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Abstract

During the past few years, the number of wireless devices has been increasing
rapidly. Wireless networks are serving and connecting billions of wireless devices where
these devices are demanding higher data rate and lower latency to be able to support voice,
video and gaming applications. Moreover, the consumed energy by the wireless systems
will be increasing. Hence, the Fifth generation (5G) wireless networks needs to provide
higher data rate, serve larger number of users simultaneously and be more energy efficient.
One of the promising technologies that can meet the above requirements is Massive
Multiple Input Multiple Output (MIMO). The main concept of this technology is to equip
the base station with hundreds of antennas and serve tens of users simultaneously. The
amount of research on massive MIMO increases rapidly, but there is little attention so far
on the spatial correlation between the channels. Most of the published work are assuming
that the antennas are uncorrelated which is not the case in real-world situations. In this
dissertation, the effect of channel correlation model on the Massive MIMO performance is
investigated.

First, the exponential correlation model is applied to the Massive MIMO system
model. We used a pilot based linear minimum mean square error (LMMSE) channel
estimator for the uplink data transmission. The impact of the channel correlation on the
channel estimation accuracy is investigated. Due to having channel reciprocity, the channel

il



state information will be the same for uplink and downlink data transmission. It is assumed
that there is block fading where there are static channels. It is shown that the channel
estimation is more accurate with higher SNR values.

Second, the uplink and downlink spectral efficiency of the LMMSE estimators are
investigated where spatial correlation models are applied to the system to generate the
channel covariance matrix. The lower capacity of the uplink and downlink data
transmissions are derived to see the effect of applying exponential correlation model. We
study the lower capacity bound based on imperfect knowledge of the channel. In the first
part, we are considering a one cell system model with one base station that is equipped
with N antennas and serving single antenna user. In the second part, a Massive MIMO
system of a single cell is considered. The system model is having a base station with
multiple antennas that is serving user terminals equipped with multiple antennas. It is
proved that the spectral efficiency is improved by increasing the number of base station
antennas which shows the scalability of Massive MIMO systems.

Finally, the transmit power of Massive MIMO system is defined as the consumed
energy by the amplifier divided by coherence time while energy efficiency of Massive
MIMO system can be expressed as the ratio between the spectral efficiency and the emitted
power. The influence of the channel spatial correlation on the energy efficiency is
investigated where it is noticed that there is higher energy efficiency with higher number

of base station antennas.
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Chapter One: Introduction

1.1 Motivation and Background

During the past few years, the demand for wireless data traffic has been increasing
rapidly while the available electromagnetic spectrum range is limited [1]. The wireless
communication is different from the fiber communications in terms of meeting the future
demands where more optical fiber can be made while there is no easy solution to increase
wireless throughput [2]. This high demand will keep increasing in the future due to the
exponential growth of the number of wireless devices [3].

By 2020, it is forecasted that the global mobile data traffic will exceed 30 Exabyte
per month compared to 6.2 Exabyte per month in 2016 as Figure 1.1 shows. Also, it is
expected that the number of global mobile devices and connections will increase from 7.9
billion in 2015 to 11.6 billion devices by 2020 as shown in Figure 1.2. To meet this growing
demand, we need new technologies that are clever and efficient yet can be implemented in

real life [4], [5].



To improve the wireless throughput, it is important to apply new technologies that
can increase the bandwidth or the spectral efficiency. One of the proposed solutions is
millimeter wave technology where it is possible to get the benefits of the unused spectrum.
The second solution is having small cell where we keep having more access points each
one of them covers smaller region. The third solution is the use of multiple antennas in the
base station (BS) terminals and the user terminals. The first two solutions will not be
discussed in this report while our focus will be on the third solution. By using transceivers
with multiple antennas, we are increasing the spectral efficiency and that yields higher

wireless throughput.
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Figure 1.1: Global mobile data traffic [6].
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Figure 1.2: Global mobile devices and connections growth [6].

1.2 Problem Statement

Based on the discussion above, the main question is: How to provide enough
wireless throughput that can increase rabidly and meet the rising demand in a certain area?
Massive MIMO system is one of the promising candidates that could be implemented in
the fifth generation (5G) by 2020. It has the abilities to meet the growing demand by
improving the spectral efficiency by order of magnitude. This advantage of providing
higher spectral efficiency cannot be achieved without having a good knowledge of the
channel state information and without applying a good model to generate the channel
covariance. In the research community, the technology of massive MIMO has grabbed
significant attention during the last five years. There are several ongoing projects, one of

them is in Bell Labs where they published several papers [2], [7].



Nowadays, most of the cellular systems are executed in frequency-division
duplexing (FDD). By applying FDD mode in massive MIMO we would see several
drawbacks such as feedback overhead when we use conventional channel estimator. On
the other hand, if time-division duplexing (TDD) is used, it is easier to obtain the channel
state information due to the channel reciprocity.

Motivated by the need of new technologies to meet the higher demand, in this
research, we investigate the fundamental of massive MIMO including channel estimation
using pilot based linear minimum mean square error (LMMSE) channel estimator. Also,
we study the spectral and energy efficiencies and the impact of using exponential
correlation model on them. Several scenarios are executed by using different number of

base station antennas for high and low SNR values.

1.3 Methodology

The MATLAB simulation program is used where the communication system
toolbox provides tools and functions that help us to analyze our model. Several codes are
written to generate figures where the analysis are carried out first for the channel
estimation. Also, spectral and energy efficiencies are analyzed for ideal and non-ideal case
scenarios. The outcome results of this dissertation are validated by publishing several IEEE

and SPIE conference papers.



1.4

Structure of the Report

The next chapters of the report are ordered as follows:

Chapter 2 includes the history of MIMO and its use throughout the earlier
decades. It contains the different stages of MIMO evolution: Single-user
MIMO, Multiuser MIMO and Massive MIMO. The second part of chapter
2 is talking about the future of 5G wireless network where we went through
the possible solutions that could be used to improve the spectral and energy
efficiency of the future networks.

Chapter 3 is including a definition of the system model where the uplink
and downlink system models are stated. The main part of this chapter is
studying the channel estimation accuracy of the Massive MIMO systems by
applying spatial correlation model. Also the impact of the pilot length is
shown and investigated by applying LMMSE pilot based estimator.
Chapter 4 contains a study of the channel spectral efficiency using a system
of one cell. The effect of the spatial correlation on the performance of the
system is studied. The system parameters are expanded to include multiple
user terminal where each one is equipped with multiple antennas.

Chapter 5 shows the energy efficiency and the transmit power of a Massive
MIMO system using exponential correlation model. The results include

illustration of their performances by applying different scenarios.



e Chapter 6 contains the summary of the dissertation and the future work.

Also, the publications are listed in this chapter.



Chapter Two: History and Future of Wireless Communications

2.1 What is MIMO?

MIMO stands for Multiple Input Multiple Output and refers to different signal
processing methods that are used to improve the throughput and the reliability of the
wireless systems [8]. The main idea of MIMO systems is to use multiple antennas at the
receiver terminal or at the transmitter terminal or at both terminals where the performance
is improved in which the multipath scattering is combated or exploited. There are different
categories or techniques of MIMO, the first one is achieved by combating the multipath in
the channel between the two terminals to generate spatial diversity. The second technique
is spatial multiplexing which can be derived by exploiting multipath channel. The
communication system reliability can be improved by space time coding method where
fading is combated. On the other hand, the exploit fading approach is applied to increase

system throughput where spatial demultiplexing method is used.
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Figure 2.1: The possible combinations for the wireless system by using different antennas
configurations [9].

In general, the term MIMO is used broadly to describe any communication system
that has multiple antenna at one or both sides. To be more specific, the system with single
antenna at the base station and multiple antenna at the user terminal is called MISO while
when the opposite is true it is called SIMO. If there is a conventional wireless
communication system with single antenna at the base station and single antenna at the
user terminal it is called SISO system. To state the number of antennas it is starting
normally with the number of antennas in the transmitter first, for instant, the 4x2 MIMO

system has four antennas at the transmitter and two antennas at the receiver.



Historically, the term MIMO was used in the 1950s to describe the multiple input
and the multiple output ports of the electric circuits. Four decades later, researchers of
communication systems and information theory used the term “MIMO” to describe the
new techniques which have multiple antennas at both ends of the communication system.
In 1999, the term MIMO was used in the wireless communication field for the first time
by Driessen and Foschini where they published their paper about the capacity formula of
MIMO wireless channels [10].

The idea of using multiple antennas for the wireless communication is old and goes
back to the beginning of the 20" century. In 1905, Braun introduced his idea of multiple
antennas to create phase array antennas to improve the radar performance [11]. Years later,
the technology of phased arrays was implemented in the broadcast AM radio where the
phase and the levels of the power are switched twice a day at sunrise and sunset. Instead
of pointing the antennas mechanically to the ground wave propagation during the day time
and then elevate their angles to the sky wave propagation at night, only switch the levels
of phase and power. In addition, receive diversity was used widely to decrease the fading
influence on the wireless communication systems. In 1931, Peterson and Beverage
published their paper about the concept of diversity on the receivers for communication

systems [12].



At the beginning of the 1990s, the number of publications about the technology of
multiple antennas has been escalated quickly to implement transmit diversity. One of the
first papers on this technology was published by Wittneben from ABB corporate research.
He proposed a modulation diversity scheme for a base station [13]. In 1993, a group of
researchers from the Signal Processing Research Department at AT&T Bell Laboratories
published a paper about advanced modulation techniques for receive antenna diversity
[14]. Few years later, Alamouti proposed his distinguished paper that introduced a simple
way of transmit diversity for wireless communication systems [15]. In Alamouti’s paper,
he described the simplest space time coding method where it requires simple signal
processing at the receiving side. Since then, Alamouti scheme became among the most
important technique that is used until today by almost all wireless communication
standards.

During the same period of time, another type of multiple antenna technique was
proposed by Gerry Foschini. In 1996, Foschini and his team at the research lab of AT&T
published his milestone paper about using multi-element antennas for layered space time
in wireless communication in which he exploits fading to improve throughput capacity
[16]. This paper described the main concept of the spatial multiplexing methods that was
named BLAST which stands for Bell Labs Layered Space Time. Two years later, Foschini
and his team from AT&T labs published their paper about the Vertical BLAST (V-BLAST)

which a specific type of BLAST scheme [17].
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After these extraordinary research papers during the 1990s about the spatial
diversity, a lot of clever ideas was published where new methods of multiplexing and
spatial diversity were used to propose MIMO techniques. MIMO technology was launched
commercially for the first time in 2001 by lospan Wireless Inc. [18]. Four years later,
MIMO technology was integrated in the WiMAX standard where including MIMO
technology in the WiMAX standard gave it a much higher spectral efficiency. Nowadays,
MIMO is implemented commercially in several wireless standards for different antenna

configuration as shown in Table 2.1.

Wireless Standard Antenna Configuration

(WiFi) 4x4

IEEE 802.11n

(WiMAX) 4x4

IEEE 802.16¢

(Enhanced HSPA) 2%2
HSPA*

LTE 4x4

LTE-Advanced 8x8

(Enhanced 802.11n) 8x8

Table 2.1: MIMO configurations that are used in the wireless standard commercially [9].
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2.1.1 Single-User MIMO

The simplest and first form of multiple antennas is the point-to-point MIMO (or
Single-user MIMO) system which was proposed at the end of the 20™ century [19], [20].
It is basically a base station that has number of antennas N that are serving a user terminal
that has multiple antennas M. At the receiver, there is additive white Gaussian noise
(AWGN) where at every channel there is sent and received vector. The spectral efficiency

for point to point MIMO based on Shannon theory can be represented as follows

SNR
CUL =log, |Iy + —= KKH

NR
DL KHK

S
CDL == 10g2 IM +

where K is NXM matrix which is the channel frequency response between the user terminal
and the base station. The signal to noise ratio for uplink and downlink are proportional to
the sum of powers. The normalizing by N and M shows that if the signal to noise ratios

have constant values, the total power is independent of the number of N and M.
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Figure 2.2: Uplink and downlink data transmission for Single-User MIMO.

Theoretically, spectral efficiency scale linearly with the number of antennas in the
two terminals. In real life scenarios, however, there are several limitations that could affect
the usefulness of point to point MIMO systems. First, since the line of sight conditions are
stressing, the independent streams of min(», M) are not supported by the propagation
environment. Also, the equipment of the two terminals are complicated where each antenna
needs distinct RF chains. Moreover, to split up the streams of data, advanced digital

processors are needed. The last limitation, the scalability of channel spectral efficiency of
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the system with min(¥N, M) is getting slower at the edge of the cell where most of the users

are found and where the signal to noise ratio is low due to the higher path loss.

2.1.2 Multiuser MIMO

The concept of Multiuser MIMO is based on a BS that is serving multiple user
terminals and using the same frequency and time resources [21]. The idea of having a BS
with antenna array serving multiple terminal simultaneously is not new [22], [23]. The
model of Multiuser MIMO was derived from the concept of Single-user MIMO by splitting
the multiple antennas in the Single-user terminal to multiple user terminals. The ultimate
performance of Multiuser MIMO can be reached by Shannon theory.

Multiuser MIMO has some advantages over Single-user MIMO. The first
advantage is the less sensitivity that the Multiuser MIMO has to propagation environment
compared to Single-user MIMO. The LoS conditions is not stressing for the Multiuser
MIMO while it is stressing for Single user MIMO. Another advantage, unlike Single-user
MIMO that requires multi antenna in the user terminal, Multiuser MIMO needs user
terminal with single antenna.

On the contrary, Multiuser MIMO has number of drawbacks that could affect the
profit of using it. First, the spectral efficiency for uplink and downlink requires complicated
signal processing to be archived. The second drawback is the need of knowing the channel
matrix on the downlink for the base station and the user terminal. Also, the user scheduling
is another challenge where multiple users are served using the same time and frequency

resources. Implementing scheduling schemes would increase the cost of the system

14



operation. Due to these disadvantages, Multiuser MIMO is not scalable with respect to the
number of user terminal or to the number of antennas at the base station. Table 2.2 shows

a comparison between Multiuser MIMO and Single user MIMO for different features.

Data stream D T
— - N
,—"“ . —>

Qo
=
- B |—>
- § Data streams
Data stream a [—
—> L
Data stream D
—>
User terminals )
Base station
PR —
Data stream X Pie
<« Decoding |<«— e L J
JPtas Rl T
&« P 8 (— Datastreams
L @ —
Data stream - ” o
<— Decoding [*

Data stream A
<— Decoding |[*—

User terminals

Base station

Figure 2.3: Uplink and downlink data transmission for Multiuser MIMO.

Table 2.2 shows a comparison between Multiuser MIMO and Single-user MIMO.
The first feature is the main idea behind these schemes where the base station in the Single-
user MIMO is communicating with single user terminal while there are several users that

are connected with the base station for Multiuser MIMO system. To achieve higher spectral
15



efficiency and to enhance the gain of multiplexing, Multiuser MIMO system needs perfect
Channel State Information (CSI) [24]. The level of SNR plays a significant role in the
system performance in which the Multiuser MIMO systems have higher throughput at
higher SNR while Single user MIMO systems have higher throughput at lower SNR levels.
One of the disadvantages of using Multiuser MIMO is the strong interference from the

neighboring channels while there is no interference when Single user MIMO systems are

used.
Feature Single user MIMO Multiuser MIMO
Main Aspect Base station communicates | Base station communicates
with single user with multiuser
Purpose Having higher data rate MIMO capacity gain
Channel State Information No need for CSI It is required to have
(CSI) perfect CSI
Advantages No interference Multiplexing gain
Throughput Higher throughput with Higher throughput with
lower SNR higher SNR

Table 2.2 : comparison between Multiuser MIMO and Single-User MIMO systems for
different features [25], [26]
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2.2 The Future of 5G

The possible standard of the upcoming Fifth Generation (5G) cellular network
needs to meet several requirements so it can be integrated smoothly with the LTE and WiFi
standards to provide perfect experience for the users [27]-[38]. One of the most important
requirements for the 5G is the data rate that needs to meet the increasing demand. The data
rate can be measured in different methods as follows:

e Area Capacity is the data that network can provide for the consumers and
can be measured by bit/s/unit. The area capacity for the 5G system should
be increased by a factor of 1000 compared to 4G system.

e Edge rate is the worst case scenario for the data rate that the user is
receiving. For the current 4G cellular network systems, the edge rate is
around 1 Mbps. The edge of 5G system should be ranged from 100 Mbps
to 1 Gbps [5].

e Peak rate is the ideal case scenario where the user is getting the highest
possible data rate. The peak rate the number that is used in the marketing
commercials of the companies.

The second requirement that needs to be achieved is the network latency. The
current 4G network has a latency of 15 ms. The latency for the current networks is more
than enough for existing applications. On the other hand, the new applications that will be
available when 5G comes to fruition need much lower latency. These applications include
2-way gaming, virtual reality glasses, cloud-based computing and other technologies.

Consequently, the latency for the 5G network needs to be at least 1 ms, which is much
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lower latency compared to the existing 4G network or the previous networks as Table 2.3
shows.

Cost and energy consumption are one of many challenges that 5G should overcome.
The consumed energy must be decreased significantly since the data rate will be increased
by a factor of 100 per link so that the system become more efficient. Also, the operation
cost in 5G should be much cheaper than the 3G and LTE networks. Nowadays, macrocells
that are used in the 3G and 4G networks are more expensive than the expected small cells
in 5G networks because of its simple signal processing. In the near future, 5G networks
will be supporting a higher number of devices with different types, so it is a necessity to
be able to support this large number of devices efficiently. Each cell might need to serve
more than 10,000 devices that need low data rate besides supporting mobile devices that
needs high date rate. The new cellular network will need a paradigm shift in terms of
network management and control plan compared to 4G networks where the number of
devices are much smaller.

In the near future, 5G networks could support several applications from gaming and
entertainment to more critical application such as remote surgery. The patient in this type
of operations can have a surgery in one country while a surgeon in another country is
controlling a robot remotely. This critical situation is requiring much lower latency and
much high bandwidth to reap the benefits of this type of applications and to assure flawless

operations [39].
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Another application that could be achieved when 5G networks come to fruition is
Connected Cars technology. By equipping the vehicle with internet access, it will be able
to communicate with outside environment or even with network that can manage the road
traffic [40]. This application could increase the road safety and prevent traffic jams. To be
applicable in the future, the idea of driverless cars requires a 100% coverage in every street
to be applied in the future. This application needs a latency of 1 ms which can be achieved
according to the specifications of the 5G networks.

Cloud-based offices, which needs high bandwidth and low latency, is another
possible technology in the 5G era [41]. This type of systems could be achieved in the near
future due to the expected high cloud data storage when 5G network is implemented.
Videoconference for multiple people from different countries is a key element for the
cloud-based offices technology which requires much lower latency and a 100%
geographical coverage.

The machine-to-machine (M2M) applications such as connected home systems,
healthcare monitoring and smart thermostat are used today but not widely. By 2020, it is
forecasted that the number of M2M devices could exceeds 1 billion [42]. With much higher
data rate and very low latency in 5G networks, M2M systems could be enhanced largely
and creatively to cover more critical areas such as disaster response systems and automated

traffic lights.
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2G GSM 3G WCDMA LTE 5G (Expected)
Bandwidth 200 KHz 5 MHz 20 MHz Hundreds of MHz
M:gﬁlea(t)lfo L | GMSK | QPSK, 16QAM QPSKé JSEQM and 256QAM
“g:f;“r‘:t‘;‘ éﬁ;‘s 3.1 Mbps 100 Mbps 20 Gbps for downlink
Latency 700 ms Less tllIlla;n 200 Less than 30 ms Much lower latency

Table 2.3 : comparison between mobile phone generations [43].

There are several technologies that might be used to achieve the 5G requirements
especially achieving much higher data rate. These technologies can be classified into three

categories:
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e Small cells could be used to increase the spectral efficiency where the
throughput is improved with higher cell density. Shrinking the cell size will
provide several advantages yet it has its drawbacks.

e Using mm-Waves is another conventional solution to increase the
bandwidth. It has potential where the available frequencies have wide
range.

e Massive MIMO as a promising technology proposes a solution that could
meet the requirements for the 5G networks. It may lead to major changes

of the design of the base station itself.

2.2.1 Small Cells

One of the simplest yet effective way to enhance the capacity of cellular network is
to increase the number of cells and making them smaller where this concept has been
deployed in different generations of cellular networks [44], [45]. In the 1980s, the 1G
wireless telephone technology, which had analog standard, used to have huge cell radius
that could reach up to 30 km [46]. Few years later, the size of the cell is getting smaller for
2G and 3G networks where the cell could have a radius of 3 km. in today wireless networks,
the base station can be serving users within a radius of 200 meters especially in dense metro
areas.

The networks are shrinking in terms of size to picocells with a range of 100 meters
and to femtocells with a range of 10 meters which is the same range of WiFi networks [47],

[48]. The reduction of cell size as shown in Figure 2.4 has a number of advantages,
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electromagnetic spectrum reuse throughout a specific area is the most important benefit
[5]. With smaller cell size, the number of users that need to be served is reduced and there
will be more radio-frequency resources at each base station. By reducing the cell size, the
base stations will be smaller and will require lower operation power and eventually the cost

will be much cheaper [47].

Spectral Efficiency per Area

Base Station Density

Figure 2.4: Base station density is getting higher by having smaller cells [49].

Even though the cost of the base stations equipment of small cells will be cheaper
compared to larger base stations, the cost of the backhaul will increase. Fiber connection
might be used for backhaul which is more expensive than the typical microwave systems.
Another drawback of deploying small cells is the interference where it is getting worse.

Also, the cellular and WiFi networks are already very dense.
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2.2.2 Millimwter-Waves

The microwave spectrum that is used today by mobile systems is limited and it is
ranged from 300 MHz to 3 GHz [50]. To double the bandwidth for the microwave spectrum
there are two ways. One is to refarm spectrum, for example, refarming the television
spectrum into smaller bands to be used at urban broadband access [4]. Unfortunately,
refarming has its own drawbacks, such as, the limited spectrum and the higher cost. The
other way to increase the bandwidth is to share microwave spectrum by applying cognitive
radio technology [51] which has some issues in terms of spectrum efficiency [4].

Other than using the limited electromagnetic spectrum at microwave frequencies,
it is possible to use the huge amount of spectrum that is ranged from 3 GHz to 300 GHz
which is called millimeter-Waves [50]. The International Communication Union (ITU)
proposed a list of frequencies above 24 GHz that can meet the commercial needs [52]. In
December 2016 and after the proposal of ITU, the Federal Communication Commission

(FCC) adopted rules for mmWave bands above 24 GHz [53].
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Bands Above 24 GHz for Possible Mobile Use

<%
LEN

37,000 - 42,500 MHz Bands

BN [

S &
Qb‘;\"?

S w

27,500 - 31,00 MHz Bands

$

S

]
“ »
2 ¥

{5-0

.
VX

. Bands Proposed for Mobile Use

!Other Bands Raised in NOI

Figure 2.5 : Frequency bands proposed by FCC for mobile applications [54], [53].

Mm-Waves can provide enough frequency for the demand by mobile application
in upcoming decades. The mm-Waves have a wavelength ranging from 1 mm to 10 mm
and it has a spatial resolution higher than what microwaves have. Since the bandwidth is
broader, the size of the antennas and the equipment will be smaller and the cost will be
cheaper. Also, mmWaves require lower power supply voltage.

Still, the mmWaves has several challenges to be tackled such as pathloss since the
transmitter and the receiver require line of sight connection. Moreover, the absorption due
to rain and atmosphere condition such as air would play a negative role in the signal
propagation. Also, with such a high frequency, the range of transmitted signal will be much

shorter and it will be more difficult to penetrate through buildings. Even though the antenna
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size will be smaller and cheaper, some of the hardware components such as digital to analog

converters will be pricy.

2.2.3 Massive MIMO

In wireless communication, the transmitted signal is exposed to harsh environment
where it could be attenuated by fading because of the multipath propagation or attenuated
by shadowing due to having large obstacles between the base station and the user terminal.
The use of multiple antennas in the transceivers is known as multiple input multiple output
(MIMO). In the past decade, MIMO systems has grabbed the attention and engaged into
several wireless standards such as long term evolution LTE-Advanced [55], [56]. One of
the developed form of this technology is the Multi-User MIMO where several users are
connected to the multi-antennas BS and served simultaneously [55]. This technology has
its own advantages yet there are several drawbacks such as multiuser interference, channel
state information acquisition and user scheduling. The ultimate form of Multiuser MIMO
is the promising technology that is called Massive MIMO (it is also known as large-scale
MIMO) [5], [57].

Massive MIMO concept was proposed for the first time by Thomas Marzetta from
Bell Labs in 2010 [58], [7]. It is a scalable form of Multiuser MIMO where there are
several essential differences between Massive MIMO and Multiuser MIMO [59]-[68].
First of all, Massive MIMO has much larger number of antennas in the base station

compared to the number of users. Second, in the Massive MIMO, only the base station
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needs to learn the frequency response matrix between the BS array and the user terminals
array. Third, the uplink and downlink signal processing is simple for the Massive MIMO.

The proposed concept of massive MIMO is to equip the base station with hundreds
of antennas which is much larger than the number of users as shown in Figure 1.3. The
antenna array receives data signal from the user terminals and selectively sends data
streams sharing the same time and frequency resources. On downlink, each user should
receive only the data stream that is intended to him [69], [70]. On uplink, the BS receives
and recovers the data signals that was sent by the user terminals. Due to line of sight
conditions, the BS has an individual beam for each user terminal as shown in Figure 2.6.
By increasing the number of antennas in the base station, the beams that are directed to the

user terminal will be narrower and the power will be more focused.

Figure 2.6: Beamforming transmission in a massive MIMO system [71].
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Massive MIMO depends on measuring the channel frequency response where
either the BS terminal or the user terminal sends known training signals and the receiver
can estimate frequency response [72], [73]. The environment of the channels spatial
correlation would affect the accuracy of the estimated channel [74]. There are several
methods to estimate the channel and get accurate CSI where the most popular method is
the pilot based estimator. After conducting the channel estimation, CSI should be
established promptly to avoid any change in the state of the channel. To get accurate CSI,
time division duplexing (TDD) should be used as operation mode to get the advantages of
reciprocity where the CSI is the same for the uplink and the downlink transmission [75].

The frequency division duplexing (FDD) has a different operation form where the
base station sends pilots to the user terminal to get the downlink channel, and send back
the estimated channel state information to the base station which is called CSI feedback.
By using FDD, resources are consumed since there must be a unique pilot for each antenna
in the transmitter and these pilots are required to be orthogonal. The amount of consumed
resources by the different forms of MIMO is shown in Table 2.4. The number of antennas
in the base station is denoted by N and the number of user terminal is denoted by M. It is
shown in Table 2.4 that when TDD is used as operation mode in Massive MIMO systems,

the system scalability is not limited to the number of antennas in the base station N.
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MIMO Variants FDD UL FDD DL | TDD UL | TDD DL
Single-user MIMO M pilots Npilots | Mpilots | N pilots
(no CSI feedback)
Multiuser MIMO M pilots Npilots | Mpilots | N pilots
+ N CSI feedback
Massive MIMO M pilots Npilots | M pilots none
+ N CSI feedback

Table 2.4: Possible resources that are consumed by MIMO variants [76].

By using TDD protocol, the pilot signal and the data signal are sharing the same

time slot where the coherence time is divided into different stages for uplink and downlink

transmission as shown in Figure 2.7. In this protocol the estimation accuracy is independent

of the number of BS antennas N so it is possible to increase N to any desired number [74].

One of the advantages of using TDD is that the knowledge of the uplink channel need to

be obtain only by the base station to operate coherently [77].
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Figure 2.7: Uplink and downlink stages for TDD system [9].

2.2.3.1 Potentials of Massive MIMO

Massive MIMO has several benefits include:

providing higher spectral efficiency where it can be increased 10 times or
even more without increasing the number of base stations[78]. This
improvement comes with a possibility of having lower transmit power [77].
Besides the improved capacity, the large number of BS antennas would
improve the energy efficiency since the energy is sharply focused into
small area. Thus, each user should only get the signal that is intended for
him with the lowest amount of interference from other channels [75]. The
channel response for Massive MIMO systems would become smoother due
to the massive spatial diversity [5], [79].

The structures of the transceivers and their signal processing are going to
be much simpler compared to the multiuser MIMO because of the nature
of the channels between the base station and the user terminal where the

active users are sharing the same signaling resources [80]. In Massive
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MIMO, instead of using 50 W amplifiers that are expensive, a low cost
amplifiers are going to be used where these amplifiers have a power in the
range of mW [81]. Coaxial cables, which are used in today BS and have a
diameter of 4 centimeters, are another expensive item that can be
eliminated.

In wireless communications, the performance of the system can be affected
badly by fading. The destructive multipath interference would make it
difficult to create links with low latency. In Massive MIMO systems, the
latency can be reduced since fading can be avoided due to the beamforming
and the large number of antennas.

The man-made interference that is intentionally made against the wireless
system networks is a real threat and a serious concern. the jamming
components are not expensive and would cost a couple of hundreds of
dollars. Since Massive MIMO is multiple antenna technology, the

robustness against jamming is high.
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2.2.3.2 Limitations of Massive MIMO

Massive MIMO has several limitations include:

Most of the published works on Massive MIMO systems are assuming that
the channels are orthogonal and uncorrelated which is not the case in real
life situation [74], [82]. The effect of correlation models on Massive
MIMO systems need to be analyzed to see the performance of spectral
efficiency and energy efficiency.

Nowadays, the transmission mode that is used in most of the wireless
communication systems is based on Frequency Division Duplexing
(FDD). On the other hand, most of the proposed Massive MIMO models
are based on Time Division Duplexing (TDD) due to its simple channel
estimation. To have Massive MIMO based on FDD mode, it is important
to reduce the overhead feedback. One way of reducing the feedback is to
calculate the CSI of some antennas selectively instead of calculating CSI
for each base station antenna.

One of the challenges is to reduce the cost of the hardware components in
Massive MIMO systems. There will be hundreds of elements in the BSs
such as RF chains, AD converters, DA converters and so on. So, it is
necessary to develop new algorithms to reduce the cost by getting rid of
receiver quantization.

Pilot contamination is one of the most serious challenges in Massive

MIMO systems. Assume that there is two cells A and B. The effect of pilot
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contamination could appear in two different stages where the BS in cell A
may overhears the transmitted pilot from cell B during training phase.
Then, the vectors that are transmitted form cell A will be partiality
transmitted to users in cell B. To overcome this issue, estimation
techniques need to be created. Also, the structure of the pilots need to be
designed carefully to avoid overhead blast.

Another issue that could decrease the accuracy of channel estimation and
affect the capacity of Massive MIMO system is the hardware impairment.
This problem need to be taking into consideration when designing a system
of Massive MIMO. Several studies investigated the effect of the hardware
impairments on the Massive MIMO systems performance [80], [69].
Studies show that hardware impairment has a limited effect on the BS
terminal, while on the user terminal end it has higher effect on the system

performance [80].
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2.2.3.3 Massive MIMO Projects

Over the past few years, Massive MIMO has grabbed the attention of research
community. There are several live projects on Massive MIMO in the United states, Europe
and Asia. Most of these projects are still ongoing while some of them are completed where
they released part of their research outcome and products. Some of the live project on

Massive MIMO are listed below in details:

Figure 2.8: Massive MIMO Prototype used by Lund and Bristol Universities research [83].
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One of the ongoing projects on Massive MIMO is conducted by Lund University
and Bristol University where they used National Instrument Testbed [83]. A team of
researchers from the two universities achieved a new record of spectrum efficiency. At
their test in May 2016, they had a Massive MIMO system with 128 antenna array operated
at 3.5 GHz radio channel. The results revealed much higher spectrum efficiency with 22-
fold increase compared to the current standard LTE [84]. Figure 2.8 shows the Massive
MIMO prototyping testbed with 128 antenna array at the base station.

MAMMOKET is another project that was funded by European Union with an
investment of $5 million [85]. This project is about making Massive MIMO more efficient
and attractive technology for future networks. There were several objectives for this project
need to be accomplished to achieve the overall goal. The first stage is to investigate the
nature of the channel and exploring the possible configurations of antenna and analyzing
its potentials and limitations. Another objective is providing scalable processing algorithms
that can be implemented easily with the hardware components. The last stage of this project

is to provide a solution to the standardization bodies.
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Excellence Center at Linkoping had a collaboration with Lund University on
ELLIIT project for Massive MIMO antenna array [86]. They produced a fixable testbed
with 100 antenna array as shown in Figure 2.9 [87]. The project investigates the use of
Massive MIMO with more than 30 antenna arrays in the base station experimentally using
the Lund testbed. They developed algorithms for antenna selection also they quantified the

tradeoff relation between the energy and spectral efficiencies.

Figure 2.9: Massive MIMO testbed in Lund University [87].
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Chalmers University of Technology and VINN Excellence Center CHASE worked
together on a project to build a Massive MIMO testbed (MATE) [88]. In this project they
had a partnership with different companies such Ericsson, Saab, National Instrument and
others. The first goal for this project was to build the testbed and then investigate the
advantages and drawbacks of Massive MIMO system with different interfaces for analog
and digital components. One of the goals also is to create new techniques for Massive
MIMO transmission synchronization.

National Science Foundation (NSF) has funded the University of California-
Berkeley for a 3 years project to study the energy and cost efficiency of Massive MIMO
systems [89]. The overall goal of this project is to address and overcome the critical
challenges for the implementation of Massive MIMO systems. Specifically, the goals of
this project are: creating a low cost Massive MIMO array architecture that can be deployed
effectively in terms of power efficiency. Also, developing new techniques for medium
access control (MAC) that are appropriate with synchronization and low latency.

Nokia and Sprint U.S. have been working on adaptive antenna for Massive MIMO
systems [90]. At Mobile World Conference 2017 in Barcelona, the two companies
demonstrated a showcase of Massive MIMO system where the system capacity was
increased eight times compared to LTE systems. Their Massive MIMO is equipped with
64 antennas at the transmitting side with TDD operating mode. This project revealed the

scalability of Massive MIMO in which it could be a key technology for 5G networks.

36



According to Giinther Ottendorfer the Sprint technology chief operating officer,
"Massive MIMO is a critical part of our strategy to increase the capacity of our LTE Plus
network today, and in the future, it will be a key element of our 5G network. Working with
Nokia to deliver massive MIMO is a competitive advantage for Sprint because it is more
easily deployed on 2.5 GHz spectrum due to the smaller form factor of the radios, and it's

an important innovation that will take advantage of our deep spectrum holdings" [90].
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Chapter Three: Spatial Correlation Effect on Channel Estimation

The channel estimation accuracy is analyzed where channel spatial correlation is
affecting its performance. In this chapter, the system model consists of single base station
that is equipped with big number of antennas where it is serving a single user terminal.
Base station terminal receives and sends data from a user terminal as shown in Figure 2.1.
in this system, The Time Division Duplexing (TDD) protocol is used where its coherence
time is divided into different stages for uplink and downlink data transmission. We are able
to increase the number of base station antennas to any desired number since the channel
estimation accuracy is independent of the number of antennas at the base station [69]. Due
to having channel reciprocity, the channel state information will be the same for uplink and
downlink data transmission. It is assumed that there is stochastic block fading channel
between the base station and the user terminal. The realizations of the channels are
produced randomly using Monte Carlo method of generating random numbers. It is

assumed that there are synchronized and identical coherence period of time.
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User Terminal

Base Station

Figure 3.1: Uplink and downlink dtat transmission between user terminal and base station

[9].

3.1 System Model and Assumptions

It is possible to maintain continues channel state information to detect uplink data
information due to having channel reciprocity [91], [7]. Assume that the base station has a
large number of antennas N and a single user terminal. There is Rayleigh block fading
h~CXN (0, R) between the two terminals. The block fading channel between the terminals

is represented as h € CN*! while channel covariance matrix R can be represented as

R = E{hh"} 3.1)
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3.1.1 Uplink System Model
It is assumed that the channel statistical distribution is known by the base station
while we have pilot based channel estimator in this system model. Equation (3.2) shows the

received signal y at the BS as follows
y=hd+n (3.2)

p = E{|d|*} (3.3)

In equation (3.2) the received signal d € C could be either data signal or pilot signal
while the average power is presented in (3.3). The following equation represents the additive

noise n which consists of two terms
n = Nppise + LT (34)

where n; denotes interference noise from other transmissions and n,,qise represents the
noise of the independent receiver that has (63sI) covariance and zero mean. For the
interference noise njs , it is assumed that it has covariance denoted as E{n;mn!1} with zero
mean. The conditional covariance matrix that has a channel realization of H can be

characterized as
— H
Qs = E{nymi¢| 3} (3.5)
In this system model analysis, it is assumed that for channel covariance matrix R,

the spectral norm is uniformly bounded independent of the number of BS antennas.
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3.1.1.1 Exponential Correlation Model
The exponential correlation model is used in this system to create the channel
covariance matrix [92]. We are assuming that R consists of two elements (i, j) and can be
expressed as
[R] ={ . s (3.6)
S(r’7Hr, i>]
where § represents the scaling factor and » denotes the correlation factor of the neighboring
subchannels. The value of correlation factor 7 is limited between 0 and 1 while the angle
of departure and arrival is denoted by £r. The exponential correlation model is easy to be
implemented and it might not be the most accurate model for creating the channel
covariance matrix [93]. The value of correlation factor || denotes eigenvalue spread of R
while £r represents the eigenvectors for R. Since the angle of  has no effect on the mean
square error, it is assumed that r is a real value. By increasing the correlation factor the

spectral efficiency will be affected in a similar way of decreasing the value of signal to

noise ratio.

3.1.1.2 One Ring Model

The one ring model is another way to create the channel covariance matrix [26]. In
this model, it is assumed that the user terminal is bounded by a ring of scattering with a
radius of 7. Figure 3.2 shows a base station with N antennas where it is not affected by local
scattering since it is elevated. The distance between the base station and the user terminal

is denoted as d and the azimuth angle is denoted as 6. The multipath components have
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angular spread of A. The channel covariance matrix for any two antennas » and p cane be

expressed as

[R]Tl,p = iI—AA ejkT(a+9)(un—up) da, 1< n,p <N (37)

where
k(a) = — 27” (cos(a), sin (a))T (3.8)
The position vectors of the base station are denoted as uy, u,. It is assumed that
the spacing between antennas is half wavelength with uniform linear array (ULA). The

Toeplitz form of the channel covariance can be represented as

[R]n,p — ﬁf_ﬁfe e—J2mD(n=p)sin(a) [ (3.9)

LLLLLLLLLL

Base Station with N antennas

Figure 3.2: One ring model for a base station with N antennas.
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3.1.2 Downlink System Model
The downlink system model is shown in Figure 2.1. The received downlink signal

is flat fading and can be signified as follows

z=hTs+v (3.10)

where s € CN*! and it could be pilot signal or stochastic data signal that has zero mean. The
covariance matrix of the signal s can be represented as W = E{ssf'} where its average
power is trace(W). On the other hand, the term v is the additive noise where it consists of

two terms as follows

V = Vpoise + Vif (311)

where v;; denotes the interference noise and v, s represents the independent receiver

noise.

3.1.3 LMMSE Uplink Channel Estimation
In this chapter, linear minimum mean square error (LMMSE) estimator is used
where the received signal is compared with the identified uplink pilot signal [94]. The

following equation shows the LMMSE estimator of the channel realization

h=d*'RY 1y (3.12)
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where d represnts the identified pilot signal. The value of user equipment power
(pVE) equals to |d|?. The covariance matrix of the received signal y consists of a
combination of different terms that includes average power of user equipment, channel

covariance matrix and additive noise as follows

Y = E{yy"} = pUER + S + 051 (3.14)
c=E{(h-h)(h—h)"}=R-p"RY'R (3.15)

The total value of MSE can be derived based on the value of C that is generated in

(3.15) as follows
MSE = E { |h - h|[} = tr(0) (3.16)

Based on (3.16) the stochatic channel can be represented as a combination of two
terms includes the unknown estimate error € and h which is the LMMSE estimate value as

follows
h=h+e€ (3.17)

3.2 Numerical illustrations and analysis

This section shows the performance of the channel estimation accuracy using
different types of spatial correlation models. One ring model and exponential correlation
models are used to state a comparison between these two methods. Also, the effect of the

pilot length on the channel estimation accuracy is investigated.

44



Generate the
channel covariance
matrix using spatial

Create placeholder

Initialize the system to store simulation

parameter

results correlation model
Compute the .
Compute the MSE estimated channel Cpmpute the p|lot
o signal for the given
value matrix in the SNR
LMMSE estimator

Figure 3.3: Block diagram for the simulation process.

3.2.1 Channel Estimation Accuracy

Figure 3.4 demonstrates the channel estimation accuracy using pilot-based
LMMSE estimator with 100 antennas in the base station and single user terminal. The
relative estimation error can be represented as a relationship between the mean square error

and the trace of R as follows

MSE

MSE, ciative = ﬁ

(3.18)
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The channel covariance matrix is generated using exponential correlation model
where the values of correlation factor are within 0 to Iwith an increment of 0.01. the
relative estimation error is demonstrated as a function of correlation factor. Figure 3.4
shows that with higher SNR values the estimator is more accurate. Also it is clear that there
is a slight development in the accuracy of the estimator when we have greater correlation

factor.

46



Figure 3.5 shows the relative estimation error versus correlation factor with (N =2,
4, 8, 64, 128). It is clear that there is improvement in the estimator performance by
increasing the correlation factor and getting closer to 1. We can see that until reaching
correlation factor of 0.3 there is no enhancement and after that the channel estimation is
getting more accurate. By increasing the number of antennas in the base station, we can see
clear improvement at the beginning until we reach large number of antennas where there is

no more improvement.
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Figure 3.5: Relative estimation error as a function of exponential correlation factor for
LMMSE with different values of N [95].
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Figure 3.6: Relative estimation error as a function of SNR for N=50.

The channel estimation accuracy is shown in Figure 3.6 where the relative
estimation error per antenna is presented as a function of signal to noise ratio. The number
of antennas in the base station is 50. The estimation error is decreasing at higher signal to
noise ratio. The figure shows that the worst channel estimation accuracy is happening when
exponential correlation model is used with 0.5 coefficient factor. By using one ring model
to generate the channel covariance matrix, the channel estimation is getting more accurate

especially when the angular spread is getting smaller.
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3.2.2 Impact of the Pilot Length

Using pilot signal d is needed to decrease the total mean square error. By making
assumption that the length of the pilot is B and we would like to calculate the value of h; =
h +efori =1,.., B, after taking the average we have

B
= 1 a
h=g) h=h-

i=1 i

| =

B
€
=1
The total value of MSE for the estimate h when having uncorrelated noise is achieved as
H

{5 ()

i=1 j=1

From prevouse equation we can observe for the ideal case that by increasing the

length of the pilot B, the total value of MSE for the estimate h becomes zero eventually.

The effect of pilot length on the estimator is presented in Figure 3.7. The relative
estimation error is displayed as a function of pilot length with 50 antennas in the base station.
The noticeable observation is that we can see the advantages of having higher pilot length
where the estimation is improving. The matrix of the channel covariance R is generated
using exponential correlation model. We begin studying the influence of pilot length by
having signal to noise ratio equals to 0 dB. The values of correlation factor are 0, 0.7, and
0.9 where we can see that the coefficient factor has a large impact on the accuracy of the

channel estimator where the performance is improving with higher correlation factor.
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Figure 3.7: Relative estimation error as a function of pilot length. The signal to noise ratio
is 0 dB [95].

Figure 3.8 is basically a similar scenario to Figure 3.7 but with SNR equals to 15
dB where the relative estimation error per antenna is shown versus pilot length B with 50
antennas in the base station. We can see in Figure 3.8 that the influence of increasing the
correlation factor is reduced compared to Figure 3.7 because of having higher signal to
noise ratio. Yet, the higher the coefficient of correlation factor we have the more accurate

estimation we get.
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Figure 3.8: Relative estimation error as a function of exponential correlation factor for
LMMSE. The signal to noise ratio is 15 dB [95].

A comparison between two different channel spatial correlation models is shown
in Figure 3.9. One-ring model and exponential correlation model are compared for one cell
system with 50 antennas in the base station. The plot shows relative estimation error as a
function of pilot length. It is shown that the accuracy of the channel estimation is much
better at higher pilot length. The one-ring model with angular spread of 20 degrees
outperforms the exponential correlation model with coefficient value of 0.8 where the

channel estimation is more accurate.
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Chapter Four: Impact of channel spatial correlation on Spectral Efficiency

4.1 Spectral Efficiency for Single Antenna User

The first scenario is considering a one cell system model with one base station that
and single user terminal. The impact of exponential correlation model on the spectral
efficiency performance is investigated. Also, a comparison between one-ring model and
exponential correlation model is stated by changing the number of base station antennas.
The system model that is used in this chapter is the same model that is used in Chapter 3.
It is assumed that the base station is equipped with N antennas and the number of antennas
in user terminal is denoted by M. The Time Division duplexing protocol is used and the
received signal at the base station is the represented as is y = hd +n where it is
combination of the receiver noise n and block-fading channel h. The channel covariance
matrix R is generated using different spatial correlation models, exponential correlation
model (3.6) and the one-ring model (3.9). The received downlink signal is flat fading

channel and can be represented as z = hTs + v, where v represents the noise. The pilot

based estimator LMMSE is used for uplink channel estimation and represented as h =

d*RY 1y.
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4.1.1 Uplink and Downlink Data Transmission

In this chapter, the channel capacity using TDD protocol is studied. The lower
capacity of the uplink and downlink data transmission are derived to see the impact of the
channel spatial correlation models. The lower capacity bound is examined based on
imperfect knowledge of stochastic block fading channel h where we used pilot based
estimator. The imperfect knowledge of CSI in the base station and user equipment (UE)
terminals are denoted as 85 and £ VE respectively, while H is the channel actual state.

The downlink capacity can be stated as

DL
CDL = :dﬂ[[i max I(s; z| 7, HBS, 7 UE) (4.1)
cohr f(S|.7{BS):]E{ ||s||%}SpBS
where the mutual information for the received signal, z, and the data signal, s, for

H,HBS and H VE is denoted as I(s; zliH‘, HBS, 7 UE). On the other hand, the capacity for

uplink data transmission can be expressed as follows

cuL — Tdafa max 3(d; y|#, 78S, 30 VUE) 4.2)
Tconr f(d|f]-[UE):[E{ llal|2}<pUE
The main part of this chapter is studying the behavior of the capacity bounds when
the correlation factor goes from 0 to 1 which gives an idea of how the exponential
correlation model would affect the capacity performance.
For the lower bound capacity, it is assumed that there is Gaussian noise in the
interference and for the downlink it is assumed that a single stream is used. Furthermore,

pilot based estimator is used and due to maximizing Gaussian distribution we have
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uncertain channel state information for downlink and uplink data transmission. Based on
(4.1) and (4.2) and by applying (4.5) and (4.6), downlink and uplink capacities are denoted

as

CPL > Pk ., = T“ata *E{log; (1 + SINREer (v°1)) } (4.3)

CUL = Clower = Tdata ]E{logz(l + SINRlower(VUL)) } (4~4)

where the vectors vULand vPY represent receive combining and beamforming

respectively. Each vector has a unit norm and they are functions of h.

|E{hH DLl}‘fUE}lz
2 E{I}[ |}[UE}+UUE
PBS

SINRDL (vPL) = (4.5)

{thVDLl |g.[UE} |E{nHyDL|FTUE}| "+

|]E{hHVUL|j_Z-BS}|2

2 - 2 ]E{(VUL)H(Q +0— [)VUL|}[BS}
(Iton 755} wongiens) - T Qs

SINRPE (vUL) = (4.6)

4.1.2 Numerical Illustrations
Our numerical illustrations in this section are conducted to see the performance of

the spectral efficiency based on different spatial correlation models . The average signal to

noise ratio for downlink and uplink channel are pBS NoZy and pVE respectively. We

No 2 ’
take into consideration the value of SNR where we use high and low SNR values. We
assume that the values of downlink and uplink data percentage are identecal and equal to

0.45. By making this assumption we get identical capacities for uplink and downlink.
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The spectral efficiency is shown in Figure 4.2 as a function of the exponential
correlation factor. We considers a scenario with SNR equals to 0 dB and number of
antennas N equals to 50 and 200 in the base station terminal. The maximum value of the
spectral efficiency is achieved when there is zero correlation, which means having
completely independent subchannels. The value of spectral efficiency is decreasing when
the correlation factor is increasing until we get to correlation factor of 1 where we have
the worst channel capacity. Also, it is shown that at larger number of base station antennas,

there is higher channel capacity.
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Figure 4.3: Spectral efficiency versus correlation factor with 30 dB SNR [9].
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By increasing the value of SNR to 30 dB in Figure 4.3, the capacity is getting much
higher compared to the capacity in Figure 4.2. Also, it is observed that the capacity
behavior has better performance when we have larger number of antennas in the base
station terminal. It is clear that the spectral efficiency is more sensitive to the change of
exponential correlation factor where the spectral effeicincy declines much faster compared

to the one with 0 dB SNR.
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Figure 4.4: Spectral efficiency versus number of base station antennas using different
spatial correlation models.
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Figure 4.4 shows a comparison between different channel models. The figure
includes 5 curves where each one represents a covariance model for the channel. Spectral
efficiency is shown as a function of number of antennas at the base station. Figure 4.4
shows that the spectral efficiency is improving by increasing the number of antennas in the
base station. The main observation is that the spectral efficiency is the lowest by using one-
ring model with 15 degrees of angular spread while when there is no correlation the spectral

efficiency is the highest.

4.2 Spectral Efficiency for Multi Antenna User

Similar to the previous scenario, the operation mode is TDD and a system of a
single cell is considered. The system model is having a base station with N antennas that is
serving 7 user terminals where each terminal is equipped with M antennas. It is assumed
that the channel response from the user 7 to the base station is denoted by K, € CN*™ | The

spatial correlation is described using Kronecker model [96]:

1 1
K, = Rzre,t KWI Rir,t (4.7)
where the entries elements of K, , € CV*M are independent and identically distributed

1id. R € CN*N represents the base station spatial correlation to user ¢ and R €
re,t P 1Y tr,t

CN*N denotes the user 7 spatial correlation. R, is including the parameters of the large
scale fading and can be expressed as %tr(Rre_t). Let the decomposition of the eigenvalues

of spatial correlation Ry, . is denoted as
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Rtr,t =U; A; U? (4.8)

where the eigenvalues are contained in A, = diag{4; y, ..., 4¢} and unitary matrix is

denoted as U, € CM*M,

For the uplink channel estimation, it is desired to have sequence of orthogonal pilot
signals as S = M T where the pilot matrix at the base station for the user 7 is denoted as
F, € CM*S. If each user knows only its own statistical channel state information, then the
energy of the pilot signal can be denoted as tr (B, BY) < S P, , where P, represents the

maximum transmit power for the user . To minimize the channel estimation MSE, the

1
following pilot matrix can be used B, = U, G} V[, where G, is the diagonal distribution of

the transmit power P, among the channel dimensions of M. V, € C5*M is satisfying V'V, =
S1,, and if t # k then V/'V,, = 0. The uplink received signal at the base station can be
represented as

1

Y=Y/, KB, +N=YL_ HD?V/ +N (4.9)

where D, = A, G, and its ith diagonal element is denoted as d.;, while H; =

1

REr ot Kwit U¥ . The independent noise of the receiver is denoted by N and it has zero mean

and a covariance of (6% Igy). It is assumed that the base station has a knowledge of D,
statistical information,so based on [97] the MMSE estimator for h, can be represented

using Kronecker product @ as
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-1

. £l 2
h, = (Di ® Rre,t) (D ®Rree) +% Tyy) (4.10)

where we define ¢, = Vec(é Y, V{). Assume Bt'i is the ith column of the matrix H, , so the
expected value of ilt,i could be

2 -1
O- . .
]E{ilti il?] — dt,i Rre,t ( dt,i Rre,t + ? INM) Rre,tr l=]

0, i #j
4.2.1 Uplink Data Transmission
For the uplink data transmission, the base station as a receiver knows the exact
channel state information for each user. On the other hand, every user in the transmitting
side has a knowledge of its own statistical channel state information only. Assume that the

€ CMXM

precoding matrix for user 7 is denoted by B, and can be represented as

B, = U, P? (4.11)

where P, represents the power matrix as P, = {Pt_l, ...,Pt_M} and tr(P;) < P;. On the

base station side, the received signal can be represented as

y=>I_,K:B;x,+n 4.12)
where the transmitted data is denoted by x; with zero mean and I, covariance while the
additive noise of the receiver is denoted by n with zero mean and (a2 I) covariance. The
LMMSE estimator can be used to estimate the data stream individually based on [98], the
estimated ith data stream for the user 7 can be expressed as

b.; = /At1 P Zhy, (4.13)
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The uplink spectral efficiency for the user ¢ can be represented by applying the

value of the linear MMSE detector in (4.13) to the received signal in (4.12) as
CPl = XL, E{log, (1 + SINRYM)} (4.14)
The value of the SINR for the ith stream of the user t can be expressed as

He 2
A1 Pei|be; bl
E{bf(yyH A1 Pri hei hi)by | A}

SINRY} = (4.15)

4.2.1 Downlink Data Transmission
For the downlink data transmission, it is assumed that there is no pilot signal or
channel state information from the base station to the user terminal. The precoding matrix

in the downlink for the user t is assumed to be W, € CV*M

and the total transmit power is
allocated in ), = diag{ws j, ..., W¢ 5/ }. For the user ¢, the downlink recived signal is

1

ve=KIYI, W, 02x, +n, €M (4.16)

where the receiver noise is denoted by n, and it has zero mean and (¢2 I,,) covariance
while the downlink signal that is sent to the user / is denoted by x; with zero mean and I,
covariance. Assume that the user t has a matrix of eigenvector for its own correlation as
U Then the received signal after detector process is

1

1
z, = Ufly, =AU Y, W, Q2 x; + Ufn, (4.17)

The linear MMSE can be used to setect the received symbol where the ith column
of the matrix H, is denoted by h,. The downlink spectral efficiency for the user ¢ can be
represented by applying the value of the linear MMSE detector to the received signal as
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CPY =3, Eflog, (1 + SINRPM)} (4.18)
The value of the SINR for the ith stream of the user t can be expressed as

2
|rig:1i he

SINRY} = (4.19)

- 2
ilE{ztzf} rei— |rtHl ht,il

.
4.2.1 Numerical Illustrations
The results in this section are carried out to see the effect the exponential correlation

factor on the spectral efficiency based on different number of base station antennas and

SNR values. The scalability of Massive MIMO systems by encreasing the number of user

terminals is investigated.
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Figure 4.5: Spectral efficiency versus exponential correlation factor with signal to noise
ratio equals to 30 dB and N equals to 50 antennas.
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A different scenario is considered in Figure 4.5 with SNR equals to 30 dB and
number of antennas N equals to 50. In this figure the number of antennas in the user
terminal M is changed several times to investigate the effect of increasing the number of
antennas in the user terminal. Figure 4.5 shows that the maximum value of the spectral
efficiency is reached when we have uncorrelated antennas when the correlation factor
equals to 0. By increase the correlation factor, the bounds of spectral efficiency keep
decreasing until we get to correlation factor of 1. Also we can realize that at larger number

of UT antennas, we have higher channel spectral efficiency.
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Figure 4.6: Spectral efficiency versus exponential correlation factor with signal to noise
ratio equals to 30 dB and N equals to 200 antennas.
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Figure 4.6 shows similar scenario to Figure 4.5 with signal to noise ratio equals to
30 dB and number of antennas N equals to 200 at the base station terminal. In this figure
the number of antennas in the user terminal is changed several times to investigate the
effect of increasing the number of antennas M. Figure 4.6 displays that the higher value of
the spectral efficiency is achieved when we have zero correlation, which means having
completely independent subchannels. Also, we can realize that at larger number of

antennas in the user terminal we have higher spectral efficiency.
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Figure 4.7 : Spectral efficiency as a function of the number of BS antennas for 1 user with
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A comparison between different values of correlation factors using exponential
correlation model is shown in Figure 4.7. Spectrla efficiency is plotted versus number of
antennas at the base station. Figure 4.7 shows that the spectral efficiency is improving by
increasing the number of antennas in the base station. the main obsevation from this figure
is that the spectral efficiency is higher when the correlation factor is lower. The highest
spectral efficiency is occuring when the antennas are uncorrelated which is represented by

the blue curve.
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Figure 4.8: Spectral efficiency versus exponential correlation factor with signal to noise
ratio equals to 30 dB and N equals to 50 antennas with 2 users [99].
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Figure 4.8 considers a scenario with signal to noise ratio equals to 30 dB and
number of antennas N equals to 50 at the base station terminal where we have two user
terminals. In this figure the number of antennas in the user terminal M is changed three
times to investigate the effect of increasing the number of antennas in the user terminal.
Figure 4.7 displays that the highest value of the spectral efficiency is occurring when we
have uncorrelated subchannels at O correlation factor. By increase the value of correlation
factor, the bounds of spectral efficiency keep going down until we get to correlation factor
of 1. Compared to Figure 4.4, the spectral efficiency in Figure 4.7 is almost doubled after

increasing the number of user terminal from 1 to 2.
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Figure 4.9: Spectral efficiency versus exponential correlation factor with signal to noise
ratio equals to 30 dB and N equals to 200 antennas with 2 users [99].
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Figure 4.9 demonstrates similar situation to Figure 4.8 with signal to noise ratio
equals to 30 dB but with number of antennas N equals to 200 at the base station where there
are 2 user terminals. In this figure the number of antennas in the user terminal is increased
several times to investigate the effect of having different number of antennas at the user
terminal. Figure 4.8 shows that the higher value of the spectral efficiency is reached when
there is 0 correlation, which means having completely independent subchannels. Also, we
can realize that at larger number of antennas in the user terminal we have higher spectral
efficiency. By comparing this figure with Figure 4.5, we can see that the spectral efficiency

almost doubled due to having 2 user terminals instead of 1.
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Figure 4.10: Spectral efficiency as a function of the number of BS antennas for 2 users.
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There are three curves are plotted in Figure 4.10 where each one represents a values
of correlation factors using exponential correlation model. Spectral efficiency is shown as
a function of the number of base station antennas. Figure 4.10 shows that the spectral
efficiency is increasing by having larger number of antennas in the base station. It is
observed that the spectral efficiency is larger when the correlation factor is lower.
Moreover, the highest spectral efficiency is achieved when the antennas are uncorrelated

at correlation factor equals to zero.
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Chapter Five: Energy Efficiency and Transmit Power
Massive MIMO systems can be used to improve the energy efficiency by reducing
the emitted power. Energy efficiency can be expressed as the ratio between spectral
efficiency and emitted power and it is measured in (bit/Joule). The transmit power, in
(Joule/channel use), is represented as the energy consumed by the amplifier divided by the
coherence time [100]. In this chapter, the influence of the channel spatial correlation on the
energy efficiency and transmit power is investigated where the exponential correlation

model is applied to the Massive MIMO system model.

5.1 System Model and Assumptions

It is assumed that there is a single cell with one base station that is equipped with
N antennas and a user terminal. The operation mode that is used is TDD and the received
signal at the base station is a combination of the block-fading channel h and the receive
noise n and can be represented as y = hd + n. The exponential correlation model is used
to generate the channel covariance matrix R. The received downlink signal is flat fading
channel and can be represented as z = hTs + v, where v represents the noise. The uplink

channel estimation is LMMSE and denoted as h = d*RY1y.
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5.1.1 Energy Efficiency and Transmit Power

The transmit power can be generated by finding the consumed energy of the
amplifier divide it by the coherence time T,p, [100]. The following equations (5.1) and

(5.2) represent uplink and downlink transmit power respectively

DL UL UL
Eamp _ Tpilot pBS Tpilot pUE + Tpilot pUE (5 1)
T = UL\T e @B T Teonr @UE) T Teopr wUE :
cohr’/ yI, cohr cohr cohr
DL UL DL
Eamp _ Tpilot pBS Tpilot PUE Tpilot pBS (5 2)
T = ODL\T e @B T Teonr @UE) T Teonr wBS :
cohr/ pJ, cohr cohr cohr

where w85 and wUE are the power efficiency of the amplifiers at the two terminals where
they are bounded from 0 to 1. The uplink and downlink ratios that are used in the previous

equations can be interpreted as follows

UL
— Tdata (53)

dyL = 7oL 0L
Tdata+Tdata

DL
Tdata (54)

OpL = -pL ,..OL
Tdata+Tdata
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Energy efficiency of the Massive MIMO system is measured in (bit/Joule) and can
be represented as the ratio between capacity limits that are derived in (4.3) for downlink
capacity and (4.4) for uplink and consumed power that are shown in (5.1) and (5.2) as the

following equations show

EEUM = DL UL 0L (5.5)

DL CDL
EE"" = DL UL DL oo (5.6)
pilot pBS , _pilot pUE FNp+T |+ pilot p
N T -  pcC
Tconr wBS Tconr wUE Tconr wBS

The previous equations represent the uplink and downlink energy efficiency

respectively where p is the circuit power and { is the static circuit power.

5.2 Numerical Illustrations

Our numerical illustrations show how the exponential correlation factor would
affect the energy efficiency behavior [9]. We choose to have 0 splitting between p and ¢,
also we set the value of p+{ equals to 0.02x107¢ (Joule/channel use). In the simulation

part, to have identical uplink and downlink energy efficiency we let ay; = ap;, = 0.5.
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Figure 5.1: Block diagram for the simulation process.
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Figure 5.2: Energy efficiency as a function of exponential correlation factor with signal to
noise ratio equals to 20 dB [9].
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Figure 5.2 shows the energy efficiency of the Massive MIMO (in bit/Joule) with
signal to noise ratio equals to 20 dB. We can see number of curves where each curve
indicates different number of base station antenna where the scenario of having 500
antennas gives us the highest energy efficiency while we have the lowest energy efficiency
by having 50 antennas. Also, it is shown that the highest energy efficiency is occurring
when the correlation factor is 0 and it decreases gradually until we get the lowest energy

efficiency at 1 correlation factor.

Transmit Power [u Joule/channel use]

——50 antennas l
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- - =500 antennas ||

10'4 1 ! L ! ! L ! 1 !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Correlation factor

Figure 5.3: Transmit power as a function of exponential correlation factor with signal to
noise ratio equals to 20 dB [9].

74



Figure 5.3 demonstrates the Massive MIMO transmit power (in u Joule/channel
use) with SNR equals to 20 dB. We can see three curves each curve represents different
number of base station antennas. We can see that the highest transmit power is occurring
when the number of base station antennas is 50 while the lowest transmit power is
happening when we have 500 antennas in the base station. Also, it is noticeable that the
highest transmit power occurred when the correlation factor is 0 and it decreases regularly

until we get the lowest transmit power at correlation factor of 1.

9
10 T T T T T T T T T

Energy Efficiency [bit/Joule]

107 1 | | 1 | 1
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
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Figure 5.4: Energy efficiency versus correlation factor with different SNR values.
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Figure 5.5: transmit power versus correlation factor with different values of SNR.

Figure 5.4 shows energy efficiency as a function of correlation factor with 50
antennas at the base station. We can see three curves each one indicates different SNR
value where the highest energy efficiency is occurring when SNR equals to 30 dB while
we have the lowest energy efficiency by having 0 dB. Also, it is shown that the highest
energy efficiency occurred when the correlation factor is 0 and it decreases slowly until we
get the lowest energy efficiency at fully correlated antennas with correlation factor equals
to 1. Figure 5.5 shows transmit with 50 antennas at the base station. Also, there are three

curves each one represents different number of SNR values. We can realize that the highest
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transmit power is occurring when the value of SNR is 30 dB while the lowest transmit
power is occurring when we 0 dB. Also, it is clear that the highest transmit power occurred
when the correlation factor is 0 and it decreases regularly until we get the lowest transmit

power at 1 correlation factor.
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Figure 5.6: Energy Efficiency as a function of the number of antennas at the base station
[99].
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Figure 5.7 : Transmit Power as a function of the number of antennas at the base station
[99].

Energy efficiency is shown as a function of the number base station antennas.
Figure 5.6 shows a comparison between different correlation factors of exponential
correlation model. It is shown that the energy efficiency is improving by increasing the
number of antennas in the base station. the main observation from this figure is that the
energy efficiency is getting higher when the correlation factor value is getting lower.
Transmit power is shown in Figure 5.7 as a function of number of antennas at the base
station. Figure 5.7 shows three curves where each one represents different correlation

factors for exponential correlation model. It is shown that the transmit power is decreasing
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by increasing the number of antennas in the base station. It is observed that the energy
efficiency has different behavior compared with the transmit power where by increasing
the number of antennas in the base station, the energy is increasing while the transmit

power in decreasing.
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Chapter Six: Conclusion and Future Work

6.1 Conclusion

in the previous two decades, the demand for wireless data traffic has been
increasing rapidly while the available electromagnetic spectrum range is limited. Wireless
networks are connecting billions of smartphones, tablets and wireless devices where these
devices are demanding higher throughput and much lower latency to their applications.
Moreover, the wireless systems will keep consuming more energy. Thus, the Fifth
generation (5G) wireless networks have several requirements such as providing higher data
rate, serving larger number of users simultaneously and being more energy efficient. One
of the promising technology that can meet the above requirements is Massive Multiple
Input Multiple Output (MIMO). The proposed concept of massive MIMO is to equip the
base station with hundreds of antennas which is larger than the number of users and to
serve them using the same time-frequency resources.

In the first part of this dissertation, the exponential correlation model is used and
implemented to the Massive MIMO system model. linear minimum mean square error
(LMMSE) is used as a pilot based channel estimator for the uplink channel. The effect of
the spatial correlation on the accuracy of the channel estimation is investigate. We

compared different spatial correlation models for ideal and non-ideal case scenarios.
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Because of the channel reciprocity, the CSI will be the same for uplink and downlink data
transmission. It is proved that there is more accurate channel estimation when having
higher SNR values.

In the second part, the spectral efficiency for uplink and downlink of the LMMSE
estimators are studied where spatial correlation models are applied to the system to
generate the channel covariance matrix. The lower capacity of the uplink and downlink
data transmission are derived to investigate the impact of using exponential correlation
model. The lower capacity bound is calculated based on imperfect knowledge of the
channel where pilot based estimator is used. In the first section of Chapter 4, there is one
cell system model with one base station that is equipped with N antennas and serving single
user terminal. In the second part, we have a single cell system. The system model consists
of a base station with multiple antennas that is serving multiple antenna user where. It is
shown that the spectral efficiency is enhanced by having larger number of base station
antennas which proves the scalability of Massive MIMO systems.

In the last part of this dissertation, The transmit power and energy efficiency of the
Massive MIMO system are investigated. The transmit power is represented as the energy
consumed by the amplifier divided by the coherence time while the energy efficiency can
be expressed as the ratio between spectral efficiency and emitted power. The impact of the
channel spatial correlation on the energy efficiency is studied where it is shown that we
have higher energy efficiency when we use higher number of base station antennas while

the transmit power is decreasing when the number of base antennas are increasing.
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6.2 Future Work

As mentioned in section 2.2.3.2, there are several limitations in Massive MIMO

systems need to be studied. There are several possible directions that could be a good

research topic in Massive MIMO in the future:

Pilot contamination is one of the challenges that need to be tackled and
investigated. This issue would affect the performance of the Massive
MIMO badly. One solution is to increase the cell size to eliminate the
contamination but in that case there will be power interference came from
neighboring cells. The other solution is to change the factor of frequency-
reuse. Though, this solution will affect the Massive MIMO performance and
reduce the spectral efficiency. There must be an appropriate system design
that balance between the cell size and the factor of frequency- reuse to
reduce the effect of pilot contamination.

One of the important issues is designing Massive MIMO system
architecture that could be combined easily with current practical systems
such as 3G, 4G and LTE. The new thoughts and the promising technologies
that could be used in the upcoming 5G networks such as Massive MIMO or
millimeter wave need to be combined smoothly with the wireless standard
that are used today.

In our work that is published in 7™ IEEE CCWC, using pilot-based LMMSE
estimator we could improve it by using different types of estimators such as

Zero Forcing (ZF) and Maximal Ratio Combining (MRC).
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e In our work that is published in 19" IEEE ICCIT, it is assumed that there is
ideal hardware. We could improve this work by investigating the impact of
having non-ideal hardware and see how would this limit the performance of

the Massive MIMO system.
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Abstract—In this paper the impact of exponential correlation
model on massive multiple input multiple output (MIMO) channel
estimation is analyzed using a large number of antennas in the
base station (BS) and a user terminal. We consider pilot-based
channel estimation in the UL channel. The Linear minimum mean
square error (LMMSE) estimator is used to investigate the effect
of correlation factor on the average mean square error (MSE).
Different number of antennas and several signal to noise ratio
(SNR) values are implemented to see the estimation accuracy in
each case. The effect of pilot length on the LMMSE channel
estimator and its relationship with the exponential correlation
model is investigated. It is shown that for low SNR values, the
exponential correlation model has high impact on channel
estimation.

Keywords—Massive MIMO; Channel State Information;
Channel Estimation; Time Division Duplix; Correlation Factor;
Pilot Length; Signal to Noise Ratio; Mean Square Error; Base
Station

I. INTRODUCTION

Demand for higher data rate in wireless network will keep
growing whereas the available electromagnetic spectrum is
limited [1], [2]. Unlike fiber communications where it is
applicable to meet the future demand, wireless communications
are seeking for clever thoughts and new technologies [3]. One
of the latest proposed technologies is massive multiple input
multiple output (MIMO), also called large-scale MIMO, and it
is known for its promising potentials [4]. [5]. It is basically based
on equipping the base station (BSs) with a much larger number
of antennas compared to the number of users [3]. [4]. The need
to achieve accurate channel state information (CSI) has led to
time division duplex (TDD) operation mode which gives the
massive MIMO the ability to reach any desired number of
antennas in the BS terminal since the number of training
sequence is directly proportional to the number of users [6]. [3].
At the BS terminal, CSI is essential to achieve the optimal
performance and to reap the benefits of this technology [7]. [8].

Massive MIMO system will consists of few hundreds of
antennas instantaneously serving a big number of terminal users
and sharing the same frequency [9]. This new technology has
several benefits. one of them is improving spectral efficiency to
meet increasing demand especially in dense metropolises and
providing secure broadband network [1], [10]. Also, reduced
transmitter/receiver complexity would cuts the cost of the
components, improve the power efficiency and add more
simplicity to the signal processing [3], [11].

User Terminal
Base Station

Fig. 1. The channel between the base station that has a big number of antennas
and a user terminal.

Channel estimation accuracy is very important factor that
could limit wireless spectral efficiency and it attracts the
attention of several researchers [12], [13]. The linear minimum
mean square error (LMMSE) estimator shows decent
performance that goes with any value of SNR [12]. However, it
has some challenges to obtain its optimal performance includes
having perfect knowledge of the channel matrix [6], [14].

Notation: throughout this paper, notations that are written in
bold lower case represents column vectors, such as x. However
bold upper case represents matrices, X. The transpose of X is
denoted by, XT, its conjugate is expressed by, X*, and X" for
conjugate transpose. I is the identity matrix with appropriate
dimensions for the system. The expected value operation for x
is represented by E{x} and the conditional expected value for x
with respect to y is denoted by E{x|y}. Qis the covariance
matrix and X is the mean where the complex Gaussian vector x
is expressed by Xx~CN (X, Q).

The following parts of this paper are organized as follows:
the system model is described in section II. In section III the
exponential correlation model is introduced and its theoretical
concept is explained. The uplink channel estimation and the
LMMSE estimator conception described in section IV.
Simulation results are obtained and analyzed in section V.
Section VI is the last section of this paper where the viewpoints
are wrapped up and concluded.
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II. SYSTEM MODEL

The main part of this work is to analyze the relative
estimation error for the UL channel which is exposed to
interference due to the nature of wireless channel. Our system
model consists of a big number of N-antennas in the BS terminal
and connected to a single antenna in the user terminal as shown
in Fig.1. This system is a special case of massive MIMO and the
protocol that is used in our system is TDD between the two sides
of the link [15]. Since the estimation accuracy in TDD protocols
is independent of N, we are able to increase the number BS|
antennas to a very large number [6]. [16] .

By taking advantage of channel reciprocity., we are
maintaining continues CSI to detect UL data information [17].
The block-fading channel between the two terminals is denoted
by h and modeled as Rayleigh block fading x~CN (0,R).
where R is represented as follows

R = E{hh"} (1)

We are assuming that the statistical distribution is known by
the base station terminal. The UL system model is based on pilot
for the channel estimation where y represents the received signal
at the BS

y=hd+n (2)

where d € C is the received signal that could be the known pilot
or the data signal, and its average power is

p = E{|d|*} &)

The noise is denoted by n and it consists of two combined terms
as follows

n = Npgise + Ni¢ (4)

where n,,ise is the noise of the independent receiver that has
zero mean and (02gI) covariance, while nyg is the interference
noise from other transmissions.

We are assuming that m; has zero mean and E{n;mf}
covariance and it is denoted by S. The conditional covariance
matrix is defined as Qg = E{nyn!l|F€}. where ¥ is the
channel realization. In our analysis, we are making an
assumption: regardless of the number of antennas in the base
station, the spectral norm of R is uniformly bounded [18].

ITI. EXPONENTIAL CORRELATION MODEL

The exponential correlation is a model that is used to
generate the channel covariance matrix and explained in more
details in [19]. This model is assuming that R has two elements
(i, )) as follows

i<j

sri-, -
= i) ®

sy,

where r is the correlation factor between the neighboring
branches and § is a scaling factor.
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The value of correlation factor 7 is bounded between 0 to 1
and its phase £r is the arrival or departure angle. This model
may not be the most accurate model for real-world situations.
But, it is still simple model with small number of parameters
which allow one to study the effect of the correlation factor on
massive MIMO channel estimator [20]. The eigenvalue spread
in R is represented by |r| which is the correlation factor, while
the corresponding eigenvectors are defined by 4r. Since the
angle of » has no impact on the mean square error, we assume
that r is a real value.

IV. UPLINK CHANNEL ESTIMATION

To estimate the channel h, we take the received uplink
signal y in (2) and compare it to the known uplink pilot signal
d where the power of user equipment (pVF) equals to |d|?. The
estimator in our work is the linear minimum mean square error
estimator (LMMSE). where the estimation of the channel
realization is represented as follows

h =d'RY 1y (6)

The covariance matrix of y is represented in (7) and it
consists of combined terms that include the average power, R
matrix, and the covariance of the received signal and the noise

Y = E{yy"} = pUER + S + a5l (7)

The error covariance matrix that is used to evaluate the total
MSE is represented as follows

c=E{(h-h)(h-h)"}=R-p"RY'R (3

by getting the value of C which is error covariance matrix in (8)
we can get the total value of MSE

MSE = E{ b h|} = tr(C) )

Based on the previous observations in (9). the channel can
be represented as a combination of two components

h=h+e (10)

where the value of LMMSE estimate is denoted by h. while the
unknown estimate error of the process is represented by the
notation €. The two components h and € are uncorrelated and
have zero mean for both of them. The covariance matrix for h
is represented as ]E{ ilil"} = R — C while the covariance matrix
for € is formed as E{ e€”} = C. where the value of C was
derived in (8).

In the previous LMMSE estimate statement there was a
consideration of pilot signal d which is useful to reduce the total
MSE. Assume that the pilot length is B and we want to compute
the value of ill- =h+e€fori=1,..,B, by taking the average
we get
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_ B
h = € (11)
=1

| =

B
;Bi=h—

The total MSE of the estimate h for the case of having
uncorrelated noise is obtained as follows

B B
1 1
515« Ezﬁ
j=1

i=1
from (12) we can see that by increasing the pilot length B, the
total MSE of the estimate h goes to zero for the ideal case
scenario.

| =

14

H
_6©

=3 12

V. SIMULATION RESULTS

The channel estimation accuracy using LMMSE estimator
with N=100 antennas is demonstrated in Fig.2. The relative
estimation error per antenna (MSE,.jq¢ive =tMTSRE)) is presented
versus correlation factor. The channel covariance is created
using exponential correlation model with coefficient values
between 0 to 1 and an increment of 0.01. Fig.2 shows that the
higher the SNR value the more accurate the estimation and we
can see slight improvement in the estimation accuracy with
higher correlation factor values.
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Fig. 2. Relative estimation error versus correlation factor for Linear MMSE
estimator. The signal to noise ratio values are changed form 0 to 20 dB with an
increment of 5 dB.

Fig.3 demonstrates the relative estimation error per antenna
as a function of correlation factor with different number of
antennas. We can see the enhancement of the estimator
performance by increasing the value of correlation factor and
getting closer to 1. Despite the minor improvement at the
estimation accuracy at the beginning, increasing the number of
antennas in the BS and reaching a large number does not change
the estimation accuracy in the case of having the same system
parameters.

10° T T T T T T T

B Nfrom 210 129\
g \\\ 5
H A\
F10'E B
5
3
5
o
§
F
&
2102}
k]
2
10° ! L L L L L 1
0.1 0z 03 04 05 06 07 08 08

Correlation Factor

Fig. 3. Relative estimation error versus correlation factor for Linear MMSE
estimator with different number of antennas N in the BS.
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Fig. 4. Relative estimation error versus pilot length for Linear MMSE
estimator. The SNR value is 0 dB and the correlation factor values are 0, 0.7,
and 0.9.

The effect of pilot length on the estimation performance is
shown in Fig.4. The relative estimation error is displayed versus
pilot length with N=50 antennas. The obvious remark is that we
can see the benefit of increasing the length of the pilot where the
estimation is getting more accurate. The covariance channel
matrix R is created using the exponential model. We start
studying the impact of pilot length by choosing 0 dB SNR, the
correlation factor is changed three times to see its effect. From
Fig.4 we can see that the correlation factor has a large influence
on the channel estimation accuracy where the higher the
correlation factor the better the performance. Fig.5 is basically
similar to Fig.4 but with 15 dB SNR where the relative
estimation error per antenna is illustrated as a function of B with
N=50 antennas. We can see that the impact of correlation factor
choice is limited due to having higher SNR. Still the higher the
correlation factor the better the estimation accuracy.
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Fig. 5. Relative estimation error versus pilot length for Linear MMSE
estimator. The SNR value 1s 15 dB and the correlation factor values are 0, 0.7,
and 0.9.

VI. CONCLUSION

This paper investigated the estimation accuracy for massive
MIMO system that has a large number of antennas in the BS
and a single antenna in the user terminal. The impact of
exponential correlation model on the relative estimation error
per antenna is analyzed using pilot based LMMSE estimator for
the UL channel. Simulation results have shown that at larger
SNR values the channel estimation is more accurate. The
increase in the number of antennas at the BS has a slight impact
on the estimation error per antenna until we exceed 50 antennas
then increasing N has no impact in the exponential correlation
model. At higher SNR values, we observed that the impact of
exponential correlation model is limited.
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Abstract— The use of massive multiple input multiple output
(MIMO) systems can improve the performance of energy
efficiency and increase the capacity limits due to the improvement
of the spatial correlation. The effect of the exponential correlation
model on the massive MIMO energy and spectral efficiencies is
investigated using a base station (BS) with a large number of
antennas and a single antenna user terminal. To generate the
lower capacity bounds, we used least minimum mean square error
(LMMSE) as a pilot based channel estimator for the uplink
channel. Different scenarios are implemented by using several
numbers of BS antennas and changing the signal to noise ratio
(SNR) values. The spectral efficiency was more sensitive to the
change of the correlation factor when using higher SNR. It is
shown that for the higher number of BS antennas we have, more
energy efficient performance we get.

Keywords—massive MIMO; channel state information; spatial
correlation; signal to noise ratio; base station

I. INTRODUCTION

In the past few years, the request for wireless throughput was
keep growing while the available range of electromagnatic
spectrum is limited [1], [2]. Massive MIMO system is a new and
promising technology that grabbed the attention of researcher
due to its ability to improve the capacity limits and increase the
energy efficiency [3], [4]. In the massive MIMO systems, the
base station has a couple of hundreds of antennas and
communicates with much smaller number of users where each
terminal has single antenna [5], [6]. Commonly, the
communication systems are operating in such a way where the
BSs communicate with each terminal user separately both in
time and frequency which is not the optimal case [7]. In massive
MIMO systems, BS antennas are serving a number of user
terminals at the same time and sharing the same frequency [8].

Massive MIMO systems have their own benefits which
include improving spectral efficiency to meet the higher
demand in the future especially in dense areas [9]. Also, this
new technology will provide more secure networks and more
efficient system in terms of energy [2]. The cost of the hardware
components in the BSs will be reduced due to the simplicity of
the signal processing [1], [3]. The enhancement of the spectral
efficiency in this new technology can be achieved without
needing to add more expensive and sophisticated BSs [10]. Due

User Terminal
Base Station

Fig. 1. The uplink and downlink channel between the base station terminal and
the user terminal.

to the massive spatial diversity, the response of the wireless
channel is much smoother [2]. The large number of antennas is
the main reason behind energy efficiency improvement where
the energy is sharply focused into small space [9], [11].

To get accurate channel state information (CSI), it is
important to use time division duplexing (TDD) as operation
mode to get the benefits of reciprocity [12]. [13]. By using TDD
mode we obtain several advantages, one of them is the
knowledge of the uplink channel need to be obtained only by
the BS to operate coherently [5]. One of the benefits of using
TDD is having the ability of reaching any wanted number of
BS antennas since the estimation accuracy in this protocol is
independent of the base station antennas number N [10]. The
channel estimation accuracy will not only be immune of getting
larger number of antennas but it will be improved in case of
having a perfect knowledge of the correlation structure [5].

The accuracy of channel estimation is critical factor that has
great impact on the spectral efficiency [14], [15]. Based on the
channel estimation procedure we can derive capacity limits for
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Fig. 2. TDD system with coherence time devided into different stages for uplink
and downlink.

uplink and downlink transmission of data. The precision of CSI
plays a significant role in the calculation of capacity bounds
[16]. [17]. The energy efficiency (EE) can be described as the
ratio between spectral efficiency (SE) and emitted power [3].

The next segments of the paper are ordered as follows:
system model is defined in section II where the uplink and
downlink system models and channel estimation model are
listed as subtitles. Section III is the exponential correlation
model where the channel spatial correlation is described in
details. Afterword, the uplink and downlink data transmission
is explained in section IV and section V where the spectral and
energy efficiency numerical illustrations are shown. Finally, the
last section of this paper is the conclusion where our views are
wrapped up.

II. SYSTEM MODEL

In this paper we are mainly studying energy efficiency and
spectral efficiency bounds for UL and DL data transmission.
The model of our system consists of single base station with
large number of antennas. Base station terminal sends and
receives data from a user terminal as presented in Fig 1. The
protocol that is used between the two terminals of our system is
TDD as shown in Fig 2. where we are able to increase the
number of BS antennas to any desired value because the
accuracy of channel estimation is independent of the number of
base station antennas [18].

A. Uplink System Model

Due to the channel reciprocity we are able to maintain
continues CSI to detect uplink data information [19]. Between
the two terminals there is Rayleigh block fading x~CN (0, R).
where the channel represented as h and the channel covariance
matrix R denoted as

R = E{hh"} (1)

‘We assume that the statistical distribution of the channel is

known by the BS where the channel estimation in the system

model is pilot based. Equation (2) represents the received signal
y at the BS as follows

y=hd+n 2)

p = E{|d|*} 3

In equation (2) the received signal d € C and it could be
either pilot signal or data signal and the average power is
represented in (3). The following equation denotes the noise n
that is a combination of two terms

n = Nygige + Nif 4)

where n;¢ represents other transmissions interference noise and
Noise denotes the independent receiver noise that has (o21)
covariance and zero mean. For the interference noise ny , it is
assumed that it has zero mean and its covariance represented
as E{n;m!}. The conditional covariance matrix with a channel
realization of # is represented as follows

Qs = E{nynf|3} ©)

In our system analysis we are assuming that for R we have
uniformly bounded spectral norm independently to the number
of BS antennas.

B. Downlink System Model

For the channel estimators that are based on pilot we use
downlink channel as shown in Fig. 1. The received downlink
signal is flat fading channel that can be represented as follows

z=hTs+v (6)

where s € CN*! and it could be either pilot signal or data signal
that is stochastic and has zero mean.

The covariance matrix of the signal s is W = E{ss”} and
the average power is the trace of W. On the other hand, the
additive term v is the noise and it is a combination of two terms

V = Vpoise T Vif 7

where v is interference noise and v, denotes the
independent receiver noise.

C. LMMSE Uplink Channel Estimation

In our work we used linear minimum mean square error
(LMMSE) where we compare the received signal with the
identified uplink pilot signal. The following equation represents
LMMSE estimator of the channel realization

h=dRY 1y (8)

where d is the known pilot signal. The value of user equipment
power (pYF)equals to |d|%. The covariance matrix of the
received signal y consists of a combination of several terms
including average power of user equipment, covariance channel
matrix and the noise

Y = E{yy"} = pYPR + S + 05l 9)

c=E{(h-n)(h-n)"} =R-p"*RY-'R  (10)
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The total value of mean square error can be derived based on
the value of C in (10) as follows

MSE = E{ |h - h||’} = tr(C) (11)

Based on (11) we can represent the channel as a combination
of two terms includes h which is the LMMSE estimate value
and the unknown estimate error € where the channel can be
represented as follows

h=h+e (12)

III. EXPONENTIAL CORRELATION MODEL
The exponential correlation is a channel covariance model
which can be implemented to create channel covariance matrix

[16]. It is assumed in this model that R consists of two elements
(i, j) as represented in the following equation

St
w={ 3,

i<j
=) (13)
i>j

where § is a factor that is used for scaling and r is the
correlation factor for the adjoining subchannels.

The value of correlation factor 7 is limited between 0 and 1
while the angle of arrival and departure is 2r. The exponential
correlation model might not be the most accurate model to
create the channel covariance matrix but it is still easy to be
implemented [20]. The value of correlation factor |r| represents
R eigenvalue spread while 2r denotes the eigenvectors for R.
We are assuming that 7 is a real value since its angle has no
effect on the mean square error. The increase in correlation
factor affects the spectral efficiency in a similar way of
decreasing the signal to noise ratio.

IV. DOWNLINK AND UPLINK DATA TRANSMISSION

For our analysis we study the channel capacity using TDD
protocol that is shown in Fig. 2. We derive the lower capacity
of the uplink and downlink data transmission and see the impact
of the exponential correlation model. The lower capacity bound
is studied based on imperfect knowledge of h where we used
pilot based estimator (LMMSE). The imperfect knowledge of
CSI in BS and user equipment (UE) terminals are denoted as
HBS and H VE respectively. while H is the actual state of the
channel. The downlink capacity could be expressed as

CDL —

DL
Tdata
Teohr

max I(s; z|H, HBS, 1 VE) (14)
£(8|# BS)( s3}=pBs

where the mutual information for the signal that is received z
and the signal of data s for 7, H'BS and H UE is denoted as
I(s; z|H,HBS, HYE). On the other hand. the capacity for
uplink system can be derived as follows

CUL —

UL
Tdata
Teonr

max I(d; y| 3, HBS, 3 VE) (15)

£(d|H UE):ENanz)=pvE

The main point in this section is to study the behavior of the
capacity bounds when the correlation factor goes from 0 to 1
which gives us an idea of how the exponential correlation factor
would affect the capacity bounds.

A. Lower Limits of Channel Capacity

For the lower bound capacity, we are assuming that we have
Gaussian noise in the interference and for the downlink we
assume that we use single stream. Furthermore, we use channel
estimator based on pilot and due to maximizing Gaussian
distribution we have uncertain channel state information for
uplink and downlink.

Based on (14) and (15) and by using (18) and (19). DL and
UL capacities are represented as

TDL

cPt = Cg;l;ver = ﬁm{bgz(l + SINR?()Lwer vPi) Y (16)
UL

CU = Ciger = T:: E{logz(1 + SINR{5e, (V') }  (17)

where the vectors v°F and vV represent beamforming and
receive combining respectively. Both vectors are having unit
norm and they are a function of h.

SINRp;, (vPY) =
|E{hHVDL|j‘(—UE}|2

=[1VE |t UE)+ 42 (18)
{|hHVDL|2|ﬁUE}_|E{hHVDL|ﬁUE}|2+E%]m

SINRPE, (vUL) =

|E{hHVUL|ﬁBS}|2

19)
~ ~ ((vOL i s uLesy
{thVUL|2|5(BS}_|E{hHVULp{BS}lz*EUV ) (QJ(:l‘j’gs”" 17TBS)

B. Simulation Results

Our numerical illustrations are conducted to see the behavior
of the capacity limits based on different values of correlation

factor. The average SNR for uplink and downlink channel are

UE @ and pBS tr(;() , respectively. We take into consideration

Nogs Nogg

the value of SNR where we use two different values 0 dB and
30 dB. We assume that the values of uplink and downlink data
percentage are equal to 0.45 and by making this assumption we
get identical capacities for both cases. Fig. 3 considers a
scenario with SNR equals to 0 dB and number of antennas N
equals to 50 and 200 in the BS terminal. The figure shows
spectral efficiency, with a unit of (bit/channel use). versus the
exponential correlation factor. The maximum value of the
spectral efficiency is reached when we have zero correlation,
which means having completely independent subchannels.
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Fig. 3. Spectral efficiency versus exponential correlation factor with signal to
noise ratio equals to 0 dB.
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Fig. 4. Spectral efficiency versus exponential correlation factor with signal to
noise ratio equals to 30 dB.

The bounds of spectral efficiency keep decreasing when we
increase the correlation factor until we get to correlation factor
of 1 where we have the worst channel capacity. Also, we can
see that at larger number of BS antennas we have higher
channel capacity.

Fig. 4 shows similar scenario as in Fig. 3 except that the
SNR value equals to 30 dB. The capacity limits are much higher
compared to the limits in Fig. 3 due to using larger SNR. We
can also observe that the capacity behavior has better
performance when we have larger number of antennas in the
BS terminal. It is obvious that the spectral efficiency is more
sensitive to the change of exponential correlation factor.

V. ENERGY EFFICIENCY

Energy efficiency can be expressed as the ratio between
spectral efficiency and emitted power and it is measured in
(bit/Joule). The transmit power in (Joule/channel use) is
represented as the energy consumed by the amplifier divided by
the coherence time. The following equations (20) and (21)
represent uplink and downlink transmit power respectively

DL UL UL
Eamp =a Tpilot sz Tpilot pUE 7'pilot pUE (,)0)
Teohr Teonr @BS T wUE T wUE =
UL cohr cohr cohr
DL UL DL
Eamp =a Tpilot sz Tpilo( pUE Tpilo( pBS (,)1)
T T TP\ Teonr @BS T Teonr wUE) T Teopr wBS T
cohr/ pp, cohr cohr cohr

where @B and wUF are the power efficiency of the amplifiers
at the two terminals where they are bounded from 0 to 1. The
uplink and downlink ratios that are used in the previous
equations can be interpreted as follows

Tk
— ta 71
@Ay = TPL oy UL (22)
Tdata*Tdata
DL
T,
data (23)

%L = 7P Wt

The energy efficiency can be represented as a ratio between
capacity and consumed power as the following equations show

cuL
EEVL = (24)
DL UL UL =
Tpilot pBS  Tpilot p"Eu,pK\fpilot pUE
Teohr wBS Teohr wUE } Tcohr wUE
cbL
EEPL = (25)
DL UL DL -
Tpilot pBS  Tpilot p”"'“,p“\LTP“Dt pBS
Teonr wBS Teonr wUE ) Teohr @BS

The previous equations represent the uplink and downlink
energy efficiency respectively where p is the circuit power and
{ is the static circuit power.

A. Simulation Results

Our numerical illustrations show how the energy efficiency
behavior would be affected by the exponential correlation
factor. We choose to have 0 splitting between p and {, also we
consider 0.02x107® (Joule/channel use) for p+¢. In our
simulation, to have identical uplink and downlink energy
efficiency we let ay;, = ap;, = 0.5.

Energy Efficiency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1
Correlation Factor

Fig. 5. Energy efficiency as a function of exponential correlation factor with
signal to noise ratio equals to 20 dB
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Fig. 6. Transmit power as a function of exponential correlation factor with
signal to noise ratio equals to 20 dB

Fig. 5 demonstrates energy efficiency (in bit/Joule) with
SNR equals to 20 dB. We can see three curves each one
indicates different base station antenna numbers where the
scenario of having 500 antennas gives us the highest energy
efficiency while we have the lowest energy efficiency by using
50 antennas. Also, it is noticeable that the highest energy
efficiency occurred when the correlation factor is 0 and it
decreases gradually until we get the lowest energy efficiency at
1 correlation factor. Fig. 6 shows transmit power (in u
Joule/channel use) with SNR equals to 20 dB. We can see three
curves each one represents different number of BS antennas.
We can realize that the highest transmit power is happening
when the number of BS antennas is 50 while the lowest transmit
power is occurring when we have 500 antennas in the base
station. Also, it is clear that the highest transmit power occurred
when the correlation factor is 0 and it decreases regularly until
we get the lowest transmit power at 1 correlation factor.

VI. CONCLUSION

Massive MIMO as a promising technology can develop the
spectral efficiency and energy efficiency due to the enhanced
spatial correlation. In our paper we investigated the effect of
exponential correlation model on the performance of the energy
efficiency and spectral efficiency where we used a massive
MIMO system with a large number of BS antennas and single
antenna in the user equipment terminal. By using pilot-based
channel estimator we generated the lower bounds of the channel
capacity where we noticed that the capacity is more sensitive to
the correlation factor variation when using higher SNR. In
terms of transmit power, when we are using higher number of
base station antennas we have lower transmit power and vise
versa. Also, it is observed that we have higher energy efficiency
when we use higher number of BS antennas.
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Spatial Correlation Influence on The Channel
Estimation and Spectral Efficiency for Massive
MIMO Systems

Saleh Albdran, Ahmed Alshammari, and Mohammad Matin

Abstract— The need for more wireless communication will keep
increasing while there is limited electromagnetic spectrum. To
meet this demand, new clever and efficient technologies need to be
implemented. Massive MIMO as a new technology would improve
the data throughput due to the enhanced spatial correlation. By
deploying exponential correlation model, the impact of the channel
spatial correlation on the energy and spectral efficiencies of
massive MIMO is studied. This paper investigates a system model
that has a base station (BS) with a large number of antennas and
one user equipment with multiple antennas. The linear minimum
mean square error (LMMSE) is used as pilot based estimator to
create the lower capacity limits. Also, the influence of the channel
spatial correlation on the estimation accuracy is investigated.
Several scenarios are applied by adding different base station
antenna numbers and several values of user terminal antennas.
The spectral efficiency tends to be sensitive to the variation of
correlation factor in the case of using higher signal to noise ratio
(SNR). It is observed that the system is more energy efficient with
higher number of antennas in the base station. Moreover, the
spectral efficiency is getting higher with greater number of
antennas in the user equipment.

Index Terms— base station; massive MIMO; user equipment;
channel state information; spatial correlation

I. INTRODUCTION

URING the previous decade, the demand for wireless data

traffic has been increasing rapidly while the available
electromagnetic spectrum is limited [1]. This high demand will
keep growing due to the large growth in the number of smart
phones and tablet devices [2]. By 2020, it is forecasted that the
mobile data traffic will surpass 30 Exabyte a month while it was
6.2 Exabyte a month in 2016 [3]. The number of connections
and mobile devices are expected to increase also from 7.9
billion in 2016 to more than 11.6 billion by 2020.

It is necessary to increase the wireless throughput by
applying efficient new technologies that can be implemented in
reality [4]. [5]. The wireless spectral efficiency depends on
several factors such as channel estimation accuracy, spatial
correlation, SNR and resources of signal processing [6]. The
implementation of multiple antennas in the BS is significantly
affective approach to enhance the wireless system and improve
its spectral efficiency [7]. The multiple input multiple output
(MIMO) is engaged into several wireless standers such as LTE-

Advanced [8]. [9]. One of the improved shape of this
technology is Multiuser MIMO where the base station is
equipped with multiple antennas and serves multiple users
simultaneously where each user has single antenna [8]. This
method has its own problems such as multiusers interference
and channel state information (CSI) acquisition.

User Terminal
Base Station

Fig. 1. Wireless channel between the BS and the user terminal for uplink and
downlink.

The ultimate form of multiple antennas technology is called
Massive MIMO [10]. The proposed concept of massive MIMO
is based on equipping the base station (BS) by hundreds of
antenna arrays which is much larger than the number of user
terminals. Theoretically, massive MIMO can provide higher
capacity that can be increased by simply having more antennas
at the BS [1]. Also, the large number of antennas in the BS can
reduce the transmit power for uplink and downlink
transmissions. Moreover, because of the channel reciprocity,
the overhead pilot sequences are linearly related to the number
of user terminals and have nothing to do with the number of
antennas in the BS. Since the number of BS antennas is higher
than the users, the channel estimation will be more accurate and
the signal processing will be simpler [11]. The great number of
BS antennas would increase the energy efficiency since the
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antenna beam is focused sharply into limited area. Thus, each
user would only receive the intended signal with the lowest
amount of interference from other nearby channels [12].

. - uu b um
UL DL DL
. Tpllor data Tpilot Tda:a

Coherence Time T,oper

Fig. 2. Time division duplixing system that has coherence time divided into
several stages for UL and DL.

Massive MIMO depends on measuring the channel
frequency response where either the BS terminal or the user
terminal sends known training signals and the receiver can
estimate frequency response [13], [14]. The environment of the
channels spatial correlation can affect the accuracy of the
estimated channel [7]. To have accurate CSL, the system should
operates in time division duplexing mode (TDD) [7]. [15]. As
shown in Fig. 2, the TDD system divides the coherence time
into several periods for uplink and downlink signals. There are
several benefits by applying TDD mode, one of them is having
more accurate channel estimation if there is a good knowledge
of the channel correlation structure [16]. Also in the TDD
systems, it is possible to escalate the number of BS antennas to
any wanted value since it has no impact on the accuracy of
channel estimator.

The spectral efficiency can be affected by different factors,
one of them is the accuracy of channel estimation [17]. [18].
Depending on the technique of channel estimation, it is possible
to get the channel capacity for uplink and downlink data
transmission. Channel state information precision is a
significant factor that would affect the calculation of the
channel capacity [19], [20]. After getting the spectral
efficiency, it is possible to derive the energy efficiency which
is the ratio between the emifted power and the spectral
efficiency [21]. The transmit power can be interpreted as the
ratio between the consumed energy by the amplifier and the
coherence time.

Notation: in this paper. The column vectors are represented
in lower case bold like x. On the other hand, the bold upper case
is a representation of matrices such as X. For matrix X, the
transpose is represented as X', the conjugate is X' and the
transpose of the conjugate is represented as X". E{x} is a
representation of the expected value of x, while E{x|y}
represents the expected conditional value of x with respect to y.

The upcoming sections of this paper are arranged as follows:
the system architecture is explained in section II, in which the
system models of UL and DL and exponential correlation
model are included as subsections. Section III includes the
LMMSE channel estimator which is explained in details.
Furthermore, the spectral efficiency for uplink and downlink is
described in section IV in which part of the simulation results
is shown. Section V is the energy efficiency and the transmit
power where the numerical illustrations are displayed. Finally,

section VI is the conclusion of this paper.

II. SYSTEM ARCHITECTURE

In this paper, it is taking into consideration a single cell
system model that is based on TDD. Since the accuracy of the
channel estimation is not depending on the number of BS
antennas N, it is possible to reach any desired number of N. The
base station has IV antennas and sends signals to single user
terminal as shown in Fig. 1. It is assumed that the channel for
uplink and downlink is spatially correlated using exponential
correlation model. Channel estimation accuracy is studied using
pilot based LMMSE. Also, the spectral and energy efficiencies
are investigated for UL and DL data transmission.

A. Uplink and Downlink System Models

To detect the uplink data transmission, the channel
reciprocity is playing a significant role that provide the system
with continues CSI [10]. Between the BS terminal and the UE
terminal we have Rayleigh block fading x~CN (0, R). where
R as a channel covariance matrix can be represented as

R = E{hh"} 1)

where h represents the block-fading stochastic channel between
the BS and the user equipment. It is assumed that the base
station knows the channel statistical distribution where the
system model has a pilot based channel estimator. The signal y
that is received by the BS is denoted as

y=hd+n (2)
p = E{|d|*} 3)

In the above equations, the received element is denoted as
d € C where it can be data or pilot signal. In equation (3), The
uplink average power is shown. The received noise can be
denoted as

n = Npgise + Nif 4)

where n is a combination of two terms, the first term is 1n,,4;se
which represents the independent received noise with zero
mean and covariance of (o3I). The second term is m;; which
is the interference noise from adjacent transmissions and it has
mean equals to zero and covariance equals to lE{nifni*'}}. With a
channel realization #, the conditional covariance matrix can be
shown as follows

Qs = E{n;mif|3(} ©)

We assumed in this investigation that for the channel
covariance matrix R, independent to the number of BS
antennas, there is spectral norm that is uniformly bounded. For
the downlink system model there is a flat fading for the received
channel that can be represented as

z=h"s+v (6)
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UV = VUnoise T Vif 0]
where v is the noise and s € CN*! is the received signal that has
zero mean and a covariance matrix E{ss”} where the average
power of v is the trace of the covariance matrix of s. The noise
v is a combination of two components, the first one is the
independent received noise and the second one is the
interference noise.

B. Exponential Correlation Model

To create the channel covariance matrix, the exponential
correlation model is utilized [22]. It is supposed that there are
two elements (7, j) for the channel covariance R and can be
peresented as follows

[R]={

where r represents the adjacent channel correlation factor while
the scaling factor is denoted by &. The component r is bounded
between O to 1 and the component £r denotes the angle of
arraival or departure. The exponential correlation model that is
used to create the covariance matrix may not be the most exact
model for real-world implemontations, yet it is simple to be
implemented [23]. The spread of eigenvalue of R is represented
as |r| while the eigenvectors of R is denoted as 4r. In our
system it is assumed that the value of r is real since mean square
error is not affected by the angle of r.

sri-i,
S(rf“)’,

i<j

8
i>j ®)

III. LMMSE CHANNEL ESTIMATOR

The least minimum mean square error (LMMSE) estimator
is applied for the UL channel etimation in which received signal
is compared to the defined uplink pilot signal [24]. For the
channel relization, the LMMSE estimator is defined as

h=dRY 1y )
where the identified pilot signal is denoted by d. The power in
the user terminal (pYF) can be represented as |d|?. For the
received signal y, its covariance matrix consists of few terms
such as covariance channel matrix, user equipment average
power, and the noise

Y = E{ yy"} = pYER + S + a5l (10)

c=E{(h-n)(h—h)"}=R-p"RY'R (11)

based on (11) where the value of C is shown, the mean square
error total value can be represented as

MSE = E{ ||h - h|}} = tr(C) (12)

h=h+e (13)

where the channel h is represented in terms of the LMMSE
estimate h and the unknown estimate error €.

A. Simulation Results

The numerical illustrations for the channel estimation are
conducted to analyze the accuracy of the LMMSE estimator.
The relationship between the mean square error and the trace of
the channel covariance matrix R is called relative estimation
error and can be represented as

MSE

MSE;e1ative = w(R)

(14)

The estimation error per antenna versus exponential
correlation factor is show in Fig. 3. The exponential correlation
model is applied to create the channel covariance matrix with
100 antennas in the BS. It is shown that the estimator is more
accurate with higher values of signal to noise ratio. Also, it is
noticeable that the estimation accuracy is affected by
correlation factor especially when correlation factor increases
and goes to 1.
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The channel estimation error versus exponential correlation
factor is show in Fig. 4. The covariance matrix of the channel
is produced using exponential correlation model and the SNR
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equals to 30 dB. It is indicated that the channel estimation
accuracy has slight improvement when the correlation factor is
increasing and getting closer to 1. When the number of BS
antennas is increased, there is a clear improvement at the
beginning then there is no more improvement in the estimation
accuracy by reaching large number of antennas.

IV. SPECTRAL EFFICIENCY FOR UPLINK AND DOWNLINK

The channel capacity is examined by utilizing TDD mode
which is displayed in Fig. 2. Mainly, lower spectral efficiency
is going under investigation for uplink and downlink data
transmission to understand the influence of using exponential
correlation factor. The pilot based estimator (LMMSE) is used
while the study of the lower capacity is depending on imperfect
channel knowledge. The real channel state is denoted as H
while H'VUE and H'BS are the imperfect knowledge of channel
state information for the user equipment and the base station
respectively. The capacity for the downlink transmission can be
demonstrated as follows

CDL =

DL
Tdata max ](s;zl}[,HBS,J{UE) (15)
Teonr { y(s|7 B8):( Isli3}<p®S

where I(s; z|H, H BS, H UE) represents mutual information of
the received and data signals for the actual state of the channel
and the imperfect knowledge of the channel. Similarly, the
uplink data transmission capacity can be expressed as

CUL=

Tt BS 4, UE

—data, max I(d; y|3, HBS, 7 UE) (16)
Teohr f(d|}[UE):E{Ild||%]5p”E

where 7(d; y|H, H BS, H UE) represents mutual information of
the data signal and received signal for the actual state of the
channel and the imperfect knowledge of the channel. The most
important point of this section is to investigate the behavior of
the spectral efficiency which may give an idea on the influence
of using the exponential correlation model when it goes from 0
to 1.

A. Channel Capacity

It is assumed that the interference noise is Gaussian for the
lower bound and assumed also the single stream is used for the
downlink. The estimator is pilot based and the CSI for the UL
and DL data are not certain because the Gaussian distribution is
maximized. The SINR values for uplink and downlink are
presented as follows

SINRDE, (v9) =
[e(ntvr U

{|hHVDL|2|ﬁUE}_|E{hHVDL|f(UE]|2+‘E{’5](E|77UE}+"65
P

an

SINRY, (V1) =
||l,:{hH‘,UL|ﬁ—BS}|z

2,7 ~ps12  HOVULH Qs +afg)vULI A BS)
{thVULl m}as}_|E{hHVUL|,{BS}| + MPU’?S

(1®)

By using (15) and (16) and based on (17) and (18), downlink
and uplink capacity limits are denoted as

TDL
€O > CPh,,, = 7942 E(log; (1 + SINREL, ., (v?1) ) (19)

TUL
€Ut = Clower = 75 2 E{logz (1 + SINRjgyer (V1)) } - (20)

where the beamforming vector is denoted as v°" and the receive
combining vector is denoted as vUL. The vectors v and vU-
are a function of h and they have a unit norm.

B. Simulation Results

In this paper, the numerical results are conducted to study the
behavior of the spectral efficiency. The exponential correlation
model is applied to generate the channel covariance matrix. The
vE tr(R)

2
Nogg

average uplink and downlink signal to noise ratios are p
s tr(R)

Nogg
uplink and downlink, It is assumed that the data percentage for
UL and DL are identical (equal to 0.45).

28, T T T T T T

and p® . respectively. To get identical capacities for
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Fig. 5. Spectral efficiency for data transmission versus correlation factor with 0
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Fig. 6. Spectral efficiency for data transmission versus correlation factor with
30 dB SNR.
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Fig. 5 considers a case with 0 dB SNR and 50 antennas at the
base station for the blue curve and 200 antennas for the red
curve. The result shows the spectral efficiency in (bit/channel
use) versus correlation factor. By having correlation factor of 0
(no correlation between the antennas) the spectral efficiency at
its highest values. The spectral efficiency will be decreasing
when the exponential correlation factor increases till reaching
correlation factor of 1 where the spectral efficiency reaches its
worst values. It is clear that the larger number of antennas at the
BS we have the higher spectral efficiency we get.

Fig. 6 demonstrates spectral efficiency versus correlation
factor which is similar scenario compared to Fig. 5 with
different SNR value. By using SNR of 30 dB. the spectral
efficiency is getting higher. In Fig. 6., channel spectral
efficiency tends to be sensitive to exponential correlation factor
due to using larger SNR. By having 200 antennas in the base
station, the spectral efficiency is having much better
performance.
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Fig. 7. Spectral efficiency for data transmission versus correlation factor with

30 dB SNR and N equals to 50.
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Fig. 8. Spectral efficiency for data transmission versus correlation factor with
30 dB SNR and N equals to 200.

Fig. 7. considers a different scenario with 30 dB SNR and 50
antennas in the BS. In this figure the number of user terminal
antennas is changed several times to examine the impact of
increasing the number of antennas in the user terminal. Fig. 7
shows that the highest value of the spectral efficiency is
achieved when there is uncorrelated subchannels at correlation
factor equals to 0. By increase the correlation factor, the limits
of spectral efficiency go down until reaching correlation factor
of 1. Also it is observed that at higher number of user terminal
antennas, there is higher channel spectral efficiency.

Fig. 8. displays similar situation to Fig. 8 with signal to noise
ratio equals to 30 dB and antennas equal to 200 at the base
station terminal. In this figure the number of antennas in the
user terminal is changed several times to investigate the effect
of increasing it. Fig. 8 displays that the higher spectral
efficiency is achieved when there is no correlation, which
means the subchannel are completely independent. Also, it is
observed that at higher number of antennas in the user terminal
we have higher spectral efficiency.

V. ENERGY EFFICIENCY AND TRANSMIT POWER

The transmit power can be expressed as the ratio between the
amplifier consumed energy and the coherence time and it is
measured in (Joule/channel use) [25], [26]. The following
equations demonstrate the transmit power for uplink and
downlink channels

DL UL UL
Eamp _ Tpilot pBS Tpilot pUE Tpilot pUE 21
Teon) gy~ U \Teonr 0P5 T Toony @0F) T icony w0E  GD)
cohr/ gy, cohr cohr cohr
DL UL DL
(Eamp) _ (Tpilot pBS Tpilot pUE) Tpilot pBS (/)—,)
Teonr/ py, Teonr @BS  Teonr wUE Teonr @BS -

where the power amplifier efficiency at the base station is
denoted as w®° and the power amplifier efficiency at the user
terminal is denoted as wVE, where they have values from 0 to
1. The ratios for uplink and downlink that are used in (21) and
(22) can be expressed as

TUL
QyL = —pr T
Tdata"'Tdata

DL
ApL = —D:dataUL
Tdata+Tdata

The energy efficiency that has a unit of (bit/J) is represented as
spectral efficiency and transmit power. By using the circuit
power p and the static circuit power {. the uplink and downlink
energy efficiencies can be represented as

cuL
EEUL —
- DL UL UL
Tpilot sz *Tpilot pUE*Np_*(\LTpilot pUE
Teonr @5 Teonr wUE } Teohr

(23)
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cbL

EEPL = (24)

DL UL DL
TEilot pBS Tpilot pUE No+ \ Tpilot pBS
Teonr @BS Teonr wUE ™ s <}YTCOhr wBS

A. Simulation Results

The simulation results have been conducted to investigate the
energy efficiency and the transmit power and to see the impact
of using the correlation model on them. It is assumed that the
splitting ratio between the static circuit power and the circuit
power is 0. Also, it is chosen that the value of p+{ equals to
0.02x107¢ (J/channel use). It is assumed that ay;;, = ap, = 0.5
to get identical energy effeciencies for uplink and downlink
channels.

Fig. 9 shows the values of energy efficiency in (bit/joule)
with signal to noise ratio of 20 dB. The figure demonstrates
three curves where each curve denotes different number of
antennas in the BS. It is noticeable that the larger the antennas
number in the base station we have the higher energy efficiency
we get. Also, the correlation factor effect is clear, where the
energy efficiency at its highest values when there are
completely independent antennas at 0 correlation factor. The
energy efficacy performance is gradually going down by
increasing the correlation factor until reaching 1.
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Fig. 9. Energy efficiency versus correlation factor with 20 dB SNR.
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Fig. 10. Transmit power versus exponential correlation factor 20 dB SNR.

Fig. 10 demonstrates the transmit power with 20 dB signal to
noise ratio where the transmit power is measured in
(uJoule/channel use). Each one of the three curves represents
different number of antennas in the BS. The maximum transmit
power is occurring when the base station antennas N is 50. The
scalability of this massive MIMO is clear since at 500 base
station antennas we get the lowest transmit power and the
maximum energy efficiency. Moreover, if exponential
correlation factor is increasing the transmit power is decreasing.

VI. CONCLUSION

This paper studied the channel estimation accuracy by
applying exponential correlation model and using a BS with
large antennas number and a single user terminal with multiple
antennas It is observed that at higher signal to noise ratio, the
estimator is more precise. Massive MIMO which is a new
technology can enhance the energy and spectral efficiency
because of the improved spatial correlation. In this work the
impact of using exponential correlation model on the spectral
and energy efficiencies is investigated. Based on LMMSE
channel estimator, the spectral efficiency is generated where it
was noticeable that the spectral efficiency is affected by the
correlation factor more sensitively at higher SNR. The
scalability of massive MIMO system is clear by using 500
antennas in the BS where we have higher energy efficiency and
lower transmit power.
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