, A(k, j) ⊂ A(k − 1, i1),

so i1 is not dependent on the choice of x0. Then the minimal edge (order 1) with

range v(k, j) has source v(k − 1, i1). Set x1 = T r(k−1,i1)(x0) ∈ Ak−1. In general

10



for m ≥ 1, we define im and xm recursively such that xm−1 ∈ A(k − 1, im) and

xm = T r(k−1,im)(xm−1) ∈ Ak−1 until we reach an l ≥ 1 such that xl ∈ Ak. This

will happen after finitely many steps because the return time of x0 to Ak is finite.

Then we insert l edges in Ek with range v(k, j), and for 1 ≤ p ≤ l, the edge of

order p with range v(k, j) has source v(k − 1, ip). We apply this same procedure

for every vertex in Vk to construct and order Ek. Applying this construction of

Ek for all k ≥ 2 completes the construction of the Bratteli diagram. Under this

construction, each vertex in Vk corresponds to exactly one tower in Pk, and each

edge path in E[0, k] corresponds to exactly one tower floor in Pk. Because T is

minimal and diam(An) → 0, this Bratteli diagram will be properly ordered. It is

shown in [9] that the Bratteli-Vershik system associated to this diagram is conjugate

to the original system (X,T ).

11



Chapter 3

A Counterexample

In this chapter, we define two substitution systems that are strongly orbit equivalent

and Kakutani equivalent but not conjugate. We begin with a brief introduction to

substitution systems; we refer the reader to [6] for more details on this topic.

3.1 Substitution Systems

We start with a finite nonempty alphabet A = {a1, . . . , ad}. If we let A∗ be the

set of finite nonempty words in A, a substitution is a map σ : A → A∗. There is a

natural extension of σ to A∗ by concatenation that allows us to define iterations of

σ. For example, suppose σ is the following substitution on the alphabet A = {a, b}:

σ :


a→ ab

b→ abb.

(3.1.1)

Then we have the following:

σ2(a) = σ(ab) = σ(a)σ(b) = ababb & σ2(b) = σ(abb) = σ(a)σ(b)σ(b) = ababbabb.

12



We say that a substitution σ is primitive if there is a k > 0 such that for each

i, j ∈ A, j appears in σk(i), and there is some i ∈ A such that limn→∞ |σn(i)| =∞

where |w| represents the length of a word w. We say σ is proper if there exists p > 0

and two letters r, l ∈ A such that

(1) ∀ i ∈ A, r is the last letter of σp(i);

(2) ∀ i ∈ A, l is the first letter of σp(i).

The substitution σ defined in Equation 3.1.1 is primitive and proper.

We say that a word w (not necessarily finite) is σ-allowed if and only if each

finite subword of w is a subword of σn(i) for some n ∈ N and some i ∈ A. We define

Xσ to be the set of all σ-allowed bi-infinite words in A. There are substitutions σ

for which Xσ will be finite. However, we are only interested in substitutions where

Xσ is infinite, in which case we will say that σ is aperiodic.

If we take Xσ with the shift map Sσ, i.e. if x = (. . . x−2x−1.x0x1x2 . . .), then

Sσ(x) = (. . . x−2x−1x0.x1x2 . . .), we say the (Xσ, Sσ) is the substitution system as-

sociated to σ. For x ∈ Xσ, we let [x] = OSσ(x), the set of all backward and forward

shifts of x. We say that an orbit [x] is left asymptotic if there is another orbit [x′]

with [x]∩ [x′] = ∅ and y ∈ [x], y′ ∈ [x′], k ∈ Z such that for all i ≤ k, yi = y′i. Right

asymptotic orbits are defined analogously, and we say an orbit is asymptotic if it is

either left or right asymptotic.

3.1.1 Substitution Systems to Bratteli Diagrams

If we let (Xσ, Sσ) be a substitution system associated to a primitive, aperiodic

substitution σ, it is a minimal Cantor system and has a natural representation as a

Bratteli-Vershik system as shown in [6]. In the case that σ is proper, which is what

we are concerned with, the Bratteli diagram is constructed by setting V0 = {v0}

and |Vk| = |A| for all k ≥ 1. For k ≥ 1, we associate each vertex at level k to a

symbol in A, so we will denote vertices at level k by {v(k, a) | a ∈ A}. For each

13



v(1, a) v(1, b)

v(2, a) v(2, b)

v(3, a) v(3, b)

1

2 1
2 3

1

2 1
2 3

Figure 3.1: Xσ as a Bratteli diagram

a ∈ A, v(1, a) is connected by a single edge to v0. For all a, b ∈ A and for all k ≥ 2,

Ek is constructed by connecting v(k, a) to v(k − 1, b) with one edge for each time

b appears in σ(a). Furthermore, if σ(a) = a1 . . . an where each ai ∈ A, then the

edge of order i, 1 ≤ i ≤ n, with range v(k, a) has source v(k − 1, ai). Because Ek

is constructed in the same way for all k ≥ 2, the diagram repeats after level 1, so

we refer to this as a stationary Bratteli diagram. Figure 3.1 illustrates the Bratteli

diagram for the substitution σ defined in Equation 3.1.1.

We will now describe the correspondence between each bi-infinite word in Xσ and

infinite paths in the Bratteli diagram. Let x ∈ Xσ and let x′ be the corresponding

infinite path in the Bratteli diagram. For each k ≥ 0, there is a word in x around the

origin, say w = x−n . . . x−1.x0 . . . xm such that for some a ∈ A, σk(a) = w. Then

the path that x′ follows from v0 down to level k of the diagram is the path of order

n+ 1 in the set of paths in E[0, k] with range v(k, a).
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3.2 The Counterexample

We will now define two substitution systems that are Kakutani equivalent and strong

orbit equivalent but not conjugate. The substitutions for these two systems are

defined accordingly. First, we define two substitutions σ1 and σ2 on an alphabet

A = {a, b} as follows:

σ1 :


a→ aabb

b→ abb

σ2 :


a→ abab

b→ abb.

We define σ = σ1 ◦ σ2 and τ = σ2 ◦ σ1. So, we have

σ :


a→ aabbabbaabbabb

b→ aabbabbabb

τ :


a→ abababababbabb

b→ abababbabb.

We let (X,T ) be the substitution system associated to σ and (Y, S) be the sub-

stitution system associated to τ . The Bratteli diagrams associated to these systems

are shown in Figure 3.2. Telescoping these diagrams between odd levels, we obtain

the stationary Bratteli diagrams associated to the substitution systems described

previously. However, since the substitutions here are given by the composition of

two substitutions, it is more convenient to look at them in their untelescoped form.
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(X,T ) (Y, S)

1
2

3
4

1
3

2
4

1
2 3

1
2 3

1
3

2
4

1
2

3
4

1 2 3

1
2 3

Figure 3.2: (X,T ) and (Y, S) as Bratteli diagrams

Theorem 3.2.1. The systems (X,T ) and (Y, S) defined above are Kakutani equiv-

alent and strong orbit equivalent but not conjugate.

In order to prove this theorem, we need the following theorems.

Theorem 3.2.2 (Durand, Host, and Skau from [6]). Two Bratteli-Vershik systems

associated to properly ordered Bratteli diagrams are Kakutani equivalent if and only

if one diagram can be obtained from the other by a finite change, i.e. doing a finite

number of finite telescopings and adding and/or removing a finite number of edges.

Theorem 3.2.3 (Barge, Diamond, and Holton from [1]). A primitive, aperiodic,

substitution σ on d letters has at most d2 asymptotic orbits.

Theorem 3.2.4 (Gottschalk and Hedlund from [8]). Any infinite minimal substi-

tution system must have at least one pair each of left and right asymptotic orbits.
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We will prove Theorem 3.2.1 by a series of propositions.

Proposition 3.2.5. The systems (X,T ) and (Y, S) defined above are Kakutani

equivalent.

Proof. By Theorem 3.2.2, two Bratteli-Vershik systems are Kakutani equivalent to

one another if one can be obtained from the other by doing a finite change. Looking

at the diagrams in Figure 3.2, if we telescope between the top vertex and level 2 of

(X,T ) and remove all edges except one between the top vertex and each of the two

vertices at the new level 2, we get precisely the ordered Bratteli diagram representing

(Y, S). Hence, by Theorem 3.2.2 the systems are Kakutani equivalent.

Proposition 3.2.6. The systems (X,T ) and (Y, S) defined above are strongly orbit

equivalent.

Proof. To see that the substitution systems are strongly orbit equivalent, we again

refer to the diagrams in Figure 3.2. If we consider the diagrams as being unordered,

they are identical. Since the associated ordered dimension groups are independent of

the ordering on the diagram, we have that the systems are strongly orbit equivalent

by Theorem 1.0.1.

Showing that these two systems are not conjugate is a more subtle problem as

almost any invariants of the two systems are the same. By Theorem 3.2.3, since our

substitution systems are primitive and aperiodic on two symbols, they can have at

most four asymptotic orbits. Furthermore, from Theorem 3.2.4, we know that each

of our systems has at least one pair each of left and right asymptotic orbits, so each

of our systems must have exactly two left asymptotic orbits and exactly two right

asymptotic orbits. As shown in [1], left asymptotic orbits can arise in only one of

two ways. It turns out in our systems, the left asymptotic orbits in (X,T ) are the
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orbits of

α = . . . σ2(u)σ(u)u.axσ(x)σ2(x) . . . and A = . . . σ2(u)σ(u)u.bbσ(b)σ2(b) . . .

where u = aabbabba and x = bbabb. The left asymptotic orbits in (Y, S) are the

orbits of

β = . . . τ2(v)τ(v)v.aτ(z)τ2(z) . . . and B = . . . τ2(v)τ(v)v.bτ(w)τ2(w) . . .

where v = ababab, z = babbabb, and w = abb.

To see that these are allowable sequences in the systems, notice that for all

n ∈ N,

σn(u) . . . σ2(u)σ(u)uaxσ(x)σ2(x) . . . σn(x) = σn+1(a),

σn(u) . . . σ2(u)σ(u)ubbσ(b)σ2(b) . . . σn(x) = σn+1(b),

τn(v) . . . τ2(v)τ(v)vazτ(z)τ2(z) . . . τn(z) = τn+1(a), and

τn(v) . . . τ2(v)τ(v)vbwτ(w)τ2(w) . . . τn(w) = τn+1(b).

So α and A are allowable in (X,T ), and β and B are allowable sequences in (Y, S).

The representations of these points in the Bratteli diagrams are shown in Figure

3.3.

To see that α and A correspond to the paths as shown in Figure 3.3, we first

introduce some notation. If x = (x1, x2, . . .) is an infinite path in a Bratteli diagram

and k < l, let x[k, l] denote the path (xk+1, . . . , xl), i.e. the edge path that x follows

from level k to level l. Also, we will denote the vertices in the Bratteli diagram for

(X,T ) in the following way: Lk and Rk will represent the vertices on the left and

right side, respectively, at level k of the diagram. Furthermore, P (v) will represent

the set of paths whose range is v and whose source is v0, i.e. the set of paths that
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(X,T )
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Figure 3.3: Left asymptotic points shown in bold

start from the top vertex and terminate at v. Given a path in P (v), if it is the nth

path in the ordering, we will refer to n as its order index in P (v).

By the characterization of α above, for all k ≥ 1, α passes through L2k+1 and the

order index of α[0, 2k+ 1] in P (L2k+1) is
∑k−1

j=0 |σj(u)|+ 1. The path of order index

|u|+ 1 in P (L3) is the α[0, 3] path shown in Figure 3.3, and in general for all k ≥ 1,

the path of order index
∑k−1

j=0 |σj(u)|+ 1 in P (L2k+1) is the α[0, 2k+ 1] path shown

in Figure 3.3. Therefore, the representation of α in the Bratteli diagram is as shown

in Figure 3.3. By the characterization of A above, for all k ≥ 1, A passes through

R2k+1 and the order index of A[0, 2k + 1] in P (R2k+1) is
∑k−1

j=0 |σj(u)| + 1 which

corresponds to the A[0, 2k + 1] path as shown in Figure 3.3. So, A corresponds to

the path shown in Figure 3.3. Similarly, we can conclude that β and B also coincide

with the paths shown in Figure 3.3.

Now, suppose there is a conjugacy h between (X,T ) and (Y, S). The conjugacy

must map left (right) asymptotic orbits to left (right) asymptotic orbits. To see

this, note that if [x] and [x′] are left asymptotic orbits in X, for each point y ∈ [x],
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there is unique point y′ ∈ [x′] such that limk→∞ dX(T−ky, T−ky′) = 0. Since h is

uniformly continuous, we must have that limk→∞ dY (h(T−ky), h(T−ky′)) = 0. Then

because h is a conjugacy, h(T−ky) = S−k(h(y)) and h(T−ky′) = S−k(h(y′)) showing

that the orbits of h(y) and h(y′) are left asymptotic and h(y′) is the unique point in

Y such that limk→∞ dY (S−k(h(y)), S−k(h(y′))) = 0. Therefore, if h is a conjugacy,

it must map α into the orbit of β and A into the orbit of B or vice versa. Since

a conjugacy can always be modified to map a point to anything in the orbit of its

image, without loss of generality, we can assume that h maps α to either β or B.

Then, since A is the unique point in X such that limk→∞ dX(T−k(α), T−k(A)) = 0

and B is the unique point in Y such that limk→∞ dY (S−k(β), S−k(B)) = 0 , it must

be true that if h(α) = β, then h(A) = B. Similarly if h(α) = B, then h(A) = β.

If we can show that neither of these cases are possible, we can conclude that these

systems are not conjugate.

Consider the sequence {Ak} in X where Ak is the path in the diagram in Figure

3.3 that agrees with A until level k, crosses over to Lk+1 on the order 4 path and

agrees with α past level k+1. Figure 3.4 illustrates Ak for an even value of k. Since

each Ak is cofinal with α, for each k there is an nk such that Tnk(α) = Ak. If h is

a conjugacy h between (X,T ) and (Y, S), the following must hold:

h(A) = h( lim
k→∞

Tnk(α)) = lim
k→∞

h(Tnk(α)) = lim
k→∞

Snk(h(α)).

Since we are assuming h(A) must be either β or B and h(α) is the other, then either

lim
k→∞

Snk(β) = B or (3.2.1)

lim
k→∞

Snk(B) = β, (3.2.2)

and if neither equation 3.2.1 nor 3.2.2 holds, h cannot be a conjugacy.
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Figure 3.4: Ak shown in bold for an even value of k

Proposition 3.2.7. The number nk such that Tnk(α) = Ak is given by

nk =


|P (Lk)|+ |P (Rk)| if k is odd

|P (Lk)| if k is even

Proof. We let ∆k denote the order index of α[0, k] in P (Lk) and Γk denote the order

index of Ak[0, k + 1] in P (Lk+1). Note that ∆k is also the order index of A[0, k] in

P (Rk). We have the following:

∆1 = 1 and ∀ k ≥ 1, ∆k+1 =


|P (Lk)|+ ∆k if k is odd

|P (Lk)|+ |P (Rk)|+ ∆k if k is even;

∀ k > 1, Γk = 2|P (Lk)|+ |P (Rk)|+ ∆k.
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Since both α and Ak pass through Lk+1 and they agree past level k+1, nk is given by

the difference in the order indices of Ak[0, k+ 1] and α[0, k+ 1]. So, nk = Γk−∆k+1

proving the proposition.

Proposition 3.2.8. For odd values of k, limk→∞ S
nk(β) = β and limk→∞ S

nk(B) =

B.

Before we begin the proof, we introduce some notation. Denote the left and

right vertices at level k of (Y, S), respectively, as L′k and R′k. Let ∆′k denote the

order index of β[0, k] in P (L′k) and Γ′k the order index of B[0, k] in P (R′k). For all

k, note that the recursion |P (L′k+1)| = 2|P (L′k)|+ 2|P (R′k)| is satisfied.

Now, we need a way to identify paths and edges in the diagram. We will denote

the maximal path from the top of the diagram to vertex v by M(v) and the minimal

path by m(v). Also, we will denote the edge of order index j that terminates at

vertex v by jv. We also need to identify compositions of paths in the diagram, so

for example, in our notation M(R′k)3L′k+1
β[k + 1, k + 3] represents the path that is

maximal down to R′k, takes the order 3 path to L′k+1, and follows β from level k+ 1

to k + 3.

Proof of Proposition 3.2.8. Consider Snk(β) = S|P (L′k)|+|P (R′k)|(β) for a fixed odd

value of k. We determine what this is by comparing order indices of paths in

P (L′k+2). We would like to know the path whose order index in P (L′k+2) is greater

than the order index of β[0, k+ 2] by |P (L′k)|+ |P (R′k)|. We do the computation in

a series of steps which can easily be checked.

(1) The path M(L′k)β[k, k + 2] > β[0, k + 2] and the difference in the order

indices is |P (L′k)| −∆′k.

(2) The path m(R′k)4L′k+1
β[k+ 1, k+ 2] > M(L′k)β[k, k+ 2] and the difference

in order indices is 1.
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(3) The path M(R′k)4L′k+1
β[k + 1, k + 2] > m(R′k)4L′k+1

β[k + 1, k + 2] and the

difference in order indices is |P (R′k)| − 1.

(4) The path m(R′k+1)3L′k+2
= m(L′k)1R′k+1

3L′k+2
> M(R′k)4L′k+1

β[k+ 1, k+ 2]

and the difference in order indices is 1.

(5) The path β[0, k]1R′k+1
3L′k+2

> M(R′k)4L′k+1
β[k+1, k+2] and the difference

in order indices is ∆′k − 1.

The difference in order indices applied above add to |P (L′k)|+ |P (R′k)|, and the last

path in our computation begins with β[0, k], so Snk(β) agrees with β down to level

k showing Snk(β)→ β for odd values of k.

We now consider Snk(B) = S|P (L′k|+|P (R′k)|(B) for an odd value of k. We calculate

this by comparing order indices of paths in P (R′k+3). We would like to know the

path whose order index in P (R′k+3) is greater than the order index of B[0, k+ 3] by

|P (L′k)| + |P (R′k)|. Again, we compute this is in a series of steps which can easily

be checked.

(1) The path B[0, k]3R′k+1
B[k + 1, k + 3] > B[0, k + 3] and the difference in

order indices is |P (R′k)|.

(2) The path M(R′k+2)B[k + 2, k + 3] > B[0, k]3R′k+1
B[k + 1, k + 3] and the

difference in order indices is |P (R′k−1)| − Γ′k−1.

(3) The path m(R′k+2)3R′k+3
= m(L′k)1L′k+1

1R′k+2
3R′k+3

> M(R′k+2)B[k+2, k+

3] and the difference in order indices is 1.

(4) The path m(R′k−1)4L′k1L′k+1
1R′k+2

3R′k+3
> m(L′k)1L′k+1

1R′k+2
3R′k+3

and the

difference in order indices is 2|P (L′k−1)|+ |P (R′k−1)|.

(5) The path B[0, k − 1]4L′k1L′k+1
1R′k+2

3R′k+3
> m(R′k−1)4L′k1L′k+1

1R′k+2
3R′k+3

and the difference in order indices is Γ′k−1 − 1.
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Using the recursion formula from Proposition 3.2.7, we get that the sum of

the differences in order indices above is |P (L′k)| + |P (R′k)|. The last path in our

computation begins with B[0, k − 1], so Snk(B) agrees with B down to level k − 1

finishing the proof.

Proof of Theorem 3.2.1. By Proposition 3.2.8, neither Equation 3.2.1 nor 3.2.2 can

hold. This along with Propositions 3.2.5 and 3.2.6 proves the theorem.

The system (Y, S−1) can be represented with the same Bratteli diagram as (Y, S)

by only reversing the ordering on the edges. With this representation of (Y, S−1),

using similar techniques to those used in Proposition 3.2.8, it can also be shown

that (X,T ) is not conjugate to (Y, S−1). This statement along with Theorem 3.2.1

shows that (X,T ) and (Y, S) are not flip conjugate, i.e (X,T ) is not conjugate to

(Y, S) or (Y, S−1).
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Chapter 4

Residuality in Strong Orbit

Equivalence Classes

In this chapter, we will define a class of minimal Cantor systems that up to conjugacy

contains every system strongly orbit equivalent to a given system. We will then

define a metric on this strong orbit equivalence class and prove several properties

about the metric space. In particular, we will prove some results about residuality

in this metric space.

4.1 Definition of S(T, x0)

If (X,T ) is a minimal Cantor system, we define the future orbit of x under T ,

O+
T (x) = {T k(x) | k ≥ 0} and the past orbit of x under T , O−T (x) = {T−k(x) | k >

0}. It is easily verified that for all x ∈ X, both sets O+
T (x) and O−T (x) are dense in

X. If (X,T ) and (Y, S) are strongly orbit equivalent minimal Cantor systems with

x0 ∈ X and y0 ∈ Y , we will say that h : X → Y is a pointed strong orbit equivalence

between (X,T, x0) and (Y, S, y0) if it is a strong orbit equivalence satisfying the

following conditions:
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(1) h(x0) = y0;

(2) h(Tx0) = Sy0;

(3) the cocycles of h are continuous on X \ {x0};

(4) h(O−T (x0)) = O−S (y0);

(5) h(O+
T (x0)) = O+

S (y0).

Proposition 4.1.1. Let (X,T ) and (Y, S) be strongly orbit equivalent minimal Can-

tor systems. For any points x0 ∈ X and y0 ∈ Y , there exists a pointed strong orbit

equivalence between (X,T, x0) and (Y, S, y0).

Proof. This is a consequence of results from [7]. Theorem 3.6 of [7] states that any

minimal Cantor system (X,T ) with x0 ∈ X can be represented as a Bratteli-Vershik

system with x0 being the unique maximal path of the associated ordered Bratteli

diagram. In the proof of Theorem 1.0.1, given two strongly orbit equivalent Bratteli-

Vershik systems, Giordano, Putnam, and Skau construct a strong orbit equivalence

between the systems that preserves the minimal and maximal paths and preserves

the cofinality of paths. Moreover, they show that the cocycles of this strong orbit

equivalence can be discontinuous only at the maximal path.

So given two strongly orbit equivalent minimal Cantor systems (X,T ) and (Y, S),

we can find a Bratteli-Vershik representation of (X,T ) with maximal path x0 and

a representation of (Y, S) with maximal path y0. By the proof of Theorem 1.0.1,

we can find a strong orbit equivalence h : X → Y that preserves the minimal and

maximal paths, preserves cofinality, and such that the cocycles of h are discontinuous

only at x0. Since x0 and y0 are the maximal paths in the diagrams, the points

Tx0 and Sy0 are the minimal paths. Therefore, h satisfies properties (1) and (2).

Since the cocycles of h are discontinuous only at the maximal path, property (3)

is satisfied. The points in X that are cofinal with x0 other than itself are exactly
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O−T (x0) and the points cofinal with Tx0 are exactly O+
T (x0)\{x0}, and the analogous

statement is true for (Y, S) with y0 and Sy0. This along with the fact that h preserves

the cofinality of paths guarantees that properties (4) and (5) are satisfied.

Let (X,T ) and (Y, S) be strongly orbit equivalent minimal Cantor systems and

let h be a pointed strong orbit equivalence between (X,T, x0) and (Y, S, y0). If we

let S′ = h−1 ◦ S ◦ h, (X,S′) is a minimal Cantor system conjugate to (Y, S). It can

easily be checked that the identity map on X is a strong orbit equivalence between

(X,S′) and (X,T ). Furthermore, S′ satisfies the following properties:

(1) S′(x0) = T (x0);

(2) O−S′(x0) = O−T (x0);

(3) O+
S′(x0) = O+

T (x0);

(4) the cocycles associated to the identity map are continuous on X \ {x0}.

We will say that a minimal homeomorphism of X satisfying these four properties

is x0-id strongly orbit equivalent to T . We define S(T, x0) = {P : X → X | P is

x0-id strongly orbit equivalent to T}. The cocycle property (property (2)) can be

stated more explicitly in the following terms. If P ∈ S(T, x0), there exists functions

a, b : X → Z continuous on X \ {x0} such that for all x ∈ X, Tx = P a(x)(x) and

Px = T b(x)(x). Since a and b depend only on P and T , we will refer to the them as

the cocycles of P relative to T or just the cocycles of P if T is clear by the context.

By the preceding arguments, any minimal Cantor system strongly orbit equivalent

to (X,T ) is conjugate to (X,P ) for some P ∈ S(T, x0).

Let (X,T ) be a minimal Cantor system with x0 ∈ X. We will now define a

metric mT on S(T, x0). For S ∈ S(T, x0) with cocycles a and b and S′ ∈ S(T, x0)

with cocyles a′ and b′, we define
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mT (S, S′) = m̃T (S, S′) + sup
x∈X

dX(Sx, S′x)

where

m̃T (S, S′) = inf
ε>0
{a(x) = a′(x) and b(x) = b′(x) for all x ∈ X \B(x0, ε)}.

The second term in the sum that defines mT (S, S′) is the supremum metric.

Because the sum of two metrics defines another metric, in order to show that mT is

a metric on S(T, x0), it is sufficient to show that m̃T is a metric on S(T, x0). If we

can show that m̃T satisfies the triangle inequality, the other metric space properties

follow trivially.

For Si ∈ S(T, x0), i = 1, 2, 3, let ai and bi be the cocycles of Si. We will show

that m̃T satisfies a stronger form of the triangle inequality, namely m̃T (S1, S3) ≤

max{m̃T (S1, S2), m̃T (S2, S3)}. Assume that m̃T (S1, S3) = p > 0 and m̃T (S1, S2) =

r < p. Then, by the definition of m̃T (S1, S3), if r < q < p, there exists an xq ∈ X

with q < dX(x0, xq) ≤ p such that either a1(xq) 6= a3(xq) or b1(xq) 6= b3(xq).

Since m̃T (S1, S2) = r < q, a1(xq) = a2(xq) and b1(xq) = b2(xq). Therefore, either

a2(xq) 6= a3(xq) or b2(xq) 6= b3(xq), and thus m̃T (S2, S3) ≥ dX(x0, xq) > q. Because

this holds for all r < q < p, we can conclude that m̃T (S2, S3) ≥ p, finishing the

proof.

4.2 Properties of S(T, x0)

Here we establish some properties of S(T, x0).

Proposition 4.2.1. If S ∈ S(T, x0), then T (O+
S (x0)) = O+

S (x0)\{x0} and T (O−S (x0)) =

O−S (x0) ∪ {x0}. Furthermore, S(O+
T (x0)) = O+

T (x0) \ {x0} and S(O−T (x0)) =

O−T (x0) ∪ {x0}.
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Proof. By the definition of S(T, x0), if S ∈ S(T, x0), then O−T (x0) = O−S (x0). Then

we have

T (O−S (x0)) = T (O−T (x0)) = O−T (x0) ∪ {x0} = O−S (x0) ∪ {x0}.

The other statements can be proven by a similar argument.

Definition 4.2.2. Let S ∈ S(T, x0) and let C be a clopen set in X. For x ∈ C, de-

fine the set Cx in the following way. If a(x) < 0, then Cx = {Sa(x)(x), . . . , S−1(x), x};

if a(x) > 0, then Cx = {x, Sx, . . . , Sa(x)−1(x)}. We define CS =
⋃
x∈C Cx.

Proposition 4.2.3. If C is a clopen set in X with x0 /∈ C, then the set CS defined

above is clopen in X and x0 /∈ CS.

Proof. Since x0 /∈ C, the function a|C : C → Z is continuous. Then because C is

compact, a|C takes on only finitely many values. Therefore, there exists an integer

M > 0 such that a|C(C) ⊂ [−M,M ]. For k ∈ Z, |k| ≤M , the set a|−1C {k} is clopen

in C, and because C is clopen in X, a|−1C {k} is also clopen in X. Because S is a

homeomorphism, the set Sj(a|−1C {k}) is clopen in X for all j ∈ Z. If 0 < k ≤ M ,

we let Ck =
⋃k−1
j=0 S

j(a|−1C {k}) and if −M ≤ k < 0, we let Ck =
⋃|k|
j=0 S

−j(a|−1C {k}).

Each Ck is clopen in X, and moreover CS =
⋃M
k=−M Ck. Since CS is the finite union

of clopen sets, CS is clopen as claimed.

To show x0 /∈ CS , we will argue by contradiction. Assume x0 ∈ CS . Then there

exists x ∈ C such that x0 = Sj(x) where 0 < j < a(x) if a(x) > 0 or 0 < j ≤ a(x)

if a(x) < 0. If we assume a(x) > 0, then x0 = Sj(x) for 0 < j < a(x). Then

x = S−jx0 and we have

T (S−jx0) = Tx = Sa(x)(x) = Sa(x)−jSj(x) = Sa(x)−j(x0).

Since a(x) − j > 0, T is mapping a point in O−S (x0) to a point in O+
S (x0) \ {x0}
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contradicting Proposition 4.2.1. If a(x) < 0, then x0 = S−jx with a(x) ≤ −j < 0,

and we have Sjx0 = x. By an argument similar to the one above, T (Sjx0) =

Sa(x)+j(x0). Since a(x) + j ≤ 0, T is mapping a point in O+
S (x0) to a point in

O+
S (x0)∪{x0}, which again contradicts Proposition 4.2.1. This proves x0 /∈ CS .

Proposition 4.2.4. Suppose S ∈ S(T, x0) with cocycles a and b and C is a clopen

set in X with x0 /∈ C. If S′ ∈ S(T, x0) with cocycles a′ and b′ such that Sx = S′x

for all x ∈ CS, then a(x) = a′(x) and b(x) = b′(x) for all x ∈ C.

Proof. Since C ⊂ CS , we have that Sx = S′x for all x ∈ C. Then because Sx =

T b(x)(x) and S′x = T b
′(x)(x) for all x ∈ X, b(x) = b′(x) for all x ∈ C. Fix x ∈ C.

If a(x) > 0, then S and S′ agree on the set {x, Sx, . . . , Sa(x)−1(x)}. In particular,

S′a(x)(x) = Sa(x)(x) = Tx, so a′(x) = a(x). If a(x) < 0, then S and S′ agree on

the set {Sa(x)(x) . . . S−1(x), x}. Since Sa(x)(x) = Tx, we have x = S|a(x)|(Tx) =

S′|a(x)|(Tx). So S′a(x)(x) = Sa(x)(x) = Tx, which again shows that a′(x) = a(x)

finishing the proof.

Proposition 4.2.5. If S ∈ S(T, x0), then S(T, x0) = S(S, x0).

Proof. Let a and b be the cocycles of S relative to T and suppose P ∈ S(T, x0) with

cocycles a′ and b′ relative to T . It is easily seen that P satisfies properties (1)-(3)

of S(S, x0) as Px0 = Tx0 = Sx0, O−P (x0) = O−T (x0) = O−S (x0), and O+
P (x0) =

O+
T (x0) = O+

S (x0). We will now show that P satisfies property (4).

Let x ∈ X with x 6= x0. If we assume b(x) = k > 0, then we have the following:

Sx = T k(x)

= T (T k−1(x))

= P a
′(Tk−1(x))(T k−1(x)).

If we repeat this process until we get x as the argument on the right hand side, we

30



get that Sx = P p(x)(x) where

p(x) =
k−1∑
j=0

a′(T jx).

An argument similar to that in the proof of Proposition 4.2.3 shows that x0 6= T jx

for j = 0, . . . , k − 1. Therefore, p is continuous on X \ {x0}. If b(x) < 0, the proof

is done similarly. If b′(x) = k > 0, we have that Px = Sq(x)(x) where

q(x) =

k−1∑
j=0

a(T jx).

As stated above, we have that x0 6= T jx for j = 0, . . . , k − 1, so q is continuous on

X \ {x0}. The proof is done similarly if b′(x) < 0. The preceding arguments have

shown that the cocyles of P relative to S are the functions p and q. Since p and

q are continuous on X \ {x0}, P satisfies property (4) of S(S, x0). This establishes

that S(T, x0) ⊂ S(S, x0). By symmetry, S(T, x0) = S(S, x0).

Theorem 4.2.6. Suppose (X,T ) and (Y, S) are strongly orbit equivalent minimal

Cantor systems with x0 ∈ X and y0 ∈ Y . Then (S(T, x0),mT ) and (S(S, y0),mS)

are uniformly homeomorphic metric spaces.

Proof. By Proposition 4.1.1, there exists a pointed strong orbit equivalence h be-

tween (X,T, x0) and (Y, S, y0). Define the function f : S(T, x0) → S(S, y0) by

f(P ) = h◦P◦h−1. Throughout this proof, we will use P ′ to denote f(P ) = h◦P◦h−1.

We will first show that T ′ ∈ S(S, y0). Clearly T ′ : Y → Y is a minimal homeomor-

phism and

T ′(y0) = h ◦ T ◦ h−1(h(x0)) = h ◦ T (x0) = Sy0.

31



Furthermore, we have that

O+
T ′(y0) = {(h ◦ T ◦ h−1)k(y0)) | k ≥ 0}

= {(h ◦ T k ◦ h−1)(h(x0)) | k ≥ 0}

= {(h ◦ T k)(x0) | k ≥ 0}

= h(O+
T (x0))

= O+
S (y0).

With a similar calculation, we can show that O−T ′(y0) = O−S (y0). It remains to be

shown that T ′ satisfies property (4) of S(S, y0).

Let m and n be the cocycles of h, so for all x ∈ X,

h ◦ T (x) = Sm(x) ◦ h(x) and h ◦ Tn(x)(x) = S ◦ h(x),

and m and n are continuous on X \ {x0}. Then for y ∈ Y , we have

(T ′)n(h
−1(y))(y) = (h ◦ T ◦ h−1)n(h−1(y)))(y)

= h ◦ Tn(h−1(y))(h−1(y))

= S ◦ h(h−1(y))

= Sy

and

Sm(h−1(y))(y) = Sm(h−1(y))(h(h−1(y))

= h ◦ T (h−1(y))

= T ′y.
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This shows that the cocycles of T ′ relative to S are the functions m ◦ h−1 and

n◦h−1. These functions are continuous as long as h−1(y) 6= x0, i.e. if y 6= h(x0) = y0.

Therefore the cocycles of T ′ relative to S are continuous on Y \{y0}. This establishes

that T ′ ∈ S(S, y0). By Proposition 4.2.5, we have that S(T ′, y0) = S(S, y0). We will

now show that if P ∈ S(T, x0), then P ′ ∈ S(T ′, y0).

If P ∈ S(T, x0) with cocycles a and b, then for y ∈ Y ,

(P ′)a(h
−1(y))(y) = h ◦ P a(h−1(y))(h−1(y))

= h ◦ T ◦ h−1(y)

= T ′y

and

(T ′)b(h
−1(y))(y) = h ◦ T b(h−1(y))(h−1(y))

= h ◦R ◦ h−1(y)

= P ′y.

This shows that the cocycles of P ′ relative to T ′ are the functions a◦h−1 and b◦h−1.

These functions are continuous on Y \ {y0}, so by an argument similar to the one

above, P ′ ∈ S(T ′, y0) = S(S, y0). We have established that f is a well-defined map

from S(T, x0) to S(S, y0).

We have left to show that f is a uniformly continuous homeomorphism. First, f

is clearly invertible as f−1 : S(S, y0)→ S(T, x0) is defined by f−1(Q) = h−1 ◦Q ◦h.

Moreover, h−1 is a pointed strong orbit equivalence between (Y, S, y0) and (X,T, x0),

so if we show that f is uniformly continuous, by the same argument we will have

that f−1 is uniformly continuous. We will now show that f is a uniformly continuous

function.
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Fix ε > 0. Because h is uniformly continuous on X, there exists a δ > 0 such

that if x, x′ ∈ X with dX(x, x′) < δ, then dY (h(x), h(x′)) < ε. Pick P,R ∈ S(T, x0)

with supx∈X(Px,Rx) ≤ mT (P,R) < δ. Then we have

sup
y∈Y

dY (P ′y,R′y) = sup
y∈Y

dY (h ◦ P ◦ h−1(y), h ◦R ◦ h−1(y))

= sup
x∈X

dY (h(P (x)), h(R(x)))

< ε.

We only have left to show that by making mT (P,R) small enough, we can make the

cocyles of P ′ and R′ agree everywhere on Y except in in an ε-ball around y0. Since

P,R ∈ S(T, x0), for all x ∈ X,

Tx = P a(x)(x) & Px = T b(x)(x) and Tx = Rc(x)(x) & Rx = T d(x)(x)

where a, b, c, and d are each continuous functions onX\{x0}. Since P ′, R′ ∈ S(S, y0),

for all y ∈ Y ,

Sy = (P ′)a
′(y)(y) & P ′y = Sb

′(y)(y) and Sy = (R′)c
′(y)(y) & R′y = Sd

′(y)(y)

where a′, b′, c′, and d′ are each continuous functions on Y \ {y0}.

Fix ε > 0 and let C be a clopen set containing Y \ B(y0, ε) with y0 /∈ C. Since

T ′ ∈ S(S, y0), we define the set CT ′ analogously as done in Definition 4.2.2. By

Proposition 4.2.3, CT ′ is clopen in Y with y0 /∈ CT ′ , so there exists a δ′ > 0 such

that B(y0, δ
′) ⊂ Y \CT ′ . Since h is uniformly continuous on X, we can find a δ > 0

such that if x, x′ ∈ X with dX(x, x′) < δ, then dY (h(x), h(x′)) < δ′. Now, suppose

mT (P,R) < δ. Fix y ∈ Y \ B(y0, ε), so y ∈ CT ′ and thus y /∈ B(y0, δ
′). Suppose

h−1(y) ∈ B(x0, δ). Then d(y, h(x0)) < δ′, but h(x0) = y0, so y ∈ B(y0, δ
′) which
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is a contradiction. Therefore, h−1(y) /∈ B(x0, δ). Since mT (P,R) < δ, b(h−1(y)) =

d(h−1(y)) and so P (h−1(y)) = R(h−1(y)). From this, we can conclude P ′y = R′y

and thus b′(y) = d′(y) for all y ∈ y \ B(y0, ε). We will now show that the same is

true for a′ and c′. Fix y ∈ Y \ B(y0, ε), and suppose Sy = T ′ky, k > 0. Using that

fact shown above that the cocycles of P ′ relative to T ′ are a ◦ h−1 and b ◦ h−1, we

have

Sy = (T ′)k(y)

= T ′((T ′)k−1(y))

= (P ′)a◦h
−1((T ′)k−1(y))((T ′)k−1(y)

Repeating this procedure k times, we get

a′(y) =
k−1∑
j=0

a(h−1((T ′)j(y))).

Similarly we get that

c′(y) =
k−1∑
j=0

c(h−1((T ′)j(y))).

But for each j = 0, . . . , k − 1, (T ′)j(y) ∈ CT ′ , so h−1((T ′)jy) /∈ B(x0, δ). Since

mT (P,R) < δ, a(h−1((T ′)j(y))) = c(h−1((T ′)j(y))) for j = 0, . . . , k − 1, so a′(y) =

c′(y).

Now suppose Sy = (T ′)−ky, k > 0. Then, we have

y = (T ′)k(Sy)

= T ′((T ′)k−1(Sy))

= (P ′)a◦h
−1((T ′)k−1(Sy))((T )′k−1(Sy))

= (P ′)a◦h
−1((T ′)−1(y))((T ′)k−1(Sy)).
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Repeating this procedure k times, we get that y = (P ′)q(y)(Sy) where

q(y) =
k∑
j=1

a ◦ h−1((T ′)−j(y)).

Therefore,

a′(y) = −q(y) = −
k∑
j=1

a ◦ h−1((T ′)−j(y)).

Similarly we get that

c′(y) = −
k∑
j=1

c ◦ h−1((T ′)−j(y)).

Again, for each j = 1, . . . , k−1, (T ′)−j(y) ∈ CT ′ , so by the same argument as above

we have that a ◦ h−1((T ′)−j(y)) = c ◦ h−1((T ′)−j(y)) for each j = 1, . . . , k. This

establishes a′(y) = c′(y) for all y ∈ Y \B(y0, ε). In both of the preceding arguments,

the choice of δ was independent of P and R, so we can conclude that f is uniformly

continuous.

Corollary 4.2.7. For S ∈ S(T, x0), the identity map from S(T, x0) → S(S, x0) is

a uniformly continuous homeomorphism.

Proof. It is easily verified that the identity map on X is a pointed strong orbit

equivalence between (X,T, x0) to (X,S, x0). Then by Proposition 4.2.5, the identity

map from (S(T, x0),mT ) to (S(S, x0),mS) is a bijection. By Theorem 4.2.6, the

identity map is a uniformly continuous homeomorphism.

Theorem 4.2.6 shows that the resulting metric space is independent of map

chosen from the strong orbit equivalence class and independent of the point chosen

from the space. From this point forward we will only consider one Cantor space X

and one special point x0 ∈ X, and we will let S(T ) denote S(T, x0). We will now

establish some properties of (S(T ),mT ).
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Proposition 4.2.8. (S(T ),mT ) is a complete metric space.

Proof. Let {Sn} be an mT -Cauchy sequence in S(T ). For all n, let an and bn be the

cocycles of Sn. For all x ∈ X, each of the sequences {Sn(x)}, {an(x)}, and {bn(x)}

are eventually fixed. This holds for x ∈ X \{x0} because there exists an N > 0 such

that if n,m ≥ N , then an(x) = am(x) and bn(x) = bm(x). Since bn(x) = bm(x),

for all n,m ≥ N , this also means Sn(x) = Sm(x) for all n,m ≥ N . Furthermore,

Sn(x0) = Tx0 for all n, so an(x0) = 1 = bn(x0) for all n. This argument can

be generalized to show that for any j ∈ Z and x ∈ X, the sequence {Sjn(x)} is

eventually fixed. So we can define Sx = limn→∞ Sn(x), a(x) = limn→∞ an(x), and

b(x) = limn→∞ bn(x) for all x ∈ X. We will show that S ∈ S(T ) with cocycles a

and b and {Sn} is mT -convergent to S proving the proposition.

We begin by showing that S is a homeomorphism. Because for every x ∈ X,

the sequence {Sn(x)} is eventually fixed, S must be one-to-one and onto since each

Sn is one-to-one and onto. Since supx∈X dX(Sn(x), Sm(x))→ 0 and {Sn} converges

pointwise to S, by the Cauchy criterion for uniform convergence {Sn} converges

uniformly to S. Since S is the uniform limit of continuous functions, S is continu-

ous. Furthermore, it is a well known theorem that a continuous bijection between

compact metric spaces has a continuous inverse.

We will now show that S satisfies the properties of S(T ). It is easily seen that

S satisfies property (1) of S(T ) because for all n ∈ N+, Sn(x0) = Tx0 and thus

Sx0 = Tx0. We will now show that the cocycles of S are the functions a and b,

and they satisfy property (4) of S(T ). Fix x ∈ X. By the argument above, there

exists an N > 0 such that if n ≥ N , bn(x) = b(x). This also means for n ≥ N ,

Sn(x) = S(x). So for n ≥ N ,

Sx = Sn(x) = T bn(x)(x) = T b(x)(x).

37



To see that b is continuous on X \ {x0}, we fix x 6= x0 and find a clopen neighbour-

hood D of x with x0 /∈ D. If N is chosen large enough such that for n ≥ N , b and bn

agree on D, since bn is continuous on D, b is also continuous on D. Because x ∈ D,

b is continuous at x.

We will now show that a satisfies the desired properties. Fix x ∈ X and suppose

a(x) > 0. Pick N large enough so that for n ≥ N , Sj(x) = (Sn)j(x) for all

j = 1, . . . , a(x) and an(x) = a(x). Then for n ≥ N ,

Tx = (Sn)an(x)(x) = (Sn)a(x)(x) = Sa(x)(x).

We can argue in a similar fashion if a(x) < 0. Furthermore, by a similar argument

to that above, a is continuous on X \ {x0}. This shows that S satisfies property (4)

of S(T ).

To see that S satisfies properties (2) and (3) of S(T ), fix j ∈ Z and pick N

such that if n ≥ N , then (Sn)j(x0) is fixed. Then for n ≥ N , Sj(x0) = (Sn)j(x0).

Since O−Sn(x0) = O−T (x0) and O+
Sn

(x0) = O+
T (x0), this means O−S (x0) ⊂ O−T (x0)

and O+
S (x0) ⊂ O+

T (x0). However, we know that OS(x0) = OT (x0) because the

functions a and b are the cocycles S. So we must have that O−S (x0) = O−T (x0) and

O+
S (x0) = O+

T (x0). This establishes that S ∈ S(T ).

It remains to be shown that {Sn} is mT -convergent to S. Above we argued

that {Sn} converges uniformly to S, so to prove that {Sn} is mT -convergent to S,

we only have left to show m̃T (S, Sn) → 0. Let ε > 0. Pick a clopen set C with

X \ B(x0, ε) ⊂ C and x0 /∈ C. Let CS the set defined in Definition 4.2.2. Since

x0 /∈ CS , there exists a δ > 0 such that B(x0, δ) ⊂ X \ CS . Pick N such that if

n,m ≥ N , mT (Sn, Sm) < δ. Then for n ≥ N , Sn(x) = Sx for all x ∈ CS . By

Proposition 4.2.4, a(x) and b(x) agree with an(x) and bn(x), respectively, for all

x ∈ C, so m̃T (S, Sn) < ε.
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Because (S(T ),mT ) is a complete metric space, the Baire Category Theorem

applies. We can now ask questions similar to those addressed by Hochman and

Rudolph in [10] and[14], respectively, about what systems are typical in these spaces.

We will begin by showing that S(T ) is separable for any minimal Cantor system

(X,T ). This along with Proposition 4.2.8 shows that (S(T ),mT ) is a Polish metric

space, i.e. it is complete and separable. Before proving that S(T ) is separable, we

need some definitions.

Let P be a tower partition of a minimal Cantor system (X,T ) over a clopen set A

such that P partitions A into finitely many clopen sets A1, . . . , Ak. For each 1 ≤ j ≤

k, let rj denote the return time of Aj to A and let fj : {0, . . . , rj−1} → {0, . . . , rj−1}

be a permutation with the properties that fj(0) = 0 and fj(rj − 1) = rj − 1. Then

each fj defines a reordering of the tower over Aj that fixes the top and bottom floors

of the tower. Define φ : X → X in the following way. If x ∈ T i(Aj) for 1 ≤ j ≤ k

and 0 ≤ i ≤ rj − 1, we define φ(x) = T fj(i)−i(x). We will say that φ is a tower

permutation of P with corresponding permutations f1, . . . , fk. We will denote the

set of all tower permutations of P by Π(P). If {Pn} is a sequence of tower partitions

of (X,T ), we let Π{Pn} =
⋃

Π(Pn).

If P is a tower permutation of a minimal Cantor system (X,T ) and φ ∈ Π(P),

then the map φTφ−1 : X → X moves points of X through the towers of P according

to the corresponding permutations of φ. For example, suppose B ⊂ X is a bottom

tower floor of P and the height of the tower over B is 5. Let φ ∈ Π(P) be a tower

permutation whose corresponding permutation f on the tower over B is given by

the following:

f :


0→ 0 1→ 3 2→ 1

3→ 2 4→ 4.

Then the maps φ and φTφ−1 are as shown in Figure 4.1.
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Figure 4.1: T -tower to φTφ−1-tower

Definition 4.2.9. For S ∈ S(T ), let C(S) = {P ∈ S(T ) | (X,P ) is conjugate to

(X,S)}.

Theorem 4.2.10. S(T ) is separable. In fact, for all S ∈ S(T ), there exists a

countable subset of C(S) that is dense in S(T ).

Before we proving this theorem, we need a lemma.

Lemma 4.2.11. Suppose S ∈ S(T ) and C is a clopen set in X with x0 /∈ C. If

{Pn} is generating sequence of tower partitions over Tx0, there exists φ ∈ Π{Pn}

such that the cocycles of φTφ−1 agree with the cocycles of S for all x ∈ C.

Proof. Let a, b be the cocycles of S such that Tx = Sa(x)(x) and Sx = T b(x)(x) for

all x ∈ X and let CS be as in Definition 4.2.2. There exists an M > 0 such that

b(CS) ⊂ [−M,M ]. Since every forward orbit is dense in X, there exists a K > 0 such

that SK(Tx0) ∈ X \CS . Since SK is continuous, there is a clopen neighbourhood D

of Tx0 with SK(D) ⊂ X \CS . Let {Pn} be a sequence of generating tower partitions

over Tx0, and for all n, let An be the clopen set such that Pn is a tower partition

over An. By Proposition 2.2.2, H(Pn) grows arbitrarily large, so we can pick N ′

large enough such that PN ′ satisfies the following:
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(1’) CS is the finite union of tower floors in PN ′ ;

(2’) a and b are constant on each of the CS tower floors;

(3’) the towers of PN ′ that contain x0 and Tx0 each have height greater than

M .

Now, we pick N > N ′ such that PN has the following properties:

(1) AN is contained in the tower floor of PN ′ that contains Tx0 and T−1(AN )

is contained in the tower floor of PN ′ that contains x0;

(2) H(PN ) > KM ;

(3) AN ⊂ D;

(4) T−1(AN ) ∩ CS = Ø.

We will find φ ∈ Π(PN ) ⊂ Π{Pn} so that φTφ−1 agrees with S on CS . By

Proposition 4.2.4, this will prove the lemma. We consider a fixed tower in PN

whose bottom floor we will denote by F . Suppose the height of the tower over F

is L + 1. Then the floors of the tower over F are the sets F, TF, . . . , TL(F ). Fix

i ∈ {0, . . . , L − 1} such that T i(F ) ⊂ CS . We claim that S(T i(F )) is another floor

in the tower over F other than F . By condition (2’), b is constant on T i(F ), so for

all x ∈ T i(F ), let b(x) = m ∈ [−M,M ]. Then S(T i(F )) = T i+m(F ), and therefore

if 0 < i+m ≤ L, S(T i(F )) is another tower floor in the tower over F other than F .

We have three cases to consider.

Case 1: If 0 ≤ i ≤ M , by conditions (3’) and (1), there exists a tower floor P̃ ∈

PN ′ with height i such that T i(F ) ⊂ P̃ and P̃ is in the same tower of PN ′ that

contains Tx0. So there exists an x ∈ P̃ such that x = T i(Tx0). By property (1’),

P̃ ⊂ CS . Therefore b is constant on P̃ , so b(x′) = m for all x′ ∈ P̃ . By Proposition

4.2.1 because x ∈ O+
T (x0), m > −i. Because m > −i and 0 ≤ i ≤ M , we have

0 < i+m ≤ 2M ≤ L. The last inequality holds by properties (3’) and (1).
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Case 2: If M < i ≤ L−M , then because −M ≤ m ≤M , we have 0 < m+ i ≤ L.

Case 3: If L−M < i < L, the argument is similar to that in Case 1. By conditions

(3’) and (1), there exists a tower floor P̃ ∈ PN ′ with height i such that T i(F ) ⊂ P̃

and P̃ is in the same tower of PN ′ that contains x0. So there exists an x ∈ P̃

such that x0 = TL−i(x) or equivalently T−(L−i)(x0) = x. Since b is constant on P̃ ,

b(x′) = m for all x′ ∈ P̃ . Because x ∈ O−T (x0), by Proposition 4.2.1 m ≤ L − i.

Because m ≤ L− i and L−M < i < L, we have 0 ≤ L− 2M < i+m ≤ L.

Because this tower was chosen arbitrarily, we have shown that for every tower

floor of PN that is a subset of CS , there is a unique tower floor other than the

bottom floor in the same tower that is its image under S. We will now show how

to permute the tower floors of the tower over F so that if φ ∈ Π(PN ) is a map that

corresponds to this permutation, then φTφ−1 agrees with S on CS . Because the

height of the tower over F is L + 1, we need to define a permutation f on the set

{0, . . . , L} such that f(0) = 0 and f(L) = L. We define f in the following way.

First, we let f(0) = i0 = 0. If F ⊂ CS , S(F ) = T i1(F ) for some 0 < i1 < L, and we

define f(1) = i1. If T i1(F ) ⊂ CS , then S(T i1(F )) = T i2(F ) for some 0 < i2 < L,

i2 6= i1. We define f(2) = i2. For j > 2, we continue defining f(j) = ij recursively

so that S(T ij−1(F )) = T ij (F ) until we reach a k ≥ 0 such that T ik(F ) /∈ CS . From

conditions (2) and (3) above, we have that T ij (F ) 6= TL(F ) for any j = 1, . . . , k.

Now we define f(L) = iL = L. If TL(F ) ⊂ S(CS), there exists a 0 < iL−1 < L

such that S(T iL−1(F )) = TL(F ). We define f(L− 1) = iL−1. We continue defining

f(j) = ij recursively so that S(T ij (F )) = T ij+1(F ) until we reach an l ≥ 0 such

that T iL−l(F ) that is not a subset of S(CS).

We have defined f on two disjoint subsets {0, 1, . . . , k} and {L− l, . . . , L} where

k < L − 1. If k + 1 = L − l, we have completely defined f on the set {0, . . . , L}.

However, if k + 1 < L − l, we need to define f on {k + 1, . . . , L − l − 1}. Because

T ik(F ) is not a subset of CS , as long as f(k + 1) is the height of a tower floor that
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is not a subset of S(CS), it will not affect whether this rearrangement is an S-tower

on CS . Let I = {1, . . . , L} \ {i1, . . . , ik, lL−l, . . . iL} and let B =
⋃
i∈I T

i(F ). We

want to find ik+1 ∈ I such that T ik+1(F ) is not a subset of S(CS). Suppose no such

ik+1 exists. This means that every tower floor contained in B is a subset of S(CS).

Every tower floor in the tower over F that is not a subset of B is either not a subset

of CS or has an image under S that is a tower floor not contained in B. So for every

i′ ∈ I, we must have that (T )i
′
(F ) = S(T i(F )) for some i ∈ I, i 6= i′. However, this

means that S(B) = B contradicting the minimality of S. Therefore, there must exist

ik+1 ∈ B such that T ik+1(F ) is not a subset of S(CS), and we define f(k+1) = ik+1.

In general for k + 1 < j < L − l, we defined f(j) = ij recursively in the following

way. If T ij−1(F ) ⊂ CS , then S(T ij−1(F )) = T ij (F ) for some ij ∈ {1, . . . , L − 1}

and we define f(j) = ij . If T ij−1(F ) is not a subset of CS , using the minimality

argument as above, we can find ij ∈ {1, . . . , L} \ {i1, . . . , ij−1, iL−l, . . . , L} such that

T ij (F ) is not a subset of S(CS) and we define f(j) = ij . We continue to define f

recursively in this manner until it is defined on all of {0, . . . , L}.

For each j ∈ {0, . . . , L}, we have defined f(j) = ij where ij is defined so that

if ij ∈ {0, . . . , L − 1} and T ij (F ) ⊂ CS , then S(T ij (F )) = T ij+1(F ) = T f(j+1)(F ).

Furthermore, note that f(0) = 0 and f(L) = L. Let φ ∈ Π{Pn} be a map that

corresponds to the permutation f on the tower over F , so if 0 ≤ i ≤ L and x ∈

T i(F ), φ(x) = T f(i)−i(x). Note that for x ∈ T i(F ), φ−1(x) = T f
−1(i)−i(x). Fix

i ∈ {0, . . . , L − 1} such that T i(F ) ⊂ CS . We claim that φTφ−1(x) = Sx for all

x ∈ T i(F ). Find j with 0 ≤ j ≤ L− 1 such that i = ij . Fix x ∈ T i(F ) = T ij (F ), so

x = T ij (x′) for some x′ ∈ F . Because T ij (F ) ⊂ CS , S(T ij (F )) = T f(j+1)(F ) and so

Sx = S(T ij (x′)) = T f(j+1)(x′). Then we have the following:
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φTφ−1(x) = φTφ−1(T ij (x′))

= φT (T f
−1(ij)−ij (T ij (x′))

= φT f
−1(ij)+1(x′)

= φT j+1(x′)

= T f(j+1)−(j+1)(T j+1(x′))

= T f(j+1)(x′)

= Sx.

Therefore, we have shown that there exists φ ∈ Π(PN ) such that φTφ−1 agrees

with S on every tower floor of the tower over F that is a subset of CS . If we repeat

the construction of the permutation f for every tower in PN and let φ ∈ Π(PN ) be

the map associated to this set of permutations, then φTφ−1 will agree with S on

every tower floor of PN that is a subset of CS . By Proposition 4.2.4, this finishes

the proof.

Proof of Theorem 4.2.10. Let {Pn} be a sequence of generating tower partitions

over Tx0. Because there are only finitely many ways to permute tower floors in each

Pn, Π{Pn} is countable. Therefore, the set D(T, {Pn}) = {φTφ−1 | φ ∈ Π{Pn}}

is a countable subset of S(T ). If we can show D(T,Pn}) is dense, the theorem

is proven. Let S ∈ S(T ) and fix ε > 0. Since S is continuous at x0, there is

a δ′ > 0 such that S(B(x0, δ
′)) ⊂ B(Sx0, ε/4). Let δ = min{δ′, ε/2} and find a

clopen set C such that X \ B(x0, δ) ⊂ C and x0 /∈ C. By the previous lemma,

we can find a φTφ−1 ∈ D(T, {Pn}) whose cocycles agree with the cocycles of S

on C. Now, we will show that mT (φTφ−1, S) < ε proving the theorem. Since

the cocycles of these two maps agree on C, clearly m̃T (φTφ−1, S) < ε/2. Thus,

we only need to show that supx∈X dX(φTφ−1(x), Sx) < ε/2. Since the cocycles of

φTφ−1 and S agree on X \ B(x0, δ), φTφ
−1(x) = Sx for all x ∈ X \ B(x0, δ). Fix
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x ∈ B(x0, δ) and assume y = φTφ−1(x) /∈ B(Sx0, ε/4). Then S−1(y) /∈ B(x0, δ),

so φTφ−1(S−1(y)) = S(S−1y) = y. Since φTφ−1 is a homeomorphism, S−1y = x.

This means x /∈ B(x0, δ), which is a contradiction. So, for x ∈ B(x0, δ) we have

dX(φTφ−1(x), Sx) ≤ dX(φTφ−1(x), Sx0) + dX(Sx0, Sx) < ε/2.

If {Pn} is a sequence of generating tower partitions over Tx0, D(T, {Pn}) is a

countable dense subset of S(T ) and clearly D(T, {Pn}) ⊂ C(T ). By the preceding

arguments, for any S ∈ S(T ) there exists a countable dense subset D(S) of S(S)

with D(S) ⊂ C(S). By Corollary 4.2.7, the identity map from S(T ) to S(S) is a

uniformly continuous homeomorphism. Because D(S) is dense in S(S), it must also

be dense in S(T ).

Corollary 4.2.12. For any S ∈ S(T ), C(S) is dense in S(T ).

Proposition 4.2.13. (S(T ),mT ) is not compact.

Proof. Let {Pn} be a sequence of generating partitions over Tx0. By Proposition

2.2.2, H(Pn) grows arbitrarily large as n→∞, so we can find a subsequence {Pnk}

such that for all k, H(Pnk) ≥ k+ 3. For all k, let Bk be the tower floor in Pnk such

that Tx0 ∈ Bk. We define a sequence {φk} in Π{Pnk} by

φk(x) =


T kx if x ∈ T (Bk)

T−kx if x ∈ T k+1(Bk)

x otherwise.

Then for all k, we have

φkTφ
−1
k (Tx0) = φkT (Tx0) = T k(Tx0).
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If bk is the cocycle of φkTφ
−1
k such that φkTφ

−1
k (x) = T bk(x)(x) for all x ∈ X, by

the equation above, bk(Tx0) = k for all k. For a sequence to converge in S(T ), its

cocycles values at Tx0 need to stabilize to a fixed integer. Therefore the sequence

{φkTφ−1k } ⊂ S(T ) has no converging subsequence proving the proposition.

4.3 Residuality and Finite Rank Systems

As defined in [5], a minimal Cantor system (X,T ) has finite rank if there exists a

K > 0 such that (X,T ) can be represented as a Bratteli-Vershik system with K or

fewer vertices at each level. If K is the smallest such integer, we say that (X,T )

has rank K. We will let F(T ) denote the set of maps in S(T ) that have finite rank.

An odometer is a system that has rank 1. We say that (X,T ) has x0-finite rank

if there exists a K > 0 such that (X,T ) can be represented as a Bratteli-Vershik

system with fewer than K vertices at each level and x0 is the maximal path in the

diagram. If K is the smallest such integer, we will say that (X,T ) has x0-rank K.

Definition 4.3.1. Let ε > 0 and let K ∈ N+. We will say that (X,T ) satisfies

the (x0, ε)-rank K condition if there exists a clopen set A ⊂ X with the following

properties:

(1) Tx0 ∈ A;

(2) A partitions into L ≤ K clopen sets A1, . . . , AL each with constant return time

rj to A;

(3) for each j = 1, . . . , L, diam(T iAj) < ε for i = 0, . . . , rj − 1;

(4) diam(A) < ε.

Proposition 4.3.2. A minimal Cantor system (X,T ) has x0-rank less than or equal

to K if and only if it satisfies the (x0, ε)-rank K condition for all ε > 0.
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Proof. Suppose (X,T ) has x0-rank less than or equal to K. Then it can be repre-

sented as a Bratteli-Vershik system with fewer than K vertices at each level and so

that x0 is the maximal path in the diagram, i.e. xmax = x0. For all n, let Pn denote

the partition of X into the cylinder sets of paths that begin with a particular path

down to level n and let An denote the union of cylinders sets in Pn that correspond

to minimal paths down to level n. Since {Pn} generates the topology of X, we

have that diam(Pn)→ 0. Because (X,T ) has a unique minimal path in its Bratteli

diagram, we also have that diam(An) → 0. Fix ε > 0 and pick an N > 0 such

that if n ≥ N , then diam(Pn) < ε and diam(An) < ε. Fix n ≥ N and let A = An.

Since Tx0 = xmin, Tx0 ∈ A. We partition A the same way it is partitioned in Pn,

and we denote this partition by Pn(A). This partition of A will have fewer than K

sets since the number of sets in Pn(A) is equal to the number of vertices at level

n in the Bratteli diagram. Each set in Pn(A) will have a constant return time to

A since each set corresponds to a minimal path cylinder set in the diagram. Con-

dition (3) is satisfied because diam(Pn) < ε and condition (4) is satisfied because

diam(A) = diam(An) < ε.

Conversely for n ∈ N+, pick a sequence of sets An ⊂ X such that An satisfies the

(x0, 1/n)-rank K condition and so that An+1 ⊂ An for all n. We then consider the

tower partitions of (X,T ) over each An. Because each An can be partitioned into

fewer than K clopen sets each with constant return time to An, we can construct a

Bratteli-Vershik representation of (X,T ) with fewer than K vertices at each level.

Because Tx0 ∈ An for all n, Tx0 is the minimal path in the diagram; therefore, x0 is

the maximal path in the diagram. Therefore (X,T ) has x0-rank less than or equal

to K.

Proposition 4.3.3. A minimal Cantor system (X,T ) has finite rank if and only if

it has x0-finite rank. Moreover, if (X,T ) has rank K, then (X,T ) has x0-rank less

than or equal to K2.
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Proof. If (X,T ) has x0-finite rank, then by definition (X,T ) has finite rank. Con-

versely, if (X,T ) has rank K, then it must have x1-rank K for some x1 ∈ X.

For ε > 0, we will find a set B containing Tx0 satisfying the (x0, ε)-rank K2

condition. Because O+
T (Tx1) is dense in X, there exists an m ≥ 0 such that

Tm(Tx1) ∈ B(Tx0, ε/4). Since Tm is continuous at Tx1, there exists a δ′ > 0

such that if dX(x, Tx1) < δ′, then Tm(x) ∈ B(Tm(Tx1), ε/4). Set δ = min{δ′, ε/4}.

Since (X,T ) has x1-rank K, by Proposition 4.3.2, there exists a clopen set A sat-

isfying the (x1, δ)-rank K condition. Furthermore, if we let P denote the tower

partition over A given by the definition of the (x1, δ)-rank K condition, then by

Proposition 2.2.2, A can be chosen so that H(P) > m.

Let A and P be as described in the preceding paragraph with H(P) > m. We

pick one tower floor from each tower of P in the following way. Supppose that P

partitions A into L ≤ K clopen sets A1, . . . , AL. For each i ∈ {1, . . . , L}, let the

tower over Ai in P have height ri > 0. Let i0 ∈ {1, . . . , L} such that Tx0 is in the

same tower as Ai0 . Let Bi0 be the tower floor in the tower over Ai0 that contains

Tx0. For all i ∈ {1, . . . , L}, i 6= i0, let Bi be the tower floor of height m + 1 in the

tower over Ai.

Set B =
⋃L
i=1Bi. For each i = 1, . . . , L, we will partition Bi into L subsets

determined by which Aj it intersects when it first returns to A under T , i.e. for a

fixed i ≤ L, set Bij = {x ∈ Bi | the first time x returns to A under T , it returns to

Aj} with j ∈ {1, . . . , L}. This partitions B into L2 ≤ K2 clopen sets. We will now

show that B satisfies the properties desired. By the definition of the Bij sets, clearly

each one has a constant T -return time to B. Each iteration of a Bij set under T

before returning to B is a subset of some T l(Ak) ∈ P with k ≤ L and l ≤ rk − 1.

Because diam(P) < δ < ε, for all i, j ∈ {1, . . . , L}, diam(Bij) < ε. We only have

left to show that diam(B) < ε. Fix x, y ∈ B. There are three cases that need to

consider.
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Case 1: Suppose x, y ∈ Bi0 . Since Bi0 a tower floor in P and diam(P) < δ ≤ ε/4,

we have dX(x, y) < ε/4.

Case 2: Suppose x ∈ Bi and y ∈ Bj where i, j 6= i0. Then Bi, Bj ⊂ Tm(A), so there

exist x′, y′ ∈ A such that Tm(x′) = x and Tm(y′) = y. Since diam(A) < δ, we have

dX(x, y) = dX(Tm(x′), Tm(y′))

≤ dX(Tm(x′), Tm(Tx1)) + dX(Tm(Tx1), T
m(y′))

<
ε

4
+
ε

4

=
ε

2
.

Case 3: Suppose x ∈ Bi0 and y ∈ Bj with j 6= i0. Since Bj ⊂ Tm(A), there exists a

y′ ∈ A such that Tm(y′) = y. Then, we have that

dX(x, y) = dX(x, Tm(y′))

≤ dX(x, Tm(Tx1)) + dX(Tm(Tx1), T
m(y′))

≤ dX(x, Tx0) + dX(Tx0, T
m(Tx1)) + dX(Tm(Tx1), T

m(y′))

<
ε

4
+
ε

4
+
ε

4

=
3

4
ε.

This shows that diam(B) < ε and thus (X,T ) satisfies the (x0, ε)-rank K2 prop-

erty. Since ε was chosen arbitrarily, by Proposition 4.3.2 (X,T ) has x0-rank less

than or equal to K2.

Theorem 4.3.4. If (X,T ) has finite rank, then the set of finite rank systems F(T )

is residual in S(T ), i.e. F(T ) contains a dense Gδ.

Before we prove this theorem, we need a lemma.
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Lemma 4.3.5. Let S ∈ S(T ) and let P = {P1, . . . , Pn} be a clopen partition of

X. There exists an ε > 0 such that if mT (S′, S) < ε, then S′(Pi) = S(Pi) for

i = 1, . . . , n.

Proof. Since S is a homeomorphism the set {S(P1), . . . , S(Pn)} is a clopen partition

of X, so for i 6= j, dX(S(Pi), S(Pj)) > 0. Define ε = mini 6=j dX(S(Pi), S(Pj)). If

mT (S′, S) < ε, then supx∈X dX(S′x, Sx) < ε, and so S′(Pi) ⊂ S(Pi) for i = 1, . . . , n.

Since S′ is a homeomorphism, we have S′(Pi) = S(Pi) for i = 1, . . . , n finishing the

proof.

Proof of Theorem 4.3.4. Let FK(T, ε) denote the systems that satisfy the (x0, ε)-

rank K condition. By Proposition 4.3.2,

∞⋂
n=1

FK(T, 1/n) = FK(T, x0)

where FK(T, x0) is the set of systems that have x0-rank less than or equal to K.

Since FK(T, x0) ⊂ F(T ), if we can show that each FK(T, 1/n) is an open dense

set in S(T ), by the Baire Category Theorem, we will have that F(T ) is residual in

S(T ).

We will show that for all ε > 0, the set FK(T, ε) is dense in S(T ). By Proposition

4.3.3, (X,T ) has x0-finite rank. Therefore, there exists a K > 0 such that (X,T )

can be has a Bratteli diagram representation B with K or fewer vertices at each level

and with maximal path x0. For all n, let Pn denote the tower partition of X over the

union of minimal path cylinders sets in B down to level n. Then {Pn} is a generating

sequence of tower partitions, so by Theorem 4.2.10, D(T, {Pn}) is dense in S(T ).

We claim that D(T, {Pn}) ⊂ FK(T, x0). If φTφ−1 ∈ D(T, {Pn}), then there exists

some k ∈ N+ such that the map φTφ−1 is created by rearranging the tower floors of

Pk (excluding the top and bottom floors of Pk). But a rearrangement of the tower

floors of Pk is equivalent to reordering paths of B down to level k (excluding the
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minimal and maximal paths). Therefore, by reordering paths of B down to level

k, we can obtain a Bratteli diagram representation B′ of (X,φTφ−1). Since the

number of vertices at each level of B′ is equal to the number of vertices at each

corresponding level of B and the maximal path of B′ is x0 (since no minimal or

maximal paths were reordered), we have that (X,φTφ−1) has x0-rank less than or

equal to K. Therefore, φTφ−1 ∈ F(T, x0) proving the claim. Since for all ε > 0,

FK(T, x0) ⊂ FK(T, ε), we have that FK(T, ε) is dense in S(T ).

It remains to be shown that for all ε > 0, the set FK(T, ε) is open in S(T ). Let

S ∈ FK(T, ε). Let P be the tower partition of (X,S) given by the definition of

the (x0, ε)-rank K condition. By Lemma 4.3.5, there exists an ε′ > 0 such that if

mT (S, S′) < ε′, then S(P ) = S′(P ) for all P ∈ P. Therefore if mT (S, S′) < ε, then

S′ also satisfies the (x0, ε)-rank K condition with the same partition P. This shows

that FK(T, ε) is open in S(T ) finishing the proof.

Corollary 4.3.6. If (X,T ) is an odometer, then odometers are residual in S(T ).

Proof. In the proof of Theorem 4.3.4, it was shown that if (X,T ) has rank K, then

the systems with x0-rank less than or equal to K are residual in S(T ). If (X,T ) is

an odometer, it has rank 1 and thus odometers are residual in S(T ).

4.4 Residuality and Entropy

4.4.1 Entropy

We will define entropy as done in [15]. Let (X,T ) be a minimal Cantor system (this

definition is the same for any topological dynamical system). If α and β are open

covers of X, their join α ∨ β is the open cover containing sets of the form A ∩ B

where A ∈ α and B ∈ β. The join of any finite number of open covers
∨n
i=1 αi is

defined similarly. If α is an open cover of X, T−1α will denote the open cover of X
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containing sets of the form T−1A where A ∈ α. Let N(α) denote the number of sets

in a subcover of α with minimal cardinality. If we let H(α) = logN(α), the entropy

of (X,T ) relative to α is given by

h(T, α) = lim
n→∞

1

n
H(

n−1∨
i=0

T−iα).

In [15], it is shown that this limit exists and h(T, α) ≤ H(α). The topological entropy

of (X,T ) is defined as

h(T ) = sup
α
h(T, α)

where α ranges over all open covers of X. Topological entropy is an invariant under

conjugacy.

If P = {P1, . . . , Pn} is a clopen partition ofX, thenN(
∨n−1
i=0 T

−iP) is the number

of T -itineraries of length n through P. Let πT (P) denote the shift space of itineraries

through P, i.e. for x ∈ X and i ∈ Z, set xi = j ∈ {1, . . . , n} where T ix ∈ Pj . Then

πT (P) is system consisting of the space {. . . x−2x−1.x0x1x2 . . . | x ∈ X} along with

the shift map. Theorem 7.13 of [15] shows that if (Y, S) is a shift space, then

h(S) = lim
n→∞

log |Wn(Y )|
n

where Wn(Y ) is the set of words of length n in Y . By the preceding statements, we

have that h(T,P) = h(πT (P)), or equivalently

h(T,P) = lim
n→∞

log |Wn(πT (P))|
n

. (4.4.1)

4.4.2 Zero Entropy Systems are Residual

Fix a sequence of clopen sets {Ak} contained in X such that Ak+1 ⊂ Ak and

diam(Ak) → 0. Let {Pl} be a sequence of clopen partitions (not necessarily tower
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partitions) of X that generates the topology of X. It follows from Theorem 7.6 of

[15] that liml→∞ h(S,Pl) = h(S) for any S ∈ S(T ). For each pair k, l ∈ N+ and

S ∈ S(T ), we will define a shift space that describes how points of Ak move through

the partition Pl. Fix k, l ∈ N+ and let x ∈ Ak with T -return time r > 0 to Ak. If

Pl = {P1, . . . , Pn}. We define wS(k, l)(x) = x0 . . . xr−1 where xi = j ∈ {1, . . . , n} if

and only if T ix ∈ Pj . Let WS(k, l) = {wS(k, l)(x) | x ∈ Ak}, and we define πS(k, l)

to be the shift space of all bi-infinite words that can be formed by concatenating

words in WS(k, l).

Proposition 4.4.1. Let S ∈ S(T ). For all k > 0, there exists an ε > 0 such that if

mT (S′, S) < ε, then WS(k, l) =WS′(k, l).

Proof. This follows directly from Lemma 4.3.5.

Theorem 4.4.2. (Lind and Marcus from [12]) Let π1 ⊃ π2 ⊃ π3 be shift spaces

whose intersection is π. Then limk→∞ h(πk) = h(π).

Lemma 4.4.3. The sequence {h(πS(k, l))}∞k=1 is decreasing and limk→∞ h(πS(k, l)) =

h(S,Pl).

Proof. If k′ > k, the words in WS(k′, l) are concatenations of the words in WS(k, l),

so πS(k′, l) ⊂ πS(k, l). Therefore, h(πS(k′, l)) ≤ h(πS(k, l)). Since h(S,Pl) =

h(πS(Pl)), if we can show that
⋂
k πS(k, l) = πS(Pl), the limit statement holds

by Theorem 4.4.2.

If Pl = {P1, . . . , Pn}, then
⋂
k πS(k, l) and πS(Pl) are both closed subspaces of

the full shift {1, . . . , n}Z. Therefore, in order to show that
⋂
k πS(k, l) = πS(Pl), it

suffices show that any finite word appearing in one space also appears in the other.

It is clear that any finite word appearing in πS(Pl) also appears
⋂
k πS(k, l) because

if some point in X follows a particular S-itinerary through Pl, then that same point

follows the same S-itinerary through every tower partition of (X,S).
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We will now show that any finite word appearing in
⋂
k πS(k, l) also appears in

πS(Pl). Let w = w0 . . . wn−1 be a finite word that appears in
⋂
k πS(k, l). Pick K > 0

such that if k ≥ K, then each of the sets Ak, S(Ak), . . . , S
n−1(Ak) is contained in

only one element of the partition Pl. For j = 0, . . . , n − 1, say Sj(Ak) ⊂ Pij ∈ Pl.

Because of the way K was chosen, every word in WS(K, l) must begin with the

subword i0i1 . . . in−1. Since w appears in
⋂
k πS(k, l), in particular it is a subword

of some concatenation of words in WS(K, l). If w is a subword of a single word in

WS(K, l), then clearly w appears in πS(Pl). If w is a subword of the concatenation

of multiple words in WS(K, l), let m be the minimal positive integer such that wm

is the first symbol of a new word in WS(K, l). Because wm is the first symbol of a

word in WS(K, l), we have that wj = ij−m for j = m, . . . , n− 1. Since w0 . . . wm−1

is a subword of a single word in WS(K, l), there exists x ∈ X with S-itinerary

w0w1 . . . wm−1 through Pl, i.e. Sj(x) ∈ Pwj for j = 0, . . . ,m − 1. Because wm−1

is the last symbol of a word in WS(K, l), we also have that Sm(x) ∈ AK . Then

for j = m, . . . , n − 1, Sj(x) ∈ Sj−m(AK) ⊂ Pij−m = Pwj . Therefore, x has exactly

the S-itinerary w0 . . . wn−1 through the partition Pl showing that w does appear in

πS(Pl) and finishing the proof.

Lemma 4.4.4. Let l ∈ N+ and p > 0, then the set S(p, l) = {S ∈ S(T ) | h(S,Pl) <

p} is open in S(T ).

Proof. Let S ∈ S(T ) with h(S,Pl) < p. By Lemma 4.4.3, there exists a K such that

if k ≥ K, then h(πS(k, l)) < p. By Proposition 4.4.1, there exists ε > 0 such that

if mT (S′, S) < ε, then WS′(K, l) =WS(K, l). Then h(πS′(K, l)) = h(πS(K, l)) < p.

Since {h(πS′(k, l))}∞k=1 is decreasing and converges to h(S′,Pl), h(S′,Pl) < p.

Theorem 4.4.5. (Boyle and Handelman from [3]) Any minimal Cantor system is

strongly orbit equivalent to a system with zero entropy.
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Theorem 4.4.6. For any minimal Cantor system (X,T ), the set of maps in S(T )

with zero entropy is residual.

Proof. By Theorem 4.4.5, S(T ) contains a system with zero entropy. By Corollary

4.2.12, the conjugacy class of this zero entropy dense is dense in S(T ). Since entropy

is invariant under conjugacy, the systems with zero entropy are dense in S(T ).

It follows from the definition of entropy that if S ∈ S(T ) with h(S) = 0, then

h(S,P) = 0 for any clopen partition P of X. Therefore, if l is a positive integer and

p > 0, S(p, l) contains all systems in S(T ) with zero entropy; therefore, S(p, l) is

dense in S(T ). Define

S(l) =

∞⋂
n=1

S(n−1, l).

From the previous statement and Lemma 4.4.4, we can conclude that S(l) is residual

in S(T ). Furthermore, S(l) = {S ∈ S(T ) | h(S,Pl) = 0}. Since liml→∞ h(S,Pl) =

h(S) for all S ∈ S(T ), we have that
⋂∞
l=1 S(l) = {S ∈ S(T ) | h(S) = 0}. Because

the countable intersection of residual sets is residual, the theorem is proven.
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