
University of Denver University of Denver

Digital Commons @ DU Digital Commons @ DU

Electronic Theses and Dissertations Graduate Studies

1-1-2010

A Location Aware P2P Voice Communication Protocol for A Location Aware P2P Voice Communication Protocol for

Networked Virtual Environments Networked Virtual Environments

Gabor Papp
University of Denver

Follow this and additional works at: https://digitalcommons.du.edu/etd

 Part of the Computer Sciences Commons, and the Game Design Commons

Recommended Citation Recommended Citation
Papp, Gabor, "A Location Aware P2P Voice Communication Protocol for Networked Virtual Environments"
(2010). Electronic Theses and Dissertations. 495.
https://digitalcommons.du.edu/etd/495

This Dissertation is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It
has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital
Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Denver

https://core.ac.uk/display/217241826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.du.edu/
https://digitalcommons.du.edu/etd
https://digitalcommons.du.edu/graduate
https://digitalcommons.du.edu/etd?utm_source=digitalcommons.du.edu%2Fetd%2F495&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.du.edu%2Fetd%2F495&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1133?utm_source=digitalcommons.du.edu%2Fetd%2F495&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.du.edu/etd/495?utm_source=digitalcommons.du.edu%2Fetd%2F495&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jennifer.cox@du.edu,dig-commons@du.edu

A Location Aware P2P Voice Communication Protocol
for Networked Virtual Environments

A Dissertation
Presented to

the Faculty of Engineering and Computer Science
University of Denver

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

by
Gabor Papp
August 2010

Advisor: Dr. Christopher GauthierDickey

c© Copyright by Gabor Papp 2010
All Rights Reserved

Author: Gabor Papp
Title: A Location Aware P2P Voice Communication Protocol
for Networked Virtual Environments
Advisor: Dr. Christopher GauthierDickey
Degree Date: August 2010

Abstract

Multiparty voice communication, where multiple people can communicate in a group,

is an important component of networked virtual environments (NVEs), especially in

many types of online games. While most research has been conducted on one-to-one

communication, we focus on group communication.

In this dissertation, we present the first measurement study on the characteristics

of multiparty voice communications and develop a model of the talking and silence

periods observed during multiparty communication. Over a total of 5 months, we

measured over 11,000 sessions on an active multi-party voice communication server

to quantify the characteristics of communication generated by game players, includ-

ing group sizes, packet distributions, user and session frequencies, and speaking (and

silence) durations. Further, we develop a model for multiparty voice communication

that can be used for future research, simulation, network engineering, and game de-

velopment work.

Next, we propose a peer-to-peer protocol that uses Gabriel graphs, a subgraph of

Delaunay-triangulations, to provide scalable multiparty voice communication. In ad-

dition, our protocol uses positional information so that voice data can be accurately

modeled to listeners to increase the immersiveness of their experience. Our simu-

lations show that the algorithms scale well even in densely populated areas, while

prioritizing the sending of voice packets to the closest listeners of a speaker first, thus

behaving as users expect. We also develop a security framework that prevents common

iii

attacks. Finally, we implement our protocol and put it through exhaustive validation,

where we use the model that we generated using our multiparty voice communication

model.

iv

Acknowledgements

The writing of a dissertation can be a lonely and isolating experience, yet it is
obviously not possible without the personal and practical support of numerous people.
I would like to thank my advisor, Dr. Christopher GauthierDickey, for his constant
encouragement, tremendous help and valuable advice.

I am grateful to my committee, Dr. Matthew Rutherford and Dr. Ramakrishna
Thurimella, for their guidance during the course of my research. I also wish to thank
the chair of my committee, Dr. Alvaro Arias for his availability despite the last minute
notice.

My sincere gratitude goes to my parents, Katalin and Marton, and my sister,
Szilvia, for their love, support and patience over the last four years.

Finally, I would like to thank my girlfriend, Samantha, for all her support, help
and sacrifice. There is no way I could have completed this dissertation had it not
been for you.

v

Table of Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Definition and Research Challenges 5

1.2.1 Voice over IP . 5
1.2.2 Peer-to-Peer Networks . 6
1.2.3 Virtual Realities . 7

1.3 Proposed Approach and Organization of Dissertation 8

2 Research Foundation 10
2.1 Introduction . 10
2.2 Voice Communication . 11

2.2.1 Measurement Studies . 11
2.2.2 Voice Communication Protocols 12

2.3 Computer Networking . 15
2.3.1 Structured Peer-to-Peer Networks 15
2.3.2 Unstructured Peer-to-Peer Networks 17

2.4 Virtual Realities . 20
2.4.1 Game Traffic . 20
2.4.2 Cheating . 21

3 Measurement Study 22
3.1 Introduction . 22
3.2 Trace Collection . 23

3.2.1 TeamSpeak Communication Architecture 23
3.2.2 The Speex Codec . 25
3.2.3 The TeamSpeak Voice Packet Format 26
3.2.4 Filtering Voice Packets . 28
3.2.5 Data Cleaning . 28

3.3 Measurements . 30
3.3.1 User Geographical Distribution 30
3.3.2 Overall Server Traffic . 33
3.3.3 Inter-Packet Arrival Time at the Server 36
3.3.4 Group Sizes . 37

vi

3.3.5 Sessions Characteristics . 40
3.3.6 Measured Voice Patterns . 42

3.4 Modeling Multiparty Voice Communication 46
3.4.1 Methodology . 46
3.4.2 Parameter Estimation . 46
3.4.3 Error Calculation . 47
3.4.4 Using λ2 for network model evaluation 48
3.4.5 Modeling Talkspurts and Silence 49
3.4.6 Modelling the Groups . 53

3.5 Conclusion . 55

4 Protocol 57
4.1 Introduction . 57
4.2 P2P Voice Communication . 59

4.2.1 The Gabriel Graph and Its Properties 60
4.2.2 Greedy Routing on the Gabriel Graph 62
4.2.3 Building and Maintaining the Delaunay Triangulation 66

4.3 Protocol Simulation . 69
4.3.1 Mobility Models . 69
4.3.2 Theoretical Boundary . 70
4.3.3 Load Balance and Scalability 71

4.4 Adding Social Structures . 77
4.5 Security . 77

4.5.1 Categories of Attacks . 78
4.5.2 Active Attacks . 79
4.5.3 Passive Attacks . 81
4.5.4 Putting Things Together . 81

4.6 Security Simulation . 82
4.6.1 Puzzle Validation . 82
4.6.2 Hiding Identity . 87

4.7 Conclusion . 89

5 Implementation 91
5.1 Introduction . 91
5.2 Program Architecture . 91

5.2.1 The Bootstrap Server . 92
5.2.2 The Servlet . 95

5.3 Testbed . 99
5.3.1 General setup . 99
5.3.2 Neighbor maintenance . 101
5.3.3 Voice Packet Delivery . 102

5.4 Program Validation . 103

vii

5.4.1 Log Files . 103
5.4.2 Static Neighbor Maintenance 106
5.4.3 Dynamic Neighbor Maintenance 107
5.4.4 Static Voice Packet Delivery 108
5.4.5 Dynamic Voice Packet Delivery 109

5.5 Conclusion . 110

6 Conclusion 111

viii

List of Figures

1.1 A Basic VoIP Call Architecture . 6
1.2 Peer-to-Peer Network Architectures 7

3.1 TeamSpeak Architecture . 24
3.2 TeamSpeak Voice Packet format . 27
3.3 Server Traffic . 33
3.4 Server Input . 34
3.5 Server Output . 35
3.6 Inter-Packet Arrival Rate . 37
3.7 Group Traffic . 39
3.8 Sessions Length CDF . 40
3.9 Login Count CDF . 41
3.10 Talkspurts, Silence Periods and the Inter-Talkspurt Arrival Time . . . 42
3.11 Inter-Talkspurt Arrival Time . 44
3.12 Talkspurts . 45
3.13 Silence Periods . 45
3.14 Modeling Talkspurts . 51
3.15 Residuals of Talkspurts . 52
3.16 Modeling Silence . 53
3.17 Residuals of Silence . 54
3.18 Talkspurts and Silence Periods Among Groups 55

4.1 Gabriel Graph Example . 61
4.2 AOI-Limited Broadcast . 65
4.3 Voice Packet Graph Example . 67
4.4 Three-Dimensional Distribution to Choose Destination 70
4.5 Average Number of Nodes Within the AOI 71
4.6 Average Node Degree for the Delaunay Triangulation 72
4.7 Average Node Degree for the Gabriel Graph 73
4.8 Minimum, Average, and Maximum Neighbors 74
4.9 Average Route Length in the Delaunay Graph 75
4.10 Average Route Length in the Gabriel Graph 76
4.11 Minimum, Average, and Maximum Route Lengths 76

ix

4.12 Average Ratio of Malicious Neighbors 83
4.13 Average Ratio of Malicious Neighbors While Clustering 85
4.14 Neighbor Validation vs. Random Validation 86
4.15 Total Route Length . 86
4.16 Average Match Rate While Hiding Identity 88
4.17 Sufficient Radius for Delivery Guarantee 89

5.1 Flowchart of the Bootstrap Server . 92
5.2 Flowchart of a Servlet . 96
5.3 Server Log Entries . 104
5.4 Node Log Entries . 106

x

List of Tables

3.1 Configuration Parameters for TeamSpeak 25
3.2 Geographical User Distribution I. 32
3.3 Geographical User Distribution II. 32
3.4 Cleaning the Data Sets . 43
3.5 Experimental Values . 50
3.6 Residuals from Model . 51

4.1 Attacks in NVEs . 78

5.1 Protocol Validation . 99
5.2 Parameters of the Dynamic Neighbor Mainteance 108
5.3 Delay of the Static Voice Packet Delivery 109
5.4 Results of the Dynamic Voice Packet Delivery 110

xi

Chapter 1

Introduction

In this dissertation we propose a virtual-location-aware, peer-to-peer voice communi-

cation protocol that works well for virtual realities such as massive multiplayer online

games. Research to date has only addressed the requirements of this problem sep-

arately. In addition, to understand the exact requirements of such a protocol, we

conduct a measurement study.

Our work is the first to look at characterizing multiparty voice communication over

the Internet, particularly when it is used with multiplayer games. Previous VoIP

measurement work has looked at quality of service parameters such as packet loss,

packet reordering and its effects on sound quality, or at network characteristics and

support of VoIP between two parties. Instead, our research attempts to characterize

the traffic, packet arrival rates, group sizes, session frequencies and durations, and

speaking and silence periods in order to develop mathematical models for multiparty

communication that can be used for simulation and modeling.

Next, we develop a virtual-location-aware, peer-to-peer protocol that satisfies all

of the requirements of multiplayer voice communication. Our solution uses a novel

mechanism for building and maintaining the connection between players. We also

1

propose techniques to secure our protocol and to make it cheat-proof. This concept

allows our protocol to serve as a solution for voice communication between users of a

virtual reality.

1.1 Motivation

Since the advent of the Internet, people have sought to interact over computer

networks. In 1995 VocalTec released the first commercial Internet phone software.

In 1996 ITU-T began the development of standards for the transmission and signal-

ing of voice communications over Internet Protocol (VoIP) networks with the H.323

standard, but it was only in 1999 when the Session Initiation Protocol - the first com-

munity maintained VoIP protocol - appeared. The distributed nature of the Internet

allowed several features to be incorporated into VoIP, such as video and conference

calls.

During their first appearance, conference calls were limited to small groups because

user bandwidth was limited to modem speeds. However, with the increasing penetra-

tion of broadband Internet into homes, VoIP allows a massive group of users to be

connected and to interact with each other concurrently.

Multiparty voice communication (MVC) is an important application that needs to

be studied and researched. In multiplayer computer games, for example, thousands

of players can interact and communicate with each other using built-in voice chat

systems1. Game consoles have also added voice communication support for player

interaction as selling features of the hardware. Further, multiparty voice communica-

tion is widely used for conference calls and voice chat software; MVC will clearly be

part of future online collaborative systems. Thus, research in this area benefits the

1http://www.worldofwarcraft.com

2

http://www.worldofwarcraft.com

future design of MVC systems, is relevant and interesting to online virtual realities,

and is important to ISP network engineers supporting and hosting voice systems.

Telecommunication has a significant economic impact on modern society. In 2008,

estimates placed the telecommunication industry’s revenue at $3.85 trillion USD.

Since charging and accounting are key elements of a communication systems, they

are traditionally designed with a client/server network architecture. This has the

advantage that a single authority keeps track of the login and logout times and builds

up the connections between the callers and the callees. On the other hand, this

architecture has several disadvantages:

1. The computational complexity requires powerful servers.

2. The server is a single point of failure. To avoid downtimes, expensive and

complex clusters are required.

3. Having a server introduces an additional step and therefore delay between the

users.

To address the limitations of the client/server architecture, researchers have turned

to peer-to-peer architectures for IP applications. Peer-to-peer is a distributed solution

composed of participants that make a portion of their resources directly available to

other network participants without the need for central coordination instances. In

these, network peers can communicate directly, which reduces the delay for messages

and eliminates congestion.

Perhaps the most well-known peer-to-peer VoIP software is Skype2, which gained

its popularity from being available free of charge. During the peak period it has more

than twenty million users logged in concurrently. Although it is free and widely used

for long-distance, video and conference calls, it is not popular among game players.

2http://www.skype.com

3

http://www.skype.com

TeamSpeak3 and Ventrilo4 are the most common choice of multiparty voice commu-

nication software for online game players. Although these are client/server solutions,

they serve the needs of gamers the best as they have the freedom to join different

channels, which mostly represent the teams inside the virtual world. This clearly

demonstrates that there is a need for multiplayer voice communication protocols that

fit well within virtual realities. The ideal solution would set up the connection be-

tween the users that are close to each other inside the virtual space, which would

prevent them from having to join the appropriate channel all the time.

However, the design of a peer-to-peer VoIP protocol that takes the virtual loca-

tions into account faces a number of challenges. Any location-aware protocol has to

maintain consistency between the virtual locations and the communication channels

between the users. Since a virtual world is a dynamic environment, the changes have

to be reflected with minimal delay in order to make the users satisfied and actively

engaged. The protocol also has to maintain a low delay for packet transfers. The

human ear is very sensitive, a delay of less than 150ms is typically required to main-

tain a natural conversation, and a delay of less than 300ms is required to maintain a

tolerable conversation [22]. A delay of 450ms or more is simply not acceptable.

An additional challenge is the fact that voice communication can contain sensitive

data. On one hand, it has to be secured from people outside of the virtual world.

On the other hand, the data also has to be secured from people inside of the virtual

world who do not have the credentials to access it. In addition to protecting sensitive

data, security can also help prevent cheating.

3http://www.teamspeak.com
4http://www.ventrilo.com

4

http://www.teamspeak.com
http://www.ventrilo.com

1.2 Problem Definition and Research Challenges

1.2.1 Voice over IP

Voice over IP (VoIP) is an IP telephony term for a set of facilities used to man-

age the delivery of voice information over the Internet. VoIP involves sending voice

information in digital form in discrete packets rather than using the traditional circuit-

committed protocols of the public switched telephone network (PSTN).

A typical VoIP system includes the following components and technologies:

• Database: to locate endpoints in the network.

• Signaling: to coordinate the actions of the various networking components.

• Call connect and disconnect: mechanism to transport audio content.

• Coder-decoder: operations to convert analog waveforms to digital information

for transport.

In a scenario where a user initiates a call to another user, first the user’s endpoint

queries the database using signaling regarding the location of the callee. After re-

ceiving the location information, the endpoint builds a connection between itself and

the callee’s endpoint. Using the channel, the voice communication takes place. Dur-

ing this step the analog voice communication is coded at the caller’s endpoint, and

decoded at the callee’s endpoint with the codec. When the conversation is over, the

endpoints disconnect (See Figure 1.1).

In a dynamic environment, this process would not be sufficient. First, the database

has to be regularly updated to reflect even the most recent changes of the location of

the users in the virtual world. Second, in order to achieve the lowest possible delay,

5

Figure 1.1: A Basic VoIP Call Architecture: The basic VoIP call architecture consists
of four steps: (1) node location lookup, (2) connection setup, (3) voice transfer and
(4) connection termination.

the connection building step has to be eliminated. The simplest way to limit delay is

to maintain a connection between all of the users who might talk to each other.

1.2.2 Peer-to-Peer Networks

Peer-to-peer architectures have been used excessively for file sharing for over a

decade, but they are not very popular for delay-sensitive, dynamic real-time applica-

tions. Structured peer-to-peer architectures are well suited for finding a piece of data

in a distributed network since they provide a reliable lookup mechanism. Although

this mechanism is also efficient, considering the size of such networks, it is still not

fast enough for voice communication.

Unstructured solutions are better suited for such a purpose. They are easily map-

pable to different layouts and are more suitable for range queries, but they do not

provide an efficient lookup mechanism. Figure 1.2 shows the two architectures.

6

(a) Chord: A Structured P2P Network (b) Delaunay-Triangulation: An Unstruc-
tured Peer-to-Peer Network

Figure 1.2: Peer-to-Peer Network Architectures: Structured P2P networks provide a
reliable lookup mechanism, whereas unstructured P2P networks are better suited for
range queries.

Thus, combining a multiparty voice communication protocol with a peer-to-peer

architecture raises several challenges. Node joining and leaving, as well as neighbor

maintenance have to be efficient. In addition, the peer-to-peer network has to reflect

the connections between the users of the virtual world in order to guarantee low delay.

1.2.3 Virtual Realities

Virtual reality (VR) is a term that applies to computer-simulated environments

that can simulate places in the real world as well as in imaginary worlds. Users

can interact with a virtual environment through the use of either a standard input

device such as a keyboard or mouse, or through a multimodal device such as a wired

glove. The simulated environment can be similar to the real world, for example, in

simulations for pilot or combat training, or it can differ significantly from reality, as

in VR games. Either way, our goal is to enhance user experience in these worlds by

offering a virtual-location-aware voice communication solution.

7

Designing such a protocol raises many challenges. First, the voice sources have

to be prioritized. Closer people have to be heard more clearly than people in the

background. Second, since people move inside the virtual world, the position of the

users has to be updated frequently enough to provide a realistic scenario for the

listeners. Third, the protocol has to deliver voice packets only to people that are

eligible to receive them. This applies to attackers both inside and outside of the

network. While eliminating attackers from the outside requires similar techniques to

other VoIP solutions, identifying attackers from the inside is much more complex.

Manipulating the virtual location of the players can lead to an unfair advantage and

therefore might be used for cheating.

1.3 Proposed Approach and Organization of Dissertation

Our protocol is the first to propose a peer-to-peer, virtual-location-aware voice

communication solution for virtual realities. This complex protocol requires the pre-

cise identification of the requirements for such systems. Furthermore, it requires the

thorough design of the protocol and its security framework. Finally, it has to be

validated to make sure it fulfills all the identified requirements. Our approach to the

problem consists of three major parts:

1. Requirement identification.

2. Protocol design.

3. Protocol validation.

In Chapter 2 we give the reader the background that is necessary to understand the

solved and unresolved challenges that we faced throughout our work. In Chapter 3

we present the measurement study that we conducted over several months to collect

8

as much data about multiparty voice communication as possible. We also present

a way to model such conversations, which we later use in Chapter 5. The protocol

design is explained in Chapter 4 along with our security framework. This chapter

focuses on the mechanisms of the protocol and also contains simulations and their

outcomes which served as an early verification of our solution. Next, we implemented

our protocol and put it through exhaustive validation. For this, we used data that we

generated using our multiparty voice communication model. We present the results

of our validation in Chapter 5. Conclusions are presented in Chapter 6.

9

Chapter 2

Research Foundation

2.1 Introduction

Our research is related to three areas: voice communication, computer networking

and virtual realities. Therefore, a fundamental knowledge in these areas is required

to understand our protocol and the choices we have made with regard to our designs.

Voice communication is the main topic around which our work is built. In Section 2.2

we discuss some of the existing and most popular voice protocols as well as statistical

analysis of voice communications.

Key areas that are closely related to our research within computer networking

are peer-to-peer networks and neighbor maintenance. In Section 2.3 we discuss the

difference between client-server and peer-to-peer networks. We also compare and

contrast structured and unstructured peer-to-peer networks. Furthermore, we analyze

different neighbor maintenance solutions and security issues related to these networks.

Since our protocol can be used to communicate in virtual realities and computer

games, we briefly discuss modern research related to them, including cheating, in

Section 2.4. We focus on the cheating techniques that can take advantage of voice

10

packet manipulation between players.

2.2 Voice Communication

Over the last 40 years, a vast amount of research has been conducted on voice

communication between two parties. The research investigates either the talking

patterns between the caller and the callee, or proposes new techniques to establish a

connection and transfer the voice packets.

2.2.1 Measurement Studies

Voice patterns consist of on and off periods (also called talkspurts and silence

periods). Research has shown that these on periods follow an exponential distribu-

tion [6, 17, 41] in traditional telephony. These results are important because they

allow designers of hardware, codecs, and network administrators to predict the pat-

terns of speech with mathematical models.

Jiang et al. researched the on-off patterns in VoIP by recording and digitizing

conversations and then applying gap detectors to determine how long people talked

and how long they were silent [21]. Their results show that the length of time that

people talk follows an exponential distribution while the gaps between talkspurts

deviate significantly from the same distribution.

Markopoulou et al. measured the quality of voice communications over the Inter-

net. They measured delay and loss over wide-area backbone networks and used these

results with a voice quality model [27] to determine the efficacy of VoIP over the

Internet for voice communication. The authors show that while many Internet back-

bones have sufficiently low delay, delay variability, and loss, several of them provide

poor VoIP quality.

11

Boutremans et al. examined the impact of network conditions, such as link fail-

ure, on the quality of voice communications with VoIP [5]. They show that quality

of service at the network level is not needed for VoIP, although link failures cause

significant problems for voice communication.

Skype1 [1], a VoIP application, was measured by Chen et al. in order to determine

the level of user satisfaction [9]. By measuring network traffic characteristics, they

correlated the amount of jitter and interactivity of a session with the length of the

call.

We are more interested in the characteristics of the traffic with multiple parties and

less interested in whether voice can be used on the Internet2. We set up a TeamSpeak3

server and measured the traffic directly. Our results differ from previous two-party

measurements and show that the on-off patterns of VoIP in multiparty communica-

tions follow Weibull distributions more accurately, without significant deviation.

2.2.2 Voice Communication Protocols

In any kind of multimedia streaming the goal is to transfer the data in sequence

with minimal jitter. However, minimizing the delay is not always important (e.g. for

on-line video streaming, a fairly large delay is tolerable). The same cannot be said

about real-time applications such as voice communication. In this section we review

solutions that have been proposed in the past to fulfill this special requirement of

voice communication.

H.323 is a recommendation from the ITU Telecommunication Standardization Sec-

tor that defines the protocols to provide audio-visual communication sessions on any

1http://www.skype.com
2The widespread adoption by gamers and the success of Skype seem to indicate that

voice communication over the Internet is both possible and acceptable.
3http://www.teamspeak.com

12

http://www.skype.com
http://www.teamspeak.com

packet network. The H.323 standard addresses call signaling and control, multime-

dia transport and control, and bandwidth control for point-to-point and multi-point

conferences.

Yeo et al. proposed a H.323 compilant architecture for supporting voice over IP

in a heterogeneous environment [48]. Their system provides IP telephony services to

support the two main groups of telecommunication users, namely, the conventional

PSTN phone users as well as the Personal Computer users.

The Session Initiation Protocol4 (SIP) is an IETF-defined signaling protocol that

is widely used for controlling multimedia communication sessions such as voice and

video calls over the Internet Protocol. The protocol can be used for creating, mod-

ifying and terminating two-party or multiparty sessions consisting of one or several

media streams. The modification can involve changing addresses or ports, inviting

more participants, and adding or deleting media streams. Other feasible applica-

tion examples include video conferencing, streaming multimedia distribution, instant

messaging, presence information, file transfer and online games.

Singh and Schulzrinne proposed a peer-to-peer solution for the SIP protocol [40].

They suggested a two tier hierarchical model, in which the clients simply connect

to the supernodes and only the supernodes form a Chord ring. Their solution is

more fault tolerant, robust and scalable than the original solution because it does not

contain any centralized entity. However, this solution also introduces a higher delay

and is not capable of implementing accounting.

Bousteaud et al. performed a comparison of delivery architectures for immersive

audio in crowded networked games [4]. In their survey they compare and contrast the

client-server, the peer-to-peer and the hybrid methods. Although their conclusion is

not straightforward, they find the overall performance of the hybrid method the best

4http://tools.ietf.org/html/rfc3261

13

http://tools.ietf.org/html/rfc3261

but they also claim that it is the most complicated one.

Bousteaud et al. also developed DICE, a voice communication system that is suit-

able of handling crowded virtual spaces such as battlefields in on-line games or market

places [38]. It is based on a client/server architecture where the clients are not con-

nected directly but via the servers. The protocol is location sensitive and bandwidth

efficient. The proposed solution is about 50% more efficient than when the clients are

simply connected directly to each other.

PROMISE [18] is a peer-to-peer media streaming system encompassing the key

functions of peer lookup, peer-based aggregated streaming, and dynamic adaptations

to network and peer conditions by Hefeeda et al. The researchers introduce the

CollectCast service, which operates entirely at the application level but infers and

exploits properties of the underlying network. CollectCast has a pattern of “one

receiver collecting data from multiple senders”. The protocol takes into account the

network topology to optimize the route of the packets.

Our protocol is similar to PROMISE in that it is a peer-to-peer media streaming

solution, in which any node has the ability to receive voice packets from multiple

nodes in the system at the same time. Furthermore, it takes the network topology

into account. The main difference between our technique and that of Hefeeda is that

we focus on the virtual rather then the actual topology of the system. Our aim is

not to optimize the network traffic but to provide the most realistic scenario to the

players. Therefore, connections between players in our network are not determined

based on optimization or personal request, but the virtual location. This results in

players who are close in the virtual world having direct connections with each other

instead of having direct connections between players who are close in the physical

world, but are far in the virtual world.

14

2.3 Computer Networking

A computer network is a collection of computers and other computational devices

connected by communication channels. These networks may be classified according

to a wide variety of characteristics. We distinguish client/server and peer-to-peer

networks based upon the functional relationship among the elements of the network.

A peer-to-peer network is any distributed architecture composed of participants that

make a portion of their resources (such as processing power, disk storage or network

bandwidth) directly available to other network participants, without the need for cen-

tral coordination instances (such as servers or stable hosts). Peers are both suppliers

and consumers of resources, in contrast to the traditional client-server model where

only servers supply, and clients consume. With further classification of peer-to-peer

networks, we can distinguish unstructured and structured solutions.

2.3.1 Structured Peer-to-Peer Networks

Structured peer-to-peer networks employ a globally consistent protocol to ensure

that any node can efficiently route a search to some peer. Such a guarantee neces-

sitates a more structured pattern of overlay links. By far the most common type

of structured peer-to-peer networks is the distributed hash table (DHT) in which a

variant of consistent hashing is used to assign ownership of each file to a particular

peer, in a way analogous to a traditional hash table’s assignment of each key to a

particular array slot.

Stoica et al. proposed Chord, a scalable peer-to-peer lookup service [44]. Chord

provides support for just one operation: given a key, it maps the key onto a node.

Depending upon the application using Chord, that node might be responsible for

storing a value associated with the key. Chord uses a variant of consistent hashing

15

in order to ensure that the load is balanced in the system since each node receives

roughly the same number of keys. It is highly probable that when an N th node

joins/leaves the network, only an O(1/n) fraction of the keys are moved to a different

location.

A similar solution is presented by Rowstron et al. in the design of Pastry [37], a

scalable architecture for object location and routing of messages in wide-area peer-

to-peer applications. Pastry maps keys to nodes with IDs numerically close to the

keys. Every node is assigned a numeric ID, and every value is assigned a numeric

key. Unlike similar systems, Pastry maps each key to k nodes numerically nearest to

the key itself instead of mapping to just one node, which provides more availability

and better accessibility. Since the node IDs are randomly assigned, the k nodes will

be geographically diverse, which leaves room to explore locality. When Pastry routes

messages to nodes it takes into account the locality of the nodes. Messages reach

nearest local nodes before they can be forwarded to far nodes.

Ratnasamy et al. proposed a conceptually different solution for the same prob-

lem [35], which uses a d-dimensional Cartesian coordinate space on a d-torus to map

the keys and nodeIds. The space is dynamically partitioned among all the nodes in

the system. To store a (key, value) pair, the key is deterministically mapped onto a

point in this coordinate space using a uniform hash function. The corresponding pair

is then stored at the node that owns this zone.

While structured peer-to-peer networks provide an efficient lookup, they do not

reflect network topology. Furthermore, they are not efficient for range-based queries:

therefore it is hard to apply them for virtual-location-aware voice communication.

16

2.3.2 Unstructured Peer-to-Peer Networks

Unstructured peer-to-peer networks are formed when the overlay links are estab-

lished arbitrarily. Such networks can be easily constructed: a new peer that wants to

join the network can copy existing links of another node and then form its own links

over time. If a peer wants to find a node in an unstructured peer-to-peer network,

the query has to be flooded through the network. The main disadvantage with such

networks is that flooding causes a high amount of signaling traffic. On the other

hand, this kind of network is well-suited for range-queries. A special kind of unstruc-

tured peer-to-peer networks is one that supports greedy-routing. Incorporating this

technique helps to reduce the number of queried nodes and thus suits virtual-location-

aware applications. Figure 1.2(b) shows an example of an unstructured peer-to-peer

network.

Neighbor maintenance

For neighbor maintenance, research has recently centered around Delaunay triangu-

lation to reduce the cost of peer-to-peer communication. For example, Steiner and

Biersack developed a P2P network using a 3D Delaunay triangulation where edges

are flipped to form the triangulation and sets of nodes are locked on the joining and

leaving of nodes to maintain consistency [43].

Ohnishi et al. created a P2P network using the 2D coordinates of players in an

NVE and an incremental Delaunay-triangulation [31]. Voronoi diagrams, the dual of

Delaunay triangulations, are used to designate areas for control by super-nodes.

Varvello et al. used dynamic clustering in a Delaunay-based P2P network in which

peers monitor the maintenance traffic for the network and spawn clusters when the

traffic exceeds a given threshold [46]. The clusters help reduce maintenance traffic

17

within the network, which makes Delaunay-triangulation more scalable.

Shun-Yun et al. proposed the Voronoi-based Overlay Network (VON), an efficient

design that maintains the peer-to-peer topology in a fully-distributed, low-latency,

and message-efficient manner [20].

Ghaffari, Hariri and Shirmohammadi proposed a new distributed architecture for

update message exchange in massively multi-user virtual environments [15]. The

protocol is based on the Delaunay-triangulation architecture and supports churn and

user mobility.

While unstructured peer-to-peer networks provide the kind of neighbor mainte-

nance we need for our protocol, they mostly focus on the Delaunay-triangulation. The

Delaunay-triangulation on average has a node degree of six. For voice communication

this is too high, since the human ear cannot distinguish this many voice streams. Fur-

thermore, Delaunay-triangulation does not model reality for voice spreading. Our re-

search focuses on these issues and our Gabriel graph based voice communication proto-

col addresses them. However, we have to note that we use the Delaunay-triangulation

excessively for neighbor maintenance: therefore it is an important part of our work.

Security Issues

Peer-to-peer networks have many advantages over the traditional client-server archi-

tecture, such as the lack of a single point of failure and better scalability. However,

since they are distributed systems, additional security issues arise.

Ten years ago, Lundberg’s research showed that ad-hoc protocols did not accom-

modate any security and were highly vulnerable to attacks [26]. Interestingly, as

the similarities between ad-hoc and peer-to-peer networks are fairly high, the same

problems can be identified here as well.

Castro et al. presented a secure routing protocol for structured peer-to-peer net-

18

works [7]. These networks are highly resilient; they can route messages correctly

even when a large fraction of the nodes crash or the network partitions. Thus, with

the appropriate security they are suitable for large-scale decentralized applications

such as storage, content distribution and even group communication. Their research

studies attacks aimed at preventing correct message delivery and presents defenses

to these attacks. Three main techniques are used: secure nodeid assignment, secure

routing table maintenance and secure message forwarding. The authors focus only on

structured overlays, therefore some of their solutions are specific for only this type of

network. However, the three identified areas that have to be secured apply to other

kinds of peer-to-peer, such as ours.

Fessi et al. researched an interesting combination of real-time media and peer-to-

peer systems [14]. They claim that VoIP and distributed systems have both become

very popular, and have received a large amount of attention from the research com-

munity in recent years. As a result, a peer-to-peer-based SIP was developed which

solves the scalability issues and is able to provide a communication service indepen-

dently of other network components such as DNS. However, with this solution new

security issues arise, such as the Sybil attack, or Spam over IP telephony. Therefore,

the paper presents a hybrid solution for telecommunication networks that fills the

gap between centralized and purely peer-to-peer networks.

Srivatsa and Liu focus on a higher level of peer-to-peer protocols. Their goal is to

secure publish-subscribe overlays against confidentiality, integrity, authentication and

DoS attacks. Their solution, EventGuard [42], is implemented using three building

blocks: tokens, keys, and signatures. A token is associated to every topic so that it is

easier to handle the topic names. Also, every topic has a key to achieve confidentiality

and integrity. The third building block is the signature, which is used for message

authentication. Six main events are identified in the paper: subscribe, advertise,

19

publish, unsubscribe, unadvertise and routing. A guard is implemented for each of

these in order to protect the system. This system is well-suited for non-delay-sensitive

applications, but because of the use of signatures it is not compatible with interactive

traffic.

Mittal and Borisov investigate the information leaks in structured peer-to-peer

anonymous communication systems [29]. They claim that defending the system

against the most commonly feared attack, i.e. targeting the lookup mechanism, re-

sults in higher security against active attacks, but lowers the security against the

passive attacks. Therefore, there is always a tradeoff between robustness and passive

attacks.

2.4 Virtual Realities

In addition to studying research in prior voice communications, it is also important

for us to understand the unique features and properties of virtual realities and games.

2.4.1 Game Traffic

Understanding game traffic is important for our measurement study because it helps

us understand the context of the source of our voice communication traffic. Borella

analyzed game traffic from a popular online game server on a LAN and modeled the

inter-packet arrival time and packet sizes with extreme distributions [2]. Their model

was validated using the λ2 test, which we also use to validate our models.

Henderson and Bhatti modeled network traffic of an online game over the Inter-

net [19]. This work is important because the traffic was measured over the Internet

instead of over a LAN, providing a more realistic model. Their work shows a daily

and weekly traffic pattern similar to what we measured with voice traffic: evenings

20

have peak traffic while early mornings have the lowest traffic.

Pittman et al. and Svoboda et al. had similar diurnal patterns in their measurement

work on large-scale multiplayer games [34, 45]. In addition, other researchers modeled

game traffic (packet sizes, arrival times, sessions) with similar results [11, 47].

2.4.2 Cheating

Cheating is the act of circumventing rules in order to gain an unfair advantage,

and as such, game players are often willing to cheat in order to win in some way. Our

protocol is an application layer protocol, that is built on top of another network layer

protocol, such as the Delaunay-triangulation. We assume that the base protocol is

capable of handling the network layer cheats and we only have to focus on application

and game level cheats.

21

Chapter 3

Measurement Study

3.1 Introduction

This work is the first scientific measurement study to be conducted on multiparty

voice communications for games. The main contribution of this chapter is a character-

ization of traffic patterns, group patterns, and voice patterns through measurements.

In particular, we model the talking patterns mathematically, based on the measured

multiparty voice communication sessions. Further, the characterization of voice pat-

terns has typically been done on small sets of data; our study measures patterns from

thousands of hours of voice data with thousands of unique sessions. Thus, future

research in MVC systems will be able to use our models to drive experimental sim-

ulations, game developers can use these models to understand the impact of adding

voice communications on network traffic already generated by their games, and ISPs

can use this information for provisioning servers for hosting MVC systems. We per-

sonally use our results to build a peer-to-peer voice communication protocol that suits

virtual realities, with taking the virtual location of the players in account and thus

providing a more realistic scenario.

22

To conduct our measurement study, we set up a TeamSpeak server which allows

clients to join the server, set up channels, and communicate with other clients on

the same channel. TeamSpeak1 is well known in the gaming community and widely

used due to the fact that it can be used for free for non-profit uses (i.e., typical game

playing usage or measurement studies). We then recorded traffic over a three month

period and analyzed the resulting data.

After analyzing the data and creating an initial model, we set up the server several

months later and began collecting data a second time for a two month period. Using

the newly collected data, we compared our model from the first data set to understand

how the system had changed. This second set of data was used to validate our model

and we detail in this chapter the similarities and differences between these two distinct

measurement periods.

3.2 Trace Collection

In this section, we describe the architecture of our network, the content of the

server log file, the fundamentals of the Speex voice codec2, the packet format of the

TeamSpeak protocol, the collection of the VoIP sessions and the procedure that we

used to clean the collected data.

3.2.1 TeamSpeak Communication Architecture

TeamSpeak is a group voice communication server that allows multiple people to

connect using a TeamSpeak client, join channels, and talk simultaneously with other

people in the same channel. In this client/server architecture, the clients encapsulate

voice packets using one of many codecs, and send those packets to the server using

1http://www.teamspeak.com
2http://www.speex.org

23

http://www.teamspeak.com
http://www.speex.org

Internet

TeamSpeak server

A B C D E

Figure 3.1: TeamSpeak Architecture: The TeamSpeak architecture is a client/server
architecture which unicasts voice packets to all people in the same channel. In this
figure, client A sends a voice packet to the server, which in turn replicates and unicasts
the packet to B-E.

unicast. The server then unicasts the packets to the other n − 1 clients connected

on the same channel. Note that the server does not multiplex the voice packets.

Figure 3.1 illustrates this concept.

To measure multiparty voice communications, we set up a TeamSpeak server and

advertised it to game players as a free server. The server was set up and advertised

starting in November of 2006. We have continued to operate the server collecting

data for the long term study of multiparty voice communications.

Once the TeamSpeak server was set up, we began logging all traffic on port 8767 to

the server using tcpdump. Although TeamSpeak generates a server log file, the data

contained in this file (even with maximum verbosity) is minimal and contains data

only about logins, logouts, channel switching, and administrative operations. Thus,

we needed to use tcpdump to record all packet information generated with regards

to the TeamSpeak server. We also discovered that when we compared data from the

server log and the trace files, the server log was not always accurate. For example,

24

the server log would often show a player logging in multiple times without logging

out. This was probably due to the fact that the player’s connection died, but the

server had not discovered it before the player re-logged in. On the other hand, from

our packet traces we could determine a session length by looking at the time that a

player logged into the server to the last time they sent or received a voice packet from

any player. Table 3.1 lists the configuration parameters of the TeamSpeak server.

Table 3.1: Configuration Parameters for TeamSpeak

Parameter Value
server hermes.cs.du.edu

port 8767
protocol UDP
codec 12.3 and 16.3 kbps Speex

3.2.2 The Speex Codec

Speex is an Open Source/Free Software patent-free audio compression format de-

signed for speech and is available under the revised BSD licence3. It is based on the

Code Excited Linear Prediction (CELP) algorithm and is designed to compress voice

at bitrates ranging from 2 – 44kbps. However, our TeamSpeak server was set up to

only accept 12.3kbps and 16.3kbps encodings on the channels, depending on the voice

quality end-users desired.

Regardless of the bit-rate, the Speex codec uses a 20ms frame for encoding audio.

This means that the frequency of the arrival of packets is not affected by the bit-rate

since one frame is used per 20ms of audio time while making it easy to identify voice

packets in our log files since they must be some multiple of the bit-rate, frame size

and overhead.

3http://www.xiph.org/licenses/bsd/speex

25

hermes.cs.du.edu
http://www.xiph.org/licenses/bsd/speex

3.2.3 The TeamSpeak Voice Packet Format

TeamSpeak only uses UDP packets to communicate between the client and server,

including logging in, creating channels, switching channels, and talking to other peo-

ple. As we needed only the voice packets for analyzing the characteristics of the

behavior of the users, in this section we are focusing only on the format of those

packets.

Each of the packets contains the regular IP and UDP headers. These are the first

28 bytes of the packets and these are necessary overheads. We discovered that most

of the logged packets are 183, 189, 233 and 239 bytes therefore the actual payloads

are 155, 161, 205 and 211 bytes. The average inter arrival time of these packets is

100 ms. The bandwidth can be calculated using the following formula:

BandWidth =
Payload(bits)

Time(sec)
.

In our case this results in:

BW =
[155, 161, 205, 211]× 8

0.1
= 12.4, 12.88, 16.4, 16.88kbps,

which roughly match with the Speex codec bitrate specification. Because of this, we

claimed that these are the voice packets.

The packets with 155 and 205 bytes payload were all incoming packets to the

server. The other two sizes were the sizes of outgoing packets. Further analysis of

the data helped us to identify the codec ID in the packets as well as the sender

ID and a sequence number. The main difference between the incoming and outgoing

packets is that the incoming packets contain only the sender ID and sequence number

whereas the outgoing packets contain both the sender ID and sequence number and

26

IP Header

UDP Header

* * * * Codec ID

* * * * * * * *

Sender ID 0x0000

S. Sequence# 0x0000

Incoming Packet
0 8 16 24 31

Voice Data

Outgoing Packet

IP Header

UDP Header

* * * * Codec ID

* * * * * * * *

Recipient ID 0x0000

R. Sequence# 0x0000

0 8 16 24 31

Voice Data

Sender ID 0x0000

S. Sequence#

Figure 3.2: TeamSpeak Voice Packet format: The TeamSpeak protocol uses UDP
to transfer the voice packets. During the replication the server inserts the recipient
information in front of the sender information.

the recipient ID and sequence number. This explains the size difference between the

incoming and outgoing packets. Figure 3.2 illustrates the TeamSpeak voice packet

format.

Knowing the codec ID in the packets we could identify the used codecs. For the

smaller packets it is the 12.3 kbps and for the larger ones it is the 16.3 kbps Speex

codec, which is in accordance with our previous observation. However, unlike the

Speex specification, the mean inter-arrival time for packets was measured to be 100ms

(based on data from several million packets) and not 20ms as one would expect.

Thus, we claim that TeamSpeak groups five Speex frames before they are sent out.

While sampling audio for 100ms introduces a higher delay, it reduces the bandwidth

overhead caused by the IP, UDP, and TeamSpeak headers.

Using the formula introduced above, we calculate the total bandwidth required by

sampling 100ms of audio vs. only 20ms of audio in the Speex specification.

27

BWTS = ([155,161,205,211]+28)×8
0.1

=

= 14.64, 15.12, 18.64, 19.12kbps,

BWSpeex = ([28,33,38,43]+28)×8
0.02

=

= 22.4, 24.4, 26.4, 28.4kbps.

BWTS is the amount of bandwidth used by TeamSpeak with 100ms frames while

BWSpeex is the bandwidth used by the Speex codec with 20ms frames. It can be seen

that in case of the 12.3 kbps codec the difference in overhead would be more than

50%.

3.2.4 Filtering Voice Packets

After understanding the TeamSpeak packet format we could filter out the non-voice

packets from the trace files. In the first step we simply had to filter for the size of

the packets. This helped us to identify the voice packets with an accuracy of more

than 99%. In the second step we refined the filtering by identifying the codec ID. We

believe that after this step all our packets were only voice packets.

3.2.5 Data Cleaning

As we began the analysis of our data, we discovered that some of the data points

were extremely different from the rest. These included excessively long talk sessions

as well as silent periods. For example, the extreme outliers of the talkspurts were

data points where voice packets were delivered for close to an hour, which would be

fairly difficult to accomplish when you consider that we can detect silence gaps as

small as 100ms! We reckon that these are rare occasions resulting from something

such as loud background music or human behavior such as forgetting to log off while

28

leaving the computer for several hours. Therefore, we treated these data points as

outliers and did not include them in our final results.

While removing extreme outliers can be controversial, we justify our actions by

noting that our method removed few or no data points and that the methods used for

curve fitting often pick the first and last end-points of the data to begin and end the

curve, and then adjust values to force the rest of the graph to fit. Thus, the extreme

outliers can cause a curve to not fit the data well, whereas by removing the outliers

and fitting the curve allows one to obtain a better fit, according to various metrics.

In Section 3.3.6, we detail the effects of our data cleaning.

To remove the extreme outliers, we first analyzed the linearity of the data. Prior

research shows that talkspurt and silence periods often follow an exponential dis-

tribution [6, 17, 21, 41]. We also plotted preliminary graphs to get an idea of the

general trend of the data. Note that linearization for the purpose of cleaning does not

need to be perfect (e.g., we used an exponential form, though our data turned out

to be Weibull). The purpose of this process is to remove extreme outliers and, given

the large number of data points, removing only a small percentage of data points is

acceptable. When the data was not linear, we saw that it followed the following form

in every case:

y = aebx.

In these cases, to linearize the data we took the logarithm of both sides, which

resulted in the following equation:

ln(y) = ln(a) + bx.

Once the data was linearized, we identified the first and third quartiles. As we tried

29

to delete as little data as we could we decided to delete only the extreme outliers.

These are the data points that are beyond the outer fences:

< Q1 − 3IQR,

or

> Q3 + 3IQR.

Here, Q1 is the first quartile, Q3 is the third quartile and IQR means the inter-

quartile range (Q3−Q1). Thus, only data that was beyond 3 times the inter-quartile

range less than the first quartile or greater than the 3rd quartile was removed. While

methods that remove all the outliers and not just the extreme ones use 1.5IQR we

decided to use 3IQR and only remove a very small amount of data, which we felt was

sufficient for our purposes.

3.3 Measurements

Our first measurement covers a 3 month period from December 2006 to February

2007. During this time, we measured over 7000 sessions from over 800 IP addresses

dispersed geographically for an average of 1.46 GB/day in traffic. Five month after

the start of our first measurement we set up another one from May 2007 to Jun 2007.

Here, we measured another 4000 sessions from 440 IP addresses. The average traffic

increased to 1.72GB/day.

3.3.1 User Geographical Distribution

In order to ensure that our data was not biased due to the geographical location of

clients connecting to the server, we took advantage of the fact that all the client IP

30

addresses were obtainable from our log files. Thus, we could estimate the locations

of the clients and ensure that they were not all from the same place.

Using the free MaxMind tool, GeoLite Country4, we determined the latitude, lon-

gitude, country and state where applicable of each IP address. This free version of

the software claims to have over 98% accuracy.

After processing our data we found the following:

• More than 84% of our users were from North America.

• More than 60% of our users were from the United States.

• Each of the 7 most populous states is responsible for more than 2.5% of the US

users and they together are responsible for more than 45% of the US users.

• None of the remaining states reaches the 2.5% limit.

Table 3.2 shows that the majority of our users are from the United States and

Canada. This means that our results are not biased because of the different time

zones. In the last two rows of the table we listed the ranking of the countries in

terms of the measurement periods. The first period includes December, January and

February whereas the second includes May and June. It can be seen there are no

significant differences. The only two countries - the USA and Canada - that could

score more than 10% were the first and the second in both cases. The countries that

fall in the 1-10% range also remained the 3rd, 4th and 5th.

Table 3.3 contains the seven most popular states in the United States and the

amount of players that they are responsible for. This shows that the player distri-

bution inside the United States is slightly biased towards the east cost, which is in

accordance to the natural US population distribution. We can also see that the first

4http://www.maxmind.com/app/geolitecountry

31

http://www.maxmind.com/app/geolitecountry

Table 3.2: Geographical User Distribution: Heaviest user distributions by country
with rankings of each country for December, January and February (DJF) and May,
June (MJ).

Country Player Distribution % DJF MJ
United States 60.82 1 1
Canada 23.54 2 2
Singapore 7.02 3 5
Australia 4.50 4 3
New Zealand 3.48 5 4
Germany 0.16 7 6
Japan 0.16 6 N/A
Bulgaria 0.08 7 N/A
Poland 0.08 N/A 6
Puerto Rico 0.08 7 N/A
Republic of Korea 0.08 7 N/A

Table 3.3: Geographical User Distribution: Heaviest user distribution by state with
overall state ranking in December, January, February (DJF) and May, June (MJ).

State Player Distribution % DJF MJ
Pennsylvania 13.51 1 3
Texas 7.79 6 1
New York 7.40 2 4
California 6.23 3 5
Florida 4.94 5 2
Colorado 3.90 4 11
New Jersey 2.73 8 8

five states were relatively popular during both measurement periods. We conclude

that the primary result of our server location being in the MST time-zone is sim-

ply that most users are from the US and Canada. Generally, server location affects

the user locations due to latency issues, but given the wide-spread locations of users

within the continental US and Canada, our data is not biased towards a particular

area within these two countries, except to follow natural populations.

32

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

N
um

be
r

of
 P

ac
ke

ts
Hour

Average Server Output II.
Average Server Output I.
Average Server Input II.
Average Server Input I.

Figure 3.3: Server Traffic: Average voice server traffic over a 24 hour period (times
shown are MST). The sizes of input and output voice packets are 155 or 205 and 161
or 211 bytes respectively. This result shows that server input doubled while server
output quintupled during evening hours. The peak is around 6pm-9pm whereas the
most quite period is around 4am-5am.

3.3.2 Overall Server Traffic

The first set of measurements we present are the overall traffic seen by the server

during an average day. Figure 3.3 shows the averages, averaged per hour on the x-axis

and the number of packets sent and received on the y-axis for the first and second

measurement periods. Thus, this figure is an indication of the volume of traffic seen

by the TeamSpeak server. Incoming voice packets are always 155 or 205 bytes while

outgoing voice packets are always 161 or 211 bytes respectively.

This result shows that server input doubled and server output increased by an

approximate factor of 5 during the evenings (approximately 6pm-9pm MST5). This

indicates that more users are online using multiparty voice communication during the

evenings. Note that the local minimum is at 4am MST during the first measurement

and 5am MST during the second. Although the peak also changed it shifted one hour

earlier and not later, from 7pm-9pm to 6pm-8pm. This is probably due to the fact

5Throughout this paper, times are listed as MST, but this is only as a convenience indicating the
time-zone the server is located in and has no bearing on the measurements or results.

33

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Nu
m

be
r o

f I
nc

om
in

g
Pa

ck
et

s

Hour

Monday
Tuesday

Wednesday
Thursday

Friday
Saturday

Sunday

(a) December 2006 - February 2007

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

N
um

be
r

of
 In

co
m

in
g

P
ac

ke
ts

Hour

Monday
Tuesday

Wednesday
Thursday

Friday
Saturday

Sunday

(b) May, June 2007

Figure 3.4: Server Input: Average voice server input traffic over a 24 hour period
(times shown are MST). The packet size of an incoming voice packet is 155 or 205
bytes. This result shows that server input is similar on all days, with a peak during
evening hours.

that the second measurement was conducted during late spring and early summer

and therefore our players had more free time to play.

We also observed that the peak periods (7pm-9pm and 6pm-8pm) are not only the

peaks of our traffic but the traffic rate is also almost constant here. In other words,

the number of sessions started is the same as the number of sessions finished during

these periods and thus resembles a balanced birth-death process.

We hypothesized that traffic was actually higher on weekends, and therefore we

divided our averages into individual days so that we averaged all Mondays separately,

all Tuesdays separately, etc. Figure 3.4 shows the inbound server traffic from users.

From this figure, we see that most days are very similar with a small amount of

variance, though in terms of total input, Fridays and Sundays have the highest amount

of inbound traffic.

In Figure 3.5, we can more clearly see that the server output has more traffic on

weekends than on weekdays. In addition, Sunday traffic increases earlier than on any

34

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Nu
m

be
r o

f O
ut

go
in

g
Pa

ck
et

s

Hour

Monday
Tuesday

Wednesday
Thursday

Friday
Saturday

Sunday

(a) December 2006 - February 2007

 0

 50000

 100000

 150000

 200000

 250000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

N
um

be
r

of
 O

ut
go

in
g

P
ac

ke
ts

Hour

Monday
Tuesday

Wednesday
Thursday

Friday
Saturday

Sunday

(b) May, June 2007

Figure 3.5: Server Output: Average voice server output traffic over a 24 hour period
(times shown are MST). The packet size of an outgoing voice packet is 161 or 211
bytes. This result demonstrates that server output is higher and extends over more
hours during the weekends, and in particular on Sundays.

other day, starting at 1pm MST while the peak of traffic is highest late on Friday

evenings at approximately 130k packets/hour in the first and 230k packets/hour in the

second measurement. Please note that, while we tried to keep the scaling consistent

here we had to rescale the y axis of the second figure in order to make the data fit.

Interestingly, Saturdays have a lower peak traffic than Sundays or Fridays, but have

a higher average traffic during the early hours of the day. This difference is most

likely due to people who are on late Friday continuing to use TeamSpeak into the

early hours of Saturday morning (and then probably sleep late that day).

A final interesting trend is that Monday also seems to have a high outbound traffic

peak that is similar to Friday. The primary difference appears to be that the traffic

is shifted about two hours earlier, probably because game players start earlier so that

they can go to bed earlier.

Given the TeamSpeak architecture, which unicasts packets to other players in the

same channel, these results provide an insight into the size of the group that is talking

35

to each other in the same channel. First, on Fridays, the output is approximately 4

to 5 times the size of the input. This implies that for each voice packet that is input,

TeamSpeak is replicating it 4 to 5 times, for a group size of 5 to 6. On a day such as

Tuesday, the traffic is 2 to 3 times that of the input, indicating group sizes on average

of 3 to 4. We conjecture that on Fridays and Sundays, game players are more likely to

use multiparty communication to converse with a larger group of other people than

on other days. Most likely this is because players have more free time on those days

and are able to coordinate getting together online with other players more readily.

When we look at this data in conjunction with the general server traffic, we see

an interesting trend. Even though group sizes may increase, the amount of incoming

traffic does not increase at the same rate as the outgoing traffic. Given these traffic

patterns we believe that while many people may be able to talk at the same time in a

large group, human protocols prevent this from occurring. Typically, only one person

can talk at a time and they take turns during the sessions. In essence, if more than

one person begins talking, the speakers stop to allow only one person to talk so that

the conversation can be understood.

Although we are unaware of any previous work that investigates multiparty voice

communication, we expect these results to be similar to traffic patterns seen on game

servers. Indeed, similar diurnal patterns and weekly patterns have been observed in

related game traffic measurement work [19, 34, 45, 47]. There is clearly a peak, a

local minimum each day, a strong correlation between days and a higher load on the

weekends.

3.3.3 Inter-Packet Arrival Time at the Server

We measured the inter-packet arrival time at the server and plotted the ratio of

packets to the inter-packet arrival time in Figure 3.6. Note that this includes all voice

36

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.0001 0.001 0.01 0.1 1 10

Inter Packet Arrival Time (s)

December
January

February
May

June

Figure 3.6: Inter-Packet Arrival Rate: The duration between the majority (80%) of
packets is between .01s and .1s. This indicates a rate of packets between 10 to 100
per second depending on traffic.

packets received by the server during the measurement periods. Due to the streaming

nature of the data, since encoded packets are immediately sent out from the client to

the server, we see a packet rate between 5 to 100 per second at the server (depending

on the number of online users). The larger gaps between packets seen on the server

are most likely due to silence during the conversations when few people are logged

onto the server.

The inter-packet arrival times show a heavy-tail that is 2 to 3 orders of magnitude

larger than the average inter-packet arrival times. Note that this tail is only a small

portion of total packet arrival times because we have a client/server architecture.

Given a peer-to-peer architecture, we would expect larger periods of silence on any

given peer in the system.

3.3.4 Group Sizes

We next examine group sizes to gain an insight into the size of a group that is typical

in multiparty voice communication when used with games. As we noted previously,

the ratio between the inbound and outbound traffic is an indicator of the average

37

group size.

To perform this measurement, we looked at the trace logs and determined the sender

ID for all the outgoing packets. The number of outgoing packets with the same ID

and the same sequence number is one less than the actual group size. In processing

the group sizes, we found that the server periodically sent duplicate messages for no

particular reason. These were filtered out and are probably due to a TeamSpeak bug.

We binned all data according to how many people it was duplicated to, allowing

us to examine the data based on the size of the group. Thus, we can determine the

effect of the groups with different sizes on both the incoming and outgoing traffic on

the server. Note that, neither the server log file nor the TeamSpeak packet format

provides information about the used channel and thus it is impossible to identify the

actual groups based on the packet alone (this control information must be shared

between server and client in non-voice packets). The results are seen in Figure 3.7.

Each of the graphs contains two curves. The solid line indicates the incoming traffic

and the dashed line indicates the outgoing traffic that is simply the incoming traffic

multiplied by the number of players that the particular packet is replicated.

During the first measurement period the results on group sizes show that the most

active groups are the ones that are formed by 5 people. It can also be concluded

that these groups generate the most outgoing traffic among all the groups. It is also

worth mentioning that the amount of incoming packets from groups formed by pairs

is almost as high as it is by these groups, but because of the replication the outgoing

traffic is much less affected. Similarly, the counter effect can be seen in case of groups

that contain 19 people. Although the amount of incoming traffic is low, the amount of

outgoing traffic is high due to the large amount of replication necessary. The largest

group we observed was 24 people.

During the second measurement period the results are slightly different. Here, the

38

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N
um

be
r

of
 P

ac
ke

ts

Group Size

Group In
Group Out

(a) December 2006 - February 2007

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
um

be
r

of
 P

ac
ke

ts

Group Size

Group In
Group Out

(b) May, June 2007

Figure 3.7: Group Traffic: Incoming and outgoing traffic, categorized by group size
over the measurement period. We see that, on average, the most groups are between
2 to 8 people talking, with a maximum of 24 people in a group.

most active groups are the ones that are formed by two people. However, the groups

that affect the outgoing traffic the most are the ones that contain 5 people. The

largest group size is also slightly smaller, 16.

We believe that a correlation between using TeamSpeak and the game being played

exists. Currently, one of the most popular online games being played is World of

Warcraft. In this game, players are often limited to 5 people in special areas, biasing

the data towards a small group of people talking and playing the game together.

On the other hand, a large class of multiplayer games, called first-person shooters,

tend to group players into two groups, each between 8 and 16 players. Multi-party

voice communication has also become very important for this class of games. If our

TeamSpeak server was used by players of these kinds of games, we would expect the

group sizes to correlate. Thus, we concluded that our server was mostly used by

players on games which promoted small groups. However, because determining the

game being played is impossible from our logs, and because the server was advertised

to a wide variety of sources, we believe our results are general enough to at least

39

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

Session Duration (s)

Session Ratio II.
Session Ratio I.

Figure 3.8: Sessions Length CDF: We see that of the 7,749 sessions we recorded, half
of these sessions were less than 5000 seconds (1.3 hours). A small fraction of these (a
few hundred) were over 30,000 seconds (8 hours).

apply to MVC for games in general.

3.3.5 Sessions Characteristics

Over the measurement periods, we recorded 7,749 and 3632 sessions respectively,

including the packets that were sent to and from the server and how long users were

logged into TeamSpeak. On average, we observed 75.9 logins per day from 1266

individual users. To understand this data further, we calculated the session times

and generated a CDF as shown in Figure 3.8.

Our calculations show that the shortest sessions were less than one second while

the longest session was over 69 hours! However, as Figure 3.8 shows, for 20% of

the sessions, users stayed less than 1/2 hour. In addition, 20% of the sessions, users

stayed for more than 5 hours. Thus, 60% of the sessions fell somewhere between 1/2

hour and 5 hours.For the small fraction of sessions that were greater than 8 hours,

we hypothesize that users simply did not log out of the TeamSpeak server when they

were done.

The characteristic of our curve is similar to both that can be found in [19] and in

40

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250

Number of Logins

User Ratio I.
User Ratio II.

Figure 3.9: Login Count CDF: 40 % of all the IP addresses that logged to our server
were unique. This is probably due to the fact that DHCP was used to assign their
addresses. 17% appeared to log into the server at least once a week on average.

[45]. However, both of these papers analyze on-line games, one of them focuses on

a First Person Shooter (FPS) game whereas the other one focuses on a Massively

Multiplayer Online Game (MMOG). On the one hand this fact validates our results

but on the other it shows that it is nearly impossible to conclude what type of game is

played by the users analyzing only the characteristics of the data and not the content

of it.

In the next measurements, we matched IP addresses with sessions to determine

how many unique IP addresses logged into the system. In essence, we would like

to determine how frequently a user logs into and uses the TeamSpeak server. We

calculated the CDF of the ratio of logins versus the number of logins as illustrated in

Figure 3.9.

Our results indicate that 40% of the users logged into the TeamSpeak server only

once, while only 17% logged into it regularly (i. e. at least once every week on

average). However, this result is most likely biased due to the fact that some users

may be using DHCP to receive their IP addresses when they use the Internet. Thus,

multiple IP addresses may refer to the same user and the total number of users we

41

saw may be fewer.

3.3.6 Measured Voice Patterns

Voice patterns in multiparty voice communication consist of talkspurts (on periods)

and silence (off periods). We measured these and the inter-talkspurt arrival time

to characterize voice patterns. TeamSpeak uses 100ms long frames, therefore the

shortest talkspurt in our case is 100ms. To be consistent, the smallest measureable

silence period must also be 100ms. The inter-talkspurt arrival time is measured as the

time between any two in-sequence talkspurts observed by the server (see Figure 3.10).

Since the smallest talkspurt is 100ms and the smallest silence period is 100ms, then

any inter-talkspurt arrival time that is at least 200ms is interpreted as silence. Note

that, if we have multiple users using the server at the same time the talkspurts can

overlap and thus the inter-talkspurt arrival time can be shorter than the talkspurt

itself.

Talkspurt Talkspurt

Silence

Inter-Talkspurt Arrival Time

Figure 3.10: Talkspurts, Silence Periods and the Inter-Talkspurt Arrival Time.

In order to measure the voice patterns, we captured the voice packets during the

peak periods (7pm–9pm and 6pm–8pm). After sorting and analyzing the data we

realized that our data points did not fit on a linear curve. Therefore, we identified

the extreme outliers using the method described in Section 3.2.5 and removed them

from our data set. When we applied the cleaning procedure to the inter-talkspurt

arrival times, we deleted 341 and 217 data points. Table 4.1 shows the results of

cleaning the inter-talkspurt arrival times.

42

Table 3.4: Cleaning the Data Sets: The effect of removing extreme outliers with the
cleaning procedure on inter-talkspurt, talkspurt, and silence periods data sets.

(a) December 2006 – February 2007

Inter-talkspurt
arrival

Talkspurt Silence

Original data size 188,225 (100%) 188,313 (100%) 186,626 (100%)
Filtered data size 187,884 (99.82%) 188,158 (99.92%) 186,626 (100%)
Deleted data size 341 (0.18%) 155 (0.08%) 0 (0.00%)

(b) May, June 2007

Inter-talkspurt
arrival

Talkspurt Silence

Original data size 225974 (100%) 228560 (100%) 227577 (100%)
Filtered data size 225757 (99.90%) 228559 (100%) 227577 (100%)
Deleted data size 217 (0.10%) 1 (0.00%) 0 (0.00%)

Figure 3.11 plots the inter-talkspurt arrival times seen at the server during the peak

periods. The majority (90%) of the inter-talkspurt arrival times is less than 7.65 sec

and 4.89 respectively. However, the remaining 10% of the data forms a tail which

stretches to 536.83 seconds. Note that we only include the first 100 seconds in the

graph so that the CDF can be seen more clearly.

We collected the talkspurts and silence periods for each of the users during the

peak periods. We then merged these sets into a single data set and found that the

data was non-linear. We transformed it and deleted the extreme outliers with the

results listed in Table 4.1.

In Figures 3.12 and 3.13, we plot the CDFs of the talkspurts and silence periods,

respectively. Both CDFs appear to follow an exponential distribution, which we

explore further in Section 3.4. However, the expected value of the talkspurts is much

lower than the expected value of the silence periods. 90% of the talkspurts are shorter

than 5.40 sec and 5.07 sec, whereas the same measure for the silence periods is 70.11

sec and 27.88 sec, which is around an order of magnitude higher. This implies that

43

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

Inter-Packet Arrival Time (sec)

Inter-Packet Arrival Time CDF I.
Inter-Packet Arrival Time CDF II.

Figure 3.11: Inter-Talkspurt Arrival Time: The majority (90%) of the inter-talkspurt
arrival times are less than 7.65 sec and 4.89 sec respectively. Although, we can see a
change the exponential characteristic of the curve results in a long tail in both cases.

the users tend to listen more than to talk. After the filtering process, our lowest

talkspurt value was .1 sec and our highest value was 96.46 sec. This can be seen in

Figure 3.12. It is interesting that the length of silence periods dropped dramatically.

However, this clarifies why the inter-talkspurt arrival times dropped too.

When we analyzed the silence periods, the filtering process did not effect our data

set (see Table 4.1). This is due to the fact that the expected value of our exponential-

like curve was higher and thus the IQR was broader. In addition, because our mea-

surements were only performed during the peak periods, the silence periods have an

upper bound of 3 hours (or 10,800 secs). The silence period data set ranged from

.1 sec (the minimum possible silence period) to 7036.95 sec (almost 2 hours). How-

ever, in order to examine the curve of the CDF better, we only include the first 1000

seconds in Figure 3.13.

In Section 3.4, we model the data sets mathematically and discover that both the

talkspurt and silence periods are better modeled by Weibull distributions. This makes

sense when one considers that exponential distributions are a special case of Weibull

distributions where the shape parameter is set to 1.

44

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

Talkspurt Length (sec)

Talkspurt Length CDF I.
Talkspurt Length CDF II.

Figure 3.12: Talkspurts: The majority (90%) of the talkspurts are less than 5.40 sec
and 5.07 sec respectively. The CDF appears to follow an exponential distribution.
During the second measurement period the majority of the packets remained to fit in
the same range.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

Silence Period (sec)

Silence Period CDF I.
Silence Period CDF II.

Figure 3.13: Silence Periods: The majority (90%) of the silence periods are less than
70.11 sec and 27.88 sec respectively. The CDF appears to follow an exponential
distribution. However, the expected value of the silence periods is much higher than
the talkspurts.

45

3.4 Modeling Multiparty Voice Communication

We now turn to the modeling of multiparty voice communication. We have three

primary factors that we need to model mathematically: talkspurts, silence and group

sizes. With these three models, we can simulate and predict the characteristics of

multiparty voice communication, regardless of whether a client/server, peer-to-peer

or hybrid architecture is used.

3.4.1 Methodology

Initially, we thought that the data appeared to follow some kind of exponential

distribution, but as we analyzed the data further, we discovered that it fits a Weibull

distribution better. Note that this differs from previous research in classical tele-

phony and VoIP conversations which showed that the data followed an exponential

distribution.

In order to model the conversations, we first estimated the parameters of the expo-

nential and Weibull distributions. We looked at other distributions, but found that

these two distributions had the best fit with our data. We then validated our esti-

mation by calculating the mean and standard deviation of the residuals and by using

the λ2 test.

3.4.2 Parameter Estimation

We used two parameter estimation techniques. For the exponential distribution,

we used the Maximum Likelihood estimation:

L(λ) =
n∏
i=1

λe−λxi = λne−λnx

46

where (xi, ..., xn) are our data points and x = 1
n

∑n
i=1 xi, which is the average of our

data points. The derivative of the likelihood function’s logarithm is:

d

dλ
lnL(λ) =

n

λ
− nx

and therefore our estimated rate parameter for the exponential distribution is:

λ̂ =
1

x
=

n∑n
i=1 xi

For the Weibull distribution, our parameter estimation is based on the least-squares

method which minimizes S, the square of the sum of the residuals:

S =
n∑
i=1

(yi − f(~xi,~a))2

The data sets consist of the points ~xi = (x1, ..., xn) and the function we are testing

is of the form yi = f(~x,~a), where ~a is the set of parameters that we are estimating

and ~x acts as the independent values.

3.4.3 Error Calculation

In order to justify the correctness of our estimation, one could perform a goodness-

of-fit test. However, traditional tests, such as Chi-square (χ2) and Kolmogorov-

Smirnov (KS) are not suitable for data from Internet traffic [32]. Moreover, these

tests are biased against large data sets [16], such as the ones that we have.

We use two methods to determine if the data fits a particular distribution. After

we have used the maximum likelihood or least squares method to estimate the param-

eters for a distribution, we plot the residuals and examine their mean and standard

deviation. These values give us an idea of how well our model predicts the data. In

47

addition, we use the λ2 method as a discrepancy tool [33]. We describe how we used

the λ2 method and how we binned our data in Subsection 3.4.4. With the λ2 method,

we can compare the fit between two possible distributions. Further, if λ2 > 1.0, we

can reject the distribution as a possible fit.

3.4.4 Using λ2 for network model evaluation

The quantity λ2 is the discrepancy between an actual and an assumed statistical

model, which is the measure of the goodness-of-fit of the estimated curve. However,

this method can be applied to data in different ways. Here, we present the details of

how we applied it.

The λ2 metric is defined as follows:

λ2 =
χ2 −K − df

n− 1

where n is the total number of datapoints and df is the number of degrees of freedom

of the test.

χ2 =
∑
i

(Oi − Ei)2

Ei

and

K =
∑
i

|Oi − Ei|
Ei

Since this discrepancy is based on Pearson’s χ2 test, it requires the binning of the

data. Here Oi is the observed number of datapoints in bin i and Ei is the estimated

number of datapoints in bin i. Please note that not just χ2 but K is also dependent on

the number of bins and therefore determining this parameter can be crucial. Choosing

a too large parameter causes a too rough estimate; on the other hand if the parameter

is too small than the distribution of the datapoints will be too smooth, equivalent

48

statistically to imprecise estimation.

In our paper we used 1 + 2 × 2 × log10 n equiprobable bins [24]. If this was not a

whole number we took the floor of it. This method ensures that if we have at least

one datapoint the nominator of neither χ2 nor K can be zero. Our experience is that

these parameters were accurate and worked well with our data because they were in

accordance with our visual based expectations.

3.4.5 Modeling Talkspurts and Silence

To model the talkspurts and silence periods, we looked at the packets sent and

received during the peak periods on the server (from 7pm to 9pm and from 6pm to

8pm). We focus on these periods because the model needs to be able to predict the

behavior under peak loads. After looking at the data, graphed in Figure 3.12, we

hypothesized that the data followed some kind of exponential distribution.

Our first attempt at modeling the talkspurt and silence periods was to try an

exponential distribution. Recall that the CDF of the exponential distribution is

1 − e−λx, where the mean of the distribution is 1/λ. Table 3.5 lists the means and

parameters we estimated for the exponential distribution.

It can be seen that the λ2 test failed for the silence periods during the second

measurement, since its value was greater than 1. Thus, we decided to try the Weibull

CDF, which is defined as 1− e−(x/λ)k
. The Weibull CDF is related to the exponential

CDF in that when its shape parameter, k, is 1, both CDFs are equivalent.

Using the least-squares method, we estimated the parameters for the Weibull distri-

bution for both the talkspurts and silence periods. The results are shown in Table 3.5.

We then plotted the talkspurt and silence data sets along with the Weibull CDFs and

their estimated parameters. The talkspurt graph with its model can be seen in Fig-

ure 3.14. Visually, the Weibull CDF appears to be a good fit for the talkspurt data

49

Table 3.5: Experimental Values: The Mean, Min and Max are calculated from the
data sets. Using our parameter estimation methods, we calculated the parameters
for the CDFs of the exponential and Weibull distributions. The λ2 values are the
results of using the λ2 test to determine the accuracy of our fit (smaller is better).
For both the talkspurt and silence data sets, the Weibull distribution is a better fit.
Note that the exponential distribution is not a fit for the silence periods during the
second measurement.

(a) December 2006 – February 2007

Talkspurt Silence

Mean 2.74s 35.90s
Min 0.1s 0.1s
Max 96.46s 7036.95s

Exponential estimated parameters λ = 0.3650 λ = 0.0279
Weibull estimated λ = 2.3002 λ = 13.5275

parameters k = 1.1846 k = 0.6168

λ2-test for exponential 0.0993 0.7779
λ2-test for Weibull 0.0769 0.0636

(b) May, June 2007

Talkspurt Silence

Mean 2.61s 16.60s
Min 0.1s 0.1s
Max 119.92s 9635.56s

Exponential estimated parameters λ = 0.3865 λ = 0.06068
Weibull estimated λ = 2.0183 λ = 3.7547

parameters k = 0.9746 k = 0.4731

λ2-test for exponential 0.1716 1.2937
λ2-test for Weibull 0.1694 0.5741

50

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

Time (s)

Measured Talkspurt CDF
Modeled Talkspurt CDF

(a) December 2006 - February 2007: The Weibull
CDF is plotted with (k = 1.1846, λ = 2.3002) as
its parameters.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

Time (s)

Measured Talkspurt CDF
Modeled Talkspurt CDF

(b) May, June 2007: The Weibull CDF is plotted
with (k = 0.9746, λ = 2.0183) as its parameters.

Figure 3.14: Modeling Talkspurts: Visually, we see that the Weibull distribution
slightly overestimates the number of short talkspurts around the 10s range but oth-
erwise it is a good fit in both cases.

Table 3.6: Residuals from Model: The max, min, and standard deviation of the
residuals from the talkspurts and silence periods.

Talkspurt I. Talkspurt II. Silence I. Silence II.
Max 0.0401 0.0784 0.0269 0.0429
Min -0.0350 -0.0576 -0.0382 -0.0721
Std.Dev. 0.0190 0.0321 0.0180 0.0266

set. Next, we plotted the residuals to examine the mean and standard deviation of

the residuals. These graphs can be seen in Figure 3.15. Table 3.6 summarizes the

results from our residuals.

We then used the λ2 test on the CDF and discovered that the Weibull CDF fits bet-

ter than the exponential as shown in Table 3.5. However, the shape parameter of the

Weibull distribution is close to 1 in both cases, indicating that it is only slightly differ-

ent from being an exponential distribution. Thus, unlike prior results which showed

that an exponential distribution better modeled talkspurts, we found that the Weibull

CDF more accurately models the talkspurts of multiparty voice communication.

51

-0.1

-0.075

-0.05

-0.025

 0

 0.025

 0.05

 0.075

 0.1

 0 50000 100000 150000

R
es

id
ua

ls

Data points

Talkspurt Residuals

(a) December 2006 - February 2007

-0.1

-0.075

-0.05

-0.025

 0

 0.025

 0.05

 0.075

 0.1

 0 50000 100000 150000 200000

R
es

id
ua

ls

Data Points

Talkspurt Residuals

(b) May, June 2007

Figure 3.15: Residuals of Talkspurts: The residuals, which are the difference between
the modeled and measured data, can give us an estimate of how far off any predicated
values will be from the measured values. The talkspurt residuals remain within ±7.5%
of the actual data set.

For the silence periods, we repeated our method of plotting the data set with the

Weibull CDF and its estimated parameters, as shown in Figure 3.16. From this figure,

we see that unlike the talkspurts the silence periods changed significantly between the

measurement periods. This is an important observation because this implies that the

talkspurts are independent from the type of game played and therefore can be used

to describe any kind of traffic. On the other hand the silence periods can differ. In

the following sections we are investigating if a relationship exists between the group

size and the silence periods.

To further validate the results, we plotted the residuals, which are the differences

between the predicted values and observed values. Plotting the residuals shows us that

the model is off by at most 7.2%, with a standard deviation less than .03, as shown

in Figure 3.17 and Table 3.6. Using the λ2 test, we see that our estimated Weibull

CDF is indeed a better fit than the exponential distribution (Table 3.5). Thus, the

silence periods are more accurately modeled with Weibull CDF for multiparty voice

52

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

Time (s)

Measured Silence CDF
Modeled Silence CDF

(a) December 2006 - February 2007: The
Weibull CDF is plotted with (k = 0.6168, λ =
13.5275) as its parameters.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

Time (s)

Measured Silence CDF
Modeled Silence CDF

(b) May, June 2007: The Weibull CDF is plotted
with (k = 0.4731, λ = 3.7547) as its parameters.

Figure 3.16: Modeling Silence: We see that unlike the talkspurts the silence periods
changed significantly between the two measurement periods.

communications.

3.4.6 Modelling the Groups

In order to develop a complete model for multiparty voice communication, we

also need to understand how talkspurts and silence change with group sizes. We

hypothesized that as the number of people in a group increased, the mean talking

time decreased while the mean silence time increased. To study this, we plotted

the mean talkspurt and silence times versus the group sizes observed during our

measurement period.

As TeamSpeak does not use a group identifier in the messages, it is impossible to

identify the groups with 100% accuracy. However, for modeling the behavior of the

groups with different sizes it is not essential to associate the messages to a particular

group. Simply knowing the size of the group that a message was sent to would be

sufficient if this method was also capable of grouping the silent periods based on the

group size. Thus, we counted the number of replications for each of the incoming

53

-0.1

-0.075

-0.05

-0.025

 0

 0.025

 0.05

 0.075

 0.1

 0 50000 100000 150000

R
es

id
ua

ls

Data Points

Silence Residuals

(a) December 2006 - February 2007

-0.1

-0.075

-0.05

-0.025

 0

 0.025

 0.05

 0.075

 0.1

 0 50000 100000 150000 200000

R
es

id
ua

ls

Data Points

Silence Residuals

(b) May, June 2007

Figure 3.17: Residuals of Silence: The residuals, which are the difference between the
modeled and measured data, can give us an estimate of how far off any predicated
values will be from the measured values. As with the talkspurts, our residuals are
typically ±7.5% for the silence periods.

messages from a given user. Next, we used this group size to determine the group

size for the following silence period. This way we could associate a group size to both

the talkspurts and the silence periods. The only time when our method fails is when

a player leaves or joins a group during a silence period. However, this event is very

unlikely and therefore our solution is capable of providing quite an accurate result.

Figure 3.18 shows the mean talkspurt and silence times versus the group size. We

only show groups of up to 8 people due to the fact that while we did observe groups

with up to 24 people, the number of data points in these larger groups were too few

to be statistically meaningful.

Looking at this graph, we see that the mean talking time does not change signifi-

cantly, regardless of the group size, contradicting our hypothesis. On the other hand,

silence periods do have an upwards increase until around 6 people, at which point it

decreases.

To investigate this unexpected result, we ran a script which looked at the number

54

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 3 4 5 6 7 8

m
ea

n
(s

ec
)

Group Size

Silence Periods
Talkspurts

(a) December 2006 - February 2007

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 3 4 5 6 7 8

m
ea

n
(s

ec
)

Group Size

Silence periods
Talkspurts

(b) May, June 2007

Figure 3.18: Talkspurts and Silence Periods Among Groups: Note that the mean
talkspurt time is fairly constant while the mean silence time fluctuates without a
discernible pattern.

of people talking in a group and found that as the group size increases, the number of

completely silent people increases (e.g., they only have headphones, but not a mic to

speak on). Thus, more people may talk in a larger group, but they still follow the same

talkspurt patterns we have seen independent of the group size. In essence, the same

amount of conversation appears to be carried on the same channel, regardless of group

size. Conversations may be dominated by a few talkative people, forcing others to

remain silent until they can get a chance to speak. In terms of computer games there

are probably friends who tend to talk to each other during the game and the others

just try to collect information that is beneficial for them. Thus, talkspurt periods

appear to be independent of the group size, while overall silence periods increase as

the group size increases.

3.5 Conclusion

We have presented a work that examines the characteristics of multiparty commu-

nication for games. Our results show familiar and new trends. First, as we modeled

55

the talkspurts and silence periods, we found that both types of data fit a Weibull

CDF, which differs from previous work on traditional telephony and VoIP that shows

talkspurts following exponential distribution. Moreover, we showed that the length of

the talkspurts are always the same regardless either of the game played or the group

size. On the other hand, the distribution of our daily traffic was similar to other

works in both games and VoIP. Their results are similar to what we saw, server usage

peaked during the evening hours and on weekends.

Finally, human protocols seem to be at work here as our measurements indicate.

The increase in group sizes does not increase the amount of input traffic linearly,

though output traffic is necessarily linear in the number of packets received. This

is simply due to the fact that humans best process voice information when only one

person is talking at the same time. Thus, if more than one person starts talking,

other speakers naturally back-off and wait for their turn.

56

Chapter 4

Protocol

4.1 Introduction

To date, most multiparty voice communication software uses a client/server ar-

chitecture. This architecture is useful because it provides a centralized point for

authentication, administration, and security. On the other hand, it requires a large

amount of bandwidth to host, it is a single-point of failure, and it requires significant

configuration by end-users if they are required to download and host a voice server

for games they are playing.

We present a peer-to-peer architecture for multiparty voice communication that

scales well with the number of participants and uses information from the virtual

environment to determine how to connect nodes. This allows our protocol to send

voice packets first to those who are closest to us in the virtual environment and to

only cluster avatars who are in each other’s area of interest (AOI).

Unlike most MVC software, our protocol uses the virtual locations of avatars to help

form its distribution graph. This allows positional audio to be modeled accurately to

the listeners and provides an increased level of immersion. Our protocol allows anyone

57

in the virtual world to talk to anyone else as long as their AOIs intersect. This differs

from current games which limit talking to a special group, such as a party or team, or

requiring them to log onto voice servers and all join the same channel. We note that

clearly separate channels are trivially supported in our protocol and the NVE interface

can easily allow voice messages to be blocked. On the other hand, because our

protocols can determine who should hear a voice packet, more realistic environments

can be created and virtual meeting areas can be more accurately modeled.

Prior work in peer-to-peer multiparty voice communication has used various graph

building techniques for communication, such as Delaunay triangulations or Voronoi

diagrams (which are related to Delaunay triangulations) [10, 31, 43, 46]. Distributed

hash tables (DHTs) have also been used for streaming applications using publish/subscribe

mechanisms [8, 36]. While they both work, they do not reflect reality. Delaunay tri-

angulation has a high node-degree, which makes focusing on a given voice stream

difficult. DHTs tend to organize nodes on the key-space to maintain logarithmic

routing over the entire set of nodes. Therefore two close avatars in the virtual world

may be several hops away from each other in the key space, causing added latency

when they are expecting little latency because of their close proximity.

Our protocol relies on Gabriel graphs, which are subgraphs of a Delaunay trian-

gulation of the entire graph. Gabriel graphs have the important property that they

can be calculated locally [28] and that any two closest neighbors are guaranteed to be

connected–thus voice packets which should go to neighbors will be sent to the clos-

est neighbors first and then possibly relayed to further nodes in the network. This

reduces latency between neighbors since they exchange packets with each other in a

single overlay hop. They further have the advantage of having a low average number

of neighbors, which helps in understanding concurrent voice streams.

On one hand, this type of connectivity suits interactive systems well. On the other

58

hand, it poses a major challenge: how can the system securely maintain interactive

connectivity between participants while keeping the state in the environment consis-

tent? Although prior research addresses a similar security issue [7, 23, 29, 30, 42],

none of these solutions is efficient enough to handle interactive traffic; therefore they

cannot be used for our protocol.

In the second half of this chapter we present a framework that is specifically de-

signed for interactive, multimedia traffic, which uses the Delaunay graph as the un-

derlying architecture. We demonstrate how it can prevent Denial of Service attacks,

Black Hole attacks, and Eavesdropping, while maintaining the interactive connections

between the nodes. Furthermore, we show that the features we use in our framework

can be used on top of any unstructured peer-to-peer protocol that uses greedy routing

and through simulations we show that our protocol performs well under a wide vari-

ety of virtual population distributions and node movements. We also show that our

protocol introduces minimal overhead in the system and is resilient to both passive

and active attacks.

4.2 P2P Voice Communication

In our protocol, we assume that each node has a position in a 2 dimensional space

(though we can extend this to 3 dimensions) and an Area of Interest, or AOI, that

indicates the farthest distance centered at the avatar’s position that voice can be heard

from. The protocol works by computing a Gabriel graph (described in Section 4.2.1)

for nodes in the system in a completely distributed fashion. When an avatar talks,

the voice packets are sent via an AOI limited broadcast from the talking node to its

neighbors. Neighbors continue to forward the messages as long as their neighbors fall

within the AOI of the talking node. Unlike previous protocols where two neighbors

59

in the graph may be connected because they are close by a metric such as delay,

messages in our protocol only travel to nodes that are possibly interested in them

(i.e., they are within the AOI of the sender). This reduces overall traffic and prevents

nodes from acting purely as relays.

To handle joining and leaving the network and to assist in calculating the Gabriel

graph, nodes also maintain a Delaunay triangulation (which can be done in a dis-

tributed fashion [25]). Note that if we combine our protocol with a client/server

based virtual environment, maintaining the Delaunay triangulation is no longer nec-

essary because the server can calculate neighbor sets on the server and inform each

avatar which Delaunay neighbors they have. In this setup, peers would then perform

a distributed calculation of the Gabriel graph and communicate between themselves

without needing to further involve the server.

Throughout the chapter, we use the following notation:

• n : the number of nodes in the network

• v0, . . . , vn−1 : the nodes in the network (or vertices of the constructed graph)

• vivj : an edge between vi and vj

• AOI(vi) : indicating the Area of Interest of node vi. The AOI(vi) a scalar value

that indicates the radius of a circle centered at the position of vi.

4.2.1 The Gabriel Graph and Its Properties

A Gabriel graph is a type of graph that connects a set of vertices in the Euclidean

plane under the following rule: two vertices vi and vj are connected by an edge

whenever the disc with the line segment vivj as its diameter contains no other points

from the given point set. Figure 4.1 illustrates the Gabriel graph of three nodes. Both

60

1

2 3

x

x
x

Figure 4.1: Gabriel Graph Example: Gabriel graph of three nodes in the plane. The
graph is computed by adding an edge between two vertices if a disc which uses the
edge as its diameter does not contain any other vertices, thus an edge is set between
vertices 1, 2 and 2, 3. However, an edge is not set between vertices 1 and 3 because
the disc formed by that edge contains vertex 2.

v1v2 and v2v3 are edges of the graph. However, v1v3 is not an edge because the disc

encircling this edge contains the vertex v2.

Gabriel graphs are related to Delaunay triangulations in that a Gabriel graph is

completely contained within a Delaunay triangulation and can be derived from it in

O(n) steps, where n is the number of vertices in the Delaunay triangulation.

In addition, Gabriel graphs contain both the Euclidean minimum spanning tree

(MST) and the nearest neighbor graph. The MST ensures that the fewest edges are

used when broadcasting from a speaking node to its listeners. The nearest neighbor

graph is a graph such that for any pair of vertices, (vi, vj), a directed edge exists

between vi and vj if and only if vj is closer to vi than any other vertex.

We have chosen to use Gabriel graphs because these properties give us a close

approximation to real voice communication:

1. It always contains the nearest neighbor, which means any two avatars that are

inside of each others’ hearing range and are the closest to each other will always

61

be directly connected (note that the Gabriel graph may contain cycles).

2. It also contains the minimum spanning tree which ensures that voice packets

take as few additional paths as possible, reducing the overall traffic on the

network.

3. Being a subgraph of the Delaunay triangulation means that the minimum angle

between edges is maximized. Avoiding narrow triangles allows one to create a

more realistic simulation since the human voice spreads at a wide angle natu-

rally.

Note that with a Delaunay triangulation, each vertex has on average six neighbors.

For a Gabriel graph, the average number of neighbors is 4. This means that we have

to replicate packets on average fewer times than with a Delaunay triangulation. The

tradeoff is that with fewer edges, the diameter of the graph will be larger—but this

should only be a factor in very dense graphs where we must reach a large number of

listeners within an AOI. We believe this is an important tradeoff because bandwidth

becomes an issue as we increase the quality of the voice packets (and therefore their

sizes). In fact, listeners at the end of a long path will necessarily have many other

listeners in front of them in the virtual space, or they would have had a shorter

path since the graph is based on positions in the virtual world. Thus, they would

realistically find it difficult to hear someone speaking in a crowd of people. With

Gabriel graphs, these packets would be more delayed, but could also be dampened to

simulate crowd effects.

4.2.2 Greedy Routing on the Gabriel Graph

We now show that we can route a message to the closest peer to a location in the

network using a greedy algorithm. Assume we have nodes in a 2D plane. All nodes

62

have a pair of coordinates defining their positions. Define M(x,y) as the message being

routed to location (x, y). Let N(vi) be the set of neighbors in the Gabriel graph of

node vi (recall that a neighbor is a node with an edge from itself to vi in this case).

Theorem 3.1 Routing a message M(x,y) over a connected Gabriel graph using the

following greedy algorithm will always find a path to the node closest to (x, y). This

greedy algorithm is defined as: When a node vi receives the message from vj, forward

the message to the node from the set N(vi)\vj which has the closest Euclidean distance

to (x, y).

Proof. Assume the Gabriel graph is connected. Because the graph is connected a

path must exist between any two nodes. We hypothesize that we can find a path

from vi to vj by greedily choosing the neighbor vk of vi who is closest to vj.

Construct a disc such that vi and vj lie in the disc and its diameter d is the distance

between vi and vj. Let Dij be the set of vertices that lie in the disc. We have to

distinguish between two cases:

1. Dij is the empty set: a direct edge exists between vi and vj. ⇒ We traverse

through the edge and reach our destination.

2. Dij is not empty: there is no direct edge between vi and vj. ⇒ Choose node

vk ∈ Dij such that vk ∈ N(vi) and |vkvj| is minimal. Since vk ∈ Dij, the next

statement also holds: |vkvj| < |vivj|. Next, repeat the algorithm with vk and

vj.

As we have a finite number of nodes, we get closer to the destination with every step,

and eventually we get to the destination itself.

63

Neighbor Sets

To maintain the necessary graphs in our protocol, each node maintains two neighbor

sets:

• D(vi) : the set of nodes in the network that are Delaunay neighbors, which we

call the Delaunay set.

• I(vi) : the set of nodes that are Gabriel neighbors of vi from the Gabriel graph

constructed using D(vi) and AOI(vi), which we call the Interest set.

The Delaunay set is used to maintain the Gabriel neighbors and handle joining

and leaving. Note that the Delaunay set can be maintained via distributed Delaunay

triangulation protocols [25]. The Gabriel neighbors can be then calculcated from

the Delaunay set. Each node looks at its set of Delaunay neighbors and applies the

Gabriel graph algorithm to them (decribed in Section 4.2.1), adding those nodes with

an edge in the resulting Gabriel graph to the Interest set.

For the voice protocol, we are required to know which nodes are inside the AOI of

a given node because we only need to route voice packets to nodes within the AOI.

One concern with a Gabriel graph is that a path may exit the AOI of a given node

only to re-enter at a later point. For example, assume that we have a similar layout

to Figure 4.2. The solid line represents AOI(v1), and the dashed lines represent the

diameters and the corresponding discs. Although the disc with diameter v1v3 does

not contain a third node, v3 is not in I(v1) because v3 is outside of AOI(v1). This

illustrates that any node outside of the AOI(v1) will never have a voice packet routed

to it directly from v1, even though it may have an edge in the corresponding Gabriel

graph.

On the other hand, v1v2 is a valid edge only when its corresponding disc does not

contain another node. Any point that is inside AOI(v1) defines a disc that is also

64

x

x

x

1

2

3

Figure 4.2: AOI-Limited Broadcast: In the full Gabriel graph of the network, an edge
from vertex 1 to vertex 3 exists. However, because each node has an AOI, this edge
can be ignored since the node at vertex 3 would be unable to hear anything said by
vertex 1.

completely inside AOI(v1). As such, we only have to check the validity of edges as

possible broadcast paths for the nodes in D(v1). Since these nodes are maintained

by v1 via Delaunay triangulation algorithms, routing over the Gabriel graph from v1

only requires knowing a nodes AOI and broadcasting only to those neighbors who fall

within the AOI of v1.

The Voice Packet Graph and Protocol

The voice packet graph is a subgraph of the Gabriel graph of the whole network. It

contains only those edges that are not longer than the radius of the AOI and may

therefore be disjoint. Given the definition of a Gabriel graph and given all the nodes

in the network, a connected graph would be generated. However, with our protocol,

we throw out edges between nodes whose are not inside of each other’s AOI since an

avatar cannot hear beyond its AOI.

The transmission of the voice packets is done only along the edges of the voice

packet graph. Every node that generates a voice packet attaches its coordinates and

65

orientation to the outgoing voice packets and then sends this packet out to all the

nodes that are one hop from itself. These nodes then check the coordinates of the

sender node and decide which of their neighbors they have to forward the packet to.

Since the voice packet graph contains all the nodes that are in each other’s hearing

range, delivery is guaranteed to all neighbors who may need to receive the packet.

Nodes outside of the AOIs of the senders will not be part of the same partition in the

voice packet graph. Packets which need to be relayed arrive later than those which are

only a single hop away, ensuring that avatars closest together receive communication

between each other first.

Figure 4.3 shows a snapshot of the voice communication graph with 50 nodes and

0.15 radius. From this Figure, we can see that nodes close to each other are connected

but the entire graph is not necessarily connected. On the other hand, long chains of

nodes can be seen (e.g., a path from node 0 to node 11), but because voice packets

include positional information, they are only forwarded to neighbors within the radius

of the original speaker.

4.2.3 Building and Maintaining the Delaunay Triangulation

Every node in the network maintains its Delaunay neighbors. Using this set the

nodes can calculate which other nodes are inside their AOI and which of these nodes

are Gabriel neighbors. These Gabriel neighbors are then used to forward the voice

packets in the network. We refer to this network as the control network.

The Delaunay Triangulation

A Delaunay triangulation is a triangulation of a set of points in a graph such that no

point is inside the circumcircle of any triangle formed by any nodes in the network

and can be computed in O(n log n) time for a 2D space. The Delaunay triangulation

66

Figure 4.3: Voice Packet Graph Example: Note that some nodes are fully disconnected
from the graph because their AOIs do not intersect with any other nodes. Nodes that
are closest always have an edge between them. Further, some partitions in the graph
have large diameters, but because voice packets include positional information, they
are only forwarded to nodes within the AOI of the originating speaker. For better
understanding we present the discs of node 1 and 32.

67

has been widely used to keep track of nodes in a network in a distributed manner.

Although there are several ways to calculate the Delaunay triangulation, such as the

flip, the incremental, or the sweepline algorithms, none of these are distributed.

Lee and Lam focus on the design of the join, leave, and maintenance protocols to

construct and maintain a distributed Delaunay triangulation dynamically [25]. The

join protocol assumes the knowledge of at least one node in the system so that it

may bootstrap into the system. This node is then able to route the joining node

to its closest neighbor using and appropriate routing algorithm. Next, a complete

neighbor list exchange is performed recursively until no new neighbor is found. The

leave protocol is not necessary because the maintenance protocol itself is sufficient

enough to keep the system in a consistent state, but it can speed up this process.

These protocols together are able to provide an underlying layer that keeps track of

all the Delaunay neighbors of all the nodes in the system in a distributed way.

Bose and Morin investigate the different kinds of routing algorithms for triangula-

tions [3]. They present a greedy routing algorithm, which simply forwards the packets

from a node to the neighbor which is the closest to the destination. This algorithm

always guarantees the delivery of a packet inside a Delaunay graph along some path to

its destination. They also present the compass and randomized compass algorithms,

which require less steps on average, but still has an O(n) worst case performance. To

eliminate this issue, two more sophisticated algorithms are presented and described

in their work.

The above mentioned methods are sufficient enough to build and maintain a De-

launay triangulation even for highly dynamic networks, such as peer-to-peer online

games. Thus, we assume that such an underlying network exists that we can use for

neighbor maintenance, and later for the Gabriel graph construction.

68

4.3 Protocol Simulation

In this section we evaluate our protocol by simulation. Initially the nodes in our

network are distributed in a 1 × 1 square. We run each of the simulations for 60

seconds based on two different mobility models. In our simulations we sample the

network in every 100 milliseconds, for a total of 600 times during the simulation,

which is representative of the rate of voice packets typical in voice communication

protocols (See Section 3.2.3). The radius of the AOI ranges from .1 to 1.6 in 6 steps,

giving an effective diameter of up to 3.2, which is equivalent to not having any limit

on the range of hearing in the virtual world. We simulate from 4 to 1024 total nodes.

In our results, we present the average of all the samples collected, and detailed results

for the most typical cases.

4.3.1 Mobility Models

During the simulations, the nodes move inside the square based on the random

waypoint mobility model. The speed of the nodes is simulated with the Normal

distribution, where the mean of the random variable is 1 and so is the standard

deviation.

The destination of the nodes is chosen based on two different distributions:

1. Uniform: The x and y coordinates are chosen uniformly and independently from

each other. This simulates the traditional random waypoint mobility model.

2. Exponential: The x and y coordinates are chosen together using a three-dimensional

distribution that is a superposition of two exponential distributions (Figure 4.4).

This models a virtual reality where the nodes tend to gather around two hotspots.

The secondary hotspot has a peak that is 75% of the primary hotspot. This

way the nodes still move from one peak to the other, but the nodes are closer

69

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

 0
 1
 2
 3
 4
 5
 6
 7

X
Y

 0
 1
 2
 3
 4
 5
 6
 7

Figure 4.4: Three-Dimensional Distribution to Choose Destination: Having two
hotspots as destination for the mobility model allows us to investigate the effect
of clusters.

to each other and therefore form a cluster. Note that exponential distributions

of players have been measured in large-scale, multiplayer games [34], leading us

to this mobility model.

When a node reaches its destination, a new location and speed is calculated based

on the distributions used.

4.3.2 Theoretical Boundary

The performance of our protocol depends in part on the number of nodes that are

inside of the AOI of a given node since this determines the minimum bandwidth used

for voice transmission. Figure 4.5 shows the average number of nodes that are inside

of the AOI of a given node. We ran multiple simulations, and we varied both the

number of nodes participating in the network and the radius of the AOI. As expected,

the average number of nodes within the AOI is proportional to the radius of the AOI.

Additionally, when the exponential mobility model is used, we see a twofold increase

in the number of peers within the AOI.

70

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 0.1 0.4 0.7 1 1.3 1.6

av
er

ag
e

nu
m

be
r

of
 n

ei
gh

bo
rs

radius

n=1024
n=512
n=256
n=128

n=64
n=32
n=16

n=8
n=4

(a) Uniform distribution

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 0.1 0.4 0.7 1 1.3 1.6

av
er

ag
e

nu
m

be
r

of
 n

ei
gh

bo
rs

radius

n=1024
n=512
n=256
n=128

n=64
n=32
n=16

n=8
n=4

(b) Exponential distribution

Figure 4.5: Average Number of Nodes Within the AOI: The number of nodes within
an AOI indicates how many peers a protocol will have to handle effectively on aver-
age. As the figure shows, the number of nodes inside the AOI increases proportionally
with its radius. Note that the number of nodes in the network with the exponen-
tial distribution has almost twice as many neighbors, on average, as the uniform
distribution.

4.3.3 Load Balance and Scalability

In these experiments, we measured load balancing and scalability of our protocol.

Our metric for load balancing is the average degree of a node. While one possibility is

to simply maintain the k-closest neighbors to communicate with, this could result in

disjoint graphs. While Delaunay and Gabriel graphs will always be connected, they

do not guarantee a low node degree and we therefore ran simulations to determine if

these graphs have similar properties.

Our results show that both the Delaunay and the Gabriel graphs maintain a low

node degree on average with a low standard deviation. Figure 4.6 shows that the

maximum average degree of a node in the Delaunay graph is six, which is in accordance

to the theoretical average. Thus, the Delaunay triangulation not only guarantees that

all of the nodes are connected and therefore any avatar is reachable by any other avatar

but it also creates a graph where the average node degree is low and therefore has a

71

 0

 1

 2

 3

 4

 5

 6

 0.1 0.4 0.7 1 1.3 1.6

av
er

ag
e

nu
m

be
r

of
 n

ei
gh

bo
rs

radius

n=1024
n=512
n=256
n=128
n=64
n=32
n=16

n=8
n=4

(a) Uniform distribution

 0

 1

 2

 3

 4

 5

 6

 0.1 0.4 0.7 1 1.3 1.6

av
er

ag
e

nu
m

be
r

of
 n

ei
gh

bo
rs

radius

n=1024
n=512
n=256
n=128
n=64
n=32
n=16

n=8
n=4

(b) Exponential distribution

Figure 4.6: Average Node Degree for the Delaunay Triangulation: as the radius of
the AOI and node density increases, the average number of neighbors approaches the
theoretical average of 6 neighbors per node. The average neighbor count is a measure
of how many times a packet would need to be replicated to reach its listeners. Both
exponential and uniform distributions showed similar results, indicating the efficacy
of using Delaunay triangulations.

low bandwidth requirement for neighbor maintenance.

Our Gabriel graph protocol shows similar patterns (see Figure 4.7). The results

show that the average number of Gabriel neighbors, ranges from 0 to 4. Note that

even at its most loaded setup, where the radius of the AOI was 1.6, each node had on

average only 4 Gabriel neighbors. In other words, as the population density increases,

the average node degree, and therefore bandwidth requirements, increase very slowly.

To further understand our results we examined the generated data in detail. We are

particularly interested in the worse-case scenarios, so we used only the exponentially-

distributed mobility model. Figure 4.8 presents the detailed results of the 0.4 radius

simulation run for both the Delaunay and Gabriel graphs with 16, 64, 256 and 1024

nodes respectively. We plotted the minimum, the average and the maximum number

of neighbors that a node had to maintain. Note that in this stacked chart, the

difference between the minimum, average, and maximum values is presented so that

72

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.1 0.4 0.7 1 1.3 1.6

av
er

ag
e

nu
m

be
r

of
 n

ei
gh

bo
rs

radius

n=1024
n=512
n=256
n=128
n=64
n=32
n=16

n=8
n=4

(a) Uniform distribution

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.1 0.4 0.7 1 1.3 1.6

av
er

ag
e

nu
m

be
r

of
 n

ei
gh

bo
rs

radius

n=1024
n=512
n=256
n=128
n=64
n=32
n=16

n=8
n=4

(b) Exponential distribution

Figure 4.7: Average Node Degree for the Gabriel Graph: as the radius of the AOI and
the node density increases, the bandwidth requirements for our protocol increases.
Our results show that the average neighbor count approaches its theoretical maximum
of 4, indicating that the Gabriel graph scales well because fewer packets would be
replicated over multiple unicast streams. As with Delaunay triangulations, Gabriel
graphs were effective in both uniform and exponentially distributed populations.

the height of each bar represents its value on the y-axis correctly.

Figure 4.8 shows that the maximum number of neighbors is never more than twice

the average number of neighbors, while the minimum number of neighbors can be

quite small because some nodes are isolated. In addition, we see that the maximum

Gabriel node degree is consistently smaller than the maximum Delaunay node degree.

While we only show the values for the radius of 0.4, we had similar results for the

other radii and node densities.

As described in Section 4.2.2, voice packets from vi are transmitted to all AOI

neighbors since they should be able to hear the avatar speaking. However, since we

have built a Gabriel graph between every node and its AOI neighbors, the transmis-

sion is done in a hop-by-hop fashion. This design not only helps balance the traffic,

but generates a realistic scenario where listeners closer to the speaker hear the voice

packets before farther listeners.

73

Figure 4.8: Minimum, Average, and Maximum Neighbors: This figure illustrates
the range of neighbors for a radius of 0.4 and compares both Delaunay and Gabriel
graphs of increasing density (D16 is a Delaunay graph with 16 nodes while G16 is
a Gabriel graph with 16 nodes). The results illustrate that the average, minimum,
and maximum node degrees of the Gabriel graph are consistently smaller than the
maximum Delaunay graph.

Figures 4.9 and 4.10 show the average number of hops for a packet to get from

its source to a node in its AOI using the Delaunay and Gabriel graphs, respectively.

In the worst case, the average number of hops is approximately 11 for Delaunay

triangulations and 17 for our Gabriel graph protocol. However, this setup illustrates

an extreme case where all 1024 nodes are within each others’ hearing range and this

value is an order of magnitude larger than a zone contains in World of Warcraft [34],

for example. In a more realistic scenario where the radius of the AOI is 0.4 the average

number of hops is only 9 and 11 for Delaunay and Gabriel graphs respectively.

On the other hand, even in this extreme case, the bandwidth required by each

node would still be low, though the delay would be high for far away listeners due

to the number of hops to forward packets to them. It can also be observed that

the lower number of Gabriel neighbors results in a longer route length versus routes

in the Delaunay graph. However, the Gabriel graph is a closer approximation of

reality in that closer listeners to a given speaker in the virtual world will receive

74

 2

 4

 6

 8

 10

 12

 0.1 0.4 0.7 1 1.3 1.6

ro
ut

e
le

ng
th

radius

n=1024
n=512
n=256
n=128

n=64
n=32
n=16

n=8
n=4

(a) Uniform distribution

 2

 4

 6

 8

 10

 12

 0.1 0.4 0.7 1 1.3 1.6

ro
ut

e
le

ng
th

radius

n=1024
n=512
n=256
n=128

n=64
n=32
n=16

n=8
n=4

(b) Exponential distribution

Figure 4.9: Average Route Length in the Delaunay Graph: this figure illustrates
that the route length from the source to its destinations increases as the radius and
node density increases. In particular, the Delaunay graph increases its route length
logarithmically as the density and radius of the AOI increases.

their voice packets before those that are farther, more accurately modeling the way

that sound travels in the real world. Further, since the bandwidth required by voice

communication will compete with bandwidth for the rest of the NVE, the Gabriel

graph has the advantage of fewer neighbors to replicate packets to.

Again, we examined our data in detail to determine if in the worst case scenario

the route length was significantly higher than it was on average. We present the

minimum, the average and maximum route length for both the Delaunay and the

Gabriel graphs. For this simulation we used 16, 64, 256 and 1024 nodes, our second

mobility model, and we always used a radius that has a length 0.4 (see Figure 4.11).

We found that the route length in the worst case scenario is only about 50% more

than it is on average. Thus, our solution is well balanced and does not overload any

of the nodes.

75

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0.1 0.4 0.7 1 1.3 1.6

ro
ut

e
le

ng
th

radius

n=1024
n=512
n=256
n=128

n=64
n=32
n=16

n=8
n=4

(a) Uniform distribution

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0.1 0.4 0.7 1 1.3 1.6

ro
ut

e
le

ng
th

radius

n=1024
n=512
n=256
n=128

n=64
n=32
n=16

n=8
n=4

(b) Exponential distribution

Figure 4.10: Average Route Length in the Gabriel Graph: This figure illustrates the
route length, in hops, from a speaking avatar to any other avatars within the speaker’s
AOI. In high density situations, such as when the radius is 1 (and encompasses almost
the entire playing field), the number of hops appears to grow logarithmically with the
number of nodes in the AOI.

Figure 4.11: Minimum, Average, and Maximum Route Lengths: This figure illustrates
the range of route lengths for a radius of 0.4 in our simulations and compares both
Delaunay and Gabriel graphs of increasing density. The results illustrate that the
minimum, average, and maximum route length of the Gabriel graph is longer than
that of the Delaunay graph.

76

4.4 Adding Social Structures

Although our protocol focuses on building and maintaining a graph for location

aware voice communication, it can be easily extended to maintain additional connec-

tions between the players to accommodate social structures such as guilds and friends

lists. In these cases, a player desires to communicate with other players in the social

structures which are far away in the virtual space, but using the Gabriel graph as we

have designed could cause significant delay due to the number of hops it would need

to take.

To handle these social structures, we propose extending the protocol to add addi-

tional edges to the graph so that players are directly connected to the other players in

their social group. Fortunately, the extra edges do not effect the routing mechanism

because they do not result in dead ends, or local maximums, and our original method

guarantees that there is a route between any two nodes that are a part of the Gabriel

graph. The drawback of this approach is the additional number of edges that a peer

must support. Therefore, an alternative is to construct additional graphs for social

structures such that only those members of the social structure are connected in the

graph and the AOI of each member is sufficiently large to cover the entire member-

ship. Given these parameters, a Gabriel graph will be constructed between members

of the social structure allowing efficient communication between them.

4.5 Security

In this section we briefly overview the different kinds of attacks. Next, we identify

the possible attacks with which our network would have to cope. After analyzing

each of the attacks, we present a possible solution.

77

Table 4.1: Attacks in NVEs: Categorized as active or passive, we list common, well-
known attacks against P2P networks for interactive systems and possible defenses
against the attacks.

Active Attacks
Attack Defence
Denial of Service
(DoS) Attack.

Captchas and challenges.

Black Hole Attack. Periodic message update between the node and its neigh-
bors.

Incorrect Forwarding. Hiding identity.

Passive Attacks
Attack Defence
Eavesdropping. Encryption with symmetrical keys.
Traffic Analyzing. Hiding identity and encrypting communication channels.

4.5.1 Categories of Attacks

One possible way to categorize attacks in a computer network is based on their

nature (Table 4.1). If the attacker cannot change anything in the system, i.e. she is

not able to interact with any of the parties involved or modify any of the messages

in the system, we call it a passive attack. This kind of attack is solely based on

observing the data. The most common attacks in this category are traffic analysis

and eavesdropping.

Active attacks require the attacker to be able to transmit data to one or more of

the parties, or modify the data stream between them. Alternatively, the attacker can

simply drop the data packets without making any changes to them.

78

4.5.2 Active Attacks

DoS Attacks

We would like to have as few malicious nodes in our network as possible. To achieve

this, we have to make sure the nodes that enter the system during the joining process

are not malicious. Since our system is purely peer-to-peer, we cannot rely on a

centralized authority that controls access to the network. Thus, the validation process

that decides whether a node is malicious or not has to be carried out using the nodes

that are already inside the system.

Our assumption is that every node that is not controlled by a human is malicious.

To be able to distinguish between humans and computer agents, the system has to

provide a challenge. We propose using captchas to slow down the joining process.

To further slow down the process, challenges could be used. Generating challenges

that are easily producible but are hard to solve is not trivial. Network puzzles fit our

criteria as they are easy to produce, hard to solve and fast to validate [12, 13].

Once the puzzle is generated, sent to the client and solved by it, the puzzle is

validated by nodes nearby the joining node along with randomly chosen nodes from

other locations. After the joining node is admitted into the system, a session key is

provided to the candidate and stored in the network via a technique such as Shamir’s

solution [39].

Black Hole Attack

The most basic attack is the black hole attack, where a node tries to erase messages in

the network typically by dropping packets which should be forwarded. The attacker’s

goal is to increase the number of messages that she has to forward. She does this by

convincing as many nodes as possible that they should route messages through her.

79

If routing tables are based on gossiping, she can advertise herself as a node which is

a direct neighbor of all the other nodes in the system.

To address this attack, we propose using periodic updates between neighbors and

with nodes two or more hops away in order to detect inconsistencies. Note that this

method can only find out if there is an incorrect entry in the system, and does not

locate the malicious node itself. The latter can be done with voting.

Incorrect Forwarding

The incorrect forwarding attack, where a malicious node purposely routes messages

incorrectly, is harder to detect than the black hole attack since we would have to decide

if the packet took the correct route. In addition, if the malicious nodes cooperate,

the packet might still reach its destination but with a higher delay.

A possible solution to the problem is to hide the identity of the nodes. Since inter-

active media traffic is often used for multiplayer games and virtual reality systems,

the main reason for an attack is cheating, which requires the attacker to be able to

identify the sender of a packet. Therefore, hiding the identity is a sufficient defense.

We propose routing messages via an approximate virtual location and not including

the source identifier in the messages. In this scenario, routing between areas in

the virtual space can be implemented accurately, but malicious nodes would not be

able to accurately determine the source of the packets. The drawback is that more

nodes would receive the packets due to the higher radius of distribution required by

approximating the locations.

80

4.5.3 Passive Attacks

Eavesdropping

The most common passive attack in a virtual system is eavesdropping. The attacker

might use the data for cheating or data mining. To prevent this from happening, we

have to make sure that no unathorized party either inside or outside of the system is

able to listen to conversations. A possible solution for this problem is to encrypt the

data flows with symmetrical keys that can be set up between the nodes during the

neighbor maintenance process.

Traffic Analysis

While analyzing the traffic the attacker can gain insight with either identifying the

senders, receivers, the content of the data flow or the amount of it. Since we use

an encryption we hide the identity of the nodes and we do not send to a particular

receiver but to a region, this problem does not affect our users.

4.5.4 Putting Things Together

When a user wishes to join the system, she has to bootstrap into the network and

locate an initial node to initiate the joining process with. First, the bootstrap node

sends out a captcha. If the user answers the captcha correctly, a challenge is gen-

erated by the system. This challenge then has to be solved by the user’s computer

and the result has to be sent back to the system. The verification of the result is

conducted by multiple nodes in the system. Most of the verifying nodes are direct

or close neighbors of the node that handles the joining, but some of them are simply

randomly chosen. If the verification is successful, the user becomes a part of the

system. However, to protect the user from both active and passive attacks, a secure

81

communication channel has to be established between the node and its neighbors.

During this process a symmetrical key is generated that is later used for communica-

tion. Since the neighbor maintenance is based on the delaunay triangulation, a new

key pair has to be generated after every neighbor change. If the node initiates any

traffic, the packets are signed by the location of one of its neighbors. This way, the

forwarders cannot identify the original sender.

From the user’s point of view, the process is almost fully transparent. If a captcha

is required, that has to be presented to the user and solved by her. Also, a slight

delay is experienced while the computer answers the challenge. Other than these

two steps, everything is done in the background and therefore should be completely

hidden from the user.

4.6 Security Simulation

In this section we evaluate our protocol by simulation. Initially the nodes in our

network are distributed in a 1 × 1 square. We run each of the simulations for 60

seconds based on two different mobility models. In our simulations we sample the

network every 100 milliseconds, for a total of 600 times during the simulation, which

is representative of the rate of real-time multimedia traffic. We simulate from 4 to

1024 total nodes.

4.6.1 Puzzle Validation

When a node joins the system, it is a potential threat for all the other nodes. In

order to ensure that the nodes that become a part of the network are not malicious,

an authentication has to take place. Since the system does not have any previous

information about the nodes the only thing that can be validated is if the joining

82

 0

 5

 10

 15

 20

 25

 30

 4 8 16 32 64 128 256 512 1024

nu
m

be
r

of
 n

ei
gh

bo
rs

number of nodes

Total Number of Neighbors
Number of Malicious Neighbors

(a) Uniform distribution

 0

 5

 10

 15

 20

 25

 30

 4 8 16 32 64 128 256 512 1024

nu
m

be
r

of
 n

ei
gh

bo
rs

number of nodes

Total Number of Neighbors
Number of Malicious Neighbors

(b) Exponential distribution

Figure 4.12: Average Ratio of Malicious Neighbors: The number of neighbors and
the number of malicious neighbors indicate the ratio of malicious neighbors. These
results show that the ratio of malicious neighbors is independent from the distribution
of the nodes in the system and correlates with the ratio of the total number malicious
nodes.

node is welcome by the majority or not. Here we present our simulation results about

this validation process.

The joining node is challenged to solve a puzzle. If the node is willing to take the

time that is required to find the solution, the nodes that are already inside of the

system mark the candidate as trusted and let it join the system. To determine how

effective this method is, we ran simulations with both the uniform and exponential

mobility models and varied the location of the malicious nodes.

Figure 4.12 shows the results of the run, where 25% of the nodes were malicious and

were placed randomly in the system and the closest and second closest neighbors were

used to validate the secret of the candidate node. The X-axis shows the total number

of nodes in the system and the Y -axis shows the number of validating and malicious

nodes. Without collusion, we expected that malicious nodes would be unable to easily

admit additional malicious nodes into the system–which these results demonstrate.

Thus, after the runs, we still saw an approximately 25% ratio of malicious to regular

83

nodes.

We next investigated the case where malicious nodes clustered to admit new nodes

into the system without the proper puzzle solving. In this scenario, we expected

malicious nodes to be capable of dominating the system by admitting other malicious

nodes into the system over time.

Figure 4.13 is the result of our clustered simulation using the uniform mobility

model. Since the network is dynamic and uses the delaunay triangulation for neighbor

maintenance, it is almost impossible to tell where a certain node would have to

position itself to ensure that it will be a part of the group that validates the solution

of the candidate. In the optimal case, all the malicious nodes should cooperate.

After trying several scenarios, we found that simply gathering around the node that

is conducting the joining process is sufficient enough to admit more malicious nodes

into the system. For example, with at least 128 nodes in the system, almost all of

the neighbors are malicious (hence the two graph lines join). With fewer than 128

nodes, the ratio of malicious nodes in the system is fewer than the average number

of neighbors that a node has, and hence the joining node cannot be surrounded by

malicious neighbors. Thus, if the malicious nodes conduct an organized attack against

the system, a simple majority based decision fails. Note that, we omit the exponential

distribution mobility model results since it performed similarly.

As we explained before, there is a possible solution for this problem. If the decision

is not based on the vote of the neighbors but some randomly chosen nodes, the

malicious nodes cannot take advantage of their location. The drawback of this solution

is the increased overhead. In Figure 4.14, we show the ratio of malicious nodes with

and without the random selection of verifying nodes. These results show that without

random selection, malicious nodes can dominate the network with as few as 128 nodes

in the system. However, when we add random selection, the ratio of malicious nodes

84

 0

 5

 10

 15

 20

 25

 30

 4 8 16 32 64 128 256 512 1024

nu
m

be
r

of
 n

ei
gh

bo
rs

number of nodes

Total Number of Neighbors
Number of Malicious Neighbors

Figure 4.13: Average Ratio of Malicious Neighbors While Clustering: The ratio of
malicious neighbors increases over time when they collude, eventually overwhelming
the system with as few as 128 nodes in the system.

stays constant throughout the set of simulations.

In choosing random verification nodes, we queried the same number of random

nodes that were in the 2-hop neighborhood of a node. However, this technique would

result in a larger overhead, since the route length to the randomly chosen nodes

is longer on average than it is to the 2-hop neighbors. To investigate the number of

nodes that we could randomly query without increasing the overhead, we ran multiple

simulations. After analyzing these simulations, we concluded that choosing 5 random

nodes in the system results in slightly higher message forwarding then querying the

2-hop neighbors. Thus, we decided to query 4 random nodes. Figure 4.15 shows the

overhead generated by the above mentioned two scenarios.

Although a possible solution would be to replace our solution with one that is

completely random it would result in a much less accurate scenario. Assume that

25% of the nodes are malicious and we use only 4 nodes to validate the node that

tries to enter the system. Furthermore, assume that we require at least 3 out of the 4

nodes to authenticate the candidate. In this case only one node can be non-malicious.

However, even in this case there is a 5% chance of that a malicious node would get

85

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 16 32 64 128 256 512 1024

ra
tio

 o
f m

al
ic

io
us

 n
od

es

number of nodes

Ratio of Malicious Neighbors
Ratio of Random Malicious Nodes

Figure 4.14: Neighbor Validation vs. Random Validation: The ratio of malicious
nodes among the neighbors is clearly higher when the malicious nodes cooperate,
whereas the ratio of randomly chosen nodes correlates to the ratio of malicious nodes
in the entire system, indicating that randomly choosing verification nodes alleviates
collusion in the system.

 0

 10

 20

 30

 40

 50

 32 64 128 256 512 1024

ro
ut

e
le

ng
th

number of nodes

Total Route Length to Neighbors
Total Route Length to Random Nodes

Figure 4.15: Total Route Length: The total route length is the sum of all the route
lengths that the messages travel. In case of the close neighbors, the routes are shorter
but the number of nodes is higher, whereas in case of the randomly chosen nodes we
only have 4 nodes, but they can be located anywhere in the system.

86

permission to enter the system.

Instead, we propose a hybrid scenario. Since the nodes that enter the system enter

it close to the node that gives them permission, we can identify the malicious nodes.

We query both the 2-hop neighbors and 4 random nodes. If these two groups make

the same decision (i.e. they both agree or disagree about giving permission to the

candidate), we consider it a final decision. However, if there is a disagreement between

these two groups, we repeat the admission process, but only with the randomly chosen

nodes. If their decision is unchanged we mark those nodes that voted against this

decision. If a node is marked more than a certain threshold, we eliminate it. This

way the number of malicious nodes in the system can be lowered throughout time.

4.6.2 Hiding Identity

In this experiment we measure the accuracy of our solution for hiding the identity

of the nodes (Figure 4.16). Recall that to hide the identity, we use a slightly different

location than the actual location of the sender node. As a side effect, we deliver

packets to nodes who are outside of the original area of interest, and ignore some

nodes that are inside. To determine the accuracy, we run simulations with different

node densities and Area of Interest (AoI) radii. On the Y axis we present the accuracy

of the method in percentages. The number shows what ratio of those nodes that are

inside the original AoI, actually receive the packet. The X axis is the radius of

the area of interest. Since we use a 1x1 square for our simulations, the 1.6 radius

guarantees a total coverage.

Instead of using the location of the sender node, we use the locations of one of

its neighbors. As our results show, when we have very few nodes in the system, the

accuracy of the protocol is only around 50%. This is due to the fact that the density

of nodes is fairly low and therefore using the coordinates of a neighbor node shifts the

87

 0

 20

 40

 60

 80

 100

 0.1 0.4 0.7 1 1.3 1.6

m
at

ch
 r

at
e

(%
)

radius

n=1024
n=512
n=256
n=128
n=64
n=32
n=16

n=8
n=4

(a) Uniform distribution

 0

 20

 40

 60

 80

 100

 0.1 0.4 0.7 1 1.3 1.6

m
at

ch
 r

at
e

(%
)

radius

n=1024
n=512
n=256
n=128
n=64
n=32
n=16

n=8
n=4

(b) Exponential distribution

Figure 4.16: Average Match Rate While Hiding Identity: Using the location of a
neighbor instead of the real location results in including unwanted and excluding
wanted nodes. As the results point out, there is no real difference between the two
mobility models and the accuracy is already acceptable if there are at least 64 nodes
in the system.

center of the AoI significantly. As the node density increases, the results get much

better. With having only 64 nodes in the system, the accuracy is already around

90%.

We reran the simulations with our exponential mobility model (Figure 4.16). The

results are similar to the results that we saw with the uniform model. This is due to

the characteristics of the random waypoint mobility model as it tends to cover the

extreme cases even when a uniform distribution is used and as such, using a different

distribution does not affect the results. However, running the simulation with two

different distributions ensured us about the robustness of our solution.

Next, we ran simulations to determine the size of the radius that would be sufficient

enough to cover all the nodes that are inside of the original AoI. As we use a slightly

modified location, not the exact location of the sender node, we might leave out

nodes that are officially inside of the AoI. Therefore, the radius that guarantees that

all these nodes are covered, cannot be shorter than the original radius.

88

 0.1

 0.4

 0.7

 1

 1.3

 1.6

 0.1 0.4 0.7 1 1.3 1.6

su
ffi

ci
en

t r
ad

iu
s

original radius

n=1024
n=512
n=256
n=128
n=64
n=32
n=16

n=8
n=4

(a) Uniform distribution

 0.1

 0.4

 0.7

 1

 1.3

 1.6

 0.1 0.4 0.7 1 1.3 1.6

su
ffi

ci
en

t r
ad

iu
s

original radius

n=1024
n=512
n=256
n=128
n=64
n=32
n=16

n=8
n=4

(b) Exponential distribution

Figure 4.17: Sufficient Radius for Delivery Guarantee: With the increase of the size
of the radius of the AoI, it can be guaranteed that everyone who has to receive the
packet will actually receive it. It can be seen that with the increase of the number of
nodes the delta between the original and required radii decreases. Having 128 nodes
results in less then 10% difference.

Figure 4.17 shows our results. As it can be seen, if the radius is at least 1 unit

long, our system does not show any inaccuracies. If the radius is shorter than that,

our solution results only in slight inaccuracies but it can be concluded that it still

does better as the node density increases. If we have at least 32 nodes in the system,

the radius that guarantees 100% coverage is only 50% longer than the original radius

in worst case.

4.7 Conclusion

We have presented a new protocol for multiparty voice communication based on

Gabriel graphs and positional information. Our protocol has five interesting prop-

erties: 1) positional information allows the voice packets to be mixed into a 2 or 3

dimensional space accurately; 2) voice packets are sent to the closest listeners first,

since we have a direct link with them, who then forward them to farther listeners;

3) the average degree of any node in the system is smaller than 6 because Gabriel

89

graphs are a subset of Delaunay triangulations; 4) the average number of hops in the

system also appears to remain low, but depends on the density of players (though

high density areas will mainly cause delayed voice data and not overwhelming voice

data); and 5) the protocol can be used in both distributed and client/server NVEs.

When forwarding packets in an AOI-limited broadcast, our results show that they

would need to be replicated fewer times when using the Gabriel Graph. Next, we

have presented a framework for securing our virtual-location-aware peer-to-peer voice

communication protocol. Our framework shows how to handle passive and active

attacks on the network from malicious nodes joining the system. In addition, we

show that by using a combination of random verification and hiding the virtual source

locations of the packets in the network, we can prevent malicious nodes from rapidly

joining the system and actively attacking the network by dropping or incorrectly

routing packets.

90

Chapter 5

Implementation

5.1 Introduction

In this chapter we describe the details of our implementation and the results of the

real-world simulations that we run to validate both our protocol and the conclusions

of our measurement study.

5.2 Program Architecture

The architecture of our protocol contains two building blocks. One of them is the

bootstrap server. The bootstrap server is not only used to provide information to the

nodes that try to join the network, but it also provides location information to the

current members. This way, the simulations can run without having actual players.

The other building block is the servlet. This is the program that is run by all the

nodes and serves both as a client and a server. It is responsible for maintaining

the connection with all the other players’ servlets as well as to provide a graphical

interface to the user and transfer her/his voice packets.

91

Figure 5.1: Flowchart of the Bootstrap Server: The bootstrap server maintains two
threads concurrently. One calculates the node locations while the other maintains
the servlet list and provides information for servlets that want to join the network.

5.2.1 The Bootstrap Server

The flowchart of the bootstrap server can be seen in Figure 5.1. Although, this

only contains the main methods of the actual program, we thoroughly discuss the

details in this section.

The bootstrap server initiates two threads upon startup. One of the threads is

used to listen to requests from the servlets and updates the servlet list accordingly.

The other thread is used only for simulation purposes and would not be required in

real-world deployment. We chose this solution for protocol validation due to the lack

of available players.

92

The Location Thread

Upon startup the server requires a parameter that specifies the length of the simu-

lation. This parameter is given in rounds, where a round is 100 ms. We chose this

parameter because this is equivalent to the length of a voice packet in a typical voice

communication software. Although we ran multiple simulations with 100 ms long

voice packets, we experimented with other values as well. The thread is responsible

for checking whether there are any more rounds left. If there are not, the simulation

ends.

If the server happens to pass the “End of Simulation?” stage, it calculates the

node coordinates. In the first run the nodes are simply placed in the virtual reality

based upon some command line specified parameters. Next, the node locations are

calculated based on the node locations in the previous run. Once the calculation has

finished, the server sends out the information to the servlets. The servlets are then

responsible for updating their current location, and to discovering their neighbors

based on this information.

Before entering the decision making stage again, a delay is incorporated. The total

delay is the amount of time that the calculation and the artificial delay take together.

However, the time that the coordinate calculation takes is minimal; therefore does not

influence this step significantly. Moreover, this step does not have to be synchronized

to the voice packet sending interval, as it would not be if the avatars were player

controlled.

Out of the two threads that the server runs, the location thread is the only one that

can terminate the program. Although we did not mark any connections between the

two threads that the server runs, in case of a termination both of them are signaled,

which allows them to close open sockets and to free the allocated memory segments.

93

The Servlet List Thread

The servlet list thread is an infinite loop that is used to do two things: first, it provides

information to servlets that want to join the network. Second, it maintains a list of

servlets that are in the network.

The server binds to a given port, and then listens to requests from servlets. It

remains in the listening stage as long as it does not receive a request. If a request

arrives, it checks whether it is a request from a servlet. To do this we use a particular

request ID that serves to identify malicious activities. If the request ID is a match, a

connection is built between the servlet and the server, and the request is processed.

Since we use the server to calculate the virtual location of the players, the server

provides a neighbor list to the servlet. Under normal conditions this would be im-

possible; the server would have to send out some of the addresses of the servlets in

its servlet list instead. Since we are more interested in the behavior of the protocol

in the stable stage, we did not implement this feature. However, the constant updat-

ing of the location of the nodes in the virtual world can ensure us that the neighbor

maintenance protocol is correct, which would be used during the joining stage as well.

The last step of the loop is the servlet list maintenance. Since we know from the

beginning how many servlets we have during the actual run, we simply maintain an

array with the node ID and the corresponding status of the node: online or offline.

Under normal circumstances, the servlet list would have to be maintained as a linked

list. The servlet that joined last should be added to the end of the list, and the

last k servlets should be pulled from the list as an answer to a query. However, this

solution introduces a potential security loophole. A DoS attack against the server

could easily be conducted. A malicious machine could register several non-existing

nodes in the list, making it practically useless. To avoid this, the joining process has

94

to be a two-way communication between the server and the servlets. The joining

node is not registered until it actually enters the system. To ensure this, the node is

registered by the node that is already in the system and initiates the joining process

of the candidate. Moreover, the registration only happens if the joining is successful.

Another potential security problem is that the servlet list ages and could contain

nodes that are no longer in the system. To avoid this problem, after a successful join,

the node can report the nodes that it could not find in the system while trying to

join. The server then replaces these nodes in the linked list at a lower position. The

result is a more up-to-date list that does not delete entries accidentally.

5.2.2 The Servlet

The flowchart of a servlet can be seen in Figure 5.2. Similar to the flowchart of the

bootstrap server, this contains only the main methods of the actual program.

After a servlet starts, it logs into the bootstrap server. During this step, it first

sends a request to acquire the list of other servlets that are already in the system.

Next, it enters the waiting stage. It remains in this step until it receives a reply or

the waiting times out. If a reply is received, the servlet checks it to make sure it is

a valid reply. If the reply is not valid, the program terminates. Otherwise it joins

the network. This step is rather complicated. The candidate servlet has to be in

continuous communication with the other servlets that are already in the system.

During the joining, the servlet has to find its actual neighbors before it can start

sending packets. It also has to inform its neighbors so that they can register the

candidate node in their neighbor list. It is only after this step that the servlet is

considered a fully-functional part of the network.

Next, a servlet initiates three threads. Unlike the bootstrap server, all three of

these threads are loops, and none of them can terminate the program. Under normal

95

Figure 5.2: Flowchart of a Servlet: A servlet maintains three threads concurrently.
One is responsible for the neighbor maintenance, while the other two handle the user
generated and the incoming voice packets.

96

circumstances, in which a user controls the avatar, a disconnect option would be

available; for the validation process this is not necessary.

One of these three threads is responsible for the neighbor maintenance, while the

other two threads are responsible for voice packet handling: one handles the incoming,

while the other handles the outgoing voice packets.

The Neighbor Maintenance Thread

The neighbor maintenance is performed by exchanging routing messages with the

direct neighbors, but the routing messages might contain information about non-

direct neighbors as well. The direct neighbors might change, thus the list of direct

neighbors is constantly updated.

After a node successfully joins the network, it performs a periodic neighbor update.

The time between these updates is determined based on the node density in the virtual

world and the speed of the nodes. Higher density, as well as faster movements, require

more frequent updates.

The first step of this process is to send out the routing requests. Next, the servlet

enters the listening stage where it waits for the replies. If it receives a reply, it has to

check it to make sure the reply is a valid routing table entry. If it is, it updates the

corresponding entries in its own routing table. Otherwise it goes back to listening

mode and waits for a valid reply.

Since normally a node has 6 neighbors on average, during the routing update

multiple replies can be received (we did not indicate this in our flowchart). Thus,

the loop does not terminate after receiving only one reply, but rather after a certain

threshold, and collects all the replies during this time.

97

The Outgoing Voice Packet Thread

The outgoing voice packet thread is quite different from what it would be if a user

controlled the avatar. In that case we would have to code the user’s voice into digital

voice packets and send them out. Instead, here we have to simulate this behavior.

Using our voice model, we can randomly generate the silence periods and the

talkspurts. After every silence period comes a talkspurt, and after every talkspurt

comes a silence period. Thus, the loop has only two stages.

During the first stage the silence period is generated, which is essentially equivalent

to a delay. In this stage the loop is idle. Next, it enters the sending stage. Here

another time is calculated as the talkspurt time and voice packets are sent out to all

the neighbors during the talkspurt stage.

The Incoming Voice Packet Thread

Although we use the incoming voice packet thread to handle both incoming voice

packets and routing requests, we named it after its main functionality. In order

to make the setup more intuitive to the users, we decided to open only one port for

incoming messages and distinguish between them with a packet ID, instead of opening

multiple ports for the different functionalities.

If the servlet receives an incoming packet, it first validates that the packet falls into

one of the two categories mentioned above. If the packet happens to be a routing

table request, a reply which contains the relevant routing information is sent out and

the servlet returns to the listening stage. If the incoming packet is a voice packet,

the servlet has to decide whether this is the final destination of the packet or if it has

to be forwarded to other nodes that are inside of the originator’s AoI. This decision

is made based on the originator’s location that is coded in the packet. Please note

98

that the voice packet might be forwarded to multiple recipients, who will also have

to analyze and possibly forward it.

5.3 Testbed

In this section we desribe how we test the functionality of our program. We focus on

two aspects: the neighbor maintenance and the voice packet delivery. The neighbor

maintenance is an essential part of the protocol; without it the voice packet delivery

is not possible. Therefore, we first test the neighbor maintenance and then we test

the voice packet delivery.

5.3.1 General setup

During our validation we use two different scenarios: a static scenario and a dy-

namic scenario. This helps us validate the different components separately as well as

together. Table 5.1 shows the validation matrix. We performed the steps from left to

right and from top to bottom. Sections 5.3.2 and 5.3.3 explain the details of each of

these steps.

Table 5.1: Protocol Validation: The four different steps of validation.

Static Dynamic
Neighbor maintenance Validates the initial join-

ing process mechanism.
Validates the neighbor
maintenance mechanism.

Vocie Packet Delivery Validates the voice packet
delivery mechanism.

Validates both the neigh-
bor maintenance and the
voice packet delivery. ⇒
Validates the proto-
col.

99

Static Scenario

During our static validation, we do not move the nodes. We simply set up groups

with different sizes based on our measurement (See Section 3.3.4). This step helps us

validate the basic functions of our protocol and debug any unexpected problems.

Dynamic Scenario

The dynamic scenario was designed to validate our protocol under similar conditions

that we would have in a real-world deployment. Here we move the nodes similar to

how we did during our simulations. The main difference is that we set up groups that

move together. We experimented with using a designated leader in the group that

every other node would follow, but this resulted in forming a line by the other players

that were following the leader. Therefore, we decided to move the players separately

but towards the same target. Unfortunately, after a group reached its first destination

we faced a similar problem as before. In the end we used a mobility model in which

we chose a destination for the group, and then we added random x and y values to

this destination for each of the members of the group. We set the x and y parameters

as a uniformly chosen random number between 0 and 10% of the radius of the AoI.

We set a new destination for a group when all the members of the group reached its

target. This indicates that our group stayed together but this was not always the

case. The speed parameter sometimes resulted in a big enough difference that some

of the members of the group could not keep up with the rest, or moved fast enough

to get out of the AoI of some members of the group. Also, since we had multiple

groups in the virtual world moving at the same time, they crossed each others’ route

on several occasions. This resulted in voice transfer among groups, similar to how it

would under real-world use.

100

5.3.2 Neighbor maintenance

The neighbor maintenance is an essential part of our protocol, and without it the

voice packet delivery would not be possible. Using both a static and a dynamic

scenario helps us to validate this functionality.

Although the static test cannot be monitored for a long period of time, it is im-

portant to verify that it is correct. During this step the candidate joins the network

and essentially sets up the connections with its neighbors. After both the neighbor

discovery and registration are complete, there should not be any more changes. The

static test not only verifies that the routing table of the candidate node is correct,

but it also verifies that the neighbors adjust their routing table: they include the new

node and delete those old nodes that are no longer their neighbors.

Unlike the static scenario, during the dynamic scenario a continuous change is

possible. Therefore, here we cannot set a breakpoint after which we can state that the

algorithm works correctly. Rather, the longer the validation is, the more probable the

neighbor maintenance is bug free. Again, the correct functionality of this mechanism

of the implementation is extremely important, since it is a requirement of the voice

delivery. During this validation, we monitored whether the routing table of each node

of the network matches the topology of the network. Since we use the server to tell

the nodes their destination, we can compare the logs of the server to the logs of the

individual nodes. To do this, we maintain two different log files: one for the server

and one that is shared by the nodes. The server log file contains the coordinates

of each of the nodes every 100 ms and the shared log file of the nodes contains the

coordinates of the logs as well as their routing table. By using the server log file,

the desired links can be calculated after the run which helps us save resources. After

the desired links are calculated, they can be compared to the routing tables.Although

101

the optimal result would be a perfect match, we encountered slight differences due to

the fact that a change in the system might require a few rounds to spread across the

nodes.

5.3.3 Voice Packet Delivery

Once our system was validated for neighbor maintenance, we looked at the voice

packet delivery. Similar to our previous validations, we started with the static scenario

and then continued with the dynamic one.

The static scenario helped us make sure the voice packets were delivered correctly.

First, we had to make sure the nodes generated the talkspurts and silence periods

correctly. To be able to validate this, we maintained a detailed log file for the nodes.

A big advantage of running all the nodes on the same machine, is that clocks do not

have to be synchronized. In the log files we included the routing table entries and a

delivery time and destination for all the packets. The next step that we performed

was the validation of the receiving process. We wanted to make sure that all the

nodes received all the packets and that there was no rejection in the system. The

last step for which we used the static scenario was the validation of the forwarding

process. We checked whether all the sent packets reached all the nodes in the AoI of

the sender, and if the route was the desired route.

The dynamic voice packet delivery essentially combines all the previous steps, and

therefore provides a detailed picture of the implementation: it not only validates the

functionality of the program, but it also provides some performance numbers that we

describe in detail in the following sections.

102

5.4 Program Validation

In this section we present results that we got when we ran our program, using

the model that we presented in Section 4.3. Initially the nodes in our network are

distributed in a 1× 1 square. We run each of the simulations for 60 minutes and log

every traffic. The radius of the AoI is 0.1. In our dynamic runs we use 256 nodes,

and the exponential mobility model from Section 4.3.1. In our static runs we set up

individual groups with different sizes.

5.4.1 Log Files

During our validation we maintain two different log files. One is used to log the

activities of the server and one is used to log the activity of the nodes in the network.

In reality, we opened an individual file for each of the nodes. In the end we merged

them together and analyzed the logs as one file, which reflects all the activities in the

network.

The Server Log File

The server is responsible for determining the location of every node in the system

and for providing information to all the joining nodes about their neighbors. Thus,

we introduce an ActionID to be able to distinguish between two events: when we log

a login and when we log a network topology change. Also, just in case, we logged the

event when the server sends out new location information to the nodes (this event

should not have to be logged). Since we run all the nodes on the same computer,

there is no reason for any packet loss or delay. Instead, we logged this event to make

sure our server functions properly.

Figure 5.3 shows a portion of a typical server log file. The ActionId specifies the

103

ActionID From To Timestamp
Add 25 17 Sec: 1276914302 uSec: 759102
Del 115 68 Sec: 1276910104 uSec: 983161
Rec 72 S Sec: 1276918282 uSec: 232761
Rep S 8 Sec: 1276910195 uSec: 53251
Sen S 91 Sec: 1276915828 uSec: 282800

Figure 5.3: Server Log Entries: We maintain 4 fields to keep track of the actions of
the server. We provide an example of each of the events.

type of the event logged. It has one of the five following values:

• Add : a voice packet graph edge is added between two nodes.

• Del : a voice packet graph edge is deleted between two nodes.

• Rec: a join request received.

• Rep: a join request replied.

• Sen: a location update sent.

The From and To fields represent the sender and the receiver of the packet. They

have either the number of a node in the network or the server itself. The Timestamp is

the time when the event was logged in Unix time. A typical log file starts with several

Add entries. This is when the server writes out the connections in the network after

initialization. Next there are several Rec and Rep messages. This is the period when

the nodes join the system. The Del and Sen entries are usually evenly distributed

after the initialization period. Del messages do not appear during static validations.

Although in this case we do not need Sen messages either, we did not disable them.

After we ensured that the joining process is bug free, we focused on the stable state

of the network, thus we started to analyze it a few seconds after the last logged Rep

entry.

104

The Node Log File

The node log file is more complicated then the server log file. First, it has an additional

field, the PacketID. This is to be able to identify which packet the node received from

which node. During a talkspurt period, several packets are sent out closely to each

other. To be able to validate, if these messages arrived in sequence, and with how

much delay, we need to keep track of the exact message. A PacketID is a 12 byte long

string. The first byte is always N. This symbolizes that the packet is from a node.

If the packet arrives from the server, we simply put an S in this field, and nothing

else. The following three bytes are the number of the node. In our case this ranges

from 000 to 127. Next, an S is injected. This symbolizes that the remaining seven

digits are the sequence number, which starts from 0000000 and ranges to 9999999. It

is important to understand that, this field does not make the From field unnecessary.

In case of a forwarding, the originator of a packet is not equivalent to the From node.

Second, the ActionId field has more values then before. These are the following:

• Add : a voice packet graph edge is added between the node itself and a new

neighbor.

• Del : a voice packet graph edge is deleted between the node itself and a previous

neighbor.

• RqS : a join request is sent to the server.

• RqR: a join request reply received from the server.

• Sen: a voice packet is sent.

• Rec: a voice packet is received.

• Fwd : a voice packet is forwarded.

105

ActionID PacketID From To Timestamp
Add N/A 25 9 Sec: 1276914302 uSec: 759102
Del N/A 25 118 Sec: 1276911104 uSec: 983161
RqS N/A 25 S Sec: 1276910282 uSec: 53251
RqR N/A S 25 Sec: 1276910283 uSec: 232761
Sen N025S0002834 25 69 Sec: 1276915828 uSec: 282800
Rec N056S0003451 56 25 Sec: 1276915612 uSec: 712783
Fwd N105S0000984 25 91 Sec: 1276917260 uSec: 202774
RRc N043S0001374 43 25 Sec: 1276919073 uSec: 961395
RRp N025S0000894 25 38 Sec: 1276917007 uSec: 421253
RSe N025S0002843 25 101 Sec: 1276919645 uSec: 771166
RRR N094S0001849 94 25 Sec: 1276914621 uSec: 181401

Figure 5.4: Node Log Entries: We maintain 5 fields to keep track of the actions of a
node. We provide an example of each of the events. All of the entries belong to node
25.

• RRc: a routing request is received.

• RRp: a routing request reply is sent.

• RSe: a routing request is sent out.

• RRR: a routing request reply received.

The From, To and Timestamp fields serve a similar purpose as before. Figure 5.4

shows an example of a node log file. Since all the entries belong to node 25, the From

field matches this for all the outgoing messages. However, the PacketID is different

in the case of a forwarded packet.

5.4.2 Static Neighbor Maintenance

During this step of validation, first, we looked for Del lines in the server log file.

If we did not find any, we knew that the movement function was disabled. Next, we

filtered the same file for Add entries. These entries contain all the links between the

servlets and have to match with all the links in the servlet log file (also Add entries).

106

We recorded every link twice in the server log file, making it easier to compare it to

the servlet log file. If we had a connection between node A and B, we had two entries.

One From node A To node B and one From node B To node A. Please note that the

order of these entries does not have to match in the two log files.

Since our measurement study showed that, the most active groups have between 2

and 8 players, we used these numbers for our validation. We set up 7 scripts. Each

of these scripts corresponds to one of the cases, and launches the node connections in

sequence. Although, for voice delivery we tried both the UDP and TCP protocols, for

neighbor maintenance we decided to use only TCP. Since, we ran all of our programs

on the same machine, the joining process ran incredibly fast. Launching the server,

the servlets and setting up the connections took only a few seconds.

5.4.3 Dynamic Neighbor Maintenance

This step is different in two ways from the previous one. First, we had to deal with

Del entries. Second, we had to run the simulation for an entire hour. In fact, we ran it

for a little more, cut off the beginning of the log files, and analyzed the stable state of

the network. Table 5.2 shows the parameters and results of our run. We can see that,

the server log file did not match the servlet log file with full accuracy. There were

both Add and Del lines that were missing from the servlet log file. The information

contained in the log files did not give us enough detail to identify why this happens.

So, we ended up extending our server log file with additional information. After every

Add and Del entry, we inserted an additional field to store the distance between the

nodes. After reanalyzing the log files, we found that, in every case when the servlet

log file missed an entry, the distance between the nodes was very close to 0.1. We

suspect that, the cases that we missed are cases, in which two nodes walk very close

to each other, but essentially walk by. The server can discover these cases, but the

107

Table 5.2: Parameters of the Dynamic Neighbor Mainteance: While using 128 nodes
with 0.1 AoI, the accuracy was more then 99%.

Number of Nodes AoI Accuracy
128 0.1 99.24%

nodes cannot, since they send out update requests on a periodic basis, and therefore

might miss some of these cases. To support our theory, we looked at the missing

entries again. We found that, the server added and almost immediately deleted these

entries. Thus, we believe that our theory is true.

5.4.4 Static Voice Packet Delivery

Here, we analyzed, if all of our voice packets were delivered. We set up groups with

2 to 8 people. Since we worked with separate groups, we did not have any forwarded

messages, or routing entry changes, after we reached the stable state. In fact, this is

how we found the beginning of that portion of the servlet log file that we analyzed.

Unlike our previous cases, we used both UDP and TCP connections. We kept using

only TCP for neighbor maintenance, but for voice delivery we tried both.

Table 5.3 shows our results. Since we run all of our servlets on the same machine,

the delay was extremely small. However, although it was small, it was significantly

different in the two cases. The average delay of TCP delivery was 46% longer then

that of the UDP delivery. Please note that, we do not imply that this ratio would

hold on the Internet, but we believe that the average delivery time of UPD is shorter,

since it is a connectionless protocol. Furthermore, we have to mention that, TCP has

other advantages over UDP as well. Since it is the most common, and almost the only

protocol used today for data delivery on the Internet, the number of restrictions that

system administrators set up against it is much less. Therefore, using TCP might be

a better choice to pass firewalls.

108

Table 5.3: Delay of the Static Voice Packet Delivery: Using UDP for voice packet
delivery resulted in shorter delay, but this solution has several disadvantages compared
to TCP.

Protocol Used for Voice Packet delivery Average Delay
UDP 0.166 ms
TCP 0.243 ms

5.4.5 Dynamic Voice Packet Delivery

The dynamic voice packet delivery validation gave us an opportunity to analyze the

details of our implementation. Although we focused on the stable state, we logged

several changes during the one hour long run. We call the state stable, if no node

joins or leaves the network, but we can still have several neighbor changes.

Table 5.4 shows the results of our runs. We added two new columns to the table.

The one hop delay is the same as the delay was before. Since we do not have separate

groups, with a direct connection between every node, we have to distinguish between

one hop delays, and delays in the network. The one hop delay is the difference between

the time a voice packet leaves a node and the time when the next node receives it.

The delay is the difference between the time the voice packet leaves the original sender

and the time when a node receives it. Thus, this contains the delay of a forwarded

packet between the sender and the first receiver, and also between the sender and the

second receiver. In theory, this time should be less than the product of the one hop

delay and the average route length, since that only shows the delay between a sender

and the last nodes that receive the message, but not the intermediate ones.

Interestingly, the average one hop delay was longer then it was before. This is

probably because we ran several programs on the same machine at the same time,

and therefore the processing time increased. Even more interestingly, the average

delay was longer then the product of the average one hop delay and the average route

109

Table 5.4: Results of the Dynamic Voice Packet Delivery: Using UDP for voice packet
delivery resulted in shorter delay, but this solution has several disadvantages compared
to TCP.

Protocol Used for
Voice Packet delivery

Average One
Hop Delay

Average
Delay

Average
Route Length

UDP 0.173 ms 0.348 ms 1.51
TCP 0.254 ms 0.521 ms 1.47

length. Our detailed servlet log file helped us to understand the cause. In addition

to the message sending process time we also have to add the processing time. Every

node has to look it up in its own routing table, if the voice packet has to be forwarded

or not. If yes, it also has to determine the recipients. These additional steps were

responsible for the extra delay. Please note that, since the routing table is fairly

small, this process adds only a fraction of a ms extra delay, and the only reason why

we discovered this is because we run all of our programs on the same machine. In

real world deployment, where a few ms long delays are normal, we would not be able

to point out this extra time. The difference between the delay of the UDP delivery

method and the TCP delivery method remained about the same as it was between

the static runs.

5.5 Conclusion

We presented a possible implementation of each part of our protocol and proved

that, they can work together, and the solution is ready for real world deployment.

We also compared and contrasted the two most common delivery methods used today

on the Internet. We found that using UDP resulted in lower delays. However, our

testbed consisted of only one machine and therefore we did not have the opportunity

to see how each of these protocols would react if there were lost packets or longer

delays in the system.

110

Chapter 6

Conclusion

The task of defining a virtual-location-aware, peer-to-peer protocol for muliparty voice

communication includes several challenges and thus it is impossible to find an all-

around solution. As the Internet continues to grow and change, new techniques appear

to handle the ever increasing traffic. New devices are added and new requirements

show up every day.

To better understand the requirements of a multiparty voice communication soft-

ware that is adequate for players of massive multiplayer virtual environments, we

conducted a measurement study. Throughout several months we collected more than

100 GB of voice communication data. Using our data, we identified typical talking

patterns, such as the length of talkspurts and silence periods. We also characterized

group sizes, and looked into the talking behavior of speakers in groups with different

sizes. Using our results we presented a model that can help generate synthetic data

for testing.

After understanding the specific properties of online multiparty voice communica-

tion, we defined the characteristics of an ideal protocol: it has to reflect the positions

of the users in the virtual world to increase user satisfaction and it also has to have

111

low bandwidth requirements. To achieve this, delay can be sacrificed as long as it

does not hurt voice communication with close neighbors in the virtual world. To fulfill

such requirements, we looked at different peer-to-peer techniques, such as unstruc-

tured and structured solutions. Since our goal is to identify users of the virtual world

that are inside of the area of interest of a speaker, we decided to use an unstructured

solution. We also had to find a technique that would set up connections between

users similarly as voice would spread in the real world. Gabriel graphs proved to be a

good match. They are also a subgraph of the Delaunay-triangulation, and such they

are easy to maintain and calculate. After finding the right structure, we worked out

the detail of the protocol and tested it against several scenario. To make it suitable

for everyday use, we added security against both passive and active attacks. We then

tested the effectiveness of these solutions too.

The last step of our work was to try out, if our protocol would work in the real

world. We implemented two programs in the C programming language, that could go

to real world deployment with minor changes. We then validated that our protocol

would be able to deliver in practice, what it delivered in theory. Our results show

that it matched our expectations.

As future work, we would like to make our implementation public and downloadable

for free of charge. We are looking forward to seeing how successful and popular it

will be, and what additional features people are going to request or add to it.

112

Bibliography

[1] S. Baset and H. Schulzrinne. An analysis of the Skype peer-to-peer internet

telephony protocol. In Proceedings of IEEE Infocom, pages 1–11, April 2006.

[2] M. Borella. Source models of network game traffic. Computer Communications,

23(4):403–410, February 2000.

[3] P. Bose and P. Morin. Online routing in triangulations. In ISAAC ’99: Pro-

ceedings of the 10th International Symposium on Algorithms and Computation,

pages 113–122, London, UK, 1999. Springer-Verlag.

[4] P. Boustead and F. Safaei. Comparison of delivery architectures for immersive

audio in crowded networked games. In NOSSDAV ’04: Proceedings of the 14th

international workshop on Network and operating systems support for digital

audio and video, pages 22–27, New York, NY, USA, 2004. ACM.

[5] C. Boutremans, G. Iannaccone, and C. Diot. Impact of link failures on VoIP

performance. In Proceedings of ACM NOSSDAV, pages 63–71, 2002.

[6] P. Brady. A statistical analysis of on-off patterns in 16 conversations. Bell

Systems Technical Journal, 47(1):73–91, January 1968.

[7] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach. Secure

routing for structured peer-to-peer overlay networks. SIGOPS Oper. Syst. Rev.,

36(SI):299–314, 2002.

[8] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. SCRIBE: A large-scale

and decentralized application-level multicast infrastructure. IEEE Journal on

Selected Areas in Communications (JSAC), 2002.

[9] K.-T. Chen, C.-Y. Huang, P. Huang, and C.-L. Lei. Quantifying Skype user

satisfaction. In Proceedings of ACM SIGCOMM, pages 399–410, 2006.

[10] M. Dowlatshahi and F. Safaei. Multipoint interactive communication for peer-

to-peer environments. In Proceedings of IEEE International Conference on Com-

113

munication, June 2006.

[11] J. Färber. Network game traffic modelling. In Proceedings of the 1st workshop

on Network and system support for games, pages 53–57, 2002.

[12] W. Feng, E. Kaiser, and A. Luu. Design and implementation of network puzzles.

In INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and

Communications Societies. Proceedings IEEE, volume 4, pages 2372–2382 vol. 4,

March 2005.

[13] W.-c. Feng. The case for tcp/ip puzzles. SIGCOMM Comput. Commun. Rev.,

33(4):322–327, 2003.

[14] A. Fessi, H. Niedermayer, H. Kinkelin, and G. Carle. A cooperative sip in-

frastructure for highly reliable telecommunication services. In IPTComm ’07:

Proceedings of the 1st international conference on Principles, systems and ap-

plications of IP telecommunications, pages 29–38, New York, NY, USA, 2007.

ACM.

[15] M. Ghaffari, B. Hariri, and S. Shirmohammadi. A delaunay triangulation ar-

chitecture supporting churn and user mobility in mmves. In NOSSDAV ’09:

Proceedings of the 18th international workshop on Network and operating sys-

tems support for digital audio and video, pages 61–66, New York, NY, USA,

2009. ACM.

[16] L. J. Gleser and D. S. Moore. The effect of dependence on chi-squared and

empiric distribution tests of fit. Annals of Statistics, 11(4):1100–1108, 1983.

[17] J. Gruber. A comparison of measured and calculated speech temporal parameters

relevant to speech activity detection. IEEE Transactions on Communications,

pages 739–750, April 1982.

[18] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava. Promise: peer-to-

peer media streaming using collectcast. In MULTIMEDIA ’03: Proceedings of

the eleventh ACM international conference on Multimedia, pages 45–54, New

York, NY, USA, 2003. ACM.

[19] T. Henderson and S. Bhatti. Modelling user behaviour in networked games. In

MULTIMEDIA ’01: Proceedings of the Ninth ACM International Conference on

Multimedia, pages 212–220, New York, NY, USA, 2001. ACM Press.

[20] S.-Y. Hu, J.-F. Chen, and T.-H. Chen. Von: a scalable peer-to-peer network for

virtual environments. Network, IEEE, 20(4):22 –31, july-aug. 2006.

114

[21] W. Jian and H. Schulzrinne. Analysis of on-off patterns in VoIP and their effect

on voice traffic aggregation. In Proceedings of Computer Communications and

Networks, pages 82–87, Oct. 2000.

[22] M. J. Karam and F. A. Tobagi. Analysis of delay and delay jitter of voice traffic

in the internet. Comput. Netw., 40(6):711–726, 2002.

[23] S. Kraxberger and U. Payer. Security concept for peer-to-peer systems. In

IWCMC ’09: Proceedings of the 2009 International Conference on Wireless

Communications and Mobile Computing, pages 931–936, New York, NY, USA,

2009. ACM.

[24] H. J. Larson. Statistics: An introduction. Wiley, New York, NY, USA, 1975.

[25] D.-Y. Lee and S. S. Lam. Protocol design for dynamic delaunay triangulation.

In ICDCS ’07: Proceedings of the 27th International Conference on Distributed

Computing Systems, page 26, Washington, DC, USA, 2007. IEEE Computer

Society.

[26] J. Lundberg. Routing security in ad hoc networks, 2000.

[27] A. P. Markopoulou, F. A. Tobagi, and M. J. Karam. Assessing the quality

of voice communications over internet backbones. IEEE/ACM Trans. Netw.,

11(5):747–760, 2003.

[28] D. W. Matula and R. R. Sokal. Properties of gabriel graphs relevant to geographic

variation research and clustering of points in the plane. Geographical Analysis,

1980.

[29] P. Mittal and N. Borisov. Information leaks in structured peer-to-peer anony-

mous communication systems. In CCS ’08: Proceedings of the 15th ACM con-

ference on Computer and communications security, pages 267–278, New York,

NY, USA, 2008. ACM.

[30] K. Needels and M. Kwon. Secure routing in peer-to-peer distributed hash tables.

In SAC ’09: Proceedings of the 2009 ACM symposium on Applied Computing,

pages 54–58, New York, NY, USA, 2009. ACM.

[31] M. Ohnishi, R. Nishide, and S. Ueshima. Incremental construction of delaunay

overlaid network for virtual collaborative space. In Proceedings of IEEE Confer-

ence on Creating, Connecting and Collaborating through Computing, 2005.

[32] V. Paxson. End-to-end routing behavior in the internet. IEEE/ACM Trans.

Netw., 5(5):601–615, 1997.

115

[33] S. P. Pederson and M. E. Johnson. Estimating model discrepancy. Technomet-

rics, 32(3):305–314, 1990.

[34] D. Pittman and C. GauthierDickey. A measurement study of virtual popula-

tions in massively multiplayer online games. In Proceedings of ACM NetGames,

September 2007.

[35] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable

content-addressable network. In Proceedings of ACM SIGCOMM, pages 161–

172, 2001.

[36] S. Ratnasamy, M. Handley, R. Karp, and S. Shenkar. Application-level multicast

using content addressable networks. In Proceedings of Network Group Commu-

nications, November 2001.

[37] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized object lo-

cation, and routing for large-scale peer-to-peer systems. In Proceedings of the

IFIP/ACM International Conference on Distributed Systems Platforms, pages

329–350. Springer-Verlag, 2001.

[38] F. Safaei. Dice: Internet delivery of immersive voice communication for crowded

virtual spaces. In VR ’05: Proceedings of the 2005 IEEE Conference 2005 on

Virtual Reality, pages 35–41, Washington, DC, USA, 2005. IEEE Computer So-

ciety.

[39] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[40] K. Singh and H. Schulzrinne. Peer-to-peer internet telephony using sip. In NOSS-

DAV ’05: Proceedings of the international workshop on Network and operating

systems support for digital audio and video, pages 63–68, New York, NY, USA,

2005. ACM.

[41] K. Sriram and W. Whitt. Characterizing superposition arrival processes in

packet multiplexers for voice and data. IEEE Selected Areas in Communica-

tions, 4(6):833–846, 1986.

[42] M. Srivatsa and L. Liu. Securing publish-subscribe overlay services with event-

guard. In CCS ’05: Proceedings of the 12th ACM conference on Computer and

communications security, pages 289–298, New York, NY, USA, 2005. ACM.

[43] M. Steiner and E. W. Biersack. A fully distributed peer to peer structure based

on 3d delaunay triangulation. In Proceedings of Algotel, May 2005.

[44] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:

116

A scalable peer-to-peer lookup service for internet applications. In Proceedings

of ACM SIGCOMM, pages 149–160, 2001.

[45] P. Svoboda, W. Karner, and M. Rupp. Traffic analysis and modeling for world

of warcraft. 2007. ICC ’07. IEEE International Conference on Communications,

pages 1612–1617, 24-28 June 2007.

[46] M. Varvello, E. Biersack, and C. Diot. Dynamic clustering in delaunay-based p2p

networked virtual environments. In Proceedings of ACM NetGames, September

2007.

[47] Wu-chang Feng, F. Chang, Wu-chi Feng, and J. Walpole. Provisioning on-line

games: A traffic analysis of a busy counter-strike server. In Internet Measurement

Workshop, 2002.

[48] C. K. Yeo, S. C. Hui, I. Y. Soon, and L. M. Ang. H.323 compliant voice over ip

system. Int. J. Comput. Appl. Technol., 16(4):143–153, 2003.

117

	A Location Aware P2P Voice Communication Protocol for Networked Virtual Environments
	Recommended Citation

	Introduction
	Motivation
	Problem Definition and Research Challenges
	Voice over IP
	Peer-to-Peer Networks
	Virtual Realities

	Proposed Approach and Organization of Dissertation

	Research Foundation
	Introduction
	Voice Communication
	Measurement Studies
	Voice Communication Protocols

	Computer Networking
	Structured Peer-to-Peer Networks
	Unstructured Peer-to-Peer Networks

	Virtual Realities
	Game Traffic
	Cheating

	Measurement Study
	Introduction
	Trace Collection
	TeamSpeak Communication Architecture
	The Speex Codec
	The TeamSpeak Voice Packet Format
	Filtering Voice Packets
	Data Cleaning

	Measurements
	User Geographical Distribution
	Overall Server Traffic
	Inter-Packet Arrival Time at the Server
	Group Sizes
	Sessions Characteristics
	Measured Voice Patterns

	Modeling Multiparty Voice Communication
	Methodology
	Parameter Estimation
	Error Calculation
	Using 2 for network model evaluation
	Modeling Talkspurts and Silence
	Modelling the Groups

	Conclusion

	Protocol
	Introduction
	P2P Voice Communication
	The Gabriel Graph and Its Properties
	Greedy Routing on the Gabriel Graph
	Building and Maintaining the Delaunay Triangulation

	Protocol Simulation
	Mobility Models
	Theoretical Boundary
	Load Balance and Scalability

	Adding Social Structures
	Security
	Categories of Attacks
	Active Attacks
	Passive Attacks
	Putting Things Together

	Security Simulation
	Puzzle Validation
	Hiding Identity

	Conclusion

	Implementation
	Introduction
	Program Architecture
	The Bootstrap Server
	The Servlet

	Testbed
	General setup
	Neighbor maintenance
	Voice Packet Delivery

	Program Validation
	Log Files
	Static Neighbor Maintenance
	Dynamic Neighbor Maintenance
	Static Voice Packet Delivery
	Dynamic Voice Packet Delivery

	Conclusion

	Conclusion

