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ABSTRACT 

 

Due to the unique spatial and temporal characteristics of ecological phenomena, 

the extent and grain size of spatial data sets essentially filter the observations. This thesis 

examines the impacts of temporal and spatial resolution on the modeling of terrestrial 

stable carbon isotopic landscapes (isoscapes). I model the distribution of leaf stable 

carbon isotope composition (δ13C) for the continent of North America at multiple 

temporal and spatial resolutions. I generate each δ13C isoscape variation by first 

predicting the relative abundance of C3/C4 vegetation cover using monthly climate grids, 

crop distribution/type grids, and remote sensing data of plant life form, and then applying 

the respective leaf δ13C endmembers to each pixel. 

One application of isoscapes is predicting the geographic origin of migratory 

animals by relating the isotopic signature of animal tissue to environmental isotope 

values. I conduct multiple exercises in geographic origin assignment using known-origin 

feather isotope data of mountain plover (Charadrius montanus) chicks as an indirect 

means of testing the impact of resolution on δ13C isoscapes. Results indicate that 

temporal resolution does have a significant impact on predicted isoscape layers, and in 

turn, geographic origin assignment efficacy. Temporal periods that did not correspond to 

tissue growth exhibited a mismatch in the range of predicted vegetation δ13C values 
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relative to the range of measured feather δ13C values and therefore were not useful in 

generating geographic origin assignments. The spatial resolution of modeled δ13C 

minimally impacted assignment accuracy and precision compared to temporal resolution; 

however, the current analysis was limited by the spatial resolution of the input data set. 

These results should be further explored to better characterize spatiotemporal ecological 

characteristics of migratory animals and to improve modeling of the isotopic landscape 

itself.  
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CHAPTER 1: Introduction 

“An ecosystem is the interacting system made up of all the living and nonliving objects in 

a specified volume of space” -Weathers et al., 2013 

 “Space and time frame all aspects of the discipline of geography.” – Goodchild, 2013 

1.1 Background and Motivation 

Because ecology is the study of connections and interactions between living and 

non-living entities sharing space, the complexities of modeling ecological patterns and 

processes are directly connected to fundamental geographic questions concerning spatial 

resolution and extent. The spatial properties of a model often determine the range of 

patterns and processes that can be observed (Dark & Bram, 2007). Because both biotic 

and abiotic processes important to ecology occur across a range of spatial and temporal 

resolutions, when developing an ecological model, an essential question becomes, “what 

is the best way to represent these processes?” (Goodchild, 2011).  

Spatial resolution and extent are essential components all spatial models. Models 

using the same data aggregated at different spatial and temporal resolutions can yield 

different, and occasionally contradictory, results (Openshaw & Taylor, 1977; Jelinski & 

Wu, 1996; Dark & Bram, 2007). These spatial modeling considerations have been 

defined as properties of the modifiable areal unit problem (MAUP).  The MAUP is made 
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up of two separate but related phenomena: the scale effect and the zonation effect 

(Jelinski & Wu, 1996; Dark & Bram, 2007). The scale effect occurs when data are 

aggregated into fewer, larger units, resulting in decreased variance, while the mean 

values remain the same (Bram & Dark, 2007). The zonation effect occurs when the data 

set is recombined into different areal units (i.e., same area but different shapes and/or 

locations), which results in different data values (impacting both the mean and the 

variance of the data) (Jelinski & Wu, 1996; Dark & Bram, 2007).  

The MAUP is an issue for nearly any quantitative study using spatial data 

(Openshaw & Taylor, 1979; Dark & Bram, 2007). Due to the proliferation of freely 

available spatial data over the past few decades, researchers in a wide range of fields 

commonly exploit data sets created without the specific purpose of their research, 

meaning they do not have direct control over the spatial or temporal resolution of input 

data (Dark & Bram, 2007). As a result, selection of spatial grain size and spatial extent is 

often arbitrary (Jelinski & Wu, 1996; Bark & Bram, 2007). However, the MAUP does 

not necessarily need to be viewed as a problem; rather, it reflects the characteristics of 

real-world phenomena and how they are structured (Jelinski & Wu, 1996). If the MAUP 

is recognized and dealt with intentionally, it can be leveraged to characterize the 

structure, function and dynamics of the processes the model is attempting to capture. 

Geography provides the conceptual framework for the handling of spatial data across 

diverse research communities (Goodchild, 2013).  

Ecological models often seek to represent a myriad of complex environmental 

processes in a single model. However, a fair amount of uncertainty exists in modeling 
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individual ecological processes and how they might interact with one another. Due to 

these factors, effective ecological models are often created by modeling indirect measures 

to characterize ecosystem processes. This is a particularly useful strategy when the study 

area spans a large spatial extent, such as a region or continent (Turner, 2005; Wu et al., 

2013; Heffernan et al., 2014; Fei et al., 2016).  

One example of a macrosystem ecological model is the spatio-temporal 

distribution of stable isotopes in the environment, which can be represented as an 

isoscape (isotopic landscape). Isoscapes are used in a wide variety of research, ranging 

from forensic anthropology to food-web ecology (Bowen & West, 2008; Bowen 2010; 

West et al., 2010). In this research, I generate a terrestrial stable carbon isoscape of North 

America by predicting general vegetation distributions and relating this prediction to 

expected leaf carbon isotope ratio (δ13C) content.  Spatial representations of stable carbon 

isotopes are used in a range of ecological and environmental science research. For 

example, because ratios remain relatively constant during the assimilation that occurs 

between an animal’s diet and their body tissues, the patterns of δ13C that exist in a 

landscape can be used to constrain the geographic origin of animals based on the δ13C 

(generally in combination with other stable isotopes) within their body tissue (Wunder et 

al., 2005; Hobson et al., 2012).  Mapping δ13C can also be used to characterize 

physiological controls on, as well as sources of biosphere-atmosphere gas exchange 

(Bowling et al., 2002; Suites et al., 2005). 

Stable carbon isoscapes have been created and published at global extents (Lloyd 

and Farquhar, 1994; Still et al. 2003; Suits et al., 2005) and continental extents for Africa 
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and South America (Still and Powell, 2010; Powell et al., 2012). However, stable carbon 

isoscapes have yet to be published for continents spanning mid- to high- latitudes such as 

North America or Eurasia. The spatial distribution of terrestrial stable carbon (δ13C) 

isotopes is determined primarily by plant functional type distribution (i.e., the relative 

composition of C3/C4 plants). Because North America and Eurasia have temporally offset 

but geographically co-dominant C3/C4 grasslands, these continents present a modeling 

challenge of both spatially and temporally mixed pixels. The modeling of mid-latitude 

grasslands to generate a stable terrestrial carbon isoscape therefore offers an excellent 

opportunity to explore the impacts of spatial and temporal resolution. Generating a stable 

carbon isoscape for North America contributes to a gap in the current data sets available 

to the stable isotope research community, as well as develops best practices for the 

representation of dynamic landscapes in static ecological models.  

Assessing the impact of spatial and temporal resolution on ecological models is 

quite challenging because directly comparing the same data set at different spatial or 

temporal resolutions essentially only tests the resampling or interpolation method, not the 

impact of resolution on the accuracy of the data set or the resulting model itself. To work 

around this, I propose creating an ecological model at a series of different spatial and 

temporal resolutions, and then comparing the performance of the models when applied to 

an ecological analysis, specifically, a geographic origin assignment for a migratory 

species.  

Geographic origin of an individual organism can be predicted by relating the 

isotopic signature of animal tissue to spatially explicit modeled values of stable isotopes 
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entering the food web (Kelly & Finch, 1998; Hobson et al., 1999; Wunder, 2010; Bowen 

et al., 2014; Vander Zanden et al., 2014). This is possible because organisms assimilate 

the stable isotope composition of their environment (with some modification) into their 

body tissue, meaning that “you are what you eat, isotopically” (DeNiro & Epstein, 1978). 

Because an “isotopic fingerprint” is left on the inert tissues of an animal by their local 

environment, isotopes can serve as a forensic tool for ecology (Ehleringer & Monson, 

1993; Bowen & West, 2008; Wunder & Norris 2008; Hobson et al., 2010; Wunder, 2010; 

Bowen et al., 2014). 

In order to test the impact of varying spatial and temporal resolutions on the stable 

carbon isoscape model, I conduct multiple exercises in geographic origin assignment, 

using known-origin feather isotope data of mountain plovers (Charadrius montanus) 

(Wunder et al., 2005; Wunder, 2010; Bowen et al., 2014; Vander Zanden et al., 2014). 

By using known-origin feather isotope data, I am able to compare the assignment 

predictions of each temporal and spatial variation of the δ13C isoscape model against a 

validation data set and thereby indirectly assess impact. 

1.2 Research Questions 

This research explicitly links the fields of geography and ecology, explores best 

practices for representing variability in a static models, and guides new questions about 

ecological process by specifically considering the following guiding research questions:  

1. What is the spatial distribution of vegetation (i.e., leaf) stable carbon isotopes on 

the continent of North America? 
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2. How can seasonal variation of vegetation cover be represented in a static model? 

What is the impact of temporally aggregating the seasonal variation of mid-

latitude grasslands impact confidence in the final model? 

3. What is the impact of spatial resolution on overall confidence in the model? What 

is the impact of aggregating fine-grained spatial data versus resampling coarse-

grained spatial data on the final data product? 

1.3 Intellectual Merit: Geographic Representation 

Several previous efforts to characterize mid-latitude grasslands have harnessed 

the phenological differences in C3 and C4 grasses as a mechanism for distinguishing plant 

functional types (Wang et al., 2011; Wang et al., 2013; Zhong et al., 2015). Although 

these methods have produced promising results, the end products are ultimately a static 

output, (i.e., the average C3/C4 abundance over a season). Static models assume temporal 

consistency (Bowen et al., 2005; Vander Zanden et al., 2015). This assumption often 

creates temporally averaged models that do not represent a “real” environment at any one 

given point in time.  This is a particularly important consideration for migratory animals, 

who only inhabit a region at a specific time of the year. Animals integrate environmental 

signals via their food web at varying spatial and temporal resolutions (Hobson & Norris, 

2008). My research will explore best practices for representing temporally dynamic 

processes in a static data product.  

Representing spatial and temporally dynamic phenomena at an appropriate 

resolution is challenging. It is an additional challenge to quantify the impact of model 
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spatial and temporal resolutions on analysis results. Directly comparing data products of 

differing spatial and temporal resolutions is difficult, particularly when they are derived 

from the same input data. A direct comparison can identify disagreements that are 

potentially an artifact of aggregation and resampling methods, rather than assessing the 

impact on model output (Gotway & Young, 2002; Pontius et al., 2007). My research 

develops and explores a novel technique to assess impacts of spatio-temporal resolution 

on an ecological model.  

1.4 Broader Impacts: Connecting Geography and Ecology 

Recently, due to environmental threats to biomes globally, as well as wide-spread 

availability of large extent, spatially explicit data, macrosystems ecology has emerged as 

a rapidly growing framework within ecology which facilitates investigations that 

emphasize spatial and temporal patterns, heterogeneity, and interactions of processes 

across multiple scales (Turner, 2005; Wu et al., 2013; Heffernan et al., 2014; Fei et al., 

2016). These emphases are all core tenants of studies within the field of geography. In 

my research, I will apply a geographic perspective to challenges commonly faced in 

ecology, and thereby contribute to building explicit connections between the two 

disciplines.  

1.5 Summary of Chapters 

Chapter 2: Background provides a literature review and theoretical context to my thesis 

research. Traditional geographic and geostatistical problems such as the modifiable areal 

unit problem (MAUP) and the change of support problem (COSP) are defined and 
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discussed in the context of ecological modeling and research. The potential of leveraging 

these “problems” in ecological models is considered. Next, literature regarding the 

modeling of plant functional types and carbon isoscapes is summarized. Finally, the use 

of stable carbon isoscapes for geographic origin assignments is reviewed, detailing 

principles of geographic origin assignments using the probability surfaces model.  

Chapter 3: Research Question 1 details the steps to generate an annual terrestrial δ13C 

isoscape for the continent of North America that is complimentary to the stable carbon 

isoscapes generated for Africa (Still & Powell, 2010) and South America (Powell et al., 

2012). I identify “optimal” parameters for modeling the spatial distribution of stable 

carbon isotopes in North America at an annual temporal and 5-min spatial resolution by 

comparing four variations of the δ13C models to a reference data set of soil organic matter 

(SOM) values spanning the Great Plains, USA. This chapter informs the parameters used 

to generate the spatial and temporal variations of δ13C isoscapes for research questions 2 

and 3 (Chapters 4 and 5, respectively).  

Chapter 4: Research Question 2 explores the impact of temporal resolution on stable 

carbon isoscape models in mixed grassland regions. This chapter describes methods for 

assessing and comparing the efficacy of different isoscape models by using geographic 

origin assignment with known-origin tissue samples as a method for model “validation”. 

Seasonal and monthly terrestrial δ13C isoscapes are developed using the methods outlined 

in Chapter 3, and compared to the annual temporal resolution product. The results of this 

analysis are discussed, with special attention paid to the impact of temporal resolution on 

δ13C isoscape models in regards to temporally varying grasslands. 
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Chapter 5: Research Question 3 expands the methods and techniques developed in 

Chapter 4 by exploring the impacts of spatial resolution on modeling stable terrestrial 

carbon isoscapes. Two additional annual stable carbon isoscapes are generated at 

different spatial resolutions (1-kilometer and 10-minute) using the methods outlined in 

Chapter 3. These two isoscapes as well as the annual 5-minute isoscape are assessed 

using the geographic origin assignment validation method detailed in Chapter 4 to 

evaluate the impact that spatial resolution has on representing terrestrial δ13C isoscapes 

and the efficacy of assigning the geographic origin of mountain plovers. 

Chapter 6: Summary and Conclusions summarizes the findings of my thesis research and 

draws general conclusions on limitations and best practices for approaching fundamental 

geographic problems such as the MAUP or the COSP when creating isoscapes and using 

geographic origin assignment methods. Recommendations for future avenues of research 

are presented.  
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CHAPTER 2: Background 

2.1 The Hazards and Opportunities of Spatial Analysis  

2.1.1 Describing the Spatiotemporal Characteristics of Data 

Spatially-explicit models created in a Geographic Information System (GIS) are 

based off of digital spatial data sets. The fundamental spatial and temporal characteristics 

of a spatial data set are described by resolution and extent. Extent refers to the total 

geographic area that the data set encompasses. Extent can also refer to the temporal 

duration or range of data (Turner et al., 1989; Fassnacht et al., 2006; Goodchild, 2011). 

Resolution refers to the degree of detail, and applies both to the spatial and temporal 

dimensions (Turner et al., 1989; Hay et al., 2001). In the case of raster (i.e. gridded) data, 

spatial resolution is explicitly defined as the ground dimensions of the raster cells, or 

pixels (Jelinski & Wu, 1996; Fassnacht et al., 2006; Goodchild, 2011). Although the term 

scale has been inconsistently defined across disciplines, in the context of geographic 

information systems (GIS) -and the context of this research- scale refers to the 

combination of resolution and extent (Fassnacht et al., 2006; Goodchild, 2011). 

2.1.2 The Modifiable Areal Unit Problem 

All quantitative studies that utilize spatial data are subject to the modifiable unit 

areal unit problem (MAUP). An iconic study on the impacts of the MAUP by Openshaw 
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& Taylor (1979) illustrated how modifying the basic areal units (spatial grain size and 

zone) of an input data set can radically change the outcome of analysis. The study 

analyzed data from 99 counties in Iowa and found that the correlation between the 

percentage of elderly voters and percentage of Republican voters ranged from +0.979 to -

0.811, depending on the basic areal unit of analysis. This effect has been repeatedly 

demonstrated in studies in both human and physical geography (Openshaw & Taylor, 

1979; Jelinski & Wu, 1996; Hamil et al., 2016). 

The MAUP has two major components: the scale effect and the zonation effect. 

The scale effect is primarily a result of data aggregation, which causes variations in 

numerical results strictly due to the number of areal units used to characterize a given 

area (Openshaw & Taylor, 1979; Dark & Bram, 2007). The scale effect occurs when data 

are combined into fewer, larger units. As a result, the variance of the data are reduced 

while the mean of the data set remains the same, as illustrated in Fig. 1 (a-c). This 

effectively smoothes the data and results in information loss (Dark & Bram, 2007). The 

zonation effect describes differences in data values as a result of the way in which smaller 

areal units are grouped into larger areal units (Openshaw & Taylor, 1979; Dark & Bram, 

2007), and impacts both the variance and mean of the data set. The impact of zonation on 

mean and variance is less predictable than the impact of linear aggregation, as illustrated 

in Fig. 1 (d-f) (Jelinski & Wu, 1996; Dark & Bram, 2007).  
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The MAUP is also associated with the concept of ecological fallacy, which occurs 

when aggregate data values are applied to an individual within the data set (Gotway & 

Young, 2002; Dark & Bram, 2007). This can occur in studies using spatial data that do 

not differentiate between the spatial associations caused by aggregation of the data versus 

the actual associations between the data (Openshaw, 1984; Dark & Bram, 2007). 

Ecological fallacy is an extreme condition of cross-scale inference or downscaling 

(Goodchild, 2011). Making inferences at a finer resolution than the input data (i.e., 

downscaling) can be just as hazardous as aggregation (Hamil et al., 2016), as attempting 

to make inferences at finer (or coarser) resolution than the original data set may produce 

Figure 1 Example showing the two aspects of MAUP; (a-c) represent the scale 

effect, showing how aggregation reduces variation and spatial heterogeneity, while 

(d-f) depict the zonation effect, showing how zones can greatly impact variance, and 

even the mean of a data set, even when maintaining the same number of areal units 

Source: Jelinski & Wu, (1996). 
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invalid results. Although the MAUP is well documented and researched, no formal 

solution exists (Dark & Bram, 2007). 

2.1.3 The Modifiable Temporal Unit Problem 

All of the hazards associated with the MAUP also apply to selecting and 

modifying the resolution and extent of temporal data (Dark & Bram, 2007). Although the 

MAUP addresses the intertwined nature of space and time (Cressie, 1996), the particular 

complications involved in using temporal data have recently been specifically identified 

as the Modifiable Temporal Unit Problem (MTUP) (Coltekin et al., 2011; De Jong & 

Bruin, 2012; Cheng & Adepeju, 2014).  

Like the MAUP, the MTUP identifies the hazards associated with arbitrary 

selection or modification of sampling units. MTUP is composed of three components: the 

aggregation effect (related to temporal resolution or interval), the segmentation effect 

(how intervals are defined in time), and the boundary effect (duration or extent of the 

temporal window) (Coltekin et al., 2011; Cheng & Adepeju, 2014). The aggregation 

effect is analogous to the MAUP scale effect, in which the aggregation of data results in 

loss of data heterogeneity. Temporal data are often aggregated for ease of processing or 

in order to assimilate the data to a regular sampling unit (Cheng & Adepju, 2014). The 

temporal segmentation effect is related to the zonation effect in the MAUP. The temporal 

segmentation effect identifies that the way the data are divided into smaller units impacts 

the results of analysis. For example a week-long segment could be defined as spanning 

Sunday through the following Saturday, versus to starting on Mondays and ending on 
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Sundays. Although the temporal grain is equivalent in both definitions, results of analysis 

could be different (Cheng & Adepju, 2014). 

The impacts of the MTUP have been documented in multiple studies. De Jong & 

de Bruin (2012) found that temporal aggregation schema directly impact model results. In 

particular they found that a large portion of the variation was a result of changing 

aggregation bins (de Jong and de Bruin, 2012). In a case study using crime data in central 

London, Cheng & Adepeju (2014) found that temporal unit had a significant effect on the 

temporal duration, spatial extent and statistical significance of analysis results, and 

suggested that aggregation could actually be harnessed to more rapidly identify 

significant clusters of crime than data at finer temporal resolutions. The findings of 

Cheng & Adepeju (2014) suggest that the segmentation effect could assist in 

characterizing the cyclic patterns of crime. 

Often, decisions regarding temporal scale are rooted in data availability, or based 

on empirical analysis rather than theory (Coltekin et al., 2011). Much like the MAUP, 

there is not necessarily a solution to the MTUP. Rather, it is a potential source of error 

that must be explicitly accounted for. 

2.1.4 Combining Mismatched Spatial Data (The Change of Support Problem) 

The MAUP, which has been well documented and researched within the field of 

geography, is directly related to the change of support problem (COSP). The COSP is 

defined in geostatistics as the problems associated with integrating spatial data that exist 

in different forms or dimensions (e.g., point and raster data) (Cressie, 1996; Gotway & 
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Young, 2002). In this context, support refers to the geometrical size, shape and spatial 

orientation of the regions associated with the data measurements (Cressie, 1996). To 

integrate spatially mismatched data sets, data are often averaged or aggregated to a 

matching form for analysis, resulting in a new variable. The new variable is related to the 

original, but due to the transformation may possess different statistical and spatial 

properties (Gotway & Young, 2002). Many statistical methods have been developed for 

combining spatially mismatched data, (e.g., kriging, Bayesian areal regression models); 

however, each introduces its own error and limitations (Gotway & Young, 2002). 

2.1.5 The MAUP and Raster Data 

Raster (i.e., gridded) data are often used when creating spatially explicit 

ecological models, as the data represent a continuous response variable. Raster data 

represent a particular instance of the MAUP, because a regular grid is arbitrarily imposed 

over a study area, defining the grain and extent of the data (Hay et al., 2001; Lechner et 

al., 2011). For raster data sets, the modifiable units are the individual pixels, and spatial 

resolution is determined by the area of the pixels (Jelinski & Wu, 1996). Users of raster 

data sets must be aware that the areal units are often preset and arbitrary, or limited by the 

physical design of the instrument system, and may not properly represent the 

phenomenon they are trying to capture (Soranno et al., 2014). For example, the spatial 

resolution of remotely sensed data is determined by the mechanics of the sensor, rather 

than a grain size significant to the research to which it is applied (Dark & Bram, 2007; 

Lecher et al., 2011). Results of spatial analysis may therefore represent the associations 

between the original units, rather than the phenomenon itself (Fassnacht et al., 2006; 



16 

 

Lechner et al., 2011; Soranno et al., 2014). Remotely sensed data can neither provide 

more detail than this minimum mapping unit, nor accurately portray spatial patterns at a 

coarser resolution than the resolution at which it was captured (Hay et al., 2001; 

Fassnacht et al., 2005). 

The risk associated with both MAUP and COSP when creating spatially explicit 

models is increased when using multiple spatial data sets (Lechner et al., 2011). Selecting 

the most appropriate scale for analysis while assimilating disparate data sets is important 

because the spatial dynamics of a process at one resolution may be unimportant at 

another resolution (Gotway & Young, 2002). Often, data are spatially aggregated to make 

them compatible with other data sets. However, this is statistically problematic because 

variability of the original data values may be reduced, and because there is an inherent 

statistical instability in the transition between spatial resolutions (Dark & Bram, 2007). 

Methods and best practices for combining incompatible spatial data continues to be an 

active area of statistical research (Gotway & Young, 2002). 

2.1.6 The MAUP as an Opportunity 

“Thus the researcher whose model fits reality at a level that is less than perfect, as all 

models must, is left not knowing whether the misfit is due to the effects of spatial 

resolution, or due to an imperfection in the model, or both” –Goodchild, 2011 

Both the MAUP and the COSP have been researched as “problems.” However, 

there is a well-accepted paradigm within ecology that physical and ecological processes 

naturally operate within different spatial and temporal scales (resolution and extent) 
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(Turner et al., 1989; Dark & Bram, 2007). Within the framework of macrosystems 

ecology, researchers have begun to harness the MAUP or COSP “problems” to 

characterize the spatial characteristics of ecological processes. The resolution of a model 

is a property of observation and analysis, and only becomes fixed once the researcher sets 

spatial parameters (Hay et al., 2001; Lechner et al., 2011; Soranno et al., 2014). Due to 

the unique spatial characteristics of ecological entities, the extent and grain size of a data 

set essentially filter the phenomena that are captured (Dark & Bram, 2007). Therefore, 

changing the resolution or extent of observation may better capture the phenomena being 

studied. Modifying areal units has the potential to characterize important information 

about the structure, function and dynamics of the phenomena being modeled (Jelinski & 

Wu, 1996; Hay et al., 2001; Soranno et al., 2014).  

For example, a recent study by Griffith et al. (2015) found that at a 100 km spatial 

grain, the modeled spatial distribution of C4 vegetation cover (which is directly correlated 

with δ13C) was more strongly correlated to the δ13C isotopic ratios of bison tissue than to 

soil δ13C isotopic ratios. Such correlations provide information about the spatial 

properties of the underlying ecological processes; i.e., the bison assimilate δ13C of their 

environment at a spatial grain on the order of 100 km, while the processes driving 

assimilation of plant δ13C in soil operate at much finer spatial resolutions (Griffith et al., 

2015). When the process being studied is influenced by factors that operate at a finer 

spatial resolution represented by the data set, the results of data analysis may ultimately 

be misleading (Goodchild, 2011). Conversely, including too much detail may lead to 

overwhelming complexity in the representation of the system being studied (Jelinski & 
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Wu, 1996), and aggregation may be necessary in order to create more meaningful units of 

analysis (Gotway & Young, 2002). 

To mitigate the challenge of selecting an appropriate spatial grain for a model, 

there an emerging trend in macrosystems and landscape ecology is to conduct multi-scale 

studies, such that spatial resolution (and/or extent) is the independent variable being 

tested (Turner et al., 1989; Fei et al., 2016). Multi-scale studies specifically sample data 

at multiple grain sizes, to characterize ecosystems at multiple spatial resolutions, while 

mitigating the effects of the MAUP. For spatial models that rely on data of a fixed 

sampling unit, creating models at multiple scales is a way of ensuring the best possible 

resolution is captured given the input data (Marceau et al., 1994; Fassnacht et al., 2006).  

Additionally, researchers are commonly limited to using indirect data sets; 

however, when dealt with explicitly and appropriately, resolution has the potential to 

characterize the structure, function and dynamics of complex systems embedded in time 

and space (Jelinski & Wu, 1996; Hay et al., 2001; Soranno et al., 2014). Due to the 

paradoxical risk and potential presented by the MAUP, best practices for using spatial 

data in ecological studies should continue to be researched. In particular, I am interested 

in exploring the impacts of traditional geographic modeling “problems” such as the 

MAUP, the MTUP and the COSP on static, spatially-explicit ecological models by 

exploring the impact of spatial and temporal resolution on a terrestrial stable carbon 

isoscape for the continent of North America.  
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2.2 Stable Terrestrial Carbon Isoscapes  

2.2.1 Isotopes and Isoscapes 

Most elements found on a periodic table exist in several forms, containing the 

same number of protons and electrons, and possessing the same chemical properties, but 

with different numbers of neutrons and therefore unique atomic masses (Wassenaar, 

2008; West et al., 2010; Weathers et al., 2013). The different number of neutrons cause 

isotopes to behave slightly differently from one another, resulting in differing isotopic 

concentrations (through a process called fractionation) as a function of space and time 

(Bowen, 2010). Fractionation, or the separation of isotopes into different concentrations, 

occurs in any system where physical or chemical processes produce an isotopic 

concentration different from the concentration of the input source (Bowen 2010). Isotopic 

values are expressed as δ, where δ =
(𝑅𝑠𝑎𝑚𝑝𝑙𝑒−𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑)

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
 × 1000‰, and compares the 

abundance of the heavy isotopic abundance to the light isotope (e.g., 13C/12C) (Bowen, 

2010; West et al., 2010). 

Because isotopic fractionation results in distinctive spatial and temporal patterns 

at landscape to global scales, and biotic entities tend to assimilate their environmental 

isotopic signatures, isotopic analysis has been used for a wide variety of spatially explicit 

applications, such as determining the source of a city’s water supply, food and trade 

regulation, or deducing the origin of illicit drugs (West et al., 2007; Ehleringer, 2000; 

Bowen, 2010; West et al., 2010). The spatio-temporal distribution of isotopes can be 

represented as an “isoscape” (a combination of the words isotopic landscape) (Bowen, 
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2010; West et al., 2010). Isoscapes are spatially explicit, grid-based (i.e., raster) models, 

created either by combining data sets to model fractionating processes or by interpolating 

point data into a continuous grid surface (Bowen, 2010; West et al., 2010). Global 

isoscapes of varying qualities have been created for stable H, C, N, and O (Bowen, 2010). 

An important consideration that studies using stable isotopes often ignore is that 

isoscapes are not intensively sampled data. Rather, isoscapes are predictions modeled 

from a set of expectations (Wunder, 2010). Isoscapes describe general patterns of 

variation by filling in gaps found in observational data with predictions, but should not be 

treated as observational data themselves (Bowen, 2010; Wunder, 2010). Additionally, as 

spatially explicit models, isoscapes are subject to the standard geographic “problems” 

such as the MAUP, the MTUP, and the COSP. With this is mind, isoscapes have proven 

to be a powerful tool for identifying and characterizing spatial biogeochemical processes 

(Bowen, 2010).  

2.2.2 Terrestrial Stable Carbon Isoscapes 

In the case of stable carbon isotopes, the most abundant isotope, 12C, has an 

average relative abundance of 98.90%, and the less common 13C has a relative abundance 

of 1.10% (West et al., 2010). All plants discriminate against the heavier carbon isotope 

13C during photosynthesis and integration of CO2 into their structure. However, 

photosynthetic pathway directly effects the magnitude of 13C discrimination (Δ) in carbon 

fixation (Lloyd & Farquhar, 1994; Still & Powell, 2010; Powell et al., 2012). Relative to 

plants utilizing the C3 photosynthetic pathway, C4 plants are enriched in δ13C (Still & 

Powell, 2010). In fact, the difference in isotopic discrimination between C3 and C4 



21 

 

photosynthesis is so large that the carbon isotope distributions of each photosynthetic 

pathway are almost entirely non-overlapping, as illustrated in Fig. 2 (Ehleringer et al., 

1986; Tipple & Pagani, 2007; Bowen & West, 2008). Because photosynthesis is the 

primary terrestrial carbon fractionating process, C3 and C4 biogeography is the primary 

determinant of terrestrial δ13C spatial and temporal distribution (Cerling et al., 1997; 

Bowen, 2010). Plant functional type distributions at macro-ecological (i.e., continental) 

spatial extents can be predicted by combining remote sensing data on vegetation life 

form, because C4 plants are almost exclusively herbaceous, and climate data to model 

conditions in which C4 grasses out compete C3 grasses (Still et al., 2003; Still & Powell, 

2010; Powell et al., 2012). Continental-extent terrestrial carbon isoscapes have been 

Figure 2 Frequency and ranges of leaf δ13C ratios for globally sampled C3 and C4 plants 

(Cerling & Harris, 1999; Tipple & Pagani, 2007). 
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generated at relatively high spatial resolutions (~10 km) for both Africa (Still & Powell, 

2010) and South America (Powell et al., 2012).  

2.2.3 Modeling the Biogeography of Plant Functional Types 

The first-order fractionation process for terrestrial stable carbon isotopes is 

photosynthesis, meaning spatial patterns of stable carbon isotopes on a landscape are 

determined by the spatial distribution of vegetation cover. In addition to being 

isotopically distinct, C3 and C4 plants are also favored under different climatic conditions 

(Farquhar et al., 1989; Ehleringer & Monson, 1993; Sage et al., 1999; Still et al., 2003). 

The C4 photosynthetic pathway likely evolved as an efficient response to the negative 

effects of photorespiration in hot climates (Ehleringer et al., 1997). This adaptation 

causes C3 and C4 species to thrive in different environmental conditions (Teeri & Stowe, 

1976; Murphy & Bowman, 2007; Von Fischer et al., 2008). At higher temperatures, 

increased photorespiration causes C3 plants to be less competitive, while at lower 

temperatures, the additional energy demands of the C4 pathway to concentrate carbon and 

reduce photorespiration become a disadvantage (Ehleringer, 1978). This dynamic results 

in a crossover temperature, at which the two photosynthetic pathway have equal quantum 

yields; temperatures higher than this favor C4 photosynthesis and temperatures lower than 

the crossover point favor C3, as depicted in Fig. 3 (Ehleringer, 1978; Ehleringer et al., 

1997; Collatz et al., 1998; Still et al., 2003; Powell et al., 2012; Griffith et al., 2015). 

Using climate data, the crossover temperature framework (referred to as the Collatz-

crossover model) can be employed to model C3 or C4 dominance at a given location on a 

landscape (Collatz et al., 1998; Still et al., 2003; Griffith et al., 2015). A major limitation 
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of the Collatz-crossover model is that does not predict the percentage belonging to each 

plant functional type, only which photosynthetic pathway (plant functional type) should 

be dominant given the climate (Still & Powell, 2010). 

The climate metric used in 

previous terrestrial carbon isoscape 

models as a crossover temperature is 

a mean monthly temperature (22°C) 

with a minimum rainfall constraint 

(25 mm) to exclude desert and 

Mediterranean climates (Ehleringer et 

al., 1997; Collatz et al., 1998; Clark, 

1998; Still et al., 2003). More 

recently, research has indicated that a 

better climate metric for a crossover 

temperature might be a monthly maximum temperature (27°C) with the same minimum 

rainfall constraint (25 mm), as a monthly maximum temperature does not average in 

overnight low temperatures. 

Most C4 plants are herbaceous, and about 60% are grasses (Teeri & Stowe, 1976; 

Teeri et al., 1980; Edwards et al., 2010). Therefore, it is important to consider vegetation 

growth forms in a plant functional type model (Still & Powell, 2010). This can be 

accounted for with a remotely sensed vegetation continuous fields (VCF) product, which 

is a MODIS (Moderate Resolution Imaging Spectroradiometer) satellite-based collection 

Figure 3 Threshold for C3/C4 dominance in 

relation to environmental temperature and 

atmospheric CO2 concentration (Edwards et 

al., 2010). 
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of data layers containing the proportional estimates for vegetation cover types: woody 

vegetation, herbaceous vegetation, and bare ground (e.g., DeFries et al., 1995) (Still & 

Powell, 2010; Powell et al., 2012). 

Finally, due to the heavy impact humans have on landscapes, it is important to 

consider the spatial distribution of croplands in a plant functional type model (Still & 

Powell, 2010), as crop types do not always match the climatic conditions that control the 

distribution of natural herbaceous plant functional types. For example, the Great Plains 

biome once covered the middle third of the North American continent; however it has 

been almost entirely converted into row-crop agriculture (Sage et al., 1999). Where corn 

(C4) is often planted in C3 climates, the converse is also true, where soy bean (C3) is 

found to be planted broadly in formerly C4-dominant grasslands, such as the savannas of 

Brazil (Leff et al., 2004). Croplands can be accounted for by data sets that combine 

remotely sensed data with agricultural statistics to depict the spatial distribution of crop 

types (e.g., Ramankutty et al., 2008; Monfreda et al., 2008). 

2.2.4 Challenges of Modeling Mid-Latitude Grasslands 

Modeling the vegetation cover of North America presents a challenge because 

vegetation cover varies both inter- and intra- annually. Because vegetation cover is the 

first order determinant of terrestrial stable carbon isotope fractionation over a landscape, 

this challenge is pertinent for creating a δ13C isoscape. In tropical regions, climate 

conditions are relatively static year round, and the spatial distribution of C3 and C4 

dominant grasses is also temporally consistent. The seasonal variation of mid-latitudes 

results in intra-annual variability of relative C3/C4 abundance, and mid-latitude grasslands 
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are often also temporally variable at an intra-annual extent. This section describes some 

vegetation patterns found on the continent of North America that may be difficult to 

capture in a static model. 

At latitudes where the Collatz cross-over temperature is reached for only part of 

the year, C3 and C4 grass abundances are often temporally offset (Ehleringer & Monson, 

1993). This is observed in the Great Plains grasslands, where a mild spring followed by 

hot summer creates conditions where C3 and C4 grass floras geographically co-occur, but 

relative abundancies shift though the course of the season (Sage et al., 1999), as C3 

grasses emerge earlier in the growing season and then are replaced by C4 grasses during 

the hot summer months (Ode et al., 1980, Monson et al., 1983). This offsets direct 

competition because each plant functional type effectively has a unique growing season, 

and therefore captures environmental resources at different points in the year.  

Deserts in North America can also have shifting seasonal compositions of plant 

functional type based on climatic conditions. For example, in the Chihuahuan Desert, 

winter rain promotes C3 grasses and summer rain favors C4 grasses (Kemp, 1983). 

Precipitation is equally likely for each season, and severe seasonal droughts occur in the 

spring and autumn, punctuating both the winter and summer growing seasons. This 

weather pattern prevents one community from persisting longer than a single growing 

season due to a lack of available moisture, and therefore prevents one community from 

becoming annually dominant over another.  

In some parts of Texas, temporal offsetting does not occur as it does in the Great 

Plains. The long and hot summers favor C4 plants to such an extent that a dense turf is 
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created, capturing space and nutrients during the winter and excluding C3 grasses entirely 

even though the temperatures are mild enough in the winter for C3 plants to be favored. 

Due to this phenomenon, some C4-dominated grasslands in the southernmost portions of 

the Great Plains become active at the same time as C3 dominated grasslands in the 

northern regions (Tieszen et al., 1997).  

Because C3/C4 grasses are sensitive to when precipitation occurs, there is also 

inter-annual elasticity in the relative composition of C3/C4 grasses in the Great Plains 

(Sage et al., 1999; Winslow et al., 2003; Murphy & Bowman, 2007). When the summer 

growing season is dry, C3 grasses have an advantage and flourish during the mild spring; 

however when the spring is dry and the summer wet, C4 species have an advantage, 

shifting overall composition towards C4 dominance (Monson et al., 1983; Winslow et al., 

2003; Murphy & Bowman, 2007).  

Recent studies suggest that capturing plant phenology via remote sensing can be 

an effective tool for determining the relative abundance and extents of C3 and C4 

communities with asynchronous growing seasons (Tieszen et al., 1997; Davidson & 

Csillag, 2003; Wang et al., 2011; Wang et al., 2013; Zhong et al., 2015). However, most 

phenological plant functional type models ultimately produce a single static output, and 

do not account for seasonal variability in the final representation.  

Generating a stable carbon isoscape for the continent of North America presents 

an opportunity to explore methods for representing temporally varying phenomena (e.g. 

seasonal vegetation cover) in a static model. In this work, I will test the impacts of both 

temporal and spatial resolution of a terrestrial stable carbon isoscape for North America. I 
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intend to apply the models in a geographic origin assignment exercise to test the 

performance of each isoscape variation’s assignment prediction against a validation data 

set of known-origin tissue locations. 

2.3 Using Isoscapes for Geographic Origin Assignment 

2.3.1 Isotopes and Animal Migration 

“The movement of organisms in space and time defines their interaction with their 

environments and, therefore, comprises a fundamental aspect of their ecology and 

evolutionary history” -Hobson & Norris, 2008 

Because animals directly assimilate the isotopic composition of their diet into 

their tissues, a common application of isoscapes is wildlife or human forensics. This 

includes characterizing long-distance migration by relating tissue isotopes to the isotopic 

patterns across a landscape, and predicting (assigning) a geographic origin to the tissue 

(Wunder, 2010). Geographic origin assignment can be leveraged as validation method for 

isoscapes by comparing assignment predictions to a tissue’s known origin (Vander 

Zanden et al., 2014; Vander Zanden et al. 2015). This is the strategy I will employ to 

evaluate the impacts of spatial and temporal resolution of stable terrestrial carbon 

isoscapes of North America. 

Characterizing the ranges or environmental connectivity of animals that migrate 

long distances can be challenging due to costs and/or physical limitations (Hobson & 

Norris, 2008; Wunder, 2010; Hobson et al., 2010). Using stable isotopes as intrinsic 

spatial markers has many advantages over the use of extrinsic tools such as tags, rings or 
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transmitters (Hobson & Norris, 2008). Isotopic analysis does not require initial capture 

and marking of an organism, reducing the statistical bias that is introduced in extrinsic 

methods in which animals must be sampled at one site, then later recaptured at a second 

location after migration (Wassenaar, 2008; Wunder, 2010). Many migratory animals such 

as insects or songbirds are simply too small to carry extrinsic markers such as rings or 

tags. Additionally, current isotopic sampling methods on metabolically inactive tissues 

are typically non-invasive (Vander Zanden et al., 2014).  

Using stable isotopes to analyze migratory origin assignment has been applied to 

organisms ranging from insects to mammals in both aquatic and terrestrial environments. 

A large number of migration studies using stable isotopes has focused on birds because 

they are relatively easy to capture and sample non-destructively (Rubenstein & Hobson, 

2004). For stable isotopes to function as a tracer for animal migration, the tissues of the 

animal must contain one or more of the isotopes of interest, and the organism must 

migrate between isotopically distinctive landscapes, while retaining a record of the 

isotopic signatures they travel through (Wassenaar, 2008). 

2.3.2 Isotopes in Animal Tissues 

Different tissues represent different time periods in an animal’s life. Animals have 

both metabolically active and metabolically inert tissues. Inert tissues (i.e. keratinous 

tissues) are tissues that do not change isotopically and therefore represent well-defined 

growth periods and are isotopically stable once fully formed (Rubenstein & Hobson, 

2004; Wassenaar, 2008). Inert tissues are typically used for long-distance migration 

studies. In order to accurately connect tissues with a temporal period, the ecology and 
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physiology of the organism must be well documented. The growth period of a tissue is 

key for characterizing the physical space that tissue represents. The temporal aspect of 

tissue growth defines the physical space integrated by an animal’s tissue (Wassenaar, 

2008). For example, slow growing feathers or claws may integrate the stable isotope 

signature of larger areas (depending on the migratory angle of the organism) than more 

rapidly growing tissues.  

2.3.3 Statistical Assumptions of Geographic Origin Assignments 

Geographic origin assignment models are founded on two basic statistical 

assumptions. First is the assumption of statistical independence; i.e., that samples are 

drawn randomly from the target population of interest. Second is the assumption of 

process homogeneity; i.e., that all individuals within a population in the same location are 

subject to the same processes that generate isotopic variance (Wunder & Norris, 2008). 

The assumption of process homogeneity is almost never met in reality, as measured 

isotopic variability is introduced from a number of different sources, e.g., differences 

between individuals, isotopic heterogeneity within an individual, and variance in isotope-

ratio mass spectrometry (IRMS) measurement error (Wunder & Norris, 2008). In 

instances with a clustered sampling design, the sample site is a better sampling unit than 

individuals because stable isotope values are related to geographic variables, and groups 

of individuals from the same location should share the same response variable (Wunder 

& Norris, 2008).  
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2.3.4 Probability Surfaces Framework 

Although multiple analytical frameworks have been developed for geographic 

origin assignment using isoscapes, a frequently used method in recent studies is the 

probability surfaces model (Wunder et al., 2005; Wunder & Norris, 2008; Wunder, 2010; 

Bowen et al., 2014; Vander Zanden et al., 2014; Vander Zanden et al. 2015). The 

probability surfaces model is a structure for isotope-based geographic assignment using a 

semi-parametric Bayesian framework, such that the output probability surface depicts the 

relative probability that any point in space is the true origin of a given tissue sample 

(Wunder & Norris, 2008).  

The first step in performing a geographic origin assignment is to obtain a 

continuous surface representation of environmental stable isotope values (i.e., one or 

more isoscapes), which provides the spatial distribution of environmental stable isotope 

ratios across a landscape that individuals are related to (Wunder & Norris, 2008; Bowen 

et al., 2014). Applying Bayes’ theorem to determine the relative probability (Ai) that site 

i is the true location of origin for a tissue sample with a measured isotopic composition of 

δs yields Equation 1, where P(Ai) is the prior probability associated with location i, and 

the denominator is the total sum of the probabilities across all possible locations (Wunder 

et al., 2005; Bowen et al., 2014).  

 

𝑃(𝐴𝑖|δ𝑠) =  
𝑃(𝐴𝑖)𝑃(δ𝑠|𝐴𝑖)

∑𝑃(𝐴𝑖)𝑃(δ𝑠|𝐴𝑖)
 Equation 1 
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To account for isotopic fractionation that occurs through the food web and 

assimilation into the fully formed tissue, a rescaling function is generated by relating 

known-origin sample values to the isoscape surface (Wunder, 2010; Bowen et al., 2014). 

The general form of the isotopic rescaling function is provided in Equation 2, where the 

value of a sampled individual at a given geographic location (δs) is related to the modeled 

isoscape value δi, and ε is the difference between the function’s predicted value for the 

location and the sampled feather (Hobson et al., 2012; Bowen et al., 2014; Wunder, 

2010). The rescaling function is both organism and isoscape specific and accounts for the 

fractionation that occurs through the food web during the growth of the sampled tissue, as 

well as local variance of stable isotope values at the sampling site. The rescaling function 

generates a second isoscape that is calibrated (or rescaled) to the sampled tissues being 

assigned (a tissue isoscape) (Wunder & Norris, 2008). 

 

𝛿𝑠 = 𝑓(𝛿𝑝) + 𝜀 

 

The final step is to create a probability of origin surface for each individual being 

assigned. Per-pixel relative probabilities are calculated by relating the calibrated tissue 

isoscape to the individual sample (δs) (Equation 3). The output is a probability of origin 

surface, in which each raster cell is assigned a value between 0 and 1, corresponding to 

the likelihood that the individual sampled originated from that location. The probability 

of origin surface is rescaled so that all probability values included in the surface sum to a 

Equation 2 
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value of one (Wunder & Norris, 2008). Essentially, geographic assignment is an 

evaluation of the probability that the sampled isotopic composition of tissue δs would be 

observed at any location i (Wunder et al., 2005, Wunder et al., 2010; Bowen et al., 2014). 

 

𝑃(𝐴𝑖|𝛿𝑠) =
1

√2𝜋𝜎𝑖
2

𝑒 (
−(𝛿𝑠−(𝛽0+ 𝛽1𝛿̂𝑝,𝑖))2

2𝜎𝑖
2 ) 

 

The probability surface model accounts for variance from multiple sources (e.g., 

per-pixel variance of isoscape estimates, between individuals at a given location, and 

analytical error). The probability surface model can also be applied to multiple isotopes 

and provides a range of potential assignments for a given individual (Wunder & Norris 

2008). The biggest disadvantage to the probability surface model is that it is 

computationally intensive (Wunder & Norris, 2008). However, the probability surface 

model is the method included for geographic assignment analysis in the online cyber-GIS 

system IsoMAP (Isoscapes Modelling, Analysis and Prediction; http://isomap.org) 

(Bowen et al., 2014). Additionally, R code for geographic origin assignments was 

recently published by Vander Zanden et al. (2014). 

2.3.5 Using the Spatial Distribution of Carbon Isotopes for Geographic Origin 

Assignment Research 

Stable carbon isotope ratios vary in time and space and are primarily determined 

by plant functional type biogeography. When isotopes are used as tracers for migration 

Equation 3 

http://isomap.org/
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studies, organisms are assumed to be consistent isotopic integrators of the environment. 

However, this assumption may not always hold for δ13C if the species selectively 

consumes a specific plant functional type. For herbivores, tissue δ13C concentrations 

reflect the C3 and C4 ratio present in their diet. δ13C in long-term inert tissues (mammal 

teeth), have been used to characterize evolutionary relationships of mammalian grazers 

and grasslands (Cerling et al., 1997; MacFadden, 2000; Cerling et al., 2003; West et al., 

2006). Stable carbon isotopes therefore can be used for geographic origin assignment if 

the animal migrates between distinctive C3 and C4 habitats and does not integrate plant 

functional types selectively (Rubenstein & Hobson, 2004; West et al., 2006). 

Although the majority of isotopic migration studies using δ13C have been applied 

in marine environments, stable carbon has been employed as an isotopic tracer in a few 

bird migration studies (Rubenstein & Hobson, 2004; Bowen, 2010). In a study on 

Ecuadorian hummingbirds, Hobson et al. (2002) measured a δ13C response in tail feathers 

that was consistent with plant functional type distributions in relation to altitude (Hobson 

et al., 2002). A multi-isotope origin assignment conducted by Hobson et al. (2012) on 

Afro-tropical migrating birds identified some limitations in using δ13C. The grain of the 

δ13C isoscape model used was spatially coarse, which reduced the representation of 

habitats that are rare or highly localized. Additionally, the authors proposed that 

improved understanding of the composition and origins of species-specific diets would 

greatly improve origin assignment. For example, knowing if the birds are integrating a 

diet of local insects from specific habitats versus consuming insects from many different 

habitats over a large spatial extent would assist in selecting the appropriate grain for 
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migratory origin assignment (Hobson et al., 2012). This relates to the MAUP, as 

selecting an optimal spatial resolution (i.e., one corresponding to the spatial area 

integrated by the organism through diet) could potentially improve geographic 

assignment models.  

2.3.6 Geographic Origin Assignment and Inter-Annual Temporal Variation 

Often, the isoscapes used in geographic origin assignments are long-term 

averages of multiple growing seasons, which do not necessarily reflect a biologically 

relevant time period when dealing with animals that assimilate isotopes from their food 

web within a single growing season (Vander Zanden et al., 2014; Tonra et al., 2015; 

Vander Zanden et al., 2015). More recently, studies have explored the impacts of inter-

annual variation on geographic origin assignments using δ2H isoscapes. Results of these 

recent studies by Vander Zanden et al. (2014) and Tonra et al. (2015) suggest that 

temporal extent does not have a significant impact on the accuracy and precision of origin 

assignments (Vander Zanden et al., 2014, Tonra et al., 2015, Vander Zanden et al. 2015). 

However, this is still a topic of active research, and each of these recent studies have 

explored inter-annual variation only. The impacts of intra-annual variation, as well as 

spatial grain, have not yet been examined in this context and present an opportunity for 

further research.  
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CHAPTER 3: A Terrestrial Stable Carbon Isoscape of North America 

3.1 Introduction  

What is the spatial distribution of vegetation stable carbon isotopes on the continent of 

North America? 

The natural variability of stable carbon isotope composition (δ13C) in the 

environment has been studied and harnessed for a wide variety of applications ranging 

from characterizing sources and sinks for biosphere-atmosphere CO2 exchange to 

characterizing animal migration (Suites et al., 2005; Wunder et al., 2005; Bowen, 2010; 

Hobson et al., 2012; Powell et al., 2012). The spatio-temporal patterns of δ13C, 

represented as an isoscape (isotopic landscape), provide opportunities for spatially 

explicit ecological research. Measuring vegetation δ13C can determine the relative 

contribution of plant functional types (i.e., C3 vs. C4) to biomass at a given location, or 

measuring tissue δ13C can determine the relative contribution of plant functional types to 

an animal’s diet (Cerling et al., 2003; Still et al., 2003; Suites et al., 2005; Bowen, 2010; 

West et al., 2010). In fact, because δ13C is integrated to tissue through diet with little 

modification, in addition to identifying diet it can be used to determine trophic niches 

(Hobson, 2011; Cerling et al., 2003), or even approximate the location the tissue was 

grown (Wunder et al., 2005; Hobson et al., 2012). Spatially explicit soil δ13C has been 



36 

 

used to reconstruct prehistoric shifts in woody and herbaceous vegetation on a landscape 

and determine the environmental conditions hominids evolved in (Cerling et al., 2011). 

Although several models of C3/C4 composition have been generated at a global scale 

(Lloyd and Farquhar, 1994; Still et al. 2003; Suits et al., 2005), as well as δ13C isoscapes 

at finer resolutions (~10 km) for the continents of Africa and South America (Still & 

Powell, 2010; Powell et al., 2012), a fine spatial resolution terrestrial δ13C isoscape has 

not yet been modeled for North America. In this section, I generate an annual δ13C 

isoscape for North America at 5-minute spatial resolution. 

The methods used to generate the Africa and South America isoscape predict δ13C 

by modeling environmental conditions rather than interpolating spatially explicit 

observations. Generating a δ13C for the continent of North America using the same 

methods provides an opportunity to further test the model assumptions with reference 

data due to the availability of observational data spanning the continent. Additionally, 

because North America spans mid-to-high latitudes, C3/C4 composition of grasslands 

varies seasonally. Thus, the impact of averaging seasonally varying communities can be 

explored and compared against different reference data sets, such as soil organic matter 

(SOM, which represents a long term average of isotopes in an area), or data collected 

from vegetation surveys. The North American δ13C isoscape will provide a new research 

tool to the stable isotope community that compliments the continental scale isoscapes that 

have been created for Africa (Still & Powell, 2010) and South America (Powell et al., 

2012).  
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The initial goal of my thesis research is to generate a moderate spatial resolution 

terrestrial δ13C isoscape following the general methods established by Still & Powell, 

2010; and Powell et al., 2012. The results of this chapter inform the methods for research 

questions 2 and 3, (Chapters 4 and 5, respectively) by determining the optimal parameters 

to use for modeling the spatial distribution of stable carbon isotopes in North America.  

3.2 Methods 

The first-order determinant of the spatio-temporal distribution of δ13C on a 

landscape is the relative composition of plant functional types (i.e., photosynthetic 

pathway) contributing to total vegetation. Therefore, in order to generate a δ13C isoscape 

I first model the relative C3/C4 proportion per 5-min pixel for the extent of the North 

American, and then apply δ13C endmembers to the modeled per-pixel relative distribution 

of plant functional types (Still & Powell, 2010; Powell et al., 2012). To predict the spatial 

distribution of plant functional types, I make three major assumptions. (1) All C4 

vegetation is herbaceous; therefore, the first step separate woody cover from herbaceous 

cover. (2) The distribution of crop plant functional types do not follow climate rules, so 

the distribution of agricultural crops (herbaceous) must be accounted for using an 

agricultural lands data set. (3) The dominant photosynthetic pathway of natural 

herbaceous cover is determined by climate rules (i.e., the crossover temperature), and 

therefore natural herbaceous cover is partitioned based on these rules.  
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The input data sets used to predict the relative abundance of vegetation life forms 

are the same data sets used by Powell et al. (2012), and are listed in Table 1. The 

Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Continuous Fields 

(VCF), Climatic Research Unit (CRU) 2.0 climatology, and agricultural lands layers are 

all modeled or interpolated gridded data sets, and introduce error and uncertainty into the 

final isoscape. The δ13C composition of vegetation is predicted using endmember values 

reported in the literature for trees, shrubs, C3 grasses and C4 grasses. The endmembers are 

applied to the modeled relative abundance of vegetation woody vegetation, C3 

herbaceous and C4 herbaceous to generate a stable terrestrial carbon isoscape.  

I assess variations of two modeling parameters: the crossover temperature metric 

(mean monthly temperature versus monthly maximum temperature) used to discriminate 

between areas of C3 and C4
 dominance, and the decision rules used to partition woody 

and herbaceous cover based on the MODIS VCF data set (rules that assign minimum vs. 

maximum herbaceous cover in mixed-classification regions). Testing each combination 

of these two model parameters results in four isoscape iterations with different relative 

C3/C4 herbaceous cover in pixels that contain natural grasslands. 

 

Table 1 Input data sets used to model terrestrial stable carbon isoscape with original 

spatial resolutions. Adapted from Powell et al., 2012.  
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3.2.1 Study Area 

The study area is constrained to the conterminous landmass of North America. 

The area extends as far south as the Panama Canal, as that is the northern cutoff for the 

South America carbon isoscape generated by Powell et al. (2012), and as far north as the 

Arctic Circle. Under the current climatic conditions, latitudes higher than 60°N do not 

have C4 grasses, excluding some select species that are found in Alaska and northwestern 

Canada (Sage, 1999). However, creating a hard cutoff at 60°N might limit future analyses 

or modeling change. Therefore, the northern bounding latitude is 66.5°N, which includes 

the majority of North American landmass. 

3.2.2 Estimating %woody and %herbaceous Vegetation Cover 

The first step to generating a δ13C isoscape is to determine the per-pixel percent of 

woody and herbaceous vegetation cover. The MODIS Vegetation Continuous Fields 

(VCF) Yearly L3 Global Collection 3 for the year 2001 includes layers that represent per-

pixel percent tree cover, percent herbaceous cover, and percent bare surface at 500-m 

spatial resolution (Hansen et al., 2003). However, the VCF data product was designed to 

map percent tree cover, and a major limitation of the VCF “herbaceous” layer is that it 

does not discriminate between woody shrubs and grasses, which is important for 

discriminating between C3 and C4 vegetation (Hansen et al., 2003; Still et al., 2003; 

Powell et al., 2012). Additionally, the VCF layers represent the percent of canopy cover 

per grid cell, which results in an overestimation of the herbaceous layer, as maximum 

crown cover is fixed at 80% (Hansen et al., 2003). To address these shortcomings, I 

convert the VCF percent tree-cover (i.e., canopy cover) layer to percent tree-crown 
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(%tree-crown = %tree-cover/0.8), and create a percent non-tree layer (%non-tree) by 

subtracting the adjusted percent tree-crown layer and the VCF percent bare layer from 

100, assuming everything that is not tree crown or bare is non-tree (%non-tree = 100 - 

%tree-crown + %bare) (Powell et al. 2012). This step results in a final %tree-crown 

layer, and an intermediate %non-tree vegetation layer, to be further classified into 

herbaceous, shrub and crop layers.  

Next, I divide the intermediate %non-tree layer into shrub (%shrub) and 

herbaceous (%herbaceous) layers by using the land-cover descriptions for the 17-class 

International Geosphere-Biosphere Programme (IGBP) land-cover classification, 

Figure 4 Collapsed MODIS IGBP land-cover classification for the year 2001. The 

“Shrublands” and “Woodlands” classifications include the three IGBP classes that are 

identified as a mixed classification containing both shrubs and grasses (i.e., “open shrub-

land”, “woody savanna” and “savanna”). In North America, areas falling into these 

classifications are constrained to the Chihuahuan Desert region and Northern 

Canada/Alaska 
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included in the MODIS 500-m Global Land Cover Type product for 2001 (Loveland & 

Belward 1997). A generalized IGBP classification schema for North America (2001) is 

depicted in Fig. 4. The %non-tree layer pixels that correspond to the land-cover classes 

described as predominantly shrub and/or tree by the IGBP classification system are 

assigned to the %shrub layer, and for pixels that correspond to classes composed 

predominantly of herbaceous cover, the %non-tree layer is assigned as %herbaceous. For 

pixels that correspond to IGBP classes composed of a mixture of shrubs and grasses (i.e., 

“open shrub-land”, “woody savanna”, and “savanna”) %non-tree layer is partitioned into 

%shrub and %herbaceous following rules described by Powell et al. (2012). The 

maximum-herbaceous and minimum-herbaceous rules result in two sets of %shrub and 

%herbaceous layers, one assuming maximum possible herbaceous cover and one 

assuming minimum herbaceous cover. I refer to the maximum herbaceous layers as 

“max-herbaceous” and the minimum herbaceous as “min-herbaceous” layers using each 

respective set of mixed classification rules. Each of these layers, as well as the %tree-

crown layer are spatially aggregated and resampled in R to a 5-min spatial resolution, 

compatible with the crop type data layer (Powell et al., 2012).  

3.2.3 Accounting for Managed Agro-Ecosystems 

To account for the managed agro-ecosystems, (i.e., C4 crops grown in C3 

climates, and vice-versa), the %herbaceous layer is first partitioned into %natural-

herbaceous and %crop layers using the Cropland 2000 data set, which provides per-pixel 

cropland percentage at a 5-min resolution (Ramankutty et al., 2008). Following the 

methods established by Powell et al. (2012), I make two simplifying assumptions: that 
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cropland only contains herbaceous vegetation, and that the %tree-crown layer is more 

accurate than the %shrub and %herbaceous layers. Therefore, incorporating the cropland 

layer does not change the %tree-crown layer. Instead, the %herbaceous, %shrub and 

%crop values are adjusted to change on a per-pixel basis. The integration of the Cropland 

2000 data results in new %crop and %natural-herbaceous data layers, as well as a final 

%shrub data layer. I then apply a second global data set delineating crop type (Monfreda 

et al., 2008) to separate the %crop layer into either C3 or C4 vegetation (Powell et al., 

2012). The final outputs from this step are %C3-crop and %C4-crop layers, and a 

%natural-herbaceous-adjusted layer (Powell et al., 2012). 

3.2.4 Partitioning the Natural Herbaceous Layer into C3 and C4 Layers  

The relative C3/C4 composition of the %natural-herbaceous-adjusted layer is 

determined by climate. Regions are classified as favorable to C4 vegetation based on a 

cross-over temperature metric applied to a global climate data set (Daly et al., 2002; New 

et al., 2002). Two cross-over temperature metrics were tested: mean monthly temperature 

(>22ºC; Collatz et al., 1998) and maximum monthly temperature (>27ºC; Griffith et al., 

2015). I refer to each of these parameters as “mean-temperature” and “max-temperature”, 

respectively. The number of months each pixel meets each constraint is presented in Fig. 

5. 

In terms of an annual classification, pixels that are classified by the crossover-

temperature metric as C4-favorable for 6 or more months out of the year are classified as 

C4-dominant. Pixels that have 0 months classified as being C4-favorable are classified as 

entirely C3-dominant. Pixels that classified as having at least one month, but less than six,  
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Figure 5 Total number of months each 5-minute raster pixel meets the C4-dominant 

conditions. These conditions are modeled as either a mean-temperature ≥22°C and 

mean monthly precipitation > 25mm (Collatz et al., 1998) (A) or a monthly maximum-

temperature ≥27°C and mean monthly precipitation > 25mm (Griffith et al., 2015) (B).  
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that are C4-favorable are expected to be areas were C3 and C4 grasses co-exist (i.e., mixed 

grasslands) and are classified as mixed. 

For pixels classified as “mixed”, I create a ratio of C4 plants to total vegetation 

abundance. Following the methods of Still et al. (2003) and Powell et al. (2012), I 

assume that C4 percent cover of a pixel is proportional to the ratio of vegetation 

productivity (approximated by the MODIS Normalized Difference Vegetation  Index, or 

NDVI) in C4-climate months to the total growing season vegetation productivity. The 

per-pixel growing season is defined as those months with mean temperature >25ºC (or 

maximum temperature >27ºC) and mean precipitation > 25mm, because most grasslands 

require at least this much precipitation to grow (Collatz et al. 1998; Powell et al., 2012). 

This process results in two sets of C3 and C4 mask layers, one set corresponding to each 

cross-over temperature metric. Each cross-over temperature metric is applied to each 

version of the land cover rules of the %natural-herbaceous-adjusted layer (max-

herbaceous and min-herbaceous), resulting in four variations of %C3-natural-herbaceous 

and %C4-natural-herbaceous layers. The sum of the %C3-natural-herbaceous, %C3-crop, 

%C4-natural-herbaceous, %C4-crop, and %shrub layers is equal to the adjusted %non-

tree vegetation layer generated from the VCF data set. 

Finally, I generate layers that represent vegetation life form by photosynthetic 

pathway. The final %C4-herbaceous layer is generated by summing the %C4-natural-

herbaceous and the %C4-crop layer. Likewise, the final %C3 layer is generated by 

summing the %C3-natural-herbaceous and %C3-crop. The final %woody-cover layer is 

generated by combining the %tree-crown and %shrub layers. The layers for the 
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maximum-herbaceous land-cover rule and mean monthly crossover temperature 

constraint are presented in Fig. 6. 

Figure 6 Individual output layers representing the maximum herbaceous land-cover rule 

and mean-temperature crossover climate parameter. Each map layer depicts the percent 

area within each 5-min pixel covered by the specific vegetation type. 
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3.2.5 Estimating Leaf δ13C  

Leaf δ13C is calculated based on the vegetation life form layers generated in the 

previous steps, and corresponding δ13C endmember values from the literature (Powell et 

al., 2012; Table 2). To apply δ13C endmembers, the combined percent-cover layers are 

converted to percent-vegetation layers and then multiplied by the isotopic endmember 

values associated with the respective photosynthetic pathways. A standard deviation 

raster for each model is created by applying the literature-based standard deviation values 

(Table 2) to the final vegetation output. This process is repeated for each variation of the 

vegetation cover model (mean-temperature/max-herbaceous, mean-temperature/min-

herbaceous, max-temperature/max-herbaceous and max-temperature/min-herbaceous). 

3.2.6 Validating the Stable Terrestrial Carbon Isoscapes  

Validating a product at a continental scale is inherently difficult, particularly for 

data with relatively course spatial resolution. While recognizing that a point-to-raster 

comparison introduces the change of support problem (COSP), I compare the four 

permutations of the final isoscape outputs to an independent data product of plot-level 

soil organic matter (SOM) δ13C values (Von Fischer et al., 2008). This data set sampled 

† δ13C values were estimated from 825 modern plants; the number of C3 versus C4 

grasses is not specified. 

 

Table 2 Values based on literature review used as endmembers to estimate leaf δ13C 

values for each grid cell based on relative vegetation cover type. 

Vegetation type
Leaf δ13C (‰) 

(µ ± σ)
Source No. samples Location

C4 herbaceous (grasses) -12.5 ± 1.1 Cerling et al. 1997 † global

C3 herbaceous (grasses) -26.7 ± 2.3 Cerling et al. 1997 † global

Woody (Trees & Shrubs) -27.2 ± 2.5 Diefendorf et al. 2010 166 North America
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two to four soil cores of 55 native prairie systems widely distributed across the Great 

Plains, reporting the mean δ13C value for A and B soil horizons as well as plant roots. 

Although SOM and fine root material δ13C values are both available in the Von Fischer 

data set, SOM is selected because it is a temporally-averaged δ13C representation of 

multiple years of vegetation, as opposed to what is currently growing. I convert my leaf 

δ13C predictions to SOM predictions by applying a constant offset of +2‰, identified by 

Bowling et al. (2008) and used to estimate δ13C values of SOM in Powell et al. (2012). 

This offset accounts for fractionation that occurs between plant matter and SOM. In order 

to evaluate each combination of parameters on the δ13C isoscape, I calculate the residuals 

between the predicted δ13C value and the observed δ13C value. Locations and values of 

the measured SOM δ13C values reported by Von Fischer et al. (2008) are provided in a 

table in Appendix 1. 

3.3 Results  

3.3.1 Four Models of Geographic Distribution of leaf δ13C 

Four vegetation δ13C isoscapes were generated to test the impact of two sets of 

modeling parameters. These include a mean-temperature /max-herbaceous (Fig. 7-A), 

max-temperature /max-herbaceous (Fig. 7-B), mean-temperature/min-herbaceous (Fig. 7-

C), and max-temperature /min-herbaceous (Fig. 7-D).  

The spatial patterns of mean leaf δ13C are directly determined by the relative 

distributions of plant functional types, and many patterns were consistent in all four 

permutations, as only the C3/C4 composition of natural grasslands was varied between 
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each version. The most isotopically depleted pixels occurred in the boreal forests in 

Canada, where there is the highest percentage of tree cover relative to grasslands or other 

vegetation types. The most isotopically enriched pixels occurred along the border 

between southeastern Texas and Mexico, an area which was categorized predominantly 

as shrub and grassland under the IGBP classification system, and modeled as having ≥ 6 

months of climate conditions favoring C4 grasses. The Great Plains region of North 

America was modeled as annually mixed C3/C4 grasslands, resulting in a wide range of 

δ13C values depending on the relative composition of vegetation predicted in each pixel. 

The percent crop cover is a fixed value in all four isoscape permutations. Therefore, in all 

permutations, a significant amount of C4 crops were modeled in areas classified as C3 

dominant in Iowa, Wisconsin, Minnesota, and Illinois (Fig. 6), resulting in enriched mean 

leaf δ13C values relative to what would have been modeled without taking crops into 

account. Similarly, the southeastern forests of the United States maintain consistent leaf 

δ13C values across all permutation because the tree-crown layer was assumed to have 

high fidelity and also remained fixed in all permutations.  
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There were, however, notable differences between each isoscape permutation. 

The areas of greatest difference due to land-cover rules directly corresponded to the 

IGBP shrubland classification (Fig. 4). The land-cover rules resulted in the biggest 

differences in the Chihuahuan desert region, as highlighted in the land-cover rules 

difference map (Fig. 8-A), created by subtracting the mean-temperature/min-herbaceous 

isoscape (Fig. 7-B) from the mean-temperature/max-herbaceous isoscape layer (Fig. 7-

A). I also performed this calculation on the max-temperature permutations; however, the 

output was the same.  

To directly compare the differences that result from changing the crossover 

temperature parameter, I created a difference map between the number of C4-dominant 

months modeled by the max-temperature crossover parameter and the mean-temperature 

crossover parameter (Fig. 9). The climate parameters showed no difference in number of 

C4 months north of the U.S.-Canadian border, south of the Mexico-Guatemala border and 

along the West Coast of the United States. Changing the crossover-climate parameter 

shifts the boundary of C4 presence at higher latitudes and high elevations; specifically, 

the max-temperature parameter predicts greater C4 presence at higher latitudes and high 

elevations than the mean-temperature parameters.  
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3.3.2 Evaluation of Models against an Independent Data Set 

Each permutation of the annual δ13C isoscape was compared to an observed soil 

organic matter (SOM) data set of 55 sample sites spanning the Great Plains, USA (Von 

Fischer et al., 2008), depicted in Fig. 9. The residuals for all four isoscape permutations 

had a positive bias. This means that given the +2‰ offset, the isoscape models typically 

predicted a more depleted δ13C value than the observed SOM δ13C. Residuals for the 

isoscape permutations generated with the mean monthly temperature parameter were 

similar in magnitude. The mean of residuals for the mean-temperature/max-herbaceous 

permutation was 3.26‰, and the mean of residuals for the mean-temperature/min-

Figure 9 Distribution of SOM observation sites, depicted in blue, over the max-

herbaceous /max-temperature isoscape permutation, converted from leaf to SOM 

predictions. 
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herbaceous permutation was 3.34‰. Residuals for isoscapes generated with the 

maximum-monthly temperature parameter were slightly lower than the mean-monthly 

temperature permutations. The mean of residuals for the max-temperature/max-

herbaceous permutation was 2.17‰ and the max-temperature/min-herbaceous model was 

2.28‰. The residuals for permutations generated with the minimum-herbaceous land-

cover rules were slightly larger than the permutations generated with the maximum-

herbaceous land-cover rules. 

The land-cover rules resulted in different δ13C predictions between permutations 

(different residuals) at only five of the SOM sample sites, all of which are located within 

the extent of the 2001 IGBP shrubland classification. At these five sites, the max-

herbaceous permutations had lower residuals than their paired min-herbaceous 

permutations. With the exception of the Seivelleta, NM site, all four permutations 

predicted more isotopically enriched values than the observed SOM, meaning that C4 

abundance was over-predicted relative to soil values.  

The ten sample sites located north of the Canadian border, as well as seven 

sample sites within the Great Plains, USA, had identical residuals across all four isoscape 

permutations. Both crossover-temperature parameters predicted 0 months of C4 

dominance north of the U.S.-Canadian border, meaning the region is predicted as being 

entirely C3 dominant regardless of the crossover climate parameter used. The Great 

Plains sites included in this group are clustered in Northern Kansas, Missouri and 

Southern Nebraska, an area that is modeled as having no difference between the mean-

temperature and max-temperature crossover parameter permutations (Fig. 8).  
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The max-temperature isoscape permutations had smaller residuals that the mean-

temperature isoscape permutations at most sites. However, at three of the 55 observed 

SOM sites, the mean-temperature permutations had smaller residuals than the max-

temperature permutations. These sites were Lange-Furgeson in South Dakota, Schaefer 

Prairie in Minnesota and Custer Battlefield in Montana. At all three of the sites, the max-

temperature permutations predicted a more isotopically enriched value (overestimating 

C4 presence) relative to the mean-temperature. These three sites are all located on the 

northern and western edges of the modeled extent of C4 presence in the mean-

temperature permutations.  

The largest difference between the residuals of the mean- and max-temperature 

permutations occurred at a site in the northern Colorado Front Range, at an elevation > 

1650 m, where the residual of the mean-temperature crossover parameters δ13C 

predictions was approximately 6‰ more than the max-temperature permutations.  

Overall, the crossover climate parameter had a greater impact on the ability to 

more accurately predict the observed SOM δ13C values than the land-cover rules. All 

permutations typically predicted more depleted δ13C values than what was observed; 

however, the mean-temperature permutations underestimated C4 abundance more 

dramatically than the max-temperature permutations. Based on these validation data, the 

permutation of best fit was the max-temperature/max-herbaceous. 
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3.4 Discussion  

Prior work has estimated the crossover latitude from C4- to C3- dominated 

communities between 43° and 45°N (Ehleringer et al., 1997; Tieszen et al., 1997). This is 

more similar to what is modeled by the mean-temperature crossover parameter than the 

max-temperature crossover parameter, as the latter predicts the transition from mixed to 

C3 dominant at approximately 48°N. The three soil organic matter (SOM) sites at which 

the mean-temperature permutations had smaller residuals than the max-temperature 

permutations all occurred along the edge of the extent of C4 presence predicted by the 

mean-temperature permutations, and the max-temperature permutations predicted more 

isotopically enriched values than what was observed. This could potentially indicate a 

need for different crossover parameters, where the max-temperature parameter appears to 

perform better at lower latitudes and higher elevations, the mean-temperature may 

perform better at the higher latitudes where C4 dominance transitions into C3.  

One advantage of the max-temperature crossover parameter is that, by using a 

monthly maximum temperature as opposed to the mean, daytime temperatures are not 

smoothed out by overnight lows. Using monthly maximum temperature had the most 

impact at higher elevations and deserts, where the max-temperature permutations 

included more of the foothills of the Rocky Mountain range, higher latitudes, and more of 

the Chihuahuan and Sonoran deserts as either mixed or C4 dominant relative to the mean-

temperature permutations.  

Von Fischer et al. (2008) has similar results and also found weak agreement 

between their SOM data and the general Collatz et al. (1998) crossover model not 
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accounting for crops. The sites sampled by Von Fischer et al. (2008) were all located on 

intact native prairies and grasslands, meaning that the impacts of cropland and different 

vegetation life forms (i.e., trees and shrubs) were not captured by the sample. However, 

this was an appropriate data set for testing the land-cover rules and climate crossover 

parameters, as these variations in model parameters most directly impact the modeling of 

natural herbaceous vegetation. Additionally, SOM was an appropriate validation data set 

for the annual isoscapes, as SOM captures a long-term average of vegetation cover, as 

opposed to the vegetation that is present at a particular point in time. The predictions of 

δ13C generated from the isoscape models are highly generalized, static averages of the 

leaf δ13C for each 5-min pixel.  

One limitation of the SOM data set is that the SOM values are effectively point 

observations being compared to a 5-minute (approximately 10x10 km) pixels. Von 

Fischer et al. (2008) also proposed that the disagreement they found between their 

observed SOM data and the Collatz-crossover predictions was potentially due to spatial 

context. Finer-scale prediction is not necessarily the intended use of the Collatz-crossover 

model, so when it was applied to the spatially complex Great Plains region, it presented 

weaknesses in discriminating mixed grasslands. Because the range of global climate 

conditions vary much more than climate conditions within the Great Plains, the 

parameters used for the global crossover model did not have the same explanatory power 

when applied to a more constrained, regional extent (Von Fischer et al., 2008). At finer 

spatial resolutions, subtler differences between environmental conditions become more 

important for plant functional type discrimination. 
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Some of the disagreements between the δ13C isoscape predictions and SOM data 

may also be related to the change of support problem (COSP). Comparing the plots 

sampled by Von Fischer et al. (2008) to 5-min spatial resolution raster pixels is 

essentially a point-to-raster conversion, where the raster pixels represent an average of 

values over a much larger area than what is captured in the 1m2 quadrant plots. When 

values extracted from the raster cell are compared to the soil plot, the extracted raster 

value is implied to be equivalent to the point; however, the pixel integrates values over a 

much larger spatial grain than that. 

In comparing the four permutations to observed SOM, only five of the 55 

observed SOM points were impacted by the land-cover parameter, and both of the max-

herbaceous permutations performed better than the min-herbaceous. The disagreement 

between land-cover rules can be interpreted as uncertainty in land cover, indicating the 

greatest uncertainty due to the land-cover classification rules overlaps the IGBP 

shrubland classification. This region may be most impacted by modeled herbaceous land-

cover parameters for a few different reasons. First, the IGBP shrubland classification is a 

mixed class comprised of both herbaceous and shrub; therefore, pixels in this class are 

directly impacted by the varying land cover rules. The land-cover rules are a somewhat 

arbitrary step function that split mixed classes into shrub and herbaceous layers based on 

the woody vegetation threshold ranges included in the IGBP land-cover class 

descriptions. The larger the value of the step function, the greater the difference is 

between the max- and min- herbaceous permutations. Second, there is a large percentage 

of barren cover in deserts. This model calculates isotopic values based on relative 
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percentage vegetation cover. This means that shifts in the shrub/herbaceous composition 

in areas with a high barren percentage will result in a more dramatic difference in plant 

functional type percentage because the total vegetation cover is very low.  

The positive bias observed when comparing modeled values to a reference SOM 

data set may indicate the need for a different offset parameter to convert leaf vegetation 

δ13C to soil δ13C. In an ideal model, the mean of the residuals should be close to 0. The 

offset I used was derived from multiple data sets of soil organic matter (SOM) in forest 

environments (Bowling et al., 2008). The +2‰ offset may therefore not be appropriate 

for grasslands or shrubland environments. The leaf-to-soil offset could also be latitude 

dependent, requiring different offsets for varying latitude thresholds.  

3.5 Conclusion 

Based on the comparison of all four variations of the leaf δ13C isoscape to an 

observed soil organic matter (SOM) data set, the max-temperature/max-herbaceous 

model is selected as the best-fit model iteration to use for the research questions that 

follow. The greatest error of the max-temperature crossover parameter is overestimation 

of C4 presence at “edge” dominance sites. 

To better understand strengths and limitations of the methods used to generate 

stable terrestrial carbon isoscapes at mid-latitudes, the four models should be validated 

against additional data that span larger spatial extent than the U.S. Great Plains, and that 

include sites other than preserved prairies. The poor fit between the SOM observations 

was likely in part due to the change of support problem (COSP). To mitigate the impact 
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of COSP on my subsequent research questions concerning spatial and temporal 

resolution, I elect to use a different method for model assessment, harnessing geographic 

origin assignment as a mechanism for comparison and validation.  
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CHAPTER 4: The Impact of Temporal Resolution on Isoscapes in Mixed 

Grasslands 

4.1 Introduction 

How can seasonal variation of vegetation cover be represented in a static model? How 

does temporally aggregating the seasonal variation of mid-latitude grasslands impact 

confidence in the final model? 

Not only do environments change with time, many animals occupy different 

spaces as a function of time, making both space and time fundamental aspects of ecology 

(Hobson & Norris, 2008). Stable isotopes have been identified as a natural recorder that 

can be harnessed to trace ecological processes and activities such as migration. Because 

environmental isotopes are directly integrated into animal tissues through diet, the 

environment where an animal’s tissue was grown can be inferred by relating tissue 

isotopic values to an environmental isoscape (West et al., 2006; Bowen, 2010). In the 

case of migratory animals, the temporal component of tissue growth is also spatial 

(Wassenaar 2008).  

Commonly, geographic origin assignment exercises assume that the 

environmental isotopic values (environmental isoscapes) are assumed to be static over 

time (Hobson et al., 2003; Wunder et al., 2008; Hobson et al., 2012). Recently, some 
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research has begun to explore the impact of inter-annual temporal variability on stable 

hydrogen isoscapes and geographic origin assignment exercises (Vander Zanden et al., 

2014; Vander Zanden et al., 2015; Tonra et al., 2015). I intend to extend this research by 

exploring the impact of intra-annual variation on δ13C isoscapes and geographic origin 

assignments. 

Unlike the continents of South America and Africa, North America spans high 

enough latitudes that seasonality plays a major role in grassland composition (Ode et al., 

1980, Monson et al., 1983; Ehleringer & Monson, 1993; Sage, 1999). Modeling the 

composition of mid-latitude grasslands requires a number of important decisions on how 

to represent the geographically co-dominant, but temporally offset, communities of plant 

functional types. Temporally offset co-dominance means that the C3/C4 composition of 

grasslands varies within a season, resulting in pixels that are both spatially mixed (when 

considered as individual snapshots within the season) as well as temporally mixed 

(different relative compositions over the course of the season at one geographic location). 

Several recent studies have analyzed remote sensing data to discriminate plant functional 

type communities using time-series data and vegetation phenology (Guan et al., 2012; 

Wang et al., 2011; Wang et al., 2013; Zhong et al., 2015). However, instead of 

examining how to best harness phenology for plant functional type discrimination, I 

explore how intra-annual variability of vegetation composition impacts a static 

representation of the stable carbon isoscape. This research explores the importance of 

matching the temporal resolution of tissue growth to the stable isoscape used for 

geographic origin assignment. 
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To accomplish this aim, I compare three representations of the δ13C isoscape 

model with different temporal resolutions. The annual δ13C isoscape generated in 

Research Question 1 (Chapter 3) with temporally mixed pixels was compared to a set of 

seasonally aggregated δ13C isoscapes (four data products, representing early-, mid-, late- 

growing season and winter) and monthly δ13C isoscapes; the latter correspond to the 

finest temporal resolution of the input climate data. I use the max-temperature parameter 

and max-herbaceous land-cover rule for all temporal variations applied to the isoscape, 

based on the evaluation with a reference data set (Section 3.3.2).  

4.2 Methods 

4.2.1 Generating Seasonal and Monthly Resolution Isoscapes 

To generate the seasonal and monthly δ13C isoscape data products, the same 

process described in Chapter 3.2 is followed, the only difference being that the natural 

herbaceous layer is partitioned into C3/C4 components at different temporal resolutions. 

For monthly representations of the δ13C isoscape, pixels are categorized as either C3- or 

C4-dominant for each month based on the maximum monthly temperature (“max-

temperature”) crossover climate parameters (Griffith et al., 2015). Although the pixels 

may be spatially mixed in terms of the type of vegetation cover (e.g., woody or crop), the 

natural herbaceous vegetation itself is categorized as entirely C3 or entirely C4. For the 

seasonal isoscapes, the number of C4-dominant months per pixel are summed into four 

seasonal periods (early, mid, late, and winter). Seasons are defined as follows: early-

(March, April and May), mid-(June, July and August), late-(September, October and 
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November) growing seasons, and winter (December, January and February). Within each 

seasonal period, the proportion of C4 to C3 vegetation is estimated by generating an 

NDVI-weighted ratio based on the NDVI during C4-favorable months to NDVI across the 

season (Section 3.2.4) to generate temporally mixed representations for the season. The 

percent cover of C3 and C4 natural herbaceous vegetation by season is depicted in Fig. 

10. The result is four seasonal isoscapes and twelve monthly isoscapes. Each temporal set 

corresponds to the same annual representation (Section 3), with differing temporal 

resolutions. All of the isoscapes are generated at a 5-min spatial resolution. 

 

Figure 10 Seasonal C3/C4 land cover for the maximum-herbaceous land-cover rule and 

max-temperature parameter permutation. The figures in green depict the percent of C3 

natural herbaceous land cover. The orange figures depict the seasonal C4 natural 

herbaceous land-cover.  
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4.2.2 Geographic Origin Assignments 

A potential application of the δ13C isoscape for North America is predicting the 

unknown origin of individual migratory animals using the stable isotope values of their 

tissue. Here, I assess the impact of the temporal resolution of the δ13C isoscape through a 

geographic origin assignment exercise (e.g., Bowen et al., 2014; Vander Zanden et al., 

2014). Geographic origin assignment is the process of predicting the origin of an animal 

tissue by relating the isotopic content of the tissue to an environmental isoscape. Using 

known-origin tissues allows me to assess the impacts of the temporal resolution of an 

isoscape on the precision and accuracy of geographic assignment prediction. 

I use a data set of feather isotope values from 118 known-origin mountain plover 

(Charadrius montanus) chicks, collected and analyzed for δ13C in 2001 and 2002 

(Wunder et al., 2005). The sample sites are depicted along with the mountain plover 

breeding range in Fig. 11, adapted from Wunder et al. (2005).  Mountain plover chicks 

forage independently for invertebrates in the first few hours after they hatch; contour and 

flight feathers in sheath begin to show at about 7 days old (Wunder et al., 2005). The 

chicks cannot fly prior to their first feathering, and therefore the isotopic content of their 

first contour and flight feathers are derived from a spatially constrained environment 

(limited to ~56 ha) (Knopf & Rupert, 1996; Wunder et al., 2005), and the feather isotopes 

of the plover chicks are assumed to be known-origin. The plover chicks would have 

grown their first contour feathers over a period between mid-May and June of each 

respective year; feathers were sampled between June 12th and August 18th (Wunder et al., 

2005). 
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To test each of the isoscape variations, each of the individual mountain plover 

chicks (n=118) are treated as if they were from an unknown origin, and assigned an 

origin based on the calibrated feather-isoscape. Following the methods described in the 

following section (Section 4.2.3), probability surfaces are generated for each individual 

(Wunder, 2010; Vander Zanden et al., 2014; Vander Zanden et al., 2015). Probability 

surfaces are a surface in which each pixel is assigned a probability of true origin. For any 

given assignment probability raster, the per-pixel probability of origin are normalized so 

that all pixel probabilities within an assignment raster sum to 1 across the study area 

extent. High probability values correspond to relatively high likelihood that the pixel is 

the true origin. 

 Geographic origin assignments are performed for each individual and for each 

isoscape variation. This method of model assessment allows for me to explore the impact 

of temporal resolution in the context of geographic origin assignment, a common 

application isoscapes.  
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Figure 11 Map depicting the plover chick sample sites within the mountain plover 

breeding range, adapted from Wunder et al. (2005). The sampling sites of data 

included in the current analysis are labeled with red letters. 
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4.2.3 Geographic Origin Assignment Methods 

The three basic steps of geographic origin assignment are as follows: (1) create a 

rescaling equation to calibrate the environmental isoscape to tissue isotope values, (2) 

convert the environmental isoscape to an animal tissue isoscape, and (3) relate measured 

isotope values from individual animals to the tissue-calibrated isoscape to generate a 

probability of origin surface (Wunder & Norris, 2008; Wunder, 2010). 

In this study, the rescaling equation step is performed by bootstrapping all of the 

original known-origin data to create a series of rescaling functions for each seasonal and 

monthly isoscape. Bootstrapping is a statistical technique by which population data are 

simulated by randomly sampling the original sample with replacement repeatedly (Efron 

& Tibshirani, 1993). One thousand bootstrapped re-samples of the data are generated, 

and each is used to generate a rescaling equation, resulting in 1000 sets of slopes and 

intercepts. To convert the environmental isoscape to a tissue isoscape, each bootstrapped 

rescaling equation is applied to the δ13C isoscape, resulting in 1000 δ13C tissue-calibrated 

isoscapes. Each of the calibrated rasters is then collected into a raster stack. This 

geographic origin assignment process estimates variance and error from three sources 

(Wunder & Norris, 2008; Wunder, 2010). 

To generate per-pixel probability of origin estimates, a final feather-calibrated 

isoscape must be generated and the associated per-pixel variance must be calculated. The 

final rescaled feather isoscape is calculated as the mean of the 1000 stacked rasters. The 

variance estimate consists of three components: (1) average variance between individuals 

at a site, (2) rescaling variance, and (3) isoscape variance. The measure of the average 
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variance between individuals at a single sample site is calculated by squaring and fitting 

the vector of standard deviations of regression residuals from each rescaling equation 

(1000 standard deviation values) to a gamma distribution, then finding the average. 

Variance related to the rescaling process is calculated as the variance of each pixel from 

the stack of 1000 calibrated rasters. Finally, isoscape variance is estimated by squaring 

the per-pixel values of the standard deviation surface that correspond to each of the δ13C 

isoscapes based on literature values (Section 3.2.5). Each of the per-pixel estimates of 

variance are summed, and the square root of this value is used as the standard deviation 

for the assignment process. The bootstrapping, as well as capturing variance by per-pixel 

calibrations and fitting the mean gamma distribution of the rescaling equation residuals 

are all novel methods for creating geographic origin assignment probability surfaces. 

Because calibration functions are both tissue and isoscape dependent, the entire 

calibration process is repeated for each isoscape raster surface, corresponding to each 

temporal subset isoscape (Wunder & Norris, 2008; Wunder, 2010; Vander Zanden et al., 

2014; Vander Zanden et al., 2015). 

Finally, geographic origin assignments are performed for individuals by relating 

the measured isotope value to each pixel in the calibrated isoscape with a probability 

density function that accounts for the three sources of variance and error detailed in the 

previous paragraph. The R code used to generate the geographic origin assignments 

adapted from Vander Zanden et al. (2014) is available in Appendix 3. 

 

 



69 

 

4.2.4 Assessing Model Efficacy through Accuracy, Precision and Similarity  

To explore the impact of temporal resolution on the isoscape models and 

geographic origin assignment, the accuracy, precision and similarity of the generated 

geographic origin assignments of each individual raster were assessed following methods 

described in Vander Zanden et al. (2014). The winter-seasonal and monthly (i.e., January, 

February and December) assignments were not included in the efficacy evaluations, as 

the mountain plover breeding range has very little active vegetation during these periods 

and is not well represented by the isoscapes. 

At the population-level, both accuracy and precision are assessed across a 

sequence of relative probability values, ranging from 0.01 (low probability) to 0.99 (high 

probability), at 0.01 increments. Relative probability for each assignment raster is 

calculated by dividing each pixel in the entire raster surface by the maximum probability 

for that particular individual assignment (i.e., maximum value across the entire spatial 

extent of the data set). Population-level assignment accuracy is determined by the 

proportion of the known-origin validation locations included in the assignment region at 

each probability interval. This measure evaluates the capacity of the assignment model to 

accurately identify a region of origin that includes the known-origin sites, given the 

temporal window the assignments were based on (Vander Zanden et al., 2014). 

Population-level assignment precision is assessed as the median proportion of total 

surface area included in the assignment region (across all individuals) for each relative 

probability interval. Smaller proportions of the spatial domain indicate higher precision in 

assignment surface (Vander Zanden et al., 2014). 
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Individual-level assessments of accuracy and precision are quantified as the 

difference between geographic origin assignments generated for the same individual 

(e.g., mountain plover 6645) with different environmental isoscapes (e.g., the May 

isoscape versus the June isoscape). The individual-level accuracy is assessed as the 

difference in relative probability between assignments at the known-origin location of 

individual birds. This metric determines if the relative likelihood of origin at the actual, 

known location of origin increased or decreased as the result of changing the temporal 

window used for assignment. Individual assignment precision is assessed as the 

difference in area of the posterior probability surface at the relative probability density 

value equal to or greater than the relative probability at the known origin. Differences in 

individual-level assessments were tested for statistical significance with two-tailed paired 

t-tests (Vander Zanden et al., 2014). 

The similarity index is used to determine if differing isoscapes result in 

significantly different geographic origin assignments in a per-pixel comparison. 

Similarity is only evaluated at an individual-level and is assessed by directly comparing 

two origin assignments for an individual bird generated using differing isoscapes. The 

index was adopted from the Expected fraction of Shared Presences (ESP) metric 

(Godsoe, 2014; Vander Zanden et al., 2014). The index calculates the ratio of the number 

of shared cell values between two assignment rasters to the total number of possible cells. 

More simply, the similarity index represents the percentage overlap between the two 

assignments, over the entire range of relative probabilities (Vander Zanden et al., 2014).  
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4.3 Results 

4.3.1 Seasonal Isoscapes  

Four seasonal isoscapes together represent the temporal extent of a full year (Fig. 

12). The cropland signature is the same in all four models because there is no temporally 

coded data for the croplands. This results in isotopic enrichment in the Great Lakes, 

USA, region due to the dominance of C4 crops, especially corn. North of the U.S.-Canada 

border there is no seasonal variation. Grasslands in the region are modeled as C3-

dominant year round. The West Coast of the United States is also C3-dominant year 

round, due to a Mediterranean climate.  

Figure 12 Seasonal δ13C isoscapes. The “early season” represents March, April, and 

May (A). The “mid-season” includes June, July, and August (B). The “late season” 

includes September, October, and November (C). Winter includes December, 

January, and February (D). 
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Significant differences occur between each of the seasonal isoscapes. The largest 

extent of C4 presence occurs in the mid-season isoscape (Fig. 12-B), and smallest extent 

of C4 presence is modeled in the winter isoscape (Fig. 12-D). The late-season isoscape 

has a larger proportion of pixels classified as having C4 presence relative to the early-

season isoscape. The most dramatic seasonal changes occur in the Great Plains, the 

Sonoran Desert and Chihuahuan Desert regions. Additionally, there is an isotopically 

enriched signature in the Appalachian region of the United States in the mid-season 

isoscape, relative to the early- and late-season isoscapes. In the annual isoscape, seasonal 

variations are effectively smoothed out by averaging. 

4.3.2 Monthly Isoscapes 

Monthly isoscapes were the finest temporal resolution products generated, given 

the temporal resolution of the CRU climate data (Fig. 13). Similar to the seasonal 

isoscapes, the same temporally static cropland data set is apparent in each monthly 

model. The months between November and March resemble one another relatively 

closely because very few regions are classified as C4-dominant during this time period 

(except for the pixels where the C4 crop signal is present). At the monthly temporal 

resolutions, natural herbaceous grasslands are classified as either C3 or entirely C4. The 

monthly isoscapes also show differences from one another relative to seasonality. The 

May and June isoscapes show increasing C4 presence in the Southern Great Plains and in 

Mexico. June, July and August months all predict C4-dominant grasslands for large areas 
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of the Great Plains, USA. C4 dominance is modeled as first occurring around the Gulf of 

Mexico in April, expanding to the north and west in May and June, and then occupying 

the majority of the Great Plains region in July and August before retreating south in 

September and essentially dissipating in October. The May and September isoscapes are 

broadly similar, although the September isoscape predicts a greater extent of C4 presence 

across East Texas and along the U.S.-Mexico border.  

 

Figure 13 Monthly δ13C isoscapes. The natural herbaceous component of each pixel is 

classified as either C3- or C4-dominant based on the climate mask for that month. 
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4.3.3 Geographic Origin Assignment Evaluation 

Geographic origin probability surfaces were created for the 118 known-origin 

mountain plover chicks using each of the seasonal and monthly isoscapes, as well as the 

annual isoscape. For each isoscape, 1000 rescaled (i.e., feather-calibrated) isoscapes were 

generated from bootstrap sampled linear regressions that relate feather and environmental 

δ13C values. Geographic origin assignments for the individual samples were made using 

the mean of the 1000 rescaled tissue isoscapes, while accounting for variance due to 

random sampling and other sources of uncertainty. Finally, the accuracy, precision, and 

similarity of the temporal-isoscape variations were assessed and compared. 

Population Level Accuracy. Population-level accuracy was assessed as the 

proportion of known-origin sample locations included in the area defined by each relative 

probability threshold. This assessment resulted in relatively uniform accuracies for each 

isoscape variation (Fig. 14). The proportion of validation individuals included in each 

relative probability threshold decreases as the relative probability threshold increases, as 

higher probabilities are more selective and therefore include less area in general. Overall, 

the accuracies associated with assignments to the annual and each of the seasonal 

isoscapes were relatively high. Mid-season isoscape assignments had relatively higher 

population-level accuracy than annual isoscape assignments. The proportion of 

individuals included at the 0.99 relative probability interval was 0.75 for the mid-season 

assignments and 0.65 for the annual assignments. Early- and late-season isoscape 

assignments had similar population-level accuracy to one another, both of which were 

lower than the population accuracy of annual isoscape assignments. The proportion of  
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Figure 14 Population-level assignment accuracy, measured as the proportion of 

validation individuals for which the known origin was included at each relative 

probability interval.  
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individuals included at the 0.99 relative probability interval was 0.58 for early-season 

assignments and 0.59 for late-season assignments. 

The monthly-isoscape assignments performed similarly to each of their respective 

seasonal assignment, with the exception of the June isoscape-based assignments, which 

had the lowest population level-accuracy, with only 0.47 validation individuals included 

at 0.99 relative probability interval. July and August isoscape assignments both included 

>0.80 of the known-origin locations at the 0.99 relative probability interval, which was 

higher than any of the seasonal or annual assignments. 

Changes in Individual-Level Accuracy. Individual-level accuracy was measured 

as the difference in relative probability between different isoscape assignments (e.g., 

early-season – mid-season) at the known origin of each individual (Vander Zanden et al., 

2014). This metric indicates whether relative probability of origin at the true location of 

origin increased or decreased when the assignment was based on a different temporal 

window. The early-, mid- and late-season isoscape assignment probabilities were all 

significantly different from one another (p-value < 0.001 for all paired differences). Mid-

season isoscape assignments had the highest accuracy compared to both the early- and 

late-season isoscape assignments. Early-season isoscape assignments had significantly 

lower accuracy than late-season assignments.  

For monthly isoscape assignments, I compared the biologically relevant months 

(i.e., the months that correspond to feather growth), June and July, to one another.  

Between the two sets of assignments, July isoscape based assignments had significantly 

higher accuracy than June assignments (p < 0.001). I then compared the July isoscape 
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assignments to the mid-season and annual assignments. The July isoscape assignments 

had significantly higher accuracy than both the mid-season and annual assignments (p < 

0.001). 

Population-Level Precision. Population-level precision was calculated as the as 

the median proportion of total surface area included in an assignment at each relative 

probability interval (Vander Zanden et al., 2014; Fig. 15). The early- and late-season 

isoscape assignments included a smaller proportion of total area at each given probability 

interval, indicating higher precision, than the mid-season and annual isoscape 

assignments. For the annual assignments, the median portion was equal to 1.0 (i.e., 

included the entire surface) until a relative probability threshold 0.94. The population 

level mid-seasonal assignments showed even lower precision. For mid-seasonal 

assignments, the median proportion of the surface included is equal to 1.0 until the 0.99 

relative probability threshold, where the median proportion of included surface area drops 

to 0.97. The high population accuracies correspond to very low precision assignments. 

A similar pattern was also found for the associated monthly assignments. Monthly 

assignment precision was highest for the late-spring (i.e., April and May) and early-

autumn (i.e., September and October) isoscape assignments. The July and August 

monthly isoscape assignments both had very low precision; the entire surface was 

included at the 0.99 relative probability interval, as indicated by the horizontal lines in the 

precision plots (Fig. 15-B). 
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Figure 15 Population-level precision for the annual and three growing season isoscapes, 

measured as the median proportion of total surface area included in an assignment at each 

given relative probability interval.  
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Individual-Level Precision. Change in individual-level precision was measured as 

the change in area (between two isoscapes) of the posterior probability surface area 

defined by all pixels with values within the probability interval corresponding to that of 

the pixel of known origin. The differences in individual-level precision between the 

early- and mid-season isoscape assignments were significant, with early-season 

assignments having improved precision (p = 0.005). The differences between the early- 

and late-season isoscape assignments and the mid- and late-season isoscape assignments 

were all significant as well (p < 0.001, p < 0.001). Of the three seasonal isoscape 

assignments, assignments based of the late-season isoscape had the highest precision, and 

the mid-season isoscape assignments had the lowest precision based on the means of 

pair-wise differences.  

Assignments based on the June isoscape had higher precision than the 

assignments based on the July isoscapes; however, the differences were not statistically 

significant as indicated by a paired two-tailed t-test (p = 0.699). The difference in 

precision between the annual and mid-season isoscape assignments was also not 

statistically significant (p = 0.244).  In the pairwise comparisons of June assignments to 

mid-seasonal and June to annual assignments, there were no statistically significant 

differences. 

Similarity. The similarity index represents the percentage overlap between the two 

assignments, over the entire range of relative probabilities (Vander Zanden et al., 2014). 

The mean similarity indices between all comparisons combinations of the annual, 

seasonal and monthly assignments were relatively high (mean < 0.899). The annual 
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isoscape assignments were slightly more similar to the mid-season isoscape assignments 

(mean similarity = 0.9772) than to the early-season isoscape assignments (mean 

similarity = 0.9131). The early- and late-season isoscapes were more similar to one 

another than to the mid-season isoscape assignments, but the difference between 

similarity index means was not greater than 0.05 in any combination. The mean similarity 

between monthly-isoscape geographic origin assignments were consistent, with May and 

July monthly isoscape assignments having the lowest average similarity index (mean = 

0.9118), indicating they are the least similar assignments, and April and May having the 

highest (mean = 0.9532), indicating they are the most similar.  

4.4 Discussion 

4.4.1 Seasonal and Monthly Isoscapes 

Vegetation of the North American landscape is difficult to characterize in a single 

annual model due to the temporally offset, but geographically co-dominant communities 

that occur due to seasonality. For example, the Chihuahuan desert has two distinctive 

communities each year. In the winter, the landscape is C3-dominant; however, in the 

summer the area is entirely C4-dominant. Both seasonal communities are punctuated by 

intense drought, so neither is able to persist beyond a very limited time period (Kemp, 

1983; Sage et al., 1999). This shift in C3/C4 dominance is effectively captured by the 

seasonal isoscapes, whereas the annual isoscape averages out the two vegetation 

communities and predicts a landscape that never actually exists. Overall, the plant 

functional type dynamics predicted by the seasonal and monthly isoscapes appear to 

better match the descriptions of previous floristic survey studies (Ode et al., 1980; 
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Monson et al., 1983), where the spring months are C3-dominant, the summer months are 

dominated by C4 grasses, and there is a resurgence of C3 grasses in the fall.  

In the seasonal and monthly isoscapes, only “natural” herbaceous vegetation was 

modeled as being temporally variable. This is a major limitation in the current modeling 

methods, as the majority of plants do not actively persist at mid- to high-latitudes 

throughout an entire year. Another limitation of only modeling temporal shifts in natural 

herbaceous C3 and C4 dominance is made most apparent by the persistent C4 crop signal 

in the Great Lakes region, USA, in every isoscape permutation. Being able to model the 

temporal variability of crops would better account for multi-cropping (seasonal crops), as 

well as fallow fields, and being able to “mask out” areas where no active vegetation is 

present would better constrain the extent of possible migratory animal origins.  

I did not include the winter and winter-month isoscape assignments in the 

assessments for accuracy, precision and similarity because there were many limitations in 

the modeling methods that caused poor representation of the winter months. The model 

does not account for active versus dormant vegetation. During the winter months, the 

entire mountain plover breeding range is subject to snow cover (mean monthly 

temperature < 0ºC), and therefore does not likely have much active vegetation. However, 

the winter isoscape, with modifications, has the potential provide information about 

migratory animals that spend the winter at lower latitudes and summer at higher latitudes 

on the North American continent.  
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4.3.2 Calibration Points as an Indicator of Temporal Fit 

Mountain plover chicks grow their first set of feathers from mid-May to July 

(Wunder et al. 2008). These months are therefore biologically relevant in terms of time 

frame, and other periods over the year, are biologically irrelevant time periods. The mid-

season, as well as the summer month (e.g. July and August) isoscape assignments all had 

very high accuracy at the population level. July and August isoscape-based assignments 

had the highest levels of accuracy. However, the high accuracy was coupled with having 

relatively low precision in comparison to the other isoscape assignments based on 

biologically irrelevant temporal windows. This dynamic might be explained by the 

calibration equations used to convert the environmental isoscape predictions into a 

feather isoscape.  

The mountain plover chicks come from both C3 and C4 dominant environments, 

as indicated by the δ13C values ranging from -21.9‰ to -12.4‰. This is well matched by 

the biologically relevant isoscape predictions of δ13C values at the known-origin sites (-

26.7‰ to -12.9‰). However, the isoscapes generated for irrelevant months predict only 

C3 dominant values, constrained to a range of -26.7‰ to -25.5‰. This difference in range 

predicted by the environmental isoscape in comparison to the feather values indicates that 

the irrelevant time periods are not an appropriate fits for generating the mountain plover 

geographic origin assignments, and will not generate meaningful calibration equations. 

The gain in assignment precision seen in assignments based on irrelevant time periods is 

artificially gained from extremely steep calibration equations generated by trying to fit a 

wide range of feather δ13C values to a narrow range of δ13C isoscape predictions (Fig. 



83 

 

16). All biologically irrelevant temporal windows have very similar δ13C isostope 

predictions within the mountain plover breeding range, and the resulting feather isotope 

calibration equations all look similar to the calibration points displayed in Fig. 16. 

Calibration point and rescaling equation plots for all isoscapes are included in Appendix 

2. 

June, the most biologically relevant month to the sampled population of mountain 

plover chicks, was expected to yield high accuracy and precision assignments; however, 

this was not the case. June assignments typically had the lowest relative accuracy as well 

as relatively low precision. One factor causing this may be due to the influence of a 

cluster of mountain plover chicks sampled in a poorly modeled environment. As 

Figure 16 May isoscape environmental to feather tissue isoscape calibration points and 

equations. All other isoscape calibration points and rescaling equations are included in 

Appendix 2. 
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presented in Fig. 17. The points highlighted by the purple circle are all mountain plover 

feather samples that did not correspond to the values predicted by the isoscape. For these 

points, feather δ13C values indicate C4-dominant diet, while predicted leaf δ13C values 

indicate a C3-dominant environment. These feather samples all come from the same 

sampling location (Site C in Fig. 11), classified as a fallow field (Wunder et al., 2005). 

This mismatch indicates that this site was poorly modeled by the isoscape. This could 

potentially be due to the course spatial grain of the isoscape. The isotopic signature of 

each pixel is an average of all the estimated vegetation included in the 5-min area. 

Therefore, it is possible that the δ13C values reflected in the tissues were assimilated from 

Figure 17 Known-origin feather calibration points and isoscape rescaling equations for 

the June isoscape. The x-axis are original δ13C environmental isoscape values extracted 

to the known-origin feather sampling locations. The y-axis depicts sampled feather δ13C 

values. The lines depict the 1000 bootstrapped rescaling equations. The points 

highlighted in the purple circle are feather samples that do not match the modeled 

environment. 
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a site, such as a fallow field, that was not spatially dominant, and the associated δ13C 

signal was muted by the δ13C signal of the more dominant vegetation cover. Another 

possibility is that the long-term agricultural and climate data sets used to generate the 

isoscape is not representative of the environment this particular group of mountain plover 

chicks were interacting with. In other words, “statistical June” is not equivalent to June, 

2001.   

Additionally, the monthly isoscapes are limited in that they are binary 

representations of C3 vs. C4 dominance in mixed grasslands areas. The methods used to 

model plant functional types require a temporal factor to predict mixed grasslands. Mixed 

grassland pixels are classified as entirely C3 or entirely C4 at the monthly temporal 

resolution. For example, the early summer months such as June may have C4 dominant 

environmental conditions; however, there is still likely a considerable C3 presence due to 

the environmental conditions of the previous month. Also, it is important to note that the 

monthly data is an arbitrary temporal block, as are the seasonal groupings, and both are 

subject to the modifiable temporal unit problem (MTUP). For example, the results may 

be different if the early season was defined as February, March, April instead of March, 

April, May. Much like the first law of geography, which states “all things are related, but 

things that are close together are more closely related,” the vegetation communities that 

occur in close temporal sequence are related. The binary modeling of the grasslands at a 

monthly temporal resolution effectively reduces within grassland heterogeneity.  

The annual isoscape assignments were most similar to the mid-season and 

summer-month (i.e., July and August) isoscapes. The annual representation of leaf δ13C is 
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artificial in the sense that annual average vegetation is an environment that an animal will 

never actually interact with at a particular point in time. This is particularly important 

when working with migratory animals, which interact with different environments across 

a landscape as a function of time.  

4.3.3 Assessing Geographic Assignment Efficacy 

This analysis has highlighted some limitations of using relative probability 

intervals to assess the efficacy of geographic origin assignments. For assignments with 

very low precision, corresponding accuracy metrics are generally high, because there is 

almost equal probability that the individual came from any location on the continent. 

Relative probability is calculated by normalizing posterior probability by the maximum 

value of the data set; therefore, in cases of low precision, the resulting relative probability 

of every pixel is quite high across large spatial extents.  

The similarity metric was also problematic metric because isoscapes are not 

necessarily separate (i.e., independent) models, but rather permutations of the same 

model. The only differences between isoscapes occur in natural herbaceous areas; 

therefore, there was inherently a high similarity between assignments, particularly in the 

cropland- and forest-dominated areas. Additionally, there is a potential problem in 

assessing the similarity between isoscape assignments that were generated across 

temporal scales (e.g., annual isoscape assignments versus a seasonal or monthly isoscape 

assignment), again because the coarser temporal resolution model is not independent of 

the data included in the finer temporal resolution model. Assignments between temporal 
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resolutions corresponding to the same dates will inherently be more similar than two 

isoscape assignments being compared for different dates at the same temporal resolution.  

4.5 Conclusion 

In order to effectively use high temporal resolution models, it is critical to have a 

basic understanding of the ecological properties of the migratory animals being assigned. 

For example, comparing tissues to an environment the organism did not interact with 

(e.g., biologically irrelevant temporal windows) would yield meaningless results as there 

is not a connection between the organism and modeled environment. For example, the 

assignment of mountain plover chick tissues to biologically irrelevant time periods 

appeared to result in improved precision; however, this gain in precision was artificial 

and caused by forcing an isoscape calibration equation between a wide range of δ13C 

feather values and a narrow range of environmental δ13C predictions. Care should be 

taken to not assign tissue to a habitat- either in time or space- that the tissue was not 

grown in. 

 Isoscapes corresponding to most of the biologically relevant time frames (i.e., 

annual, mid-season, July and August) resulted in assignments with high accuracy, but 

relatively low precision. The low precision is likely a result of the assignments being bi-

modal, identifying birds as either growing tissue in a C3 or C4 environment. Using δ13C 

isotopes for assignment allows for tissues to be identified as either coming from C3- or 

C4-dominant environments. Further constraining assignments by limiting the assignment 

region to the known breeding range or employing other isotopes would likely improve 

prediction.  
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One biologically relevant month, June, resulted in assignments with relatively low 

precision and accuracy. This is potentially due to a cluster of mismatched points all 

coming from the sample site, where the feathers of the birds had a distinct C4 signal, but 

the isoscape predicted the environment as C3. This mismatch could be caused by large 

pixels muting the influence of local sites, such as crop fields, or mixed grasslands as the 

local scale, where natural grasslands were classified as either C3 or C3. By examining 

calibration points and rescaling equations, clusters can be identified and characterize 

potential sources of uncertainty within the isoscape. Further refinement of the current 

methods to generate the isoscapes of differing temporal resolutions, such as considering 

active vs. dormant vegetation, or modeling mixed grasslands at monthly resolution could 

improve both the accuracy and precision of the models. Additionally, the 5-min spatial 

resolution of each of these models is much larger than the 56 hectares that a mountain 

plover would assimilate while feathering. This is the basis of my third research question: 

how does spatial resolution impact the efficacy of using δ13C models used for geographic 

origin assignment? 
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CHAPTER 5: The Impact of Spatial Resolution on Modeling Stable Terrestrial 

Carbon Isoscapes 

5.1 Introduction 

What is the impact of spatial resolution on overall confidence in the model? What is the 

impact of aggregating fine-grained spatial data versus resampling coarse-grained spatial 

data on the final data product? 

Spatial resolution of raster data sets, or spatial “scale,” can be defined as the size 

of the two-dimensional raster cells, or pixel dimensions (Goodchild, 2011). Isoscapes are 

represented as a gridded, continuous response variable. The pixels of an isoscape estimate 

the approximate isotope value for the area of the landscape represented by the pixel. The 

annual 5-min isoscape generated in Chapter 3 represents the annual and spatial average of 

each 5-min pixel’s area. Animal tissues for geographic origin assignment are typically 

spatially coded as coordinates (i.e., a point) which are compared to gridded isoscape 

values. The change in support problem (COSP) and the modifiable areal unit problem 

(MAUP) are fundamental spatial considerations often ignored in geographic origin 

assignments. However, the spatial area over which an organism integrates an 

environmental isotopic signal varies. By matching the spatial resolution of an isoscape to 

the spatial grain and extent that the organism integrates, there is potential to improve 
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origin assignment accuracy, as well as better characterize the processes by which 

organisms integrate the isotopic signature of their environment. 

A common standard protocol for integrating data sets of different spatial 

resolutions into a common modeling framework (e.g., the IsoMap cyber-GIS system) is 

to aggregate all of the input data products to the spatial resolution of the data set with the 

coarsest grain size (Bowen et al., 2014). However, this reduces variance of data values, 

as well as spatial heterogeneity. This research question seeks to explore the impact of 

varying spatial resolutions on confidence in the final model predictions. Spatial resolution 

is an important consideration in environmental modeling prediction, because both 

aggregating and disaggregating data introduce error into the final product. 

Spatial resolution defines the level of detail and content of a spatial model 

(Goodchild, 2010). With coarser spatial data, detail is lost. However, coarser spatial 

resolution generally corresponds to an increase in accuracy. In the geographic assignment 

example, the “correct” assignment location is more likely to be identified when larger 

grid cells are used. Fig. 18 depicts a theoretical example of the potential impact of spatial 

resolution on a geographic assignment prediction. At a coarse spatial resolution, more 

area is included, increasing accuracy (there is a higher probability that the “true origin” is 

included in the predicted area) but reducing precision. The finer resolution model has 

higher precision, but potentially lower accuracy.  
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Figure 18 Example of varying spatial resolution of raster data model, and potential 

impact on geographic assignment. Red represents high probability of origin, and yellow 

represents lower probability. 

 

 Another consideration is how well the spatial resolution of an ecological model 

“matches” the phenomena being represented. For example, a recent study by Griffith et 

al., (2015) has shown that the spatial resolution of a model is an important consideration 

and should be matched to the spatial resolution the processes occur at (e.g., the area of 

environment that an organism assimilates into its tissues). In this way, modifying the 

spatial resolution of an ecological model may improve accuracy. By paying attention to 

how spatial resolution impacts the representation of a phenomena or performance of a 

spatial model, traditional geographic “problems” may be leveraged to characterize the 

processes being studied (Section 2.1.6). This chapter explores the impact of spatial 

resolution on the δ13C isoscape and the geographic origin assignment of mountain plover 

chicks.  
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5.2 Methods 

To explore the impact of spatial resolution on modeling outcomes, two additional 

annual isoscape models are generated following the methods described in Chapter 3.2, 

resampling all input data to two different input resolutions. The spatial resolutions tested 

were determined and constrained by the spatial resolutions of the input data sets. The 

global input data sets that were used to generate the North America product (Table 2, 

Chapter 3) range in spatial resolution from 500 meter to 10 minute (~18.5 km at 40º 

latitude). For the fine-grained data product, all input data are disaggregated to 1-km 

spatial resolution. For the spatially coarse data product, all input data are aggregated to 

10-min spatial resolution.  

To make the raster grids of each data product compatible, the resample function in 

the R raster package is used to snap each data product to perfectly matching raster grids. 

For continuous data, the bilinear resampling method is used; for categorical data (e.g., 

climate masks, land-cover classes), the nearest neighbor resampling method is used. The 

resampling of data to coerce matching raster grids is an instance of the MAUP zonation 

effect, and results in uncertainty and error in the final model.  

The impact of spatial resolution is tested using the geographic origin assignment 

methods detailed in Section 4.2.2. The resulting products are also compared to the annual 

5-min spatial resolution model generated in Chapter 3. Due to the memory intensive 

demands of processing 1-km resolution data, all three spatial resolution rasters (1-km, 5-

min and 10-min) are cropped to the spatial extent corresponding to the approximate 

known mountain plover breeding range (Wunder et al., 2008; Fig. 18). I assess the 
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accuracy and precision of each model using the methods, described in Section 4.2.3 

(Vander Zanden et al., 2014). The population-level accuracy was assessed as the 

proportion of known-origin sites (of the assigned individuals) included across a sequence 

of relative probability thresholds, and precision is measured as the median surface area 

included at each relative probability interval. The individual-level accuracy metric is 

assessed as the difference between the relative assignment probabilities for two different 

isoscape assignments at the known-origin site, and precision is assessed as the difference 

in surface area included at the relative probability threshold equal to that predicted at the 

known-origin location.  

However, in contrast to Vander Zanden et al. (2014), similarity is not assessed 

because this metric requires the pixels to be matching in size during assignment. Because 

all of the pixel probabilities within the extent are rescaled to sum to 1, the fine-grained 

resolutions, having more pixels, will inherently have lower relative probabilities.  

5.3 Results 

5.3.1 The Impact of Spatial Resolution on Modeled δ13C in the Mountain Plover Breeding 

Range  

The general spatial patterns of δ13C are very similar across all three model 

variations generated at differing target spatial resolutions (Fig. 19). Although the 1-km 

model output does have more spatial variation than the two coarser permutations, there is 

some detectible blockiness due to the coarser cropland and climate data used in the 

model. Most notably, the range of isotopic values mapped decreases as spatial resolution 
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decreases. For the full continental extent of the isoscape, the range of pixel values 

predicted for both the 1-km and 5-min products was -27.2 to -12.5. For the 10-min 

product, the range of values predicted was -27.2 to -12.8, indicating that no pixels were 

modeled as entirely C4 dominant at a 10-min spatial resolution. This smoothing is most 

apparent in the southwest corner of the mapped extent. In the 1-km permutation, there are 

isotopically enriched values depicted in dark blue, as well as no-value pixels (white). 

This area is a desert near Flagstaff, AZ. The white pixels are classified as 100% barren 

0% vegetation) by the vegetation continuous fields (VCF) data set, and therefore have no 

leaf δ13C signature.  

Figure 18 The annual δ13C isoscape at five-minute spatial resolution. The mountain 

plover breeding range is outlined in black (Wunder et al., 2005). 
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5.3.2 Geographic Origin Assignment Evaluation on Spatial Resolution 

There was essentially no difference in population-level accuracy for the three 

isoscapes of different spatial resolutions, nor for population-level precision (Fig. 20). 

Individual-level accuracy was compared as the relative probability predicted at the 

known-origin location by each geographic origin assignment model. However, the 

comparison of individual-level between spatial resolution assignments did result in 

significant differences between the 10-min and 1-km models (t= -4.573, p-value < 0.001) 

Figure 20 Three δ13C isoscape products in the known mountain plover breeding range. 

The leftmost isoscape is 1-kilometer spatial resolution, the middle isoscape is 5-minute 

spatial resolution, and the rightmost isoscape is 10-minute resolution.  
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with the 10-min isoscape assignments having higher accuracy. Using relative probability 

accounts for the differences in the number of pixels included in each raster at different 

spatial resolutions. The differences in accuracy between the 5-min and 1-km (t = 2.782, 

p-value = 0.006) and the 10-min and 5-min (t= -2.689, p-value = 0.008) were also 

statistically significant, with increased spatial resolution (i.e., finer grain size) resulting in 

decreased accuracy.  

The individual-level precision assessments had similar results as the individual-

level accuracy. The 10-mi and 1-km isoscape assignments had the largest differences in 

assignment precision, with the 1-km assignments having higher precision. The 

differences in precision between 5-min and 1-km assignments and the 10-min and 5-min 

assignments were both significantly different from one another. As expected, the higher 

resolution assignments had higher precision relative to coarser resolution assignments.  

5.4 Discussion 

Given the three spatial resolutions being tested, there was not a significant change 

in geographic origin assignment efficacy at the population level, although there were 

statistically significant differences when assignments were compared at the individual-

level. This tradeoff in accuracy and precision at the individual level is not surprising in 

itself, as increased model precision is often at the expense of accuracy, and vice-versa.  

The reason the individual level accuracy and precision metrics resulted in 

statistically significant differences, whereas the population-level metrics did not. With a 

greater number of pixels, there is likely a greater number of distinct relative probability 
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values. However, the population-level accuracy metric divides (bins) the relative 

probabilities into 99 sequence intervals; therefore, the population-level accuracies are 

near equivalent for all three isoscapes (Fig. 21). The same type of phenomena occurs 

with the precision metrics. The binning at the population-level causes differences 

between the isoscape permutation assignments to be very small, but at the individual 

level they are statistically significant.  

These results should be interpreted through the perspective of improving 

geographic origin assignment utility using isoscapes. First, it should be noted that 

geographic origins surfaces do not identify the specific location (pixel) that a migratory 

animal comes from, as there are likely many pixels that have similar or the same isotopic 

values within a given extent; rather, the goal is to constrain the possible environment. 

Therefore, the small differences in relative probabilities between pixels gained from finer 

spatial resolution and improved precision may not be meaningful in the context of 

geographic origin assignments. Additionally, the processing of high-resolution data is 

Figure 21 Population-level assignment accuracy and population-level precision. 
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substantially more memory intensive, which can quickly become prohibitive in terms of 

time and processing power.  

Additional limitations to this analysis should considered. First, each of the grid 

sizes tested are all still too coarse to represent a biologically relevant spatial scale for the 

mountain plover chicks (~56 hectares). Thus, the mountain plover chicks are effectively 

assimilating a point-sized area relative to the smallest pixel area. In terms of the change 

of support problem (COSP), the comparison of bird feather to the isoscape raster surface 

is a point (individual origin) to raster conversion. Finally, the input data did not change 

between models. If all input data had been collected at the finest grid size, the results of 

the assignments at each resolution may have been more different.  

5.5 Conclusion 

Although there were statistically significant differences identified between each 

isoscape permutation of differing spatial resolutions, I found there was not meaningful 

impact of spatial resolution on geographic origin assignments in the context of 

interpretation. The improvements in precision gained from assignments using finer 

spatial resolution isoscapes were always at the cost of accuracy. Because models with 

higher spatial resolution are often proportionately more memory intensive, I propose that 

it is best to use isoscapes generated at the coarsest-resolution input data set for initial 

geographic origin assignments.  

The concept of harnessing areal units to characterize the way an animal like 

mountain plover chicks interact with an environment may be more useful at smaller 
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spatial extents, where data may be collected at specific spatial resolutions, as many 

ecological studies examining intrinsic scale have begun to explore. The remotely sensed 

data used to generate the δ13C isoscapes all occur at a spatial resolution considerably 

coarser than what would be relevant to flightless chicks. Starting with data at a finer 

spatial grain than the estimated area of assimilation for the animal being studied, and then 

aggregating up to find a point of improved model fitness would be a better strategy to test 

this concept, and should be further explored.
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CHAPTER 6: Summary and Conclusions 

6.1 Summary of Research 

Overview 

This research was driven by an interest in leveraging the spatial and temporal 

characteristics of ecological data and models to characterize the ecological phenomena 

being researched. I explored these concepts in the context of modeling the spatial patterns 

of stable carbon isotopes for the continent of North America. I experimented with model 

rules and parameters, temporal resolution, and spatial resolution as factors that impact the 

efficacy of creating isoscapes, and performing geographic origin assignments. The 

findings presented in this thesis serve as initial investigations of the representation of 

dynamic ecological processes in static models, as well as possible best practices for using 

a terrestrial stable carbon isoscape for geographic origin assignments.  

Research Question 1: What is the spatial distribution of vegetation (i.e., leaf) stable 

carbon isotopes on the continent of North America? 

Through a comparison to soil organic matter observations in the Great Plains, 

USA, the results from my study demonstrated the potential limitations of using mean-

monthly temperature as the climate metric for the Collatz-crossover model in North 
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America, as well as the potential need for multiple “cross-over temperatures” in relation 

to latitude. I used a δ13C SOM data set for validation data because unlike vegetation 

surveys, SOM represents a long-term average of plant functional type abundancies, and 

therefore is appropriate data to test an annual isoscape. However, there was not strong 

agreement between the observed data set and any of the isoscape permutations, indicating 

general model uncertainty. Uncertainty was greatest in deserts and higher elevations 

where the land-cover rules and crossover metrics had the greatest impact. The max-

temperature/max-herbaceous isoscape model permutation had the lowest residuals in 

comparison to the validation data set and therefore was used in the following research 

chapters. 

Research Question 2: How can seasonal variation of vegetation cover be represented in 

a static model? In what way does temporally aggregating the seasonal variation of mid-

latitude grasslands impact confidence in the final model? 

The known-origin geographic origins assignments of mountain plover chicks 

indicated that temporal resolution did have a significant impact on isoscape modeling and 

geographic origin assignment efficacy. In general, Accuracy and precision improved 

using biologically relevant finer resolution temporal windows (e.g., mid-seasonal 

assignments were more accurate and precise than annual assignments, because mid-

seasonal isoscapes do not average in periods of time that the birds do not interact with 

their environment).  Most geographic origin assignments based on biologically relevant 

temporal windows (i.e., mid-season, July and August) had relatively high accuracy and 

lower precision. However, the relatively high precision found in assignments based off 
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biologically irrelevant time periods was artificial and only due to the extremely steep 

tissue calibration equations applied to the environmental isoscapes. Geographic origin 

assignments should not be created with isoscapes that represent an environment the 

organism could not have grown tissue in, spatially or temporally. 

 June, which is a biologically relevant time period created assignments with low 

accuracy and precision relative to other months. This is likely a result of mismatched 

feather δ13C values to environmental isoscape δ13C predictions resulting in a cluster of 

points skewing the calibration equations, thereby reducing both accuracy and precision. 

This mismatch indicates limitations in the isoscape model, perhaps resulting from coarse 

spatial resolution or long-term statistical data not appropriately representing the 

environment experienced by the mountain plover chicks. The major implication of these 

results is that it is very important to review the observational data, isoscape predictions, 

and calibration curves prior to generating geographic origin assignments.  

Research Question 3: What is the impact of spatial resolution of the final product on 

overall confidence in the model? What is the impact of aggregating fine-grained spatial 

data versus resampling coarse-grained spatial data on the final data product? 

The purpose of an isoscape-based geographic origin assignment is to generally 

constrain the environment from which an animal originates, rather than to identify a 

specific point of origin. For this reason, using coarser spatial resolution models might be 

more ideal, because my results showed that coarser resolution isoscape improved 

accuracy and reduced computer processing times. There was little difference between 

geographic origin assignments between the 1-km, 5-min and 10-min isoscapes at the 
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population level in terms of accuracy and precision. However, at the individual-level, the 

efficacy assessment metrics indicated there was a significant difference in accuracy and 

precision between each set of assignments. For example, finer-resolution assignments had 

higher precision but lower accuracy, and at coarser resolutions assignments had higher 

accuracy and lower precision. There was always a tradeoff in accuracy and precision with 

changes to the spatial resolution of the isoscape that was used. 

 It is possible that the different spatial resolutions did not show obvious 

improvement over one another because none came close to a biologically relevant spatial 

scale. Even the 1-km spatial resolution model is still much coarser than the 56-ha patches 

that mountain plover chicks inhabit prior to their first feathering. Additionally, the input 

data did not change between isoscape variations, which meant spatial heterogeneity was 

only preserved for data that had a spatial resolution equal to or finer than the target 

resolution. 

6.2 Limitations and Suggested Improvements  

Many of the model limitations of the terrestrial carbon isoscapes were 

exacerbated in the seasonal and monthly isoscape permutations by the methods used to 

vary temporal resolution. Because many of the input data layers represented annual 

averages (e.g., croplands, vegetation cover) there was no way to account for active versus 

dormant vegetation, or multi-cropping cycles on a landscape. Lacking temporally 

variable data on active vegetation is problematic for the seasonal and monthly isoscapes 

because they are modeled at fine enough temporal resolutions where whole pixels may 

not contain active vegetation for that entire time period.  
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Even the natural herbaceous grasslands, which were modeled as temporally 

variable, were limited by the modifiable temporal unit problem (MTUP). The monthly 

temporal resolution is an arbitrary temporal unit, and may not be appropriately capturing 

temporal variability. Additionally, the monthly isoscapes do not model mixed grasslands, 

and therefore lose some model heterogeneity as the grasslands are binary. This also does 

not take into account that the growing season is a progression, and grassland communities 

are directly impacted by the vegetation that grows before it (i.e., there is not an 

instantaneous turnover from C3 dominance to C4 dominance). 

Results for Research Questions 2 and 3 are also limited in that geographic origin 

assignments are both isoscape and species specific, meaning that thus far these results 

only have been applied to mountain plovers and a specific set of δ13C isoscapes. The 

mountain plover breeding range is spatially constrained to the mountains, foothills and 

immediate grasslands east of the Rockies. This means that large portions of the continent 

were not sampled for calibration between isoscape and feather δ13C values. Due to the 

limited range of the mountain plovers, I was unable to leverage the dramatic temporal 

variation that occurs in the Chihuahuan desert and the majority of the Great Plains to 

explore isoscape properties or geographic origin assignment methods. The geographic 

origin assignment validations would potentially be improved by using a more widely 

distributed species for known-origin calibrations and assignments. Also, the measures of 

variance from calibration and rescaling equation residuals need to be further tested to 

assure they are appropriate and effective.  
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I found little variation in the population-level accuracy and precision curves 

relative to results reported for previous studies. The accuracy and precision metrics were 

originally developed and used in the context of precipitation-based δ2H isoscape 

assignments (Vander Zanden et al. 2014). My results suggest some limitations in these 

assessment metrics in the context of assignments based on δ13C isoscapes. The 

population-level metrics may have lacked texture because geographic origin assignments 

based on δ13C isoscapes are somewhat bi-modal. This is because as birds are in-essence 

classified as belonging to either a C3-dominant environment or a C4-dominant 

environment. The lack of differentiation between the population-level metrics may be 

related to binary individual assignments, resulting in a muted population-level impact. 

6.2 Future Research 

The initial motivation behind my research was to characterize the biogeography 

of both plant and animal species by leveraging the spatial and temporal qualities of 

ecological models. The results of my research provide a foundation for many different 

avenues of further exploration. 

 Initial isoscape generation could be explored by comparing the isoscapes 

generated using the Collatz-crossover model, which differentiates C3 and C4 dominance 

by using a crossover temperature, to the research using plant functional type phenology 

as a mechanism for differentiating between C3 and C4 vegetation (Section 2.2.5). Using 

phenology instead of climate conditions may account for any “lag time” that may occur 

between environmental conditions and present vegetation.  Previous work has modeled 

phenology using MODIS bi-weekly NDVI data (Wang et al., 2011; Wang et al., 2013; 
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Zhong et al., 2015), and these models have finer temporal resolution than the monthly 

climate metrics.  

Further research on seasonal variation is necessary for two reasons. First, finer-

temporal resolution isoscapes may improve accuracy and precision by narrowing the time 

frame to a biologically relevant time period. Second, future research could examine 

whether finer-temporal resolution isoscapes can be leveraged to identify both where and 

when a migratory animal occupies a habitat. This could be tested by applying known-

origin geographic assignment validations on individuals that breed or molt during a 

different time period. 

The examination of temporal and spatial resolution in the context of geographic 

origin assignments and isoscapes should also be applied to stable hydrogen isoscapes. It 

would be relevant to understand how spatial and temporal variation impact hydrogen 

isotope representation across a landscape. Additionally, multi-isotope geographic origin 

assignments have the potential to increase accuracy and precision of predictions. 

Combining stable hydrogen and stable carbon isoscapes may result in new opportunities.  

Finally, testing the impact of modifying areal units at a much smaller spatial 

extent may lead to more opportunities for leveraging model properties to characterize 

ecological phenomena. In a perfect world, animals are “ideal integrators” of the 

environment, where all sources of environmental isotopes are equally integrated into 

animal tissue. Animals selectively consume food within an ecosystem, meaning they 

assimilate their environments in different ways, as well as different spatial extents. It may 

be possible that the MAUP could be harnessed to characterize the ways in which an 
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animal “uses” its environment, both in terms of scale, as well as food-web partitioning. 

For this reason, the MAUP, the MTUP and the COSP should continue to be explored in 

the context of environmental stable isotopes and geographic origin assignments. 

Ultimately, considering the parameters used to model environmental properties, allows 

further explorations concerning the interactions of animals and their landscapes. 
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APPENDICIES 

 

APPENDIX 1: Soil Organic Matter (SOM) Validation Data Set 

 

Site Latitude Longitude SOM δ13C 

Anahuac Wildlife Refuge, TX 29.67 -94.4 -15.0 

Clymer's Prairie, TX 33.32 -96.2 -14.4 

Lubbock, TX 33.41 -102.1 -15.5 

Muleshoe, TX 33.5 -102.4 -14.2 

Tridens Prairie, TX 33.64 -95.7 -14.4 

Sevielleta, NM 34.35 -106.9 -16.7 

Woodward, OK 36.42 -99.3 -18.6 

Freedom, OK 36.45 -99.4 -14.1 

Tallgrass Prairie, OK 36.88 -96.5 -16.3 

Diamond Grove, MO 37.03 -94.3 -15.6 

Drover's Prairie, MO 38.53 -93.3 -19.3 

Land Institute, KS 38.73 -97.6 -15.3 

Fort Hays, KS 38.86 -99.3 -15.6 

Fall Leaf Prairie, KS 39 -95.2 -18.3 

Konza Prairie, KS 39.09 -96.6 -14.4 

Squaw Creek Wildlife Refuge, MO 40.08 -95.4 -16.8 

Indian Cave State Park, NE 40.26 -95.6 -16.0 

CO State/LTER, CO 40.84 -104.7 -15.9 

Nine Mile Prairie, NE 40.87 -96.8 -15.5 

Loess Hills Wildlife Refuge, IA 42.05 -96.1 -15.7 

Stone State Park, IA 42.52 -96.5 -14.0 

Niobrara Nature Preserve, NE 42.77 -100 -17.8 

Second Niobrara Site 42.77 -100 -18.4 

Newton Hills State Park, SD 43.26 -96.6 -18.3 

Lange-Furgeson Site, SD 43.33 -102.6 -18.3 

Cayler Prairie, IA 43.4 -95.2 -17.7 

Makoce Washte, SD 43.55 -97 -16.3 

Lundblad, MN 43.94 -95.7 -18.7 
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Cottonwood, SD 43.96 -101.9 -18.1 

Schaefer Prairie, MN 44.72 -94.3 -19.8 

Antelope Prairie, SD 45.51 -103.3 -20.4 

Custer Battlefield, MT 45.54 -107.4 -25.0 

Ordway Prairie, SD 45.72 -99.1 -19.0 

Staffanson, MN 45.82 -95.8 -17.6 

Eastern ND Tallgrass Prairie, ND 46.42 -97.5 -18.2 

Bluestem Prairie, MN 46.84 -96.5 -19.5 

Dickinson, ND 46.89 -102.8 -18.9 

Sheyenne Grassland, ND 46.5 -97.5 -21.1 

Western ND Mixed Prairie, ND 47 -103.5 -20.1 

Oakville, ND 47.2 -97.3 -20.5 

Cross Ranch, ND 47.25 -101 -19.7 

Teddy Roosevelt N.P., ND 47.45 -103.2 -21.9 

Pembina Prairie, MN 47.69 -96.4 -17.9 

Glasgow, MT 48.12 -106.4 -20.3 

Bainville, MT 48.14 -104.2 -20.5 

Milk River, Alberta 49.08 -112.1 -23.4 

Tolstoi Prairie, Manitoba 49.08 -96.8 -21.0 

Living Prairie, Manitoba 49.88 -97.3 -21.4 

Head Smashed In, Alberta 49.5 -113.8 -24.1 

Grosse Isle, Manitoba 50.07 -97.5 -20.6 

Oak Hammock, Manitoba 50.2 -97.2 -19.1 

Stavely, Alberta 50.22 -113.9 -25.2 

Matador, Saskatchewan 50.67 -109.3 -24.1 

Biddulph, Saskatchewan 50.68 -107.7 -22.9 

Kernan Prairie, Saskatchewan 51.9 -106.7 -25.1 
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APPENDIX 2: Rescaling Equation and Calibration Data Plots
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APPENDIX 3: Geographic Origin Assignment Code 

 

 

##necessary libraries 

 

library(raster) 

library(rgdal) 

library(maps) 

library(mapdata) 

library(fields) 

library(spam) 

library(pracma) 

library(usdm) 

library(SDMTools) 

library(MASS) 

 

 

##------------------------------- RESCALING FUNCTION -------------------------------## 

##The function conducts 1000 random samples of data with replacement and generates a 

regression line for each 

##The output contains the slopes and intercepts of each of the 1000 regression lines, as 

well as the standard deviation of equation residuals 

##Input is a .csv table that has the calibration data tissue d13C, and the corresponding 

plant mean and SD extracted from the vegetation isoscape 

 

##Function requires: 

#table = the filename (with directory, if applicable) from which to load the data 

#tissue.mean = column # containing d13C tissue values of individuals sampled 

#plant.mean = column # containing d13C plant values 

#plant.SD = column # containing of d13C plant values 

 

rescale <- function(table.ex, tissue.mean, plant.mean, plant.SD) {  

##create empty vectors to save values to, change length value to number of iterations.  

  slopes <- vector('numeric', length=1000) 

  intercepts <- vector('numeric', length=1000) 

  sds <- vector('numeric', length=1000) 

   

##bootstrapping function, repeats resampling 1000 times, creating a rescaling equation 

with a slope, intercept and residuals 

  for (k in 1:1000){ 

    table <- read.table(table.ex, header=TRUE, 

                              sep=",", na.strings="NA") 

    boot <- sample(seq_len(nrow(table)), nrow(table), replace = TRUE) 

    calibration <- table[boot,] 
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    tissue.d13c <- vector('numeric', length(calibration))  ##creates vector of bootstapped-

sample feather d13C 

    tissue.d13c <- calibration[, tissue.mean] 

    plant.d13c <- vector('numeric', length(calibration))  ##creates vector of bootstapped-

sample extracted (from isoscape) plant d13C 

    plant.d13c <- calibration[, plant.mean] 

 

    lmResult.k <- lm(tissue.d13c~plant.d13c)    ##linear regression model   

    intercepts[k] <- coef(lmResult.k)[1]   ##saves intercepts to vectors 

    slopes[k] <- coef(lmResult.k)[2]   ##saves slopes to vector 

    sds[k] <- sd(lmResult.k$residuals)   ##standard deviation of residuals 

     

     

  } 

    ##returns data frame containing 1000 slopes, intercepts and standard deviations of 

residuals 

    return(data.frame(slopes, intercepts, sds)) 

} 

 

##------------------------------- RASTER CONVERSION -------------------------------## 

##Conversion function uses the output from the rescaling function to rescale plant raster 

and rescale SD raster (used in the pooled error) 

 

##Function requires: 

#original.raster = the filename (and directory) of the original vegetation raster 

#reg.par = the output from the function above 

#scratch.dir = the directory of a scratch folder to store the rasters temporarily 

 

raster.conversion <- function (original.raster, reg.par, scratch.dir) {  

   

  for (i in 1:length(reg.par[,1])) { 

    reg.par.i <- reg.par[i,] 

    raster.i <- original.raster*reg.par.i$slopes + reg.par.i$intercepts  ##creates 

bootstrapped (1000) rescaled rasters 

    name <- paste(scratch.dir, i, ".grd", sep="") 

    writeRaster(raster.i, filename=name, overwrite=TRUE) 

  } 

  setwd(scratch.dir) 

  all.files <- dir(pattern=".grd") 

  n <- length(all.files) 

  all.rasters <- stack(all.files)  ##stacks all rescaled rasters from folder 
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  mean.raster <- stackApply(all.rasters, fun=mean, indices=c(rep(1,n)))  ##calculates the 

mean of rescaled rasters, pixel by pixel 

  var.raster <- stackApply(all.rasters, fun=var, indices=c(rep(1,n)))  ##calculates the per 

pixel variance and creates a variance raster 

  return(list(mean.raster=mean.raster, var.raster=var.raster))  ##returns mean raster and 

variance raster 

}  

 

##------------------------------- ASSIGNMENT FUNCTION -------------------------------## 

##Assignment function uses the likelihood term to determine the probability that an 

individual sample was from a particular geographic location and writes an ascii file to a 

chosen directory 

 

##Function requires: 

#rescaled_raster = the tissue-specific d13C raster created in the conversion 

function (output or raster.conversion) 

#rescaleded_SD_raster = the variance raster created in the conversion function.  

This the component of the error term related to the rescaling process.(output of 

raster.conversion) 

#precip_SD_raster = this is the SD raster associated with the original vegetation 

isoscape.  This is the plant component of the variance term. 

#SDS = the individual component of the variance term.  Uses the sds from rescale 

function=  gamma mean mean=alpha*beta featherraster[[3]] (output of rescale) 

#assign_table = this a csv filename (and directory, if applicable) containing the 

tissue d2H values of the individuals for which the assignments will be made  

#d13Ctissue = column number in the assign_table with the d13c tissue values 

#ID = column number with individual identifiers 

#save_dir is where the output assignments should be saved as an ascii, but could 

be changed 

 

assignment <- function(rescaled_raster, rescaled_var_raster, plant_SD_raster, SDS, 

assign_table, d13Ctissue, ID, save_dir){ 

  out <- fitdistr((SDS)^2, "gamma", lower=0)  ##calculates gamma fit distribution of the 

standard deviation of the residuals  

  SD_indv <- out$estimate[1]*out$estimate[2]  ##calculates average of fitted gamma 

distribution to account for average variance among individuals "at a site" 

  error <- sqrt((rescaled_var_raster) + (plant_SD_raster)^2 + SD_indv)  ##sum of the 

error results, includes variance raster, mean gamma of sds, and plant isoscape standard 

deviation 

  data <- read.table(assign_table, sep=",", header=T)  ##read in table of feather d13C 

values 

  data <- data[1:118,]  ##change length value to number of samples being assigned a 

geographic origin 

  n <- length(data[,d13Ctissue]) 
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  for (i in 1:n){ 

    indv.data <- data[i,]  ##feather isotope value 

    indv.id <- indv.data[1, ID]  ##feather ID 

    assign <- (1/(2*pi*error^2))*exp(-1*(indv.data[1, d13Ctissue]-

rescaled_raster)^2/(2*error^2))  ##assignment function accounting for error term 

    assign_norm <- assign/cellStats(assign, "sum") ##normalize so all pixels sum to 1 

    filename <- paste(save_dir, indv.id, ".like", ".asc", sep="") 

    writeRaster(assign_norm, file=filename, format="ascii", overwrite=TRUE) 

  } 

} 
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