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Abstract 

 
P2X2 receptors and P2Y4 receptors are ATP-activated cell surface receptors that gate 

movement of K+, Na+, and Ca2+.  We used immunocytochemistry for P2X2 and P2Y4 

receptors as well as taste cell type markers to learn if P2X2 immunoreactivity (IR) is 

present in nerve processes in close apposition to Type II and/or Type III taste cells.  We 

also tested to see if P2Y4 IR is present in Type II and/or Type III taste cells.  Our results 

indicate that P2X2 is present only in intragemmal nerve processes.  P2X2-LIR nerve 

processes form close contacts with Type II and Type III taste cells.  P2Y4 IR is present in 

Type II cells that also display IP3R3 IR, and in Type III cells with Syntaxin-1 IR and 5-

HT IR.  These data suggest that ATP stimulates P2X2 receptors on nerve processes and 

P2Y4 receptors present on both Type II cells and Type III cells. 
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Introduction 

The Taste Bud 

 The taste bud is an onion-shaped structure specialized for the detection of sapid 

chemical stimuli (S. Kinnamon and Margolskee, 1996; Lindemann, 1996; Gilbertson et 

al., 2000).  A typical taste bud is composed of 50-150 neuroepithelial taste cells, 

extending from the basal lamina to the taste pore, where apical microvilli extend into the 

oral cavity and interact with sapid molecules (J. Kinnamon et al., 1985, 1988; S. 

Kinnamon and Margolskee, 1996; Gilbertson et al., 2000).  There are three fields of 

lingual taste buds: fungiform, foliate and circumvallate (= vallate) (Whiteside, 1927).  

Fungiform papillae are located on the dorsal surface of the anterior two-thirds of the 

tongue (Gilbertson et al., 2000).  The term, “fungiform”, derives from the mushroom-like 

shape of these papillae.  One to two taste buds are contained within a single rodent 

fungiform papilla.  Hundreds of foliate papillae line the walls of epithelial folds on the 

posterolateral surfaces of the tongue.  Rodents also contain a single circular or horseshoe-

shaped circumvallate papilla located on the dorsal posterior surface of the tongue.  This 

papilla is surrounded by a trench or moat of epithelium that is lined on both sides with 

several hundred taste buds.   

 Taste transduction begins when tastants interact with the apical microvilli of taste 

receptor cells that project into the oral cavity via the taste pore (Fig. 1) (J. Kinnamon, 

1988; S. Kinnamon and Margolskee, 1996; Gilbertson, 2000).  Microvilli possess ion 
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channels and G protein-coupled receptors, as well as other transduction machinery that 

interact with aqueous chemical stimuli and carry out taste transduction (S. Kinnamon and 

Margolskee, 1996).  Interactions with aqueous chemical stimuli lead to changes in 

membrane conductance, cellular depolarization, and release of neurotransmitter onto 

afferent nerve processes (S. Kinnamon and Margolskee, 1996).   

Innervation of Rodent Taste Buds 

 Rodent lingual taste buds are innervated by branches of the facial (VIIth) and 

glossopharyngeal (IXth) nerves (Whiteside, 1927; Oakley, 1967; Farbman and Hellekant, 

1978; Whitehead et al., 1985).  The chorda tympani branch of the facial (VIIth) nerve 

provides sensory innervation to fungiform papillae on the anterior two- thirds of the 

tongue and anterior foliate papillae (Farbman and Hellekant, 1978).  Circumvallate and 

posterior foliate papillae of rodents are innervated by lingual-tonsillar fibers branching 

from the glossopharyngeal (IX) nerve (Whiteside, 1927; Oakley, 1967) (Fig. 2). 

Taste Cell Types 

 Taste receptor cells have been classified into types based on species, type of 

papillae and ultrastuctural differences between the cells (Farbman, 1965; Murray and 

Murray, 1971; Murray, 1973; J. Kinnamon et al., 1985, 1988; Delay et al., 1986; Pumplin 

et al., 1997).   

Type I Cells 

Type I cells are electron-dense, elongate cells with invaginated nuclei and long 

microvilli extending into the taste pit (Murray, 1973) (Fig. 1).  In contrast to other cell 

types, Type I cells possess sheet-like cytoplasmic processes that separate and envelop 
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Type II cells, Type III cells, and intragemmal nerves, much like Schwann cells (Murray, 

1973; Royer and J. Kinnamon, 1994).  Type I cells are thought to play a supportive role 

in the taste bud, and usually occupy peripheral positions (Lindemann, 1996).  Type I cells 

express blood group antigen H (Pumplin et al., 1999), and are believed to release “pore 

substance” into the taste pore (Fujimoto, 1973, Ohmura et al., 1989).  Bartel et al. (2006) 

found that the ecto-ATPase, NTPDase2, was present on the plasma membrane of Type I 

cells, possibly functioning in the degradation of ATP (Vlajkovic et al., 2007), which is 

now believed to be a neurotransmitter released from Type II cells (Baryshnikov et al., 

2003; Finger et al., 2005; Romanov et al, 2007; Huang et al, 2007). 

Type II Cells 

  Type II cells make up ~20% of the taste receptor cell population (J. Kinnamon et 

al., 1985, 1988; Lindemann, 1996).  The cytoplasm of a Type II cell is electron-lucent 

and has circular to ovoid shaped nuclei (Fig. 1).  The cytoplasm of Type II cells often 

contains swollen cisternae of smooth endoplasmic reticulum and numerous mitochondria. 

The apical process of a Type II cell terminates in several brush-like microvilli of equal 

length (Lindemann, 1996).  Type II cells express the immunocytochemical markers 

IP3R3 (Clapp et al., 2001) and PLCβ2 (Clapp et al., 2004).  The G-protein, α-gustducin, 

is also present in a subset of Type II cells (Boughter et al., 1997, Yang et al., 2000b).  

These Type II cells are thought to perform a chemosensory function, but do not form 

classical synapses with nerve processes in the rat (Lindemann, 1996, Yang et al., 2000a; 

Finger et al., 2005).   
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Type III Cells 

 Type III cells have both electron-dense and electron-lucent regions (Fig. 1).  

Scattered throughout the cytoplasm are mitochondria, granular and smooth endoplasmic 

reticulum, free ribosomes, and polyribosomes (Royer and J. Kinnamon, 1994).  They also 

have invaginated nuclei, but are best distinguished by their single blunt microvillus.  

Many small clear vesicles, as well as occasional large, dense-cored vesicles are present 

within Type III cells (Royer and J. Kinnamon, 1994).  Conventional synapses onto nerve 

processes have been observed associated with Type III cells of the rat (Yang et al., 

2000a; Yee et al., 2001).  A subset of Type III cells expresses the immunocytochemical 

marker, serotonin (5-HT) (Kim and Roper, 1995; Yee at al., 2001), the presynaptic 

membrane protein SNAP-25 (Yang et al., 2000a), and the presynaptic T-SNARE 

membrane protein Syntaxin-1 (Yang et al., 2007).  Clapp et al. (2004) found PLCβ2-

immunoreactivity in a small subset of Type III cells.  Immunoreactivity for protein gene 

product 9.5 (PGP 9.5) (Yee at al., 2001), and neural cell adhesion molecule (NCAM) 

(Nelson and Finger, 1993) is also present in Type III cells.  The subsets of Type III taste 

cells displaying immunoreactivity for PGP 9.5 and 5-HT are mutually exclusive (Yee et 

al., 2001). 

Transduction Pathways 

 Salt 

 The prototypical salty stimulus is table salt (NaCl) (S. Kinnamon, 1988; 

Gilbertson et al., 2000; Roper, 2007).  The transduction of salt taste does not require 

specific membrane receptors (S. Kinnamon, 1988).  Most taste cells responsive to salt 
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have epithelial-type sodium channels (ENaCs) that are blocked by amiloride (S. 

Kinnamon, 1988; Gilbertson et al., 2000).  These amiloride-sensitive sodium channels are 

unaffected by voltage, and are continually open, thus the constant influx of Na+ across the 

membrane depolarizes the cell (S. Kinnamon, 1988; Gilbertson et al., 2000; Roper, 

2007). 

 Bitter 

 There are several transduction pathways for bitter taste.  Bitter compounds such 

as denatonium and quinine bind directly to K+ channels, preventing the release of K+ 

from the cell, which leads to a depolarization of the cell (S. Kinnamon and Margolskee, 

1996).  Depolarization of the cell causes release of Ca2+ from intracellular stores (Ogura 

et al., 2002) that trigger the release of neurotransmitter (S. Kinnamon and Margolskee, 

1996).  Other bitter transduction pathways include specialized membrane receptor 

proteins for bitter compounds, such as T2R/TRB membrane receptors (Margolskee, 2001; 

Ogura et al., 2002; Roper, 2007), which activate G-protein coupled second messenger 

cascades.  T2Rs activate the G-protein, gustducin, which is composed of α and β3γ13 

subunits (Margolskee, 2001; Ogura et al., 2002). When denatonium binds to a G-protein 

coupled receptor it activates both the α- and βγ-subunits, causing a separate cascade of 

events (S. Kinnamon and Margolskee, 1996; Margolskee, 2001).  α-Gustducin activates 

phosphodiesterase (PDE), decreasing cyclic adenosine 5’-monophosphate (cAMP) levels 

by converting it into adenosine monophosphate (AMP), allowing Ca2+ to enter the cell, 

and causing the release of neurotransmitter (Gilbertson et al., 2000, Ogura et al., 2002; 

Roper, 2007).  β3γ13 activates PLCβ2, triggering inositol 1,4,5-triphosphate (IP3) 
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synthesis, releasing Ca2+ from internal stores, which then causes release of 

neurotransmitter (S. Kinnamon and Margolskee, 1996; Clapp et al., 2001; Margolskee, 

2001; Ogura et al., 2002). 

Sweet 

 cAMP and IP3 are believed to be the second messengers involved in the 

transduction of sweet stimuli (S. Kinnamon and Margolskee, 1996; Margolskee, 2001; 

Roper, 2007).  Sugars bind to receptors (T1R2/T1R3), activating the G-protein Gs 

through one or more coupled G-protein coupled receptors (Margolskee, 2001; Roper, 

2007).  The activated Gs α-subunit then activates adenylyl cyclase, which catalyzes the 

formation of cAMP in the cytoplasm.  cAMP may then directly cause influx of cations 

via cyclic nucleotide monophosphate-gated channels.  cAMP may also directly activate 

protein kinase A (PKA), causing the phosphorylation of a K+-selective channel, 

inhibiting K+ release, depolarizing the cell, which allows Ca2+ to flow into the cell, 

stimulating neurotransmitter release (S. Kinnamon and Margolskee, 1996; Margolskee, 

2001).  Like bitter transduction, some sweeteners such as saccharin bind to a receptor, the 

α-subunit of Gq or the Gβγ subunits activate PLCβ2, causing phosphatidylinositol-4, 5-

bisphosphate (PIP2) to split into IP3 and diacylglycerol (DAG).  DAG stays within the 

plane of the membrane activating the downstream enzyme, protein kinase C.  IP3 

synthesis releases Ca2+ from internal stores (S. Kinnamon and Margolskee, 1996; 

Margolskee, 2001; Roper, 2007). 
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Sour 

  Sour taste results from acidic stimuli, which help animals to avoid rotten foods or 

unripened fruits.  It may also function to protect against ingesting excess dietary acid that 

can alter the body’s acid-base balance (Roper, 2007).  The functional group for sour 

stimulus is the proton (H+), or more accurately, the hydronium ion (H3O +) (Roper, 2007).  

Protons are thought to act on ion channels in the membranes of acid-sensitive taste 

receptor cells, generating inward currents (Richter et al, 2004).  Sour foods affect taste 

receptors in several ways; H+ permeates the amiloride-sensitive sodium channel, the same 

channel involved in the transduction of salt, causing an inward H+ current, depolarizing 

the cell (S. Kinnamon and Margolskee, 1996).  H+ also binds to and blocks K+- selective 

channels, decreasing the K+ levels across the membrane, depolarizing the cell (S. 

Kinnamon and Margolskee, 1996).  The paracellular pathway also contributes to sour 

transduction, as protons seep into tight junctions between adjacent taste receptor cells (S. 

Kinnamon and Margolskee, 1996).  Richter et al. (2003a) found that voltage-gated Ca2+ 

channels open in response to intracellular acidification in a small subset of taste cells.  

Ca2+ influx may lead to the release of neurotransmitter from synapses between nerve 

fibers and Type III cells (Richter et al., 2004).  The mechanisms that occur by which 

cytoplasmic acidification stimulates an influx of Ca2+ in sour taste receptor cells remain 

unclear (Richter et al., 2004).   

 Umami 

 Umami is Japanese for “delicious”.  Umami taste results from amino 

acid/nucleotide stimuli (L-glutamate, L-aspartate, and the 5’-ribonucleotides, inosine 5’-
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monophosphate (IMP) and guanosine 5’-monphosphate (GMP)) (He et al., 2004; 

Maruyama et al., 2006; Narukawa et al., 2006).  There are two putative taste transduction 

pathways for umami.  First, it is thought that umami stimuli depolarize taste cells by 

inhibiting resting K+ conductance or by increasing conductance of Na+ and Ca2+ channels 

(Narukawa et al., 2006).  There are three G-protein coupled receptors proposed to be 

receptors for glutamate; mGluR4 (Chaudhari et al., 2000), the heterodimer T1R1/T1R3, 

and a truncated mGluR1 (Maruyama et al., 2006).  The candidate umami receptor 

(T1R1/T1R3) is co-expressed with α-gustducin in murine fungiform and circumvallate 

papillae (Narukawa et al., 2006; Roper, 2007).  For the second pathway, umami stimuli 

bind to the G-protein coupled receptor, T1R1/T1R3.  The alpha subunit of the G-protein, 

perhaps α-gustducin or rod α-transducin (He et al., 2004), stimulates PDE, (Narukawa et 

al., 2006) which in turn converts cAMP into AMP.  A decrease in cAMP levels may 

modify other channels (S. Kinnamon et al., 2005; Roper, 2007). 

Synapses  

 Conventional synapses in taste buds are functional connections between a 

presynaptic taste cell (Type III cell) and a postsynaptic nerve process.  Criteria for 

identifying a synapse in a rodent taste bud include; 1) a thickening of the presynaptic 

membrane, 2) a 15-30nm cleft between the parallel membranes, and 3) vesicle clusters 

adjacent to the thickened membrane (Royer and J. Kinnamon, 1991; J. Kinnamon and 

Yang, 2007).  Presynaptic cells release neurotransmitters via exocytosis, thereby 

stimulating or inhibiting a postsynaptic cell.  Sites of neurotransmitter release are referred 

to as active zones.  Synaptic vesicles are concentrated in the cytoplasm adjacent to the 
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active zones and a few are docked onto the presynaptic membrane (J. Kinnamon and 

Yang, 2007).   Postsynaptic neurotransmitter receptors are located just below the 

postsynaptic membrane in a region referred to as the postsynaptic density.  These 

postsynaptic neurotransmitter receptors transduce the intercellular chemical signal into an 

intracellular chemical signal within the postsynaptic cell (Clements, 1996).   

   Approximately 20% of mouse taste cells form synapses onto nerve processes in 

circumvallate taste buds (J. Kinnamon et al., 1985).  Only Type III cells within rodent 

taste buds have been observed to form synapses with afferent nerve fibers (Yang et al., 

2000a, Yee at al., 2001).  Type II cells are now thought to transmit taste information via 

non-vesicular release (Finger et al., 2005; Huang et al., 2007).  Fewer synapses are 

present in fungiform taste buds.   Fungiform taste buds possess more vesicles than 

synapses when compared with circumvallate or foliate taste buds (J. Kinnamon et al., 

1993).  Taste cell synapses are generally located near the nuclear region of the 

presynaptic taste cell (Type III cell) (J. Kinnamon et al., 1985, 1988; Yang et al., 2000a).  

Type II cells contain the receptors for bitter, sweet, and umami, yet they do not 

form classical synapses onto nerve fibers (Yang et al., 2000a; Clapp et al. 2004, 2006; 

Finger et al., 2005).  Taste transduction pathways involving Type II cells may use 

nonsynaptic pathways between taste cells, as well as from taste cells onto nerve fibers 

(Huang et al., 2007; Romanov et al., 2007; Yang et al., 2008).   
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Other Potential Functional Contacts 

Atypical Mitochondria 

Large, atypical mitochondria are often present at close appositions between Type 

II cells and nerve processes.  These atypical mitochondria are long structures that can be 

two or three times larger in diameter than conventional mitochondria in taste cells (Royer 

and J. Kinnamon, 1988).   The taste cell membrane lies parallel to the outer membranes 

of atypical mitochondria separated by a gap.  Atypical mitochondria do not possess 

lamellar cristae as do “normal” taste cell mitochondria.  Instead, atypical mitochondria 

possess “twisted-energized” or “swollen twisted-energized” cristae (Green and Baum, 

1970; Korman et al., 1970; Williams et al., 1970), which resemble electron-dense sacs or 

tubules inside the mitochondrion (Royer and J. Kinnamon, 1988).   Such cristae have 

been shown to be present in metabolically active cells such as cancer cells (Watanabe and 

Burnstock, 1976).  Atypical mitochondria may regulate the uptake and release of Ca2+ 

(Hajnóczky et al., 2001; Hawkins et al., 2007), modulating the open/closed state of 

pannexin/connexin gap junction hemichannels, which would gate ATP release from Type 

II cells onto nerve processes or other taste cells (Baryshnikov et al.; 2003, Kataoka et al., 

2004; Yang et al., 2008). 

Subsurface Cisternae 

Subsurface cisternae of smooth endoplasmic reticulum lie next to the cytoplasmic 

leaflet of taste cell membranes at contacts between Type II taste cells and nerve processes 

(Royer and J. Kinnamon, 1988; Yang et al., 2008).  The cytoplasmic leaflet of the taste 

cell membrane is separated from the outer membranes of the cisternae by a small space 
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(Royer and J. Kinnamon, 1988; Yang et al., 2008).  These subsurface cisternae are 

sometimes associated with atypical mitochondria and may also be associated with 

modulating Ca2+ levels (Royer and J. Kinnamon, 1988; Yang et al., 2008).   

Gap Junctions and Hemichannels 

One common form of intercellular communication is the gap junction (Panchin, 

2005; Barbe et al., 2006; Litvin et al., 2006).  Gap junctions are composed of the 

membrane protein, connexin, that forms channels permeable to ions and small molecules 

(Panchin, 2005; Dahl and Locovei, 2006; Litvin et al., 2006).  A proposed model for gap 

junction hemichannels is produced when six connexin subunits oligomerize, forming a 

hexameric torus (Panchin, 2005).  The gap junction that is formed is a pair of 

hemichannels, connexons, one from each adjacent cell (Panchin, 2005; Barbe et al., 2006; 

Litvin et al., 2006).  The intercellular space is approximately 2-4 nm at a gap junction 

(Panchin, 2005; Litvin et al., 2006).  Gap junctions are present in nearly all tissue types 

found in the human body, as well as circulating blood cells (Panchin, 2005; Litvin et al., 

2006).   

Connexins 

Connexins are proteins that form hexamers, often referred to as connexons, gap 

junction hemichannels, or hemichannels (Saez, 2003).  Individual connexins contain four 

membrane-spanning α-helices in addition to intracellular N and C termini (Panchin, 

2005).  Gap junctions consist of two hemichannels.  The hexameric assembly of 

hemichannels occurs in the endoplasmic reticulum, the Golgi, or post Golgi 

compartments (Saez, 2005).  Vesicles transport connexins to a cell’s surface.  Connexins 
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are inserted by means of vesicular fusion.  Once inserted, connexins dock with another 

hemichannel located in a juxtaposed membrane.  This mechanism forms a cell-cell 

connexin hemichannel (Saez, 2005).  Connexin hemichannels, or connexons, have also 

been associated with the release of messengers like ATP and glutamate (Leybaert, 2003).  

Prior to the formation of gap junctions, connexin hemichannels provide an alternative 

pathway for the release of ATP, glutamate, NAD+, and prostaglandin E2 from cells, 

which serve as paracrine messengers (Evans, 2006).  Recent evidence indicates that the 

opening of hemichannels may occur under physiological and pathological circumstances 

in astrocytes and other types of cells (Saez, 2003).  Responses to numerous categories of 

external changes, such as mechanical, shear, ionic, or ischemic stress may cause a 

connexin hemichannel to open (Evans, 2006).  Intracellular signals like membrane 

potential, phosphorylation, and redox conditions also influence connexin hemichannel 

responses (Evans, 2006).   

Pannexins 

Two families are associated with gap junctions: connexins and pannexins.  

Connexins are present only in chordates, while pannexins are found in both chordates and 

invertebrates (Panchin, 2005; Litvin et al, 2006).  Connexins were once considered the 

only class of vertebrate proteins with the capability of forming gap junctions (Litvin et al, 

2006).  Recent discoveries indicate that pannexins may form gap junctions (Dahl and 

Locovei, 2006).  Failed attempts to clone connexins from invertebrates led to alternative 

gap junction protein contenders.  It has been proposed that invertebrate gap junction 

assembly may be related to pannexins, proteins not part of the connexin gene family 
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(Panchin, 2005).  Three pannexins have been described in human and rodent genomes, 

PANX1, PANX2, and PANX3 (Litvin et al, 2006).  PANX1 and PANX3 are closely 

related in mammals, where as PANX2 is not (Baranova et al., 2004).  Pannexins 

expression is found in several brain structures, including both neurons and glial cells 

(Litvin et al, 2006).  Pannexins are highly conserved at the genetic level among worms, 

mollusks, insects, and mammals (Baranova et al., 2004).  The predicted structure for 

pannexins includes four transmembrane regions, one intracellular loop, two extracellular 

loops, and intracellular N and C termini (Baranova et al., 2004).  Pannexins share similar 

membrane topology with connexins, including regularly spaced cysteine residues found 

in the two extracellular loops that connect the transmembrane domains (Barbe et al., 

2006).   

ATP as a Neurotransmitter 

Burnstock (1972) first postulated that ATP acts as a neurotransmitter in taste 

transduction.  Finger et al. (2005) found that taste cells release ATP as a neurotransmitter.  

P2X2/P2X3 double knockout mice almost entirely blocked nerve responses to bitter, 

sweet, and umami stimuli (Finger et al., 2005).  These results suggest that ATP may act 

as a neurotransmitter in taste transduction.  Type II cells possessing receptors for bitter, 

sweet, and umami; do not form classical synapses onto nerve fibers (Yang et al., 2000a; 

Clapp et al. 2004, 2006; Finger et al., 2005), therefore, taste transduction pathways 

utilizing Type II cells are thought to transmit taste information by non-vesicular release 

of ATP (Finger et al., 2005; Huang et al., 2007; Romanov et al, 2007).  ATP released 

through non-vesicular means by Type II cells was observed by Romanov et al. (2007)  
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and Huang et al. (2007).  Results from Romanov et al. (2007) favor voltage-gated 

outward currents causing depolarization-elicited release of ATP through connexin-43 

hemichannels.  Huang et al. (2007) prefer a Ca2+ and voltage dependent release of ATP 

through pannexin-1 hemichannels. 

Hemichannel Mediated Release of ATP 

The identification of afferent neurotransmitters in taste buds remains elusive 

(Finger et al, 2005).   Recent studies have determined that hemichannels may mediate 

afferent neurotransmission in taste cells among mammals (Romanov et al, 2007).  Taste 

nerves express the ionotropic purinergic receptors P2X2 and P2X3, suggesting that ATP 

acts as a neurotransmitter in this system (Finger et al, 2005).  Recent studies have focused 

on which taste cell type releases ATP, and the mechanisms (Huang et al, 2007) for 

transmitter release.  Huang et al. (2007) have shown that gustatory stimuli cause receptor 

cells to release ATP through pannexin-1 hemichannels in the taste buds of mice.  ATP 

may then stimulate serotonin (5-HT) secretion release from Type III taste cells (Huang et 

al, 2007).   Only Type III taste cells (presynaptic cells) release 5-HT, while Type II taste 

cells (receptor cells) release ATP (Romanov et al, 2007, Huang et al, 2007).  Because 

Type II cells lack classical synapses, non-vesicular methods of ATP release have been 

proposed (Romanov et al, 2007, Huang et al, 2007).  Glial cells and erythrocytes release 

ATP through gap junction hemichannels, which led to the hypothesis that hemichannels 

may be involved in the release of ATP from taste receptor cells (Huang et al, 2007).  

Romanov et al. (2007) postulated that hemichannels are present only in Type II taste cells 

(Fig. 4 and Fig. 5).  Their results argue strongly in favor of connexin hemichannels in 
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mediating voltage-gated outward currents and depolarization-elicited secretion of ATP 

(Fig. 3) (Romanov et al, 2007).  Huang et al. (2007) found both connexin-30 and 

connexin-43 were either completely absent from, or expressed at insignificant levels in 

taste buds.  These connexins were expressed in perigemmal cells on the periphery 

adjacent to taste buds (Huang et al, 2007).  Using quantitative RT-PCR, Huang et al, 

found pannexin-1 in abundance in taste buds when compared with surrounding non-taste 

epithelium.  They proposed an expression pattern of pannexin-1 as the major 

hemichannel in taste cells, functioning in tastant-elicited ATP release from receptor cells 

(Huang et al, 2007).    

P2 Receptors 

 P2 receptors are receptors located on a cell’s surface that are activated by ATP, 

ADP, or UTP in order to balance intracellular Ca2+ levels (Burnstock, 2006).  ATP-

responsive taste cells are found in abundance in circumvallate, foliate, and fungiform 

papillae (Baryshnikov et al., 2003).  P2 receptors for extracellular nucleotides are 

separated into two categories: P2X receptors are ionotropic, whereas P2Y receptors are 

G-protein coupled receptors (Burnstock, 2006).  Seven human P2X (P2X1-7) receptor 

subunits have been cloned (Burnstock, 2006), showing 30-50% sequence identity at the 

protein level (Erb et al., 2006).  Signal transduction in P2X receptors is simple in 

comparison with P2Y receptors (Erb et al., 2006).  Currently, eight P2Y (P2Y1, 2, 4, 6, 11, 12, 

13, and 14) receptor subtypes have been cloned (Burnstock, 2006).  Functional evidence 

associates P2Y-like receptors with ATP-dependent Ca2+ mobilization and ionic current 

modulation in mouse taste cells (Kim et al., 2000).  The observations made by Kim et al. 
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also indicate a role for ATP as a neuromodulator that operates in the taste bud 

(Baryshnikov et al., 2003). 

P2X Receptors 

P2X receptors are widely distributed and have been observed in neurons, glial 

cells, bone, muscle, endothelium, epithelium, and hematopoietic cells (Ralevic and 

Burnstock, 1998; Bo et al., 1999; Abbracchio et al., 2003; Burnstock, 2004; Erb et al, 

2006).  Studies have shown that P2X receptors may be associated with fast synaptic 

transmission, neurotransmitter release, and the generation of pain signals in the central 

and peripheral nervous systems (Ralevic and Burnstock, 1998; Bo et al., 1999; 

Abbracchio et al., 2003; Burnstock, 2004; Erb et al, 2006).  The predicted structure for a 

P2X subunit includes a transmembrane protein that has two membrane spanning domains 

(TM1and TM2) (Erb et al., 2006).  TM1 and TM2 are involved in gating the ion channel, 

as well as lining the ion pore, respectively (Erb et al., 2006).  The TM regions are 

detached by a large hydrophilic extracellular loop that contains several conserved amino 

acids, an ATP-binding site, and a hydrophobic H5 region, that may be important for 

regulating metal cations (Erb et al., 2006).  The intracellular N and C termini contain 

consensus phosphorylation sites for protein kinases A and C (Burnstock, 1997).  These 

protein kinases have been shown to be involved in the modulation of P2X2 receptor 

activity (Erb et al., 2006). 

 P2X receptors are ATP-gated ion channels that act as a go-between for sodium 

and calcium influx, as well as potassium efflux, leading to the depolarization of the cell.  

(Dubyak, 1991; Bo et al., 1999; North, 2002; Burnstock, 2006; Volonté et al., 2006).   An 
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extracellular ATP activated channel, composed of P2X receptor subunits, opens allowing 

cations, such as Ca2+, Na+, and K+, to move across the plasma membrane (Erb et al., 

2006).  This results in changes of electrical potential of the cell, which then transmits a 

signal.  The depolarization of the membrane activates voltage-gated calcium channels.  

Activation of P2X receptors causes calcium ions to accumulate in the cytoplasm, and is 

responsible for the activation of numerous signaling molecules (Erb et al., 2006).   

 Finger et al. (2005) found P2X2 and P2X3 receptors on nerve fibers that innervate 

rat taste cells.  The trigeminal branch of the lingual nerve and laryngeal taste buds were 

also found to possess P2X receptors (Rong et al., 2000; Finger et al., 2005).  Experiments 

using P2X2 and P2X3 double knockout mice showed that these knockouts are 

unresponsive to bitter, sweet, and umami.  Such findings suggest that P2X2 and P2X3 

receptors are involved in taste signaling (Finger et al., 2005).   

P2Y Receptors 

  P2Y receptors are G-protein coupled receptors that are activated by purine and/or 

pyrimidine nucleotides (Dubyak, 1991; Ralevic and Burnstock, 1998; Abbracchio et al., 

2003; Baryshnikov et al., 2003; Lazarowski et al., 2003; Kataoka et al., 2004; Burnstock, 

2006; Bystrova et al., 2005; Erb et al., 2006; Volonté et al., 2006).  Currently, eight P2Y 

(P2Y1, 2, 4, 6, 11, 12, 13, and 14) receptor subtypes have been cloned (Erb et al., 2006).  Within 

the P2Y family, P2Y1, P2Y12, and P2Y13 are receptors that are activated by ADP, P2Y6 is 

activated by UDP, and P2Y11 has a preference for ATP as an agonist, while both human 

and rodent P2Y2 and P2Y4 are equally receptive to ATP and UTP (Abbracchio et al., 

2003; Lazarowski et al., 2003).   
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 The predicted structure of a P2Y receptor includes an extracellular N terminus 

that has several potential N-linked glycosylation sites, as well as seven transmembrane 

spanning regions that aid in forming the ligand binding pocket.  There is an intracellular 

C terminus, which contains several phosphorylation sites for protein kinases (Erb et al., 

2006).  

  Signal transduction involving P2Y receptors is more complex compared with 

P2X receptors.  Pathways of communication between P2Y G-protein coupled receptors 

rely on intracellular signaling cascades.  Signaling cascades operate by sequential 

activation or deactivation of heterotrimeric or monomeric G proteins, phospholipases, 

protein kinases, adenylyl and guanylyl cyclases, and phosphodiesterases that control 

cellular processes such as proliferation, differentiation, apoptosis, secretion, metabolism, 

and cell migration (Ralevic and Burnstock, 1998; Baryshnikov et al., 2003;; Kataoka et 

al., 2004; Erb et al., 2006).  Numerous ion channels, cell adhesion molecules, and 

receptor tyrosine kinases are modulated by P2Y receptors (Erb et al., 2006).  By 

interacting with G-proteins, P2Y receptors can modulate voltage-gated ion channels, 

control transmembrane ion transport, and regulate negative feedback of neurotransmitter 

release by inhibiting Ca2+ channels (Kim et al., 2000; Kataoka et al., 2004; Erb et al., 

2006; Volonté et al., 2006).   

 Bystrova et al. (2005) found evidence that mouse taste cells express P2Y 

receptors that are coupled to the production of IP3 and the mobilization of Ca2+.  ATP and 

UTP are believed to mobilize intracellular Ca2+ in the taste buds of the mouse, which 

suggests that receptors P2Y2 and P2Y4 may be involved (Bystrova et al., 2005).  The 
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presence of P2Y2 and P2Y4 has been confirmed in taste receptor cells from circumvallate 

and foliate papillae, using RT-PCR and immunohistochemistry.  These results suggest 

that P2Y2 and P2Y4 receptors play a major role in ATP and UTP signaling within the taste 

cell (Bystrova et al., 2005).  P2Y4 is believed to be expressed by both Type II and Type 

III cells (Baryshnikov et al., 2003; Kataoka et al., 2004; Yang et al., 2008).  

Hypotheses 

Hypothesis 1: 

Finger et al. (2005) found P2X2 and P2X3 receptors on nerve fibers that innervate 

rat taste buds.  The trigeminal branch of the lingual nerve and laryngeal taste buds also 

possess P2X receptors (Rong et al., 2000; Finger et al., 2005).  Experiments using P2X2 

and P2X3 double knockout mice showed that these knockouts were unresponsive to bitter, 

sweet, and umami.  Such findings suggest that P2X2 and P2X3 receptors are essential for 

taste signaling (Finger et al., 2005).  

I hypothesize that P2X2 receptors are located on nerve processes that are closely 

apposed to Type II taste cells and Type III taste cells.  Immunofluorescence microscopy 

and DAB- immunoelectron microscopy will be used to test for the presence and dispersal 

of P2X2 receptors on nerve processes within close proximity to Type II and Type III taste 

cells in the circumvallate papillae of rats. 

Hypothesis 2: 

Bystrova et al. (2005) proposed that mouse taste cells express P2Y receptors that 

are coupled to the production of IP3 and the mobilization of Ca2+.  ATP and UTP also 

mobilize intracellular Ca2+ in the taste tissue of mice, which suggests that receptors P2Y2 
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and P2Y4 may be involved in taste signaling (Bystrova et al., 2005).  The presence of 

P2Y2 and P2Y4 has been confirmed in taste bud cells from circumvallate and foliate 

papillae, using RT-PCR and immunohistochemistry.  These results suggest that P2Y2 and 

P2Y4 receptors play a major role in taste cell responses to ATP (Bystrova et al., 2005).  

P2Y4 is hypothesized to be expressed in both Type II and Type III cells (Baryshnikov et 

al., 2003, Kataoka et al., 2004).   

I propose to determine if P2Y4 receptors are present on both Type II and Type III 

taste cells (Fig. 5).  Immunofluorescence microscopy and DAB- immunoelectron 

microscopy will be used to test for the presence and dispersal of P2Y4 receptors on Type 

II and Type III taste cells in the circumvallate papillae of rats. 
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Figure 1.  Electron micrograph of a mammalian taste bud showing three types of taste 

cells.  Type I (I) cells are electron-dense, elongate cells with invaginated nuclei and 

several slender, long microvilli.  Type II (II) cells are electron-lucent, have circular to 

ovoid shaped nuclei, and several brush-like microvilli of equal length.  Type III (III) cells 

have both electron dense and electron lucent regions.  These cells have invaginated 

nuclei, a single blunt microvillus, as well as dense-cored vesicles and small clear vesicles.  

Type III cells form conventional synapses onto nerve processes.  Basal lamina (BL). 

Taste pore (TP).  Connective tissue (CT).  Nerve processes (arrows).  X 2,250.  (From 

Royer and Kinnamon, 1991). 
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Figure 2.  Innervation of rodent lingual taste buds occurs via the chorda tympani branch 

of the facial (VIIth) and glossopharyngeal (IXth) nerves (Whiteside, 1927).  The chorda 

tympani branch of the facial (VIIth)  nerve innervates rodent fungiform papillae on the 

anterior two- thirds of the tongue and anterior foliate papillae.  The glossopharyngeal 

(IXth) nerve innervates the circumvallate and posterior foliate papillae (From Kinnamon 

and Yang, 2007). 
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Figure 3.  Proposed series of intracellular events resulting from gustatory stimulation of 

Type II cells that result in the release of ATP via hemichannels.  Sapid stimuli bind to a 

taste receptor, activating a G protein, upregulating the enzyme phospholipase C.  

Phospholipase C catalyzes a reaction that produces diacylglycerol (DAG) and inositol 

1,4,5-triphosphate (IP3).   IP3 binds to the IP3R3 receptors present in smooth endoplasmic 

reticulum, releasing Ca2+ from internal stores.  Ca2+  opens TRPM5 channels, allowing an 

influx of Na+, causing depolarization of the cell.  The depolarization results in the 

opening of voltage-gated Na+ channels, allowing for greater influx of Na+, depolarizing 

the cell.  The depolarization opens the hemichannels present on the plasma membrane, 

allowing the efflux of ATP from the cell.  ATP then binds to P2X2 receptors present on 

an adjacent intragemmal nerve process.  (From Romanov et al., 2007). 
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Figure 4.  Diagram showing proposed contacts between pannexin/connexin 

hemichannels on Type II cells and P2X2 receptors found on adjacent nerve processes.  

AM- Atypical mitochondria.  (From J. Kinnamon Grant, 2008).  Ca2+ release from 

atypical mitochondria, present in Type II cells, stimulate the opening of 

pannexin/connexin hemichannels, present on the cell membrane.  Opening of 

pannexin/connexin hemichannels elicits release of intracellular ATP which binds to P2X2 

receptors present on a “postsynaptic” nerve fiber. 
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Figure 5.  Diagram showing schematic model of contacts between pannexin/connexin 

hemichannels on Type II cells and P2Y4 receptors found on nearby Type II or Type III 

cells.  (From J.Kinnamon Grant, 2008).  Intracellular Ca2+ release in Type II cells 

activates the opening of pannexin/connexin hemichannels, releasing ATP that binds to 

P2Y4 receptors present on nearby Type II or Type III taste cells. 
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Materials and Methods  

All experiments were done using adult Sprague-Dawley male rats (250-350g).  

Rats were housed and cared for in facilities supported by the Institutional Animal Care 

and Use Committee of the University of Denver.  Each rat was anesthetized with an 

injection of 240 mg/kg body weight of ketamine-HCl.  P2X2 and P2Y4 colocalizations 

done with serotonin (5-HT) included pre-injection of 80 mg/kg body weight of 5-

hydroxytryptophan, 1 hour prior to perfusion, in order to increase 5-HT-LIR.  The 

primary and secondary antibodies used in these experiments are listed in tables 1 and 2, 

respectively. 

Immunocytochemistry 

Twenty-one rats were perfused for 1 minute through the left ventricle with 0.1% 

sodium nitrite, 0.9% sodium chloride,  and 100 units of sodium heparin in 100 mL  0.1M 

PO4 buffer (pH 7.3).  Animals were fixed for 10 minutes with 4% paraformaldehyde in 

0.1M PO4 buffer (Weedman et al., 1996).  All perfusion solutions were warmed to 42 °C 

before use.  Tongues were removed and fixed for 3 hours at 4°C in fresh 4% 

paraformaldehyde in 0.1M PO4 buffer.  After fixing, tongues were cryoprotected in 30% 

sucrose in 0.1M PO4 buffer overnight at 4 °C. 

Single Labeling 

 Sections were cut 20 µm thick using a cryostat (HM 505E, Micron; Laborgeräte 

GmbH).  Next, sections with circumvallate papillae were washed three times for 10 
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minutes in 0.1M phosphate buffered saline (PBS; pH 7.3) at room temperature. The 

sections were then blocked in a solution of 5% normal goat serum, 1% bovine serum 

albumin, and 0.3% Triton X-100 in 0.1M PBS for 1.5 hours on ice.  Sections were 

incubated in rabbit polyclonal P2X2 primary antibody or rabbit polyclonal P2Y4 primary 

antibody in 0.1M PBS, overnight at 4 °C.  After incubation with the primary antibodies, 

the sections were washed three times for 10 minutes in 0.1M PBS at room temperature, 

and were then placed in Cy5 goat anti-rabbit IgG secondary antibody in 0.1M PBS for 1 

hour at room temperature.  Following incubation with secondary antibodies, sections 

were washed three times for 10 minutes in 0.1M PBS at room temperature, and were 

mounted on slides.  Images were obtained using an Axioplan 2 fluorescence microscope 

under 40X oil objective using a Zeiss apotome for confocal imaging (Carl Zeiss Inc.) 

Double Labeling 

Sections were cut 20 µm thick using a cryostat (HM 505E, Micron; Laborgeräte 

GmbH).  The sections that included circumvallate papillae were washed three times for 

10 minutes in 0.1M PBS at room temperature.  For experiments that involved IP3R3, 

antigen retrieval was performed using 10mM sodium citrate (pH 9.0) at 80 °C for 20 

minutes.  Sections were then blocked in a solution of 5% normal goat serum, 1% bovine 

serum albumin, and 0.3% Triton X-100 in 0.1M PBS for 1.5 hours on ice.  Next, sections 

were incubated in either rabbit polyclonal primary P2X2 antibody or rabbit polyclonal 

primary P2Y4 antibody and mouse monoclonal primary serotonin (5-HT), IP3R3, or 

Syntaxin-1 antibody in 0.1M PBS overnight at 4°C.  The sections were washed three 

times for 10 minutes in 0.1M PBS at room temperature, and were placed in Cy5 goat 
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anti-rabbit IgG secondary antibody and FITC goat anti-mouse IgG secondary antibody in 

0.1M PBS for 1 hour at room temperature.  Sections were then washed three times for 10 

minutes in 0.1M PBS at room temperature, and were mounted on slides.  Images were 

obtained under 40X oil objective with a Zeiss Axioplan 2 fluorescence microscope using 

Axiovision software with an Apotome for confocal imaging (Carl Zeiss Inc.).  To adjust 

the brightness and contrast of the images, Adobe Photoshop CS (San Jose, CA) was used. 

Controls 

Control experiments involved the procedures listed above, but excluded the 

primary antibody in order to check for species related cross-reactivity.  No cross-species 

immunoreactivity was observed.  For a peptide P2X2 control, 3µL of Alomone’s 

polyclonal rabbit primary P2X2 antibody was pre-incubated with 3µL of antigen peptide 

for 1 hour at room temperature, as instructed by the manufacturer.  The same peptide 

control procedure was used for Alomone’s polyclonal rabbit primary P2Y 
4 antibody. 

Diaminobenzidine Electron Microscopy 

 Eight rats were perfused as for immunocytochemistry.  Following perfusion, the 

tongues were fixed in 4% paraformaldehyde in 0.1M PO4 buffer for 3 hours at 4°C.  

Sections (70µm thick) were sliced using a vibratome (Vibratome Series 1000; Ted Pella 

Inc., Redding, CA), and were blocked in a solution of 5% normal goat serum, and 1% 

bovine serum albumin in 0.1M PBS for 1.5 hours on ice.  Sections were incubated with 

either rabbit polyclonal primary P2X2 antibody or rabbit polyclonal primary P2Y4 

antibody in 0.1M PBS (pH7.3) overnight at 4°C.  After washing  three times for 10 

minutes in 0.1M PBS, sections were incubated with secondary affinity-purified 
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biotinylated goat anti-rabbit IgG antibody in 0.1M PBS for 2 hours at room temperature.  

The sections were incubated with avidin-biotin complex (Elite Vectastain; Vector 

Laboratories Inc., Burlingame, CA) in 0.1M PBS for 1 hour at room temperature.  

Sections were then washed three times for 10 minutes in 0.1M PBS, and were treated 

with 0.05M Tris buffer (pH7.3) containing 0.05% diaminobenzidine (DAB) for 10 

minutes.  Stain was visualized by floating sections for 2-4 minutes in fresh DAB mixture, 

which was made active by the addition of hydrogen peroxide to a final concentration of 

0.002%.  Sections were washed three times for 5 minutes in 0.1M PO4 buffer (pH 7.3), 

and postfixed in 1% osmium tetroxide in 0.1M PO4 buffer for 15 minutes.  After being 

washed in 0.05M sodium maleate buffer (pH 5.2) four times for 15 minutes, the sections 

were stained in 1% uranyl acetate in 0.025M sodium maleate buffer (pH 6.0) overnight at 

4°C.  Sections were then dehydrated in an alcohol series; 50% EtOH for 5 minutes, 60% 

EtOH for 5 minutes, 3 times in 75% EtOH for 5 minutes each, 3 times in 85% EtOH for 5 

minutes each, 3 times in 95% EtOH for 5 minutes each, 3 times in 100% EtOH for 5 

minutes each, processed through propylene oxide three times for 5 minutes, and 

embedded with Eponate 12 (Ted Pella Inc.).  Sections were then reembedded using the 

technique of Crowley and Kinnamon (1995).  Sections (90-120 nm thick) were sliced 

with a diamond knife on a Reichert Ultracut E ultramicrotome, and were imaged with a 

Hitachi H-7000 transmission electron microscope at 75kV.  
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Antibodies and Antibody Validation 

P2X2:  Polyclonal antibody P2X2 receptor was raised from rabbit against the peptide (C) 

SQQDSTSTD PKGLA QL, corresponding to residues 457-472 of rat P2X2, located at 

intracellular C-terminus.  Western blot showed specific band of expected size at 75kDa 

(Alamone Labs, manufacturer’s technical information).  

P2Y4:  Polyclonal antibody P2Y4 receptor was raised from rabbit against the peptide (C) 

HEES ISRWA DTHQD, corresponding to residues 337-350 of rat P2Y4, located at 

intracellular C-terminus.  Western blot showed specific band of expected size (Alamone 

Labs, manufacturer’s technical information).  

Syntaxin-1:  Monoclonal anti-syntaxin clone HPC-1 (mouse IgG1 isotype) was raised 

against a synaptosomal plasma membrane fraction from adult rat hippocampus (Inoue et 

al., 1992) and recognizes an epitope of HPC-1 antigen in the cytoplasmic surface of 

plasma membrane.  Western blot showed a specific band of expected size at 35kDa 

(Sigma, manufacturer’s technical information, Barnstable et al., 1988). 

5-HT:  Serotonin (5-HT) antiserum was generated in a rabbit against serotonin coupled 

to bovine serum albumin with paraformaldehyde.  This antibody was quality control 

tested using standard immunohistochemical methods (manufacturer’s technical 

information). 

IP3R3:  The monoclonal antibody IP3R3 is raised against an immunogen corresponding 

to amino acids 20-230 of human IP3R3.  Western blot showed specific band of expected 

size at 300kDa (BD Transduction Lab, manufacturer’s technical information). 
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Table 1. Primary Antibodies 
 
Antibodies Species Dilution Source Code No. 
P2X2 Rabbit 1:100 Alomone Labs APR-003 
P2Y4 Rabbit 1:100 Alomone Labs APR-006 
Serotonin Mouse 1:1 Biomeda 066D 
Syntaxin-1 Mouse 1:100 Sigma S 0664 
IP3R3 Mouse 1:100 BD Trans Lab 610313 
     
 
Table 2. Secondary Antibodies 
Antibodies Dilution Source Code No. 

Cyanine (Cy5) Goat anti-Rabbit IgG 1:100 Jackson 
111-175-
144 

Fluorescein (FITC) Goat anti-Mouse 
IgG 1:100 Jackson 

115-095-
166 

Biotin-conjugated Goat anti-Rabbit 
IgG 1:200 Jackson 

111-065-
144 
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Results  

P2X2 and P2Y4 are cell surface receptors that are activated by ATP, which 

mediate K+, Na+, and Ca2+ levels (Kim et al., 2000; Burnstock, 2006).  In order to 

determine which taste bud cell types, or nerve processes express these receptors, several 

immunocytochemical and DAB-immunoelectron experiments were carried out.  

Immunofluorescence experiments make use of antibodies targeted against specific, 

established cell type markers, such as IP3R3 for Type II cells (Clapp et al., 2001) and 

serotonin (5-HT) for Type III taste cells (Yee et al., 2001), as well as synaptic proteins, 

such as Syntaxin-1 for Type III cells and nerve processes (Yang et al., 2007) involved in 

the mechanisms for synaptic transmission of the taste cell.    

Controls 

Control experiments involve deleting the primary antibody to check for any non-

specific staining that is associated with the secondary antibody.  Cyanine (Cy 5) goat 

anti-rabbit IgG is the secondary antibody used for the control experiments (Table 2).  No 

cross-species immunoreactivity is seen (Fig. 6A).  Peptide controls for the primary 

antibodies, P2X2 and P2Y4, include preabsorption with their analogous peptides (Fig. 6B 

and Fig. 6C, respectively).  The P2X2 antibody has been previously verified (Finger et al., 

2005).  Please see antibody validation section for additional information (Materials and 

Methods). 
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Colocalization of P2X2 and Type II Cell Markers 

If Type II cells have functional contacts with P2X2-LIR nerve processes, then 

Type II cells and nerve processes should be in close apposition with each other.  Double-

label immunocytochemistry tests were performed using antisera directed against P2X2 

and IP3R3, a known Type II cell marker (Clapp et al., 2001) to determine if P2X2-LIR is 

present in nerve fibers that come into close contact with Type II cells.  IP3R3-LIR cells 

have large, circular nuclei, which are non-immunoreactive, indicating that they are 

probably Type II cells.  IP3R3-LIR is found in the cytoplasm of these cells, extending 

from the taste pore to the basal lamina, and is found only in taste cells (Fig. 7A).  In 

contrast, P2X2-LIR is present only in the nerve processes (Fig. 7B) and is in close 

apposition to IP3R3-LIR cells, partially enveloping the cell (Fig. 7C).  These data support 

the hypothesis, but do not prove that P2X2-LIR nerve processes may communicate with 

Type II cells.  

Colocalization of P2X2 and Type III Cell Markers 

If Type III cells form functional contacts with nerve processes, then they should 

have close contacts with P2X2-LIR nerve processes.  Further double-label 

immunocytochemistry experiments were done using P2X2 and Syntaxin-1, a presynaptic 

T-SNARE membrane protein we have used as a cell marker for Type III cells as well as 

nerve processes (Yang et al., 2007).  Syntaxin-1-LIR cells are Type III cells, and are 

slender, fusiform cells with intense cytoplasmic staining.  The nuclei, however, do not 

display immunoreactivity.  Structurally, the nuclei are roughly cylindrical in shape with 
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prominent invaginations (Yang et al., 2007).  Syntaxin-1-LIR is also present in both 

subgemmal and intragemmal nerve processes (Yang et al., 2007).  Syntaxin-1-LIR is 

found throughout the cytoplasm of the cell, spreading from the basal lamina to the taste 

pore, and is present in not only taste cells, but also nerve processes (Fig. 8A).  Cells 

immunoreactive for Syntaxin-1 colocalized with P2X2 -LIR (Fig. 8C), suggesting that 

P2X2-LIR nerve processes are in close contact with a subset of Type III cells.   

Experiments using P2X2 and 5-HT, a known cell marker observed in a small 

subset of Type III cells (Yee et al., 2001) were also performed to determine if P2X2-LIR 

nerve processes have close appositions with Type III cells.  Serotonin (5-HT)-LIR cells 

are narrow and fusiform shaped, typical of Type III cells.  Immunoreactivity in the 

cytoplasm reaches from the basal lamina to the taste pore (Ren et al., 1999; Yee et al., 

2001), and is present only in taste cells.  5-HT–LIR cells resemble Syntaxin-1-LIR cells 

in both shape and structure, and have been shown to colocalize with a subset of Syntaxin-

1-LIR (Type III) cells.  5-HT-LIR is present in a small subset of taste cells (Yee et al., 

2001) (Fig. 9A).  No colocalization occurs between 5-HT-LIR and P2X2-LIR (Fig. 9C), 

and no 5-HT-LIR immunoreactivity is present in the nerve processes.  All nerve 

processes that are in close apposition with Type III cells display P2X2-LIR (Fig. 9B, C).  

These data suggest that a pathway from Type III cells to nerve processes is present. 

Colocalization of P2Y4 and Type II Cell Markers 

Double-label immunocytochemistry experiments were done to determine the 

extent of colocalization between P2Y4-immunoreactive cells and the Type II cell marker 

IP3R3 (Clapp et al., 2001), in order to determine if P2Y4 is present in Type II cells.  Most 
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IP3R3-LIR cells contain large, non-immunoreactive, circular nuclei, typical of Type II 

cells, with IP3R3-LIR present throughout the cytoplasm of the cell.  A large subset of 

IP3R3-LIR taste cells display P2Y4-LIR (Fig. 10C), suggesting that P2Y4 is present in 

most, but not all IP3R3-LIR cells (i.e. Type II cells).  Some P2Y4-LIR cells however do 

not display IP3R3-LIR, suggesting that P2Y4 receptors are also found in taste cell types 

other than Type II cells.   

Colocalization of P2Y4 and Type III Cell Markers 

Double-label immunocytochemistry experiments were carried out to determine if 

P2Y4 is also present in Type III cells.  Two colocalizations were performed.  First, P2Y4 

was colocalized with Syntaxin-1, a presynaptic T-SNARE protein present in Type III 

cells (Fig. 11).  Next, P2Y4 was colocalized with 5-HT (Fig. 12), a cell marker present in 

a subset of Type III cells (Yee et al., 2001).  As described above, we have previously 

demonstrated that Syntaxin-1-LIR cells are Type III cells (Yang et al., 2007).  Syntaxin-

1-LIR is in the cytoplasm, extending from the basal lamina to the taste pore, as well as 

nerve processes (Fig. 11A).  Most Syntaxin-1-LIR cells display P2Y4-LIR (Fig. 11C), 

suggesting that P2Y4-LIR is present in Type III cells.  However, not all P2Y4-LIR cells 

display Syntaxin-1-LIR.   

5-HT-LIR cells are slender, fusiform shaped cells.  Immunoreactivity extends the 

length of the taste bud, existing in the cytoplasm of the cell (Ren et al., 1999; Yee et al., 

2001), and was found only in taste cells.  Staining was seen throughout the nuclei of 5-

HT-LIR cells (Fig. 12A).  No staining was observed in the nerve processes, but Type III 

cells with 5-HT-LIR are known to form synapses with nerve fibers.  Cells with 5-HT-LIR 
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display P2Y4-LIR (Fig. 12C), supporting the notion that P2Y4 is located in a subset of 

Type III cells.  Most 5HT-1-LIR cells indicate P2Y4-LIR, but not all P2Y4-LIR cells 

indicate 5HT-1-LIR (Fig. 12C).   

Ultrastructural Features of P2X2-LIR Nerve Processes and P2Y4-LIR Taste Cells 

 Our immunoelectron microscopy shows that P2X2-LIR is present within most, if 

not all, intragemmal nerve processes in rat circumvallate taste buds (Fig. 13).  No P2X2-

LIR was observed within actual taste cells.  P2X2-LIR nerve processes are in close 

apposition with both Type II and Type III taste cells.  Type II taste cells have numerous 

mitochondria found adjacent to swollen smooth endoplasmic reticulum.  These cells form 

close contacts with P2X2-LIR nerve processes (Fig. 13).  Dense patches of 

heterochromatin are present within the nuclei of Type III cells, and are also located on the 

inner leaflet of the nuclear membrane (Fig. 14).  P2X2-LIR nerve fibers are closely 

apposed to these cells (Figs. 13, 14).  Mitochondria are often found in abundance within 

the P2X2-LIR nerve processes (Figs. 13, 14A, 14B).  Type III taste cells form synapses 

onto P2X2-LIR nerve processes (Fig. 14B).  Synapses from Type III taste cells onto 

P2X2-LIR nerve processes are classical synapses, having parallel, thickened membranes 

of the presynaptic taste cell and postsynaptic nerve process, separated by a cleft (J. 

Kinnamon et al., 1985, 1988).  Numerous clear vesicles are juxtaposed with the 

presynaptic active zone of the synapse (Fig. 14B), some clear vesicles seem to be docked 

at the presynaptic membrane.  Abundant mitochondria are present within the postsynaptic 

P2X2-LIR nerve process as well (Fig. 14B). 
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Both Type II taste cells and Type III taste cells express P2Y4 (Figs. 15A, 15B, 

respectively).  P2Y4-LIR taste cells display immunoreactivity throughout their cytoplasm, 

but have non-immunoreactive nuclei (Figs. 15, 16).  P2Y4-LIR Type II cells possess 

numerous mitochondria throughout their cytoplasm, adjacent to swollen smooth 

endoplasmic reticulum (Fig. 15A).  No synapses were observed between P2Y4-LIR Type 

II cells and adjacent nerve processes (Fig. 15A).  P2Y4-LIR Type III taste cells were 

observed to form synapses with adjacent nerve processes (Fig. 16A, B).  Synapses from 

P2Y4-LIR taste cells onto nerve processes are classical synapses, exhibiting parallel, 

thickened membranes of the presynaptic taste cell and postsynaptic nerve process, 

separated by a cleft (J. Kinnamon et al., 1985, 1988).  Several clear vesicles are 

juxtaposed with the presynaptic active zone of the synapse (Fig. 16B).  Some clear 

vesicles appear to be docked at the presynaptic membrane.  Numerous mitochondria are 

located within the postsynaptic nerve process as well (Fig. 16B).  Rough endoplasmic 

reticulum can be seen adjacent to nerve processes (Fig. 16B).  P2Y4-LIR was not seen 

within nerve processes (Figs. 15, 16A, 16B). 
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Figure 6.  Control images.  A) Primary antibody had been omitted to show no cross-

species immunoreactivity. B) P2X2 preabsorption with its analogous peptide.  C) P2Y4 

preabsorption with its analogous peptide.  The secondary antibody used for all control 

experiments was cyanine (Cy 5) goat anti-rabbit IgG.  No cross-species immunoreactivity 

was observed.  Scale bar = 20µm.   
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Figure 7.  Immunofluorescence images showing colocalization of IP3R3-LIR (green) and 

P2X2-LIR (red) in circumvallate taste buds of the rat.  A) Two taste buds (TB1, TB2) 

contain subsets of IP3R3-LIR taste cells.  The immunoreactive taste cells display intense 

cytoplasmic staining, but the nuclei are free of immunoreactivity.  The cell shape and 

large ovoid nuclei are typical of Type II taste cells.  These results are consistent with the 

known specificity of IP3R3-LIR for Type II cells.  B) P2X2 -LIR nerve processes.  Notice 

P2X2-LIR fibers surround or come in close contact with IP3R3-LIR (Type II cells).  C) 

Merged image of IP3R3-LIR (green) and P2X2-LIR (red).  Arrows indicate nerve 

processes.  TP- Taste pore.  Scale bar = 20µm.   
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Figure 8.  Immunofluorescence images showing colocalization of Syntaxin-1-LIR 

(green) and P2X2-LIR (red) in circumvallate taste buds of the rat.  A) A taste bud 

contains a small subset of Syntaxin-1-LIR taste cells.  Immunoreactive taste cells are 

slender, fusiform cells with intense cytoplasmic staining, and the nuclei do not display 

immunoreactivity.  The cell shape and invaginated nuclei are typical of Type III taste 

cells.  B) P2X2-LIR nerve processes colocalize or come in close contact with Syntaxin-1-

LIR (Type III cells).  C) Merged image of Syntaxin-1-LIR (green) and P2X2-LIR (red).  

These results are consistent with the known specificity of Syntaxin-1-LIR for Type III 

cells and nerve processes.  Scale bar = 20µm.   
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Figure 9.  Immunofluorescence images showing colocalization of 5-HT (green) and 

P2X2-LIR (red) in circumvallate taste buds of the rat.  A) Taste buds containing a small 

subset of 5-HT-LIR taste cells.  Immunoreactive taste cells are slender, fusiform cells 

with intense cytoplasmic staining.  Note the nuclei of these cells display 

immunoreactivity.  The cell shape and invaginated nuclei are characteristic of Type III 

taste cells.  B) P2X2-LIR nerve processes envelop 5-HT-LIR cells (Type III cells).  C) 

Merged image of 5-HT-LIR (green) and P2X2-LIR (red).  These results are consistent 

with the known specificity of 5-HT-LIR for Type III cells.  Arrow indicates P2X2-LIR 

nerve processes in close contact with 5-HT-LIR cell.  TP- Taste pore.  Scale bar = 20µm. 
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Figure 10.  Immunofluorescence images showing colocalization of IP3R3-LIR (green) 

and P2Y4-LIR (red) in circumvallate taste buds of the rat.  A)  Taste buds containing a 

large subset of IP3R3-LIR taste cells.  The immunoreactive taste cells display intense 

cytoplasmic staining, but the nuclei are free of immunoreactivity.  The cell shape and 

large ovoid nuclei are typical of Type II taste cells.  These results are consistent with the 

known specificity of IP3R3-LIR for Type II cells.  B) P2Y4-LIR taste cells.  Intense 

staining throughout the cytoplasm is observed, and nuclei do not display 

immunoreactivity.  C) Merged image of IP3R3-LIR (green) and P2Y4-LIR (red).  Most 

IP3R3-LIR cells indicate P2Y4-LIR, but not all P2Y4-LIR cells indicate IP3R3-LIR.  

Arrows indicate colocalization of P2Y4-LIR and IP3R3-LIR.  Arrowheads indicate P2Y4-

LIR cells only.  TP- Taste pore.  Scale bar = 20µm 
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Figure 11.  Immunofluorescence images showing colocalization of Syntaxin-1-LIR 

(green) and P2Y4-LIR (red) in circumvallate taste buds of the rat.  A) A taste bud 

contains a small subset of Syntaxin-1-LIR taste cells.  Immunoreactive taste cells are 

slender, fusiform cells with intense cytoplasmic staining, and the nuclei do not display 

immunoreactivity.  The cell shape and invaginated nuclei are typical of Type III taste 

cells.  Syntaxin-1-LIR is also seen in nerve processes.  B) P2Y4-LIR taste cells.  Intense 

staining throughout the cytoplasm is observed, and nuclei do not display 

immunoreactivity.  C) Merged image of Syntaxin-1-LIR (green) and P2Y4-LIR (red).  

These results are consistent with the known specificity of Syntaxin-1-LIR for Type III 

cells and nerve processes.  Most Syntaxin-1-LIR cells display P2Y4-LIR, but not all 

P2Y4-LIR cells indicate Syntaxin-1-LIR.  P2Y4-LIR is not seen in the nerve processes.  

Arrow indicates colocalization.  Scale bar = 20µm.   
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Figure 12.  Immunofluorescence images showing colocalization of 5-HT (green) and 

P2Y4-LIR (red) in circumvallate taste buds of the rat.  A) A taste bud containing a small 

subset of 5-HT-LIR taste cells.  Immunoreactive taste cells are slender, fusiform cells 

with intense cytoplasmic staining.  Note the nuclei of these cells display 

immunoreactivity.  The cell shape and invaginated nuclei are characteristic of Type III 

taste cells.  B) P2Y4-LIR taste cells.  Intense staining throughout the cytoplasm is 

observed, and nuclei do not display immunoreactivity. C) Merged image of 5-HT-LIR 

(green) and P2Y4-LIR (red).  These results are consistent with the known specificity of 5-

HT-LIR for Type III cells.  Arrow indicates P2Y4-LIR and 5-HT-LIR colocalization.  

Most 5-HT-LIR cells indicate P2Y4-LIR, but not all P2Y4-LIR cells indicate 5-HT-LIR.  

TP- Taste pore.  Scale bar = 20µm. 
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Figure 13.  Low magnification DAB immunoelectron micrograph showing P2X 
2-LIR in 

intragemmal nerve processes (N).  Intense immunoreactivity is seen within the nerve 

process only.  Numerous mitochondria are present within the P2X2-LIR nerve process.  

Rough endoplasmic reticulum is observed to the right of the P2X2-LIR nerve process, and 

swollen smooth endoplasmic reticulum can be seen to the left of the P2X2-LIR nerve 

process.  No immunoreactivity is seen within the taste cell.  Patchy heterochromatin is 

seen throughout the nucleus of the nearby taste cell, which is characteristic of a Type III 

taste cell, as well as on the inner leaflet of the nuclear membrane.  X 22,500.  Scale bar = 

1µm. 
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Figure 14.  A) Low magnification DAB immunoelectron micrograph showing P2X 
2-LIR 

in intragemmal nerve processes (N).  Intense P2X2-LIR immunoreactivity is seen within 

the nerve process only.  Numerous mitochondria are present within the P2X2-LIR nerve 

process.  No immunoreactivity is seen within the Type III taste cell.  X 15,000.  Scale bar 

= 2µm.  B) High magnification DAB immunoelectron micrograph showing Type III taste 

cell forming a synapse (S) onto P2X 
2-LIR intragemmal nerve processes (N).  Criteria for 

identifying a synapse in a rodent taste bud include; 1) a thickening of the presynaptic 

membrane, 2) a 15-20nm cleft between the parallel membranes, and 3) vesicle clusters 

adjacent to the thickened membrane (Royer and J. Kinnamon, 1991; J. Kinnamon and 

Yang, 2007).  Many synaptic vesicles (Sv) come into close contact with the presynaptic 

membrane.  Intense immunoreactivity is seen within the nerve process only.  Numerous 

mitochondria (M) are present within the P2X2-LIR nerve process.  No immunoreactivity 

is seen within the Type III taste cell.  X 37,500.  Scale bar = 1µm (Images taken by Dr. 

Ruibiao Yang). 
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Figure 15.  Low magnification DAB immunoelectron micrographs showing P2Y4-LIR.  

A) P2Y4-LIR in a Type II taste cell.  Note the round, electron lucent nucleus 

characteristic of a Type II cell.  Swollen smooth endoplasmic reticulum can be seen 

adjacent to numerous mitochondria throughout the cytoplasm. TC- Taste cell.  X 12,500.  

Scale bar = 2µm.  B) P2Y4-LIR in a Type III cell.  Heterochromatin patches are observed 

throughout the nucleus of the Type III cell, as well as on the inner leaflet of the nuclear 

membrane.  The adjacent nerve process (N) contains numerous mitochondria.  Rough 

endoplasmic reticulum is found to the upper right of the nerve process.  Keratin fibers are 

observed just below the P2Y4-LIR Type III cell, characteristic of a Type I taste cell.  

Arrow indicates nuclear invagination, typical of a Type III cell.  X 15,000.  Scale bar = 

2µm. 
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Figure 16. A) Low magnification DAB immunoelectron micrograph showing P2Y4-LIR 

in a Type III cell.  Patchy heterochromatin is seen throughout the nucleus, as well as on 

the inner leaflet of the nuclear membrane.  The adjacent taste cell (TC) also has 

heterochromatin patches throughout its nucleus, indicative of a Type III cell.  The 

adjacent nerve process (N) contains numerous mitochondria.  X 12,500.  Scale bar = 2µm. 

B) High magnification DAB immunoelectron micrograph showing P2Y4-LIR in a Type 

III cell.  P2Y4-LIR is present throughout the cytoplasm of the Type III cell.  Patchy 

heterochromatin is found throughout the nucleus of the Type III taste cell, as well as on 

the inner leaflet of the nuclear membrane.  The adjacent nerve process (N) contains 

numerous mitochondria (M), as well as synaptic vesicles (Sv) that come into close 

contact with the presynaptic membrane.  Rough endoplasmic reticulum can be seen to the 

upper right of the nerve process.  Criteria for identifying a synapse in a rodent taste bud 

include; 1) a thickening of the presynaptic membrane, 2) a 15-20nm cleft between the 

parallel membranes, and 3) vesicle clusters adjacent to the thickened membrane (Royer 

and J. Kinnamon, 1991; J. Kinnamon and Yang, 2007).  S- Synapse. X 42,500.  Scale bar 

= 0.5µm. 
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Discussion 

Summary of Results 

 P2X2 receptors are present on afferent nerve processes that are in close contact 

with both Type II and Type III taste cells in circumvallate papillae of the rat (Figs. 7, 8, 9, 

13, and 14).  IP3R3-LIR taste cells (Type II cells) do not display P2X2-LIR (Fig. 7).  

Intragemmal nerve processes that contact Type II cells possess P2X2-LIR (Figs. 7, 13).  

Syntaxin-1-LIR taste cells (Type III cells) lack P2X2 –LIR (Fig. 8).  Syntaxin-1-LIR also 

colocalizes with P2X2-LIR in intragemmal nerve processes (Fig. 8).  DAB-

immunoelectron microscopy shows that P2X2-LIR is not present in Type I, Type II, or 

Type III cells and is present only in nerve processes (Figs. 13, 14).  This is further 

confirmed by our results with a second Type III cell marker, 5-HT.  5-HT-LIR taste cells 

lack P2X2-LIR, but are in close apposition with P2X2-LIR nerve processes (Fig. 9).  In 

sum, these results demonstrate that P2X2 receptors are associated with afferent nerve 

fibers that contact Type I, Type II, and Type III taste cells, but are not associated with 

any taste cells.  Thus, potential pathways exist for the communication of gustatory 

information from taste cells to nerve processes. 

 Type II taste cells with IP3R3-LIR also display P2Y4-LIR (Fig. 10).  5-HT- and 

Syntaxin-1-LIR (Type III cells) also display P2Y4-LIR (Figs. 12, 11, respectively).  These 

results suggest that P2Y4 receptors are located on both Type II and Type III taste cells.  
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This indicates that a pathway exists for the possible communication of taste information 

from Type II cells to Type III taste cells and/or from one Type II cell onto other Type II 

cells.  DAB-immunoelectron microscopy shows that P2Y4-LIR is present within the 

cytoplasm of both Type II and Type III taste cells (Figs. 15A, 15B, respectively).  P2Y4-

LIR was not observed in nerve processes (Figs. 15, 16).  These results suggest that 

gustatory information may be transmitted via the putative neurotransmitter, ATP to: 1) 

adjacent nerve processes (that contain P2X2 receptors), 2) Type II cells, and 3) Type III 

cells, both of which possess P2Y4 receptors.   

P2X2 Receptors 

P2X2 receptors are ATP-gated ion channels that modulate Ca2+ and Na+ influx, 

and K+ efflux, leading to the depolarization of the cell.  Activating P2X2 receptors causes 

an accumulation of calcium ions in the cytoplasm, and is responsible for the activation of 

numerous signaling molecules (Dubyak, 1991; Bo et al., 1999; North, 2002; Burnstock, 

2006; Erb et al., 2006; Volonté et al., 2006).  We found that P2X2-LIR was observed in 

all intragemmal nerve processes.  This observation that P2X2-LIR is present in all 

intragemmal nerve fibers has functional significance because these results suggest that all 

intragemmal nerve processes are stimulated by ATP.  Taken together with the well-

documented observations of conventional synapses from Type III cells onto intragemmal 

nerve processes,  this is strong evidence that intragemmal nerve processes are probably 

activated by more than one type of neurotransmitter. 
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P2X2 and Type II Taste Cells 

 Type II cells comprise approximately 20% of the taste receptor cell population 

(Delay et al., 1986).  Type II cells are thought to function as chemoreceptor cells in the 

taste bud (Farbman, 1965; Murray and Murray, 1971).  The receptors for bitter, sweet, 

and umami are expressed on Type II cells (Clapp et al., 2004, 2006).  Type II cells have 

been shown to possess the molecular machinery used for bitter, sweet, and umami taste 

transduction, but do not form classical synapses with adjacent nerve fibers (Farbman, 

1965; Lindemann, 1996; Royer and Kinnamon, 1994; Yang et al., 2000a).  

Type II cells express the immunocytochemical marker IP3R3 (Figs. 7, 17) (Clapp 

et al., 2001).  Studies have shown that P2X2-LIR nerve processes are often in close 

apposition with taste cells that display IP3R3-LIR (Fig. 7).  Our DAB immunoelectron 

microscopy shows that P2X2-LIR is not present within Type II cells, but is only present 

within nerve processes (Fig. 13).  Physiological studies from other laboratories suggest 

that Type II cells possess pannexin/connexin hemichannels, which are believed to be the 

sites where ATP release occurs (Huang et al., 2007; Romanov et al., 2007).  Our 

immunofluorescence and immunoelectron microscopic observations show that P2X2 

receptors are present on all nerve fibers in contact with Type II cells (Figs. 7, 8, 9, 13, 

14).  Thus, our studies support previous physiological studies suggesting that Type II 

cells may release ATP onto intragemmal nerve processes. 

P2X2 and Type III Taste Cells 

 Approximately 15% of taste cells are Type III cells (Delay et al., 1986).  

Conventional synapses onto nerve processes have been observed to be associated with 
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Type III cells (Yang et al., 2000a; Yee et al., 2001).  Type III cells have also been termed 

the presynaptic cell in taste buds (Roper, 2006, 2007; Tomchik and Roper, 2007).  A 

subset of Type III cells contains the immunocytochemical marker serotonin (5-HT) (Kim 

and Roper, 1995; Yee at al., 2001).  Our laboratory has previously shown that the 

presynaptic T-SNARE membrane protein, Syntaxin-1, is present in Type III cells and 

nerve processes (Yang et al., 2007) (Fig. 17).  Although 5-HT has been proposed to be a 

neuromodulator in taste buds (Roper, 2006; Roper, 2007), 5-HT-LIR is not thought to be 

present in the vesicles at the synapses from Type III cells onto nerve processes.  Thus, the 

nature of the neurotransmitters released at Type III cell – nerve process synapses is 

unknown.  

Our immunocytochemical studies show P2X2-LIR nerves are in intimate contact 

with Type III cells (Figs. 8, 9, 13, 14).  Our DAB-immunoelectron microscopy shows 

that P2X2 is limited to nerve processes and is not present in Type III cells (Figs. 13, 14).   

Significantly, Type III taste cells form conventional synapses with P2X2-LIR nerve 

processes (Fig. 14).  Because all of the nerve processes in taste buds display P2X2-LIR, 

we infer that the nerve processes are stimulated by ATP.  Since Type III taste cells form 

conventional synapses with the same P2X2-LIR nerve processes, we consider this to be 

compelling evidence that there is a convergence of input from taste cells using multiple 

transmitters––ATP from Type II cells and unidentified neurotransmitter(s) released by 

exocytosis from Type III cell synapses.  If this is the case, then there are significant 

ramifications regarding neural coding of gustatory information.  Based on our results, we 

now speculate that labeled line coding for different gustatory stimuli is not likely because 
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of the putative convergence of input onto the P2X2-LIR nerve processes from both Type 

II and Type III cells. 

P2Y4 and Type II Taste Cells 

 Immunocytochemical studies done using P2Y4 and IP3R3 showed partilar 

colocalization (Fig. 10). Not all P2Y4-LIR cells show IP3R3-LIR, suggesting that P2Y4-

LIR is not present only in Type II taste cells.  DAB-immunoelectron microscopy shows 

that P2Y4-LIR is present in Type II cells, indicating that P2Y4 receptors are present in 

Type II taste cells (Fig. 15A).  The presence of these ATP receptors on Type II cells 

suggests that ATP may transmit the taste signal to other Type II or Type III taste cells 

that possess P2Y4 receptors.  ATP may also act in an autocrine manner via P2Y4 

receptors present on a Type II receptor cell. 

P2Y4 and Type III Taste Cells 

 P2Y4-LIR is also present in Type III taste cells (Figs. 11, 12, 15B, 16).  

Colocalizations were seen between P2Y4 and the Type III cell markers 5-HT and 

Syntaxin-1 (Figs. 12, 11, respectively).  Not all P2Y4-LIR cells show 5-HT-LIR or 

Syntaxin-1-LIR, suggesting that P2Y4-LIR may be present in the PGP 9.5 subset of Type 

III cells, as well as in Type II taste cells (Figs. 12, 11).  Our DAB-immunoelectron 

microscopy also indicates that P2Y4-LIR is present in Type III cells (Figs. 15B, 16).  

Therefore, P2Y4 receptors are probably present on Type III taste cells.  It should also be 

noted that P2Y4-LIR Type III taste cells form conventional synapses onto intragemmal 

nerve processes (Fig 16B). 
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Conclusions 

The transduction mechanisms and processing of gustatory information in taste 

cells are similar in many ways with neurons.  One can think of a taste receptor cell as 

being like a neuron that is “postsynaptic” to gustatory stimuli (which can be considered to 

be analogous to neurotransmitters).  Within the circumvallate papillae of rats, only Type 

III taste cells form “classical” synapses onto afferent nerve fibers (Yang et al., 2000a; 

Yee et al., 2001). Type II cells; however, are known to respond to bitter, sweet, and 

umami stimuli (Clapp et al., 2004, 2006).  Thus, Type II cells must communicate with 

nerve processes (and possibly other taste cells) by non-vesicular mechanisms. Bo et al. 

(1999) showed that taste nerves expressed two ionotropic receptor subunits (P2X2 and 

P2X3), suggesting that ATP functions as a neurotransmitter in taste transduction.  Finger 

et al. (2005) found that P2X2/P2X3 double knockout mice were almost completely 

unresponsive to bitter, sweet, and umami stimuli, further supporting the notion that these 

receptors play an important role in the taste transduction of these stimuli.  Finger et al. 

(2005) also showed that ATP is secreted from gustatory epithelium upon taste stimulation 

from bitter, sweet, and umami tastants.  Huang et al. (2007) and Romanov et al. (2007) 

furthered the findings of Finger et al. (2005), showing that Type II taste cells, receptor 

cells, release ATP via hemichannels present on Type II cells.  Huang et al. (2007) also 

showed that ATP acts as a mediator between Type II cells and Type III cells.  The release 

of ATP from receptors cells triggered the release of 5-HT from presynaptic cells (Huang 

et al., 2007). 
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Hemichannel-mediated release of ATP from Type II cells is believed to convey 

taste information to P2X2 receptors found on afferent nerve processes adjacent to the 

receptor cell (Roper, 2007).  Our results support those of Roper (2007) and Finger et al., 

(2005) in that our DAB immunoelectron microscopy shows that P2X2-LIR nerve 

processes are closely apposed to Type II cells.  These results provide support for the 

hypothesis that there is a pathway for ATP release via Type II cells onto P2X2-LIR nerve 

processes (Roper, 2007).  This pathway provides Type II cells with a non-synaptic means 

of carrying a taste signal from bitter, sweet, or umami stimuli directly to nerve processes.  

It is not known, however, whether bitter, sweet and umami signaling Type II cells 

provide input to separate nerve processes (labeled-line) or have convergent input onto a 

single nerve process, which would require across-fiber coding. 

Taste cells responsive to ATP are present in circumvallate, foliate, and fungiform 

papillae (Baryshnikov et al., 2003).  P2Y-like receptors were found to be present in 

mouse taste receptor cells (Kim et al., 2000; Baryshnikov et al., 2003).  ATP activates 

P2Y4 cell surface receptors to gate intracellular Ca2+ levels (Baryshnikov et al., 2003; 

Burnstock, 2006).  Based on our immunocytochemical experiments, we have provided 

compelling evidence that P2Y4 receptors are present on both Type II and Type III cells.  

Thus, one can speculate that complex cell-to-cell communications occur between Type II 

and Type III cells within the taste bud.  Physiological and molecular biological 

experiments from other laboratories have also suggested that ATP receptors may be 

present on taste cells (Baryshnikov et al., 2003; Kataoka et al., 2004; Y. Huang et al., 

2006; Bystrova et al., 2006; Tomchik and Roper, 2006; Roper, 2007), but did not 
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positively demonstrate which cell types are involved, as our immunoelectron 

microscopical experiments have done.   

It is possible that ATP receptors serve as autoreceptors on Type II cells 

(Baryshnikov et al., 2003).  Because Type II cells lack identifiable synapses it is 

presumed that ATP release occurs via non-vesicular release (Huang et al, 2007; Romanov 

et al., 2007).  Huang et al. (2007) and Romanov et al. (2007) proposed that pannexin 

and/or connexin hemichannels mediate ATP release in taste cells.   Whether pannexin, 

connexin, or a combination of both hemichannels functions in releasing ATP from Type 

II cells remains controversial (Huang et al., 2007; Romanov et al., 2007).  

ATP released via hemichannels from Type II cells may also transmit taste 

information to P2Y4 receptors present on Type III cells, stimulating 5-HT secretion from 

Type III cells (Fig.18) (Tomchik and Roper, 2006; Huang et al, 2007; Roper, 2007).  

Thus, this signaling pathway could indirectly transmit taste information to the central 

nervous system.  P2Y4 receptors present on a Type II cell may be associated with 

signaling from one Type II cell to another Type II cell via paracrine ATP signaling 

pathways (Fig. 19).  Alternatively, release of ATP from a Type II cell might modulate the 

activity of the same cell via autocrine pathways (Baryshnikov et al., 2003).  Kim et al. 

(2000) suggested that P2Y-mediated inhibition of Ca2+ channels in Type II cells may 

provide negative feedback regulation of ATP release from Type II cells.  One Type II cell 

with pannexin/connexin hemichannels may act like a “presynaptic” cell onto an adjacent 

Type II cell with P2Y4 receptors (Fig. 19).   
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For decades it has been assumed that the processing of gustatory information in 

the taste bud was simple–––stimulation of a receptor cell causes release of a transmitter at 

a synapse from the receptor cell onto a nerve process.  The results of the present study, 

together with recent data from other laboratories, indicate that the processing of gustatory 

information in the taste bud is much more complex than previously thought.  Much more 

research needs to be done to better understand the role of ATP as a neurotransmitter in 

the taste bud.  Some possible areas of future research include: 

1. The specific localization of P2X2 and P2X3 receptors on intragemmal nerve 

processes using colloidal gold immunoelectron microscopy.  Are these 

receptors evenly distributed over the nerve cell membrane or are they 

concentrated at the close appositions between the taste cell and the nerve 

process? 

2. The specific localization of P2Y4 receptors on Type II and Type III cells.  Are 

these receptors evenly distributed over the taste cell membrane or are they 

concentrated at the close appositions between adjacent taste cells? 

3. Quantitation of P2Y4 on Type II and Type III cells.  What percentages of taste 

cells contain P2Y4 receptors?  Are these receptors more abundant in a specific 

cell type? 

Gustation is one of the most complex senses, utilizing a diversity of transduction 

mechanisms.  This contrasts with olfaction, vision, and audition–––all of which employ 

single transduction pathways.  On a larger scale, results obtained from these experiments 
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will help to broaden our understanding of the fundamental workings of taste and the 

mechanisms involved.  The results of our studies will facilitate the understanding and 

treatment of gustation-related diseases and other diseases of the senses.  Understanding 

gustatory mechanisms will also provide a better understanding of the mechanisms 

underlying the nervous system as a whole. 
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Figure 17.  Immunocytochemical markers present in Type I, Type II, and Type III taste 

cells.  P2X2 has been added as a marker for intragemmal nerve processes.  P2Y4 has been 

added as a marker in Type II and Type III taste cells (From Clapp et al., 2004; Yang et 

al., 2004; Yee et al., 2001). 
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Figure 18. Type II cell-Type III cell communication.  Type II cells may secrete ATP, 

directly acting on adjacent P2X2-LIR sensory afferent fibers, providing a non-vesicular 

pathway for taste transduction from Type II cells onto nerve processes.  Type II cells may 

also secrete ATP, acting on nearby P2Y4-LIR Type III cells, stimulating the release of 5-

HT from the Type III cell (Adapted from Roper, 2007). 
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Figure 19. Type II cell-Type II cell communication.  Type II cells may secrete ATP, 

directly acting on adjacent P2X2-LIR sensory afferent fibers, providing a non-vesicular 

pathway for taste transduction from Type II cells onto nerve processes. Type II cells may 

also secrete ATP, acting on nearby P2Y4-LIR Type II cells, up-regulating the release of 

ATP from adjacent Type II cells.  Type II cells may also secrete ATP back onto 

themselves, acting as a negative feedback mechanism for the down-regulation of ATP 

secretion (Adapted from Roper, 2007). 
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