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Abstract 

 

This thesis presents components of an on-going research project aimed towards 

developing a miniature soft robot for urban search and rescue (USAR). The three 

significant contributions of the thesis are verifying the water hammer actuation previous 

work, developing an estimator of water hammer impulse direction from hose shape, and 

creating the infrastructure for distributed cognitive networks. There are many technical 

issues in designing soft robots, in terms of perception, actuation, cognition, power, 

physical structure and so on. We are focusing on actuation and cognition issues in this 

thesis. We investigated water hammer actuation as an alternative system which provides 

a continuously distributed form of actuation results from water hammer effect. It is 

special because it is a soft actuation method. We generated some comparison experiments 

and verified the benefits of the water hammer actuation, and also designed our soft robot 

to be hose-like in order to utilize the water hammer actuator. For the cognition part, we 

first addressed and verified that the shape of the hose-like robot has impact on impulse 

direction from the water hammer actuation. And then we implemented an emulated 

synthetic neural network (ESNN) to analyze the direction of the impulse from the water 

hammer actuation. Then in order to achieve the long-term goal, we distributed the 

emulated synthetic neural network onto many embedded system boards to achieve a 

distributed cognitive network. The distributed nodes in the network are using Bluetooth 

communication.  
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In the comparison experiments between the active tether system and passive 

tether system, we can clearly see the benefits of active tether in momentum transfer and 

friction reduction. For example, in the drag test, with the water hammer actuation the 

burden that the tether can pull was increased by about 1.6 times. For the distributed 

cognitive network, we successfully built an emulated synthetic neural network on 

distributed embedded system boards. With the shape information as the inputs, the 

difference on outputs from the ESNN and the experimental results is less than 3%. 



 iv 

 

Acknowledgements 

 

First of all, I would like to express my appreciation to my adviser Professor 

Richard Voyles for his invaluable guidance in my two years of graduate studies and 

research.  I also appreciate the support of Professor Matt Rutherford and Professor 

Mohammad Mahoor for serving as the committee members in my final oral examination. 

Plus, I appreciate all my teachers that ever taught me and gave me help during these two 

years. 

Secondly, I thank all my lab mates a lot, especially, Robert Nawrocki, Kang Li 

and Sam Povilus. Robert and I collaborated on the synthetic neuron network and hose 

shape and directionality analysis part of the research. Robert was instrumental in training 

the artificial neural networks described in this thesis, using MATLAB. Kang helped me 

on active tether versus passive tether experiments, and with the Zigbee wedge PCB 

layout design. Sam helped me on design of experiments for the water hammer system and 

with the force sensor platform. 

Thirdly, I thank my school, University of Denver. I love the campus environment, 

I love the school culture, and I love everything here. The two years of graduate study has 

been one of the best memories in my life. 

Last but not least, I would like to give my special thanks to my family, their love, 

concern and encouragement which drives me until the end of my study. Also, thanks so 

much to my friends and my host family; they make me not lonely here. I enjoy all the 

happy time with them. 



 v 

Support for my work was generously provided by the National Science 

Foundation through grants IIS-0938196, CNS-0923518 and IIP-0719306 and by the NSF 

Safety, Security and Rescue Research Center. 



 vi 

Table of Contents 

Chapter One: Introduction .................................................................................................. 1 
Motivation ............................................................................................................... 1 
Thesis Overview ..................................................................................................... 5 

Prior Work .............................................................................................................. 6 
Small Size Robot in Search and Rescue ..................................................... 6 
Soft Robot ................................................................................................... 7 
Distributed Cognitive Networks ................................................................. 8 
Soft Actuator ............................................................................................... 9 

Water Hammer Actuation ......................................................................... 10 
Tether Enhancement ................................................................................. 10 
Active Tether ............................................................................................ 12 

Chapter Two: Water Hammer Theory .............................................................................. 13 

Chapter Three: Effectiveness of Water Hammer Actuation as Active Tether .................. 17 
Experimental Setup ............................................................................................... 17 

Passive Tethered System........................................................................... 18 
Active Tethered System ............................................................................ 18 

Experimental Implementation ............................................................................... 19 
Distance Test Comparison ........................................................................ 21 
Drag Test Comparison .............................................................................. 24 

Sliding Friction Force Test Comparison ................................................... 26 

Chapter Four: Estimates of Water Hammer Force Impulse Direction Based on Distributed 

Morphology....................................................................................................................... 29 
Shapes and Directionality Hypothesis .................................................................. 29 

Experimental Setup for Shapes and Directionality ............................................... 31 
Force Sensor Data Calibration in MATLAB and Test Results............................. 32 

Computer Simulation and Comparison of Experimental and Simulation Data .... 35 

Chapter Five: Distributed Infrastructure for Soft Robot Cognition and Communication 39 

ANN Introduction ................................................................................................. 40 
Synthetic Neural Network and Emulated Synthetic Neural Network .................. 40 
ANN Training and Simulation .............................................................................. 41 
Emulated Synthetic Neural Network .................................................................... 42 
Emulated Synthetic Neural Network Model Improvement .................................. 44 

Error Analysis ....................................................................................................... 52 
Distributed Cognitive Networks ........................................................................... 55 

Upgraded Cognitive Network Node ..................................................................... 57 

Chapter Six: Summary and Future Work.......................................................................... 60 
Summary ............................................................................................................... 60 
Future Work .......................................................................................................... 61 

Topology Optimization for Distributed Cognitive Networks ................... 61 



 vii 

Software Infrastructure for RecoNode Wireless Communication ............ 61 

Control System Design for Controlling the Water Hammer Actuation .... 61 

References ......................................................................................................................... 62 

Appendix A ....................................................................................................................... 66 

Appendix B ....................................................................................................................... 68 

Appendix C ....................................................................................................................... 69 
 

 



 

 

 

 

 

 

 1 

Chapter One: Introduction 

Motivation  

The research of the Collaborative Mechatronics Lab (CML) has focused on the 

field of search and rescue robotics for a long time. We have contributed to both theory 

and applications in this field. For example, the CML has developed hardware and 

software systems for “TerminatorBot”, a small size cylindrical robot that is able to 

manipulate objects and crawl over difficult terrain.  

For my own research area, I am particularly interested in the field of soft robotics. 

First of all, it is a new and cutting-edge area for search and rescue robotics. Secondly, 

conformability is an important and helpful feature for search and rescue tasks. In search 

and rescue activities, robots always face complex and unknown situations, like collapsed 

buildings, narrow openings and so on [3]. Soft robots are able to deform themselves to fit 

the environment and this is both necessary and useful for these tasks. For example, the 

Jambot is highly deformable with its Jamming skin [4]; snake robots [5] promise the 

ability to reach areas that are difficult for conventional robots to reach. Finally, through 

polymer materials and fabrication processes, soft robots hold great promise for reducing 

the cost of deployment, particularly for multi-robot cooperative teams [6] [7].  

As with hard robots, all soft robots must contain the basic robotic components of 

perception, actuation, cognition, power, and physical structure. Among all these 

components, actuation is one of the hardest parts to achieve for an all-polymer robot; soft 
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actuators of sufficient power density, speed, and range of motion have not yet been made 

well for soft robots. Therefore, I began my study by examining novel actuation means 

that did not involve rigid components. The focus of my initial study was a new and 

promising actuation method called water hammer actuation. Water hammer actuation is a 

new research area for robotics systems. Water hammer is a phenomenon that occurs when 

a flow of water (or other fluid) through a pipe is suddenly stopped [8]. The momentum of 

the fluid that was in motion applies a force on the parts of the system that are at rest, 

causing a substantial increase in pressure. Some of the initial study of water hammer 

actuation was directed by D. P. Perrin and R. Howe at Harvard University [1] [2].  With 

their students, they developed an “active tether” system, which is a preliminary platform 

for experimentation. We realized this novel form of actuation, if properly controlled, 

could provide the basis for a practical, all-polymer robot. 

 The natural feature of water hammer actuation dictates the morphology to be 

hose-like, so that the flow is able to move inside. Therefore, our idea is to build a hose-

like miniature soft robot. The polymer tubing that forms the soft robot body doubles as 

both the actuating means and the physical structure of the robot. 

With this alternative actuator for the soft robot, we still need to be able to control 

it so that it is providing the desired directional actuation to the robot. A key contribution 

of my thesis is the confirmation of the hypothesis that the shape of the tubing conveying 

the fluid impacts the direction of the applied force at the point of momentum transfer. 

Stating this hypothesis in other words, “can we affect direction of motion of a hose-like 

robot body by varying the hose‟s shape and applying the water hammer effect?” Through 

the tests and simulations reported in chapter four, we proved the hypothesis above. Given 
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this relationship between the soft robot‟s morphology and the water hammer propulsion, 

we must develop a cognitive architecture that can predict the propulsion direction from 

the perceived morphology information of the hose-like robot, eventually allowing us to 

control the direction of the propulsion.  

To sense and analyze the shape information for the amorphous computational 

material hose-like robot body, we need to use a distributed sensing, actuation and 

computation method. Therefore we choose the distributed cognitive network to process 

the morphology information.  

 

Fig. 1.1. Conceptual view of a hose-like miniature soft robot 

 

Fig1.1 shows the “big picture” of the miniature soft robot for urban search and 

rescue that conceptually motivates. The whole body of the robot is constructed of soft 

materials, smooth and flexible. We can describe the information flow inside the soft robot 



4 

actuation control system as: the sensors, which can be bend sensors or torque sensors 

made of soft electronic materials, send the sensing information to cognitive devices, 

where morphology information gets processed; the output of cognitive devices is the 

directionality information results from the impulse from the water hammer effect. The 

locomotion controller uses the prediction directionality to control the water hammer 

actuator, which is the locomotion direction of the soft robot. The information flow from 

sensors to water hammer actuator can be found in Fig. 1.2.  

 

Fig. 1.2. Information flow inside the hose-like soft robot 
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Thesis Overview 

Given this long-term goal and broad interest within the Collaborative 

Nechatronics Lab (CML), it is too big for one master thesis. I chose to focus on, as 

mentioned above, the actuation and cognitive parts. There are other works on perception, 

power and so on; I am just not going to address them in my thesis. I am not implementing 

the soft/polymer cognitive network, but setting up an emulation of a prototype cognitive 

network; I am also not controlling the direction of the water hammer actuation, but 

simply sensing and analyzing the morphology information for directionality prediction. 

The two significant contributions of the thesis are: first verifying the effectiveness 

of water hammer actuation as active tether; and secondly, determining the directionality 

based on morphology and creating a distributed cognitive network to predict the 

directionality.  

In order to verify the performance of the water hammer actuator, we first 

generated three comparison experiments between active tethered system and passive 

tethered system (Chapter Three). The experiments are: distance test, drag test and sliding 

friction force test. In this test comparing the active and passive tether, we found that the 

active water hammer tether can perform better under the test conditions than the passive 

tether for combating robot stoppage due to the tether, also for the higher dragging 

capability. These experiments also confirm the results from previous publications [1] and 

[2].  

For the distributed cognitive networks, the hose-like soft robot is analogous to a 

snake on the ground; it is a finite element model, with each small element pushing in 

different directions. What‟s the effect of all the elements pushing on the frictional surface? 
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We first addressed and verified that the shape of the hose-like robot has impact on 

impulse direction from the water hammer actuation. And then we built an artificial neural 

network to predict the direction of the impulse from the water hammer actuation on an 

emulated synthetic neural network. Given the laboratorial conditions right now, we 

couldn‟t make sensors and cognitive devices with soft material, so we are using 

embedded system circuit UM001 as the hardware platform for the cognitive network. We 

implemented and distributed the artificial neural network onto many embedded system 

boards using Bluetooth as the communication means in the distributed cognitive network. 

 

Prior Work 

Small Size Robot in Search and Rescue 

Urban Search and Rescue (USAR) refers to rescue activities in collapsed building 

or man-made structures after a catastrophic event, such as an earthquake or a bombing [3]. 

Urban search-and-rescue is considered a "multi-hazard" discipline, as it may be needed 

for a variety of emergencies or disasters, including earthquakes, hurricanes, typhoons, 

storms and tornadoes, floods, dam failures, technological accidents, terrorist activities, 

and hazardous materials releases. Engineers have been researching the field of robotics 

rescue for decades, especially after the World Trade Center (WTC) disaster. From the 

WTC disaster human-robot interaction applications, it has been confirmed that small 

robots have a unique capability to collect useful data. For example, they can aid in search 

and rescue because their diminutive size enables them to fit into tight spaces, openings, 

such as those found in rubble and in caves [9]. Field research shows that mobility is one 
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main problem hindering effective use of robots in search and rescue missions [10]. This 

is why size matters for urban search and rescue tasks. 

 

Soft Robot 

Soft robotics is the branch of robotic study that deals with amorphous robotic 

devices constructed of soft materials. Soft robots can be conventional in morphology, as 

Trivedi addressed in [11], with articulated limbs and wheels such as the proposed electro 

rheological balloon animals shown in Fig. 1.3, or they can be unconventional forms, such 

as Amorphous Computational Materials and Molecule-like robots [12][13].  

 

Fig. 1.3. Proposed soft robot with limbs 

 

Fig. 1.4. Electro-rheological (ER) sensor/actuator cells in hexagonal combs made from 

soft polymers. 
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Soft robot is commonly thought of as soft, flexible, and compliant. All the sensors, 

actuators and other devices on the soft robot are all made of soft electronic materials. 

They have highly conformability; they can go through narrow opening, pass obstacles by 

their ability of compressing and flexibility, as in Fig. 1.1. These features make soft robot 

significantly more user friendly than traditional hard robots because humans are more 

accustomed to interacting with soft, animal-like creatures. Elephant‟s Trunk [14] robot 

has the ability of grasping various objects. Hatazaki and Konyo developed an active 

scope camera [15] which is using ciliary vibration drive mechanism. It can move 

smoothly while decreasing the sliding friction between the robot body and debris 

environment by vibrating the thin hair around the robot using the vibrating motor. The 

JamBot [4] is based on a novel concept, where the body is based on a number of balloons 

that can be inflated or deflated based upon requirements and environmental constraints.  

 

Distributed Cognitive Networks 

The concept of Cognitive Networks has been blooming in the networking 

research world for a while. Cognitive networks are motivated by complexity of the 

information. Particularly in wireless networks, there has been a trend towards 

increasingly complex, heterogeneous, and dynamic environments [16]. Cognitive 

networks were described in [17] as: “a network with a cognitive process that can perceive 

current network conditions, and then plan, decide and act on those conditions. The 

network can learn from these adaptations and use them to make future decisions, all 

while taking into account end-to-end goals.” 
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As we can see in Fig. 1.1, the morphology of the soft robot is decided by all the 

points along the hose-like body. In other words, in order to be able to detect the shape of 

the amorphous computational material, we need to gather the data from many of points 

along the body. This drives us to design a distributed cognitive network to analyze the 

data from the distributed points.  

 

Soft Actuator 

Soft actuators are the actuators that made of soft material, like electroactive 

polymers (EAPs). Electroactive polymers are polymers that exhibit a change in size or 

shape when stimulated by an electric field. One potential application for EAPs is that 

they can potentially be integrated into micro electro mechanical systems (MEMS) to 

produce smart actuators. Actuators based on electrochemically-induced volumetric 

changes in electroactive polymers (EAPs) have been used for artificial muscles and other 

applications [18]. They have features like high fracture toughness, large actuation strain 

and inherent vibration damping [19].  

Electro-rheological fluid (ER) fluids are suspensions of extremely fine, non-

conducting particles in an electrically insulating fluid. The apparent viscosity of these 

fluids changes reversibly by an order of up to 105 in response to an electric field. 

Viscosity changes can go from the consistency of a liquid to that of a gel with response 

times in the order of milliseconds. Cutkosky [20] and Voyles [21] demonstrated tactile 

sensing and actuation with electro-rheological fluids for robotic applications.  

But the EAPs and ER are weak and slow, also they don‟t have sufficient range of 

motion. None of them can provide high power density either. 
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Water Hammer Actuation 

“Water hammer” is a pressure surge or wave when a fluid in motion is forced to 

stop or change direction suddenly. Water hammer actuation is a continuously distributed 

form of actuation resulting from an effect commonly known as “water hammer effect”. It 

is a common phenomenon that happens around lives. For example, water hammer is the 

phenomenon that causes the gasoline pump hose to jerk as the flow is automatically shut 

off or household pipes to rattle when a washing machine cycles.  

Water hammer actuation helps robot in two aspects, one is the distributed 

momentum transfer, and the other is the distributed friction reduction 

Some of the initial study of water hammer actuation was undertaken by D. P. 

Perrin in Howe‟s group at Harvard University [1] [2]. They demonstrated the feasibility 

of harnessing this potentially devastating effect towards a useful application. Water 

hammer actuation is fascinating because there is no rigid part needed. More importantly, 

because of the forcing pulse in transferring along the whole pipe, the actuation is also 

distributed along all the hose-like robot body. Which means it can help reduce the friction 

on all the surfaces of the soft robot, also be able to help get rid of entanglements on any 

part of the robot body, like the situations in Fig 1.1. These excellent features of the water 

hammer actuator make it an ideal alternative form of the actuation for our miniature soft 

robot. 

 

Tether Enhancement 

Tethers have been used to assist robotics locomotion for a long time. The need for 

tethering systems on mobile robots can be seen in applications such as in ground, 
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underwater and aerospace environments. The tether can act as a conduit for any subset of 

the following: power, data communication between remote controllers and the tethered 

system, gases or fluids supply [22]. Especially when a small robot descends into a pile of 

rubble, searches inside a disaster environment and so on, the tether serves as a safety line 

[23]. While due to the tendency to tangle around the obstacles, the increasing of drags of 

tethers etc., many tethered robots are stopped before they complete their task by having 

their tether get caught on an obstacle. Tethers also limit the depth to which the robot can 

go because a tether is of a finite length. In many cases search and rescue robots work in 

teams. In this case robots have been known to cross paths and tangle in each other tethers 

[24]. For these reasons, we consider that it is valuable to maintain a tethered robot but 

with some improvements on the tether. 

Researchers have been trying to improve tether for a long time. For example, E. F. 

Fukushima, N. Kitamura and S. Hirose [25] developed autonomous tethered mobile robot 

systems using the „hyper-tether‟ concept. Its basic function is to actively control the 

tether‟s tension and length. A. Birk and C. Condea [26] set up glass fiber via a cable 

drum as cable deployment system on mobile robots, which makes the tether lightweight, 

thin, and very robust.  

All these approaches improved the tether performance from different point of 

views, but none of them solves the problems includes increasing drag and a tendency to 

catch on obstacles. 
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Active Tether 

In this thesis, I focus on the use of a continuously distributed form of actuation 

resulting from an effect commonly known as “water hammer”. The concept of “active 

tether” is first proposed by D. P. Perrin at Harvard University [1]. The active tether 

system consists of a mobile robot, an on-robot valve, and two pieces of water hoses for 

water flow. Besides supplying conventional power, active tether will supplement small 

robots with external driving energy caused by water hammer effect to meet with high 

power demands especially when robots get hindered. As mentioned before, water 

hammer occurs when a flow of water (or other fluid) through a pipe is suddenly stopped 

due to closure of a valve (or other means, as will be discussed); the momentum of the 

fluid that was in motion applies a force on the parts of the system that are at rest, causing 

a substantial increase in pressure.   
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Chapter Two: Water Hammer Theory 

“Water hammer” is a pressure surge or wave resulting when a fluid in motion is 

forced to stop or change direction suddenly. In steady flow there is no change in 

conditions at a point with time, while in unsteady flow conditions at a point may change 

with the time. Consider the case of instantaneous stoppage due to the closure of a valve in 

a horizontal pipe (Fig. 2.1). For purposes of this discussion friction and minor loses can 

be ignored. 

 

Fig. 2.1. Horizontal pipe with valve 

The instant the valve is closed, the fluid immediately adjacent to the valve is 

brought from velocity V0 to rest by the impulse of the higher pressure developed at the 

face of the valve, as in Fig. 2.2. The next layer is brought to a stop by this first layer and 

so on. Due to this chain of stoppages a pressure wave is created [27].  

 

Fig. 2.2. Hydraulic transients after the valve is closed 
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 The Navier-Stokes equations, for constant density and viscosity are: 

   guPuu
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 2)(                                        (Eqn. 2.1) 

where g is the density of the fluid, u is the fluid velocity, P  is the pressure, and 

 is the viscosity of the fluid. For turbulent flow we can neglect viscosity and for 

analysis of a water hammer, the changes in pressure due to gravity is much less than the 

changes in pressure associated with the water hammer ( gP  ), leaving: 
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 In the situation of a water hammer, the deceleration of the fluid will be much 

greater than the convection of momentum, that is uu
t
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, which leaves: 
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 The gradient of pressure is a change in pressure over some characteristic distance, 

and the time derivative of velocity is the change in velocity divided by some 

characteristic time. Rewriting Eqn. 2.3 and solving for P  
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 We can consider the speed of the water hammer wave to be the distance over 

which the fluid decelerates divided by the time is takes to decelerate the fluid. 

Substituting   
c

c
wave

t

L
v   gives: 
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   uvP wave                                                  (Eqn. 2.6) 

which is exactly the maximum magnitude of a water hammer wave for rapid 

valve closures considering a small element of fluid. 

 

      Fig. 2.3. (a) 

 

      Fig. 2.3. (b) 

Fig. 2.3. Small element of fluid at (a) time t  and (b) time tt   

 

 To determine the equation for the velocity of the water hammer wave, it is 

necessary to consider a small element of fluid in the pipe. In Fig. 2.3 a small element of 

fluid is shown at time t and at time tt  . The fluid is assumed to be elastic: between time 

t  and time tt   the element has compressed in length and expanded in cross section and 

has not necessarily maintained constant volume. By considering the conditions of 

dynamic equilibrium, continuity, and deformation of the tube, the velocity of the water 

hammer wave is: 

   2

1

1 )1(



Ee

KDcK
vwave


                                            (Eqn. 2.7) 
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where K  is the bulk modulus of the fluid, eED ,,  are the diameter, Young's 

modulus, and thickness of the tube, and 1c  is a constant determined by the constraints on 

the deformation of the pipe in a longitudinal direction [28].  

The analysis so far has also assumed that the magnitude of the water hammer 

wave is constant at the maximum value. This assumption is valid for instantaneous valve 

closures, but actual valve closures involve a finite amount of time. When the water 

hammer wave reaches the end of the hose, which is maintained at constant pressure, the 

water hammer wave will be reflected and a negative pressure wave will travel in the 

opposite direction. For slower valve closures, the change in pressure at a given position is 

the sum of the initial pressure wave from the valve and the negative pressure wave 

reflected from the reservoir. For valve closure times less than
2

wave

L

v
: 

max max(1 )
2P

wave

T
Length P

L

v

                                             (Eqn. 2.8) 

where T  is the valve closure time. For a 30 m tether with 1100 /wavev m s , this 

corresponds to valve closure times completed in less than 0.05 s. To maximize the effect 

of the water hammer wave on the tether, we would want to minimize the valve closure 

time [29]. 
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Chapter Three: Effectiveness of Water Hammer Actuation as Active Tether 

 “Active tether system” is tethered robotics system that utilizes the water hammer 

effect as the part of the actuation for the robot [1]. The platform for experiment consists 

of a mobile robot, an on-robot valve, two pieces of water hoses for water flow and an air 

bleed on the output water hose for minimizing the recoil force from water hammer effect, 

as shown in Fig. 3.1. In other to verify the effectiveness of the water hammer actuation, I 

design three comparison experiments between the active tethered system and the passive 

tethered system. 

 

Fig. 3.1. Active tethered system 

 

Experimental Setup 

In this experiment, we choose to use a 1/10 scale electric 7.2V battery powered 

4WD monster truck (3851-2, Heng Long Plastic Toys Co., Ltd.) as a mobile robot, which 

is set up with either a normal passive tether or water hammer device to consist of the 

passive tethered system or active tethered system. 
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Passive Tethered System 

The focus of this research is to compare a passive and active tether. To get a base 

line test for an example tether we simply attached a cable to the robot that had no purpose 

but to perform as a passive tether, the robot was still powered by the on board battery. To 

have a fair baseline for a passive tether system we need to choose a line that could be 

used in an actual tethered robot, which should be flexible, not easy to be stuck, smooth 

surface, small diameter and light. Based on this requirement, we choose to use the High-

flex Mini Diameter Data Cable (86302CY SL005, Alpha Wire Company), it is 22 AWG 

cable with diameter of 5.4mm and oil resistant PVC jacket. 

 

Active Tethered System 

The active tethered system consists of the remote controlled truck, a fluid control 

valve, two pieces of water hose, an air bleeder and tanks. In our experiment we use a 

general purpose solenoid valve (71215, Parker Hannifin Corporation), which is a 2-way, 

24V DC, direct operated model. In order to control the valve generating water hammer 

effect, we programmed UM003 motor control board from CML lab, whose MCU is 

ATMEGA 128 (Atmel Products -Microcontrollers – AVR), to turn the valve on and off at 

8 HZ. For the water hose, we want it be high pressure-resistant and with small diameter. 

Our choice is the High-Pressure Clear PVC Tubing (52375K12, McMASTER-CARR), 

whose inside diameter (ID) is 6.35mm and outside diameter (OD) is 11.11mm., the whole 

experimental platform installation with valve attached on is as shown in Fig. 3.2. In 
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addition, to keep a constant input pressure through the hoses, we used two five gallon 

tanks and air compressor to provide around pressure 90 psi water. 

 The material of water hose is much heavier than the passive tether per unit length 

in our experiment, and also, the solenoid valve with the plastic board is around 2kg, these 

all increase the burden of the mobile robot. This would only be a problem if it was found 

that the active tether robot could not go as far in our tests. 

 

Fig. 3.2. Active tethered system for experiments 

 

Experimental Implementation 

There are two types of performance testing for the robotics field: one is testing 

under laboratory conditions, and the other is field testing. In this chapter, we only operate 

the experiments under our lab conditions, while we are aiming to make fair and 

convincing comparable tests between the passive tethered system and active tethered 

system. 

 As described in the introduction part, USAR tasks are those robot assisted 

activities after a disaster in an urban environment. For measuring the performance of 
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robotics search and rescue systems, one approach is to develop standardized or 

reproducible tests similar to the RoboCup and AAAI rescue robot competitions which 

rely on the National Institute of Standards and Technology (NIST) test course [30].  

 In an urban search and rescue mission, a tethered robot can be affected by any 

unpredictable environmental events, like being held by a nail, getting stuck around a 

relatively heavy and big obstacle, falling into a hole and so on.  

 For this chapter, we simulate two scenarios of the possible disaster events in 

USAR on the tethers: one is getting tangled around some corners, and the other is being 

pinned under obstacles during the collapse. To simulate the first situation, we design a 

zigzag path inside a workshop, where the robot needs to pass many fixed table feet 

corners. With the continuous increase of friction, the tether will eventually become 

locked. Also we set up some heavy water bottles on the floor, and wrap the tether around 

the bottles, to see how many bottles it takes to stop the robot pulling its tether; and then 

measure the sliding friction with different number of bottles. For the second simulation, 

we choose to quantify the drag capability of the tethers with our experiment device, 

which is actually testing the drag potential during a collapse. In all three experiments, to 

develop fair comparisons, we apply the same experimental conditions such as the 

wheeled robot, floor, etc. to keep friction the same, except for different tethers for the two 

systems. 
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Distance Test Comparison 

During the robotics search and rescue field application, normally the tethered 

robot stops due to the tether getting stuck. The distance test is designed to compare 

tethers‟ capability in getting rid of tangles.  

 In the distance test, we generated a specific path (Fig. 3.3) in a workshop in ECE 

department at the University of Denver. There are four tables that fixed on the floor, each 

table is 30 inches * 64 inches measured on the table feet, and the distance between tables 

can be found from Fig. 3.3 also. The tethered robot needs to pass many table feet corners, 

and the mobile robot will come out from the same position with the same fully charged 

car battery. 

 

Fig. 3.3. Aero view of robotics moving path for distance test comparison 
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 We execute the experiment ten times with the passive tethered system and ten 

times with the active tethered system. The results turn out to be that the passive tethered 

system can normally pass the first three corners (A, B and C), but will stop after corner C, 

as in figure 3.4 (a). The final result is that the passive tethered robot stops 8.89 m away 

from start point on average, as shown in figure 3.5(a).  

  

Fig. 3.4. (a) Fig. 3.4. (b) 

Fig. 3.3. Distance test comparison result (a: passive tethered robot; b: active tethered 

robot.) 

 
(a) 
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Fig. 3.5. Distance from start point (a. passive tethered system; b. active tethered system) 

 

 For the active tethered system testing, the mobile robot passed the fifth corner 

(corner E) eighty percent of the time, as in figure 3.4 (b). On average the robot stops at a 

position that is 13.64 meters away from start point, as shown in figure 3.5 (b),  runs 2 and 

6 of the test are almost 4 meters less than other test results, the reason is that the robot 

stopped after the fourth corner instead of the fifth. This shows some inconsistency in the 

active tethered system. If we delete the data from runs 2 and 6, the mean distance is 14.51 

m. 

 From this test, we can see that both passive tethered and active tethered system 

will stop eventually due to the wrapping around the of table feet by the tether, which is 

actually due to the high friction results from the sharp corners of the table feet in this path. 

While the actuation from the water hammer effect, especially the jerks of the pipe, 

sharply reduces the friction, the active tether system can go on average 1.8 times the 

number of turns than the normal tethered system. This result proves the water hammer 

effect to be a powerful way to actuate a tether and reduce friction.   

(b) 
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Drag Test Comparison 

For USAR missions, the robots may need to be operated inside a collapsed 

building, descend into a pile of rubble, etc.  In those situations the robotics tethers are 

highly likely to be pinned by bricks, planks or rocks; therefore the drag strength turns out 

to be an important characteristic of robotics tether equipment.  

 There are also some drag tests in [1]. In our experiment, we will duplicate a 

pulling weight test. Perrin [1] tested the robot‟s ability to pull the additional weight. With 

the vehicle and the tether in a line, a block of lead and a brass weight weighing a total of 

6 kg was placed on top of the tether providing increased drag. 

  In our experiment, we will see how much additional weight the tethers can pull 

for the two different systems. We generate the test on the smooth floor in the same 

workshop at the University of Denver. We put the solid iron bars and weights onto the 

tethers 15cm away from the mobile robot at the same place above the ground, and the 

center of gravities of bars and weights are the same. We will measure the maximum 

weight that the tethered robot can pull. The experiment pictures can be found in Fig. 3.6 

and Fig. 3.7 for the two systems. 

 

Fig. 3.6. Drag test for passive tether 
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Fig. 3.7. Drag test for active tether 

 

 The test result is the passive tether can pull one small iron bar (1.1kg number 1 in 

Fig. 9), one big iron bar (2.3kg, number 2 in Fig. 3.6) , one 300g weight and one 100g 

weight in the situation shown in Fig. 3.6, thus the total weight is 3.85 kg (the bottom 

sheet is 0.05kg). 

 The test result for active tethered system is the active tether can pull one small 

iron bar (1.1kg number 1 in Fig. 3.7), two big iron bars (2.3*2kg, number 2 and 3 in Fig. 

3.7) , one 300g weight and two 100g weights, thus the total weight is 6.25 kg (the bottom 

sheet is 0.05kg).  

 From this test we see that the jerks of the water hammer effect will increase by 

about 1.6 times the burden that the tether can pull. The pulling force may vary in different 

situations, such as different friction coefficient, different distance from the mobile car. 

Nevertheless the results in [1] of increased drag pull by the active tether seem to be 

accurate. 

 At the same time, the results from the drag test prove the benefits of active tether 

on pulling capability. 
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Sliding Friction Force Test Comparison 

The sliding friction force test is designed to compare the tethers‟ capability to get 

rid of high friction. 

In the sliding friction force test, we wrapped the tether around many round water 

bottles to test how many bottles it takes to stop the robot pulling its tether. Additional, we 

measured the force of sliding friction with different numbers of bottles for the two 

systems by digital scale (Berkly, TEC 100 LB Digital Scale, www.berkly-fishing.com). 

The water bottles are cylinders with diameters of 25cm, containing 18.9 L (5 gallon) 

water. The methods of wrapping around different numbers of bottles can be found in Fig. 

3.8. The distance between two adjacent bottles is 60cm, and the center of gravities of the 

round bottles are on the same line. Other conditions are all the same for the two systems. 

The mobile robot will come out from the same position with the same fully charged car 

battery. 

For the two systems, because of the different material of the tether, the friction 

coefficients will be different. Therefore with the same number of bottles, the force of 

sliding friction will also be different. After running the comparison tests, we then 

measure the forces of sliding friction that are needed with different number of bottles for 

the two systems. The force is measured by a digital scale, with 0.001 kg precision and 

100 lb/ 45.5kg maximal range. The value of sliding friction forces can be found in Table 

3.1.  The experiment pictures can be found in Fig. 3.9 (a) and Fig. 3.9(b) for the two 

systems. 
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Fig. 3.8. Aero view of tether path for sliding friction force test 

 

Table 3.1. Force of sliding friction from digital scale 

 2 bottles 3 bottles 4 bottles 

Passive 0.7kg 1.8kg 3.0kg 

Active 1.9kg 2.9kg 4.5kg 

 

For the passive tethered system testing, the results turn out to be that the mobile 

robot is able to pull the tether wrapped around two bottles, but it will stop at the three 

bottles one, as in figure 3.9 (a). From the data in Table 3.1, we can say that the passive 

tethered robot can conquer the force of sliding friction between 0.7kg*9.8kg/m
2
 and 

1.8kg*9.8 kg/m
2
, which is about 6.86N to 17.64N.  

For the active tethered system testing, the mobile robot is able to pull the tether 

wrapped around first four bottles, but it will stop at the five bottles path, as in figure 
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3.9(b). From the data in .1, we can say that the active tethered robot can drag the sliding 

friction force a little above 4.5kg*9.8kg/m
2
, which is 44.1N.  

  

Fig. 3.9. (a) Fig. 3.9. (b) 

Fig. 3.9. Sliding friction force test comparison (a: passive tethered robot; b: active 

tethered robot.) 

 

From this test, we can see that both passive tethered and active tethered systems 

will stop eventually due to the high friction. The actuation from the water hammer effect, 

especially the jerks of the pipe, sharply reduce the friction, the active tether system can 

go two more bottles than the normal tethered system. This result proves again the benefit 

of water hammer effect in dealing with entanglement.   

We can conclude from the tests above that the active tether provides a new 

continuously distributed form of actuation for robots; the potential impact of this active 

tether is significant. It helps and benefits in urban search and rescue missions based on 

the discussion and experiments in this thesis. 
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Chapter Four: Estimates of Water Hammer Force Impulse Direction Based on 

Distributed Morphology 

In this chapter, we verified our hypothesis about the impact of tether shape on 

impulse direction from the water hammer effect. We ran physical experiments to verify 

the behavior and developed a simplified finite element model to help explain it. 

 

Shapes and Directionality Hypothesis 

 For a hose-like soft robot, we need to eliminate the wheeled robot from Figure 

3.1 so that only the tubing is actuating itself. (Feller et al. discuss ways of eliminating the 

valve in [2].)  

We can simply observe one phenomenon in some tests, which is the shape of the 

hose impacts the direction of propulsion of the valve, which is consistent with a lumped, 

finite element model of the fluid in the hose. Therefore, we started to investigate a 

hypothesis, namely that the shape of the active tether results in directed propulsion. In 

another word, the hypothesis can be restated as, can we affect direction of motion of a 

robot placed at the end of a hose, by varying the hose‟s shape and applying the water 

hammer effect. 

To start the investigation, we first generated a preliminary test. For a preliminary 

test of this hypothesis, the hose was arranged into two distinctively different shapes 
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denoted as Shape 1 and Shape 2 in Figure 4.1. The direction result can be found in Table 

4.1. The valve moved about 4 to 5 cm within 20 second interval.  

 

Fig. 4.1. Initial pipe shapes for directed propulsion due to water hammer effect 

experiment. (Arrows indicate direction but not the magnitude of propulsion.) 

 

Table 4.1. Directional angle values for the two shapes 

 Shape 1 Shape 2 

1 38.2
 o 

65.2
 o 

2 35.2
 o 

68.0
 o 

3 43.2
 o 

70.1
 o 

4 38.4
 o 

64.0
 o 

5 39.8
 o 

63.6
 o 
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6 42.4
 o 

62.3
 o 

7 40.5
 o 

66.0
 o 

8 36.0
o 

71.8
 o 

9 40.5
 o 

66.3
 o 

10 37.1
 o 

64.7
 o 

Mean 39.13
 o 

66.19
 o 

 

From Figure 4.1 and Table 4.1, we do see two very different directional angles 

come from the two distinctively different shapes. In other words, we are more confident 

that there is a strong relationship between the directionality of propulsion due to water 

hammer and the shape of the hose. This effect could be harnessed either in aiding the 

steering or perhaps as a sole source of directionality of movement. Therefore next we 

need to investigate the impact of pipe shapes on directionalities with more accurate 

experiments.   

 

Experimental Setup for Shapes and Directionality  

We attached the valve to a stationary (mounted to a large metal plate) force sensor 

that would measure the force impacting on the valve through the water hammer, in the X 

and Y direction. And also, the input point of the pipe is also fixed on the same piece of 

metal plate, as in Fig. 4.2.  

The experiment included two 5-gallon tanks with about 80 psi output, and the 

pipes were “High-Pressure Clear PVC Tubing,” with inside diameter of 6.35 mm, outside 
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diameter of 11.11 mm, and wall thickness of 2.38 mm. The valve was a general purpose, 

2-way, 24V DC solenoid valve with a weight of about 2 kg, operated at 8 Hz. The force 

sensor was an ATI Industrial Automation, Gamma Model, with sample rate of 2000 Hz 

and sensing range of 7.5 LBF. The sensor registers force in X, Y, and Z directions, 

however, for our purposes we disregarded the Z direction as the tube existed in a planar 

space. 

 

Fig. 4.2. Experimental setup for shapes and directionality tests 

 

Force Sensor Data Calibration in MATLAB and Test Results  

As mentioned before, the force sensor is working at sample rate of 2333HZ. On 

the one hand, the high sample rate is very necessary in order to be able to detect the very 

fast water hammer effect. On the other hand, with this high frequency, we will get around 

ten thousand data points just in five seconds. This brings us a problem, how should we 

deal with the data? How can we get the directional angle when the maximal pulse applies 

on the force sensor?  
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To fulfill the requirements above, we think of programming a data analysis 

software using MATLAB. Because the impulse happens so fast, we cannot get enough 

samples for the peak value in one impulse. What we do is we set the program to finds the 

average angle and magnitude above the threshold of the water hammer effect on the force 

sensor. The basic idea is to plot the data on a polar coordinator, and then set up a 

threshold on magnitude for isolating the peak (Default is 85% of peak). The final value of 

angle and magnitude are all the average value of points above threshold. As in Fig. 4.3, 

the threshold on magnitude is set to be 1.5 LBF, so the points marked as red are the 

points that used in calculation. The calibration result in Fig. 4.3 matches the shape 

number 19 in Appendix A. 

 

Fig. 4.3. Experimental setup for shapes and directionality 
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The experiment included measurement of 19 distinct shapes. The 19 shapes can 

be found in Appendix A.  Just using the program introduced above, we get the direction 

data in table 4.2, which presents the data obtained with 19 different shapes, each with a 

distinct force vector (the values are given as the angle calculated from the X axis in the 

counter-clockwise direction). 

 

Table 4.2. Experimental results for the 19 shapes 

Shape Number Directional Angle ( 
o 
) 

1 
91.931 

2 
95.0267 

3 
93.6791 

4 
98.5166 

5 
88.3794 

6 
68.7642 

7 
66.0154 

8 
54.1671 

9 
86.6102 

10 
98.8555 

11 
85.0278 

12 
66.6876 

13 
87.383 
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14 
88.9315 

15 
89.424 

16 
80.7907 

17 
98.3098 

18 
106.9707 

19 
83.2079 

 

 

Computer Simulation and Comparison of Experimental and Simulation Data 

A simplified, naive finite element model was constructed and simulated to model 

the resultant force vector due to the shape of the hose, acting on the front-mounted object. 

For the purposes of the simulation, the hose was considered to comprise of a finite 

number of elements, each in direct contact with adjacent elements. For each of the shapes, 

the resultant force vector, obtained by extracting point(s) of the greatest magnitude (in 

XY plane) of all of the impacting forces recorded, was matched with 20 distinct points on 

the hose that were obtained from pictures taken of the shape before the application of the 

water hammer (throughout the experiment the shape would slightly change due to the 

forces generated by the effect). Figure 4.4 demonstrates an example shape used for this 

experiment. Each finite element had a point placed at its center. These individual points 

were connected, in the XY-Plane, resulting in an approximate representation of the shape 

based on the formed angles in a global coordinate frame. Figure 4.5 illustrates the 

concept.  
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Fig. 4.4. Checker marks used to represent the shape of the hose. 

 

Fig. 4.5. Finite elements used to describe the serpentine shape of the hose, along with 

their corresponding Fx and Fy components in the world frame. 
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We are only considering 1
st
 order approximation of the angles. Each subsequent 

element had its force calculated based on its X and Y components with a scaled force of 

the previous component added. The scaling factor d, left as a variable, was adjusted 

through various trials, between values of „0‟ and „1‟. Increasing the scaling factor 
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corresponded to an increase in the influence of the previous component(s). Equations 4.1 

shows the formulae used to calculate the individual force components. f  is a constant 

equal to „1‟. 

Through the tests with varying d factor, Robert found out that increasing d from 

„0‟ to „0.2‟ does not produce a noticeable change in the vector. However, as d is 

increased beyond „0.5‟, some of the shapes result in greatly varying vectors.  

In order to verify the accuracy of our computer simulation we used the shape data 

obtained during the lab experiment and matched our resultant force vector from the 

simulation with the resultant force vector obtained from the force sensor. This fitting 

process involved modifying the parameter d in Equations 4.1 (the influence of individual 

finite elements on consecutive elements) until the difference was satisfactorily small.  

We calculated some different values of d factor, and compare the average error 

compare to the experiment data, for d=0.1, the average error is the smallest, which is just 

under 8% (we also measured the error for values slightly higher and lower than 0.1 but 

the error was greater in both cases). However, increasing d from „0‟ to „0.2‟ does not 

produce a noticeable change in the vector; for d=0.5 error increases to about 12%. Also 

through some comparison tests with different spacing points along the length of the hose, 

we figured that the spacing the points (equivalent with placing the bend sensors) closest 

to the front-mounted valve results in the closest approximation of the resultant force. The 

finding indicates the direction of propulsion is only mildly affected by the overall shape 

of the hose and the greatest influence is due to the direction or shape of the very end of 

the hose.  
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It can be seen that spacing the points (equivalent with placing the bend sensors) 

closest to the front-mounted valve results in the closest approximation of the resultant. 

The conclusion of our experiments is that we have two different sources (force 

sensor experiment and computer simulation) of information that all lead in the same 

direction. This, we believe, validates our hose shape and water hammer propulsion 

directionality relationship statement. 
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Chapter Five: Distributed Infrastructure for Soft Robot Cognition and 

Communication 

The motivation of this chapter is that although we are able to analyze the 

directionality with our force sensor and computer simulation method in Chapter Four, it‟s 

impossible to test all the possibilities of the shapes. In order to predict the directional 

result of the water hammer impulse given any arbitrary hose shape, we want to build an 

intelligent model to generalize the information for different shapes. I chose to apply an 

Artificial Neuron Network (ANN) to help us predict the direction based on the 

morphology.  

In this chapter, I describe how we first trained an ANN on our impulse/shape 

dataset using Matlab and the back propagation learning algorithm. Given these weights, 

which implement an estimator of the impulse direction from the distributed shape of the 

hose, we ultimately want to construct a distributed synthetic neural network, using 

polymer electronics, to realize the directional estimation. Since this is beyond the current 

capabilities of the CML, my goal is to emulate the execution of SNNs on a distributed 

array of UM003 embedded system boards. The balance of this chapter describes the 

development of the distributed cognitive network used to implement the impulse 

direction estimator from distributed morphology information provided by simulated 

polymer bend sensors along the proposed hose-like soft robot body. 



 

40 

ANN Introduction 

An artificial neural network (ANN) is a mathematical model or computational 

model that tries to simulate the structure and/or functional aspects of biological neural 

networks. It consists of an interconnected group of artificial neurons and processes 

information using a connectionist approach to computation. In most cases an ANN is an 

adaptive system that changes its structure based on external or internal information that 

flows through the network during the learning phase. Modern neural networks are non-

linear statistical data modeling tools. They are usually used to model complex 

relationships between inputs and outputs or to find patterns in data [31]. 

The general form of the output of one neuron is like this: 

)(
1

i

n

j

jijii bxwfy  


                                                                     (Eqn. 5.1) 

Where )(if is the activation function, iy is the output, jx  is the jth  input to the 

node, ijw is the connection weight between nodes i and j , ib is the bias of the node. 

Because the ANN is able to learn the complex relations between inputs and 

outputs, it is a potential tool to help us model the complex relations between shapes and 

directionality.  

 

Synthetic Neural Network and Emulated Synthetic Neural Network 

In the Collaborative Mechatronics Lab, we have chosen the term “Synthetic 

Neural Network” to refer to the parallel hardware implementation of an artificial neural 

network using discrete neurons fabricated with polymer electronics [32] [33]. A number 
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of research groups have tried different ways to implement neural networks in hardware, 

for example, [34] [35] presented possible designs for realizing neural behavior utilizing 

transistors.  

The goal of my thesis is not to fabricate a real synthetic neural network, but to 

develop the infrastructure for emulating arbitrary synthetic neural networks on distributed 

embedded system hardware. 

 

ANN Training and Simulation 

Ultimately, the data collected from sensors will be used by our Artificial Neural 

Network to extrapolate the information about the shape of the hose. Since my thesis does 

not address the perception component of an all-polymer soft robot, I simulated the 

behavior of the shape-determining bend sensors using a camera and manual 

measurements of the tangent to the tubing. Using MATLAB, a neural network was 

trained with the comprehensive data (or 20 individual points used to describe the shape of 

the entire hose for each of the 19 shapes) from our water hammer experiment. The 

network that was successfully trained consisted of three layers and 12 neurons in the 

hidden layer, and the resulting error was below 0.02%. Of the 19 tests all of the samples 

are in training set, no separation between training and testing sets was done. 

Since the goal of other researchers in the lab is to build actual prototypes of a 

hose-like polymer robot and its components, there is interest in simplifying the 

components as much as possible for early-stage prototypes. Therefore, we investigated 

reducing the number of neurons of the synthetic neural network to simplify the cognition 
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component for future implementation. By sub-sampling sensor data points and examining 

the performance of the network with various numbers of neurons, we found that four 

sensors and a single hidden layer of only four neurons produced an adequate estimation 

of impulse directionality. Consistent with our simplified finite element model with d=0.1, 

the four sensor points closest to the valve have the greatest effect; we scaled back the 

network to include an input layer of only four points. By scaling back the input space 

from 20 to 4, as well as reducing the overall number of hidden neurons from 12 to 4, as in 

Fig. 5.1., we were able to train this network to the accuracy of just below 0.02%. 

 

Emulated Synthetic Neural Network 

In order to be able to build a cognitive network, as mentioned before, we have 

decided to implement the network in hardware using embedded system boards, which 

emulate a synthetic neural network. We first used an embedded system circuit UM003, 

with an ATMega 128 as the MCU. We implemented the network using software coding 

in embedded C. Because the MCU does not have a floating point coprocessor, we used 

fixed point calculations. Our network was not capable of a live training but merely 

calculating the output of the network based on supplied input values and hard-coded 

connection weights exported from MATLAB. Because of the aforementioned assumption 

on the number of critical points and our hardware input and output limitations we limited 

our network to four input neurons, four hidden neurons and one output neuron, as in Fig. 

5.1. The activation for the four neurons in the hidden layers is analog hyperbolic tangent 

sigmoid function: 
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 xe
xf                                                  (Eqn. 5.2) 

This analog hyperbolic tangent sigmoid function activation function used by 

MATLAB was implemented as a piecewise linear approximation with 5 segments.  

The activation function for the neuron in output layer is just a liner function: 

xxf )(                                                  (Eqn. 5.3) 

The data used for this training was a rough approximation of the shapes generated 

for water hammer experiment. The output from embedded system board can be found in 

Table 5.1. We compared the result with the outputs from MATLAB simulated artificial 

neuron network, and verified that the output from our PCB-based NN matched that 

obtained in the software to the accuracy of about 6.26% (Table 5.1). 

 

Fig. 5.1. Artificial Neuron Network Architecture 
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Table 5.1 ANN outputs comparison between emulated synthetic neural network (ESNN) 

and MATLAB 

 

Shape 

# 

ESNN 

output 

MATLAB 

output 

Error Shape 

# 

ESNN 

output 

MATLAB 

output 

Error 

1 91.77 91.90 0.14% 11 85.70 85.00 0.82% 

2 61.99 95.00 34.75% 12 64.82 66.70 2.82% 

3 85.70 93.70 8.54% 13 89.13 87.40 1.94% 

4 76.99 98.50 21.84% 14 88.82 88.90 0.09% 

5 88.91 88.40 0.58% 15 86.36 89.40 3.4% 

6 67.62 68.80 1.72% 16 85.70 80.80 6.06% 

7 66.26 65.60 1.00% 17 103.94 98.30 5.74% 

8 56.90 54.20 4.98% 18 100.24 107.00 7.25% 

9 82.46 86.60 4.78% 19 85.70 83.20 3.00% 

10 108.27 98.90 9.50% Average Error 6.26% 

 

 

Emulated Synthetic Neural Network Model Improvement 

We originally planned to get very accurate and very close results from UM003 

compare to the MATLAB ANN outputs, because they are using exactly the same ANN 

model, including the network structure and inputs/weights numbers.  But from Table 5.1 

we can see, the error is averagely 6.26%, which is much bigger than our first guessing. 

Here in this section, I would like to analyze the output error between MATLAB model 

and hardware based model.  

First we need to see the differences of the models. For the one on embedded 

system board, as mentioned before, to enhance the calculation efficiency of the MCU, we 

use the fixed point calculation. So for the activation functions, instead of using an analog 

hyperbolic tangent sigmoid function (Fig. 5.2(a)), we use a piecewise linear 

approximation function (Fig. 5.2(b)). The piecewise linear sigmoid function consist of 

five segments. The X and Y axis are amplified 100 times, for the sake of fixed point 
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calculation. The X-axis is divided into ]300,[  , ]100,300[  , ]100,100[  , 

]300,100[   and ],100[  . From Fig. 5.2 we can see that, except the scaling issue 

(which is taken care in the code), the linear approximation function has obvious 

inaccuracies on the corners. If the point happens to be appearing at the corner areas of the 

function, it has more inaccuracy.  

There is another source can cause the output error, which exists in the data 

processing. We are using the fixed point computation on our MCU, so we have to 

magnify the activation functions, input data, weights and biases. As just mentioned, the 

activation function is scaled 100 times. For the input values, we multiply by 10 on the 

original values and round the float to the nearest integer. The numbers can be found in 

Table 5.2. 

 

 

Fig. 5.2 (a). Analog hyperbolic tangent sigmoid function 
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Fig. 5.2 (b). Piecewise linear sigmoid function 

 

For the connection weight and bias values for the four neurons in hidden layer, we 

10 times the connection weights and 100 times the bias, this makes the inputs to the 

activation functions magnified 100 times (as in Table 5.3). Because the activation 

function on ESNN is scaled 100 times on both X and Y axis, the outputs from the 

activation functions is still magnified 100 times.  

Next, for the connection weight and bias values for the neuron in output layer, 

since the inputs to the neuron are all 100 times already, the connection weights are just 

the integer values by rounding the float, but the bias is 100 times magnified (as in Table 

5.3). Therefore, the final output from the neuron in output layer is 100 times magnified. 

We just manually divide 100 on those output values. This is how the results for the 

embedded system board come from. 
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Table 5.2 ANN input values for and MATLAB model and emulated synthetic neural 

network (ESNN) 

 

 Shape 1 Shape 2 Shape 3 Shape 4 

MATLAB ESNN MATLAB ESNN MATLAB ESNN MATLAB ESNN 

Input 1 0.79 8 3.58 36 3.81 38 3.27 33 

Input 2 -5.48 -55 -12.48 -125 -7.74 -77 -16.79 -168 

Input 3 -10.96 -110 -35.14 -351 28.27 283 -19.48 -195 

Input 4 -8.98 -90 -44.79 -448 48.01 480 -15.47 -155 

 Shape 5 Shape 6 Shape 7 Shape 8 

MATLAB ESNN MATLAB ESNN MATLAB ESNN MATLAB ESNN 

Input 1 10.41 104 17.35 174 12.43 124 12.63 126 

Input 2 -8.06 -81 12.35 124 17.05 171 4.62 46 

Input 3 -28.73 -287 -15.43 -154 5.82 58 7.98 80 

Input 4 -14.25 -143 -45.79 -458 -20.53 -205 -18.28 -183 

 Shape 9 Shape 10 Shape 11 Shape 12 

MATLAB ESNN MATLAB ESNN MATLAB ESNN MATLAB ESNN 

Input 1 11.22 112 -13.45 -135 9.73 97 21.62 216 

Input 2 15.86 159 -34.67 -347 38.13 381 31.21 312 

Input 3 34.62 346 -43.45 -435 38.56 386 -1.59 -16 

Input 4 5.56 56 23.48 235 33.40 334 -27.08 -271 

 Shape 13 Shape 14 Shape 15 Shape 16 

MATLAB ESNN MATLAB ESNN MATLAB ESNN MATLAB ESNN 

Input 1 -4.64 -46 -0.62 -6 3.95 40 10.95 110 

Input 2 -0.29 -3 -0.15 -2 -5.63 -56 14.69 147 

Input 3 2.72 27 -0.25 -3 0.35 4 8.57 86 

Input 4 5.98 60 -0.34 -3 1.33 13 20.03 200 

 Shape 17 Shape 18 Shape 19 

 

MATLAB ESNN MATLAB ESNN MATLAB ESNN 

Input 1 -14.74 -147 -3.58 -36 0.00 0 

Input 2 -5.81 -58 3.58 36 3.09 31 

Input 3 -14.66 -147 -16.50 -165 9.63 96 

Input 4 -16.91 -169 -19.03 -190 6.20 62 
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Table 5.3 ANN connection weights and bias values for and MATLAB model and 

emulated synthetic neural network (ESNN) 

 

Connection Weights – Hidden Layer 

 MATLAB ESNN MATLAB ESNN MATLAB ESNN MATLAB ESNN 

1st Neuron 0.187985423 2 0.0583138 1 0.009799 0 0.1233049 1 

2nd Neuron -2.22737366 -22 0.7812735 8 -1.620899 -16 1.0037673 10 

3rd Neuron -0.24935495 -2 0.4630343 5 -0.308402 -3 0.2588001 3 

4th Neuron 0.525324214 5 -0.3030798 -3 -0.301955 -3 0.4187965 4 

Bias - Hidden Layer 

 MATLAB ESNN  

1st Neuron 2.084942174 208 

2nd Neuron 0.787153812 79 

3rd Neuron 7.862609462 786 

4th Neuron 9.447020522 945 

Connection Weights – Output Layer 

MATLAB ESNN MATLAB ESNN MATLAB ESNN MATLAB ESNN 

-11.3839028 -11 0.5063467 1 24.40795 24 36.312271 36 

Bias - Output Layer 

MATLAB ESNN  

37.70492943 3770  

 

Now we can clearly see, during the processing of rounding the floats, we lose the 

accuracy of the calculation again. Given the two reasons of the inaccuracy, we can 

understand some of the error outputs, but some of them are still too big to be accepted, 

for example, the error for shape 2 is 34.75%. Therefore, we decided to improve the model 

on embedded system board by increasing the scales on numbers, especially on the weight 

values (Because most of the weights are smaller than 1). For the new model, in the 

hidden layer, we scale the inputs for 100 times, the weights 1000 times, bias 100,000 

times, and also scale the activation function 1000 times compare to the one in Fig. 5.2 (b); 
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in the output layer, we scale the bias for 1,000,000 times and weights for 10 times. So the 

new numbers for the embedded system board based ANN can be found in Table 5.4 and 

Table 5.5. 

 

Table 5.4 ANN input values for and MATLAB model and emulated synthetic neural 

network (ESNN) 

 Shape 1 Shape 2 Shape 3 Shape 4 

MATLAB ESNN MATLAB ESNN 
MATLA

B 
ESNN MATLAB ESNN 

Input 1 0.79 79 3.58 358 3.81 381 3.27 327 

Input 2 -5.48 -548 -12.48 -1248 -7.74 -774 -16.79 -1679 

Input 3 -10.96 -1096 -35.14 -3514 28.27 2827 -19.48 -1948 

Input 4 -8.98 -898 -44.79 -4479 48.01 4801 -15.47 -1547 

 Shape 5 Shape 6 Shape 7 Shape 8 

MATLAB ESNN MATLAB ESNN 
MATLA

B 
ESNN MATLAB ESNN 

Input 1 10.41 1041 17.35 1735 12.43 1243 12.63 1263 

Input 2 -8.06 -806 12.35 1235 17.05 1705 4.62 462 

Input 3 -28.73 -2873 -15.43 -1543 5.82 582 7.98 798 

Input 4 -14.25 -1425 -45.79 -4579 -20.53 -2053 -18.28 -1828 

 Shape 9 Shape 10 Shape 11 Shape 12 

MATLAB ESNN MATLAB ESNN 
MATLA

B 
ESNN MATLAB ESNN 

Input 1 11.22 1122 -13.45 -1345 9.73 973 973 973 

Input 2 15.86 1586 -34.67 -3467 38.13 3813 38.13 3813 

Input 3 34.62 3462 -43.45 -4345 38.56 3856 38.56 3856 

Input 4 5.56 556 23.48 2348 33.40 3340 33.40 3340 

 Shape 13 Shape 14 Shape 15 Shape 16 

MATLAB ESNN MATLAB ESNN 
MATLA

B 
ESNN MATLAB ESNN 

Input 1 -4.64 -464 -0.62 -62 3.95 395 10.95 1095 

Input 2 -0.29 -29 -0.15 -15 -5.63 -563 14.69 1469 

Input 3 2.72 272 -0.25 -25 0.35 35 8.57 857 

Input 4 5.98 598 -0.34 -34 1.33 133 20.03 2003 

 Shape 17 Shape 18 Shape 19 

 

MATLAB ESNN MATLAB ESNN 
MATLA

B 
ESNN 

Input 1 -14.74 -1474 -3.58 -358 0.00 0 
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Input 2 -5.81 -581 3.58 358 3.09 309 

Input 3 -14.66 -1466 -16.50 -1650 9.63 963 

Input 4 -16.91 -1691 -19.03 -1903 6.20 620 

 

 

 

Table 5.5 ANN connection weights and bias values for and MATLAB model and 

emulated synthetic neural network (ESNN) 

Connection Weights – Hidden Layer 

 MATLAB ESNN MATLAB MCU MATLAB ESNN MATLAB ESNN 

1st Neuron 0.187985423 188 0.0583138 58 0.009799 10 0.1233049 123 

2nd Neuron -2.22737366 -2227 0.7812735 781 -1.620899 -1621 1.0037673 1004 

3rd Neuron -0.24935495 -249 0.4630343 463 -0.308402 -308 0.2588001 259 

4th Neuron 0.525324214 525 -0.3030798 -303 -0.301955 -302 0.4187965 419 

Bias - Hidden Layer 

 MATLAB ESNN  

1st Neuron 2.084942174 208494 

2nd Neuron 0.787153812 78715 

3rd Neuron 7.862609462 786261 

4th Neuron 9.447020522 944702 

Connection Weights – Output Layer 

MATLAB ESNN MATLAB ESNN MATLAB ESNN MATLAB ESNN 

-11.3839028 -114 0.5063467 5 24.40795 244 36.312271 363 

Bias - Output Layer 

MATLAB ESNN  

37.70492943 37704929  

 

With this new model, we are able to get results that compare favorably with the 

MATLAB outputs as shown in Table 5.6. We can clearly see that with the changing on 

scaling of numbers, the output error between the emulated synthetic neural network and 

MATLAB is below 3%. So we can say that the emulated synthetic neural network model 

is improved a lot. With this more accurate ESNN, we compared the results from the 
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ESNN and the water hammer experiments directly in Table 5.7. The average error is still 

lower than 3%, which is a pretty good result. 

 

Table 5.6 ANN outputs comparison between emulated synthetic neural network (ESNN) 

and MATLAB 

 

Shape 

# 

ESNN 

output 

MATLAB 

output 

Error Shape 

# 

ESNN 

output 

MATLAB 

output 

Error 

1 92.507 91.90 0.66% 11 86.505 85.00 1.77% 

2 93.015 95.00 2.08% 12 63.986 66.70 4.07% 

3 86.505 93.70 7.67% 13 88.692 87.40 1.48% 

4 97.068 98.50 1.45% 14 88.697 88.90 0.23% 

5 89.176 88.40 0.87% 15 86.883 89.40 2.82% 

6 65.368 68.80 4.99% 16 86.505 80.80 7.06% 

7 63.247 65.60 3.59% 17 97.556 98.30 0.76% 

8 56.058 54.20 3.43% 18 106.987 107.00 0.01% 

9 84.350 86.60 2.60% 19 86.505 83.20 3.97% 

10 98.914 98.90 0.01% Average Error 2.61% 

 

 

Table 5.7 Comparison between emulated synthetic neural network (ESNN) output and 

experiment results 

 

Shape 

# 

ESNN 

output 

Experiment 

result 

Error Shape 

# 

ESNN 

output 

Experiment 

result 

Error 

1 92.507 91.931 0.63% 11 86.505 85.0278 1.74% 

2 93.015 95.0267 2.12% 12 63.986 66.6876 4.05% 

3 86.505 93.6791 7.66% 13 88.692 87.383 1.50% 

4 97.068 98.5166 1.47% 14 88.697 88.9315 0.26% 

5 89.176 88.3794 0.90% 15 86.883 89.424 2.84% 

6 65.368 68.7642 4.94% 16 86.505 80.7907 7.07% 

7 63.247 66.0154 4.19% 17 97.556 98.3098 0.77% 

8 56.058 54.1671 3.49% 18 106.987 106.9707 0.02% 

9 84.350 86.6102 2.61% 19 86.505 83.2079 3.96% 

10 98.914 98.8555 0.06% Average Error 2.65% 
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Error Analysis 

From the results of the new ESNN model, we can clearly see the average error 

compared to experimental data is reduced. But defining an error metric is difficult in such 

a case. For example, adding 360
o
 to every value is also an accurate result, but the percent 

error would appear much lower (artificially lower) in this case. In fact, the results are not 

scattered from 0 to 360, but are really deviations from straight ahead. Why not compute 

error with respect to zero degrees (straight ahead), rather than 90 degrees? 

What I really want to show is not an absolute error metric, but that my neural 

network estimator works well. Can I prove that our ESNN is one of the most accurate 

models to estimate the directionality?  Since many of the values from the experiments are 

around 90
 o
, is the ESNN really better than simply guessing that no matter what the shape 

is, the valve will always go straight ahead (always 90
o
)? And how about only getting the 

direction that the last point on the hose is pointing, ignoring the other parts of the hose. 

Will this get a better estimation compared to ESNN?  

With these concerns in mind, I decided to not only compare our ESNN only with 

the experimental results, but also compare it to other estimating models. First, we 

generated another estimation matrix, which is only measuring the direction of one point 

that closest to the valve (about 3cm away from the valve on the hose). This is equivalent 

to setting the scaling factor d to 0 in Eqn.4.1. (This zeros out the contribution from all 

nodes, i-1.) The results can be found in Table 5.8, under the column heading “d=0”. The 

second estimation model compared is that of always guessing the direction is straight, 

which equals to 90 degree. This is similar to Roy Godzdanker‟s prior work in [36] that 
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assumed that the water hammer propulsion is always pointing straight ahead. The results 

from this estimation model can also be found in Table 5.8. 

From Table 5.8, we can easily see that our new ESNN model has the smallest 

average errors compare to the experiment results. In addition, we also calculated the 

standard deviation compare to the experiment results as Eqn. 5.1.  

 
N

ii ExpEst
N 1

2)(
1

                                         (Eqn. 5.1) 

Where Est  is the result from estimation model, and Exp is the experiment result. 

In this way, we can also see how much the results from estimation model is off from the 

experiments. The standard deviation values can be found in Table 5.8. A modified 

standard deviation calculation was performed that computes the deviation of each model 

from the experimental baseline (replacing the mean value subtracted from each estimate 

with the experimental value). This also confirms that our ESNN is the one that is closest 

to the experiment results. 

 

Table 5.8 Average error and standard deviation comparison between different estimation 

models 

 

Shape # 
Experiment 

result 

ESNN 

output 
d=0 

Always Straight 

Propulsion 

1 91.931 92.507 89 90 

2 95.0267 93.015 86 90 

3 93.6791 86.505 86 90 

4 98.5166 97.068 87 90 

5 88.3794 89.176 80 90 

6 68.7642 65.368 73 90 

7 66.0154 63.247 78 90 

8 54.1671 56.058 77 90 

9 86.6102 84.350 79 90 

10 98.8555 98.914 103 90 



 

54 

11 85.0278 86.505 80 90 

12 66.6876 63.986 68 90 

13 87.383 88.692 86 90 

14 88.9315 88.697 91 90 

15 89.424 86.883 86 90 

16 80.7907 86.505 79 90 

17 98.3098 97.556 105 90 

18 106.9707 106.987 94 90 

19 83.2079 86.505 90 90 

Average Error 

Compare to 

Experiment Result 

 

2.65% 8.76% 13.56% 

Standard Deviation 

Compare to 

Experiment Result 

 

2.793447 

 

 

8.636357 

 

 

13.73113 

 

 

 

Finally, we examined how often the estimate is in the correct quadrant, which 

means is it on the left side of the Y axis (>90
o
), on the right side of Y axis (<90

o
) or 

straight (=90
o
). This is important because we want the estimation model to give us 

predictions that have the correct sign, compared to the actual directions. Therefore, we 

check the signs of the estimation results, and classify them into three groups, “correct 

sign” means the estimation result and experiment result are pointing to the same side of Y 

axis, “incorrect sign” refers to the estimation results that are not on the same side of Y 

axis compare to experiment results. Thirdly, the “no sign” means the estimations that are 

straight ahead. The results are in Table 5.9, we can see that with the ESNN model, the 

estimation gets more correct signs than the other two models.  
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 Table 5.9 Sign comparison between different estimation models 

 

 Number of 

Correct Sign 

Number of 

Incorrect Sign 

Number of  No 

Sign(Straight ) 

ESNN 18 1 0 

d=0 13 5 1 

Always Straight Propulsion 0 0 19 

 

In summary, we compared the average error, standard deviation and sign of 

different estimation models, and all the evidence points to the same conclusion, which is 

our ESNN model is the best one in predicting the directionality based on the shape 

information.  

 

Distributed Cognitive Networks   

The ANN is getting the directionality information of the water hammer 

propulsion using the shape. It is actually a cognitive network for our soft robot. As we 

know, the hose-like robot is consists of amorphous computational material, which needs 

distributed sensing and cognition in order to gather all the information along the body. 

Therefore, we need to distribute our ANN onto distributed embedded system boards, 

which is a distributed cognitive network. 

Talking about the distributed cognitive networks, there is one thing we should 

first consider: the communications between the distributed nodes in the network. Do we 

choose wired or wireless communication? Since the hose-like robot body can be very 

long, (though the diameter of the hose is small), if we do the wired communication, we 

need a lot of extra wires along the body. But if we use the wireless communications, we 
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get much simpler design; the networking can be achieved by the wireless communication 

and malt hopping. Therefore, we decided to use the wireless communication networks.  

Instead of using UM003 as above, we use UM001 embedded system circuit as the 

node in distributed cognitive networks. UM001 (Fig. 5.3) is actually very similar to 

UM003, they are using the same MCU, but it has a Bluetooth chip LMX9830 on it, 

which provides the potential of wireless communications.  

 
Figure 5.3. UM001 board  

 

Because UM001 and UM003 both have the same MCU, the software calculation 

of ANN doesn‟t need to be change a lot. The thing we need to change is the topology of 

the ANN. Instead of running all the neurons on a single board, we are running them 

distributed. For example, we can run the inputs 1, 3 and the third neuron in hidden layer 

on board one, input 2, the first and fourth neurons in hidden layer on board two, and input 

4, the second neuron in hidden layer and the neuron in output layer on board three. In this 

way, we distributed our network onto three embedded system boards. One thing to 

emphasis, in this thesis, I am not discussing the topology optimization of the distributed 
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cognitive networks. The work will be done by other members in my research group in 

future. 

 

Upgraded Cognitive Network Node  

The platform of our sensor and cognitive devices are designed for a single 

purpose, which is sensing the morphology of the hose-like robot, and analyze the 

directionality information of the water hammer propulsion. However, this is only 

focusing the application of the actuation; we want our soft robot can perform some other 

tasks, especially in a different environment. For example, sense the environment with 

camera and process the video information in the cognitive network; or sense the 

temperature and humanity in the environment, and process the data in the cognitive 

network. Because it‟s impossible for a robot to carry all kinds of sensors and operate 

them at the same time in a complex urban search and rescue environment, it challenges 

the battery, the hardware complicity of the robot. Therefore we think of assigning and 

configuring potential usable sensors before the robots deployment and then decide 

specific ones we need to use after deployment.  In this case, a fixed-architecture sensing 

and cognition device cannot fulfill all their requirements. Our research group has actually 

already developed a concept of “RecoNode” [37] [38]. The idea is to design a FPGA 

based reconfigurable platform for sensing and cognation.  

I am particularly in charge of the wireless communication module for this RecoNode 

platform. We choose to use Zigbee protocol as the wireless communication protocol for 

RecoNode. ZigBee is a global standard for wireless communication, which provides a 
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short-range cost effective networking capability. ZigBee technology is a low data rate, 

low power consumption; low cost wireless networking protocol targeted towards 

automation and remote control applications [39]. We are using one of the most popular 

ZigBee chip CC2520 (Texas Instruments) for our hardware platform, it is a single-chip 

2.4 GHz IEEE 802.15.4 compliant RF transceiver, it also provides extensive hardware 

support for packet handling, data buffering, burst transmissions, data encryption, data 

authentication, clear channel assessment, link quality indication and packet timing 

information.  

The Zigbee wedge is named DU150 in our research lab, its schematics can be found 

in Appendix B. The printable circuit board (PCB) layout can be found in Fig. 5.4. It is a 

four layer RF circuit.  

DU 150 as introduced before is the wireless communication interface for the 

RecoNode platform. Once our lab finished the FPGA based platform hardware design 

and software operating system, we can transplant our ANN software from MCU to 

FPGAs and run the distributed cognitive network on this upgraded node in the future. 

  

Layer 1(Top Layer) Layer 2 
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Layer 3 Layer 4(Bottom Layer) 

Fig. 5.4. DU150 PCB layout 
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Chapter Six: Summary and Future Work 

Summary 

This thesis presents components for an on-going research project at Collaborative 

Mechatronics Lab. The long-term goal is to design a miniature hose-like soft robot with 

distributed soft sensors and cognitive devices along its body, using soft actuation.  

The contributions of this thesis to the big research project are, 1) we found out an 

alternative form of soft actuator--water hammer actuation, and verified the benefits of 

water hammer actuator by some laboratorial tests. 2) We figured out that there is a 

relationship between the hose shape and the direction of water hammer propulsion at the 

end of the hose (Chapter Four). 3) With the study in Chapter Four, we implemented an 

emulated synthetic neural network on an embedded system circuit UM003, as a cognitive 

device to predict the directionality information based on the morphology information of 

the hose. 4) We distributed the ESNN onto many embedded system boards UM001, 

which is using the Bluetooth communication. This means we achieved a distributed 

cognitive network. 5) As mentioned in Chapter Five, we made the RF circuit DU150 for 

a RecoNode platform, which is a FPGA based configurable sensing and cognition 

platform. It is actually an upgrade platform compared to the embedded system circuits 

UM001/003 we are using right now. 
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Future Work 

Topology Optimization for Distributed Cognitive Networks 

As discussed in Chapter Five, we were able to distribute the ANN onto many 

embedded system boards to achieve a distributed cognitive network, but we didn‟t do the 

research on the topology optimization. While topology is very important for networks, it 

affects the computer efficiency and communication robustness a lot. Therefore, in the 

future, our lab will work on the topology optimization for the distributed cognitive 

network. 

 

Software Infrastructure for RecoNode Wireless Communication 

We developed the DU150 hardware circuit as an upgraded version of the 

embedded system board UM001. Next step, we have to transplant the C code running on 

the MCU of UM001 onto the FPGA on RecoNode, so that the distributed cognitive 

network can be running on the RecoNode platform. 

 

Control System Design for Controlling the Water Hammer Actuation 

We are able to predict the water hammer propulsion based on the morphology 

information right now, but in order to achieve our long term goal, we also need to design 

a control system (both hardware and software) which is used to steer and control the 

water hammer actuation.  The control system should also be made of soft material. It can 

be set up on the end of the hose-like robot, or be distributed along the whole body, based 

on different requirements and situations. 
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Appendix A 

The 19 shapes from experiments that are used in computer simulation: 

   

Shape 1 Shape 2 Shape 3 

   

Shape 4 Shape 5 Shape 6 

   

Shape 7 Shape 8 Shape 9 

   

Shape 10 Shape 11 Shape 12 



 

67 

  
 

Shape 13 Shape 14 Shape 15 

  
 

Shape 16 Shape 17 Shape 18 

 

 

Shape 19 
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Appendix B 

 

DU 150 schematics 
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Appendix C 

In addition to the laboratory comparison experiments between active tether and 

passive tether in Chapter Three, we also did a field test at Disaster City in Texas. In the 

field test, we used a bigger and more powerful robot, Inuktun robot. It is a miniature 

inspection system designed to access confined spaces and challenging terrain in a variety 

of applications, as shown in Fig. C.1. We set up the active tether system on this Inuktun 

robot and used it for the field test; because the Inuktun robot has a control tether for itself, 

we tied the two pieces of water hoses and the data cable together with the pipe sleeve as 

the active tethered system.  For the passive tethered system, we use its own flexible 

control cable as the passive tether. 

 

 

Fig. C.1. Inuktun robot with active tether 

 

The Disaster City test is to run the robot on a slope on the roof of the “House of 

Pancakes”. The slope is covered with tough sand and small rocks; in other words, it has a 

high friction surface, and the slope is about 25
o 

and 12 meters long, as in Fig. C.2. We 

want to see how far the robot is able to climb with the two tether systems. 
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Fig. C.2. Inuktun robot with active tether on the slope 

 

We ran the experiments three times for each system. For the passive tether system, 

the Inuktun robot was able to get to the top of the slope for three times; but for the active 

tether system, the robot could only get to the top of the slope once, and the other two 

times, they all stopped at the points around 85% to 90% of the whole length.  

The active tether was less effective than the passive tether actually in this case. 

The reason we think this happened is, first of all, the active tether is not the optimal tether; 

it has its own drawbacks, and it cannot perform better than the passive tether under all 

situations. For example, the active tether system always needs another system to provide 

high pressure water flow in, like air compressor, pump and so on. Secondly, the water 

hose is much heavier than normal data cable. This may cause problems especially in the 

situations like the above; the tether didn‟t get stuck with obstacles, but the robot stopped 

due to both the high friction and the extra gravity from the tether. As in Fig. C.3, we 

know on a slope, the tether gravity 1G  added to the robot equals to the tether gravity 

multiply by sin  . Although the jerks on the pipe caused by water hammer effect could 
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help reduce the friction on the tether, the extra gravity was still applied to the robot. The 

unit weight of the Inukton cable is about 0.02kg/m, but the two pieces of water hose with 

sleeve and water inside is 1.2kg/m; it dramatically increased the burden of the robot over 

long distance. For the passive tether system, on the top of the slopes, 1G is 0.99N; for the 

active tether system, 1G  is 59.64N on the top of the slope. This is the main reason for the 

bad performance of the active tether in this case. 

 

Fig. C.3. Burden of tethered robot on slope 

 

This field test also told us that we need to do a lot of design improvement on the 

active tether, for example find lighter material for the tubing; find alternative forms of 

lower density fluid instead of water and so on. 
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