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Abstract 
 

Developing a non-invasive direct brain control of artificial limbs is both 

challenging and desirable. Such a sensory and control system, if successful, will have a 

profound impact on the disabled. In this dissertation, we present the design and 

development of a non-invasive, hybrid sensory system, which uses near-infrared 

spectroscopy (NIRS) and electroencephalography (EEG) to measure brain activity with 

simultaneous electromyography (EMG) to provide feedback data in a healthy limb. 

Through the combination of these sensory techniques, we have successfully trained a 

control system capable of mapping brain activity onto muscle actuation. The design of a 

control algorithm capable of automatic reconfiguration to account for changing sensor 

conditions, selection of an appropriate pre-trained network based on input characteristics, 

and adaptation to adjust output based on the user’s activity are investigated. The selection 

of an appropriate algorithm and its initial performance using our sensory system are 

presented and discussed. 

The sensory and control system are designed for application in artificial limb 

control for persons who have undergone amputation of an upper-extremity. Actuation of 

the elbow and wrist are the primary focus of the study, with the intent to expand to 

forearm torsion and hand grasping in subsequent studies. During the course of the 

investigation, the additional function of treating phantom limb pain was incorporated into 

the design, which has also lead to increased sensor resolution requirements.
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CHAPTER ONE:  INTRODUCTION 

Problem Statement 

This research aims to develop a non-invasive brain monitoring system capable of 

performing real-time control of artificial limbs. The primary application of this device 

will be for control of prosthetic limbs used by persons who have undergone partial or 

complete upper-extremity amputation. Any control algorithm used to accomplish these 

goals must be capable of operating in real-time, while minimizing the computational 

demands in order to keep hardware requirements in a cost effective range. 

 

Background and Significance 

As part of the goal of developing engineered systems that would improve the 

quality of life, this research is focused on the feasibility analysis, design, and prototyping 

of a non-invasive sensory system that detects human brain intentions about the movement 

of the musculoskeletal system and utilizes those signals to command and control artificial 

limbs, robotic systems, or powered exoskeletons that assist individuals with disabilities. It 

is estimated that 1.7 million people in the United States have experienced limb loss 

(Ziegler-Graham 2008, 422-429). In the CDC publication “Arthritis – At A Glance 2009” 

the current number of people in the United States with diagnosed arthritis is an estimated 

46 million. This is further projected to reach 67 million by 2030 (Center for Disease 

Control and Prevention, 2009). The need for assistive devices to overcome chronic 
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disabilities is a growing market with substantial limitations in the current technology due 

to the complexity of fine motor control. Advancements in this field of study will have a 

substantial impact on the quality of life for millions of people. Many injuries, whether 

due to traffic accidents or other unfortunate events, cause children to lose hands and legs 

and be disabled for the rest of their lives. With improvements in medical technology, 

fewer major injuries result in fatality and as a result a greater percentage of people are 

living with limb loss. Amputations resulting from military action are of particular interest 

since the disabled persons would otherwise be young, healthy individuals. While these 

statistics are of major concern, there is yet to be a commercially available system that 

would provide natural mobility for these individuals, and current research in this field is 

generally focused on invasive methods of restoring limb function (Defense Sciences 

Office 2010). 

Through the combination of electroencephalography (EEG), near-infrared 

spectroscopy (NIRS), and electromyography (EMG), a non-invasive control system 

utilizing an adaptation algorithm and feedforward/feedback sensor integration for real-

time control of artificial limbs is being investigated. Through the integration of the 

temporal response of EEG with the spatial accuracy of NIRS, an accurate, non-invasive 

control system can be developed. Based on the EMG signals from healthy subjects, we 

are able to train the control system to properly correlate EEG and NIRS input patterns to 

matching muscle activations. A diagram of this combined feedback and adaptation 

control system is depicted in Figure 1.1. NIRS is used as a second feedback loop to 

continuously adapt the algorithm and reduce error. This research will hopefully enable 

people with disabilities to directly control artificial limbs and robotic arms to assist them 
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in their daily activities. It is without a doubt that many other application areas, such as 

forensic lie detection, can benefit from the outcomes of this research through advances in 

portable, inexpensive brain monitoring equipment. 

 
Figure 1.1: Training and adaptive loops for control of artificial limbs 

 
 

Shortcomings of Current Technology 

Most current prostheses are actuated using mechanical sensors and/or biosensors.  

Biosensors detect signals from the user’s nervous or muscular systems, which are relayed 

to a controller located inside the device. Limbic and actuator feedback may be used as 

inputs to the function of the controller. Examples include wires that detect electrical 

activity on the skin, needle electrodes implanted in muscle, or solid-state electrode arrays 

with nerves growing through them. Mechanical sensors process aspects affecting the 

device including limb position, applied force, and load, and then relay this information to 

the biosensor or controller. A prosthesis controller may be connected to the user's 

nervous and muscular systems as well as the prosthesis itself. The controller may send 

intention commands from the user to the actuators of the device, and may interpret 

feedback from the mechanical and biosensors to the user. Myoelectric control of simple 
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joints is currently the most common advanced solution for prosthetic limbs. Many 

amputees still use systems that have no motor control or have simple attachments for 

hand prostheses. 

In 2005, Defense Advanced Research Projects Agency (DARPA) started the 

Revolutionizing Prosthetics Program that had the goal of developing a neural-controlled 

prosthetic limb that will provide full motor and sensory capability to upper extremity 

amputee patients. The goals for the prosthesis are to be controlled, feel, look, and perform 

like the original limb, with a time line for project completion of less than four years. The 

limb would have to be wired directly into the peripheral nervous system in order to have 

enough dexterity to pick up a raisin or to write in longhand. Other system requirements 

include being sensitive enough for the wearer to handle day-to-day tasks in the dark, 

while being strong enough to lift 60 pounds at a time (Defensetech.org 2005). To 

accomplish these ambitious goals, DARPA started running the program in parallel with 

multiple companies across several related fields, all working on different aspects of the 

project at the same time. Two of the groups that received substantial funding and have 

published some of their results are the Applied Physics Laboratory at Johns Hopkins 

University and DEKA Research and Development Corporation. 

The Johns Hopkins University Applied Physics Laboratory (APL) has developed 

a prototype of the first fully integrated prosthetic arm that can be controlled directly from 

the nervous system, provide sensory feedback, and utilize eight degrees of freedom. This 

is a substantial improvement over currently available systems. The APL prototype is 

called Proto 1 and its virtual environment system underwent clinical evaluations 
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conducted by team partners at the Rehabilitation Institute of Chicago (RIC) in January 

and February of 2008 (Kram 2008). 

The advanced degree of natural control and integrated sensory feedback 

demonstrated with Proto 1 are enabled by Targeted Muscle Reinnervation (TMR), a 

technique developed at RIC that uses the transfer of residual nerves from an amputated 

limb to unused muscle regions in areas near the injury. In the case of one human subject, 

Jesse Sullivan, the nerves were transferred to the pectoral area of his chest (Kram 2008). 

During clinical evaluation of the limb at RIC, Jesse Sullivan displayed substantial 

improvements in testing, including the ability to reposition his thumb for different hand 

grasping positions, remove a credit card from a pocket, stack cups while adjusting the 

strength of the grip via sensory feedback, and to walk using the free-swing mode of the 

limb (Kram 2008). 

APL and other team members began working on a second prototype in 2008, as 

part of a continuing Revolutionizing Prosthetics program. The new design will have more 

than 25 degrees of freedom as well as the strength and speed to approach the capabilities 

of a human limb. These new performance specifications will be combined with more than 

80 individual sensory elements for feedback of touch, temperature, and limb position 

(Kram 2008). 

Another development is the functional demonstration of Injectable MyoElectric 

Sensor (IMES) devices, which are very small injectable or surgically implantable devices 

used to measure muscle activity at the source, as opposed to surface electrodes on the 

skin that were used during testing of the first prototype (Kram 2008). 
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DARPA is simultaneously funding the development of a competing arm at 

DEKA. The DEKA arm meets the weight requirement at less than 8 pounds, while 

making use of 12 microprocessors that monitor pressure sensors in the hand and actuate 

rumble motors at the joining with the patient’s body. Their arm does not currently make 

use of a direct nerve interface (Virtualworldlets.net 2008). 

While the research currently being conducted in this field certainly has the 

potential to outperform existing prosthetic limb systems, the focus of the research is on 

highly sophisticated replacement limbs that require invasive means of providing control. 

This project aims to develop a system that incurs less risk for the user and is a more 

affordable solution. 

 

Planned Research 

In order to accomplish the goals of this research, the following tasks will be 

completed (Figure 1.2): Following initial research into available sensor technologies, 

appropriate equipment will be purchased to conduct preliminary studies using healthy 

subject data. A simple control system will be completed in order to validate that the 

imaging techniques used have the potential to meet the requirements of the study. Based 

on the shortcomings of the equipment used in the preliminary studies, a new hybrid 

sensor system will be constructed to test the ability of the combined imaging techniques. 

From data collected using the hybrid system, an investigation will be carried out to select 

an appropriate control algorithm for this application and a suitable control system will be 

completed. Based on the performance of the prototype sensory system, improvements 

will be made for the design of a sensor device sufficient for final application. 



7 

Pending positive results from this study, an additional group of healthy subject 

testing will be performed to validate the combined imaging and control systems and to 

construct a set of healthy data for use in clinical trials. Once clinical trials have proven 

the effectiveness of the system, commercialization of the artificial limb control system 

will progress. 

 
Figure 1.2: Planned Research Flow Chart 

 
To complete these tasks, EEG, NIRS, and EMG are used for data acquisition. A 

simple control system is completed using a transfer function and a case matching 

algorithm to directly link input frequencies with output strength, machine learning 

techniques including k-nearest neighbor and neural networks are investigated, multiple 

imaging systems are designed and constructed, and a proof of concept artificial limb is 

fabricated. In order to prepare the system for final testing, a control system is prepared 

which uses principle component analysis (PCA) and non-linear neural networks to 

perform input classification in order to sufficiently predict the desired output, a database 

is created to store trained networks, from which a nearest neighbor algorithm may select 



8 

an appropriate network based on system identification generated through PCA. A final 

headset design has been prepared and is currently under construction. 
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CHAPTER TWO:  LITERATURE REVIEW  

Prior Research in Artificial Limb Control 

While the field of lower extremity prosthesis has seen significant improvement, 

commercially available upper extremity solutions have remained stagnant for decades. 

Current research in this area generally focuses on high degrees of control, requiring 

invasive and expensive methods of generating control signals (Defense Sciences Office 

2010). At the onset of this project we conducted a review of the state of the art in this 

area and have summarized our findings below. 

Castillo et al. studied integration of sensory and motor mapping in a 

comprehensive magnetoencephalography (MEG) protocol. Their research does not 

discuss near-infrared spectroscopy or control methods for an artificial limb (Castillo 

2003). Darlot et al. utilized monitoring of the central nervous system but have not 

expanded their research to artificial limb control (Darlot 2002, 379-394). Deecke et al. 

discuss the mapping of motor cortex functionality through the use of direct current 

electroencephalography (DC-EEG), MEG, single-photon emission computed tomography 

(SPECT), and functional magnetic resonance imaging (fMRI), but did not include 

discussion of the control of an artificial limb (Deecke 1996, 295-311). Donchin et al. 

have focused their effort on the analysis of how the brain controls motor function. The 

brain’s ability to correct for errors in intended trajectory is discussed. Their research 

results will be useful in our proposed study when the user would like to move the limb in 
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a direction with high resistance (Donchin 2003, 9032-9045). Englehart and Hudgins have 

investigated the control of upper extremity prosthesis through the monitoring of 

myoelectric signals (Englehart 2003, 848-54). Eskiizmirliler et al. discuss a motor control 

scheme based on sensory-motor interaction modalities within the central nervous system, 

and control of a single joint limb segment through the use of two pneumatic McKibben 

muscles. This research is based on data collected from nerves and does not include a 

direct brain control (Eskiizmirliler 2001, 865-8). The Gale Group discusses an artificial 

hand that is capable of revolving its arm right and left, bending and stretching its wrist, 

and opening and closing its fingers. Their control scheme is based on the electric voltages 

transmitted by nerves. It uses a neural network to learn correlation between electric 

signals and control of the three ultrasonic motors that it uses to perform the three degrees 

of freedom listed above. This system utilizes the electric signals that are carried by the 

body’s nervous system to control their robotic hand (Gale Group 1995). Guoqiang et al. 

have demonstrated the use of near-infrared spectroscopy in human muscle tissue and rat 

brain for the purpose of measuring metabolic activity (Guoqiang 2003, 164-74). Hoshino 

et al. use near-infrared spectroscopy of the brain to determine changes in blood 

oxygenation and deoxygentation during direct stimulation of the human brain using an 

electrode (Hoshino 2005, 272-275). Muller et al. describe the use of 

magnetoencephalography and functional magnetic resonance imaging. While EEG 

monitors electrical impulses in the brain, fMRI uses blood oxygen level dependent 

(BOLD) contrast to image the brain, which has a clear relationship with the blood 

oxygenation level data collected with near-infrared spectroscopy (Muller 2005, 109-16). 
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While many similar research projects have been conducted, we have not found 

any completed research projects that aim to use the same techniques as our project to 

accomplish our goals. Even if a similar project is underway, we hope to develop a 

sophisticated control algorithm using this combination of brain and limb monitoring 

techniques to create a better non-invasive control method than what is currently available. 

 

Biological Imaging Techniques 

Understanding the function of the human brain is always challenging. The brain is 

the most complex organ in the human body and is the central processing unit for human 

behavior, cognition, learning, memory, emotion, sensory, motor functions, etc.  The basic 

building block for the human brain is the neuron, a specialized cell designed to transmit 

information to other nerve cells, muscle or gland cells (Carey 2008). To understand the 

complex function of the brain many imaging techniques have been developed (Webb 

2003). The following summarizes some of these techniques.  

Electroencephalography (EEG): EEG observes a small amount of electric current 

passing through the neurons during their activity. These tiny currents are detected and 

recorded by placing electrodes on specific regions of the brain. By using protocols based 

on stimulus and response, and by analyzing the recorded data, the functioning of the brain 

can be detected. 

Positron Emission Tomography (PET): PET is one of the most important 

techniques for measuring blood flow or energy consumption in the brain. This method is 

based on the detection of radioactivity which is emitted when the positively charged 
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particles undergo decay in the brain. Three dimensional PET images, which reflect the 

blood flow, metabolic and chemical activities of the brain, are produced by the injection 

of substances containing positron emitting nucleotides. PET has been very useful for 

scientists in understanding effects of drugs on the human brain, and for learning what 

happens during certain brain disorders such as Parkinson’s disease or strokes.  

Magnetoencephalography (MEG): MEG is a recently developed technique that 

reveals the source of weak magnetic fields emitted by neurons. In this technique, an array 

of cylindrical shaped sensors are used for monitoring the magnetic field patterns near the 

brain, which are used to determine positions and strengths of activity in different regions 

of the brain. In contrast with the other imaging techniques, MEG can characterize the 

rapidly changing patterns of the neural activity, with millisecond resolution and can 

provide a quantitative measure of the strength of this activity in individual subjects. 

Moreover, by presenting stimuli at various rates, scientists can determine how long neural 

activation is sustained in the diverse brain areas that respond to such excitations. 

Magnetic Resonance Imaging (MRI): MRI is a high-quality, three-dimensional 

image of organs and structures inside the body without X-rays or other radiation.  MRIs 

are unsurpassed in focusing on anatomical detail and may reveal minute changes that 

occur over time. MRIs indicate when structural abnormalities would first appear in the 

course of a disease, how they effect subsequent development, and precisely how their 

progression correlates with mental and emotional aspects of a disorder. Tissues that 

contain a lot of water and fat produce a bright image in MRI, whereas those tissues that 
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contain little or no water, such as bone, appear black. MRI images can be constructed in 

any plane, and the technique is particularly valuable in studying the brain. 

Magnetic Resonance Spectroscopy (MRS): MRS is a noninvasive technique 

related to MRI. It uses the same equipment but instead of blood flow, it measures the 

concentration of specific chemicals, such as neurotransmitters, in different parts of the 

brain. MRS also holds great promise by measuring the molecular and metabolic changes 

that occur in the brain. This technique has already provided new information about brain 

activities, such as brain aging, Alzheimer’s disease, schizophrenia, autism, and stroke.  

Functional Magnetic Resonance Imaging (fMRI): fMRI is one of the most 

advanced and useful techniques of brain imaging. This modality is based on MRI (Carey 

2008, Webb 2003, Villringer 1997, Heeger 2002), which focuses on the radio signal 

emissions of chemical elements within a magnetic field. The protons of the hydrogen 

atoms, present in water or fat in the tissues are normally aligned randomly in different 

directions. But in the presence of a very strong magnetic field (many times the strength of 

earth’s magnetic field) in an MRI machine, they align themselves in parallel like rows of 

tiny bar magnets. If the hydrogen atoms are knocked out of their alignment by a strong 

pulse of radio wave, they produce a detectable radio wave when they fall back into 

alignment. The emitted radio waves can be detected by the magnetic coils, the output of 

which can be converted into an image by a computer, based on the properties of different 

types of body tissues. fMRI is an extension of MRI, which is used for measuring brain 

activities during rest or activated conditions. This technique utilizes the paramagnetic 

nature of deoxy-hemoglobin, which is the basis of the BOLD signal detected in fMRI. By 
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using fMRI, researches have been able to produce detailed maps of brain areas 

underlying human mental activities in health and disease. This technique has also found 

its application in studies of the functions of the human brain ranging from primary 

sensory responses to the cognitive activities.  

Electromyography (EMG): Most of the motorized prosthetic limbs currently 

being sold commercially are controlled by EMG and are referred to as myoelectric 

prostheses. EMG monitors the electric potential of flexor and extensor muscles in the 

remaining portion of the limb and based on the differential between these, it can be 

determined whether to close or open a prosthetic hand. This system requires the user to 

consciously flex muscles in order to control the artificial hand since the activity of 

remaining muscles would have normally controlled a different movement within the limb 

than the output of the prosthesis. 

Functional Near-Infrared Imaging (fNIR): fNIR technique is based on the 

observation that brain activity induces changes in the optical properties of the brain. The 

NIR imaging is made possible due to the existence of an optical window in the near 

infrared laser wavelength range of 700-1000nm, where there is relatively little absorption 

of light by the biological tissues. Furthermore, oxy-hemoglobin and deoxy-hemoglobin, 

which are important indicators of biological activity in the tissue, are the chief absorbers 

in this region (Heeger 2002). This absorption indicates changes in the biological activity 

of the tissues and the concentration of the chromophores, specifically oxy-hemoglobin 

and deoxy-hemoglobin changes. These changes are in turn reflected in the amplitude or 

phase changes of the transmitted/reflected light.  
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The above mentioned functional imaging techniques have been used extensively 

and each of them have contributed to the understanding of the functions and internal 

mechanisms of the human brain. Each of these methods has unique capabilities, 

advantages and disadvantages and in many instances they are used in combination to 

complement and produce a better result than a single technique could. Based on the 

existing literature, EEG and MEG can monitor neural activity with a very good temporal 

resolution (100Hz to 1 KHz), but they have a poor spatial resolution; PET can measure 

blood flow, volume, and glucose metabolism; and fMRI can measure relative 

hemodynamic, metabolic and neuron signals. Compared to PET and fMRI, fNIR has poor 

spatial resolution and depth penetration but good temporal resolution (Webb 2003, 

Villringer 1997, Heeger 2002). On the other hand near-infrared spectroscopy (NIRS) 

offers biochemical specificity by being able to measure the concentrations of oxy-

hemoglobin (oxy-Hb), and deoxy-hemoglobin (deoxy-Hb), whereas fMRI, PET, EEG, or 

MEG can measure either neuronal activity (EEG, MEG) or the vascular response to it 

(PET, fMRI). Finally the instrumentation for EEG and fNIR are portable and relatively 

inexpensive, compared to the other functional imaging techniques, creating a potential for 

their wide application in the field of human brain studies. 

Recent studies performed utilizing brain monitoring techniques are developing 

brain computer interfaces (BCIs) to control everything from a mouse cursor, to a thought 

based game (Emotiv 2008), to an artificial limb. This area of research is very similar to 

our own and aims to develop direct brain control methods for many applications as well 

as artificial limbs. One of the most common sensing techniques being used is EEG, which 
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is an inexpensive and non-invasive method for continuous brain monitoring. Guger 

Technologies (g.tec) and Hitachi-Medical are two of the leading groups for the 

development of sensors for direct brain monitoring for medical purposes. G.tec uses EEG 

for direct brain monitoring while Hitachi-Medical utilizes near-infrared imaging (Guger 

Technologies 2008, Hitachi-Medical 2008). 

Near-infrared imaging and EEG are both currently being improved upon to 

overcome some limitations such as sensing through hair and requiring reliable contact 

with the scalp to avoid serious errors in sensory feedback. Both technologies show a 

potential for use in artificial limb control as well as direct brain control for a multitude of 

other applications in the very near future. 

 

Anatomy of Brian Command and Control 

Understanding how the brain functions, and particularly how the brain interacts 

with the nervous system in order to control muscles and detect somatosensory 

information, is key in utilizing a brain imaging system for real-time control. The layout of 

the motor cortices and how they behave when active must be established to properly 

interpret data collected, and to correctly position sensing equipment for detection of 

specific activities. 

The human brain is a complex organ that is not fully understood. Research in this 

area often requires risk to the patient, and/or significant costs, and the data collected can 

often vary significantly between subjects. Developing a low cost, low risk device to 

collect large quantities of data on neural motor commands could significantly help 
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advance this field of study. The currently accepted organization of the motor control 

sections of the brain and the properties of hemodynamic response are examined in this 

section. 

 

Motor Cortex Layout and Complexity 

The human brain controls all of the body’s muscles through the nervous system. 

Subconscious control over various portions of the body is accomplished by the lower 

motor neurons in the brainstem, including heart rate, automatic breathing, balance 

control, and reflexive muscle control. More complex voluntary movements, however, are 

controlled by the upper motor neurons located in the motor cortices (Purves 2001). These 

cortices can be further divided into primary motor and premotor cortices. 

The premotor cortex processes sensory data to prepare for motor activation, while 

the motor cortex carries out the actual commands to be sent to muscles. The relatively 

low level of electrical stimulus in the brain, that is needed to evoke a muscle response, 

demonstrates the directness of muscle control performed in the primary motor cortex 

(Purves 2001). Mapping between regions of the brain and corresponding muscle 

activation has been studied in animals as well as humans to better understand a variety of 

neural problems such as seizures and amyotrophic lateral sclerosis (ALS). These studies 

have shown muscle control is distributed laterally across the surface of the primary motor 

cortex with greater area assigned to portions of the body requiring more complex motor 

control such as the hands and face. It is also significant that the brain does not control a 

single muscle with a single region of the brain. A single point of activity in an upper 
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motor neuron will generally fire a combination of lower motor neurons, which results in a 

combination of muscle groups activating to accomplish an intended body motion (Purves 

2001). This is most significant in control of the hands since they have a much higher 

dexterity than larger limbs with lower degrees of freedom. 

The amount of force generated by a muscle is controlled by the frequency with 

which upper motor neurons are fired as well as recruitment of additional motor units. 

This allows approximation of intended muscle contraction based on the degree of activity 

in the brain. Motion in directions other than the basic flexion and extension of limbs will 

activate multiple upper motor neurons with varying degrees of intensity to produce the 

desired net result, with activation intensity changing through the course of motion as 

muscle activity is more and less directly correlated with the neurons involved (Purves 

2001). 

The premotor cortex is further broken down into the lateral and medial premotor 

cortices. The lateral premotor cortex interprets sensory data and pre-processes intended 

muscle actions well before the primary motor cortex sends commands out. This cortex 

does show a considerable amount of direct correlation between activation and muscle 

activity, but it handles a variety of additional variables for things such as conditional 

movement, movement intent, and observation of another being’s movement (Purves 

2001, Saygin 2004). Lesions in this portion of the brain tend to lead to a patient’s 

inability to respond to visual or verbal cues to initiate a motion, even if they are fully 

capable of performing the given motion and understanding the significance of the cue 

(Purves 2001). 
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The medial premotor cortex handles preparation for muscle activities that are in 

response to internal cues. Memorization of planned muscle sequences, as well as more 

spontaneous motions, is handled within this cortex. This region is of particular interest 

for direct brain control of artificial limbs, since self-initiated motor control is often visible 

within this cortex one to two seconds prior to muscle activation. 

 

Hemodynamic Response 

Monitoring the volume and characteristics of blood within the motor cortices is 

the basis for fMRI as well as fNIR. The characteristics of blood flow within the brain, 

and the time for a neural response to be fully achieved, pose significant challenges for 

real-time control using this method. 

After an increase in neural activity in the motor cortex, the local blood flow 

increases more than the metabolic rate of oxygen in the same region. This flow of 

oxygenated blood into the area of activation changes the ratio of oxygenated blood to 

deoxygenated blood, which can be used to indicate an activated neuron (Buxton 2004, 

220-33). 

Some of the significant factors that need to be considered when using a BOLD 

signal include: 

• Blood flow increases much more than the metabolic rate at the point of 
activation. 

• Blood flow and BOLD responses to any magnitude of signal display a one 
to two second delay before significant changes occur. 

• Changes in blood flow and oxygenation typically last four to six seconds 
for an impulse input. 
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• Sustained stimulus typically will result in a level increased signal for 
much of the duration of the sustained muscle activity with possibilities of 
overshoot at the start and end of the signal. 

It is also typical for the BOLD signal to take longer than thirty seconds to fully 

return to prior levels after a large or sustained activity. BOLD signals have also indicated 

an initial dip immediately after activation of a muscle, lasting for the one to two seconds 

prior to the normal increase resulting from the activation (Yacoub 2001). This is 

potentially the result of a metabolic rate increase at the site of activation prior to the 

inflow of oxygenated blood. There are also significant concerns regarding the non-

linearity of BOLD signals in response to varying types of inputs as well as discrepancies 

in methods to remove baseline blood flow variations from basic physiological 

phenomena such as heart rate, level of activity, and movement of the head. The actual 

mechanism that couples neural activity to blood flow and oxygenation is not fully agreed 

upon and is an ongoing area of research (Buxton 2004, 220-33). 

The use of animals as test subjects allows for a more precise and higher resolution 

view into the hemodynamic response of the brain to neural activity. Since the motor 

cortex also processes somatosensory data, stimulating a portion of the body can act as a 

reliable input to the system through biological means without large amounts of patient 

variation. Stimulating the whiskers of rats, while an imaging probe was inserted into the 

area of the brain that corresponded with the input signal, provided researchers with a very 

large sample population in a more invasive manner than would be possible with human 

subjects. Their results show an increase in deoxygenated hemoglobin with moderate 

intensity almost immediately after stimulus, followed by an increase in blood volume and 
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a very large increase in oxygenated hemoglobin beginning one second after stimulus and 

lasting for at least three seconds (Devor 2005). 

The tests performed by Devor et al. also indicate a significantly long response 

time to a ramp input. This is mostly the result of the substantial increase in blood flow 

into an area that is continuously being activated causing a longer settling time (around ten 

seconds). For control purposes it does not present an unusable signal, but will require an 

algorithm that can handle long duration activations in which muscle activation no longer 

corresponds with a variation in blood oxygenation, but instead is determined by the level 

of raised state relative to surrounding inactivated regions. 

Another concern for real-time control using BOLD signals is the behavior 

observed when multiple stimuli occur within a short time period, which is required for a 

replacement limb to feel natural. Results indicate that stimulation in inter-stimulus 

intervals shorter than six seconds result in a non-additive total signal. Subtracting the 

single stimulus results from the total signal of a multiple stimulus test indicate that the 

second stimulus produces an attenuated and delayed signal (Huettel 2000, 547-53). This 

poses a risk for artificial limb performance degradation as degree of complexity and 

repetition of movement increase. 

It is also important to account for potential variation between subjects in brain 

response characteristics. In another study by Huettel et al., the variations that arise from 

the age of the patient were analyzed. Their tests indicated that older patients had a BOLD 

signal response time that was faster than younger patients, but also had a higher degree of 

variance, fewer points of activation, and a substantially lower signal to noise ratio 
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(Huettel 2001, 161-175). This variance typically did not affect the peak signal strength, 

the time of the peak signal, or the time to return to normal levels after activation, but does 

indicate that more significant training may be required for older subjects. 

The above characteristics make artificial limb control using a BOLD signal a 

challenge, as well as a very dynamic indicator of brain activity. To further understand the 

relationship between neural activity, cerebral blood characteristics, and muscle activation, 

all of these aspects must be taken into account to avoid erroneous conclusions. Through 

the use of machine learning and adaptation, developing a control system to handle this 

complex set of inputs may achieve the goals of this research. 

 

Machine Learning Techniques 

A variety of different methods have been developed to use computers to find 

patterns in data for the purpose of classification or regression. Selecting a technique that 

is appropriate for the target data set is the most important step in solving a complicated 

problem using one of these methods. A brief description of available techniques that may 

be suitable for our application is provided in this section. 

Artificial Neural Networks: A family of mathematical models that depend on the 

interconnectivity of neurons within a network. They are loosely based on the structure of 

biological neural networks and aim to produce the same learning by association that is 

present in these systems (Heaton 2008). There are a variety of techniques that have been 

developed to train the network to correlate input and output information, the most basic 

of which is back propagation (Heaton 2008). Artificial neural networks do however 
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require a great deal of computational resources for complex problems and require a 

diverse set of training data in order to function in many real-world applications 

(Pomerleau 1993). 

Support Vector Machines: SVMs build a hyperplane or set of hyperplanes 

between outcomes in a system, defined as the dividing space that is farthest from any 

sample point. By establishing the location of these planes in a high-dimension space, the 

outcome of a new set of inputs can be determined by which side of a plane it is located on 

(Vapnik 1995). Several types of SVMs have been developed to improve the effectiveness 

of this technique, but the main drawback of this technique is still that it is designed to 

solve two-class tasks, which requires multi-class problems to factor the outcomes into 

several recurring two-class problems (Duan 2005). 

Logistic Regression: Using linear or binomial regression, logistic regression 

calculates the probability of an outcome based on the combination of input variables. In 

order to not overestimate odds of an event, this method requires a very large sample set in 

order to reduce this effect to near-true values (Nemes 2009). 

Naive Bayes: Using supervised learning, the naive Bayes classifier determines the 

probability of an output based on the combination of the probability of that output for 

each input independently. By not considering the covariance of input data, the training set 

required to produce classification information is relatively small (Zhang 2004). 

k-Nearest Neighbor: A type of memory-based learning, nearest neighbor 

algorithms simply find the closest matching set of inputs in a database of known input-to-

output recordings. k-Nearest Neighbor expands on this technique to find the k-closest 
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matches and uses a combination of their input-to-output information to make a better 

informed determination of the membership of the new input data. This technique uses 

lazy learning and does not perform any computation until run-time, making it a 

computationally demanding technique for very large sets of known-output data 

(Dasarathy 1994). While weighting the contribution of neighbors, based on the inverse of 

their distance to the new point, can help interpolate the output for cases that do not 

closely resemble member data, it may have difficulty predicting the classification of data 

that is dissimilar to previously seen inputs. 

Decision Trees: There are several different types of decision trees such as bagged 

trees, boosted trees, boosted stumps, and random forests. A brief look into these indicates 

the random forests method is the most likely potential solution from this family. 

Random Forests: Using a combination of many decision trees, this technique 

makes a classification based on the most common output of the collection of trees. The 

decision trees are constructed using random combinations of variables, then trained based 

on a known set of outputs and are not pruned (Ho 1998). Over-fitting is a concern when 

using noisy data sets with random forests (Segal 2004). 

A 2006 paper by Caruana evaluated the effectiveness of various machine learning 

techniques across a variety of binary classification data sets. Their study determined that 

prior to calibration, bagged trees, random forests, and neural networks proved the best 

performance across the problems they were tested upon. After calibration, boosted trees 

produced the best results and SVMs achieved the performance of neural networks and 

nearly performed as well as boosted trees, random forests, and bagged trees (Caruana 
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2006). Since it was not our intention to perform calibration on the data set and our data 

tends to include inconsistencies, neural networks are the solution that appears to be most 

likely to succeed using the data produced by this study. For the purpose of not over-

complicating the problem, linear solutions will be explored first to rule out a simple 

solution. To explore how well over-fitting can solve the brain-to-muscle mapping 

problem, a k-nearest neighbors algorithm will be explored as well.  
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CHAPTER THREE:  DESIGN OF HEADSET 

Requirements 

The sensory system used to monitor brain activity must meet the following 

minimum specifications: 

• The device shall conform to the size and shape of many individuals’ heads 
(sensors must be able to adjust to be normal to the surface and fit head 
widths ranging from five to seven inches wide). 

• The device shall be comfortable enough to wear for extended periods of 
time (at least one hour). 

• The device shall have an array of surface EEG electrodes capable of 
monitoring electrical activity of the brain across the relevant portions of 
the primary motor cortex. 

• The device shall have an array of NIRS light sources and detectors capable 
of monitoring general hemodynamic behavior occurring across the 
relevant portions of the primary motor cortex. 

• The data acquisition system shall be able to operate continuously for at 
least one hour at a time. 

• The data acquisition system shall have a user interface capable of 
performing data acquisition, data analysis, control system training, and 
system identification. 

• The control unit shall perform data analysis and be capable of identifying 
upper-extremity actions being performed as well as the magnitude of that 
activity, based on EEG and NIRS sensor data being collected in real-time. 

• Classification of the output activity shall meet or exceed an accuracy of 
80%. 

• Estimation of the output activity intensity shall be within 20% from 
measured values obtained using EMG. 
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Preliminary Trials Using Commercially Available Equipment 

Two clinical trials were performed to determine the usefulness of NIRS and EEG 

sensory techniques in this application. The first set of trials was performed to determine 

the effectiveness of NIRS for monitoring brain activity across the motor cortex and verify 

those readings against magnetoencephalography data collected simultaneously. The 

second set of trials was performed to collect EEG and EMG data simultaneously to 

experimentally determine the correlation between electrical activity in the brain and 

muscle activation. 

Through a proof of concept experiment, a set of LEDs and photodiodes were 

assembled into a headband and were put on six human subjects with their heads shaved to 

facilitate light transmission and collection (data sheet in Appendix A.1). These subjects 

were asked to perform several simple movements while photodiode sensor data was 

being collected. During each activity, the general tendency was for oxygenated blood 

concentration to decrease briefly, followed by an increase in total blood volume in areas 

of the brain that were activated by the movement. Multiple patients performing the same 

muscle activity produced similar response in blood oxygenation and de-oxygenation 

concentration through the motor cortex. Indication of brain activity using NIRS matched 

with MEG data collected. 

The time between muscle activation and recognizable brain activity using NIRS 

was generally one to two seconds, indicating that the use of NIRS as the primary 

indicator for brain activity may be insufficient for real-time control of an artificial limb. 
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For this reason NIRS has been reallocated as a feedback element in the overall system 

diagram and will be used for system error mitigation, adaptation, and system 

identification in future studies. 

Seventeen volunteers participated in a healthy subject trial to collect EEG and 

EMG data during various elbow and wrist activities (data sheets in Appendix A.2 and 

A.3). EEG sensors were placed according to the international 10-20 system for sensor 

placement, with active sensors located near C3 and C4 positions to emphasize sensitivity 

to upper extremity movement (Immrama Institute 2010). EMG sensors were placed on 

both arms over the major muscle groups associated with elbow and wrist flexion and 

extension. After improvements were made to data collection techniques based on the first 

two sessions, fourteen of the fifteen remaining trials produced results that indicated 

reliable connections were established between the sensors and the scalp. During the 

session that is excluded from the data, the level of background noise present on the signal 

never subsided to useable levels. Subjects performed elbow and wrist flexions and 

extensions at five-second intervals for each arm separately as well as a simultaneous 

activation of both arms. Following each activity, another session of data was collected 

were the subject visualized repeating the same activity while not moving the limb. During 

the visualization sessions, less than half of the subjects displayed a response in the brain 

similar to the activity that they produced during physical movement of the limb and the 

response had much smaller amplitude. 

Through visual inspection during data collection, a significant increase in Alpha 

wavelengths (8-12 Hertz) was observed during elbow flexion, while a significant increase 
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in Delta wavelengths (1-3 Hertz) was observed during wrist flexion. Distinction could 

also be made between a right arm movement and a left arm movement by observing the 

difference between the right and left channels. If a given activity caused an increase in 

the differential between the channels during activation of the right side of the body, it 

would have a corresponding decrease in differential during activation of the left side of 

the body. One concern using this distinction was the lack of a unique characteristic for 

when both limbs are moved simultaneously, which resulted in the direction of the change 

to be small and likely dependant on the quality of the connection to the scalp for the two 

sensors. 

These results indicate that the Fast Fourier Transform (FFT) of data can be used 

as an indicator for muscle activity, with specific interest in frequencies one through 

fifteen Hertz. However a more advanced data analysis will need to be performed on the 

data to accurately discern the activity being performed. This more complex analysis is 

necessary because some subjects have demonstrated being much better indicators for 

muscle activation across all of the activities performed, while others didn’t produce the 

correct markers. For this purpose we have proposed a learning method to build the 

correlation between the multiple inputs and multiple outputs of this system. 

 

Sensor Selection and Use 

To improve upon the sensory systems used during the preliminary trials, a new 

sensor system was designed and fabricated. The analysis of each sensor and the selection 
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of appropriate parts are detailed in this section. Results from using these sensors are 

presented in the subsequent sections on the various sensor systems. 

 

NIRS 

The NIRS device used in the preliminary studies utilizes LEDs that combine 

multiple light emitting elements into a single casing, with six diodes of each wavelength 

(730nm and 850nm). However, in general use the optical casing used to house these 

LEDs (flat glass can) causes too much light to be lost as the result of hair. For this reason 

several attempts were made to use optical fiber to bypass this interference (Aasted 2008). 

Upon determining that light transmission using the original optics would not 

satisfy the requirements of this project, new LEDs were investigated to overcome the 

LED housing issue. The original diodes typically operated with a forward current of 

40mA and had the capacity to operate at up to 110mA. From the specifications sheet for 

these LEDs (Appendix A.4), the optical power when using a forward current of 50mA is 

50mW for 730nm and 60mW for 850nm. Similar LEDs by the same manufacturer only 

have one element for each wavelength in a combined housing, allowing for the use of a 

glass ball lens type case (data sheet available in Appendix A.5). The two types of LEDs 

operate at slightly different wavelengths, so the constants used to calculate blood 

composition have to be adjusted, but the frequencies used in the new LEDs (735nm and 

850nm) are still valid for this application. The new LEDs are rated for the same forward 

current as the originals, but only produce 9mW of optical power at each wavelength 

using 50mA of current. To match the power output of the original LEDs without 
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modifying the current supply, six LEDs must be active in place of one. While the LEDs 

have the capacity to pulse at substantially higher power levels, the bulbs can become 

warm with extended use and the wires used to transmit power to the LEDs would have to 

be enlarged in order to carry the additional current. The circuit design uses parallel 

connections between similar frequency leads, which results in a very high current 

demand when all of the lights are used simultaneously. Fortunately, the device used in the 

preliminary study was intended for a slightly different application and was designed to 

monitor a wider area, so additional light sources and fewer sensors was a practical 

solution (sensor data sheet available in Appendix A.6). 

The first generation combined sensor device was designed to use four, eight, or 

sixteen of the ball-lens LEDs in a circular pattern for each sensor with a source to sensor 

spacing of one inch to provide the depth of penetration necessary to image the surface of 

the brain. This allowed the research team to evaluate the performance of the ball-lens 

type LED and make determinations regarding the interference still present when 

monitoring through hair. The third generation device also uses the ball lens type LEDs 

and groups them into sets of four, so that in addition to running all sixteen LEDs that 

surround a sensor, groups of eight or single sets of four LEDs can be activated and in 

doing so, increase the resolution of the imaging system. The lower resolution, sixteen 

LEDs per sensor option is retained in this design due to the losses observed while testing 

the first generation device. While sufficient light does generally reach the sensors when 

using eight sources, increasing to sixteen can overcome excessive blocking that can occur 

from hair. Decreasing the number of LEDs used in unison allows the system to increase 
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the resolution of the data being collected by isolating the areas between active lights and 

sensors. The resulting sampling frequencies are presented in Table 3.1. 

Table 3.1: Sampling Frequencies for Different Devices and Configurations 
Device Configuration Sampling Frequency (Hz) 

Preliminary Trials Headband 3 
First and Second Generation Headsets 32 
Third Generation Headset, Sets of 16 21.33 
Third Generation Headset, Sets of 8 18.29 
Third Generation Headset, Sets of 4 9.14 

 
 

EEG 

The EEG sensors used in the preliminary studies proved to be useful for 

collecting electrical brain activity during seated, upper-extremity activities. However, the 

system uses a ground point at the centerline of the head, which causes large disturbances 

in the data when the legs are moved. To counteract this problem a new set of references 

were used that do not use a ground point. This new design keeps one reference at a 

constant voltage and adjusts the other reference’s voltage to maintain a steady current. 

The references in this system are positioned on far lateral sides of the motor cortex. 

Additionally, the EEG sensors used in the preliminary studies and the first 

generation hybrid sensor system use cotton wrapped electrodes, which can become 

uncomfortable during extended use. To solve this problem a new type of electrolyte 

holding material was purchased, which has a cylindrical form to provide less pressure in 

the contact with the scalp. The third generation sensor system uses electrical contact pads 

that are more suited for use with the cylindrical form. 

The EEG frequencies of interest in this study are one through fifteen Hertz, with 

potential interest in frequencies up to 100 Hz in future applications. To ensure that a 
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sufficient sampling rate is available, the first and second generation EEG systems operate 

on an interrupt driven sampling frequency of 128 Hz, with a low-pass filter. The 

frequency will be increased to 256 Hz in the third generation headset and while higher 

sampling frequencies are feasible, the computational requirements of the control system 

increase unnecessarily when calculating the FFT of larger data sets and in order to 

evaluate frequencies down to one Hertz, the last second of data must always be used. 

 

EMG 

The EMG sensors used in the preliminary trials proved to be suitable for 

continued use in later phases of this project. However, using the triode sensor pads, they 

are limited to measuring major muscle activities and are not well suited to monitoring 

hand actuation. For this reason a joint angle measurement system should be investigated 

if more complex activities are required in future studies. The EMG sensors have their 

own internal sampling rate and data processing, the output of which is the muscle 

activation intensities, which are sampled at the same frequency as the EEG system, 128 

or 256 Hz, to ensure that an output value is present for every input reading during 

training. 

 

Sensor Data Processing 

Software was written in C++ to facilitate the use of the new hardware systems. 

Other than an included file to perform serial communication via the CSerial class, which 

is LGPL-licensed, every element of the basic data collection and processing was written 
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by the research team for the purpose of making adjustments to the system simple for 

future use of the hardware and software in control systems. The software for this project 

is written to operate in a Microsoft Windows Vista console interface, to enable use of the 

laptop dedicated to this project. 

Every time a function of the software requests data from the headset system, the 

following tasks are performed to prepare the data. Several temporary variables are 

initialized that will be used to analyze the data being received and then a read command 

is used to received data from the serial port, store that data in the read buffer, and record 

how much data was received. The length is then used to repeat an operation that unpacks 

the serial stream into useful data. The data is then stored in a sample buffer and values for 

a "sample-in" pointer and "last sample" are set. 

While the sample-in pointer is greater than the sample-out pointer, the routine to 

get new samples is repeated, which returns the 19 variables that were stored in the sample 

buffer and increments the sample-out pointer. This data is then sorted into EEG, EMG, 

NIRS, and NIRS status values and stored in a global structured variable. The EEG data is 

currently passed without modification into an EEG information variable, but two 

variables, eegData and eegInfo, exist distinctly from each other for the option to use the 

sum and difference of corresponding channels (Equations 3.1 – 3.4) instead of the raw 

channel values. 

100 EDEDEI −=         (3.1) 

101 EDEDEI +=         (3.2) 

322 EDEDEI −=         (3.3) 
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323 EDEDEI +=         (3.4) 

Where nEI  represents the information value to be used and nED  represents the raw data 

from the EEG system. 

NIRS data is sorted into 735nm, 850nm, or off-state and stored in the 

corresponding data arrays. The current blood oxygenation and blood volume is then 

calculated using the modified Beer-Lambert equation (Equations 3.5 – 3.8). When all of 

the data received from the serial communication is processed in this manner, the total 

number of complete sample sets that were handled is returned to the software to track the 

current time index and most recent values. 
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doxyHboxyHb CCoxy ∆−∆=        (3.7) 

doxyHboxyHb CCBV ∆+∆=        (3.8) 

To utilize the Modified Beer-Lambert equations, the equations are solved using 

Equations 3.9 – 3.13. 
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Where jiA ,∆  is the light attenuation, iN  is the raw NIRS sensor data, and iB  is the 

baseline value. The subscript i  indicates the sensor location and j  indicates 735nm or 

850nm wavelength. 
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Where jic ,∆  is the change in chromophore concentration in micro-Moles (µM), mn,ε  is 

the specific absorption, nDPF  is the differential path-length factor, and D  is the sensor 

to source distance in centimeters. 

1,0, iii ccoxy ∆−∆=         (3.12) 

1,0, iii ccBV ∆+∆=         (3.13) 

Which represent the oxygenation and blood volume for each sensor. 

The data analysis software also has a function built in to switch from the normal 

call to get data each time a sample is taken from the headset, to get mirrored data, which 

functions the same as the original function, but switches channel information from the 

right and left sides of the head. This is intended to be used to train the system using a 

healthy side of the body and then control the system using the mirrored brain signals 

during use. This is based on the symmetry displayed in the lateral topography of the 
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motor cortex and was inspired by a possibility to treat phantom limb pain through using 

our brain monitoring system. Mirror therapy is currently used to help alleviate phantom 

limb pain by observing the healthy side of the body in a mirror, while performing 

repeated activities. If our system could be used to elicit healthy brain activity on the side 

of the brain causing the phantom limb pain, it could be much more therapeutic than visual 

feedback that requires actuation of the healthy side. 

 

First Generation Sensor Configuration 

To improve the capabilities of our brain monitoring system, we have designed and 

built a new sensory helmet, which incorporates four active EEG sensors and three NIRS 

sensors into a set of adjustable sensor modules (Figures 3.1 and 3.2). The combination of 

the brain’s electrical activity with the hemo-dynamic response being observed should 

allow for a dynamic control system to be implemented that will account for errors and 

adapt to the user over time. 

 
Figure 3.1 A&B: Top (left) and Bottom (right) of New Brain Monitoring Helmet, Showing the 

Adjustable Sensor Array. 
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Figure 3.2: Sensor Module NIRS and EEG Component Layout. 

 
Our initial tests of the new EEG sensor capabilities can be seen in Figures 3.3-3.6. 

These figures display the difference in signal across each of the two sensor pairs. The 

significant factor in determining the effectiveness of these sensors is the frequency 

composition of the signals and it is clearly visible that the amplitude of the signal is 

sufficient to provide that data. 

 
Figure 3.3: Difference of EEG Channels 1 and 2, Signal Magnitude vs. Sample Index 
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Figure 3.4: Summation of EEG Channels 1 and 2, Signal Magnitude vs. Sample Index 

 

 
Figure 3.5: Difference of EEG Channels 3 and 4, Signal Magnitude vs. Sample Index 
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Figure 3.6: Summation of EEG Channels 3 and 4, Signal Magnitude vs. Sample Index 

 
The EMG sensors being used to train the control system are identical to the ones 

used in the previous stages of this research, but for the purpose of demonstrating the 

capabilities of the current system, the EMG data recorded during the EEG session above 

is provided in Figures 3.7-3.10. These readings correspond with six repetitions each of 

bicep flexions, triceps extensions, wrist flexions, and wrist extensions. Good isolation is 

observed in most activities, however sensor placement and sensitivity can show 

activation when little to no flexion of the joint is present. 
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Figure 3.7: EMG Positioned Over the Bicep, Signal Magnitude vs. Sample Index 

 

 
Figure 3.8: EMG Positioned Under the Triceps, Signal Magnitude vs. Sample Index 
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Figure 3.9: EMG Positioned Under the Forearm, Signal Magnitude vs. Sample Index 

 

 
Figure 3.10: EMG Positioned Over the Forearm, Signal Magnitude vs. Sample Index 

 
The most significant change to our brain monitoring system is the simultaneous 

inclusion of NIRS in our sensor capabilities. Figures 3.11 - 3.13 demonstrate the changes 

in light refraction during the activities displayed above. The data index is different for the 

NIRS because it is sampled at 32 Hz, compared to the sampling rate of 128 Hz used for 

both EEG and EMG data collection. The data represented below is the difference of the 
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intensity of light being refracted at 850nm and 735nm wavelengths, minus the baseline 

value collected for that sensor. These plots do not represent the actual blood volume and 

oxygenation levels. 

 
Figure 3.11: NIRS Channels 1 and 2, 850nm – 735nm, Left Side of Brain, Signal Magnitude vs. 

Sample Index 
 

 
Figure 3.12: NIRS Channels 3 and 4, 850nm – 735nm, Center of Brain, Signal Magnitude vs. Sample 

Index 
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Figure 3.13: NIRS Channels 5 and 6, 850nm – 735nm, Right Side of Brain, Signal Magnitude vs. 

Sample Index 
 

 

Second Generation Sensor Configuration 

While the first generation helmet system met the sensor requirements for simple 

limb actuations, it was determined that additional sensors would be required for a side 

project investigating treating phantom limb pain using this system. In preparation for 

designing a new headset with additional sensors and a more flexible system for 

contouring to an individual's head shape, an intermediate headset was built and used for 

testing the control algorithms included in later chapters (Figures 3.14-3.16). 
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Figure 3.14: Headset Reconfigured to Work with First Generation, Rigid Sensor Boards. 

 
 Based on the results of using the headset with the old system, some of the parts 

were modified and final versions were created for trial or clinical application. 

 
Figure 3.15: Intermediate Headset Finished Product 
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Figure 3.16: Sensor Array in Intermediate Headset 

 
 

Third Generation Sensor Configuration 

Based on the results of the intermediate "second generation" headset, the 

following designs for a third generation headset, with additional sensors and a flexible 

circuit board, have been finalized: 

 
Figure 3.17: First Draft of Sensor Layout for 3rd Generation Headset 
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Figure 3.18: First draft of new headset design 

 

 
Figure 3.19: Final Headband Design 

 

 
Figure 3.20: Final Side Support Design 
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Figure 3.21: Final Mount Design 

 

 
Figure 3.22: Addition of a Swing Arm Design 

 

 
Figure 3.23: Backwards Compatible with First Generation Board Connector Design 
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Figure 3.24: Backwards Compatible with First Generation Board Mount Design 

 

 
Figure 3.25: Final EEG Holder Design for New System 

 

 
Figure 3.26: Final NIRS and Ball Lens Holder for New System 

 

 
Figure 3.27: Final Layout for 3rd Generation Sensor Board (Red: LEDs, Blue: Photodiode, Black: 

EEG) 
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Figure 3.28: Completed Structure for Third Generation Headset with Dummy Circuit Board Insert 
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CHAPTER FOUR:  CONTROL DESIGN 

Preliminary Data Analysis 

In order to make certain that a simple relationship between brain activity and limb 

function does not exist, a series of training sessions were performed under different 

sensor conditions. The combined data was plotted for each input channel, correlating the 

intensity of the FFT response to each separate output activity. Four input EEG channels 

were used and FFT frequencies 1-15 Hz were mapped individually to each of the four 

EMG output channels. Additionally, box plots were prepared, indicating the level of 

variation observed on each input frequency, classified by the output activity. 

Consolidated graphs representing this data are available in Figures 4.1-9. The dip that 

occurs in the FFT data at specific EMG intensities is the result of splitting the data file 

based on output activity for the box plots. 
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Figure 4.1: FFT Indices 1-60 vs. EMG Channel 1 

 

 
Figure 4.2: FFT Indices 1-60 vs. EMG Channel 2 
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Figure 4.3: FFT Indices 1-60 vs. EMG Channel 3 

 

 
Figure 4.4: FFT Indices 1-60 vs. EMG Channel 4 
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Figure 4.5: FFT Indices 1-60, Intensity Between Activities 

 

 
Figure 4.6: FFT Indices 1-60, Intensity During Bicep Flexion 
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Figure 4.7: FFT Indices 1-60, Intensity During Triceps Extension 

 

 
Figure 4.8: FFT Indices 1-60, Intensity During Wrist Flexion 
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Figure 4.9: FFT Indices 1-60, Intensity During Wrist Extension 

 
From the uncondensed 240 input-to-output plots and 60 box plots it can be 

determined that no clear, simple relationship exists between any of the inputs and 

outputs. If any relationship appears in the data, it may be an inverse correlation, but lacks 

a distinct slope. For this reason, investigating a more sophisticated learning algorithm to 

perform linear and non-linear mapping of input to output data is justified. 

 

Transfer Function 

To first determine if a linear regression model was sufficient for mapping the 

inputs and outputs of this system, a transfer function was designed and trained using 

Matlab. The transfer function trains weighting constants that relate each frequency 

component of the system inputs to the intensity of the simultaneous EMG recordings. 

Figure 4.10 shows the system inputs and outputs of this control algorithm. 
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Figure 4.10: Transfer Function System Diagram 

 
The transfer function determines the intended muscle activation based on real-

time data being collected via EEG. The EEG is analyzed to determine the frequency 

composition, rate of change, and running average of the signal and those features are used 

along with the coefficients produced by the trained transfer function to determine the 

output values for EMG channels one through four by multiplying the product of the FFT 

components with the variance and running average contributions. The EMG outputs are 

then combined to produce the desired rotation of their corresponding joints, which is used 

to provide the control signal for the motors. This method produces scaling values for 

motor control that correlate with strength of relevant brain activity. 

The tests using a transfer function to calculate desired muscle activity from EEG 

recordings indicate that this method is suitable for controlling the artificial limb during 

very simple motions. The best results were obtained by training the transfer function 

using a variety of tasks to create the most diverse mapping of brain activity to muscle 

activation and then using the trained constants to calculate motor outputs for the elbow 

and wrist joints during simple tasks. The EEG frequency response to EMG signal 

strength correlations for the control system used in this set of results is presented in 

Figure 4.11 and 4.12. These figures demonstrate the significance of certain frequency 
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ranges on determining which muscle group is currently being actuated. While these 

results have a similar distribution to the EEG results presented from the human subject 

study, the resolution of this analysis is more decisive than the original method. 

 
Figure 4.11: Transfer Function Index Weightings Correlating EEG 1 Frequency Composition to 

Signal Strength at EMG Channels 
 

 
Figure 4.12: Transfer Function Index Weightings Correlating EEG 2 Frequency Composition to 

Signal Strength at EMG Channels 
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The signal magnitude and variance (Figures 4.13 and 4.14) play a smaller role in 

determining which muscle groups are currently being used, but play a larger role in 

determining how strong of an actuation is occurring. These contribute to attenuating the 

effect that larger muscle groups have on EMG signal strength as well as compensating for 

the relative strength of movement a subject uses during transfer function training. In the 

figure below, it is apparent that a stronger correlation between bicep actuation (EMG 1) 

and signal magnitude was observed compared to triceps actuation (EMG 2). 

 
Figure 4.13: Transfer Function Index Weightings Correlating EEG 1 and 2 Signal Magnitude to 

Signal Strength at EMG Channels 
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Figure 4.14: Transfer Function Index Weightings Correlating EEG 1 and 2 Signal Variance to Signal 

Strength at EMG Channels 
 

While sufficient output matching was acquired during very simple movements 

using the transfer function method, there was very poor distinction between output 

activities, resulting in bicep flexion during most wrist movements. To improve the 

performance of the simple control system, the following changes were made to attempt to 

distinguish between activities more consistently. 

The actuators in the test arm being constructed (discussed in chapter 5) are two 

servo-motors that are position controlled with pulse width modulation (data sheet 

available in Appendix A.7). The digital to analog converter that controls this signal works 

on a scale ranging from 0 to 1023, where 512 is the neutral position for both joints, so the 

system output was designed to match these ranges. The output value for each motor is 

calculated using equation 4.1. A simple proportional error controller was used for the test 

arm to limit the rate of actuation. 

)( PDGPP −∗+=         (4.1) 
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Where P is the motor position, G  is a calculated gain based on the sampling rate, and D  

is the desired position for each motor. If P  is outside of the bounds of the minimum and 

maximum set for that joint, P  is set to the corresponding bound. 

The desired position D  is set by equation 4.2 and is the calculated estimate of the 

EMG values that were used to train the system. 

2211 EEEED kk ∗−∗=        (4.2) 

Where 1kE  and 2kE  are selected scalar constants based on EMG signal intensity and 1E  

and 2E  are the calculated EMG values for opposing sets of muscles corresponding with 

the selected joint. This functions the same as the human body, where opposing muscle 

groups produce moments about a joint and the differential of the moments determines the 

force of the output (Winter 2005, 87). The calculated EMG values are determined by 

equation 4.3. 
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WhereF , V , and S  represent the FFT, variance, and summation of the EEG input data. 

The variance is the difference of the maximum and minimum values observed on an input 

channel during the last 128 samples and the summation is the first index of the FFT for 

each input channel. tE , tF , tV , and tS  are threshold values for corresponding terms 

based on maximum values observed during training. kF , kV , and kS  are matrices 

correlating the relationship of each EEG input measure to corresponding EMG output 

values. The subscript n  indicates the EMG channel that the calculation is being 
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performed for and the subscript m  indicates the EEG channel. These matrices are 

normalized prior to use. 

The transfer function is trained by building a correlation between measured inputs 

and known outputs using the following algorithm. Equations 4.4 – 4.6 are used to 

train kF , kV , and kS . 
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Where kT  is a training constant based on the number of data points in the training set, E  

is the measured EMG, and mE  is a matrix of minimum values observed on each EMG 

channel. 

The best results are obtained by training the transfer function using a variety of 

tasks to create the most diverse mapping of brain activity to muscle activation. The 

trained constants are then used to calculate motor outputs for the elbow and wrist joints 

during simple tasks. The system was tested using healthy subject data that had previously 

been collected. Measured EMG activity during brain monitoring sessions was used to 

validate the output of the EEG to EMG transfer function. 

To minimize the effect that changes in sensor connection quality have on the 

transfer function compatibility, the sensor system is recalibrated each time it is used, 
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allowing for the change in signal strength to be the dominating factor and not absolute 

magnitude. This led to the development of an automated system for establishing system 

parameters. 

Two major limitations of the original transfer function training system were the 

requirement of the system to be trained for each new individual and for values to be 

selected for the relative effect that each component of the system should have on the 

output. The combination of two baseline recordings is used to overcome these limitations. 

A resting baseline paired with a maximum activation measurement allows for the 

automated selection of relative weightings as well as the selection of a potential matching 

trained system selected from a database. 

The threshold, minimum, and maximum values that were previously manually set 

are selected by characterizing the signal properties automatically. As a result most of the 

constants that were experimentally determined in the original control system are now 

automatically calculated at each session based on the baselines, using the components of 

the data that were originally used to derive those values. 

The effect that each calculated EMG value has on the net motor output is also 

adjusted during the training session. The training activities are assumed to produce 

maximum flexion of each joint in both directions, therefore the relationship between 

opposing EMG outputs is modified to achieve a maximum flexion based on the values 

acquired during the training activity. The value of each EMG channel is recorded at the 

peak of each activity and stored in the matrix tE . The values for kE  are then calculated 

using equations 4.7 – 4.10 to simultaneously solve for the variable sets. 
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Where tM  contains the maximum EMG values recorded for each channel. 

A second element has also been added to the training algorithms to improve the 

correlation between input signal strength and net output. Equations 4.11 and 4.12 are 

used to adjust the training matrix values based on the observed error between calculated 

EMG output and measured EMG for each channel. This adjustment has led to the 

elimination of using the EEG Summation term in the EMG output calculations since the 

main purpose of that term was to monitor the relative correlation of the intensity of each 

input to output. 

)( nnkknkn EKTFF −∗+=        (4.11) 

)( nnkknkn EKTVV −∗+=        (4.12) 

Where nK  is the known EMG output and the nth set of elements is modified to better 

correspond with the nth output. 

If the user does not have the ability to attach EMG sensors to a limb, the training 

exercise is performed with visual stimulus while the user tries to mimic the 
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corresponding output. The artificial limb performs a pre-established set of motions 

corresponding to the same activities that a healthy subject would have performed during 

the training session. 

NIRS is used during real-time operation to further adjust the output of the system 

to better match the activities and desires of the user. The coefficients of the proportional 

error controller are modified continuously based on the relative brain activity measured 

through NIRS by making adjustments if there is deviation in relative brain activity 

compared to motor output. If the NIRS data matches a sustained muscle activity and the 

recent EEG data isn’t producing the same output, the motor transfer function values are 

adjusted incrementally to adapt the system to better match the desired system output 

within a bound of values allowing up to two orders of magnitude variation. 

Further research has lead to the decision to implement a different technique for 

analyzing the input signals from EEG. Instead of observing each input channel and 

correlating the characteristics to output data, combining paired sets of sensors into groups 

and analyzing the difference between channels as well as their average has shown 

improved results (Collura, 2005). The new control system inputs are obtained with 

equations 4.13 – 4.16. 

( )211 512' FFF −+=         (4.13) 
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Where 'nF  represents the new input used for the control system and nF  represents the 

original FFT input data from each EEG channel. The values 512 and 1/2 are used to re-

center the data on the 0 to 1023 input data range being used. 

 

Case Matching Algorithm 

The case matching method uses a training algorithm to learn the expected 

frequency composition, rate of change, and running average of the two EEG signals for 

each motor activation case using Matlab. The simplest implementation of this method 

uses five cases that correspond to large motions. These cases correspond to elbow 

flexion, elbow extension, wrist flexion, wrist extension, and resting. After training the 

case variables using trial data, the control algorithm compares the current frequency 

composition, rate of change, and running average of the two EEG signals to the case 

variables and determines which case has the least absolute error. If the least absolute 

error is greater than a threshold the decision is “no match.” If one of the cases is a close 

match to current signal parameters, then the desired position of the motors corresponding 

to the case’s training is set to the case’s actuation value (Figure 4.15). By adding many 

cases to this determination, complex motor activations can be achieved. However, as the 

number of cases being compared to the current state of the signal increases, the 

processing power required increases and the use of a general nearest neighbors algorithm 

would be more effective. 
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Figure 4.15: Case Selection System Diagram 

 
 

Control System 

Based on the results of the preliminary studies, it was determined that a control 

system using EEG as the primary input should be sufficient for real-time control of 

artificial limbs. EMG is used to produce known output data for learning as well as 

performance analysis. NIRS is used as a feedback element for real time adaptation in the 

event that EMG is not available. The flow of the inputs and outputs to and from the 

control system is available in Figure 4.16, where the control system block represents any 

of the learning algorithm investigated in this study. 

 
Figure 4.16: General Control System Sensor Flow Diagram 
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CHAPTER FIVE:  LEARNING AND ADAPTATION 

Learning 

Learning is necessary for this application because there is too much variation in 

the biological signals collected from healthy subjects in the preliminary studies. 

Furthermore, there is no clear distinction between input and output relationships to 

establish a generalized system form. For these reasons, a machine learning algorithm is 

most appropriate for developing a control system in this study. A fuzzy-nearest neighbors 

algorithm, a k-nearest neighbors program, and both linear and non-linear neural networks 

will be evaluated. Learning is performed using the FFT of EEG data or the PCA of the 

FFT data as the system inputs and EMG data as the known outputs, with a simple 

difference of magnitude used to determine the joint actuation based on EMG activity. 

 

Fuzzy-Nearest Neighbors 

After investigating the simple control methods, a slightly more complicated linear 

system was created based on the results from the earlier studies. The result is a 

combination of various techniques that achieve certain goals for our objective and aims to 

produce a nearest neighbors algorithm that relies on generalization of member neighbors, 

which should reduce run-time computational demands by performing some learning 

during the training process. The structure of the control process may look similar to a 

neural network (Figure 5.1), but the functionality is closer to a nearest neighbor 
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algorithm. We use a summation of all training data points that are similar enough to the 

current readings to be considered possible matches, producing a high-pass filter effect for 

the contributions of the training set data to the estimated output. The combined output 

estimation is then analyzed and the most likely desired output is selected and scaled for 

output to the motor control. The details of this process are described in the following 

sections. 

 
Figure 5.1: Fuzzy Neighbors Control System Diagram 

 
At the initiation of real-time control, certain variables are prepared, notably the 

current EEG data array and the current motor values, which need to be set back to zero to 

avoid complications with initial analysis. The headset is turned on and based on the 

response from the serial routine, an error message is displayed or data processing begins. 

The number of samples that are sent to the computer from the headset is determined 
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based on the length of the data stream being received and the number of sample sets is 

returned to the main control routine to keep track of the current time index. The 

magnitude of the FFT indices for one through fifteen Hertz are obtained and stored in the 

input layer matrix. 

Based on the comparison of the current magnitude of each index with the 

maximum magnitude for that index during baseline and the first logic determination 

value, the index is converted into a fuzzy logic value and stored in the input layer logic 

matrix. The fuzzy values [0, 0.25, 0.5, 0.75, 1] are assigned on the criteria [>0, >0.1, >1, 

>10, >100] times the product of the maximum magnitude and the first logic 

determination value. At this point the current sensor data preparation has been completed 

and a call to a sub routine to perform the control calculations is made. 

The input layer logic matrix is compared to every training matrix and one minus 

the difference between logic indices is summed and stored in the input layer matrix 

(Equation 5.1). If any input layer matrix exceeds the cut-off for being a possible activity 

match, then the value is manipulated to represent the certainty of the match and stored in 

the input layer matrix and as a one in the input layer logic matrix. If the value does not 

exceed the cut-off, the value in both matrices is set to zero. The certainty of the match is 

determined by Equation 5.2. 

∑ −−= )(1 ijji TLFL         (5.1) 

Where iFL  is the first layer summation value, jL  is the logic value of index j, and ijT  is 

the corresponding training matrix indices. 
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=         (5.2) 

Where maxFL  is the maximum possible value, and 2LD  is the second logic determinate, 

which is used for the cut-off. 

The reason two values are created for each value of the first layer is because at 

this point there are two modes of control that can be used. The first is a match confidence 

ranging from zero to one, while the second is a pure logic simplification. Based on the 

mode being used, the output layer values are either accumulated using the first layer or 

the first layer logic matrices, then multiplied by the pre-trained second layer matrix. 

The output is then passed through a winner takes all routine to determine the most 

significant output estimation. All other values are set to zero. Each channel is then 

multiplied by a gain factor based on the number of active nodes, and if the value does not 

exceed a minimum value, it is dismissed as noise and all output values will be zero. 

The next step is to scale the output value based on the available range of motion 

for that limb segment (Equations 5.3). 

1023

)(
* maxJJ

OO mid
ii

−
=        (5.3) 

Where iO  indicates the output value for the EMG channel, midJ  is the neutral position 

for that joint, and maxJ  is the maximum rotation for that output. The mid and max are 

intentionally arranged to produce a negative value for a positive flexion due to the 

orientation of the motors. 
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Then the error between the current motor position and the output of the control 

algorithm is determined (Equation 5.4) and input to a proportional-integral-derivative 

(PID) controller (Equation 5.5) for all four motors. Motor error is found by the difference 

of the current position and the net effect that the output channels have on that limb 

segment. For example, motor zero represents the position of the elbow, which is a 

function of the difference of the bicep and triceps, which are represented by output 

activities zero and one. 

iiii MOOE −−= + )( 1         (5.4) 

Where Ei represents the motor output error, O indicates the EMG output, and M 

represents the current motor position. 

∑+−=
t

iiidipi EkvkEkM
0

***       (5.5) 

Where iM  represents the new motor position, pk  is the proportional control constant, dk  

is the derivative control constant, iv  is the rate of change for the motor, ik  is the integral 

control constant, and ∑
t

iE
0

 is the error summation on the motor channel. 

For the purpose of diagnostics, the value being sent to each motor, the current 

sampling time, and a measure of the EEG activity are printed to the screen. If adaptation 

is turned on, it is at this time that the sub routine for comparing NIRS information with 

the current system output is performed. 

The training system built into the fuzzy neighbors program has become one of the 

main methods of gathering sample data for this project. When this function is called, the 

user must first select if they will be training with or without EMG, which was added for 
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the purpose of collecting data using visual feedback when an EMG signal can not be 

collected for any reason, primarily in the case of limb loss. The program then records the 

current time and uses it to create a new file, which will point to subsequent files created 

during the training session. Once the training menu has loaded, the options to train bicep 

flexion, triceps extension, wrist flexion, wrist extension, forearm torsion, and hand 

grasping are available as well as returning to the main menu. When one of the training 

tasks has been initiated, the program then calls to a subroutine, which receives an integer 

corresponding to the activity to be performed as well as the mode of operation. When the 

training menu is exited, the file pointing to the sub-training files is closed and some of the 

relevant baseline recording variables are stored to the same file for use when the training 

session is called for later use. 

The task training function also records the current system time and creates the 

task-specific file containing the data points used for training during the session. The 

headset is then activated and data is recorded from EEG, NIRS, and EMG until a 

sufficient number of points have been collected to fully train the fuzzy-neighbors control 

system. As the training is performed, the training progress is printed to screen to let the 

user or overseer know if the correct intensity of activity is being performed. These 

intensity thresholds are set in the .ini file that the program opens at each initiation. If the 

system is operating without EMG, the motors are fed an oscillating activity 

corresponding to the training being performed and the user is required to attempt to move 

their limb in the same pattern as the visual stimulus. This way the motor output values are 

substituted for the EMG data that would normally be used during a training session. At 
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the end of the task training, a report is generated reflecting the current progress of 

training the entire fuzzy-neighbors algorithm. If an activity is repeated it will overwrite 

the data in the variable space for that activity, but two separate output files will be 

recorded. Once the task is complete, the user is returned to the training sub menu. 

Once a training session has been completed, the accuracy of the system can be 

improved by running the function to train from file. This option prompts the user to input 

a training session file to use for optimization as well as one to be used for testing. This 

will then pull all six task training records from the training session file as well as import 

the baseline variables that were in-use at the time of the recording. A record file is also 

generated based on the current time, which will record all of the data produced by the 

optimization process at the time the menu is exited. 

This sub menu has two options which are "Fast Solution" and "Test Solution." 

These are the ways to optimize the algorithms performance and evaluate its effectiveness 

that are currently being used. Fast solution circumvents refining the first determination 

value and simply sets the target to .50, which is a generally favorable value, particularly 

when using fuzzy-logic instead of simple logic, input values. The program then calls the 

function to find the logic determination value that will produce the average of the fuzzy 

input values to be 0.50. This will provide an even spread of fuzzy input values to 

maximize the algorithms ability to determine match quality. 

The next function to be called pulls the data from the task training files and uses it 

to populate the fuzzy neighbors known cases with logic simplification based on the logic 

determination value found in the previous step. Now that known input values are 
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available, the value of the second logic determination cutoff is optimized by recursively 

seeking out the logic determination values that produce the highest accuracy rate when 

testing against the training set. After the process is complete, the runtime is printed to the 

screen along with a report of the determination value selected and its performance. 

During each step of the refinement processes, the accuracy of the system is saved 

to a variable matrix along with the parameters used in that pass. These matrices are 

written to the record file created when entering the training from file sub menu and are 

used to analyze the behavior of the fuzzy neighbors determination values by plotting how 

accuracy trends (Figure 5.2). 

 
Figure 5.2: Plot of Fuzzy Neighbors Self-Test Accuracy vs. Second Determination Value 

 
When the test solution function is called, the same process is used to pull data 

from the task training sessions that are now being used to test the system. The test 

samples are turned into fuzzy values based on the criteria from the training from file 

session and the output of the fuzzy-neighbors control system is compared to the value in 

the test file. The number of hits, misses, and undetermined values is recorded along with 
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the average absolute error for hits and misses, which are printed to screen. This algorithm 

uses a generalized activity power calculation to determine the signal strength, because it 

allows the system to perform forearm torsion and hand grasping determinations, which 

don't have a clear EMG value in this data acquisition system. The activity power is 

simply the summation of the EMG sensor values during a known action. 

 

k-Nearest Neighbor 

To evaluate the effectiveness of an existing, simple machine learning technique as 

the control element for our limb actuation system, a basic k-nearest neighbor program 

was written in C++ to operate on several sample sets of data using EEG and EMG as 

input and outputs for the system (Figure 5.3). k-Nearest Neighbor was chosen for its very 

simple design as a lazy-learning method, to examine how well separated the input data 

was based on output classification. The design of the program is detailed in this section. 

 
Figure 5.3: k-Nearest Neighbor Control Flow Diagram 

 
Upon starting the program, an initialization function runs immediately before the 

menu appears. The sample vector is used to establish a list of indices corresponding to the 

length of the data file being used. Then random indices of the sample vector are selected 

and inserted into a test vector. When an index has been used, the value at that index is set 

out of range and recognized to be excluded from future random pulls from the sample 

vector. Indices that are not selected to be in the test vector are then used for the training 

vector. This is a misnomer since k-nearest neighbor does not actually train on the data 
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set, but these values are used for the ‘known cases’ that the k-nearest neighbor algorithm 

knows both the input and output for. The data file is now opened and the data points 

corresponding to testing and training sets are separated into their variable matrices. 

After the data has been loaded into the variable space, the menu loads and 

prompts the user to exit or start the nearest neighbor program, which simply tests the 

control algorithm, since no training is required. The program runs the evaluation of every 

test data set using the following methods. 

The distance between the test point and every point in the known data set is 

calculated in Cartesian space by summing the square of the difference between all sixty 

input channels (Equation 5.6).  

2)( iin FNFD −Σ=         (5.6) 

Where nD  is the distance to neighbor n , iF  is the sample FFT magnitude on each index 

and iFN  is the corresponding neighbor FFT magnitude. 

Once all of the distances have been accumulated, the k-nearest neighbors are 

determined by seeking out the smallest value in the distance array and then removing that 

value from the list of candidates. Because of this step, there are two distance vectors in 

memory, so one remains untouched. The test point is then classified by combining the 

weighted contribution of the k-nearest neighbors (Equation 5.7). The weightings are 

determined by dividing one by the distance to the neighbor. 

)
1

(
n

i D
C Σ=          (5.7) 
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Where iC  is the classification array used to accumulate the votes of the k-nearest 

neighbors. 

The classification with the highest vote count is then assigned as the class of the 

test point and if the known class of the test point is the same as the k-nearest neighbor 

classification, the accuracy tracking variable is incremented. 

The next step in the program is to attempt to perform regression based on the 

values in the known set. The output values corresponding to the k-nearest neighbors are 

averaged without any weighting (Equation 5.8) and the error between the actual output of 

the test point and the calculated value are compared. 

k

EN
E i

i Σ=          (5.8) 

The square of this error is accumulated across the test set to determine the root 

mean square error (RMSE). Once all of the test points have been evaluated, the program 

prints to the console interface the RMSE for each output channel as well as the accuracy 

of this test set. 

 

Linear Activation Neural Network 

A linear neural network was examined prior to more conventional neural network 

designs, because it would reduce the computational requirements of the system by 

removing the need to run every node through an activation function as well as reducing 

the formatting of the input and output data for training and implementation. Additionally, 

by using a linear network, the output layer values could be used immediately for control, 
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without any linearization of the output values. A diagram of this neural network is 

available in Figure 5.4. 

 
Figure 5.4: Linear Actuation Neural Network Control System Diagram 

 
This program was written in C++ to facilitate use with existing code. The 

program begins by loading the most recent neural network weightings file each time the 

program is initiated and saves the current weights to file each time the program is 

properly exited. As long as the number of hidden nodes has not changed since the last 

training session, the neural network will already be functional at initiation. The user 

console provides a menu with the options to load a weightings file or train from file. 

Loading weightings data allows the user to type in the name of previously recorded 

neural networks and the initial loading operation will take place using the new data. 

Training from file originally prompted the user for train and test file locations, but 

repeated loading became tedious, so the file names are currently written into the code and 

are loaded automatically. The train from file menu provides the options to randomize the 

network weightings, train the network, and test the network. Randomizing the weights 

generates random numbers between -1 and 1 in 0.001 increments. This type of random 
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distribution is referred to as having a “hard” range of values and may not be as optimal as 

a Gaussian distribution or several other techniques that are used for neural network 

initialization, but was sufficient for our testing (de Castro 2001). 

Selecting the network training option runs the learning algorithm for the neural 

network. Data is read from file each training cycle to mimic data acquisition from the 

headset. After variables used to accumulate values have been zeroed, the forward 

propagation process begins using equations 5.9 and 5.10. 

)*( ijkjki whFH Σ=         (5.9) 

Where iH  are the hidden layer nodes, jkF  are the FFT inputs, and ijkwh  are the 

weightings from the input layer to the hidden layer. 

)*( ijii woHO Σ=         (5.10) 

Where iO  are the output layer neurons and ijwo  are the weightings from the hidden layer 

to the output layer. 

The next step is error calculation and back propagation using equations 5.11 – 

5.13 and the total mean absolute error is printed to screen and the value is returned to the 

parent function which will run until the error reaches a tolerance. 

ijjijij HOTLRwowo *)(* −+=       (5.11) 

Where LR  is the learning rate and jT  is the teacher output value. 

∑ −=∆ ijjji woOTH *)(        (5.12) 

Where iH∆  is the back propogated error at the hidden nodes. 

jkiijkijk FHLRwhwh ** ∆+=        (5.13) 
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Testing the solution pulls data from the test file instead of the training file, but 

functionally performs the same forward propagation, partial back propagation, and error 

calculations, but without modifying the weighting values. This allows the user to test the 

neural network against a completely unique, but similar set of data. 

 

Principle Component Analysis 

This program only performs one function, performing a PCA on a dataset. It was 

written in C++ to evaluate the usefulness of PCA on this data type and to verify the 

methods used prior to insertion into a neural network program. At run time the program 

generates a new file name every time the program is run so that a unique output file is 

created. Once the main menu has loaded, the only options are saving and exiting the 

program, which will save any PCA data to file, or to run a principle component analysis. 

When the function to generate PCA values is run, the program loads a file name that is 

hard coded into the program. The option to type in a file name each time is currently 

removed, but can be included later to add functionality. Since training data is being used 

in this application, the same methods of pulling task, FFT, EMG, and NIRS data from 

recorded file are used. Once the data is loaded, the PCA subroutine function begins and 

the actual PCA is performed. 

First the mean value of each input channel is calculated (Equation 5.14), then the 

mean is subtracted so that the input data is mean-centered (Equation 5.15). 

∑=
i

ij
j S

F
M          (5.14) 
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Where jM  is the mean for an input channel, ijF is the FFT input values, and S  is the 

nunber of data sets being used. 

jijij MFC −=          (5.15) 

Where ijC  are the centered values for each data point. 

Once this is complete the covariance matrix can be calculated (Equation 5.16). 

∑ −
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        (5.16) 

Where ijCov  is the covariance between input channels i  and j . 

Next the covariance matrix is imported into an Eigen-type matrix so that the 

included files to perform Eigen analysis can be used (Eigen is LGPL-licensed). Now that 

the data has been prepared, EigenSolver can be used and Eigenvalue and Eigenvector 

matrices are generated. An easy way to extract these values from the Eigen data type was 

not found, so an output file stream was used to write the values to file. Now that the data 

exists in a file, simple knowledge of the formatting allows the data to be pulled back from 

file and stored in more convenient data structures. 

After the Eigenvalues and Eigenvectors have been acquired, the next step is to 

sort the Eigenvalues by magnitude. The Eigenvectors can then be sorted using the 

corresponding sorted Eigenvalues and organized into the Feature Vector (Equation 5.17). 

)( jiSij EVFV =          (5.17) 

Where FV  is the feature vector, EV  is the Eigenvector matrix, and )( jS is the sort array 

from the Eigenvalue sort process. 
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Calculating the principle component values of the data is now only a matter of 

matrix multiplication (Equation 5.18). 

TTT FFVP *=         (5.18) 

Where TP  are the new principle component values, transposed, TFV  is the transpose of 

the feature vector, and TF  are the transpose of the FFT input values. 

 

Sigmoid Activation Neural Network 

Using a sigmoid activation function requires more computation, but adds a non-

linear element to the control process, which can find a solution to non-linear problems. 

Based on the results of our initial analysis of the relationship between the inputs and 

outputs of this system, it could be assumed that a non-linear solution such as this one 

would be required, but more simple solutions needed to be tested as well to avoid over-

complicating the control system. The non-linear neural network is designed to work both 

without (Figure 5.5) and with principle component analysis of the input values (Figure 

5.6). PCA is used here to reduce the dimensionality of the input array as well as rotate the 

data into the coordinate system that produces the greatest variation. 
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Figure 5.5: Sigmoid Activation Neural Network Control System Diagram 

 

 
Figure 5.6: PCA - Sigmoid Activation Neural Network Control System Diagram 

 
This C++ program begins by loading data from a training file, a test file, a feature 

vector file, and a weightings file. This facilitates the continuation of neural network 

mapping that is already in progress. At this point user friendliness was dropped for 

developer convenience, so all file names are hard coded and in order to keep output files 

for records or to import past data sets, the files have to be re-named in their directory. 

When the main menu loads, the following functions are available: Perform PCA 

on sample data, generate random weightings values, train neural network, test neural 
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network, and save neural network. Performing a PCA does not convert the sample data 

into principle components, but generates a new feature vector, which updates the variable 

space and writes a new feature vector file. Generating random weights creates new 

network weightings on the range [-1, 1] with 0.0001 increments. 

Training the neural network is where the main focus of this program begins. An 

output file is generated using the current time, to which various data will be recorded 

during the training cycle. Until the necessary criteria are met, the function to adapt the 

neural network is called and the neural network is trained. Each loop outputs to the screen 

the previous accuracy observed, the RMSE on the output channels, and the current epoch. 

Each epoch the program loops through the sample data, which is now stored in 

memory to improve speed. If the program is in PCA mode, the FFT magnitudes are 

transformed into the PCA space using the feature vector (Equation 5.19). 

TTT FFVP *=         (5.19) 

Where TP  are the new principle component values, transposed, TFV  is the transpose of 

the feature vector, and TF  are the transpose of the FFT input values. 

If the program is not in PCA mode, the FFT values are simply inserted into the 

PCA-values variable space to simplify the number of conditional statements required. 

Forward propagation now begins and in most implementations of this program, the input 

neurons use a sigmoid activation function as well (Equation 5.20). In one of the middle 

implementations, the sigmoid was removed from this step to test the effect of not passing 

the inputs through an activation function. 

iPi
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         (5.20) 
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Next, the hidden layer values are accumulated (Equation 5.21) and then are 

modified by a sigmoid activation function (Equation 5.22). 

)*( ijkjki whPH Σ=         (5.21) 

Where iH  are the hidden layer nodes, jkP  are the principle components or FFT inputs, 

and ijkwh  are the weightings from the input layer to the hidden layer. 

iHi
e
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1
         (5.22) 

Finally, the output values are accumulated (Equation 5.23) and passed through a 

sigmoid activation function (Equation 5.24). 

)*( ijii woHO Σ=         (5.23) 

Where iO  are the output layer neurons and ijwo  are the weightings from the hidden layer 

to the output layer. 

iOi
e

O
−+

=
1

1
         (5.24) 

Here, a winner determination is performed for the sake of evaluating the nueral 

network's performance as a classifier, and if the outputs are within the accepted range of 

values set by a tolerance definition, the accuracy of the output is evaluated. A winner-

takes-all routine, with its own evaluation of error was also tested, but won’t be used until 

later. In the current implementation, the error is summed by the square of the difference 

between the outputs and their learning values (Equation 5.25). 

( )∑ −= 2
ii OTE         (5.25) 
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Where E  is the accumulated squared error on the output channels, iT  is the known 

output value, and iO  is the control system output value. 

Backpropogation now begins with the addition of gradient descent, using the 

derivative of the sigmoid activation functions, as well as delta functions to enable 

learning momentum (Equations 5.26 through 5.30). 

∑ −−=∆ ijjjjji woOTOOH *)(*)1(*      (5.26) 

Where iH∆  is the error at each hidden layer node and ijwo  is the hidden to output 

weightings. 

ijijjjjijij woMHOTOOLRMwowo ∆+−−−+= **)(*)1(***)1(  (5.27) 

ijijjjjij woMHOTOOLRMwo ∆+−−−=∆ **)(*)1(***)1(   (5.28) 

Where M  is the learning momentum factor, LR  is the learning rate, and ijwo∆  is the 

rate of change of the hidden to output weightings. 

ijjiiiijij whMPHHHLRMwhwh ∆+∆−−+= ***)1(***)1(   (5.29) 

ijjiiiij whMPHHHLRMwh ∆+∆−−=∆ ***)1(***)1(    (5.30) 

Where ijwh  is the input to hidden layer weightings and ijwh∆  is the rate of change of the 

input to hidden layer weightings. 

The accuracy is then printed to screen and the function returns the current level of 

error to the parent function, which prints the error to screen and continues looping if the 

conditions to stop have not been met. Testing the neural network runs the same forward 

propogation as the refinement function, but stops at evaluating the accuracy and error of 

the system without modifying the weightings. 
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Adaptation 

This project specifically aims to provide artificial limb control for amputees. As a 

result of this requirement, the control system must have methods in place to improve 

performance when no optimal feedback is available. For this reason the system has been 

designed to adapt the control system based on NIRS data in real-time, to primarily 

mitigate error as well as improve system performance by more personalized brain-to-

muscle mapping. NIRS is used to detect general brain activity and act as a switch to 

enable adaptation, mapping the current EEG inputs onto EMG outputs assumed to be the 

current state of the system based on the control algorithm output and NIRS information. 

 

Fuzzy-Neighbors Adaptation 

The current adaptation routine used for the fuzzy neighbors algorithm is overly 

simplified because it needs to see clinical trials before real progress can be made. If the 

right side sensor determines that a significant amount of activity is occurring on the right 

side of the brain compared to the other two sensor regions, then counter indices are 

incremented or decremented to track how often a FFT index is active during this state, 

separated to correspond with each training set, based on the activity that is determined to 

be the current output of the system (Equations 5.31). If the left side of the brain is active 

during a left side of the body output activity, then the opposite values are incremented 

and decremented (Equations 5.32). 

jijij
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jijij
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       (5.32) 

Where aN  is the active NIRS sensor, uN  is the inactive NIRS sensor, mN  is the midline 

NIRS sensor, ijA  is the adaptation matrix, and jF  is the current FFT logic values. 

If any of the counters exceed a positive or negative threshold, then the training 

matrix corresponding to that counter can be set to zero or one based on the threshold 

reached (Equations 5.33 and 5.34). In this way, as long as the output of the system is 

correct most of the time, the FFT indices that are generally active during that activity will 

impact the training set and slowly improve the consistency of the system. 
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Where jL  indicates the Logic index for a known neighbor. 

 

Neural Network Adaptation 

The neural network training algorithms previously discussed have both used the 

adaptation method of updating neural network weights. This was used for the purpose of 

being able to train the network using a real-time data feed. This also enables the network 

to continuously adapt based on sensor data during implementation. When EMG sensors 

are not being used, the NIRS sensors can be used to confirm or contradict the current 

output of the neural network and generalized outputs (zero or one) can be used to train 

the network in real-time based on the input data occurring at that time. This is particularly 
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useful if the user is purposefully repeating a specific activity and there is more confidence 

that the system is producing the correct output. However testing this technique requires 

extended periods of use and hinges on the size of the network being kept small enough to 

not inhibit real-time adaptation since back propagation becomes computationally intense 

for large numbers of hidden nodes. 

 



 
 
 
 
 
 

 91 

CHAPTER SIX:  EXPERIMENTAL RESULTS AND IMPLEMENTATION 

Proof of Concept Artificial Limb 

For the purpose of proof of concept as well as demonstrating the capability of the 

system, an arm was constructed to provide the physical output of the system in a basic 

manner. Three arm segments and two joints, elbow and wrist, were represented by 

modeling the approximate shape of an arm and making necessary adjustments to allow 

for actuation and motor mounting (Figures 6.1 – 6.3). The models were then input into a 

rapid prototyping machine and fabricated using ABS plastic. Servo motors were used to 

actuate the joints due to the low requirements of the initial system (data sheets available 

in Appendix A.7). 

 
Figure 6.1 A-C: Upper Arm Modeling (Isometric (left), Top (center), and Side View (right)) 
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Figure 6.2 A-C: Forearm Modeling (Isometric (left), Top (center), and Side View (right)) 

 

 
Figure 6.3 A-C: Hand Modeling (Isometric (left), Top (center), and Side View (right)) 

 
Since EMG values are used to train the control algorithms explored in this study, 

evaluating the effectiveness of each system is performed at the EMG output level and not 

at the physical output of the arm. Inconsistencies in approximating the appropriate level 

of arm flexion can arise from improper sensor placement or poor contact, causing the 

value observed on an EMG channel to not correspond to equal actuation on another. As a 

result, appropriate linear scaling must be performed on the EMG output values in order to 

be used for limb actuation. 

 

Transfer Function 

The motor control based on EEG was very similar to the simulated arm activity 

generated based on simultaneous recordings with EMG. Motor control in Figure 6.4 
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depicts movement of the elbow joint and full range of motion using the transfer function 

during five repetitions of an elbow flexion. Figure 6.5 indicates that the wrist was flexed 

as well during bicep curls, as reflected by simultaneous EMG readings indicating the 

secondary activity took place. In both graphs, the y-axis value represents change from the 

resting position, with 461 representing full proximal flexion of the elbow, 256 

representing full proximal flexion of the wrist, and -256 representing full distal extension 

of the wrist. 

 
Figure 6.4: EMG Driven elbow activity (Dashed) and calculated values (Solid) during elbow flexion 
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Figure 6.5: EMG Driven wrist activity (Dashed) and calculated values (Solid) during elbow flexion 

 
There is a recurring time delay that appears in the correlation between calculated 

EMG and measured EMG data. This delay is shown in Figure 6.6, where the delay from 

peak of measured EMG activation to peak of calculated EMG activation averages 73 

samples, or 0.57 seconds. This delay is primarily caused by the transfer function utilizing 

the last one second of data for input parameters, which leads to a slower reaction time. 
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Figure 6.6: Monitored muscle activity (Dashed) and calculated values (Solid) during elbow flexion 

 
Figure 6.7 shows the improvement in activity matching obtained through the 

difference/average method compared to the original individual channels method after the 

transfer function algorithm was configured to automatically determine system 

parameters. The major activity of the elbow flexion is nearly identical in both cases, but 

the resting position and sporadic motion in the second method are much improved. 
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Figure 6.7: Motor position from original method (Grey) and difference/average method (Black) 

 
 

Case Matching Algorithm 

The second simple method of motor control, based on selection of a case using 

minimum error determination, produced less accurate results, but was still investigated as 

an alternative due to the higher degree of complexity possible using this system without 

moving to an advanced machine learning technique. The performance of the case 

selection algorithm is depicted in Figure 6.8 where a significant number of inaccurate 

movements can be seen and full range of motion was not achieved. 
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Figure 6.8: EMG Driven elbow (Dashed) and EEG case driven values (Solid) during elbow flexion 

 
The case matching algorithm also produced a wrist flexion that is indicative of 

wrist tensing occurring during an elbow flexion (Figure 6.9), showing flexion of the wrist 

simultaneously occurring with elbow flexion as opposed to the minor wrist extension that 

the EMG data and transfer function calculations would suggest. 

 
Figure 6.9: EMG Driven wrist (Dashed) and EEG case driven values (Solid) during elbow flexion 
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Fuzzy-Nearest Neighbors 

Using 600 sample points to populate the known neighbor data, the fuzzy 

neighbors algorithm is able to self-evaluate with an accuracy of 100% (Figure 6.10) and a 

mean absolute error of less than 2%. However, this algorithm performs very poorly 

against unique test data (Figure 6.11). The algorithm is significantly over-fitted to the 

training data and does not consider most of the test data to be close enough to associate 

with the known neighbors. As a result, only two of the six hundred test points are 

recognized and correctly classified, while eight points are misclassified. The output 

estimation error for the “hit” cases is still very good, but the misses result in large 

deviations from the desired activity since they misidentified the correct output. Relaxing 

the determination criteria to reduce the number of test points classified as noise, causes 

the system to only classify input data correctly at the same rate as random chance (1 of 6) 

both against the known data as well as test data. Increasing the number of points in the 

known neighbors list to 1500 resulted in more stringent criteria in order for 100% 

accuracy against the training set, causing the test results to produce only one hit and zero 

misses. 
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Figure 6.10: Fuzzy-neighbors accuracy against the training data set 

 

 
Figure 6.11: Fuzzy-neighbors accuracy against the test data set 

 
 

k-Nearest Neighbor 

Based on the results of the fuzzy-neighbors algorithm, larger data sets were 

prepared prior to testing the k-nearest neighbors program and the outputs of the system 

was reduced to the four training activities that have direct correlation to the EMG data. A 

training file with 21,547 data sets was used and 5- and 10-fold sampling was performed 

to randomly select a subset of the data to be withheld as the test set. Using various values 

of k, the accuracies in Figures 6.12 and 6.13 were obtained (details available in Tables 

6.1 and 6.2). 
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Figure 6.12: 10-Fold k-Nearest Neighbor Accuracy Using Various k Values 

 

 
Figure 6.13: 5-Fold k-Nearest Neighbor Accuracy Using Various k Values 

 
Table 6.1: 10-Fold k-Nearest Neighbor Performance at Various k Values 

k Accuracy 
RMSE EMG 

1 
RMSE EMG 

2 
RMSE EMG 

3 
RMSE EMG 

4 
Average RMSE 

1 93.22% 59.6497 37.849 18.9752 62.4031 44.71925 
2 93.22% 62.2091 36.9362 17.5225 55.501 43.0422 
3 92.57% 70.1476 38.405 18.2062 55.9462 45.67625 
4 92.66% 75.8983 41.5508 20.814 60.9629 49.8065 
5 91.41% 82.3058 44.5931 23.0636 65.2384 53.800225 
10 89.32% 114.807 62.5845 29.6825 89.9904 74.2661 
15 86.54% 138.01 73.8761 34.6716 106.248 88.201425 
20 84.63% 155.636 83.1942 37.9804 117.15 98.49015 
25 82.03% 167.458 90.2292 40.7795 125.356 105.955675 
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Table 6.2: 5-Fold k-Nearest Neighbor Performance at Various k Values 

k Accuracy RMSE EMG 1 RMSE EMG 2 RMSE EMG 3 RMSE EMG 4 Average RMSE 

1 92.90% 66.4866 34.1634 18.6023 63.7847 45.75925 
2 92.90% 66.6687 35.9309 18.522 57.9707 44.773075 
3 92.13% 72.7172 39.4172 20.1938 63.3027 48.907725 
4 92.32% 80.6528 43.5965 22.819 68.2781 53.8366 
5 91.55% 89.044 48.8127 24.5912 73.547 58.998725 
10 88.93% 122.477 68.0891 32.0496 98.0114 80.156775 
15 85.56% 146.005 80.1682 36.6322 114.208 94.25335 
20 82.36% 162.064 89.153 39.8106 124.604 103.9079 
25 79.99% 173.79 95.6071 42.2086 132.297 110.975675 

 
Selecting a k of two produces the least root mean square error while tying for best 

accuracy. At 93.22% accuracy and 43.04 (approximately 8.41%) RMSE (10-fold), this 

algorithm satisfies the design requirements. Unfortunately the fact that the algorithm 

performs best with a very low k and quickly degrades as k increases, indicates that the 

classification algorithm sees a lot of overlap between the output classes. While 

investigating how badly this overlap could affect real-time performance, it was 

determined that using a completely unique dataset instead of reserving a portion of the 

training set, results in an accuracy around 41%, which does not meet the requirements of 

this project and is too great a decrease in performance to rely on sensor improvements. 

 

Linear Activation Neural Network 

The linear activation neural network was able to train up to a convergence of 891 

out of 1000 training values being within tolerance. However after this point the learning 

process went unstable and the error went to infinity (Figure 6.14). 
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Figure 6.14: Error and Accuracy of Linear Activation Neural Network – Diverges 

 
 

Principle Component Analysis 

Using PCA on this data set did result in good reduction of dimensionality, 

however it did not produce obvious distinction between output activities (Figures 6.15 – 

6.18). 

 
Figure 6.15 A&B: 250 Bicep Flexions - FFT (Left) and PCA (Right) 

 



 

103 

 
Figure 6.16 A&B: 250 Triceps Extensions - FFT (Left) and PCA (Right) 

 

 
Figure 6.17 A&B: 250 Wrist Flexions - FFT (Left) and PCA (Right) 

 

 
Figure 6.18 A&B: 250 Wrist Extensions - FFT (Left) and PCA (Right) 

 
Looking at the mean value of the data for each activity, there is some distinction, 

but not a significant amount compared to the deviation within each output type (Figure 

6.19). The mean values clearly indicate that Eigenvectors passed the first twenty can be 

disregarded without substantial loss of data. 
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Figure 6.19: Mean PCA Indices by Activity 

 
 

Sigmoid Activation Neural Network 

SANN – Regression 

To verify the validity of the training routine, the system was first tested on a XOR 

data set. Using decreasing numbers of hidden nodes, the system was proven by its ability 

to train to perform the function XOR (Table 6.3). The network did have difficulty 

approaching convergence using only two hidden nodes and for the purpose of saving 

time, the test was ended at 256,000 epochs. 

Table 6.3: Neural Network’s Ability to Train to Perform the Function XOR 

Sample 
Data 

Mode 
Input 
Nodes 

Hidden 
Nodes 

Learning 
Rate 

Learning 
Momentum 

Toleranc
e +/- 

Epochs 
to Conv-

erge 

RMSE at 
Outputs 

Test 
Results 

Test RMSE 
of Network 

4 
(XOR) 

PCA 
Off 

2 2 0.3 0.05 0.1 
at 256k 

3/4 
0.057695 75.00% 0.115457 

4 
(XOR) 

PCA 
Off 

2 3 0.3 0.05 0.1 26248 0.01285055 100.00% 0.0741506 

4 
(XOR) 

PCA 
Off 

2 4 0.3 0.05 0.1 18088 0.0088945 100.00% 0.0232723 

4 
(XOR) 

PCA 
Off 

2 5 0.3 0.05 0.1 16808 0.00930755 100.00% 0.0274043 

4 
(XOR) 

PCA 
Off 

2 6 0.3 0.05 0.1 12083 0.00908415 100.00% 0.0179394 
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4 
(XOR) 

PCA 
Off 

2 7 0.3 0.05 0.1 20075 0.00900055 100.00% 0.0216949 

4 
(XOR) 

PCA 
Off 

2 8 0.3 0.05 0.1 12685 0.0094273 100.00% 0.0251209 

 
Once the system was validated, systematic tests were performed to determine the 

ability to train on EEG to EMG mapping data. Tests began with small sample sizes and 

gradually increased, evaluating the minimum number of hidden nodes necessary for the 

network to converge on a solution, as well as how well the system could discern outputs 

when acting on test data (Tables 6.4 - 6.7). 

Table 6.4: Node Requirements and Test Accuracy, 16 Sample Data Set, PCA Off 

Sample 
Data 

Mode 
Input 
Nodes 

Hidden 
Nodes 

Learning 
Rate 

Learning 
Momentum 

Tolerance 
+/- 

Epochs to 
Converge 

RMSE at 
Outputs 

Test 
Results 

Test 
RMSE of 
Network 

16 
PCA 
Off 

60 4 0.3 0.05 0.1 506 0.0252949 12.50% 0.54137 

16 
PCA 
Off 

60 8 0.3 0.05 0.1 352 0.0299741 6.25% 0.601325 

16 
PCA 
Off 

60 12 0.3 0.05 0.1 530 0.02163385 0.00% 0.560804 

16 
PCA 
Off 

60 16 0.3 0.05 0.1 355 0.02797195 12.50% 0.564746 

16 
PCA 
Off 

60 20 0.3 0.05 0.1 581 0.0202052 12.50% 0.594552 

16 
PCA 
Off 

60 24 0.3 0.05 0.1 777 0.01796875 12.50% 0.596938 

16 
PCA 
Off 

60 28 0.3 0.05 0.1 371 0.0213859 12.50% 0.590905 

16 
PCA 
Off 

60 32 0.3 0.05 0.1 709 0.01892985 12.50% 0.545535 

16 
PCA 
Off 

60 36 0.3 0.05 0.1 1074 0.01728575 6.25% 0.567855 

16 
PCA 
Off 

60 40 0.3 0.05 0.1 441 0.0202997 25.00% 0.560401 

16 
PCA 
Off 

60 44 0.3 0.05 0.1 237 0.02698245 12.50% 0.556159 

16 
PCA 
Off 

60 48 0.3 0.05 0.1 461 0.0214846 18.75% 0.361409 

16 
PCA 
Off 

60 52 0.3 0.05 0.1 277 0.0241053 6.25% 0.368648 

16 
PCA 
Off 

60 56 0.3 0.05 0.1 330 0.02848525 6.25% 0.383947 

16 
PCA 
Off 

60 60 0.3 0.05 0.1 513 0.0218347 12.50% 0.603481 
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Table 6.5: Node Requirements and Test Accuracy, 16 Sample Data Set, PCA On 

Sample 
Data 

Mode 
Input 
Nodes 

Hidden 
Nodes 

Learning 
Rate 

Learning 
Momentum 

Tolerance 
+/- 

Epochs to 
Converge 

RMSE at 
Outputs 

Test 
Results 

Test 
RMSE of 
Network 

16 
PCA 
On 

20 4 0.3 0.05 0.1 663 0.02860755 12.50% 0.686654 

16 
PCA 
On 

20 8 0.3 0.05 0.1 361 0.0297086 12.50% 0.648444 

16 
PCA 
On 

20 12 0.3 0.05 0.1 431 0.0230049 12.50% 0.624149 

16 
PCA 
On 

20 16 0.3 0.05 0.1 214 0.0351963 18.75% 0.640722 

16 
PCA 
On 

20 20 0.3 0.05 0.1 225 0.0315515 25.00% 0.652475 

16 
PCA 
On 

20 24 0.3 0.05 0.1 181 0.0275096 18.75% 0.647174 

16 
PCA 
On 

20 28 0.3 0.05 0.1 282 0.02236195 12.50% 0.683215 

16 
PCA 
On 

20 32 0.3 0.05 0.1 256 0.02612545 6.25% 0.613402 

16 
PCA 
On 

20 36 0.3 0.05 0.1 163 0.038805 18.75% 0.316533 

16 
PCA 
On 

20 40 0.3 0.05 0.1 507 0.01949595 12.50% 0.637014 

16 
PCA 
On 

20 44 0.3 0.05 0.1 255 0.0281627 12.50% 0.639454 

16 
PCA 
On 

20 48 0.3 0.05 0.1 292 0.02932515 12.50% 0.684582 

16 
PCA 
On 

20 52 0.3 0.05 0.1 271 0.02094495 18.75% 0.655163 

16 
PCA 
On 

20 56 0.3 0.05 0.1 252 0.0265533 18.75% 0.65766 

16 
PCA 
On 

20 60 0.3 0.05 0.1 310 0.027524 6.25% 0.617368 

 
Table 6.6: Node Requirements and Test Accuracy, 128 Sample Data Set, PCA Off 

Sample 
Data 

Mode 
Input 
Nodes 

Hidden 
Nodes 

Learning 
Rate 

Learning 
Momentum 

Tolerance 
+/- 

Epochs to 
Converge 

RMSE at 
Outputs 

Test 
Results 

Test 
RMSE of 
Network 

128 
PCA 
Off 

60 4 0.3 0.05 0.1 
at 64k 
71/128 

0.0957255 10.94% 0.688465 

128 
PCA 
Off 

60 8 0.3 0.05 0.1 
at 64k 

127/128 
0.0241815 17.19% 0.689977 

       
at 128k 
127/128 

0.02017245 15.63% 0.684005 

128 
PCA 
Off 

60 12 0.3 0.05 0.1 9417 0.02742745 14.06% 0.65792 

128 
PCA 
Off 

60 16 0.3 0.05 0.1 14183 0.01705275 11.72% 0.645033 
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128 
PCA 
Off 

60 20 0.3 0.05 0.1 10068 0.01751325 16.41% 0.715138 

128 
PCA 
Off 

60 24 0.3 0.05 0.1 10696 0.01566945 18.75% 0.662374 

128 
PCA 
Off 

60 28 0.3 0.05 0.1 7136 0.02036165 21.09% 0.638219 

128 
PCA 
Off 

60 32 0.3 0.05 0.1 8946 0.01524115 21.09% 0.631908 

128 
PCA 
Off 

60 36 0.3 0.05 0.1 8229 0.01709495 17.97% 0.661223 

128 
PCA 
Off 

60 40 0.3 0.05 0.1 7726 0.01892685 12.50% 0.655245 

128 
PCA 
Off 

60 44 0.3 0.05 0.1 7891 0.0193626 14.06% 0.613598 

128 
PCA 
Off 

60 48 0.3 0.05 0.1 8950 0.01789585 13.28% 0.653293 

128 
PCA 
Off 

60 52 0.3 0.05 0.1 6850 0.021595 17.19% 0.654336 

128 
PCA 
Off 

60 56 0.3 0.05 0.1 7823 0.02226915 17.19% 0.654868 

128 
PCA 
Off 

60 60 0.3 0.05 0.1 7166 0.022419 15.63% 0.691254 

 
Table 6.7: Node Requirements and Test Accuracy, 128 Sample Data Set, PCA On 

Sample 
Data 

Mode 
Input 
Nodes 

Hidden 
Nodes 

Learning 
Rate 

Learning 
Momentum 

Tolerance 
+/- 

Epochs to 
Converge 

RMSE at 
Outputs 

Test 
Results 

Test 
RMSE of 
Network 

128 
PCA 
On 

20 4 0.3 0.05 0.1 
at 64k 
59/128 

0.1455775 16.41% 0.508309 

128 
PCA 
On 

20 8 0.3 0.05 0.1 
at 64k 
34/128 

0.1567025 1.56% 0.5101 

128 
PCA 
On 

20 12 0.3 0.05 0.1 
at 64k 
87/128 

0.0859415 9.38% 0.59056 

128 
PCA 
On 

20 16 0.3 0.05 0.1 
at 64k 
80/128 

0.0949775 10.16% 0.564615 

128 
PCA 
On 

20 20 0.3 0.05 0.1 
at 64k 

101/128 
0.067057 19.53% 0.729581 

128 
PCA 
On 

20 24 0.3 0.05 0.1 
at 64k 
86/128 

0.0980025 9.38% 0.590972 

128 
PCA 
On 

20 28 0.3 0.05 0.1 
at 64k 
88/128 

0.0900715 10.16% 0.620793 

128 
PCA 
On 

20 32 0.3 0.05 0.1 13085 0.02394395 14.84% 0.680476 

128 
PCA 
On 

20 36 0.3 0.05 0.1 17056 0.0170701 21.88% 0.713674 

128 
PCA 
On 

20 40 0.3 0.05 0.1 20893 0.0245298 14.84% 0.732772 

128 
PCA 
On 

20 44 0.3 0.05 0.1 14016 0.01830545 7.81% 0.784155 
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128 
PCA 
On 

20 48 0.3 0.05 0.1 19950 0.0138206 17.19% 0.70848 

128 
PCA 
On 

20 52 0.3 0.05 0.1 15008 0.01465245 6.25% 0.766267 

128 
PCA 
On 

20 56 0.3 0.05 0.1 18193 0.022721 13.28% 0.716033 

128 
PCA 
On 

20 60 0.3 0.05 0.1 15718 0.0143935 8.59% 0.72833 

 
During the course of evaluating the effectiveness of this program, it was 

determined that the organization of the input data was having a negative impact on the 

results of training. For this reason a quick test to determine the effect of interlacing the 

data based on the output type was performed (Table 6.8). 

Table 6.8: Results when using data separated by activity versus interlacing activities 

Sample 
Data 

Mode 
Input 
Nodes 

Hidden 
Nodes 

Learning 
Rate 

Learning 
Momentum 

Tolerance 
+/- 

Epochs to 
Converge 

RMSE at 
Outputs 

Test 
Results 

Test 
RMSE of 
Network 

512 
PCA 
Off 

60 60 0.3 0.05 0.1 54282 0.0163056 8.59% 0.726063 

512_i 
PCA 
Off 

60 60 0.3 0.05 0.1 14039 0.019718 9.18% 0.694214 

512 
PCA 
On 

60 60 0.3 0.05 0.1 
at 64k 

491/512 
0.0447046 8.01% 0.583519 

512_i 
PCA 
On 

60 60 0.3 0.05 0.1 
at 64k 

220/512 
0.1366945 10.35% 1.1716 

 
 Based on these results, interlacing activities was determined to be beneficial to 

convergence speed. However, it did raise a question regarding why the interlacing 

appeared to cause a negative impact on PCA rotated data. The full round of 512 sample 

sets was performed using the interlaced data sets (Tables 6.9 and 6.10). 

Table 6.9: Node requirements and test accuracy, 512 interlaced sample data set, PCA Off 

Sample 
Data 

Mode 
Input 
Nodes 

Hidden 
Nodes 

Learning 
Rate 

Learning 
Momentum 

Tolera
nce +/- 

Epochs to 
Converge 

RMSE at 
Outputs 

Test 
Results 

Test 
RMSE of 
Network 

512 
PCA 
Off 

60 36 0.3 0.05 0.1 
at 64k 

508/512 
0.02225425 10.74% 0.71154 

512 
PCA 
Off 

60 40 0.3 0.05 0.1 
at 64k 

510/512 
0.0196367 11.33% 0.700633 

       
at 128k 
511/512 

0.017018 12.11% 0.708363 
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512 
PCA 
Off 

60 44 0.3 0.05 0.1 41956 0.0203068 10.55% 0.687881 

512 
PCA 
Off 

60 48 0.3 0.05 0.1 61891 0.0157582 12.11% 0.686533 

512 
PCA 
Off 

60 52 0.3 0.05 0.1 22492 0.017743 9.57% 0.718004 

512 
PCA 
Off 

60 56 0.3 0.05 0.1 56154 0.0126281 10.55% 0.703695 

512 
PCA 
Off 

60 60 0.3 0.05 0.1 14039 0.019718 9.18% 0.694214 

 
Table 6.10: Node requirements and test accuracy, 512 interlaced sample data set, PCA On 

Sample 
Data 

Mode 
Input 
Nodes 

Hidden 
Nodes 

Learning 
Rate 

Learning 
Momentum 

Tolerance 
+/- 

Epochs to 
Converge 

RMSE at 
Outputs 

Test 
Results 

Test 
RMSE of 
Network 

512 
PCA 
On 

20 52 0.3 0.05 0.1 
at 64k 

241/512 
0.121877 13.28% 0.601264 

512 
PCA 
On 

20 56 0.3 0.05 0.1 
at 64k 

256/512 
0.1208905 10.35% 0.685636 

512 
PCA 
On 

20 60 0.3 0.05 0.1 
at 64k 

220/512 
0.1366945 10.35% 1.1716 

 
The next data preparation to be tested was a random sorting algorithm that would 

arrange the data randomly when it is being read from file. At this stage it was also 

decided to introduce non-active data points into our training set and to attempt to address 

the issue with PCA performance by removing the sigmoid activation function from the 

input nodes. New tests were performed with data set sizes of 250 and 500 (Tables 6.11 - 

6.14). 

Table 6.11: Node requirements and test accuracy, 250 random sample data set, PCA Off 

Sample 
Data 

Mode 
Input 
Nodes 

Hidden 
Nodes 

Learnin
g Rate 

Learning 
Momentum 

Tolerance 
+/- 

Epochs to 
Converge 

RMSE at 
Outputs 

Test 
Results 

Test 
RMSE of 
Network 

250 
PCA 
Off 

60 8 0.3 0.05 0.1 
at 64k 

232/250 
0.0179596 15.70% 0.495839 

250 
PCA 
Off 

60 12 0.3 0.05 0.1 9203 0.01050125 18.40% 0.534522 

250 
PCA 
Off 

60 16 0.3 0.05 0.1 1669 0.0110981 12.50% 0.430706 

250 
PCA 
Off 

60 20 0.3 0.05 0.1 3550 0.0056886 20.00% 0.491859 

250 
PCA 
Off 

60 24 0.3 0.05 0.1 2519 0.00639345 17.50% 0.51624 
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250 
PCA 
Off 

60 28 0.3 0.05 0.1 771 0.01002135 13.30% 0.461856 

250 
PCA 
Off 

60 32 0.3 0.05 0.1 1265 0.00772095 17.30% 0.497081 

 
Table 6.12: Node requirements and test accuracy, 250 random sample data set, PCA On 

Sample 
Data 

Mode 
Input 
Nodes 

Hidden 
Nodes 

Learning 
Rate 

Learning 
Momentum 

Toleran
ce +/- 

Epochs to 
Converge 

RMSE at 
Outputs 

Test 
Results 

Test 
RMSE of 
Network 

250 
PCA 
On 

20 36 0.3 0.05 0.1 
at 64k 

162/250 
0.0399322 20.70% 0.582438 

250 
PCA 
On 

20 40 0.3 0.05 0.1 2353 0.00986735 9.70% 0.516233 

250 
PCA 
On 

20 44 0.3 0.05 0.1 947 0.0115815 18.20% 0.515848 

250 
PCA 
On 

20 48 0.3 0.05 0.1 1397 0.01052875 17.00% 0.583838 

250 
PCA 
On 

20 52 0.3 0.05 0.1 1113 0.0098387 9.90% 0.469767 

250 
PCA 
On 

20 56 0.3 0.05 0.1 2459 0.0090968 4.90% 0.483781 

250 
PCA 
On 

20 60 0.3 0.05 0.1 1705 0.0068548 9.50% 0.573049 

 
Table 6.13: Node requirements and test accuracy, 500 random sample data set, PCA Off 

Sample 
Data 

Mode 
Input 
Nodes 

Hidden 
Nodes 

Learning 
Rate 

Learning 
Momentum 

Tolerance 
+/- 

Epochs to 
Converge 

RMSE at 
Outputs 

Test 
Results 

Test 
RMSE of 
Network 

500 
PCA 
Off 

60 16 0.3 0.05 0.1 
at 64k 

409/500 
0.02245355 13.80% 0.482698 

500 
PCA 
Off 

60 20 0.3 0.05 0.1 
at 64k 

494/500 
0.0117248 15.00% 0.488333 

500 
PCA 
Off 

60 24 0.3 0.05 0.1 27200 0.0094824 23.70% 0.660694 

500 
PCA 
Off 

60 28 0.3 0.05 0.1 12267 0.0078672 19.40% 0.552097 

500 
PCA 
Off 

60 32 0.3 0.05 0.1 4017 0.00816775 18.40% 0.524085 

 
Table 6.14: Node requirements and test accuracy, 500 random sample data set, PCA On 

Sample 
Data 

Mode 
Input 
Nodes 

Hidden 
Nodes 

Learning 
Rate 

Learning 
Momentum 

Tolerance 
+/- 

Epochs to 
Converge 

RMSE at 
Outputs 

Test 
Results 

Test 
RMSE of 
Network 

500 
PCA 
On 

20 60 0.3 0.05 0.1 
at 64k 

208/500 
0.05632 11.80% 0.525189 

500 
PCA 
On 

20 68 0.3 0.05 0.1 
at 64k 

172/500 
0.0821835 0.30% 0.526952 

500 
PCA 
On 

20 88 0.3 0.05 0.1 
at 64k 

439/500 
0.019613 10.90% 0.537828 
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500 
PCA 
On 

20 100 0.3 0.05 0.1 
at 64k 

305/500 
0.0340444 15.40% 0.611488 

500 
PCA 
On 

20 104 0.3 0.05 0.1 
at 64k 

261/500 
0.0454783 8.10% 0.534613 

500 
PCA 
On 

20 108 0.3 0.05 0.1 24909 0.009536 7.90% 0.50397 

500 
PCA 
On 

20 112 0.3 0.05 0.1 3187 0.0104671 18.60% 0.606821 

500 
PCA 
On 

20 116 0.3 0.05 0.1 1348 0.00898635 17.30% 0.535481 

500 
PCA 
On 

20 120 0.3 0.05 0.1 14306 0.0101927 8.80% 0.555371 

 
The results from these tests do not meet the minimum requirements stipulated for 

success. They indicate that a very large neural network may be required in order to 

handle a sufficient number of data sets to train the system to handle a broad enough range 

of input combinations. They did however present the idea that the number of hidden 

nodes may not cause the system to become over-fitted, which was the understanding that 

these trials were based upon (Figure 6.20). This idea has been presented in literature 

(Lawrence 1997), but would carry more merit if the resulting networks in our trials 

performed well on test data. Plots to discern correlation between other factors are 

presented in Figures 6.21 - 6.24. 

 
Figure 6.20: Plot of Network Performance vs. Number of Hidden Nodes 
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Figure 6.21: Plot of Network Performance vs. Training Sets 

 

 
Figure 6.22: Plot of Network Performance vs. Epochs to Reach Convergence 
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Figure 6.23: Plot of Network Performance vs. Remaining Training Error 

 

 
Figure 6.24: Plot of Minimum Hidden Nodes Required vs. Training Set Size 

 
Based on the limited data in Figure 6.24, it can be concluded that less nodes are 

required when the data is not separated by activity. However, due to the apparent limits 

of using neural networks for regression on our data set, the program was adapted to 

simplify output data to perform classification without any regression capabilities. 
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SANN – Classification 

As a classifier, the sigmoid activation neural network performs significantly 

better. The data set had to be changed in order to have a 'zero' activity class for the 

purpose of control and much larger data sets were used based on the previous results. 

Details of the tests performed are available in Tables 6.15 through 6.21 and summary 

graphs are available (Figures 6.25 – 6.29). 

 
Figure 6.25: Test Accuracy vs. Data Set Size - 32 Hidden Nodes 

 

 
Figure 6.26: Test Accuracy vs. Data Set Size - 64 Hidden Nodes 
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Figure 6.27: Test Accuracy vs. Data Set Size - 96 Hidden Nodes 

 

 
Figure 6.28: Test Accuracy vs. Data Set Size - 128 Hidden Nodes 
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Figure 6.29: Test Accuracy vs. Data Set Size - 160 Hidden Nodes 

 
Table 6.15: Test Accuracy at 1000 Epochs, 32 Hidden Nodes 

Training Sets Mode Hidden Nodes Epochs 
Training 
Accuracy 

Training 
RMSE 

Test Accuracy Test RMSE 

1000 PCA Off 32 1000 98.70% 0.0573653 32.70% 0.479829 

2000 PCA Off 32 1000 95.60% 0.113127 35.20% 0.46527 

3000 PCA Off 32 1000 97.27% 0.090427 43.30% 0.436045 

4000 PCA Off 32 1000 96.93% 0.108605 27.80% 0.497991 

5000 PCA Off 32 1000 94.74% 0.138549 48.20% 0.407709 

10000 PCA Off 32 1000 89.30% 0.215385 39.10% 0.43711 

15000 PCA Off 32 1000 88.14% 0.227197 60.60% 0.338521 

        

Training Sets Mode Hidden Nodes Epochs 
Training 
Accuracy 

Training 
RMSE 

Test Accuracy Test RMSE 

1000 PCA On 32 1000 96.10% 0.113386 49.30% 0.432822 

2000 PCA On 32 1000 89.25% 0.218231 66.00% 0.378221 

3000 PCA On 32 1000 88.30% 0.235057 53.60% 0.387018 

4000 PCA On 32 1000 84.28% 0.266117 59.00% 0.436551 

5000 PCA On 32 1000 82.86% 0.275933 48.00% 0.395032 

10000 PCA On 32 1000 76.88% 0.297389 58.60% 0.339817 

15000 PCA On 32 1000 77.80% 0.29042 61.90% 0.31503 
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Table 6.16: Test Accuracy at 1000 Epochs, 64 Hidden Nodes 

Training Sets Mode Hidden Nodes Epochs 
Training 
Accuracy 

Training 
RMSE 

Test Accuracy Test RMSE 

1000 PCA Off 64 1000 98.70% 0.0573426 44.30% 0.4423 

2000 PCA Off 64 1000 95.95% 0.107351 41.30% 0.454376 

3000 PCA Off 64 1000 95.40% 0.113765 49.10% 0.417351 

4000 PCA Off 64 1000 97.10% 0.0964512 35.70% 0.463619 

5000 PCA Off 64 1000 96.60% 0.102339 60.10% 0.356341 

10000 PCA Off 64 1000 91.63% 0.188718 40.60% 0.431995 

15000 PCA Off 64 1000 91.83% 0.193842 58.30% 0.353159 

        

Training Sets Mode Hidden Nodes Epochs 
Training 
Accuracy 

Training 
RMSE 

Test Accuracy Test RMSE 

1000 PCA On 64 1000 98.70% 0.0630732 58.60% 0.39385 

2000 PCA On 64 1000 96.20% 0.133556 39.40% 0.457771 

3000 PCA On 64 1000 92.20% 0.188385 46.00% 0.435881 

4000 PCA On 64 1000 87.90% 0.212737 40.90% 0.432716 

5000 PCA On 64 1000 85.14% 0.239868 56.20% 0.372251 

10000 PCA On 64 1000 78.62% 0.290695 48.90% 0.386959 

15000 PCA On 64 1000 87.20% 0.243771 62.80% 0.321029 

 
Table 6.17: Test Accuracy at 1000 Epochs, 96 Hidden Nodes 

Training Sets Mode Hidden Nodes Epochs 
Training 
Accuracy 

Training 
RMSE 

Test Accuracy Test RMSE 

1000 PCA Off 96 1000 98.70% 0.0594825 38.50% 0.47078 

2000 PCA Off 96 1000 96.50% 0.099492 56.00% 0.385545 

3000 PCA Off 96 1000 97.27% 0.0952475 50.00% 0.430971 

4000 PCA Off 96 1000 95.13% 0.1246985 44.10% 0.44073 

5000 PCA Off 96 1000 93.98% 0.1313225 38.40% 0.454723 

10000 PCA Off 96 1000 93.45% 0.168352 53.00% 0.383706 

15000 PCA Off 96 1000 93.21% 0.177486 55.20% 0.360885 

        

Training Sets Mode Hidden Nodes Epochs 
Training 
Accuracy 

Training 
RMSE 

Test Accuracy Test RMSE 

1000 PCA On 96 1000 98.80% 0.0577674 61.40% 0.383691 

2000 PCA On 96 1000 95.15% 0.117449 66.40% 0.332913 

3000 PCA On 96 1000 89.93% 0.184791 57.00% 0.381057 

4000 PCA On 96 1000 85.63% 0.231204 52.30% 0.393006 

5000 PCA On 96 1000 82.76% 0.262383 48.20% 0.420999 

10000 PCA On 96 1000 79.95% 0.270296 27.70% 0.479874 

15000 PCA On 96 1000 78.33% 0.278724 61.40% 0.326498 
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Table 6.18: Test Accuracy at 1000 Epochs, 128 Hidden Nodes 

Training Sets Mode 
Hidden 
Nodes 

Epochs 
Training 
Accuracy 

Training 
RMSE 

Test Accuracy 
Test 

RMSE 

1000 
PCA 
Off 

128 1000 Does Not Train  
Does Not 

Train 
 

2000 
PCA 
Off 

128 1000 99.25% 0.0490946 39.80% 0.441054 

3000 
PCA 
Off 

128 1000 92.33% 0.15099 43.20% 0.449546 

4000 
PCA 
Off 

128 1000 94.65% 0.126599 32.10% 0.524083 

5000 
PCA 
Off 

128 1000 93.92% 0.141915 40.80% 0.447747 

10000 
PCA 
Off 

128 1000 93.09% 0.16818 47.60% 0.410708 

15000 
PCA 
Off 

128 1000 93.15% 0.177418 56.40% 0.351638 

        

Training Sets Mode 
Hidden 
Nodes 

Epochs 
Training 
Accuracy 

Training 
RMSE 

Test Accuracy 
Test 

RMSE 
1000 PCA On 128 1000 96.00% 0.104325 60.60% 0.377376 

2000 PCA On 128 1000 93.20% 0.138139 59.00% 0.367192 

3000 PCA On 128 1000 92.13% 0.155095 53.10% 0.413823 

4000 PCA On 128 1000 87.45% 0.206029 61.00% 0.361258 

5000 PCA On 128 1000 82.88% 0.245698 47.70% 0.414396 

10000 PCA On 128 1000 75.48% 0.293127 52.00% 0.385874 

15000 PCA On 128 1000 81.86% 0.257402 59.60% 0.340598 

 
Table 6.19: Test Accuracy at 1000 Epochs, 160 Hidden Nodes 

Training Sets Mode 
Hidden 
Nodes 

Epochs 
Training 
Accuracy 

Training 
RMSE 

Test Accuracy 
Test 

RMSE 

1000 
PCA 
Off 

160 1000 Does Not Train  
Does Not 

Train 
 

2000 
PCA 
Off 

160 1000 Does Not Train  
Does Not 

Train 
 

3000 
PCA 
Off 

160 1000 Does Not Train  
Does Not 

Train 
 

4000 
PCA 
Off 

160 1000 Does Not Train  
Does Not 

Train 
 

5000 
PCA 
Off 

160 1000 Does Not Train  
Does Not 

Train 
 

10000 
PCA 
Off 

160 1000 Does Not Train  
Does Not 

Train 
 

15000 
PCA 
Off 

160 1000 91.08% 0.192462 59.00% 0.345252 
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Training Sets Mode 
Hidden 
Nodes 

Epochs 
Training 
Accuracy 

Training 
RMSE 

Test Accuracy 
Test 

RMSE 

1000 PCA On 160 1000 Does Not Train  
Does Not 

Train 
 

2000 PCA On 160 1000 85.40% 0.194297 64.80% 0.344223 

3000 PCA On 160 1000 88.37% 0.184796 61.70% 0.36259 

4000 PCA On 160 1000 89.33% 0.188193 46.20% 0.442088 

5000 PCA On 160 1000 88.64% 0.211418 59.50% 0.36919 

10000 PCA On 160 1000 77.18% 0.287944 35.50% 0.438948 

15000 PCA On 160 1000 80.83% 0.27604 63.90% 0.325038 

 
Table 6.20: Test Accuracy at 1000 Epochs, 176 Hidden Nodes 

Training Sets Mode 
Hidden 
Nodes 

Epochs 
Training 
Accuracy 

Training 
RMSE 

Test Accuracy 
Test 

RMSE 

15000 
PCA 
Off 

176 150 Does Not Train  
Does Not 

Train 
 

        

Training Sets Mode 
Hidden 
Nodes 

Epochs 
Training 
Accuracy 

Training 
RMSE 

Test Accuracy 
Test 

RMSE 

15000 PCA On 176 1000 75.19% 0.283613 60.80% 0.331048 

 
Table 6.21: Test Accuracy at 1000 Epochs, 192 Hidden Nodes 

Training Sets Mode 
Hidden 
Nodes 

Epochs 
Training 
Accuracy 

Training 
RMSE 

Test Accuracy 
Test 

RMSE 

15000 
PCA 
Off 

192 176 Does Not Train  
Does Not 

Train 
 

        

Training Sets Mode 
Hidden 
Nodes 

Epochs 
Training 
Accuracy 

Training 
RMSE 

Test Accuracy 
Test 

RMSE 

15000 PCA On 192 110 Does Not Train  
Does Not 

Train 
 

 
These results are much more promising than the regression neural network. The 

test sample, which has very different data from the training set, is demonstrating that 

neural networks are not always well suited to changing real-world conditions. Still a 

66.4% accuracy rate through changing sensor conditions is promising, but not sufficient 

to conclude this technique is sufficient for use in this application. For this reason, a new 

version of the program was prepared that uses K-folding to train and test on different 

samples from the same data set, which will represent ideal operating performance. 
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SANN – K-Fold Classification 

Using K-Folding to test on data that is not substantially different from the training 

set has produced very promising results. Details of the test results are available in Tables 

6.22 and 6.23 and a summary of the results are available in Figures 6.30 and 6.31. 

 
Figure 6.30: K-Fold Test Accuracy vs. Number of Hidden Nodes, PCA Off 

 

 
Figure 6.31: K-Fold Test Accuracy vs. Number of Hidden Nodes, PCA On 
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Table 6.22: K-Fold Test Accuracy at 1000 Epochs, PCA Off 

Data Set 
K-

Fold 
Mode Hidden Nodes Epochs 

Learning 
Accuracy 

Test Accuracy Gap 

1655 5 PCA Off 32 1000 97.96% 97.58% -0.38% 
1655 5 PCA Off 64 1000 96.00% 95.47% -0.53% 
1655 5 PCA Off 96 1000 96.07% 93.66% -2.42% 

1655 5 PCA Off 128 1000 95.62% 94.56% -1.06% 

4029 5 PCA Off 32 1000 94.17% 85.86% -8.31% 
4029 5 PCA Off 64 1000 95.53% 88.09% -7.44% 
4029 5 PCA Off 96 1000 96.93% 90.20% -6.73% 
4029 5 PCA Off 128 1000 94.45% 88.71% -5.74% 

5035 5 PCA Off 32 1000 94.66% 88.18% -6.48% 
5035 5 PCA Off 64 1000 96.28% 88.08% -8.19% 
5035 5 PCA Off 96 1000 95.26% 90.27% -4.99% 
5035 5 PCA Off 128 1000 90.09% 86.59% -3.50% 

6570 5 PCA Off 32 1000 92.71% 87.21% -5.50% 
6570 5 PCA Off 64 1000 93.38% 85.46% -7.91% 
6570 5 PCA Off 96 1000 91.04% 88.58% -2.45% 

6570 5 PCA Off 128 1000 87.96% 83.33% -4.62% 
4258 5 PCA Off 32 1000 95.24% 84.98% -10.27% 
4258 5 PCA Off 64 1000 94.63% 90.26% -4.37% 
4258 5 PCA Off 96 1000 93.04% 87.79% -5.25% 

4258 5 PCA Off 128 1000 88.67% 84.39% -4.28% 

21547 5 PCA Off 32 1000 94.63% 90.26% -4.37% 
21547 5 PCA Off 64 1000 87.00% 80.35% -6.65% 
21547 5 PCA Off 96 1000 89.25% 82.16% -7.09% 
21547 5 PCA Off 128 1000    

    Average: 93.50% 88.35% -5.15% 
    Std Dev: 3.05% 4.22% 2.61% 
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Table 6.23: K-Fold Test Accuracy at 1000 Epochs, PCA On 

Data Set 
K-

Fold 
Mode Hidden Nodes Epochs 

Learning 
Accuracy 

Test Accuracy Gap 

1655 5 PCA On 32 1000 91.31% 86.10% -5.21% 
1655 5 PCA On 64 1000 95.32% 91.54% -3.78% 
1655 5 PCA On 96 1000 91.92% 89.43% -2.49% 

1655 5 PCA On 128 1000 96.98% 94.26% -2.72% 

4029 5 PCA On 32 1000 78.03% 76.43% -1.61% 
4029 5 PCA On 64 1000 81.45% 78.16% -3.28% 
4029 5 PCA On 96 1000 91.90% 82.88% -9.02% 
4029 5 PCA On 128 1000 90.10% 80.52% -9.58% 

5035 5 PCA On 32 1000 89.50% 81.23% -8.27% 
5035 5 PCA On 64 1000 85.77% 78.85% -6.93% 
5035 5 PCA On 96 1000 84.43% 79.84% -4.59% 
5035 5 PCA On 128 1000 90.07% 81.43% -8.64% 

6570 5 PCA On 32 1000 86.76% 83.49% -3.27% 
6570 5 PCA On 64 1000 86.13% 83.03% -3.10% 
6570 5 PCA On 96 1000 89.23% 86.68% -2.55% 
6570 5 PCA On 128 1000 83.92% 79.45% -4.47% 
4258 5 PCA On 32 1000 79.68% 78.52% -1.16% 
4258 5 PCA On 64 1000 81.77% 78.40% -3.36% 
4258 5 PCA On 96 1000 83.41% 77.93% -5.48% 

4258 5 PCA On 128 1000 79.33% 77.46% -1.87% 

21547 5 PCA On 32 1000 77.09% 74.20% -2.89% 
21547 5 PCA On 64 1000 79.05% 74.92% -4.13% 
21547 5 PCA On 96 1000 77.54% 74.57% -2.97% 
21547 5 PCA On 128 1000 79.74% 76.36% -3.38% 

    Average: 85.43% 81.07% -4.36% 
    Std Dev: 5.87% 5.31% 2.42% 

 
 

Implementation 

The final C++ program for implementation uses the components from several of 

the programs used during testing (Figure 6.32). Basic communication with the sensor 

system and artificial limb is accomplished using the methods in chapter three. A start-up 

menu is presented to the user immediately since no pre-loading of data is necessary with 

this system design. From the start-up menu the following options are available: Record 

Baseline, Conduct Training Session, or Record Data. 
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Figure 6.32: Flow Diagram of Implemented Training and Control System 

 
If the user selects record baseline, the program steps through recording sessions 

for each activity to collected EEG data (Figure 6.33), while storing FFT data in memory 

(Figure 6.34). After the baseline is completed, the mean and variance of each channel is 

calculated and a principle component analysis if performed to generate the feature vector 

(Figure 6.35). After this function is completed, a nearest neighbor algorithm is used to 

select the closest matching pre-trained neural network from the database, using the 

weighted-Cartesian distance between feature vector indices to select the closest match 

(Figure 6.36). The weighting applied to the distance is distributed such that each 

subsequent Eigenvector has half as much influence as the previous Eigenvector. This is 

used to include the significance of the descending principle components into the nearest 

neighbor decision. Once the closest matching feature vector is selected, the 

corresponding neural network is loaded into the variable space along with the session ID 

associated with the pre-trained network, which is printed to the screen so that the operator 
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knows what has been loaded. If the loaded neural network uses PCA, that setting is also 

loaded into the control system. At this time the real-time control menu appears. 

 
Figure 6.33: Raw EEG Data Collected During Baseline or Training Sessions 

 

 
Figure 6.34: FFT of EEG Data, Stored Into Memory for PCA or Neural Network Use 
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Figure 6.35: PCA of FFT Data, Used for kNN Network Selection or Neural Network Training 

 

 
Figure 6.36: Weighted Feature Vector Indices for Use in Nearest Neighbor Selection of Pre-Trained 

Network 
 

If the user chooses to conduct a training session, the program steps through 

recording sessions for each activity (Figure 6.33) while storing FFT (Figure 6.34) and 

EMG (Figure 6.37) or joint angle data in memory. After the baseline is completed, the 

mean and variance of each channel is calculated and a principle component analysis is 

performed on the FFT data to generate the feature vector. Once this function is complete, 

the sigmoid activation neural network training session begins with the option to learn 
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network weights with PCA on (Figure 6.38) or off (Figure 6.39), which will also change 

this setting in the control system. Once the neural network has sufficiently converged on 

a solution, the option to save the neural network to the database is available. This will 

name the network and feature vector based on the current time, which will be displayed 

when the network is loaded in future sessions. If the neural network is saved, the feature 

vector, PCA mode, and weightings are saved to their appropriate database locations in 

file and the file name is added to the database list. After this function is complete, the 

real-time control menu is loaded. 

 
Figure 6.37: EMG Data Collected During Training Sessions 
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Figure 6.38: Sigmoid Activation Neural Network with PCA Rotation of FFT Data 

 

 
Figure 6.39: Sigmoid Activation Neural Network using FFT Data as Inputs 

 
If the user chooses to record data, the options to either record raw data (Raw 

EEG: Figure 6.33, Raw EMG: Figure 6.37, and Raw NIRS: Figure 6.40) or pre-processed 

information (EEG FFT: Figure 6.34, EMG Estimated Joint Position: Figure 6.41, and 

Blood Oxygenation and Blood Volume Information: Figure 6.42) appear. In either case, 

the program begins collecting data and writing the selected data type to file until the user 

presses any key. Exiting the function Record Data returns the user to the start-up menu. 
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Figure 6.40: Raw NIRS Data: Sensor Data Not Yet Sorted by Active Light Source 

 

 
Figure 6.41: EMG Estimated Joint Flexion 
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Figure 6.42: NIRS Data, Processed into Blood Oxygenation and Blood Volume 

 
Once a network is either selected from the database or trained, the real-time 

control menu becomes available. This menu loads the options to perform Standard 

Control, Mirror Control, or Real-Time Adaptation. These options function very similarly 

to the real-time control system used in the fuzzy neighbors program, but utilize the 

sigmoid activation neural network (Figure 6.38 or 6.39) to predict outputs instead of the 

fuzzy-neighbors algorithm. 

Standard control collects data from the headset every control cycle, unpacks the 

data based on the number of samples collected, performs a Fast Fourier Transform, if in 

PCA mode the FFT is rotated into the PCA space, the inputs are given to the neural 

network, output values are generated (Figure 6.43), and a proportional gain controller 

with decay (Equation 6.1) is used to calculate the value sent to the arm control motors 

based on the current neural network output (Figure 6.44). Mirror control simply mirrors 

the headset data channels prior to analysis. 

))(()1( 11 jjii OOGMDM −∗−∗−= +−      6.1 
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Where iM  is the motor output value, D  is the rate of decay, which is related to the gain 

G  by Equation 6.2, 1−iM  is the previous motor position, and jO  and 1+jO  are opposing 

muscle outputs of the neural network. 

DLG i ∗=         6.2 

Where iL  is the half of the range available for iM . 

Using this controller results in the maximum output never exceeding the motor 

position limits of [- iL , iL ], as a result of the ranges of jO  and 1+jO  being bounded [0, 1] 

from the sigmoid activation function, and the test arm has a disposition to return to the 

neutral position. Using the servo motor range [0, 1023], iL  is set to 512 and the motor 

outputs are re-centered on this range prior to output to the motors. 

 
Figure 6.43: Raw Outputs of Neural Network 
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Figure 6.44: Comparison of Neural Network Output with EMG-Joint Flexion 

 
Real-time adaptation functions the same as standard control with the addition of 

NIRS analysis and periodic neural network weight updates. Each control cycle the system 

calculates the blood oxygenation and blood volume at each NIRS sensor (Figure 6.42). If 

the blood volume in a region becomes elevated for more than 5 seconds, the system 

begins comparing the NIRS activation with the neural network output. If the two systems 

agree on the activity being performed, the neural network uses the current input and 

output data to perform one pass of adaptation in order to reinforce the positive outcome. 

If the two systems disagree on the activity being performed, the neural network uses the 

current inputs and zero values on the outputs to perform one pass of adaptation to 

mitigate the error that is occurring. When the third generation headset is available for 

testing, the capabilities of this function are expected to greatly improve and extensive 

healthy subject testing will be conducted. When real-time adaptation is terminated by the 

user, the option to save the current network to the database is once again presented. 
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At this time the software does not have an interface to view pre-trained networks 

in the database and make edits or deletions. Users may only make additions. Edits and 

deletions may however be performed manually by individuals familiar with the program 

and database structure. 

The neural network performance using this system could still see some 

improvement, but some of the test sets of data already perform well using the initial 

settings. Training a neural network without PCA generally yields the most consistent 

results (Figures 6.45 – 6.52), but PCA is useful in some situations where a normal input 

neural network has difficulty training to the data set (Figures 6.53 and 6.54). The 

inconsistency between convergence accuracy and control performance appears to be 

related to rapid classification changes in the PCA neural network output. Figures 6.45 

and 6.47 represent sufficiently accurate control to proceed with healthy subject testing. 

Figure 6.45 indicates that forty-eight activities occurred, including resting periods 

between joint motions, and only five actions resulted in an incorrect output, producing an 

accuracy of 89.6% in use. The root mean square error of the elbow position is 

approximately 11.87% and 15.42% for the wrist joint. 
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Figure 6.45: Data Set 1655, PCA Off, 94.625% Accuracy at 1000 Epochs 

 

 
Figure 6.46: Data Set 1655, PCA On, 96.875% Accuracy at 1000 Epochs 
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Figure 6.47: Data Set 4029 PCA Off, 95.0625% Accuracy at 1000 Epochs 

 

 
Figure 6.48: Data Set 4029 PCA On, 90.6875% Accuracy at 1000 Epochs 
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Figure 6.49: Data Set 4258 PCA Off, 88.75% Accuracy at 1000 Epochs 

 

 
Figure 6.50: Data Set 4258 PCA On, 81.75% Accuracy at 1000 Epochs 

 



 

136 

 
Figure 6.51: Data Set 5035 PCA Off, 95.125% Accuracy at 1000 Epochs 

 

 
Figure 6.52: Data Set 5035 PCA On, 95.1875% Accuracy at 1000 Epochs 
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Figure 6.53: Data Set 6570 PCA Off, 31.3125% Accuracy at 1000 Epochs 

 

 
Figure 6.54: Data Set 6570 PCA On, 81.75% Accuracy at 1000 Epochs 

 
Inconsistencies resulting from training methods have lead to the development of a 

new training routine that allocates equal amounts of sample data for each activity, 

including resting. We believe the combination of more controlled data collection and the 

improved sensors capabilities of the third generation headset will be sufficient to provide 

consistent control of the artificial limb. The figures for data set 4258 (Figures 6.49 and 
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6.50) in particular demonstrate how much impact input noise has on the output of the 

control system. 
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CHAPTER SEVEN:  SUMMARY AND CONCLUSIONS 

Summary 

This research focuses on the design and development of a non-invasive system for 

monitoring brain activity for the purpose of control of an artificial limb. Through proof of 

concept preliminary data collection and analysis, it was demonstrated that a combination 

of EEG and NIRS could be used to discern brain activity and correlate that activity to 

EMG data collected simultaneously. While simple control methods were only able to 

produce basic actuation, machine learning techniques, particularly neural networks, have 

proven to be capable of identifying multiple output activities based on the input data. 

The development of an improved brain monitoring device as well as a data 

acquisition and control system have been explored, resulting in a design that is ready to 

see extensive healthy subject testing. Pending positive results from healthy subject use, 

the system should be ready to be used in clinical trials for limb replacements as well as 

phantom limb pain therapy. 

 

Transfer Function 

From these results it can be concluded that using the difference and average of 

corresponding EEG channels is a more effective method for data analysis. While the 

estimation of EMG activity is similar between methods, the noise cancellation is much 

improved by this technique. NIRS is being used in these results to attenuate or amplify 



 

140 

the variable gain used for motor control. However, in the limited duration of these results, 

the cumulative effects of the adaptation algorithm are minor. Despite the improvements 

resulting from these modifications, using a transfer function still produces very poor 

results when performing more complex actions. Bicep actuation occurs during nearly any 

movement, suggesting that the correlation between inputs and outputs can not be clearly 

defined by simple relationships. 

Based on the results from testing this simple control algorithm, it was determined 

that a more robust control scheme should be possible by increasing the number of sensors 

and investigating more advanced training and adaptation algorithms. For this purpose a 

new sensor system was constructed and has undergone initial testing to verify the 

performance of the equipment. 

 

Case Matching Algorithm 

The case matching algorithm produced very poor results and was determined to 

be insufficient for this application. 

 

Fuzzy-Nearest Neighbors 

While the initial results of this system show promise, the probable performance in 

implementation indicates poor results. For this reason the fuzzy-neighbors algorithm has 

been removed as a potential solution and a k-nearest neighbors algorithm was 

investigated. 
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k-Nearest Neighbor 

While the results of this algorithm are better than the fuzzy-neighbors program, 

the issues regarding identifying data not recorded in the same session as the member sets 

is a serious concern for this application. While it may be theoretically possible to include 

enough sets of data in the known neighbors, performing the necessary calculations could 

become computationally challenging considering the results in this study already used 

19,386 (10-Fold) and 17,232 (5-Fold) sets. For this reason an artificial neural network 

was investigated for the purpose of loading more of the computation into the control 

algorithm preparation so that fewer calculations have to be performed in real-time. This 

would hopefully also provide better regression than the k-nearest neighbors technique. 

 

Linear Activation Neural Network 

The fact that this method could not converge on a solution indicates that a linear 

activation function is not appropriate for our use. The activation function must be 

differentiable in order to perform error gradient descent to arrive at a valid solution. If an 

activation function is to be used, the input and output data would need to be normalized. 

If data manipulation would already be removing our control system from the [0-1023] 

output resolution that we had been operating with, then additional techniques should also 

be explored to improve the data analysis prior to being used in the control system. For 

this reason a Principle Component Analysis (PCA) algorithm was investigated in order to 

prepare for using a more common artificial neural network. 
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Principle Component Analysis 

PCA is clearly a useful technique to reduce this data type into fewer dimensions. 

This will allow a neural network to have fewer input nodes and hopefully offset enough 

computation to merit rotating the FFT data into the PCA coordinate system at each 

sample. The benefits of PCA on neural network performance were explored using the 

nonlinear network, with the intention of simplifying the input data complexity enough to 

recognize activities similar to the training set. 

Additionally, it was concluded that PCA is a useful technique for recognizing 

similarities between brain activity from different individuals. Once sample data has been 

collected, it may be possible to compare the feature vector of a new subject with a 

database of existing feature vectors and by using the k-nearest neighbor algorithm, with k 

set to one, a similar brain mapping can be pulled from a database of pre-trained neural 

networks linked to the feature vectors. This would make training a neural network for a 

new subject much easier in cases where output data cannot be collected. 

 

Sigmoid Activation Neural Network 

Based on the results using this method, it can be concluded that a neural network 

as a regression algorithm does not perform satisfactorily for this application. However, 

using a neural network as a classifier provides sufficient results. This indicates that a 

control system that is designed to actuate incrementally, or based on the confidence level 

of the classification, would be sufficient to meet the requirements of this project. For this 
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reason, a sigmoid activation neural network, trained using real-time and/or training 

session data, will be used in the implemented control system for this project. 

 

Conclusions 

The highest accuracy achieved using each method (excluding small sample sizes) 

is presented in Table 7.1. 

Table 7.1: Best Performance for Each Method 

Method 
Independent Data 
Set Test Accuracy 

K-Fold Test 
Accuracy 

K-Fold Root Mean 
Square Error 

Fuzzy Neighbors 0.067%   
k-Nearest Neighbors 41% 93.22% ~31.69% 

Linear Regression Neural Network 24.3%   
Non-Linear Regression Neural Network 23.70%   

PCA - Non-Linear Regression Neural Network 20.70%   
Non-Linear Classifier Neural Network 60.60% 90.27% 21.68% 

PCA - Non-Linear Classifier Neural Network 66.40% 86.68% 26.39% 
 

While the k-nearest neighbors algorithm’s K-Fold results indicate it is the best 

performing technique, the drop in accuracy against non-similar data indicates that it is not 

useful for our application due to real-world variation in input data. Artificial neural 

networks using a non-linear activation function perform sufficiently well and don’t suffer 

from as much sensitivity to changing sensor conditions. The option to use PCA will be 

included in future designs for its improved performance in very poor sensor conditions, 

but the highest accuracies are likely to result from proper equipment use and selection of 

an appropriate pre-trained neural network. 

 

Verification That Design Specifications Were Met 

While testing against a data set from a separate training session has fallen under 

the requirements of this study, the potential to reach the stated goals has been 
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demonstrated through the use of a non-linear neural network and k-folding to provide 

similar test data. Testing on unique, but similar data, has been demonstrated to achieve an 

accuracy of 90.27% when using a viably large data set, which exceeds the requirement of 

80% for output classification. While regression using this method provided poor results, 

using the neural network as a classifier combined with actuation of the artificial limb 

based on the confidence of the neural network output resulted in an accuracy of 89.6% in 

the implementation test. The root mean square error of the elbow position is 

approximately 11.87% and 15.42% for the wrist joint, which is within the 20% margin 

stated in the requirements. 

 

Advancements to the Field of Study 

• This research has resulted in a novel solution to using NIRS and EEG data 
in a non-invasive brain-computer interface. 

• This research has resulted in advances to the field of artificial limb 
control, which may have a dramatic impact on the prosthesis market as 
most research in this field is focused on invasive technologies in order to 
provide the necessary level of control. 

• At the level of accuracy provided by the second generation headset, this 
research has reached a level of performance appropriate for use in clinical 
treatment of phantom pain, where the output of the artificial limb is 
second to the ability to provide a connection between brain activity and 
physical outcome. 

• The results from testing different numbers of hidden nodes, while 
maintaining other aspects of the neural network, may confirm research 
indicating that over-fitting a neural network does not have a negative 
impact on the networks ability to perform classification. 

• From this research it can be concluded that electrical brain activity and 
musculoskeletal motion do not share a simple, linear relationship. 
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• This research has demonstrated that neural networks are a feasible solution 
to mapping brain activity, which may be used in other applications such as 
forensics. 

 

Recommendations for Future Work 

The third generation NIRS/EEG headset will produce more reliable data through 

improvements to reference voltage design, sensor quantity, sensor positioning, and wear-

ability. It is our hope that through these improvements, the variation of sensor data 

between recording sessions will be dramatically improved. With additional NIRS 

channels over relevant motor cortex regions, it should also be possible to improve the 

algorithm for online adaptation through the ability to discern limb section activation and 

not only side-of-body activations. We believe that the techniques developed in the course 

of this research should be sufficient in combination with the new sensor headset, to enter 

clinical trials. Healthy subject testing will commence shortly after the headset is complete 

in order to verify this hypothesis. 

It may also be beneficial to investigate the use of state vector machines and 

wavelet transforms. These techniques could provide the capacity to account for changing 

sensor conditions and provide a more robust solution than the neural network. Additional 

data analysis prior to entry into the control system may also be beneficial and will be 

examined following the next round of healthy subject testing. It has been indicated in 

literature that the frequencies 30-100 Hz may also be useful for distinguishing motor 

control and should be investigated. Another approach to improving distinction between 

activities is to switch the learning output to be provided through joint angle and velocity 

measurement. By deviating from the biological output of EMG, the system will be able to 
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track a wider variety of activities with greater precision, but will no longer be a brain-to-

muscle mapping as the project originally intended. An exoskeleton to track joint angles is 

currently being developed. 
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APPENDIX A: DATA SHEETS 

A.1: NIRS System Specifications Used for Proof of Concept Data Collection 
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A.2: EEG System Used for Proof of Concept Data Collection 
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A.3: EMG Sensors Used for Feedback Data Collection 
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A.4: LED Light Source Used for Preliminary NIRS Study 
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A.5: LED Light Source Used for NIRS 
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A.6: Light Detector Used for NIRS 
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A.7: Servo Motor Used for Test Arm 
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