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Abstract 

 

Wind power, as the main renewable energy source, is increasingly deployed and 

connected into electrical networks thanks to the development of wind energy conversion 

technologies. This dissertation is focusing on research related to wind power system 

include grid-connected/islanded wind power systems operation and control design, wind 

power quality, wind power prediction technologies, and its applications in microgrids. 

The doubly fed induction generator (DFIG) wind turbine is popular in the wind industry 

and thus has been researched in this Dissertation. In order to investigate reasons of 

harmonic generation in wind power systems, a DFIG wind turbine is modeled by using 

general vector representation of voltage, current and magnetic flux in the presence of 

harmonics. In this Dissertation, a method of short term wind power prediction for a wind 

power plant is developed by training neural networks in Matlab software based on 

historical data of wind speed and wind direction. The model proposed is shown to 

achieve a high accuracy with respect to the measured data. Based on the above research 

work, a microgrid with high wind energy penetration has been designed and simulated by 

using Matlab/Simulink. Besides wind energy, this microgrid system is operated with 

assistance of a diesel generator. A three-layer energy management system (EMS) is 

designed and applied in this microgrid system, which is to realize microgrid islanded 

operation under different wind conditions. Simulation results show that the EMS can 

ensure stable operation of the microgrid under varying wind speed situations. 
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Chapter One: Introduction 

This Dissertation aims exploring an islanded wind power system modeling and 

design of energy system management (EMS) based on neural networks, which includes 

doubly fed induction generator (DFIG) wind turbines’ control and modeling, harmonic 

analysis for DFIG wind energy systems, and power management by using wind power 

predictions from neural networks.   

Background knowledge about wind power system based on previously published 

research papers and motivation for the research are presented in this Chapter. Also, the 

problem statement is given and an outline of each individual subchapter is given in this 

Chapter. 

1.1 Background and motivation 

Wind energy, which is friendly to the environment, plays an important role in the 

sustainable development of the world. In the past decades, the penetration of wind energy 

is increasing, so that it is beneficial to the electrical power systems if we make use of 

wind energy efficiently and safely.  

According to a report from the World Wind Energy Association [1], 35 GW of 

new installations of wind turbine capacity installed in the second half of 2014, the world-

wide wind capacity has reached 370 GW, as shown in Figure 1.1. The phenomena of 

increasing wind power may be due to windy weather of certain areas, is supported by 

governments and the development of wind power technologies. Those technologies could 

not be successful without the development of mechanical engineering, material sciences, 
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aerodynamics, power electronics, computer sciences, and testing and analytics methods 

[2] below. With the increasing wind power penetration, wind energy management 

systems need to be designed and implemented to cope with different supply-demand 

situations according to the following background. 

 

Figure 1.1 Total installed capacity of wind energy in the world 2011-2014 [1]. 

1.1.1 Wind turbine technology and control 

Wind turbines can be operated under either fixed speed with a changing range 

about 1% or in variable speed [2]. For a fixed speed wind turbine, an induction generator 

is directly connected to the grid. A fixed speed wind turbine can hardly be controlled 

because the rotor speed is almost fixed by the grid frequency, which may not tolerate 

wind turbulences. As a result, the turbulences of the wind would result in power 

oscillations and instabilities and affect the power quality of the grid [3]. For a variable-

speed wind turbine, power electronics equipment are often applied to control rotor speed 

of the generator so that the power fluctuations caused by varying wind speeds could be 

absorbed more or less by changing the rotor speed. Therefore, compared to the fixed 
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speed wind turbines, the power quality of the electricity generated by a variable speed 

wind turbine can be easily enhanced.  The rotational speed of a wind turbine can be 

adjusted to match the electrical frequency specifications. There are two methods for 

adjusting the rotor speed: (i) by using a gearbox or (ii) by changing the number of pole 

pairs of the generator. The gearbox can adjust the rotor speed of the turbine to match the 

required mechanical speed of the generator. The number of pole pairs can set the 

mechanical speed of the generator with respect to the electrical frequency [2]. In practice, 

the rotor speed is controlled according to the needs of a certain wind turbine with a fixed 

number of pole pairs. 

According to the differences between the aforementioned wind turbine structures, 

there are mainly four types of wind turbine technologies: 

 Type1: Fixed speed wind turbine with an induction generator.  

 Type2: Variable speed wind turbine equipped with a cage-bar induction 

generator or synchronous generator. 

 Type 3: Variable speed wind turbine equipped with a doubly-fed induction 

generator (DFIG wind turbine). 

 Type 4: Variable speed wind turbine equipped with multiple-pole 

synchronous generator or multiple-pole permanent magnet synchronous 

generator (PMSG) wind turbine. 

In this Dissertation, type 3 DFIG based wind power systems are researched since 

it is very commonly used in practical installations due to the good balance between 

performances and cost. 
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1.1.2 Harmonics in wind power systems 

In a DFIG wind turbine, controllers manipulate the rotor’s voltage, current and 

frequency to ensure maximum power generation at a given wind speed. The rotor voltage 

is controlled by having an AC/DC converter connected from the grid to a DC bus, and 

then another DC/AC converter is applied to control the rotor current forming a back-to-

back converter [4]. Consequently, harmonics are injected into the rotor side due to power 

electronics’ operation.  

Rotor currents, including fundamental component and its harmonics, are coupled 

with rotor mechanical speed and then transformed to the stator side through the air gap.  

Consequently, stator currents, fundamental and harmonics, are injected into the grid. 

Those harmonics are of great concern because they may degrade the quality of the wind 

power and have potential harmonic resonance frequency points, which may threaten the 

grid. This phenomenon will be analyzed in Chapter 4 of this Dissertation.  

As most wind farms are installed in remote and/or rural areas, often are connected 

to weak grids with large impedance, so that the power quality problem becomes more 

dramatic[4]-[6]. In [6] high frequency and low frequency non-integer harmonics exist in 

DFIG wind power system is reported. The existence of non-integer harmonics is due to 

modulation of the low frequency rotor current, which is coupled with mechanical rotation 

speed. In Chapter 4, it is shown that when the two frequencies are coupled, a harmonic at 

the sum of the two frequencies is generated, which is the synchronous speed. Further, low 

frequency non-integer harmonics are generated based on the difference between the two 

frequencies.  
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According to IEEE519, under power systems 69kV and below, harmonic voltage 

distortion should be limited to 5% total harmonic distortion, where variable speed wind 

turbine could satisfy this standard [7].Harmonic resonance may generate over-voltages 

and/or currents in the wind power system, which would damage equipment and has a 

high potential risk. Harmonic resonance modal analysis (HRMA) is an analysis method 

to detect harmonic frequency in power systems [8]. Any distribution feeder system will 

present its own resonance frequency due to different modes of the system impedance. 

HRMA provides useful information for mitigating potential harmonic resonance danger. 

In this Dissertation, harmonic resonance phenomena are analyzed and discussed in a 

DFIG wind power system and the conclusion maybe used for designing filters in wind 

power systems. 

1.1.3 Wind power prediction 

Due to different geographical patterns, weather, and properties of a wind power 

plant (WPP), two wind turbines of the same type would present different performances 

given different situations. If the wind power generation can be predicted with high 

accuracy, more useful information can be provided to energy management system. This 

information will allow a more flexible and intelligent control of wind turbines, e.g., 

improve the working schedule of wind turbines, active/reactive power control, etc. 

Methods for predicting wind power generation can be categorized into physical methods, 

statistical methods, methods based on neural networks, and hybrid methods [9].  

Physical methods rely heavily on numeric whether predictions, which are limited 

by the sensors and monitoring devices placed within the wind turbine. The quality of the 

hardware chosen, parameter settings, computation time, time delays and sampling rates 
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influence the accuracy of data collected from the wind turbine. It is easier to predict a 

single wind turbine's performance rather than a whole wind power plant's power 

generation [10]. Statistical and neural network methods are based on the historical data 

and have a low prediction cost. The relationship between input data and output data based 

on historical measured data is researched and then a nonlinear relationship model 

between them is built. When new data that is not previously included in the training data 

set, and is used as input into this kind of model, the prediction error might be larger. The 

different abovementioned prediction methods can be combined forming hybrid methods 

to achieve better prediction results, while increase the complexity of the model. In 

Chapter 5, the recurrent neural network approach is applied to predict wind power 

generation of a DFIG-based wind turbine based on wind profile data obtained from a 

wind power plant located in northeast Colorado.  

1.2 Problem statement 

The integration of wind power as a distributed generator (DG) into the 

distribution electrical network is changing the structure of the grid. Firstly, wind speed 

variations may have a significant influence on the amount and quality of wind power 

generated. Sudden changes of wind power can lead to a losses or increase of power 

generation, which may cause voltage and frequency disturbances, resulting in 

dramatically unstable situations and trip relays inside the grid [11]. For instance, FERC 

661-A requires wind power system operating at power factors greater than 0.95 [12], so 

that many wind farm operators currently prefer to work constantly at the unity power 

factor [13][14].  
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A wind power system can be better developed with deep understanding of its 

operation mechanism. Therefore, the first aim of this research is to study and design an 

efficient control method for DFIG wind turbines and to realize active power frequency 

and reactive power voltage control of wind power under stochastic weather conditions. 

The increasing DG penetration into the grid promotes the development of a new 

grid concept, called microgrid. A microgrid consists of DGs and controllable loads, being 

an integrated energy delivery system that can work independently from the main power 

grid [15]. DGs in a microgrid reduce the transmission losses and increase distribution 

efficiency with the proper power management.  So that an energy management system 

(EMS) can assist a microgrid operating in either grid-connected or islanded modes, as 

well as in the smoothly transfer between those modes. The main task of an EMS is to 

manage the power and energy between sources and loads in a microgrid [16]. The 

intermittency of wind power raises new challenges in microgrid operation and control, 

especially during high wind power penetration. To have a good understanding of 

coordinated operations of multiple DFIG wind turbines within a microgrid in islanded 

mode, the second aim of this research is to build an EMS for an islanded wind power 

system to realize power sharing among DFIG wind turbines with assigned active and 

reactive power references. In this EMS of the islanded wind power system, wind power 

prediction technique will be implemented to improve active and reactive powers profile 

in advance before control action is done. 

1.3 Outline of Dissertation 

The research of this Dissertation is to deal with the abovementioned problems. 

The outline of this Dissertation is described as follows. 
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 Chapter 1: Introduction.  

The background and motivation for the research presented in this Dissertation have 

been introduced along with a general description of the published research work related 

to wind power. Next problem statement and outlines of this Dissertation are introduced. 

 Chapter 2: Wind power system and DFIG wind turbine control 

Wind energy conversion system is introduced and how wind power is related to wind 

speed, power co-efficiency, pitch angle, wind turbine parameters, and so forth. The DFIG 

wind turbine model is presented, which employs two back-to-back power electronic 

converters and allows reactive power exchange with the network.  Control blocks in rotor 

part and stator part of DFIG with vector control schemes are designed by using 

conventional PI controllers and the internal model control (IMC) principle. The 

performance of the control algorithms are described in detail. 

 Chapter 3: Harmonic issues in DFIG wind turbines 

The reason for harmonic generation in DFIG wind turbine are analyzed, and then a 

DFIG wind turbine including harmonic emissions is modeled by using generator vector 

representation. The potential problems caused by harmonic emissions in DFIG wind 

turbines are analyzed by using harmonic resonance mode analysis (HRMA), which can 

find out the harmonic resonance frequency point and corresponding mitigation method is 

proposed to enhance the wind power system reliability. 

 Chapter 4: Wind power prediction by using neural networks 

Wind power estimation plays an important role in EMS, helping to set references 

power generation points in the islanded wind power system. In this Chapter, a neural 

network is applied to build a wind power prediction system with wind profile data (wind 
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speed, wind direction, and wind power generation) provided by the National Renewable 

Energy Lab. Prediction results are compared with the measured wind power generation, 

which are achieved with an acceptable accuracy.  

 Chapter 5: Islanded wind power system with EMS 

An islanded wind power system with harmonic mitigation blocks is built, which 

includes wind power generator, auxiliary generator and a variable load. This Chapter is to 

investigate how DFIG wind turbines operate under reference power point set by EMS, 

and how EMS set power references by using load sharing method with the help of wind 

power prediction and how DFIG wind turbines track power references under changing 

wind speeds.  
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Chapter Two: Wind power system and DFIG wind turbine control 

Power generation produced by a wind turbine depends on the interaction between 

the wind and the turbine rotor. The blades of a wind turbine rotor extract some of the 

energy flow from air in motion, convert it into rotational energy, and then deliver it via a 

mechanical drive unit into the generator. 

2.1 Wind power from the air stream 

Wind turbine could obtain velocity and absorbs energy from the air stream of 

wind. It is a complex aerodynamic system in which rotor of the wind turbine extracts the 

energy from the wind and converts it into mechanical energy. 

The relationship between the wind speed and aerodynamic power may be 

described by the following equation: P୵୲ = ଵଶ ɏɎRଶvଷC୮ሺθ, ɉሻ                                                          (2.1) 

The corresponding aerodynamic torque can be expressed as:  T୵୲ = ୔w౪∗ୖλ∗୴        (2.2) 

where 

Pwt : aerodynamic power extracted from the wind [W] 

Twt : aerodynamic torque extracted from the wind [Nm] ɏ : air density [kg/m
3
] 

R : wind turbine blade radius [m] 

v : equivalent wind speed [m/s] 
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θ: pitch angle of rotor [deg] ɉ: tip speed ratioɉ = ω୰R/v, where ω୰  is the wind turbine rotor speed 

[rad/s] C୮: power coefficient, which is approximated with given values of θ and  ɉ[17][18]as follows 

C୮ሺθ, ɉሻ = Ͳ.ʹʹሺଵଵ6λభ − Ͳ.Ͷθ − ͷሻe−భమ.ఱλi                                 (2.3) 

ɉ୧ = ଵభλ+బ.బ8θ−బ.బయఱθయ+భ                                                      (2.4) 

The curves family of Pwt –ω୰ for a 1.5 MW wind turbine at different wind speeds 

are shown in Figure 2.1. Notice that there is a maximum power point for each given wind 

speed. E.g. at 12 m/s, maximum power can be found at 1.2 p.u. turbine speed. 

 

Figure 2.1 Wind turbine power output vs rotor speed for different wind speeds. 
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2.2 Aerodynamic wind power control 

Aerodynamic control is used to limit power absorption in wind turbines during 

high wind speed scenarios. The three major approaches used in aerodynamic control are 

passive stall control, pitch control, and active stall control [19]. In passive stall control, 

the wind turbine blades are supposed to stall in high wind speed period and no pitch 

control is required. Pitch control is the most common method especially in applications 

for variable wind speed turbines. When wind speed is below the rated wind speed, the 

wind turbine can maximize the captured wind energy by using pitch angle control. When 

the wind speed reaches the rated wind speed, the pitch angle of wind turbine is controlled 

to keep the aerodynamic power at its rated value. Active stall control is applied to tune 

fixed speed wind turbine during high wind speeds and then limit the aerodynamic power. 

2.3 Control of Doubly Fed Induction Generator Wind Turbine 

Variable wind speed wind turbines are popular in wind power system application, 

which include DFIG type wind turbine and permanent magnet induction synchronous 

generator (PMSG) type wind turbine. Nowadays, DFIG wind turbine represents the 50% 

of the worldwide wind power market [20]. The range of DFIG wind turbine’s rated 

power is mostly within 1.5-3.0 MW [20]. Compared to fixed speed wind turbines, 

variable speed wind turbines have more possibilities in handling a wide range of wind 

speeds. Compared to PMSG wind turbines, DFIG wind turbines are equipped with 

gearbox, which decreases the reliability due to the potential mechanical problems. 

However, DFIG wind turbines need only partial scale converters (about 30% of the 

nominal power), while PMSG needs to be equipped with full scale converters, Thus, 

DFIG are economically more feasible, which is the main reason for the popularity of this 
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kind of generators in practical wind energy applications. A more detailed comparison 

maybe seen in Table 2.1[21]. 

Table 2.1DFIG vs. PMSG comparison. 

 DFIG PMSG 

Pros  Speed range is±30% around 

synchronous speed 

 Low cost, small capacity (less 

than 30%) PWM converter 

 Active, reactive power can be 

controlled completely 

 Have full speed range 

 Possible to remove gear 

 Active, reactive power can be controlled 

completely 

 Brushless 

 

Cons  Potential mechanical problems 

due to: 

 Slip rings 

 Gear box 

 Full scale power converter 

 Big and heavy multi-pole generator 

 Need permanent  magnetics 

Control approaches for DFIG wind turbines have been researched under different 

situations, such as wind power system in grid connection mode, islanded wind energy 

system operation and control, low voltage ride through (LVRT) performance of wind 

power system, and so on. Currently, DFIG wind turbine energy management in islanded 

mode microgrids, DFIG sensorless controllers, DFIG optimum switching controllers, 

droop control, and DFIG performance under unbalanced load situations are promising 

research topics [20][21]. 

The main purpose of controlling DFIG wind turbines is to generate quality 

electricity to supply the demanded load. However, due to the variations of wind speed, 

different load situations, and poorly damped eigenvalues (poles) in the dynamics of DFIG 

wind turbines with an operation frequency near the line frequency, DFIG wind power 

system may present unstable performance under some operation conditions[22][23]. 

Moreover, rotor current/voltage would be reduced by the stator-to-rotor turns ratio.  The 

reduced rotor voltage may limit the DFIG’s ability to handle voltage sags [23].  
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The most common control approach for DFIG control is based on a vector control 

method, with PI regulators and a phase locked loop (PLL) to achieve equality of voltage 

magnitude, phase, and frequency that comply with the grid standards[24]-[26]. The 

conventional vector control method is based on rotor current vector control with d-q 

decoupling [27]-[29], [30]-[33]or stator flux orientation to control rotor current 

[34],[35]or air gap flux to control rotor current[36]. 

The control system is usually defined in the synchronous d-q frame with the d-

axis fixed to either the stator voltage [27], [28] or the stator flux [29], and it involves 

relatively complex transformation of voltages, currents and control outputs among the 

stationary, the rotor and the synchronous reference frames. This conventional vector 

control method requires accurate information of machine parameters such as stator, rotor 

resistance, inductance, mutual inductance, and so forth. Thus, the performance is 

degraded when actual machine parameters differ from those values used in the designed 

control system. In addition, the rotor current controllers need to be carefully tuned to 

ensure system stability and adequate response within the whole operating range. 

The research presented in [27]-[29] show conventional controller design of DFIG 

wind turbine based on rotor current vector control with d-q transformation. But if the 

stator resistance can be considered small, stator-flux orientation is considered with the 

stator voltage [37], [38], [39]. The stator flux could be influenced and has damped 

oscillation when load or stator power changes [35]. 

Besides conventional vector control method for DFIG, the most widely used 

control for RSC are direct control techniques such as direct torque control (DTC) 
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[40][41]and direct power control (DPC) [42], [43]. Those techniques do not require 

current PI regulators, coordinate transformations, or specific modulation in PWM 

converters. DTC achieves better steady state and transient torque control performance, 

but it presents the drawback of variable switching frequency control which might be 

improved by using predictive control [44]. 

The DTC method for induction machines was developed in the mid-1980s 

[45][46]. DTC method eliminates the parameter tuning and machine parameters 

dependence, while requiring no PI controllers for active or reactive power control. The 

machine torque is controlled directly by selecting appropriate voltage vectors with the 

stator flux and torque information. The stator flux is usually calculated according to the 

stator voltage. One of the main problems associated with the basic DTC scheme is that its 

performance deteriorates during starting and at very low speed operation. This is largely 

due to the fact that the method repeatedly selects zero voltage vectors at low speed 

resulting in flux level reduction owing to a lower value of stator resistance [47].  Several 

methods have been applied to solve this problem, such as dither signal [48], modified 

switching tables to apply available voltage vectors in accordance [49], or predictive 

methods, among others. Moreover, DTC could also be applied to control PMSG [50] and 

switched reluctance motors [51].  

In [52], DTC is used to control a DFIG as follows. The converter is connected to 

the rotor side within a DFIG system, and the rotor flux is estimated. The rotor flux 

reference was calculated based on the required operating power factor. A switching factor 

was then selected from the optimal switching table based on the estimated rotor flux 
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position, the torque and the rotor flux errors. Since the frequency of the rotor supply, 

which is equal to the DFIG slip frequency, could become very low, the rotor flux 

estimation method presents difficulties, and its accuracy is significantly affected by 

machine parameter variations. Furthermore, the calculation of the rotor flux reference 

according to the required power factor also requires the availability of actual parameters 

and, therefore, has the same problem. 

In [53], a grid-connection control strategy for frequency and a voltage control in 

DFIG wind system based on the direct control of both a virtual torque and rotor flux of 

the generator are presented. This control is achieved with no PI regulators and only 

requires the measurement of grid voltages for grid synchronization. From the 

performance of torque control, it is seen that mechanical constrains and wear process on 

the gearbox are reduced [54].  

A DTC approach for grid connection case has been presented in [55], which relies 

on a switching table, but still needs PI regulators for active and reactive power control, 

information of rotor position and currents, and both stator and grid voltage measurements. 

Based on the principles of DTC for electrical machine drives, direct power control 

(DPC) for three phase PWM rectifiers was proposed in [56]-[58]. In [56], the converter 

switching states are selected from an optimal switching table based on the instantaneous 

errors between the reference and estimated values of active and reactive power, and the 

angular position of the estimated converter terminal voltage vector. The converter 

terminal voltage is estimated using the dc link voltage and converter switching states, so 

that no voltage sensor is required. In [58], output regulation subspace (ORS) is used to 
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modify the original vector position for selecting the switching states to improve the 

system performance, especially under distorted or unbalanced supply conditions. 

In a new direct power control method proposed by [36], stator active and reactive 

power controls are realized by adjusting rotor side voltage vectors, which show 

effectiveness and robustness during variations of active and reactive power, rotor speed, 

machine parameters, and converter dc link voltage cause by wind fluctuations.   

Reference [34] proposes a new DPC control method for a DFIG based wind 

energy generation system, which is based on the stator flux and only needs the value of 

stator resistance. This control strategy eliminates the rotor flux estimation procedure. An 

optimal switching table has been derived and two three-level hysteresis comparators are 

used to determine the power errors. Simulation results presented confirm the 

effectiveness and robustness of the proposed DPC strategy during various operating 

conditions and variations of parameter and converter dc link voltage. 

In this Dissertation, a modified vector control is applied for individual DFIG wind 

turbine control in order to maintain the voltage stability in a microgrid system. 

2.3.1 Description of DFIG wind power system model 

The most common structure of variable-speed wind generation of DFIG type 

wind turbine is as shown in Figure 2.2.  
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Figure 2.2 DFIG wind turbine structure. 

A DFIG consist on a wound rotor induction generator and two pulse width 

modulation (PWM) voltage source current-regulated converters that are connected back 

to back between rotor and grid. The rotor side converter can work at different frequencies, 

according to the speed of the blade. The grid side converter works at grid frequency 

(leading or lagging so as to produce more or less reactive power). By operating the rotor 

circuit at a variable AC frequency one is able to control the mechanical speed of the 

machine; the rotor could have below, above and through synchronous speed so as to 

exchange power with grid in both directions; the rotor side converter could realize 

independent control of the generator torque and reactive power; power factor of the DFIG 

wind system could be adjusted according to converter control strategy. For a variable 

speed wind turbine with doubly fed induction generator, it is possible to control the 

torque at the generator directly, so that the speed of the turbine rotor can be varied within 

certain limits (±30%). 

A three winding transformer is needed to connect the grid side converter, the 

stator and the supply side. In this design the net power out of the machine is a 
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combination of the power coming out of the machine’s stator and that from the rotor and 

through the converter into the grid system.  

An advantage of variable speed wind turbine is that the rotor speed can be 

adjusted in proportion to the wind speed in low to moderate wind speeds so that optimal 

tip speed ratio is maintained. At this tip speed ratio the aerodynamic efficiency, Cp, is at 

the maximum, which means that the energy conversion is maximized. In general, variable 

speed wind turbines may have two different control goals, depending on the wind speed. 

In low to moderate wind speeds, the control is to maintain a constant optimum tip speed 

ratio for maximum aerodynamic efficiency. In high wind speeds, the control goal is the 

maintenance of the rated output power with the aid of turbine blade pitch angle control. 

The performance of DFIG is quite different from conventional induction generators. 

DFIG has been usually applied in environments that require high power 

transmission and a relatively narrow range of speed. Operations at different speeds have 

several advantages: rotor speed could be adjusted according to wind speed in order to 

improve wind turbine’s efficiency; mechanical stress could be reduced and torque 

oscillations are not transmitted to the grid. 

The control purpose is to make sure DFIG supply constant voltage with grid 

frequency at the terminal of stator regardless of shaft speed. A decoupled orthogonal 

control using field-oriented techniques can be used leading to direct control of the active 

power and reactive power of DFIG wind turbine.  

In modern wind power plants, currents at converters are controlled using 

conventional vector control methods. In the rotor side, the current is decoupled into two 
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components: (i) iୢ୰ሺφሻ controls the machine excitation, which is in phase with the stator 

flux linkage; and (ii) i୯୰ሺφሻ in quadrature with iୢ୰ሺφሻ, which controls the electric torque. 

Figure 2.3 shows the plot of relationships between the rotor current I୰, the stator flux 

linkage φୱ , currents vector applied in the control system iୢ୰ሺφሻ  and i୯୰ሺφሻ  , a 

synchronous rotating reference frame {d, q} which forms an angle ϕ with respect to φୱ, 
and currents in such reference frame iୢ୰  and iୢ୰. 

 

Figure 2.3 Rotor side plot. 

 

 

Figure 2.4 Stator side plot. 
 

In the grid side, the current is also decoupled into two components: (1) iୢୱሺθሻ 
controls the active power/ DC-link voltage level, which is in phase with the stator voltage; 

and (2) i୯ୱሺθሻ in quadrature with iୢୱሺθሻ, which controls the reactive power. Figure 2.4 

shows the plot of relationships between the stator voltageVୱ, the grid side converterIୱ, 
current components used by the control system iୢୱሺθሻ and i୯ୱሺθሻ, a synchronous rotating 

frame {d,q} which forms an angle θ with respect to Vୱ, and current in such reference 

frameiୢୱ and i୯ୱ. 
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2.3.2 DFIG steady state equivalent circuit 

Two assumptions are made for building the DFIG steady state equivalent circuit. 

The first assumption is that the current control loop responds faster than the electro 

mechanical transient response, so that it could be considered as instantaneous [40]. This 

is because the time constant of the converter current control loops are very small, i.e. in 

terms of milliseconds, and the time constant involved in transient stability studies is in 

terms of seconds. Moreover, fast dynamics of control process do not affect the 

electromechanical oscillations. The second assumption is that electromechanical 

transients among stator, converter, and grid can be neglected, which is a common 

simplification method in transient stability analysis of synchronous and asynchronous 

machines [41], [42]. 

The equivalent circuit model is based on the basic equations of the asynchronous 

machine. These equations are expressed in a reference frame aligned with synchronous 

speed, and taking positive currents. The machine equations can be written in the 

synchronous rotating d-q reference frame as follows: 

φୢୱ = Lୱiୢୱ + L୫iୢ୰  ;  dφୢୱdt = Lୱ diୢୱdt + L୫ diୢ୰dt                                   ሺʹ.ͷሻ 
φ୯ୱ = Lୱi୯ୱ + L୫i୯୰ ;  dφ୯ୱdt = Lୱ di୯ୱdt + L୫ di୯୰dt                                    ሺʹ.͸ሻ 
φୢ୰ = L୫iୢୱ + L୰iୢ୰ ;  dφୢ୰dt = L୫ diୢୱdt + L୰ diୢ୰dt                                      ሺʹ.͹ሻ 
φ୯୰ = L୫i୯ୱ + L୰i୯୰ ;  dφ୯୰dt = L୫ di୯ୱdt + L୰ di୯୰dt                                       ሺʹ.ͺሻ 
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uୢୱ = Rୱiୢୱ + dφୢୱdt − ωୱφ୯ୱ                                                     ሺʹ.ͻሻ 
u୯ୱ = Rୱi୯ୱ + dφ୯ୱdt + ωୱφୢୱ                                                  ሺʹ.ͳͲሻ 

uୢ୰ = R୰iୢ୰ + dφୢ୰dt − ሺωୱ −ω୰ሻφ୯୰                                         ሺʹ.ͳͳሻ 
u୯୰ = R୰i୯୰ + dφ୯୰dt + ሺωୱ −ω୰ሻφୢ୰                                          ሺʹ.ͳʹሻ 

Tୣ ୫ = φ୯୰iୢ୰ − φୢ୰i୯୰ = ͵ʹ βL୫(i୯ୱiୢ୰ − iୢୱi୯୰)                              ሺʹ.ͳ͵ሻ 
s = ωୱ −ω୰ωୱ                                                            ሺʹ.ͳͶሻ 

Lୱ = Lୱଵ + L୫ ;  L୰ = L୰ଵ + L୫                                                 ሺʹ.ͳͷሻ 
being, 

φୢୱ , φ୯ୱ : the stator flux linkage      φୢ୰ , φ୯୰ : the rotor flux linkage 

uୢୱ, u୯ୱ : the stator voltage                  uୢ୰, u୯୰: the rotor voltage 

iୢୱ, i୯ୱ:the stator current                       iୢ୰, i୯୰:  the rotor current  

ωୱ: the synchronous speed                    ω୰: the rotor speed     s: rotor slip 

Lୱ, Rୱ :  stator inductance, stator resistance  L୫: mutual inductance 

L୰, R୰ : rotor inductance, rotor resistance  p: number of pole pairs 

Lୱଵ, L୰ଵ: leakage inductance in stator side and rotor side 
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When the equations (2.5)-(2.15) are applied in the analysis, assumptions would be 

made and noticed. Stator flux linkage angle would be developed based on φୢୱ, φ୯ୱ  , 
which is related to perform the change of the reference frame in the rotor side controller; 

ୢφౚ౩ୢ୲  and 
ୢφq౩ୢ୲  in (2.9) and (2.10) would be removed, so that the stator transients could be 

neglected. Since the rotor current is an independent variable in the rotor current control 

loop, expressions regardingφୢ୰, φ୯୰, uୢ୰, u୯୰ are removed from the (2.5)-(2.8), (2.11) and 

(2.12). 

The active and reactive powers in stator part and rotor part could be calculated as 

below, by consideringP୰ = sPୱ: 
 Pୱ = ͵ʹ (uୢୱiୢୱ + u୯ୱi୯ୱ)                                                       ሺʹ.ͳ͸ሻ 
Qୱ = ͵ʹ (u୯ୱiୢୱ − uୢୱi୯ୱ)                                                      ሺʹ.ͳ͹ሻ 
P୰ = ͵ʹ (uୢ୰iୢ୰ + u୯୰i୯୰)                                                      ሺʹ.ͳͺሻ 
Q୰ = ͵ʹ (u୯୰iୢ୰ − uୢ୰i୯୰)                                                    ሺʹ.ͳͻሻ 

Equivalent circuits for d and q axes can be set up according to the above 

mentioned equations (2.16)-(2.19) and are shown in Figure 2.5, Figure 2.6, and Figure 

2.7. 
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Figure 2.5 d-axis equivalent circuit. 

 

  Figure 2.6 q-axis equivalent circuit. 

 

Figure 2.7 DFIG equivalent circuit. (Note: Ug represents the grid voltage.). 
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2.3.3 PWM model 

The back-to-back connected PWM voltage source converters could reduce 

harmonic generation shortcomings of most converters. Magnitude and frequency of 

sinusoidal AC output voltage from the PWM could be controlled though the PWM 

converter switches. Detailed information of PWM voltage source converter model could 

be checked in [45], [46].  

The switches in PWM voltage source converter are switched on and off at high 

frequency (few kHz or higher) during operation, which needs a very small simulation 

step to represent the PWM waveform results a fairly slow simulation step. In this 

Dissertation, PWM voltage source converter is not the main focus, an average model 

which is based on energy conversion theory without taking into consideration the switch 

is built in order to allow using larger simulation steps [47]. 

According to the energy conversion theory, PWM voltage source converter is 

assumed ideal without loss in this Dissertation, converter DC side instantaneous power 

must be equal to that of the AC side as shown below. 

uୢୡiୢୡ = uୟiୟ + uୠiୠ + uୡiୡ                                               ሺʹ.ʹͲሻ 
where 

uୢୡ, iୢୡ: DC-link voltage and current 

uୟ, uୠ, uୡ, iୟ, iୠ, iୡ: three phases AC voltages and currents 
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According to (2.20), the DC side current can be calculated. The DC-link voltage 

can be calculated based on DC side current and the capacitor in the DC-link, which could 

be DC-link voltage control reference value.  

2.3.4 Control theory in DFIG wind turbine 

A. Grid side converter control  

The control purpose in the grid side converter is to maintain DC-link voltage 

regardless of the rotor side power situation. In the vector control in the grid side, the 

control reference frame is along the stator voltage position, enabling independent control 

of the active and reactive power flowing between the grid and grid side converter. The d-

axis control is used to regulate the DC-link voltage and the q-axis control is used to 

regulate the reactive power. 

 

Figure 2.8 Structure of grid side converter. 

 From the power stage of the grid side converter shown in Figure 2.8, we can write 

the following three-phase (in abc coordinates) model: 

[uୱୟuୱୠuୱୡ] = R [iୟiୠiୡ] + L ddt [iୟiୠiୡ] + [uୟuୠuୡ]                                            ሺʹ.ʹͳሻ 
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where L and R the grid side inductor and its equivalent series resistor.  

By using abc-dq transformation, voltage equations in dq form could be developed 

below, uds’ and uqs’ are the reference values for the supply side converter, and the terms 

in brackets constitute voltage compensation terms. 

uୢୱ = Riୢୱ + Ldiୢୱdt − ωୱLi୯ୱ + uୢୱଵ                                           ሺʹ.ʹʹሻ 
u୯ୱ = Ri୯ୱ + Ldi୯ୱdt + ωୱLiୢୱ + u୯ୱଵ                                        ሺʹ.ʹ͵ሻ 

Assumeuୢୱ′ = uୢୱ +ωୱLi୯ୱ − uୢୱଵ , andu୯ୱ′ = u୯ୱ − ωୱLiୢୱ − u୯ୱଵ  , thenuୢୱ′ =
Riୢୱ + L ୢ୧ౚ౩ୢ୲  ,  u୯ୱ′ = Ri୯ୱ + L ୢ୧q౩ୢ୲ . 

From equations above, the transfer equation of the plant for the current control 

loop can be obtained as follows: 

fሺsሻ = iୢሺsሻuୢୱ′ ሺsሻ = i୯ሺsሻu୯ୱ′ ሺsሻ = ͳLs + R                                               ሺʹ.ʹͶሻ 
The active Ps and reactive Qs power flow between the grid and the grid side 

converter have already been given before. The angular position θୱ of the stator voltage is 

calculated as  

θୱ = ∫ωୱ dt = tan−ଵ uஒୱu஑ୱ                                                       ሺʹ.ʹͷሻ 
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Figure 2.9 dq frame at grid side. 

The plot of the vector control through dq reference frame in the grid side is shown 

in Figure 2.9. From this figure, it can be seen thatuୢୱ = uୱ, u୯ୱ = Ͳ. The active and 

reactive power flow between the grid and grid side converter are given as: 

Pୱ = ͵ʹ uୢୱiୢୱ                                                                   ሺʹ.ʹ͸ሻ 
Qୱ = − ͵ʹ uୢୱi୯ୱ                                                              ሺʹ.ʹ͹ሻ 

It is seen that the active power and reactive power are proportional to iୢୱ and i୯ୱ 
respectively. Here, harmonics due to the switching and losses in resistance and converter 

are ignored, following equations can be developed.  

uୢୡiୡୱ = ͵ʹ uୢୱiୢୱ                                                           ሺʹ.ʹͺሻ 
uୢୱ = mʹuୢୡ                                                                   ሺʹ.ʹͻሻ 
iୡୱ = Ͷ͵miୢୱ                                                                 ሺʹ.͵Ͳሻ 
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Cduୢୡdt = iୡୱ − iୡ୰ = Ͷ͵miୢୱ − iୡ୰                                                   ሺʹ.͵ͳሻ 
where m is the PWM modulation depth of the grid side converter, the value used in this 

Dissertation is around 0.75 [38]. 

From (2.28), it is seen that uୢୡcan be controlled via iୢୱ. Therefore, the current 

control loop is based on iୢୱ and i୯ୱ. Reference value of iୢୱcan be derived from the DC 

link voltage error. Normally i୯ୱ is set to zero since it is assumed that there is no reactive 

power flow between the grid and grid side converter. 

The reference values of  uୱୢ and uୱ୯ can be calculated as follows: 

uୢୱ_୰ୣ୤ = −uୢୱ′ +ωୱLi୯ୱ + uୢୱଵ                                          ሺʹ.͵ʹሻ 
u୯ୱ_୰ୣ୤ = −u୯ୱ′ −ωୱLiୢୱ                                                   ሺʹ.͵͵ሻ 

The vector control scheme for grid side PWM voltage source converter is shown 

in Figure 2.10. 
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Figure 2.10 Grid side control structure 

B. Rotor side control with traditional PI control design 

The rotor side converter is controlled in a synchronously rotating dq axis frame 

with the d axis aligned with the stator flux vector position. In this way, a decoupled 

control for stator side active and reactive powers is acquired. The control strategy needs 

to measure the stator and rotor side currents, stator voltage and the rotor position. The dq 

frame at the rotor side is shown in Figure 2.11. 

 

Figure 2.11 dq frame at rotor side. 

The stator flux angle position θୱ is calculated as: 
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θୱ = ∫ωୱ dt = tan−ଵφஒୱφ஑ୱ                                                       ሺʹ.͵Ͷሻ 
φ஑ୱ = ∫ሺu஑ୱ − rୱi஑ୱሻdt                                                       ሺʹ.͵ͷሻ 
φஒୱ = ∫(uஒୱ − rୱiஒୱ)dt                                                      ሺʹ.͵͸ሻ 

The ݀ − axes aligned with φୱ , so that φୢୱ = φୱ, φ୯ୱ = Ͳ .The stator flux is 

assumed constant since it is connected to the grid, so that the influence of the stator 

resistance is small. Thus the DFIG model can be written as: 

φୢୱ = φୱ = L୫i୫ୱ = Lୱiୢୱ + L୫iୢ୰                                          ሺʹ.͵͹ሻ 
φୢ୰ = L୫ଶLୱ i୫ୱ + σL୰iୢ୰                                                               ሺʹ.͵ͺሻ 
φ୯୰ = σL୰i୯୰                                                                          ሺʹ.͵ͻሻ 

Ͳ = Lୱi୯ୱ + L୫i୯୰ ; i୯ୱ = − LLౣ౩ i୯୰                                             (2.40) 

uୢ୰ = R୰iୢ୰ + σL୰ diୢ୰dt − ሺωୱ −ω୰ሻσL୰i୯୰                               ሺʹ.Ͷͳሻ 
u୯୰ = R୰i୯୰ + σL୰ di୯୰dt + ሺωୱ −ω୰ሻ ቆL୫ଶLୱ i୫ୱ + σL୰iୢ୰ቇ                            ሺʹ.Ͷʹሻ 

Tୣ = − ͵ʹ P L୫ଶLୱ i୫ୱi୯୰                                               ሺʹ.Ͷ͵ሻ 
σ = ͳ − L୫ଶLୱL୰                                                    ሺʹ.ͶͶሻ 
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u୯ୱ = Ͳ                                                             ሺʹ.Ͷͷሻ 
uୱ = uୢୱ = ωୱφୢୱ                                                  ሺʹ.Ͷ͸ሻ 

The stator side active power and reactive power can be expressed as follows: 

Pୱ = ͵ʹ (uୢୱiୢୱ + u୯ୱi୯ୱ) = − ͵ʹ L୫Lୱ uୱi୯୰                                   ሺʹ.Ͷ͹ሻ 
Qୱ = ͵ʹ (u୯ୱiୢୱ − uୢୱi୯ୱ) = ͵ʹ uୱ ( uୱωୱLୱ − L୫Lୱ iୢ୰)                          ሺʹ.Ͷͺሻ 

It is seen that Pୱand Qୱ  can be controlled through i୯୰  and iୢ୰  respectively. The 

rotor control structure includes inner control loop for controlling ݅௤௥ and ݅ௗ௥ and outer 

control loop for Pୱ and Qୱ. There are two parts in the rotor side control. The inner control 

loop is used to control the dq rotor currents, while the outer control loop is used to control 

the active and reactive power of the stator side. 

uୢ୰′ = R୰iୢ୰ + σL୰ diୢ୰dt                                                  ሺʹ.Ͷͻሻ 
u୯୰′ = R୰i୯୰ + σL୰ di୯୰dt                                                  ሺʹ.ͷͲሻ 

Then uୢ୰_୰ୣ୤ = uୢ୰′ − ሺωୱ −ω୰ሻσL୰i୯୰                                          ሺʹ.ͷͳሻ 
u୯୰_୰ୣ୤ = u୯୰′ + ሺωୱ −ω୰ሻ ቆL୭ଶLୱ i୫ୱ + σL୰iୢ୰ቇ                             ሺʹ.ͷʹሻ 

The plant for the current control loop is calculated as below. 
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iୢ୰ሺsሻuୢ୰′ ሺsሻ = i୯୰ሺsሻu୯୰′ ሺsሻ = ͳσL୰s + R୰                                               ሺʹ.ͷ͵ሻ 

 

Figure 2.12 Structure of rotor side control. 

C. Rotor side control with internal model control (IMC) design  

Internal model control (IMC) can be applied in DFIG wind turbine control design 

for active power and reactive power control for wind power generation [62]. The control 

structure of IMC is shown in Figure 2.13.  In this Dissertation, direct torque control (DTC) 

and internal model control (IMC) method are applied to DFIG wind turbine control 

design for active power and reactive power control for wind turbine. The control structure 

of the DFIG is shown in Figure 2.13, where F(s) is the model of the DFIG in (2.54); Fሺsሻ̂  

is an internal model of the DFIG; Qୱ_ୣୱ୲, Tୣ _ୣୱ୲  are estimated values by Fሺsሻ;෣ ,  Qୱ_୰ୣ୤, Tୣ _୰ୣ୤ are reference values of stator side reactive power and torque; C(s) is the 
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realize control purpose. In order to get the transfer function of DFIG, all the equations are 

in Laplace form: 

(QୱሺsሻTୣ ሺsሻ) = Fሺsሻ ቆuୢ୰ሺsሻu୯୰ሺsሻቇ                                                    ሺʹ.ͷͶሻ 
The differences between the measured and estimated values of stator reactive power and 

torque are computed, and then compared with reference values to launch controller C(s). 

C(s) changes values of rotor voltages in accordance. If ܨሺݏሻ෣  is the exact model of the 

DFIG, the difference between the measured and estimated values would be zero, then the 

feedback values are zero and the control system becomes an open loop system. Then C(s) 

can be designed as the inverse of F(s), and outputs of IMC block would follow inputs 

immediately. While overreacted rotor voltage signals might be generated at C(s) during 

high frequencies, a low pass filter is included in C(s) to filter out the noise. DFIG transfer 

function is developed based on the generator characteristics so as to have a correct model 

of ܨሺݏሻ෣   and then C(s) can be designed.  

 

Figure 2.13 Internal model control structure 
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The stator flux is assumed to be constant and the stator voltage can be approximated with 

the stator flux with the ignorance of stator resistance, uds(s) is aligned with the stator flux 

as follows: 

ቆu୯ୱሺsሻuୢୱሺsሻቇ ≅ φୱሺsሻ ( Ͳωୱ)                                                  ሺʹ.ͷͷሻ 
According to (2.5) and (2.6), relationships between rotor and stator currents changes can 

be expressed as follows: 

ቆ∆iୢୱሺsሻ∆i୯ୱሺsሻቇ = −L୫Lୱ ቆ∆iୢ୰ሺsሻ∆i୯୰ሺsሻቇ                                                ሺʹ.ͷ͸ሻ 
where ∆  represents small changes of variables. From (2.5)-(2.8), rotor flux can be 

represented by stator flux and currents as: 

ቆφୢ୰ሺsሻφ୯୰ሺsሻቇ − (φୱሺsሻͲ ) = L୰ଵ ቆ∆iୢ୰ሺsሻ∆i୯୰ሺsሻቇ − Lୱଵ ቆ∆iୢୱሺsሻ∆i୯ୱሺsሻቇ                        ሺʹ.ͷ͹ሻ 
During a small change in the rotor flux, (2.57) becomes 

ቆ∆φୢ୰ሺsሻ∆φ୯୰ሺsሻቇ = L୰ଵ ቆ∆iୢ୰ሺsሻ∆i୯୰ሺsሻቇ − Lୱଵ ቆ∆iୢୱሺsሻ∆i୯ୱሺsሻቇ                                  ሺʹ.ͷͺሻ 
Taking (2.56) into (2.58), (2.58) becomes 

ቆ∆φୢ୰ሺsሻ∆φ୯୰ሺsሻቇ = (L୰ଵL୫Lୱଵ + L୰ଵ) ቆ∆iୢ୰ሺsሻ∆i୯୰ሺsሻቇ = L୩ ቆ∆iୢ୰ሺsሻ∆i୯୰ሺsሻቇ                           ሺʹ.ͷͻሻ 
 Taking (2.59) into (2.11) and (2.12), voltage changes at rotor side can be derived as 

below. 
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ቆ∆uୢ୰ሺsሻ∆u୯୰ሺsሻቇ = (R୰ + sL୩ −L୩ωୱ୪୧୮L୩ωୱ୪୧୮ R୰ + sL୩)ቆ∆iୢ୰ሺsሻ∆i୯୰ሺsሻቇ                             ሺʹ.͸Ͳሻ 
According to the torque expression in (2.13), the rotor current can be developed below 

i୯୰ሺsሻ = − ʹ͵ LୱβL୫φୱሺsሻ Tୣ ୫ሺsሻ                                          ሺʹ.͸ͳሻ 
And with (2.55), the reactive power becomes, 

Qୱሺsሻ = ωୱφୱሺsሻiୢୱሺsሻ = ωୱφୱሺsሻ ቆφୱሺsሻ − L୫iୢ୰ሺsሻLୱ ቇ                            ሺʹ.͸ʹሻ 
Then the expression of iୢ୰ሺsሻ could be developed as below 

iୢ୰ሺsሻ = φୱሺsሻL୫ − LୱωୱL୫φୱሺsሻQୱሺsሻ                                 ሺʹ.͸͵ሻ 
Small changes in (2.63) yields to: 

∆iୢ୰ሺsሻ = − LୱωୱL୫φୱሺsሻ ∆Qୱሺsሻ                                           ሺʹ.͸Ͷሻ 
Due to (2.61) and (2.64), (2.60) becomes 

ቆ∆uୢ୰ሺsሻ∆u୯୰ሺsሻቇ = − LୱL୫φୱሺsሻ (R୰ + sL୩ −L୩ωୱ୪୧୮L୩ωୱ୪୧୮ R୰ + sL୩)ቌ ∆୕౩ሺୱሻω౩∆T౛ౣሺୱሻ୮ ቍ                        ሺʹ.͸ͷሻ 
From (2.65), DFIG transfer function can be acquired as below 

Fሺsሻ̂ = − LୱL୫φୱሺsሻ (R୰ + sL୩ −L୩ωୱ୪୧୮L୩ωୱ୪୧୮ R୰ + sL୩)ቌ ଵω౩ଵ୮ ቍ                               ሺʹ.͸͸ሻ 
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2.3.5 Control results with DFIG wind power system 

Matlab is a popular software which can be used to simulate DFIG wind power 

system under different situations (different wind speed, fault situations) and realize DFIG 

wind turbine control. The control methods are implemented on a 9MW DFIG wind 

turbine power system, which is connected to the ground after a 3km transmission line. 

Parameters of the DFIG wind turbine are shown in Table 2.2. 

Table 2.2 Parameters of the DFIG wind turbine. 

Parameter Value Parameter Value 

Rs 0.023 p.u. L1s 0.18 p.u. 

Rr’ 0.016 p.u. L1r’ 0.16 p.u. 

Lm 2.9 p.u. Inertia constant H(s) 0.685 

pairs of poles (p) 3 Initial conditions of slip -0.2 

 

Control results with IMC method are as shown below, and the wind speed is 10m/s. From 

Figure 2.14, it is seen that voltage at grid integration point is stable but with minor 

harmonic components. From Figure 2.15, dc link voltage is controlled around 1150 V at 

steady state. The reactive power can be controlled at 0Mvar finally and active power is 

controlled to converge in the steady state as shown in Figure 2.16 and Figure 2.17. 
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Figure 2.14 Voltage (phase a) at DFIG wind turbine integration point. 

 

Figure 2.15 DC link voltage. 
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Figure 2.16 Reactive power at the grid integration point. 

 

 

 

Figure 2.17 Active power at grid integration point. 
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2.4 Summary 

This Chapter introduces the doubly fed induction generator (DFIG) wind turbine, 

which is a popular variable speed wind turbine and simulated by using dedicated 

SimPowerSystems toolbox in Matlab/Simulink. Firstly, the aerodynamic wind power 

generation theory and the factors that affect wind power generation are shown. Secondly, 

the structure of DFIG wind power system is explained and modeled, where the rotor 

circuit is connected to the grid through power electronic devices. Within the DFIG wind 

power system, an average PWM voltage source converter model is built based on the 

energy conversion, which allows a longer time step to speed up the computer-aided 

simulations. Finally, with a comprehensive review on DFIG wind turbine control 

approaches, internal model control is applied to DFIG wind power systems, and then   

simulation results are obtained in situations under different wind speeds. This Chapter is 

essential for wind power system research, which suggests further research in wind power 

based microgrids.   
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Chapter Three: Harmonic issues in DFIG wind turbines 

In wind power systems it is important to inject high quality power electricity to 

supply the grid. However, due to operation characteristics of generator, it is inevitable to 

have harmonic components in current and voltage waveforms in wind energy signals. 

The problem is those harmonics can found resonances that may amplify them, turning the 

system unstable and needing to stop the wind power production [96]. In this chapter, 

reasons for harmonic generation in DFIG wind turbines are revealed and approaches to 

analyze and avoid the harmonic effects in power systems are derived.  

Firstly, the general vector representation of an AC signal is presented. A real 

value signal v (t) which contains multiple frequencies is given as follows. 

ሻݐሺݒ = �ଵ cαsሺ�ଵݐ + �ଵሻ + �ଶ cαsሺ�ଶݐ + �ଶሻ + +ڮ �௡ cαsሺ�௡ݐ + �௡ሻ                ሺ͵.ͳሻ 
where �ଵ, ڮ , �௡ are not necessarily harmonically related which may include non-integer 

harmonics. Therefore, v (t) is considered to be a general representation of voltage, current 

or flux. Without loss of generality, a voltage signal is assumed in the following 

discussion. Each sinusoidal term could be expressed as the real part of its complex form. 

Then v (t) could be expressed as follows. 

ሻݐሺݒ = ܴ݁{�ଵ݁௝�భ݁௝�భ௧ + �ଶ݁௝�మ݁௝�మ௧ +ڮ+ �௡݁௝�೙݁௝�೙௧}                                    ሺ͵.ʹሻ ݒሺݐሻ = ܴ݁{ ଵܸ݁௝�భ௧ + ଶܸ݁௝�మ௧ +ڮ+ ௡ܸ݁௝�೙௧}                                                                ሺ͵.͵ሻ 
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where V1, V2,…,Vn are voltage vectors which represent the magnitude and phase for each 

frequency component. v (t) could be arranged via vector algebra as follows: 

ሻݐሺݒ =  ሺ͵.Ͷሻ                                                      {ܧܸ̂̂�ܷ}ܴ݁
wherêܸ is called phasor matrix and ̂ܧ is called eigen functions vector. To simplify our 

notation, the operator Re{} could be omitted and v (t) could be expressed by using 

complex form. Let V (t) (capital V) be a complex function, such thatݒሺݐሻ = Re{Vሺtሻ}. 
ܸሺݐሻ =  ሺ͵.ͷሻܧܸ̂̂�ܷ

where 

 

By differentiating (3.5), the following equation could be acquired: ܸ݀ሺݐሻ݀ݐ = ݆ܷ�ܸ̂Ω̂̂ܧ                                                             ሺ͵.͸ሻ 
where Ω̂ is the frequency matrix which is given as: 

 

Equations (3.5) and (3.6) could be easily extended to the three phase form as 

follows: 
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௔ܸሺݐሻ = ܷ௔�ܸ̂௔̂ܧ௔ ௕ܸሺݐሻ = ܷ௕�ܸ̂௕̂ܧ௕                                             ሺ͵.͹ሻ ௖ܸሺݐሻ = ௖ܷ�ܸ̂௖̂ܧ௖ 
also,  

4. 

ௗ�ೌ ሺ௧ሻௗ௧ = ݆ܷ௔�ܸ̂௔Ω̂௔̂ܧ௔
 

5. 

ௗ�್ሺ௧ሻௗ௧ = ݆ܷ௕�ܸ̂௕Ω̂௕̂ܧ௕                                         ሺ͵.ͺሻ
 

6. 

ௗ�೎ሺ௧ሻௗ௧ = ݆ ௖ܷ�ܸ̂௖Ω̂௖̂ܧ௖
 Further, (3.7) can be developed in the matrix form as follows: 

[ ௔ܸሺݐሻ௕ܸሺݐሻ௖ܸሺݐሻ] = [
ܷ௔�ܷ௕�௖ܷ�] [

ܸ̂௔ ܸ̂௕ ܸ̂௖] [
ሻݐ௖]                             ሺ͵.ͻሻ ௔ܸ௕௖ሺܧ௕̂ܧ௔̂ܧ̂ = ܷ௔௕௖� ܸ̂௔௕௖̂ܧ௔௕௖                                        ሺ͵.ͳͲ) 

Similarly, (4.8) can be expressed in a compact form: ݀ ௔ܸ௕௖ሺݐሻ݀ݐ = ݆ܷ௔௕௖� ܸ̂௔௕௖Ω̂௔௕௖̂ܧ௔௕௖                                ሺ͵.ͳͳሻ 
Equations (3.10) and (3.11) are more general as they may also include non-

periodic and unbalanced three phase signals. Clearly, using general vector representation 

is convenient for modeling DFIG wind power system because it could reveal the 

interrelationship between harmonics of the rotor’s current and mechanical speed of wind 

turbine. 

3.1 Harmonics modeling in DFIG using the general vector representation form 

In this section, a general vector representation is applied to model DFIG’s rotor 

and stator sides’ voltage, current and flux in three-phase form. This work can be easily 

extended to other cases under different conditions, balanced or unbalanced. Model 

development is started from a very simple self-inductance in the stator side, and then 

extended by adding mutual inductance on the stator side and finally magnetization effect 
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from the rotor to the stator side is included. In this paper, v (t), i(t) and λ(t) are used to 

indicate real value signals of  voltage, current and flux, respectively. We have also used V 

(t), I (t) and Λ (t) (in capital case) to indicate complex value signals of voltage, current 

and flux, respectively.   

3.1.1 Modeling with stator side 

Firstly, only one phase (phase a) winding in the stator is modeled without 

presence of any other rotor windings as shown in Figure3.1. The stator voltage of phase a, 

vs,a(t), may include multiple frequency components. Hence, this voltage could be 

expressed by using the general vector representation similar to (3.5): 

௦ܸ,௔ሺݐሻ = �௦,௔ሺݐሻܴ௦,௔ + ݀�௦,௔݀ݐ                                             ሺ͵.ͳʹሻ 
By substituting phasor matrices and eigen function vectors into equation (4.12), the 

following could be derived.   

ܷ�ܸ̂௦,௔̂ܧ = ܷ� �̂௦,௔ܴ̂ܧ௦,௔ + ݆ܷ��̂௦,௔Ω̂̂ܧ                           ሺ͵.ͳ͵ሻ 
Moreover, voltage phasor matrix V̂ୱ,ୟ  is a function of current phasor matrix Îୱ,ୟ , flux 

phasor matrix Λ̂ୱ,ୟ and frequency matrixΩ̂  as shown below. 

ܸ̂௦,௔ = �̂௦,௔ܴ௦,௔ + ݆�̂௦,௔Ω̂                                                 ሺ͵.ͳͶሻ 
which could be expressed in more detail by a function of current phasor matrix Îୱ,ୟ and 

self-inductance of the stator’s windingLୱ,ୟ. Then (3.14) becomes as follows: 

ܸ̂௦,௔ = �̂௦,௔[ܴ௦,௔ +  ௦,௔Ω̂]                                              ሺ͵.ͳͷሻܮ݆
For all practical purposes, it is assumed that self-inductance of the stator winding 

phase a, Ls,a is constant for all frequencies and saturation of magnetic field is ignored. 
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Otherwise, self-inductance at each frequency is needed to be evaluated and included in 

(3.15). 

Now considering three phases form of stator windings as shown in Figure3.2, 

where each winding is separated by 120
o
 and three phase rotor windings are still omitted. 

In this situation, stator voltage across phase-a could be given as below.   

௦ܸ→௦,௔ሺݐሻ = �௦,௔ሺݐሻܴ௦,௔ + ݀�௦,௔݀ݐ  + ݀�௦,௕→௔݀ݐ + ݀�௦,௖→௔݀ݐ                                      ሺ͵.ͳ͸ሻ 
where Λୱ,ୠ→ୟ and Λୱ,ୡ→ୟ are mutual flux in stator between phase a and b, phase a and c 

respectively. Equation (3.17) could be acquired by converting (3.16) into the general 

form. 

ܷ�ܸ̂௦→௦,௔̂ܧ= ܷ� �̂௦,௔ܴ̂ܧ௦,௔ + ݆ܷ��̂௦,௔Ω̂̂ܧ + ݆ܷ��̂௦,௕→௔Ω̂+  ݆ܷ��̂௦,௖→௔Ω̂̂ܧ                                                                                                  ሺ͵.ͳ͹ሻ 
 

In (3.17), V̂ୱ→ୱ,ୟis stator voltage across phase a due to coupling among all stator windings. Ê and Ω̂ include all eigen functions and all frequencies, respectively. Hence, some of 

diagonal elements in the phasor matrices may be zero when frequency components are 

not identical among three phases. Now, voltage phasor matrix V̂ୱ→ୱ,ୟ could be expressed 

as below. ܸ̂௦→௦,௔ = �̂௦,௔ܴ௦,௔ + ݆�̂௦,௔Ω̂ + ݆�̂௦,௕→௔Ω̂ + ݆�̂௦,௖→௔Ω̂                     ሺ͵.ͳͺሻ 
which could be rearranged in the following compact form.  

ܸ̂௦→௦,௔ = �̂௦,௔ܴ௦,௔ + ݆[�̂௦,௔ + �̂௦,௕→௔ + �̂௦,௖→௔]Ω̂                          ሺ͵.ͳͻሻ ܸ̂௦→௦,௔ = �̂௦,௔ܴ௦,௔ + ݆�̂௦,௔௔Ω̂                                                              ሺ͵.ʹͲሻ 
where �̂௦,௔௔ = �̂௦,௔ + �̂௦,௕→௔ + �̂௦,௖→௔. 
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Figure 3.2 The self and mutual magnetic flux of the stator winding of phase a. 

Equation (3.20) includes mutual coupling flux as well as self-flux linkage. If windings 

are balanced, which means mutual coupling flux replaced with their mutual inductances 

and they are equal. Flux could be replaced with current as shown in (3.21).  

ܸ̂௦→௦,௔ = �̂௦,௔ܴ௦,௔ + ௦�̂௦,௔ܮ]݆ + ௦,௠ሺ�̂௦,௕ܮ + �̂௦,௖ሻ]Ω̂                              ሺ͵.ʹͳሻ 
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Figure 3.1 The self-magnetic flux in the stator winding of phase a. 
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3.1.2 Modeling with Rotor Side 

After considering the effect of the rotor winding on the stator side, modeling 

could be started with one phase rotor and one phase stator as shown in Figure 3.3 In 

DFIG, rotor current carries current with fundamental frequency ωr1 in addition to other 

frequency components, such that the fundamental rotor frequency is related to the slip 

and synchronous frequency sωs. The rotor is also rotating at its mechanical speed ωm.  

The rotor’s current creates a magnetic flux ɉ୰,ୟሺtሻ which is linked to the stator 

winding through the air gap. When two poles are perfectly facing one another, only 

portion of the magnetic flux is flowing through the air gap from rotor to stator. Let  kɉ୰,ୟሺtሻ indicate the flux from the rotor to the stator, where 0<k<1. After including the 

rotor’s mechanical speed ωm, the projected rotor flux λr,a->s,a(t) on the stator is given as 

below.  �௥,௔→௦,௔ሺݐሻ = ݇�௥,௔ሺݐሻ cαsሺ�௠ݐሻ                                                 ሺ͵.ʹʹሻ 
Equation (3.22) assumes that stator pole is perfectly aligned along the horizontal 

axis at 0
o
 angle. If ωr1 is included in�௥,௔ሺݐሻ, then according to modulation theorem, �௥,௔→௦,௔ሺݐሻ will contain two frequencies, which are ωm+ωr1 and ωm-ωr1. ωr+ωo is set to be 

the synchronous speed at 60Hz. So that, a low non-integer frequency component, ωm-

ωr1is expected in the stator side. 

 

 

 

 

 

 

 



48 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 The mutual flux from the rotor to the stator windings of phase a. 

Equation (3.22) is valid only when the rotor pole is perfectly facing the stator pole. 

However, the area of interface between the two poles changes as a function of time as the 

rotor continues rotating. Hence, a rectangular pulse with rising and falling edges is 

proposed as shown in Figure 3.4, which is called window rectangular pulse. The window 

rectangular pulse is used to model the area of interface between the two poles as a 

function of time. 

 

 

 

 

Figure 3.4 Area of interface between the stator and rotor poles. 
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Figure 3.5 Areas of interface for phase a stator poles to phase a rotor pole. 

If the rotor is rotating at a constant speed, then two poles are interfaced twice in one 

complete cycle as the rotor has two poles one at each end. Hence, the window pulse is 

periodic. WA(t) is used to model the area of interface between stator’s pole and rotor’s 

pole for phase a as shown in Figure 3.5. Note that WA(t) is periodic over half the rotation 

time Tm. By including WA(t), (3.22) becomes as below. �௥,௔→௦,௔ሺݐሻ = ݇�௥,௔ሺݐሻ cαsሺ�௠ݐሻ ஺ܹሺݐሻ                             ሺ͵.ʹ͵ሻ 
In (3.23), replacing ɉ୰,ୟሺtሻ with its matrix equivalent general vector form and cαsሺω୰tሻ 
with its complex conjugate form, the following could be obtained. 

�௥,௔→௦,௔ሺݐሻ = ܷ݇��̂௥,௔̂ܧ [݁௝�೘௧ + ݁−௝�೘௧ʹ ] ஺ܹሺݐሻ           ሺ͵.ʹͶሻ 
which can be expressed as below.  

�௥,௔→௦,௔ሺݐሻ = ͳʹ ܷ݇��̂௥,௔[ܺ̂+ + ܺ̂−] ஺ܹሺݐሻ                        ሺ͵.ʹͷሻ 
In (3.25), 

ܺ̂+ = [݁௝ሺ��భ+�೘ሻ௧݁௝ሺ��మ+�೘ሻ௧݁ڭ௝ሺ��೙+�೘ሻ௧]andܺ̂− = [݁௝ሺ��భ−�೘ሻ௧݁௝ሺ��మ−�೘ሻ௧݁ڭ௝ሺ��೙−�೘ሻ௧]. 
whereωr1, …, ωrn are frequency components in rotor’s flux. Then the current induced by 

the stator due to the rotor’s flux is given as below. 

t Tp 4Tp 7Tp 

WA(t) 

… 

Tm Tm/2 
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�௥,௔→௦,௔ሺݐሻ = ͳʹ ܷ݇� �̂௥,௔ (�௥�௦) [ܺ̂+ + ܺ̂−] ஺ܹሺݐሻ                       ሺ͵.ʹ͸ሻ ݀�௥,௔→௦,௔ሺݐሻ݀ݐ= ͳʹ ܷ݇�Λ̂௥,௔ {݆[Ω̂�௥+ܺ̂+ + Ω̂�௥−ܺ̂−] ஺ܹሺݐሻ+ [ܺ̂+ + ܺ̂−] ݐ݀݀ ஺ܹሺݐሻ}                                                                    ሺ͵.ʹ͹ሻ 
where Ω̂�௥+ = Ω̂ + Î�௠,  Ω̂�௥− = Ω̂ − Î�௠.  

Equation (3.27) defines the voltage induced at the stator due to the rotor’s flux, and it can 

be expressed as a function of the mutual inductance and the rotor’s current. 

݀�௥,௔→௦,௔ሺݐሻ݀ݐ = ௥ܸ,௔→௦,௔= ͳʹ �௠ܷܮ �̂௥,௔ {݆[Ω̂�௥+ܺ̂+ + Ω̂�௥−ܺ̂−] ஺ܹሺݐሻ  +  [ܺ̂++ ܺ̂−] ݐ݀݀ ஺ܹሺݐሻ}                                                                       ሺ͵.ʹͺሻ 
Now the effect of three phases’ rotor windings could be considered. As shown in Figure 

3.6, three phase rotor windings are rotating at ωm so that that each pole of rotor has its 

own window signal which defines the overlapping area of interface. Figure 3.7 illustrates 

window pulses of each phase of the rotor poles into phase a of the stator poles. Hence the 

flux linked from phase b and c of the rotor to phase a of the stator are described as below. 

�௥,௕→௦,௔ሺݐሻ = ݇�௥,௕ሺݐሻ cαs (�௠ݐ + ʹ�͵) ஻ܹሺݐሻ                          ሺ͵.ʹͻሻ �௥,௖→௦,௔ሺݐሻ = ݇�௥,௖ሺݐሻ cαs (�௠ݐ + Ͷ�͵) ஼ܹሺݐሻ                          ሺ͵.͵Ͳሻ 
 

 

 



51 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 The three phase mutual fluxes from the rotor to the stator winding. 

 

 

 

 

 

Figure 3.7 The window pulses of the rotor’s three phases on stator’s phase a. 

Using the complex form, (3.29) and (3.30) would become as below.  

�௥,௕→௦,௔ሺݐሻ = ܷ݇��̂௥,௕̂ܧ [݁௝�೘௧+మ�య + ݁−௝�೘௧−మ�యʹ ] ஻ܹሺݐሻ                   ሺ͵.͵ͳሻ 
�௥,௖→௦,௔ሺݐሻ = ܷ݇��̂௥,௖̂ܧ [݁௝ሺ�೘௧+ర�య ሻ + ݁−ሺ௝�೘௧+ ర�య ሻʹ ] ஼ܹሺݐሻ              ሺ͵.͵ʹሻ 

Then current and voltage in phase a of the stator due to phase b of the rotor is given as 

below. 
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�௥,௕→௦,௔ሺݐሻ = ͳʹ ܷ݇� �̂௥,௕ (�௥�௦) [ܺ̂+ + ܺ̂−] ஻ܹሺݐሻ                       ሺ͵.͵͵ሻ ݀�௥,௕→௦,௔ሺݐሻ݀ݐ = ௥ܸ,௕→௦,௔ሺݐሻ= ͳʹ �௠ܷܮ �̂௥,௕ {݆[Ω̂�௥+ܺ̂+ + Ω̂�௥−ܺ̂−] ஻ܹሺݐሻ+ [ܺ̂++ ܺ̂−] ݐ݀݀ [ ஻ܹሺݐሻ]}                                                                 ሺ͵.͵Ͷሻ 
Similarly, current and voltage in phase a of the stator side due to phase c of the rotor are 

shown below. 

�௥,௖→௦,௔ሺݐሻ = ͳʹ ܷ݇� �̂௥,௖ (�௥�௦) [ܺ̂+ + ܺ̂−] ஼ܹሺݐሻ                   ሺ͵.͵ͷሻ ݀�௥,஼→௦,௔ሺݐሻ݀ݐ = ௥ܸ,௖→௦,௔ሺݐሻ= ͳʹ �௠ܷܮ �̂௥,஼ {݆[Ω̂�௥+ܺ̂+ + Ω̂�௥−ܺ̂−] ஼ܹሺݐሻ  +  [ܺ̂++ ܺ̂−] ݐ݀݀ [ ஼ܹሺݐሻ]}                                                                  ሺ͵.͵͸ሻ 
Finally, stator current in phase a affected by three phase rotor currents could be 

developed.  

Iୱ,ୟሺtሻ = I୰,ୟ→ୱ,ୟሺtሻ + I୰,ୠ→ୱ,ୟሺtሻ + I୰,ୡ→ୱ,ୟሺtሻ                       ሺ͵.͵͹ሻ Iୱ,ୟሺtሻ = ͳʹ k (N୰Nୱ)UT[Î୰,ୟW୅ሺtሻ   + Î୰,ୠW୆ሺtሻ + Î୰,ୡWେሺtሻ][X̂+ + X̂−] ሺ͵.͵ͺሻ 
The voltage across phase a of the stator can be expressed as following: V̂ୱ→ୱ,ୟ= Îୱ,ୟ Rୱ,ୟ + j[LୱÎୱ,ୟ + Lୱ,୫(Îୱ,ୠ + Îୱ,ୡ)]Ω̂   + V୰,ୟ→ୱ,ୟሺtሻ + V୰,ୠ→ୱ,ୟሺtሻ+ V୰,ୡ→ୱ,ୟሺtሻ                                                                                                                                  ሺ͵.͵ͻሻ 
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Equation (3.37) describes the current injected into the stator. It is clear that the stator 

current contains harmonics due to DC/AC switching in the rotor current. Those 

harmonics are modulated with mechanical speed to generate higher frequency 

coefficients that are injected into stator. Also, the window pulses in 6-pole machine 

would create multiples of the sixth fundamental frequency which would be modulated 

with the fundamental synchronous frequency. Thusሺn͸ωୱ ∓ωୱሻ harmonics are expected 

at the stator side. In addition, a low non-integer harmonics (ωm– ωr1) is expected due to 

the difference between the rotor’s mechanical frequency (ωm) and the fundamental rotor 

frequency (ωr1). 

3.2 Harmonic resonance mode analysis in DFIG wind power system 

Harmonic resonance frequency point will cause harmonic resonance phenomenon, 

which makes the inductance and capacitance cancelled each other in the equivalent 

circuit of the system [63]. Since a wind power system comprises a lot inductive elements 

and capacitive elements coming from large capacities of wind turbines, reactive 

compensation equipment and transmission lines, the need of resonance analysis is 

essential[64]. Such resonant frequencies can be a concern when they are close to any of 

the harmonic frequencies existing in the power system，which would increase the total 

harmonic distortion in the current and voltage depending on the resonance impedance 

seen at that location. The evaluation of such problem is complex as harmonic study needs 

to be carried out for all buses in the system [65]. References [66] and [67] show that 

variable speed wind turbines by themselves are not a significant source of harmonic 

injection in the system however they may cause a problem due to harmonic resonances in 

the system. When interconnecting wind power generator in the grid, shunt capacitor bank 
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is installed at main substation or an underground cable is used to connect wind farm to 

the grid, harmonic distortion becomes a significant issue.  

A resonance frequency point would cause voltage distortion amplification due to 

parallel resonance or high harmonic current due to series resonance. Parallel resonance 

frequency shows high network equivalent impedance, which is commonly used and 

means that small harmonic currents can generate high harmonic voltage in the grid. 

Series resonance frequency shows low network equivalent impedance, which means that 

small harmonic voltages can generate high harmonic current in the grid. 

When the value of inductive elements is equal to that of parallel capacitive 

elements, parallel resonance occurs. The parallel resonant frequency is calculated as 

follows: 

f୰ = ͳʹɎ√ ͳLୣ୯C                                                            ሺ͵.ͶͲሻ 
At this frequency, the apparent impedance seen from the harmonic current 

becomes high [68]. Series resonances occurs when low impedance is seen at the resonant 

frequency, which causes high current and high voltage distortion even at a location with 

no or little harmonic emission [68]. Since the transformer inductance and capacitor bank 

is small enough to be ignored, the series impedance of transformer is only limited by its 

resistance. Same as the situation of capacitor bank, the series impedance of capacitor 

bank is only limited by its resistance. When series resonance happens, harmonic currents 

will flow freely in this circuit with amplified magnitude and may cause equipment 

overheating and tripping.  
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It is usually assumed that harmonic sources are concentrated to a few buses with 

harmonic producing loads for conducting harmonic study. Harmonic resonance modal 

analysis (HRMA) is a kind of frequency scan method and could be described as follows:                                        [I୤] = [Y୤] ∙ [V୤]                                                          ሺ͵.Ͷͳሻ 
where If is the nodal current injection vector in the frequency scan in p.u; Vf is the nodal 

voltage vector; Yf is the nodal admittance matrix, which could be inversed to get the 

nodal harmonic impedance; note that Yf is different at every specific frequency. When Yf 

approaches singularity at certain frequency, harmonic resonance happens and that 

frequency should be avoided.  According to (3.41), the plot of frequency vs. impedance 

of a power system equivalent circuit could be got and the peak in the plot reveals the 

potential harmonic resonance frequency point. 

In order to get more deep understanding of the network admittance matrix, Yf is 

decomposed as follows:                                             Y୤ = LΛT                                                                    ሺ͵.Ͷʹሻ 
where Λ = diagሺɉଵ, … , ɉ୬ሻ is the diagonal eigenvalue matrix. L and T are left and right 

eigenvalue matrices. When one of the eigenvalues approaches zero, which also means Yf 

approaches singularity, the resonance happens. This eigenvalue is called critical 

eigenvalue and the inverse of the critical eigenvalue’s magnitude is named critical modal 

impedance, which indicates the severity of the resonance. 

Some further information about the system L and T could be utilized to 

investigate the impact of the network components on a resonance mode, which could be 

used to investigate the impact of the network components on a resonance mode. The 
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sensitivity results are ranked to quantify the impact of each component. The modal 

impedance sensitivity index and the modal frequency sensitivity index are derived in 

following the analysis.                              L = [lଵ, … , l୬], T = [tଵ, … , t୬]T                                           ሺ͵.Ͷ͵ሻ 
                       l୩ = [lଵ୩, … , l୬୩]T, t୩ = [t୩ଵ, … , t୩୬]                                  ሺ͵.ͶͶሻ 

In (3.43) and (3.44), the critical right and left eigenvectors represent the 

excitability and observability of each bus to the resonance mode. The work [69] 

introduces the sensitivity matrix, in which the diagonal values of the sensitivity matrix 

are called participation factors, which shows how much each bus participates in a certain 

modal resonance. The bus with the largest participation factor is called the frequency 

center, which can be expressed as: 

 

                       F = l୩ ∗ t୩ = ( 
 lଵ୩…l ୨୩………୪౤k) 

 (t୩ଵ … t୩୨……… t୬୩)                               ሺ͵.Ͷͷሻ 
For example, HRMA is applied in a wind power system as shown in Figure 3.8 

and parameters for this system are shown in Table 3.1. A 9MV wind turbine model with 

numbered buses is researched in this paper, which includes a harmonic filter, 

transformers (Y type, Lt, Lb), transmission line, phase reactor (L) and a tuned filter (C1). 
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Figure 3.8 DFIG equivalent circuit for HRMA. 

All the values used in the table are transferred in the grid level and all the 

harmonic current injection satisfies IEEE Std 519 rules. Resources of harmonic emission 

depend on the wind turbine type. In case of the DFIG, it is a variable speed type wind 

turbine, so that the power electronics converters’ operation, rotation process in wind 

power generator would form harmonic emissions that may distort the voltage and 

currents of the wind power system. The harmonic resonance mode analysis below the 

45
th

harmonic order results are shown in Figure 3.9 and Figure 3.10.  

Table 3.1Wind power system parameters. 

 

Wind Power

Generation 

System

L

33kV cable

L11 R11

C3 C3

La L1 R1

C2 C2

Lb

150kV cable

C1

Lf2 Lf1 Lt

C4

filter

12
3456

Component Values 

150 kV cables  

L1 1.0mH 

R1 0.056Ω 

C2 0.52µF 

Three winding 

transformers 

 

La 38.676mH 

Lt 51.568mH 

33kV cables  

L11 0.018181H 

R11 0.37188Ω 

C3 1.7126e-4F 

LCL filter  

Lf2 1.2H 

Lf1 0.641H 

C4 5.964 µF 

In the grid connection side  

Lb 19.338mH 

L 19.3mH 

C1 5.658 µF 
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In Figure 3.9 and Figure 3.10, peaks of the mode shape show sensitive buses and 

fragile points in this wind power system. Table 3.2 and Table 3.3 reveal the most 

participation bus for each harmonic resonance frequency point, which is denoted by the 

most participation factor.  Bus 5 and bus 6 are most sensitive and have great impacts in 

harmonic resonance phenomena, which are heavily involved in a resonance condition. At 

the frequency order of 13, the wind power system represents has the highest equivalent 

impedance.  

 

Figure 3.9 Bus1-5. 
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Figure 3.10 Bus 6. 

Table 3.2 Harmonic resonance point. 

Mode No. Modal Resonance 

Freq. Order (p.u.) 

Frequency (Hz) Largest Value of Zm (p.u.) 

1 15.83 949.8 527.4293 

2 13 780 24526.190 

3 16.17 970.2 1875.191 

 

Table 3.3 Participation bus for harmonic resonance point. 

 Bus 1 Bus2 Bus3 Bus4 Bus5 Bus6 

Mode 1 0 0 0 0 0.9998 0.002 

Mode 2 0 0 0 0 0.001 0.9999 

Mode 3 0 0 0 0 0.002 0.9998 

 

A passive filter is designed to compensate the 13
th 

and 15
th 

harmonic. A classic 

passive harmonic filter as shown in Figure 3.11 is placed in wind power system of Figure 
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3.8 at bus 6.In filter shown in Figure 3.11, R is installed in parallel with C, so the filter 

looks like a LRL filter in the low frequency range which will cause some loss. In the high 

frequency range, the passive filter equals to a LCL filter, which details can be found in 

Table 3.4. The harmonic currents are injected at the end of the branch using the harmonic 

current source in accordance to IEEE 519 standards. The measured harmonic currents 

with respect to the injected harmonics current are shown in Figure 3.12. 

 

 

Figure 3.11 Harmonic filter. 

Table 3.4 Harmonic filter parameters. 

Components Values 

L 551.68ɊH 
C 0.52ɊF 

R 0.056Ω 

 

From the HRMA results shown in Figure 3.12, it is seen that the passive filter can 

damp harmonic resonance points at the designed frequency (13
th

 and 15
th

harmonic 

frequency) but it introduces another peak due to its interaction with the wind power 

system impedance. The potential harmonic resonance points could not be totally cleared 

in the wind power system, but they could be shifted to above 100
th

 harmonic order which 

is a higher value. Finally, passive filter could be applied to which could not totally clear 

L L

RC
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potential harmonic resonance points but it shifts the harmonic resonance points above 

100
th

 harmonic order into a more safe zone.  

 

Figure 3.12 HRMA results with passive filter. 

3.3 Summary 

In this chapter, harmonic issues in DFIG wind power system are analyzed from 

two viewpoints. Firstly, reasons of harmonic generation due to the machine operation 

characteristic are revealed and a general vector representation is developed to model 

DFIG from the harmonic viewpoint. Secondly, the potential risk of harmonic emissions 

to the grid is analyzed by the harmonic resonance mode analysis (HRMA) approach. 

HRMA could indicate harmonic resonance frequency points in the wind power system, 

which is exist in the wind power system grid integration point. Results of wind power 

harmonic resonance frequency points reveal potential dangerous in wind power system, 

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

450

500
m

o
d
e
l 
im

p
e
d
a
n
c
e
 (

p
u
)

harmonic order (pu)

 

 

bus 1

 bus 2

 bus 3

bus 4

 bus 5

bus 6



62 

which provides useful information in wind power system design and operation. Since 

components in wind power system are changing all the time in order to adjust different 

needs in the grids and avoid risks in operation at the same time, it is important to know 

how to mitigate harmonic signature of these devices, which is proved in this part by 

applying passive filters. Those resonance points could be easily excited by just harmonic 

emission from PWM switching process. The analysis results also show that most parts in 

wind power system are safe in operation except some critical points. Research on 

harmonic resonance frequency is meaningful in how to design a safe network based on 

the HRMA results.  
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Chapter Four: Wind power prediction by using neural networks 

In a wind power plant (WPP), data of wind information, such as wind speed, wind 

direction, wind power generation, humidity and air pressure are collected by a plant 

information system as wind profile data, and the output of the entire WPP is monitored 

by the utility's supervisory control and data acquisition (SCADA) system. The raw wind 

profile data contains some invalid data which is not useful for wind power prediction and 

has a minor effect on the power grid and need to be filtered out. In this Dissertation, the 

raw wind profile data set will be screened by probabilistic neural network to prepare high 

quality data for building neural network models. A neural network model would be 

applied for predicting wind power with following characteristics. Firstly, model inputs 

are expressed as complex-valued data (vector representation) which combine wind speed 

and wind direction. Secondly, the complex-valued recurrent neural network model's time 

series inputs are generated based on the historical data values of the WPP in northeastern 

Colorado [75]. 

4.1 Data preparation 

Data preparation process is a very important step in mathematical modeling, since 

the quality of raw data acquired by plant information system contains errors. For raw 

wind profile data, there are two kinds of wind turbines in this WPP.  The layout of wind 

turbines and two meteorological towers (MET1&2) is shown in Figure 4.1. In Group 1 

there are 53 turbines, rated power at 1.5 MW each one. In Group 2 there are 221 turbines 

rated at 1MW. The rated power of the whole WPP is 300.5 MW.  
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Figure 4.1 Wind power plant distribution. 

The data of wind speed (m/s), wind direction (in degrees: 0
o
~360

o
), total metered 

plant-output power (MW), temperature (
o
C) and air pressure is monitored by the sensors 

installed at the two meteorological (MET) towers. From individual wind turbines, data of 

wind speed, wind direction and power output is also collected. The data of the total 

metered WPP output power is recorded at the point of interconnection, which is very 

useful to a utility company as a reference to compute power revenue. Following the IEC 

standard 61400, all the data acquired, except the turbine status, is averaged over a 10-

minute period by turbine power curve measurement [75]. Figure 4.2 shows a raw scatter 

plot of WPP output and wind speed data from MET 1.  
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Figure 4.2 Scatter plot wind speed vs. wind power from single wind turbine. 

The raw data set (consisting of 8486 dots) contains some invalid data which is not 

useful for power prediction and has a minor effect on the power grid. The raw data can be 

classified into five types, as shown in Table 4.1. 

Table 4.1 Raw data classification. 

Type Description 

1 data points following the main power stream 

2 data points in low wind speed period with high power generation 

3 data points with negative value wind speed 

4 data points with negative value power generation 

5 data points with low power generation at high wind speed period 

The existence of type 2 data might be due to some physical problems, disabled 

sensors or data distortion in communication channels. Type 3 data does not exist in 

reality and may be caused by anemometer that needs to be calibrated. Type 4 data is due 
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to the fact that sometimes the wind turbine cannot generate enough power to offset the 

electrical consumption of the turbine itself and was drawing, i.e. consuming, power from 

the grid. The existence of type 5 data might be due to the fact that not all turbines are 

always online during high wind speed period, especially near cut-off wind speed, and 

some wind turbines maybe disabled during that period. Another reason can be derived 

from [10], in case that a strong wind from wrong direction can make a turbine work at 

low efficiency. In sum, all types of data except type 1 data should be filtered out. 

In data selection process, probabilistic neural network (PNN) is a feed-forward 

neural network with supervised learning using Bayes decision rule and Parzen window 

[97]. PNN can be used for data classification. The structure of PNN is usually a two-layer 

model, as shown in Figure 4.3. In the pattern units, the distance between the input vector 

and the target vector will be calculated. A new vector will be generated to indicate how 

close the input is to the target vector. The summation units add these distances for each 

type of inputs to produce a vector of probabilities as output of the network. The output 

unit generates a 1 for the target class and a 0 for the other classes with the use of a 

competing transfer function, which picks the maximum the vector of probabilities [98]. 

 

Figure 4.3 Structure of PNN. 
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In this chapter, PNN was applied to filter out invalid data in the raw data set. For 

example, data points in Figure 4.2 were classified into five types and the portion for each 

type of data is different based on statistical analysis. The order of proportion from the 

largest to the smallest is as follows: type 1, type 4, type 5, type 2, and type 3. In the 

process of building the PNN model, about 20% of the data points in Figure 4.2, which 

contains 1700 data points, were selected as training data set. The PNN model was trained 

by using the sampled data. 

Since only type 1 data is the useful information and should be kept, there are two 

strategies in training the PNN model. We will call them method 1 and method 2, which 

are described in the following paragraphs. 

1) Method 1 is simpler, for which the classification results of PNN are assumed to have 

only two types. PNN is trained based on two groups: the first group is type 1; the second 

group includes type 2-5. 1700 data points are selected, among which 1540 were randomly 

selected from type 1 data points, the rest 160 data points were from type 2-5. In the 

training data set, the input data vector includes data of wind speed and wind power 

generation, and the target vector has only two elements, which are 1 (group 1) and 2 

(group 2). And then, the rest data points (about 80%) were used as testing data set as 

input to be classified by the PNN model already built. The number of neurons in the input 

layer is equal to that of the output layer, which is 2. The training results are shown in 

Figure 4.4 and Figure 4.5. As shown in Figure 4.5, the classification result using method 

1 is not ideal; PNN model could not succeed in diagnosing all the unwanted data. And the 

classification accuracy is 92.7%, which means the number of the correctly classified data 

points versus the number of type 1 data as shown in Figure 4.2.  
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Figure 4.4 Classification results of data in Fig. 4.2 by method 1. 

 

Figure 4.5 Filtered scatter plot of Group 1 data points classified by method 1 (2010 Jan-

Mar). 

2) In Method 2, there are five classification results of PNN, which are type 1, type 2, 

type 3, type 4, and type 5. PNN is trained based on five types of data points as shown in 



69 

Table 4.2. In the 1700 selected data points, 1540 data points were sampled from type 1 

data. For the rest 160 data points, according to the portion of each data type, number of 

data points sampled from type 2, 3, 4, 5 were 20, 10, 70 and 60 respectively. The number 

of neurons in the input layer is 2 and the number of neurons in the output layer is 5. And 

results done by testing the rest of the data set can be seen in Figure 4.6 and Figure 4.7. 

 

Figure 4.6 Classification results of data in Fig. 4.2 by method 2. 
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Figure 4.7 Filtered scatter plot of Group 1 data points classified by method 2 (2010 Jan-

Mar). 

In Figure 4.6, type 1 data can be separated from the testing data set as shown in 

the classification result and were plotted in Figure 4.7. The PNN model built by using the 

method 2 could succeed in screening the raw data even though the power curve is not 

totally smooth. The classification accuracy is 96.5%, which is higher than that of method 

1. The classification result using method 2 has a better accuracy than the one performed 

using method 1, because simply combining type 2-5 data points into a group will disturb 

the process of building PNN and may create confusion in dividing the line between type 

1 data and type 2-5 data. 

Wrong classification data points will decrease the accuracy of the prediction 

model. In the data preparation process of the WPP power prediction model, we adopted 

method 2 to train PNN model and the problem of wrong classification can be solved by 

improving the PNN's training data set. For example, after the PNN is built, data points 

with wrong classification results from testing data set can be added into the training data 
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set. Then, PNN model should be trained again with the expanded training data set in 

order to have more accurate classification ability. 

The following content is related to data for building models. In this chapter, the 

power prediction results of the WPP are based on wind speed and wind direction. At first, 

wind speed factor is a key point in determining the available power generated from a 

single wind turbine within a certain cross sectional area [71]. The wind speed 

experienced by individual wind turbines is acquired by the anemometer and comes from 

the direction of horizontal axes of turbine’s hub. The hub is behind the blades, which has 

an effect of decreasing the natural wind speed. The wind speed acquired from the MET 

towers represents the natural wind speed at the location on the tower. Even though the 

height of the hub and MET tower are the same, they have different physical meanings. 

When we predicted wind power generation, wind speed from turbine should be adopted 

as input information of the model. 

Secondly, wind direction, i.e. direction from which the wind blows, is another 

kind of useful information to predict wind power based on previous research results [72]. 

Wind can come from every direction when the wind speed is low. The higher the wind 

speed, the more uniform and more focused the wind direction. So that during the same 

wind speed period, wind turbines can have different efficiencies due to different wind 

directions. However it is not convenient to predict the total power generation of the 

whole WPP by processing data information from all the turbines. It is better to find 

individual wind turbines from which the wind speed and wind direction can be most 

representative of the WPP area's wind situation. The wind speed situation after the data 

selection process) of the whole year of 2010 is shown in Table 4.2. The data from 2010 
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Apr-Jun covers a wide range and has the largest mean value of wind speed, which is 

suitable for training neural network model and is investigated in this Dissertation. 

Table 4.2 2010 Wind speed data analysis. 

Wind speed (m/s) Avg. Std. Maximum 

2010 Jan-Mar 6.945 3.919 21.362 

2010 Apr-Jun 8.812 3.927 22.635 

2010 Jun-Sep 6.371 3.212 19.552 

2010 Oct-Dec 7.330 4.117 21.912 

Wind directions of the two groups of wind turbines at 3/18/2010 10:00 PM and 

4/10/2010 8:40 AM are shown in Figure 4.8 and Figure 4.9 respectively. The arrows 

indicate the direction of the wind. The wind directions of Group 2 turbines are focused on 

a certain direction. The reason of the disordered directions of Group 1 turbine is likely to 

have its origin in the data distortion due to the data transmission channel or bad 

performance sensors. The total output of the WPP can be predicted according to only one 

or two turbine’s information [74]. Based on the filtered data set, the average wind speed 

of all the wind turbines can be acquired. By using correlation, the wind turbine that has 

the highest correlation value with the average wind speed can be determined. In Figure 

4.1, turbine A was selected, which is the one that has the most representative wind speed. 



73 

 

Figure 4.8 Wind direction at 3/18/2010 10:00 PM. 

 

Figure 4.9 Wind direction at 4/10/2010 8:40 AM. 

Following the same method, the turbine which has the most representative wind 

direction can also be found, which was turbine B in Figure 4.1. In this chapter, data 
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acquired from turbine A and B will be used to predict the total output of the WPP. The 

wind profile data is obtained during year 2010 and 2011, and the data from 2010 Apr-Jun 

is selected for building a wind power prediction model in this part. 

4.2 Neural network models for wind power prediction 

Data of wind speed and direction from turbine A and turbine B can be combined 

and expressed as a vector on a two-dimensional complex coordinates, as shown in Figure 

4.10. The wind vector can be expressed as equation (4.1). In [73], it is demonstrated that 

the prediction effect by using complex-valued neural network outperforms more than 

using real-valued neural network. v⃗ = vcαsθ+ i vsinθ                                                               (4.1) 

 

 

Figure 4.10 Wind vector. 

Inputs of recurrent neural network can be either a series of historical measured 

data or simulated data generated by the model as shown in Figure 4.11. The advantage of 

this kind of model is that the output signal does not just rely on the current input signals 

of the system, but it also has an internal memory in its training process. The disadvantage 

is that the training time of the recurrent neural network is longer than that of the static 

neural network. In this part, a complex-valued recurrent neural network (CRNN) is 
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applied to predict a single wind turbine’s power generation. The CRNN can be trained 

under two kinds of modes: parallel (P) mode and series-parallel (SP) mode, as seen in 

Figure 4.11. In the P mode, the simulated outputs β෤ሺn − ʹሻ, β෤ሺn − ͳሻ, β෤ሺnሻ are fed back 

as input signals. In the SP mode, actual outputs in the previous time step βሺn − ʹሻ, βሺn −ͳሻ, βሺnሻ are fed back as input signals, which are applied in this Dissertation. Paper [74] 

demonstrates that prediction model with P mode inputs will result in accumulation of 

error if the previous prediction results are not accurate. Therefore, SP mode neural 

network is adopted to build prediction model in this Dissertation. 

 

 

Figure 4.1 Recurrent neural network training structure. 

In Figure 4.11, � indicates the power readings from wind turbine,ݑ includes the 

wind speed vectors from wind turbine, and, � indicates the time step of 10 minutes period. 

Usually a two-layer NN model can reasonably approximate any nonlinear function [97]. 

In this neural network model, a single hidden layer NN with fifteen neurons and one 

output was used. A bias of 1 was set initially. The longer the length of delay, the heavier 

the load of the training process is, which will also inevitably increase the training time of 
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the model. The complex-valued recurrent neural network is trained in 10-min, 20-min, 

30-min, 40-min, 50-min, and 60-min time delay modes. For the transfer function, log-

sigmoid function was selected to be the hidden layer’s transfer function due to its 

efficiency. A linear transfer function was used in the output layer as a convention. 

Levenberg-Marquardt back propagation algorithm is used as the training function for the 

whole recurrent neural network model. This method is typically used in minimization 

problems because it appears to be the fastest method in terms of convergence. The 

weights of each connection between neurons are adjusted in the training process until the 

errors are within the pre-determined range. To compare the performance of the two 

modes of recurrent neural network, the accuracy of the model can be evaluated by means 

of the absolute error (MAE), root mean squared error (RMSE), and mean absolute 

percentage error (MAPE), as follows: MAE = ଵ୬∑ |x୧ − xǐ|୬୧=ଵ       (4.2) 

RMSE = √ଵ୬∑ ሺx୧ − xĩሻଶ୬୧=ଵ       (4.3) 

MAPE = ଵ୬∑ |୶i−୶ĩ୶i | × ͳͲͲ୬୧=ଵ %      (4.4) 

where xi and xĩ  are the i
th

 component of the actual power and predicted wind power 

respectively, n is the length of the vector. 

4.3 Wind power prediction results 

Based on the abovementioned, the data shown in Table 4.3was selected to finish 

wind power prediction model. Data of each group consists of wind speed, wind direction, 

and wind power generation. 
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Table 4.3 Data for building prediction model. 

Data 

group 

Start time End time No. of data points Description 

A 4/1/2010 0:00 5/8/2010 23:50 5474 Training data set 

B 4/1/2011 0:10 5/8/2011 23:50 5362 Testing data set 

In the modeling process, the Group A’s data is used for training the model and the 

Group B's data is used for testing and validate the model. In the training process of neural 

network, according to the principle of the neural network, training set data will be divided 

into two parts randomly, one part is for learning the relationship between input data and 

output data and building the model, which occupies 60% of the total data. The rest 40% 

data is reserved for validation of the model and for further adjusting value of its weights. 

So that models built by a same training data set could be different due to neural network's 

randomness in training. In order to get more accurate results, each model was built by 

Group A data repeatedly for three times and the prediction results were tested by Group 

B data repeatedly for three times and then average values are computed. Results from the 

proposed model were compared with the actual values of the historical data. The error 

statistics of the prediction results by different time series SP mode CRNN is shown in 

Table 4.4 and Table 4.5. Model 1 denotes SP mode CRNN with only wind speed as input 

and, while Model 2 denotes SP mode CRNN with wind vectors as inputs. Table 4.6 

shows the error analysis of prediction results by the complex-valued neural network 

(CVNN) and real-valued neural network (RVNN) models. 
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Table 4.4 Prediction results analysis. 

(MW) MAE RMSE 

Input type Model 1 Model 2 Model 1 Model 2 

10 min 0.113154 0.089989 0.155577 0.10752 

20 min 0.116069 0.098686 0.160766 0.110594 

30 min 0.128057 0.105806 0.18592 0.120023 

40 min 0.152811 0.10768 0.18664 0.123943 

50 min 0.159211 0.107691 0.20864 0.126983 

60 min 0.170983 0.109486 0.212389 0.129989 

 

Table 4.5 Prediction results analysis. 

 MAE RMSE 

Input type Model 1 Model 2 Model 1 Model 2 

10 min 0.139006 0.128046 0.122537 0.10752 

20 min 0.166274 0.138183 0.134869 0.12824 

30 min 0.207417 0.145749 0.158103 0.131131 

40 min 0.260309 0.158537 0.175566 0.141543 

50 min 0.279406 0.203109 0.1972 0.145394 

60 min 0.333623 0.206754 0.223109 0.149074 

 

Table 4.6Prediction methods comparison. 

 MAE RMSE Std. of Error MAPE 

CVNN 0.161703 0.17136 0.167257 14.867% 

RVNN 0.185257 0.195269 0.350537 22.535% 
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From Table 4.4, Table 4.5 and Table 4.6, the results show that the 10-min delay 

mode of Model 2 has better performances in the CRNN models, and can be adopted to 

build power prediction models for WPP. The accuracy suggested by MAPE is 11.2%, 

which also outperforms the prediction results of CVNN and RVNN, as shown in Table 

4.6. In the CRNN models, the accuracy of CRNN's prediction results decreases when 

increasing the delay length in the model training process. The reason is that the wind is 

changing rapidly, and thus it is better to predict the wind power by referring the wind 

status in the nearest previous time. Apparently, the accuracy of prediction results and its 

consistency for different delay lengths are improved when the direction of the wind is 

combined into input signals of the neural network. The prediction results of CVNN and 

RVNN models, which do not include time delay in their training data set, have worse 

prediction results even compared to Model 2 with 40-min delay. Figure 4.12 shows the 

prediction results from 4/1/2011 1:20 AM to 4/2/201110:40 AM, where the predicted 

power generation points are very close to those actual ones. Additionally, there are 

always some prediction data points with large relative errors, which are larger than 100%. 

The characteristic of those data points are always generated during low wind speed 

period, i.e. below 4m/s, which is not important for wind power integration and can be 

ignored. According to the errors of the prediction results, the power company can 

compensate the errors by allocating proper power reserve and make some adjustment in 

scheduling the wind power generation. 
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Figure 4.12 Prediction results by 10-min time delay SP mode RNN. 

4.4 Summary 

This part describes a procedure of predicting wind turbines power generation by 

using neural networks. A wind turbine in the WPP is selected as an input data source for 

modeling and to simplify the input signals to the model. In the last step, based on the 

previous wind power prediction experience [75]-[77], complex-valued recurrent neural 

network (CRNN) model was chosen to predict the total output of WPP with high 

accuracy. The methodology has been tested for DFIG type wind turbines in the range of 

1-1.5 MW, but may be extended to other types and sizes of wind turbines. 
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Chapter Five: Islanded wind power system with EMS 

5.1 The microgrid concept 

The 21st century has brought one of the most revolutionary concepts to the 

electrical distribution networks: the microgrid, which was defined for the first time in 

2001 by Prof Lasseter as “A microgrid is a cluster of micro-sources, storage systems and 

loads which presents itself to the grid as a single entity that can respond to central control 

signals.” [100]. This definition has been modified along the time since the concept has 

been applied in many different applications [101], especially in places in which the 

electrical grid is not present or is very weak, such as islands, rural or emerging countries 

like China, India or Brazil in which the need of energy is growing with the requirements 

of industrial development and welfare. This concept has been extended not only to 

inherently islanded (disconnected from the main grid) systems such as aircrafts [105], 

ships [106], and even oil platforms, but also to urban areas and camps (e.g. military and 

U.N. refugees camps) that require high reliability and availability of energy supply. A 

Microgrid is also able to integrate renewable and non-renewable energy resources and 

energy storage systems next to the local consumption, giving a unique feature of drastic 

reduction of transmission losses [103]. Microgrids represent the natural expansion of 

uninterruptible power supplies and are expected to be the building blocks of the future 

Smart Grids [104]. Thus, those microgrids should be able to operate flexibly in both grid-

connected and islanded modes, allowing resilience, reconfiguration, scalability, and 

expandability. 
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One paradigmatic example of a microgrid is placed in Sendai (Japan), supplying 

1MW of critical loads, including hospital clinics, a high school and a water plant facility, 

by using photovoltaic systems, batteries, fuel cells and gas gen-sets. In Sept 9th 2011, the 

disaster of the 9.0-magnitude earthquake of Fukushima’s tsunami produced an electricity 

blackout in Sendai, except by the area supplied by the microgrid, which was islanded for 

three days and supplying electricity to clinic laboratories, hospital lights and equipment. 

The project was proposed and deployed by the largest telecom company in Japan, Nippon 

Telegraph and Telecom, NTT, which after 4 years of government funding under NEDO, 

in 2008 the company took complete responsibility. Nowadays, this project represents an 

alternative solution for centralized electrical systems. “Today, people have no options,” 

says Keiichi Hirose, the head of the Sendai microgrid project. “The idea is to provide 

some options for electricity.” In the Sendai system, customers pay different rates 

according to the level of reliability that they need. 

Wind power generators are often applied in microgrids to meet local needs for 

electricity. Moreover, a microgrid with wind energy can also benefit customers by 

providing uninterruptible power, enhancing local reliability, reducing transmission loss 

and congestion, and supporting local voltage and frequency [78]. However, in a variable 

speed wind generator based microgrid, stochastic fluctuations in wind speed, weather 

changing cause fluctuations in electrical supply and may result power quality issues 

[78][79]including variations in bus voltages [80][81]. In this sense, the wind is a variable 

and highly fluctuating energy source and the inability to control the amount of energy 

generated, remains a fundamental problem in microgrids. A paradigmatic example of 

wind powered islanded microgrid can be found in the Faroe Islands (Denmark), in which 
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the small island of Nólsoy contains a remote village inhabited by 250 people in 100 

households. Notice that most community size systems are combined wind-diesel 

generation. The idea on Nólsoy was to use traditional Danish version induction generator 

wind turbines, as they are readily available and cheap, because they are dismantled in 

high numbers from their sites to give place for new and larger turbines [99]. In order to 

do this, the generator is operated as a self-excited induction generator (SEIG), which 

requires a reliable and accurate control system to keep nominal frequency and voltage 

while running in variable wind and load conditions. However, the output voltage and 

frequency of a SEIG are totally dependent on the system to which it is connected, in this 

case to the Microgrid. This inconvenience may be overcome by using DFIG, which has 

been pointed out as a practical solution for islanded electrical systems and microgrids. 

This Chapter will present a case study of wind powered microgrid including DFIG based 

wind turbines and diesel generator. 

5.2 Wind powered microgrid description 

In this Dissertation, DFIG wind turbines are used to build a microgrid which 

works in islanded mode. Since DFIG wind turbine has control blocks to realize active 

power and reactive power control, it is possible to realize load sharing by active power 

control and the controllable reactive power eliminates the necessity of installation of 

voltage regulating devices. In a DFIG based islanded wind power system, the active 

power frequency support and the reactive power voltage support can be accomplished by 

adjusting active power generation from the rotor side control of DFIG and reactive power 

from the stator side control of DFIG [82]-[84] separately. The proposed islanded wind 

power system is local without the need of considering widespread communication system. 
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An energy management system (EMS) is necessary for operating an islanded 

wind power system, which can provide control for active power and reactive power 

among DFIG wind turbines in the islanded wind power system especially for varying 

wind power generations. The EMS would be responsible to estimate the wind power 

generated by using neural networks, which should be trained first. The EMS can also 

decide to disconnect the diesel generator in order to save the amount diesel needed in 

standby mode, and thus increasing system efficiency while reducing CO2 emissions. The 

amount of savings can vary depending on the climatic circumstances, diesel generator 

used, and so on, being out of scope of this Dissertation. In this Dissertation, there is a 

two-layer control in the EMS, which includes a supervisory control layer and a machine 

control layer. The purpose of the EMS is to maintain the supply-demand balance in the 

islanded wind power system. The proposed islanded wind power system is shown in 

Figure 5.1, which includes a wind power plant (WPP), an auxiliary generator (AG), and a 

local load. 

DFIG Wind 

Power Plant

AC/DC/AC AG EMS

Load

Main Grid  

Figure 5.1 Islanded wind power system under study. 

Several points have been considered for building this islanded system. Firstly, 

since wind power is intermitted, frequent wind power generation needs to be updated 
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timely which could be improved by wind prediction techniques as mentioned in Chapter 

4. Wind power prediction technology could solve the problem that wind power generator 

may not respond timely when operation strategy changes rapidly and unexpectedly. 

Secondly, if two or more generators are trying to impose frequency and voltage,  load 

sharing local control is needed, since the required power generation may be less than the 

maximum wind power generation, as discussed in [85][86]. This is the case when the 

diesel generator is not operating, so that the two DFIGs has to fix frequency and voltage 

of the islanded system. 

The load sharing control is to realize supply-demand balance of the grid because 

maximum peak power tracking (MPPT) method may cause imbalance in supply-demand 

when maximum generation of wind is more than required. This problem can be resolved 

by using energy storage devices, such as super capacitor, flywheel, and pumped hydro 

[87]-[89]. But methods above can be limited by geography environment, high installation 

and operation cost, and sometimes it is easy to run out of energy storage. Therefore, 

energy storage system is not considered to apply in this islanded wind power system. 

Thirdly, it is important to consider the situation that when wind power generation cannot 

supply demand. In this Dissertation, fast resource such as gas turbine generator, diesel 

generator can be applied as auxiliary generator to compensate when wind power 

production cannot supply the load.  

The main purpose of this Dissertation is to research EMS performance on an 

islanded mode wind power system with coordination of multiple DFIGs’ control that can 

ensure the static supply-demand balance and have good dynamic performances. A 

microgrid, similarly as a large power system, can be controlled by using hierarchical 
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control architectures. The typical hierarchical control in micro and macro grids is based 

on three levels. The primary control (first layer) is based on adding virtual inertia to the 

system, thus creating dependence between frequency and active power, similarly as in big 

power systems, in which big inertia machines are always synchronized thanks to this 

relationship. This way active power sharing is performed at the expenses of drooping the 

frequency of the generators when the active power increases. This mechanism is also 

called droop control. It should be noticed that without this mechanism, if two generators 

try to impose the frequency within an islanded microgrid, due to drifts and differences 

between them, the angle difference will increase dramatically, thus large circulating 

currents may produce low efficiency of the system and even trips and damages. For the 

same reason, the reactive power also can be controlled by means of regulating the voltage. 

Notice that even though good active/reactive power sharing among generators can be 

achieved, the frequency and voltage amplitude regulations are compromised.  

In the secondary control (second layer), frequency compensation is designed to 

adjust frequency amplitude deviations within the microgrid produced by the primary 

control. The control mechanism measures both frequency and voltage errors and if one 

error is higher than the non-desirable value, which will be processed by a linear controller, 

typically a proportional-integral (PI) controller sends reference signals to all generators, 

through this way the droop characteristics can change the operation point without 

affecting the power sharing performed by the primary control action. The secondary 

control level in big power systems is well-known as automatic generation control (AGC), 

which acts over the frequency of the system and is placed in a centralized SCADA 

system. In a microgrid, this control level takes care of frequency and voltage, and it also 
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could be used to compensate harmonics and unbalances in some critical points of the 

microgrid.  

The third layer, which is also called the tertiary control layer, is the energy 

management system of the microgrid. The objective within this layer is to optimize 

power and energy of the system, according to constraints and electrical variables of the 

microgrid. Reactive power is normally optimized in this level by using optimization 

algorithms. However, active power optimization needs to take a reference of the 

historical energy performance, which means that future variables and states need to be 

predicted in order to create a rolling horizon. Based on the above analysis, decisions of 

connection/disconnection or active/reactive power adjusts. This level has not been 

explored enough in the literature of wind-powered microgrids, which constitutes one of 

the major focus and contributions of this Dissertation. In order to avoid undesired 

interactions among levels, the bandwidth is progressively reduced when increasing the 

control level in the microgrid. Thus the primary control is the faster and the third layer is 

the slowest one. 

In order to test the methodology developed in previous chapters, a wind power 

microgrid simulation model is presented in this subsection as shown in Figure 5.1. The 

microgrid system is operated at the voltage level of 575V and then connected to the main 

grid through a 25kV radial transmission line via a 575V/25kV transformer. The main grid 

is represented by a three phase voltage source with 100MVA and X/R ratio of 7. A circuit 

breaker is installed between the main grid and the microgrid system as a protection. The 

microgrid system shown in Figure 5.1 consists of a 575V distribution system, two wind 

turbine generators, a load, a traditional diesel generator. This hybrid diesel-wind powered 
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microgrid is designed to provide maximum 5 MW of load (worst case), so that the 

configuration includes 5 MW of diesel generation and two DFIG-based wind turbines of 

1.5 MW each. That means that the system could eventually provide a maximum power of 

8 MW. Since it is hard to estimate the wind power generation, it is considered that the 

load can vary between 0 and 5 MW. This way, this islanded microgrid has a 60% of 

wind-power penetration, which is relatively high.  If the wind speed is moderated, it may 

be enough power to supply the most common medium load (2.5 MW) without starting 

the diesel, for instance during the night. This design is very convenient for places that are 

windy major part of the year and with the long distance electricity transmission lines. 

There are two DFIG wind turbines (WT1, WT2) GE 1.5 MW with parameters 

presented in [28]. The machine part is modeled in the d-q-0 frame with two rotor 

windings on each axis. The excitation and governor systems of the machine are also 

included in the model. The converters of the DFIG are connected to the system through 

lumped series RL branches. The control system of the converter is represented in the d-q-

0 frame and utilizes the concept of instantaneous power to control real/reactive power 

exchange with the system by specifying d and q components of converter currents 

[32][33].There are two three phase RLC loads within this microgrid connected to the two 

wind turbines WT1 and WT2. Further, a5 MVA diesel generator will be working as an 

auxiliary generator (AG) when needed. Considering that this size of diesel generators 

present losses of around 15% at no-load, it will be very interesting to develop energy 

management systems (EMS) to decide the start or stop of the engine depending on the 

predictions and forecasting of the wind power in order to save fuel and to optimize the 

overall fuel consumption. In this sense, as shown in Figure 5.1, this chapter aims to 
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propose the combination of the proposed neural networks based prediction algorithm to 

estimate the total amount of wind power generation, and a forecasting algorithm that will 

be able to predict the variations of the power generated in the near future at the microgrid. 

In order to verify and integrate the concepts shown in previous chapters, a 

Matlab/Simulink model of the hybrid wind-diesel microgrid is presented here. Several 

scenarios can be simulated based on this islanded wind powered microgrid model, 

including black start transient analysis, wind powered microgrid with droop control, and 

wind prediction techniques applied to the microgrid system. In this chapter, techniques to 

develop future EMS systems that determine the operation mode in order to reduce the 

time that the diesel generator should be operated in standby mode. 

A. Diesel generator modeling and control 

The three phase 4-pole synchronous generator model in machine library of 

Matlab/Simulink has been adopted as the diesel generator in this microgrid system 

adapting it to the proper system parameters, which has been implemented to simulate 

electromechanical transients in the proposed microgrid. The diesel engine and governor 

with an excitation block, accepts three phase voltage and rotor speed signals of the 

synchronous generator as feedback inputs. 

For the diesel generator, initial values of rotor angle/magnitudes, speed deviation, 

and phases of currents in stator windings are set to 0, initial values of field voltage and 

speed reference are set to 1 p.u. The diesel generator is assumed ideal presenting 

sinusoidal and constant speed without consideration of the inertia of the loads. The active 

power generation of the diesel generator should be controlled according to its reference 
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value. The PID controller driving the actuator for the speed governor system, shown in 

Figure 5.2, is applied to improve frequency performance in islanded mode for the wind 

powered microgrid. In that figure, Td indicates the reaction time delay of the diesel engine 

for rotor speed changes, which is selected as 0.024s and is depended on the technology of 

the diesel generator. The selected value of Td can be found in Power System Factory with 

the parameters shown in [106]. The purpose of the diesel engine and governor blocks is 

to maintain its terminal voltage and to control the generated active power according to the 

reference values [107][108]. 

Figure 5.2 Diesel engine and governor system [107]. 

 Notice that when the microgrid system has to restart without the presence of the 

main grid, the so-called black start process, the diesel generator is responsible to fix the 

voltage and frequency at 1 p.u. To provide a black start, some power stations have small 

diesel generators, normally called the black start diesel generator (BSDG), which can be 

used to start larger generators (of several megawatts capacity), which in turn can be used 

to start the main power station generators. A successful black start could deal with 

blackout or some emergency situations within the grid under predefined operating 

procedures, test its ability to restore its system status and frequency, especially with non-
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controllable power source, such as wind power, solar power within a short time, e.g. 50s 

to 100s in paper [109][110].  

On the other hand, wind turbines may not be suitable for black start because wind 

may not be available when needed. In that case, the diesel generator could be started 

firstly and then DFIG wind turbines would be gradually connected.  Nevertheless, the 

EMS may suddenly decide to stop the diesel generation if a long-term wind power 

generation is predicted in order to avoid huge diesel losses due to its standby operation 

which may impact on economic feasibility of the microgrid system and on CO2 emissions. 

In that case, DFIG wind turbines may take responsibility of the voltage and frequency. 

In order to show the black start operation of the microgrid, the following 

sequence has been simulated. First the diesel generator start, then at 10s the first wind 

turbine WT1 is connected, and after, the second wind turbine WT2 is connected at 30s. 

Figure 5.3shows the wind speeds situations during black start. Figure 5.4shows the 

transient response of the microgrid frequency, with the integration of wind at 10s and 30s, 

frequency oscillations occur. The frequency of this microgrid system achieved 60 Hz 

stable within 60s simulation time. Note that the frequency is always inside ±1.5 Hz and 

going back to 60 Hz in steady-state. Figure 5.5shows the operation of the diesel generator 

during the wind turbines connection process, in particular the parameters mechanical 

power (Pmec), Vt, and rotating speed are monitored, where Vt represents the voltage from the stator. 

Notice the stable operation of the system in steady state and transient response. Figure 5.6 

and Figure 5.7 show two wind turbines’ performance in pitch angle and speed. Due to the 
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existence of the wind speeds and wind turbine’s inertia, initial values of pitch angles are 

large because of wind turbine’s stall control system. 

 

Figure 5.3 Wind speeds during black start 

 

Figure 5.4 Microgrid frequency transient response. 
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Figure 5.5 Diesel generator transient response (all in p.u.). 

 

Figure 5.6 Rotor speed (p.u.) and pitch angle (degrees) of WT1. 
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Figure 5.7 Rotating speed (p.u.) and pitch angle (degrees) of WT2. 

B. Islanded mode DFIG based wind turbine control  

In case of the islanding operation of two or more DFIG are trying to impose 

frequency and amplitude voltage in the microgrid, as constant-frequency constant-voltage 

sources, they may conflict when connected them in parallel, resulting in huge circulating 

currents among generators. 

 

Figure 5.8 Circulating current concept. 
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In order to study this effect, Figure 5.8 shows two voltage source generators (V1 

and V2) connected in parallel to the common load through their output inductances (X1 

and X2). Thus circulating current can be defined as: 

�஼ ≡ �ଵ − �ଶ     (5.1) 

From that definition, we can derive that: 

�஼ = �భ�మ�భ+�మ     (5.2) 

By expressing the equation in terms of active and reactive power, and by 

considering the typical small power angles 1 and 2 approximation (sin and cos), 

we can derive the circulating active and reactive power as follows: 

஼ܲ = �భ�మ௝ሺ�భ+�మሻ     (5.3) 

ܳ஼ = �భ௝ሺ�భ+�మሻܸ     (5.4) 

being  and V phase and voltage differences, defined as  and V V 

V. In Figure 5.8, the two generators, when trying to impose individual frequencies, e.g. 

f1 and f2, small frequency difference and drifts can generate phase differences along the 

time =ሺ ଵ݂ − ଶ݂ሻݐ, and according to (5.3), the circulating active power may increase 

considerably. With the situation goes on, both generators will go out of phase, and angle 

difference may be higher enough to make the system unstable. In this sense, by 

observing (5.3), when the power angle increases, also active power increases 

proportionally with the consideration of the infinitesimal approximation  sin . In 
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order to compensate it, active power can be measured and the individual angle needs to 

be reduced. However, since the frequency difference can create a ramp of the difference 

of phases, a steady state error may persist, so that a frequency droop is preferred. Since 

the phase is the integral of the frequency, thus an integrative effect needs to be created 

to cancel the steady state error.  

 Subsequently, from (5.3) and (5.4), we can derive that active power mainly 

depends on phase difference while reactive power depends mainly on the voltage 

amplitude. This concept, also well-known in power transmission systems, bring a 

control approach that tries compensate the circulating active and reactive powers by 

using a reverse characteristic, i.e. when active power increases, frequency decreases to 

reduce the power angle. That has been used for decades in large power systems, in 

which big power plants present those characteristics thanks of the big inertia that 

presents the synchronous generator. Similar approach can be obtained by reducing the 

voltage amplitude when increasing the reactive power of the generator. This approach is 

also known as droop control, which includes the following P–f and Q–V characteristics:  

݂ = ݂∗ + ∗௉ሺܲܭ − ܲሻ     (5.5) 

ܸ = ܸ∗ + ∗ொሺܳܭ − ܳሻ    (5.6) 

where ݂and V are the nominal microgrid frequency and voltage; P
*
and Q

*
 are the power 

reference signals received from the secondary control, P and Q are the measured output 

of the wind turbine, and ܭ௉ and ܭொ are droop parameters for frequency and voltage, of 

which value is 0.0004 and 0.0032.  
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 Figure 5.9 shows the f – P and V – Q droop control characteristics, in orange line, 

and the frequency and voltage deviations with a red arrow (named primary control 

action). By proper adjustment of P
*
 and Q

*
, the frequency and voltage can be restored 

properly with a blue arrow (name secondary control action), getting new droop 

characteristics, in green line.    

 

Figure 5.9 f – P and V – Q droop control principle. 

 Notice that when the generator deliver a certain amount of active and reactive 

power (Po and Qo), according to (5.5) and (5.6), the voltage and frequency deviations for 

P
*
 = Q

*
= 0 can be expressed as  

∆݂ =  ௉ܲ     (5.7)ܭ−

∆ܸ =  ொܳ     (5.8)ܭ−
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Figure 5.10 Block diagram of the secondary control in relation with the primary control. 

The secondary control consists of a centralized controller that measures frequency, 

or eventually voltage, and computes the error, which passes through a dead-band that 

discriminates maximum and minimum allowable frequency/voltage deviation. Figure 

5.10shows the secondary control bock diagram, consisting in two loops placed in a 

central controller, often named microgrid central controller (MGCC), which is a SCADA 

system that may receive signals from the microgrid, measuring frequency and voltage (fm 

and Vm) and compare with their references (f
*
 and V

*
).  In this sense, the secondary 

control can be expressed as 

ܲ∗ = ݇௣௙ ௘݂ + ݇௜௙ ∫ ௘݂  (5.9)      ݐ݀

ܳ∗ = ݇௣� ௘ܸ + ݇௜� ∫ ௘ܸ  (5.10)     ݐ݀

being fe and Ve the frequency and voltage errors after the dead-bands, kpf, kif, kpv and kpi 

are the proportional and integral constants for the frequency and voltage restorations. 



99 

Notice that the time constants of such a PI controllers have to be adjusted to be much 

slower than the time constant of the wind turbines in order to avoid instabilities. 

Finally, the third level of the hierarchical control devoted to develop an EMS will 

be defined in the next subsection of this chapter. 

Considering the scenario in which enough wind power is available for long term, 

in order to verify the performances of the multi-level control, simulation results have 

been performed. The system consists of two DFIG supplying local loads. In this case, the 

islanding operation depends exclusively on the DFIGs since the diesel generator has been 

disconnected to avoid the stand by consumption. In such a case, droop control has been 

implemented in each DFIG local control, and a centralized secondary controller has been 

integrated in the SCADA system in order to restore the system frequency. For that case 

slightly different wind speed has been considered for each turbine, i.e. 14m/s and 15m/s. 

Figure 5.12 shows the frequency for the two wind turbines. At t=0 both DFIGs 

where operated disconnected each other. At t=5, a transient on the frequency can be seen 

when interconnecting both DFIGs. Nevertheless, thanks to the droop control, both DFIGs 

reach a stable frequency point. Note that a frequency deviation can be observed in steady-

state due to the inherent action of the droop control. Then, at t=40 the secondary control 

is activated, allowing the frequency restoring to 60 Hz. 
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Figure 5.11Wind power generation of WT1 and WT2 (p.u.). 

 

Figure 5.12 Frequency for microgrid and wind turbines. 
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In Figure 5.11 the power sharing performance among both DFIGs is illustrated, 

showing similar active powers injected in the microgrid. Finally, the microgrid frequency 

acquired by a PLL unit placed in the secondary control is monitored as shown in Figure 

5.12.  In Figure 5.12, the secondary control is manually connected at 40 s. However, the 

secondary control can be automatically activated by a deadband controller. In large 

power systems the band is typically tuned around +/-50 mHz. In terms of transient 

response, the secondary control has to be slower than the primary controller. For instance, 

in large size power systems the secondary controller may have a time constant of 

hundreds to thousand seconds, while for a small microgrid, like the one presented in this 

Dissertation, which just depend on the inertia of the machines included, a time constant 

of several tenths of seconds is enough.   

5.3 Application of wind prediction for improving EMS performance 

The wind powered microgrid operates in islanded mode with the help of the wind 

power prediction information obtained inside the EMS, which enables wind turbine 

tracks the secondary control given by EMS through wind power prediction results which 

enable wind turbines regulation by using a cascaded observer. This module will provide 

the wind powered microgrid a better optimization. During the islanded operation time, 

wind turbine can restore frequency and voltage regulation of the microgrid system. 

The information of the wind powered microgrid would be collected by the EMS 

system firstly, which includes historical wind speed and wind power generation data, 

diesel generation operation history, and load information. The short term forecasting 

module is built based on the wind profile historical data in the data acquisition part, 

which can get wind power prediction results by means of the neural network models 
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(NNM) proposed in Chapter 4. The neural network can be built based on the training 

process of wind profile data, i.e. historical data of wind speed and wind power generation, 

which gave the neural network parameter values. 

The wind speed data adopted by the wind powered microgrid Simulink model is 

the same as the data source used in Chapter 4, which comes from the aforementioned 

wind power plant in Colorado, US. The time frame of the wind profile data is from Jan 

2011 to March 2011, which includes 6591 sampled wind profiles, including wind speed 

and wind power generation. The data points were obtained and averaged every 10 

minutes from the wind plant and were used to build the prediction models that were 

integrated in the wind powered microgrid Simulink model.  

The neural network is applied to estimate the wind turbine’s output active power 

based on wind speed. For the structure of the neural network, the training data size of the 

NNM is 6591, and the number of hidden layer units is set to 10. The training algorithm of 

the neural network model is one-step secant back propagation with a training absolute 

error of 0.001 and the learning rate is 0.1. The sampled wind profile data sets are 

normalized to [0, 1] and smoothed through moving average algorithm for increasing the 

accuracy of regression. Then the normalized sample data of wind speed data points from 

5001 to 6591 are used as inputs for the validation of the trained neural network to 

estimate outputs of wind turbine comparing to the original sampled power, as shown in 

Figure 5.13, and detailed blocks can be found in Figures 5.14 and 5.15. As for the wind 

speed prediction part, a support vector machine (SVM) algorithm is applied through a S-

function in Simulink part, which will predict the future wind speed data based on the 
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previous ten wind speed data. By using the SVM and the neural network model 

prediction system, the wind profile will update every 20 seconds, as shown in Figure 5.16. 

 

Figure 5.13 Modules that integrate the energy management system. 

The scheduling and optimization modules in the EMS part is to maintain the 

supply and demand balance in islanded mode according to the wind prediction results and 

to ensure that the microgrid present both good static and dynamic performances. If power 

demand Pd is less than the extracted wind power Pw, there is no need to use power from 

the diesel generator and the DFIG wind turbines can be operated with the control 

mechanism proposed before in order to supply the load either in deloaded mode or in 

MPPT mode. If Pd is greater than Pw, the diesel engine is turned on to make up the 

shortfall.  

In order to verify the methodology developed in this subsection, the case-study of 

a wind power microgrid shown in previous subsection has been used. The microgrid 

system is operating at the voltage level of 575V and then connected to the main grid 

through a 25kV radial transmission line via a 575V/25kV transformer. The microgrid 

system consists of a 575V distribution system, two wind turbine generators with wind 
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power prediction module, loads, a diesel generator. The rated power of the two DFIG 

wind turbine generators is 1.5 MV and for diesel generator is 5MV.  

Results of the predicted wind speed and output wind power of 10 and 20 minutes 

in advanced are compared with the real wind speed are shown in Figure 5.16 and Figure 

5.17. Note the good correlation between the real and predicted wind speed and output 

powers. 

 

Figure 5.14 Training process of the neural network. 

 

Figure 5.15 Forecasting process to estimate the future wind power generated. 
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Figure 5.16 Predicted wind speed of 10 and 20 minutes in advance. 
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Figure 5.17 Predicted wind power of 10 and 20 minutes in advance. 

The simulation results are presented in a period of 200s, so that 10 points 

discretization are selected to sample it every 10 s. Figure 5.18 shows the discretized data 

of the wind speed for that period. Figure 5.19 shows the pitch angle variations which 

present peaks due to the discretization of the wind speed variations. Figure 5.20 

illustrates the rotor speed variations, being smooth due to the wind turbine inertia. As a 

result, in Figure 5.21 and Figure 5.22 the frequency response and voltage of the 

microgrid system are stable and well-regulated to 60 Hz and 1 p.u., respectively. Finally, 

Figure 5.23 and Figure 5.24 show the diesel generator and wind turbine output powers. 

Notice that as the load is constant and the wind power generated lies below the load (1 

MW), the diesel generator supply the difference of power in this case. In this case, wind 
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power is predicted in the near future within the microgrid, when the predicted wind 

power generation is larger than the load, the diesel generator can be disconnected in order 

to reduce the stand by losses in diesel which improves the system efficiency and reduces 

CO2 emissions. In the secondary control of the EMS, frequency and voltage would be 

controlled regardless of the prediction accuracy of the wind which is in the third level of 

control. This is not the same case in big power systems, in which the inertia of the wind 

turbines could be used as a primary frequency reserve. 

 

 

Figure 5.18 Wind speed discretization process. 



108 

 

Figure 5.19 Pitch angle variations according to the changes of wind speed. 

 

Figure 5.20 Rotor speed variations according to the changes in wind speed. 
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Figure 5.21 Microgrid frequency response according to wind variations. 

 

 

Figure 5.22 Voltage regulation. 
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Figure 5.23 Diesel generator output power. 

 

Figure 5.24 Wind turbine output power generated. 
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5.4 Summary 

This Chapter has presented the application of the research done in previous 

Chapters into a wind powered microgrid system. A hierarchical control has been applied 

consisted on three main levels. The first level includes all the inner control loops related 

to the wind generation control, and the external active/reactive power droop controllers. 

This kind of control is local, so that does not rely on communications, however, it 

presents frequency and voltage deviations that depend on the active and reactive power 

delivered. In order to solve this problem, a secondary control is used to restore frequency 

and voltage at the microgrid. The secondary control is placed in the SCADA system, and 

it monitors information from the microgrid, computes and give back to the primary droop 

control references and setting-points. The tertiary control is based on neural networks in 

order to predict the wind power generated, and to decide the operation of the diesel 

generator, thus optimizing the microgrid operation. 

Furthermore, the black start operation of the microgrid has been introduced and 

tested, which is needed when restoring the energy to support the loads when the system 

comes from a black out and still remain in island, i.e. without the help of the main 

electrical grid. 

In summary, the Chapter is showing a case of study in which the methodologies 

developed along this Dissertation have been tested and integrated, showing the 

applicability of those methodologies in different blocks of the EMS. The obtained results 

point out the feasibility of the proposed holistic approach.  
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Chapter Six: Conclusions 

This Dissertation has researched wind power prediction by using neural networks 

models and its application to islanded wind energy management systems.  

Firstly, DFIG wind turbine power generation principles have been studied, which 

include the electrical equivalent circuit of DFIG model, active and reactive powers 

adjusted through the rotor speed control, pitch control, direct power control based on 

synchronous reference frame (dq) decoupling of DFIG, and direct torque control 

(DTC).The comparison between different control strategies are presented and discussed 

as well.  

A grid-connected DFIG wind power system model has been developed in detail 

and implemented by using Matlab/Simulink, which includes the aerodynamic model of 

the wind turbine, mechanical parts, electrical parts (DFIG, PWM energy conversion part, 

and so on) of the wind turbine system. An internal model controller (IMC) has been 

applied as a robust controller allowing wind power system operating under different wind 

speeds with stable voltage and frequency. The DFIG wind power system structure was 

developed based on GE 1.5MV wind turbines where different control systems can be 

designed.  The control part in DFIG wind power simulation system is based on a vector 

control structure with rotor side and grid side control applied to the back-to-back PWM 

converter. The grid-side control system purpose is to maintain the DC link voltage 
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constant without consideration of the rotor side. The rotor side control purpose is making 

sure control of stator side active and reactive power of the wind system under safety 

speed range, which can realize MPPT energy capture from wind and deloaded control. 

Simulation results show that DFIG wind turbine systems controllers design meets the 

requirements that wind power system can provide satisfactory steady state and transient 

performances, thus allowing wind power system simulation model be applied to 

microgrid simulation. Those studies aim at making sure wind power has no issue whether 

being integrated into the grid or working in islanded mode within a microgrid. 

Further, this Dissertation built a model of a DFIG wind turbine by using generator 

vector representation with consideration of harmonic emissions of the DFIG wind turbine. 

This model can be applied to assess the potential harmonic resonance frequency point in 

the wind power system and the corresponding harmonic filter circuit can be designed in 

order to increase the stability of the system. 

Due to the feature of intermittency of the wind power generation, the wind power 

prediction is an essential part in wind power applications, so that neural networks, as a 

well-developed artificial intelligence algorithms, are applied in this Dissertation to 

predict the wind power generation of a real plant in northeastern Colorado, US, by using 

the information of the wind speed and direction. Prediction results achieved relatively 

good accuracy, while keeping the prediction error within ±20%. 

Finally, a wind powered islanded microgrid simulation model has been built, 

which includes two 1.5 MW DFIG wind turbines, a diesel generator, and local loads. This 

wind powered microgrid can realize balance of load and power supply by using 

information of wind power prediction results from neural network model, which assist 
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the energy management of the microgrid in islanded mode operation. A three level 

hierarchical control system, including an EMS based on neural networks has been 

integrated in order to optimize the operation of the microgrid. Furthermore, the black 

start operation has been performed successfully.  

All the theoretical proposals have been tested by means of validated 

Matlab/Simulink models. The simulation results shown in this Dissertation validate the 

proposed approaches, showing their feasibility. Those results point out that the research 

done may benefit more wind power integration into different grid systems configurations 

in near future. 
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Chapter Seven: Contributions and future work 

7.1 Contributions of the Dissertation 

According to the research results presented in this Dissertation, the main 

contributions are listed as follows: 

 Wind turbine model 

In this part, a comprehensive review on variable speed wind turbine control 

strategies has been done for grid connected wind turbines, which may be able to operate 

on islanded mode. With regards to islanded operated variable speed wind turbines, which 

should have more stable performance on voltage/frequency at the point of common 

coupling (PCC), a modified vector control method, i.e. internal model control (IMC) has 

been applied for the rotor side controller of the DFIG wind turbine through 

Matlab/Simulink simulation model. This control method shows that the transfer function 

of a DFIG wind turbine and its corresponding controller parameters can be adjusted in 

order to satisfy various active/reactive control purposes. Transient responses of the DFIG 

wind turbine system equipped with IMC have been analyzed, showing that IMC can 

stabilize voltage and frequency under different wind speed situations. DFIG wind turbine 

system with IMC method may be used on the control design for other types of wind 

turbine system. 

 Harmonic analysis in wind power system 
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It is possible to have harmonics injected through rotor side of the wind power 

generator during its operation, which may degrade the power quality. A mathematic 

model including harmonic voltage components shows how different harmonic signals are 

coupled and reveals the generation of different harmonic resonance peaks. This 

mathematic model can be applied together with the harmonic resonance mode analysis to 

detect harmonic resonance peaks and it is helpful for different wind power configurations 

to avoid instabilities caused by harmonics. Part of this content has been published in this 

paper: 

Ziqiao Liu; Abu-Hajar, A.; Gao, D.W., "Modeling DFIG Using General Vector 

Representation in the Presence of Harmonics," Green Technologies Conference, 

2013 IEEE , vol., no., pp.113,119, 4-5 April 2013. doi: 10.1109/GreenTech.2013.25 

 Wind power prediction 

Since the same type wind turbine may present different performances under 

different situations, an accurate wind power prediction results can aid having a better 

power schedule. After a comprehensive study on wind power prediction approaches, 

neural networks have been selected due to it is low computational cost and can satisfy 

various requirements of the mathematic modeling. Research of this part is based on 

historical data collected from a wind power plant located at northeastern Colorado, USA. 

Two neural network models have been considered to fulfill wind plant power prediction. 

Probabilistic neural network has been implemented on raw wind profile data to classify 

and filter out aberrant data ones, which is a key pre-step in wind power prediction model 

and may obtain good quality data for modeling, thus increasing model accuracy. 
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Complex valued recurrent neural network model has been built based on wind speed and 

wind direction, which are two factors affecting wind power generation, and accurate 

prediction results may be obtained. Moreover, the reasons behind prediction results with 

large error have been explored. Part of this content has been published in this paper: 

Ziqiao Liu; Wenzhong Gao; Yih-Huei Wan; Muljadi, E., "Wind power plant 

prediction by using neural networks," Energy Conversion Congress and 

Exposition (ECCE), 2012 IEEE , vol., no., pp.3154,3160, 15-20 Sept. 2012. doi: 

10.1109/ECCE.2012.6342351 

 Islanded operation of wind powered microgrid 

In many cases, the wind power resource is available in remote areas where 

microgrids are suitable to be built. A microgrid with high wind penetration has been 

designed in the Dissertation and can operate in islanded mode under different wind 

speeds. Two features of this wind powered microgrid are the wind speed prediction 

results that have been applied to assist the energy management system (EMS).The EMS 

includes prediction and forecasting of the wind power, which allows the system 

determine the diesel generator mode in order to optimize the microgrid operation. The 

proposal also includes a hierarchical control system with three levels. In the primary 

control active and reactive power droops are implemented; in the secondary frequency 

and voltage regulation is enhanced; and in the third level the EMS is deployed. Further, 

the microgrid has been tested to operate in island mode and a black start sequence has 

been implemented and tested.   
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Although lot of research has been done in the primary and secondary control of 

microgrids, which are mainly based on fast power sources like photovoltaic systems 

and/or batteries, little work has been done on integrating a tertiary control that concerns 

such an intermediate renewable energy source like the wind. Here, in this Dissertation a 

novel EMS which also includes wind prediction parts that can be used to reduce the 

amount of fuel consumption, to improve the efficiency, reliability and the lifetime of the 

machines, depending on the objective functions to be programmed. In this work, all the 

control levels are accurately designed, from the inner current and voltage loops, DFIG 

controllers, droop controllers, frequency/amplitude secondary controllers and EMS with 

wind power prediction.  

This new proposal can be also applied to other cases, like photovoltaic systems, 

estimation and prediction of load variations, thus extending the concept not only to 

generation but also to load side management.  Beyond that, attractive applications such as 

smart-homes, electrical vehicle charging stations, and virtual power plans could be 

applied under the same concept. 

7.2 Future work 

Based on the contributions accomplished in this Dissertation, several future research 

works are proposed and listed as follows: 

 High performances of the internal model controller application on other type various 

speed wind turbine can be investigated through simulation or lab equipment. 

 Battery system could be installed on various speed wind turbine to help generating 

smoothing wind power and alleviate harmful effects caused by unstable wind power. 
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 A more detailed protection scheme should be developed for DFIG wind power system 

to reduce the risks caused by harmonics, resonances and power quality problems, 

such as over-voltage, disordered frequency, or PWM device protection. Practical 

laboratory experiments should be implemented based on simulation results. 

 A whole harmonic model of the microgrid including converters, generators and loads 

will be interesting to build in order to assess the power quality of the microgrid. The 

harmonic model could be added into the EMS in order to improve the power quality 

by sending harmonic references to the PWM converters or by using separated active 

power filters. 

 It is also possible to add a battery system to the wind powered microgrid in order to 

check its performance on assisting wind turbines working in islanded mode. 

Transients phenomena of battery’s energy charging/discharging process can be 

observed, and the voltage/frequency stability performances should be tested under 

different supply and load situations. Pros and cons of the battery application in 

microgrids can be researched. Comprehensive tests should be carried out to verify 

simulation results. 

 A more completed EMS could be implemented that could also take care of the 

demand side, so that load forecasting, prediction and load-shedding may be also 

included together with an advanced metering infrastructure.  
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