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Abstract

Electroencephalographic (EEG) signals of the human brains represent electrical

activities for a number of channels recorded over a the scalp. The main purpose of

this thesis is to investigate the interactions and causality of different parts of a brain

using EEG signals recorded during a performance subjects of verbal fluency tasks.

Subjects who have Parkinson’s Disease (PD) have difficulties with mental tasks, such

as switching between one behavior task and another. The behavior tasks include

phonemic fluency, semantic fluency, category semantic fluency and reading fluency.

This method uses verbal generation skills, activating different Broca’s areas of the

Brodmann’s areas (BA44 and BA45). Advanced signal processing techniques are

used in order to determine the activated frequency bands in the granger causality

for verbal fluency tasks. The graph learning technique for channel strength is used

to characterize the complex graph of Granger causality. Also, the support vector

machine (SVM) method is used for training a classifier between two subjects with PD

and two healthy controls. Neural data from the study was recorded at the Colorado

Neurological Institute (CNI). The study reveals significant difference between PD

subjects and healthy controls in terms of brain connectivities in the Broca’s Area

BA44 and BA45 corresponding to EEG electrodes. The results in this thesis also

demonstrate the possibility to classify based on the flow of information and causality

in the brain of verbal fluency tasks. These methods have the potential to be applied

in the future to identify pathological information flow and causality of neurological

diseases.
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Chapter 1

Introduction and Literature Review

1.1 Electroencephalographic Recordings

In 1875, Richard Caton measured and recorded electrical brain signals from

an animal scalp [1], and the first study of human brain Electroencephalographic

(EEG) signals was conducted by Hans Berger in 1920 [1]. EEG is a technique

which is widely used to measure electric signals for brain activity [2]. Using EEG,

the electrical activity of the brain is recorded by a number of metal electrodes,

which are placed over the surface of a human scalp [3]. The placement of the

metal electrodes is standardized by an international system called the 10/20 system

[4]. They are placed with a fraction of distance in diameter of brain from front

to back and from left to right, where they are separated by 10% or 20% [1]. An

electrode label is a combination of a letter and a number where the letters refer to

the brain areas, such as: T - Temporal lobe, F - Frontal lobe, C - Central lobe, P -

Posterior lobe and O - Occipital Lobe [1]. However, even numbers are categorized

to the right side of the brain, and the odd numbers refer to left side of the brain,

respectively [1] as shown in Figure 1.1. In the last few decades, neuroscientists

have been motivated to study causality of the brain; how one area affects another

area of the brain during behavior tasks [2]. Connectivity analysis typically utilizes
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Figure 1.1: International System 10/20 for 61 channel EEG.

EEG signals [5], however, interference in EEG measurements may cause difficulty

in estimation of information flow in the brain [6]. Connectivity can result from

electrical interference from different sources, internally or externally [7]. Internal

interference can appear when a subject moves, e.g., in the action of blinking eyes or

head movement. External interference can arise from the noise of power lines (50 or

60 Hz), electrodes, or cable movement [7]. An approach to removal of blinking eye

interference is measuring the signal to noise ratio (SNR) between periods when the

subject is instructed to blink and periods with no observed blinking [7]. Removing

head movement interference has been proposed by placing an accelerometer subjects

and applying an independent component analysis method to separate the artifacts

of EEG signals which are related to heading movement [8].
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1.2 EEG Frequency Bands

Brain activity generate waves that are mixed with many frequency levels up

to 500 Hz [9]. There are five major frequency bands that are clinically interesting.

They are denoted from low to high frequencies respectively as in Table. 1.1 [9].

Delta Band Theta Band Alpha Band Beta Band Gamma Band

Up to 3 Hz 4 - 7 Hz 8 - 12 Hz 13 - 32 Hz 33 - 45 Hz

Table 1.1: EEG frequency bands.

The delta band has the slowest wave in terms of frequency, which is lower than

three hertz, and has the highest amplitude. This band appears in infants, children

under the age of one, and in adults during deep sleep. Theta band also has slow

waves which fall in the frequency band from four to seven hertz; these are usually

seen in children [9]. The alpha band is the frequency band from 8 to 12 Hz, and

it is usually seen in adults; this appears when an individual is in relaxation mode

or has eyes closed. The waves occur on both sides of the brain but are mostly

higher in amplitude for the non-dominant brain side [9]. The Beta band has a small

amplitude and fast frequency, ranging from 13 Hz to 32 Hz; this band is seen in

anxious patients or those with open eyes. Also, this band can appear on both sides

with symmetrical distribution. The gamma band is the fastest frequency band for

an EEG signal, and it falls in the range of 33 Hz to 45 Hz. It normally appears in

short-term memory and matching of recognized sound tasks or sensations. Sensory

Motor Rhythm (SMR) is a lower end of the beta band which falls between from

12 to 15 Hz. This is very important in relation to the sensory motor area. SMR

appears in the motor area when the EEG signals are recorded; SMR may be reduced

by moving the arm or leg [9]. Normal EEG signals in adults who are awake exist in

the alpha band and beta band [9].
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1.3 Brain connectivity

The relationships between different brain regions and the dynamics of brain in-

teractions have been investigated in many research studies [10] by applying different

effective connectivity for different types of brain recordings [10]. In earlier studies

of activated motor areas for blood flow measurement when subjects perform simple

or complex movement tasks, the areas of supplementary motor, lateral premotor,

somatosensory, and cingulated motor areas were analyzed [11, 12, 13] . Functional

Magnetic Resonance Imaging (fMRI) is widely used to detect activated brain areas

and connectivity for brain areas. In the study of event-related coherence for the

right and left sensorimotor areas between the contralateral sensorimotor for right

finger movement, the dynamic interaction of separated regions is provided by event-

related coherence [14]. The study of task-related coherence and task-related spectral

power reveals the activity of cortical regions under the control of complex movement

eight right-handed subjects in the alpha and beta band frequencies [15]. There are

two identified types of brain connectivity. The first is functional connectivity, which

investigates the correlation of temporal or time courses between neurological events;

the second is effective connectivity, which indicates the influence of one system on

another [16, 17, 18]. Neuroscientists have been concerned with investigating the

dynamic causal of directionality of information flow for modeling and multivariate

autoregressive modeling [19, 20, 18]. Granger causality is an important technique

to explore dynamic causal relationships for two-time series [17]. The application

is done for motor fatigue, which reveals that fatigue reduces brain connectivity in

the motor area [21]. In the beta frequency band (14-30 Hz), the sensorimotor area

is widely observed for human brains and non-human brains [22]. The beta band’s

relationship to the post central area and motor cortex are still poorly understood.
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1.4 Granger Causality in Brain Analysis

One of the methods used to analyze multichannel EEG data sets is the Granger

causality concept, which was first introduced by Clive Granger [23]. The Granger

causality method is used to examine the connectivity for multivariate autoregressive

models [24, 25] and has been performed for EEG recordings in [26, 27, 18]. Multi-

variate Granger causality is also adapted for fMRI and applies the graph concepts to

investigate the temporal dynamics and brain causality [28]. By comparing Granger

causality with dynamic causal modeling, fMRI data find that the causality uses the

temporal priority as a directed causality measure (DCM), however, the DCM is dis-

rupted on the network [28]. The Granger causality is used with healthy patients for

emotion cognitive in the gamma band (30- 50 Hz) demonstrates that negative emo-

tion face has larger causality than a face with positive emotions [29]. By applying

independent component analysis and Granger causality for EEG of emotional states,

the ” network of brain ” concept classifies the brain based on the causal connectivity

brain network [30]. Using Granger causality analysis and graph theory for patients

with Parkinson’s disease in comparison to a control group of resting state-fMRI,

researchers found that information flow of PD patients have less connectivity than

the healthy control [31].

1.5 Parkinsons Disease

Tens of millions of people suffer from Parkinson’s disease worldwide, and this

number is increasing as the elderly population is growing [32]. PD patients suffer

from progressive neurological disorders and difficulties, suchlike shaking and slow-

ness of movement [31]. In earlier studies, the brain activity of Parkinson’s disease has

been investigated in both cortical and sub-cortical regions [33, 34]. EEG and MEG

recordings of PD patients in the basal ganglia have shown a relationship between
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electrical activity and pathological changes [35, 36, 37]. EEG results indicate higher

abnormalities for PD than normal patients [38] when there is alteration of the cor-

tical basal ganglia due to Parkinson’s disease [39]. Neuroscientists and researchers

are interested in pattern models that can determine the neural oscillations for PD

patients [40]. Recent studies suggest that the most dominant frequency bands for

sensorimotor areas are the alpha (8-12 Hz) and low beta (13-20 Hz) in people with

movement disorder [41, 42, 43, 44]. An increase of oscillations and inter-regional

coherence in the beta band (13-30 Hz) is due to the loss of dopamine in Parkinson’s

disease patients [42]. It is found that the loss of dopamine affects brain connectivity

and networks [45]. One of the standard treatments of PD is a dopamine pro-drug,

Levodopa; however, long term usage (five to ten years) of this drug results in motor

complication for 80% of PD patients [32]. For the EEG power spectral analysis,

delta and theta frequency bands have no significant differences after L-dopa intake

for non-demented patients [46]. An EEG frequency analysis for three groups of ten

subjects of dementia PD, non-demented PD, and a normal control group reveals

that there is a significant decrease in alpha amplitude for demented PD patients un-

related to motor weakness [47]. However, the amplitude increases in the delta and

theta ranges in comparison to the other groups. Furthermore, the increase happens

in the theta and delta ranges with more severe motor weakness of non-demented

PD patients [47].

1.6 Motor Activity and Verbal Fluency of Parkinson’s

Disease

The basal ganglia is suggested to control the primary motor cortex in the brain

[48] and contributes to PD symptoms [48]. Earlier studies of causality of the motor

cortex in the human brain relate to motor disturbance [49, 50, 37] and its relevance
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for PD patients [51, 52, 37]. The loss of dopamine in the frontal-striatal cortex for

PD patients affects verbal processing and plays a significant role in functioning of

lexico-semantic fluency [53]. In order to test this, PD patients performed a phonemic

fluency where they are asked to generate a list of words that starts with a given

letter, as well as provide words in semantic categories for semantic fluency [54]. One

study examined PD and control subjects with four verbal fluency tasks in which the

number of words and the frequency of those words was tested for the control patients

once, and twice for PD patients (when they were on and off medication). The results

demonstrate that those PD patients who are off the dopamine medication generate

fewer words than those PD patients who are on their medication. The frequency

of words for PD patients who are either on or off medication is not significantly

different; however, differences are significantly noticed between PD patients who

are off medication and healthy control patients [53].

Finger Movement Behavior Investigation

In the study of finger movement behavior, we assess cortical information flow in

two subjects with Parkinsons disease [55]. Connectivity was measured by applying

a Granger Causality algorithm to EEG- data collected during a left and right hand

movement task. The sensorimotor rhythm (12-15 Hz) was extracted from the EEG

data and further analysis was performed on the upper extremity motor planning and

sensorimotor integration areas of the left and right brain. The extracted graph fea-

tures were classified by machine learning techniques for the right and left electrodes.

We observed increased connectivity in the left and right motor planning areas (F3

and F4) contralateral to the behavioral task side. Recognition of the left and right

motor planning areas had a rate of 83.3% for F3 and 91.7% for F4. Similarly, we

observed increased connectivity in the left and right sensorimotor integration areas

(C3 and C4) contralateral to the behavioral task side. Recognition of the left and
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right motor planning areas had a rate of 91.7% for C3 and 91.7% for C4. Our results

demonstrate the ability to classify the flow of information in the brain. These meth-

ods will be applied in the future to identify pathological information flow for disease

such as Parkinson’s disease. These promising results of research have already been

accepted by Asilomar conference 2015 [56].

1.7 Verbal Fluency and brain regions

Usually, verbal fluency tests are performed to examine cognitive disorders for

PD patients [57, 58, 59], even in early stages of PD, verbal fluency problems are

observed in most PD patients [57]. The frontal cortices of the brain are considered

to be the active areas for verbal fluencies in PD and healthy patients [60, 61, 62, 57].

Early studies of fMRI and blood flow in the cerebral area during verbal fluency tasks

indicate activity in the left superior temporal cortex [63]; performance of verbal

fluency is lower in demented PD patients than non-demented PD subjects [64, 65].

The impairment of phonemic fluency test is less in PD patients than semantic fluency

loss [60, 66, 67]. Both semantic and phonemic fluency tests demonstrate significant

activity in the left inferior frontal cortex [68, 67, 69]. fMRI studies report that

the brain activation is also found in the left inferior and middle frontal areas [70,

71]. Furthermore, the loss of the phonemic fluency is impaired in the frontal lobe;

whereas, the damage of the semantic fluency is activated more in the temporal area

than the phonemic fluency [70, 72, 73]. Also, some studies suggest that semantic

fluency can occur in the area of left inferior frontal gyrus [69, 74, 70, 75]. Speech

production demonstrates activation in Broca’s area in the left Brodmann’s area

(BA) 45 and 44 [75, 76, 77].
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Left hemisphere Right hemisphere

BA44 F7, F5, F3, Ft7, Fc5 F6, F8, Fc4, Fc5, Ft8

BA45 Af7, F7, F5, Ft7, Fc5 Af4, Af8, F6, F8, Ft8

BA4 Fc3, Fc1, C3, C1, Cp3 Fc2, Fc4, C2, C4, C6

BA6 F3, F1, Fc3, Fc1, C3 F2, F4, Fc2, Fc4, C4

Table 1.2: Brodmann’s areas for BA44, BA45, BA4 and BA6.

The activation of the Primary Motor Cortex in Brodmann’s area is defined as

A4; the Premotor cortex and Supplementary Motor Cortex activation area are in

BA6 [76]. The nodes of electrodes that are categorized in each of Brodmann’s areas

belong to the verbal fluency and motor activity for the left and the right sides of

the brain and are addressed in [76], as in the Table 1.2.

1.8 Motivation and Objectives

From the previous sections, the knowledge of different aspects and methods of

brain connectivity is evident, but there are still questions regarding brain causality

during performance of multi-behavior tasks. There is still a great need to explore

brain causality of multichannel EEG signals during different behavior tasks for pa-

tients with Parkinson’s disease and healthy control subjects. Notwithstanding the

results from studies which measure directed connectivity during task behavior per-

formance, the signal processing tool of Granger’s causality is one of the best methods

to extract brain interactions of EEG recordings for movement tasks and verbal flu-

ency; this method has been applied to many EEG recordings of different behavior

tasks [26, 27, 18]. The main goal of this research is to extract the strongest causal

and activated regions of EEG signals during different verbal fluency tasks, such as

phonemic fluency, reading fluency, semantic fluency, and category semantic fluency
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for PD patients and healthy controls. These activated regions have been recom-

mended for different studies of fMRI research for verbal fluency and motor tasks in

[70, 71, 75, 76, 77, 78, 79] which propose that the activation for verbal fluency and

motor cortex falls in the regions of (BA45, BA44) and (BA4, BA6), respectively

[78, 79]. The secondary objective is to exploit the feasibility of classifying PD vs.

healthy control (HC) based on the causality analysis by applying a method of ma-

chine learning for each task of verbal fluency. In order to achieve the proposed goal,

the next procedure occurs:

1. Signal processing and filtering of Granger causality averaged by 45 trails of

verbal fluency tasks, which determines the most activation frequency band

during causality experiment for alpha band, beta band and gamma band.

2. Granger causality realization averaged by 5 random trails of common verbal

tasks, in which the most causal and activated channels are identified before the

onset of speaking by 600 ms for each participant. Features channels resulted

from Granger causality experiments are proposed from the measured Granger

causality strengths for all tested channels.

3. Graph learning classification is utilized in order to classify feature channels

strength between PD vs. HC. Kernel Support Vector Machine (SVM) and

soft-margin technique take place in order to separate data points that are not

separated perfectly by linear SVM.

4. The experiment results of all the verbal fluency tasks are summarized using

confusion matrices.

Although the activation regions and connectivity of different behavior tasks

have been studied and stated in previous literature, there are few studies which

illuminate the relationship of brain causality and activated regions by using the
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brain signals of EEG. The primary concentration of this thesis is the analysis of

data and signal processing which identifies Granger causality method and graph

learning techniques in order to understand the causal relations of the brain during

verbal fluency tasks. The thesis outlined as in the following:

• Chapter 1 introduces Electroencephalogram signals and briefly explains the

signal processing of EEG signals. It also reviews and states of the findings

from studies which relate to brain connectivity and Granger causality methods

applied to different brain signals. Then, it declares the motivation of this thesis

and the thesis outline.

• Chapter 2 reviews the Granger causality method based on the multivariate

autoregressive models. Furthermore, the chapter defines graph learning tech-

niques and feature extraction of Granger causality by the vertex strength

method. Also, it discusses the classification techniques of support vector ma-

chines by illustrating the soft margin method.

• Chapter 3 describes the verbal fluency tasks methods of recordings for the

datasets recording of EEG signals and presents the area of interest during ver-

bal fluency tasks. It also demonstrates the Granger causality signal processing

and causality relation between channels for each fluency task.

• Chapter 4 presents graph-learning methods of feature extraction in order to

extract the channel strength of Granger causality results. Moreover, it illus-

trates feature classification of the resulted strengths of Granger causality based

on verbal fluency activated channels for each fluency task. Then, the chap-

ter presents the results of classifications with the results of earlier established

techniques for extracting the activation region of verbal fluency tasks.

• Chapter 5 discusses the advantages and disadvantages of studied methods and
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presents the conclusion for the thesis. It also demonstrates the suggestion of

future work.
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Chapter 2

Causality and Machine Learning

Methodology

2.1 Causality Method

2.1.1 Bivariate Autoregressive Models of Granger Causality

In the neurological analysis, the EEG data sets are considered as a multivariate

time series since they are recorded from multi-electrodes on the patient’s scalp.

The neural interactions and directionality can be extracted from multivariate time

series, which provide the fundamental frameworks to analyze the data sets in order

to understand the neural systems [80]. Granger causality provides the mathematical

frameworks for multivariate time series [80]. Granger causality is a standard tool for

statistical computation and for determining the directional influence or interactions

of systems variables [81]. The concept is based on a statistical study of two data sets

of time series X1(t) and X2(t) where the historical information of X1(t) can improve

the prediction of future values of X2(t) in the bivariate autoregressive model. The

variable X1(t) is a Granger cause of variable X2(t) when the past information of

X1(t) helps predict the future X2(t) and the two-time series. The time domain of
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unconditional Granger causality can be referenced in full regression of the two time

series, as in the following [82]:

X1(t) =

p∑
i=1

A11(i)X1(t− i) +

p∑
i=1

A12(i)X2(t− i) + E1(t)

X2(t) =

p∑
i=1

A21(i)X1(t− i) +

p∑
i=1

A22(i)X2(t− i) + E2(t)

(2.1.1)

When Aij are the regression coefficients from variables Xj(t) to Xi(t) of the full

regression time series and Ei are residuals, white noise components, or prediction

errors of each signal [83]. The number of lagged observations is denoted by p which

also indicates the model order[83]. The prediction of a signal is based on the past

values of its own signal and the other signal [81]. Furthermore, the prediction is

contributed by each lagged observation for the two signals. Furthermore, Granger

causality is defined as the past values of X2 which help future values of X1 over the

prediction of its own past values [83]. The two time series are expressed, as in the

following matrices, in order to extract the covariance matrix:

X1(t)

X2(t)

 =

p∑
i=1

A11 A12

A21 A22


X1(t− i)

X2(t− i)

 +

E1(t)

E2(t)

 (2.1.2)

The residual covariance matrix of the white noise E gives the accuracy of a

prediction process for the two time series [83]. The covariance matrix is expressed

in the following [83]:

∑
= Cov

E1(t)

E2(t)

 =

∑
11

∑
12∑

21

∑
22

 (2.1.3)

The unconditional Granger causality is based on the unconditional dependence of

the first signal X1 on past values of the second signal X2, which makes the regression
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coefficients of the other signal equal to zero. The reduced regression forms for the

two signals X1(t) and X2(t) depend on omitting past values of the other signal [83].

Furthermore, the reduced regression prediction depends only on its own past values,

as evident in the following: [83].

X1(t) =

p∑
i=1

A11(i)X1(t− i) + E1
′(t)

X2(t) =

p∑
i=1

A22(i)X2(t− i) + E2
′(t)

(2.1.4)

Now Aii are the reduced regression coefficients and E′
i are the reduced regression

residuals. The following expressions define the residual covariance matrices of X1,

the reduced regression form, and the X2 reduced regression form respectively :

∑
′
11 = Cov(E1

′(t))∑
′
22 = Cov(E2

′(t))

(2.1.5)

Granger causality of the two signals stands to calculate the coefficients of full

regression form and reduced regression form based on a better model of data. There

are two famous model selection criteria; both the Akaike information criterion (AIC)

and Bayesian information criteria (BIC) are widely used in the Granger causality

method to determine the appropriate model order. The data modeling criteria of

Maximum likelihood (ML) theory provides the fundamental framework of analysis

[83]. The framework analysis is considered as a log-likelihood ratio statistic that

is the measurement of an appropriate comparison for models of full regression and

reduced regression [83]. The appropriate log-likelihood ratio test, which selects the

lag length of a vector autoregressive (VAR) model, defines the statistic of Granger

causality for null hypothesis of zero causality [83] :
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H0 : A12,1(t) = A12,2 = A12,3 = .... = A12,p = 0

H1 : A12,1(t) 6= A12,2 6= A12,3 6= .... 6= A12,p 6= 0

(2.1.6)

The log-likelihood ratio test is proportional to the generalized variance of VAR

models. The mathematical expression of the Granger causality for the bivariate

VAR models from X2 to X1 and from X1 to X2 are defined respectively, as in the

following [83]:

GX2→X1 = ln
|
∑ ′

11|
|
∑

11 |

GX1→X2 = ln
|
∑ ′

22|
|
∑

22 |

(2.1.7)

The residual covariance matrices of VAR models of full regression and reduced

regression are the fractions of the log-likelihood ratio of each signal. So, Granger

causality between two signals of time series is based on the covariance of the reduced

regression and the full regression computations. It is also can be considered as the

computation of prediction error based on the interpretation of log-likelihood ratio

test of VAR models. Furthermore, it measures the reduced values of prediction error

when the past values of X2 are involved in the model variables of X1.

2.1.2 Multivariate Autoregressive Models of Granger Causality

The above mathematical expressions of bivariate time series from the previous

section are basically defined by linear regression models. From the fundamental

method of computing Granger causality, it can be rapidly extended to multivariate

autoregressive (MVAR); this is a model theory for design computational efficiency

and accuracy of vectors of time series [83]. The MVAR model can be defined for

pth orders, as in the following [83]
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XXX(t) =

p∑
j=1

AAA(j)XXX(t− j) +EEE(t), (2.1.8)

Where AAA(j) is the matrix of real values of multivariate autoregressive coefficients

xxx(t) = [X1(t), ...XN (t)]T with N being the number of variables, and EEE(t) is the

vector of white noise, which defines the residuals of MVAR models. In this case, the

causality is defined as X2 Granger causes X1 if, and only if, past values of lagged

observations improve the prediction of X1 when other lagged observations of other

variables X3, X4 ... XN are counted.

Using N = 3 as an example, the conditional Granger causality can be defined

from the dependency between X1, X2, and an additional set of variable X3. This

means that the Granger causality has a possible dependency of X1 and X2 on X3.

The conditional Granger causality can be expressed in full regression models for

three distributed time series vectors, as seen in the following [83]:

X1(t) =

p∑
i=1

A11(i)X1(t− i) +

p∑
i=1

A12(i)X2(t− i) +

p∑
i=1

A13(i)X3(t− i) + E1(t),

X2(t) =

p∑
i=1

A21(i)X1(t− i) +

p∑
i=1

A22(i)X2(t− i) +

p∑
i=1

A23(i)X3(t− i) + E2(t),

X3(t) =

p∑
i=1

A31(i)X1(t− i) +

p∑
i=1

A32(i)X2(t− i) +

p∑
i=1

A33(i)X3(t− i) + E3(t).

(2.1.9)

The effect of X3 is eliminated from the Granger causality realization for X2 to X1.

So, the reduced regression form of X1 is illustrated as the following [83]:
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X1(t) =

p∑
i=1

A11(i)X1(t− i) +

p∑
i=1

A13(i)X3(t− i) + E1
′(t). (2.1.10)

Similarly, the likelihood ratio is computed for the covariance matrices of the

full regression and the reduced regression forms with the condition of X3. The null

hypothesis test is obtained as in H0 : A12(1) = A12(2) = A12(3) = .... = A12(p) = 0.

As a result, the conditional Granger causality X2 → X1 on condition X3 is given in

the following [83]

GX2→X1|X3 = ln
|
∑ ′

11|
|
∑

11 |
. (2.1.11)

Therefore, the implication of X3 to full and reduced regression model forms of X1

can be assumed as the past values of X2 improves the prediction of X1, depending on

its own past values, plus the past values of X3. This conditional Granger causality

of the three time series may be considered as multivariate Granger causality. So,

multivariate Granger causality is suitable to account for many interactions in a

multivariate system since its components work collaboratively with more complex

layers than bivariate VAR modeling [83].

The first step to calculate MVAR of Granger causality is to determine the ap-

propriate model order for MVAR. One may select the appropriate model order by

ML theory, such as the Akaike information criteria (AIC), Bayesian information

criterion (BIC), or cross-validation [83, 84]. The model order selection is beneficial

to balance the number of MVAR parameters and should be appropriately selected

to avoid over-fitting a finite data sequence [83]. The next step of Granger causality

realization is to estimate the model parameters of MVAR by maximizing the like-

lihood ratio for MVAR models for both full regression form and reduced regression

form [83]. Once all parameters have been estimated, Granger causality is computed
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from the equation of conditional Granger causality between pairs within selected

channels in a multivariate system in order to generate one graph g. The realization

of Granger causality is a non-negative magnitude when it is considered positively

biased [83].

For the statistical testing of Granger causality, the multivariate Granger Causal-

ity MVGC toolbox provides significance testing and confident interval computation

routines e.g., permutation test and bootstrapping test which are based on the sim-

ulation of surrogate time series [83]. The surrogate data series can be generated

from two main algorithms which are typical realization and constrained realization

[85, 86, 87]. The first generates a surrogate data set from a mode that gives the best

model fit for the original data and the second is an algorithm to generate surrogate

data from the original data set [85]. The statistical bootstrapping can estimate the

statistical measurement, e.g., mean, variance or median [87, 88]. The procedure of

bootstrapping is started with replacing the samples of the interested data [87, 88].

Statistical distribution estimation is computed for the re-sampled data for the first

replacement and then repeat the process for many times [88].

2.2 Graph Learning

Machine learning techniques and graph learning statistics have been commonly

used in pattern recognition and data mining [89]. Since brain analysis graphs have

been studied for research over many decades, the need for graph learning is essen-

tial to help understand brain functions better [89]. Application and development

of machine learning techniques and graph representation for brain network analysis

has been gaining attention from researchers in neuroscience. The goal of functional

brain graph analysis is to classify and characterize brain activation patterns which

result from a cognitive state change (within subject or across subjects) that may

be related to experimental stimulations [89]. To interpret the integration and seg-
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regation of brain activities, several topological measurements are utilized to extract

features from the graphs generated from neural data (which in this case is the EEG

data recorded in verbal fluency tasks). Complex network graphs compile abstract

information of graph representations [90]. Each graph contains a finite number of

nodes (vertices) and a finite number of connections (edges), which represent the

interaction between network nodes [90].

In general, a finite number of vertices V and a finite number of edges E forms

a graph g = (V,E). In the literature of the complex networks, graph vertices are

identified by an integer index i = 1, 2, 3,.. N, and graph edges can be identified as

pairs (i, j ) which denote the connectivity edge or link between vertex i and vertex

j [91]. Also, it supposed that there is no self-connectivity for a single vertex; for

example, there is no edge or link of (i, i) or (j, j ), as well as for these pairs (i1,

j 1) or (i2, j 2) where i1 6= i2 and j 1 6= j 2 [91]. The graph g is generated from the

previous section of Granger causality, as in the following:

g = (Vg, Eg, αg, βg), (2.2.1)

where Vg is the vertices set, Eg is the edges set, and αg is the vertex labeling

function while βg is the edge-labeling function. In this paper, EEG data channels

are the graph vertices; the directional causal relationship between two channels is

the graph edge; and the edge-labeling function is the Granger causality estimations

GX2→X1|X3, which is carried out in a previous section.

2.2.1 Vertex Strength or Node Strength

Since the growth of complex networks has been escalating and has attracted

many fields of research, the visualization of representations can be summarized with

complex information in two-dimensional representation [89]. For many complex
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networks, the large number of vertices makes it difficult to understand and interpret

the differences between them. As a result, the measurement of node strength over

all nodes of a graph produces an abstract representation that describes the graph

overall [89]. Node strength is an intuitive realization of a complex graph, in order to

present connectivity degree for a single node with respect to the total connections

with other nodes [90].The strength of the i-th vertex concludes the number and

weight of connections between itself and all the other vertices of graph g and is

defined as

si =
N∑
j=1

βg(i, j),∀i, (2.2.2)

where N represents the number of channels of EEG dataset. βg is the edge labeling

of the network, which is Granger causality estimation between two pairs, and the

vector of vertex strength of the graph for all vertices is denoted as the following

s = [s1s2...., sN ]T . (2.2.3)

In other words, the strength vertices vector is considered as the feature vector

of the graph g. Therefore, the feature vector of each Granger causality graph for

EEG datasets can demonstrate or summarize the connectivity between each vertex

(channel) with other vertices (channels).

2.2.2 Linear Support Vector Machine

Support vector machine (SVM) is a highly effective and robust supervised ma-

chine learning method [92]. It is one of the popular machine learning techniques

for classifications and learning tasks. It can analyze and recognize different modal-

ities of datasets and map the data into different feature classifications in the space,

separating them into different areas [92]. Classifications are achieved through SVM
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by finding the best possible hyperplane, which gives the largest separation margin

between separated feature classes. In general, the training graph feature vector set

with m vectors is defined as the following [92]

S = {(si, ci)|ci ∈ {−1, 1}}mi=1
(2.2.4)

where ci is either -1 or 1, indicating which feature class si belongs to. The support

vector points are data points which are closest to the hyperplane. The algorithm

of SVM is to separate the data points by classifying them into ci = 1 and ci = −1

with the maximum margin of the hyperplane which is described as

h · s− b = 0. (2.2.5)

Here, b is the bias of the decision function, s is the vector of points, and h is the

normal vector to the hyperplane [92]. The offset of the hyperplane is usually given

as b
‖h‖ from the origin in the hyperspace. The linear separation of SVM is where the

data points are separated linearly in space, and two parallel lines of hyperplane are

placed at the maximum separation region that does not have any points between

them. This region is called separation margin. Theoretically, minimizing ‖h‖ results

in a maximum region of margin that does not fall points into it. The expression of

data points that fall in each region of ci=1 and ci=-1 is given in the following:

h · sı − b ≥ 1 for sı in class cı = 1

h · sı − b ≤ −1 for sı in class cı = −1

(2.2.6)

The optimization problem of the linear SVM is to minimize ‖h‖ subject to the

data points sı that fall in each region, as in the following:

22



ci(h · si − b) ≥ 1, where i = 1, 2, ...m (2.2.7)

2.2.3 SVM Soft Margin

Soft margin method is applied since a perfect hyperplane might not exist to

perfectly separate feature classes [93, 92]. This method is used for non-separable

data sets and the sensitivity of outliers. It can separate the data points as cleanly

as possible by choosing the best hyperplane; it can also maximize the distance of

the margin to the data points in each class. The misclassification degree of the data

points sı is defined as slack variables ξı [93]. Therefore, the hyperplane equation of

the soft margin method is given as [93]:

ci(h · si − b) ≥ 1− ξi, where i = 1, 2, ...m (2.2.8)

The optimization method of the soft margin is based on the trade-off between

the maximum margin and the small error penalty. The optimization problem of

the soft margin method introduces the misclassification degrees ξi ≥ 0 and penalty

function (C
∑m

ı=1 ξi), as in the following [92]:

arg min
h,ξ,b
{1

2
‖h‖2 + C

m∑
i=1

ξi},

subject to ci(h · si − b) ≥ 1− ξi,

where ξi ≥ 0, i = 1, 2, ...m

(2.2.9)

From the optimization problem, one can conclude that points fall into the correct

region within the margin when the slackness degree is (0 ≤ ξı ≤ 1); however, the

misclassified points appears when the slackness degree is (ξı ≥ 1).
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Chapter 3

Granger Causality Analysis for Verbal

Fluency Behavior

3.1 Verbal Fluency Recordings and Material

3.1.1 Procedure of Verbal Fluency Tests

Verbal fluency defined as the ability to generate as many as words as possible,

given fluency conditions like phonemic fluency and semantic fluency. The procedure

of verbal fluency tests is to allow participants to generate as many words as possible

within sixty seconds by reason of certain fluency conditions. The verbal fluency

tests conducted at Colorado Neurological Institute (CNI) examine PD patient and

healthy control subjects. It is known that PD patients may have difficulties starting

a movement and switching between movements. Furthermore, they may have diffi-

culties with mental activities that require switching from one activity or movement

to another. These subjects are asked to wear an EEG cap to record EEG signals

and activity for different verbal fluency tasks. The purpose of verbal fluency tests is

to understand connections between different cortical areas. The following are some

definitions of verbal fluency that are used in this thesis:
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• The phonemic fluency test involves subjects generating words that begin with

a specified letter of the alphabet, such as F, A, and S; the subjects must state

as many words as they think of within 60 s.

• The semantic fluency test requires subjects to generate words (again, as many

as they think of in 60 s) that must be classified under a specified category, like

animals.

• The category semantic fluency test asks subjects to generate semantic flu-

ency words and switch between semantic categories, as many times as possible

within 60 s. The aim of this test is to understand the difficulties for PD

patients when they switch between categories.

• The reading fluency is a cortical measurement of subjects who have read the

text in 60 s.

3.1.2 Experimental Materials and Tools

This study was approved by the HealthONE Institutional Review Board, and

all subjects provided informed consent for study participation. Four participants

were involved two Parkinson’s disease patients and two healthy control subjects

who volunteered from the Colorado Neurological Institute (CNI). The participants

were asked to perform verbal fluency tasks and generate a list of words when a

task cue was given. Each participant responded with approximately sixty trials of

verbal fluency tasks. These tasks were divided into fifteen trial blocks for each flu-

ency task command, such as: phonemic, semantic, category semantic, and reading

fluency. The EEG was measured with 4 g.tec g.USBamp amplifiers and a Brain-

productsActicap System. There were sixty-one electrodes placed on each subject’s

scalp, according to the international 10/20 electrode placement system. The data

was recorded with a sampling rate of 4800 Hz. The datasets of PD patients were
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defined as PD1 and PD2, with the datasets of healthy controls as HC1 and HC2,

for more convenient reference of the data analysis.

The work in this research primarily depended on signal processing analysis in

the MATLAB environment. The MVGC MATLAB toolbox is utilized in the study,

which was released by the University of Sussex in the United Kingdom [83]. This

toolbox is based on the analysis of Granger causality for multivariate autoregressive

models in the time domain and the frequency domain. This toolbox also has serious

requirements to perform calculation of Granger causality graph [83]. The second

MATLAB toolbox used was the EEGLAB for signal processing analysis in order to

display the head map of Granger causality strengths.

3.1.3 EEG Data Preprocessing and Region of Interests

The preprocessing progresses start with down-sampling the signals to 240 Hz.

Since the verbal fluency activity in the brain is considered to exist in the left frontal

area, addressed in the BA44L and BA45L as in [69, 74, 70, 75] and listed as in

Table 1.2, the electrode positions are illustrated in the head maps as in figure 3.1.

From this Figure, one can see that EEG channels on the left side of hemisphere and

the right side of hemisphere concentrate on the prefrontal areas. Also, there are

some mutual nodes between the two areas. Also, the supplementary motor cortex

and primary motor cortex channels for right hand action are defined as F3 and C3,

respectively, and the F4 and C4 are the supplementary motor and primary motor

cortices for left hand performance [51, 52, 37, 48]. The study of this thesis includes

the channels which are only related to motor cortex in order to understand the

relationship between verbal fluency and motor activity for PD patients and healthy

controls. Moreover, the primary motor cortex and supplementary motor cortices

are discussed in [76] and listed in Table 1.2. As a result, the illustration of the areas

belong to BA4 and BA6 are demonstrated in Figure 3.1.
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(a) Broca’s area of BA44 (b) Broca’s area of BA45

(c) Primary Motor Cortex of BA4 (d) Supplementary Motor Cortex BA6

Figure 3.1: Brodmann’s area electrode positions of EEG channels.
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Figure 3.2: Region of interest for 26 EEG channels.

Overall, the channels of Figures 3.1a,3.1b, 3.1c, and 3.1d are merged in order

to extract the region of interest.There are twenty-six channels in total, and they

belong to prefrontal cortex channels and central cortex channels for both sides of

the brain. The region of interest is given as the head map in Figure 3.2.

Typically, brain activity leading to a motor action starts between 150 ms and 200

ms before the response time; therefore, our last study of finger movement behavior

task concentrates only on the motor actions for the PD patients. The window length

of each trail was 200 ms before the response time. However, in this study, the

activation of verbal fluency is proposed in [77] as in the inferior frontal gyrus which

is the Brocas area after 400 ms of the stimulus onset. In this study, concentration

is on the inferior frontal gyrus, the primary motor cortex, and the supplementary

motor cortex where the window length is selected as 600 ms before the participant

speaks.

3.2 Granger Causality Analysis

The method of Granger causality is briefly explained in the previous chapter,

which depends on the past values of the second signal X2 in order to improve the
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prediction the first signal X1 for bivariate autoregressive models. The MATLAB

toolbox MVGC is used for Granger causality analysis where the datasets PD1,

PD2, HC1 and HC2 consist of sixty-one channels that seriously affect the timing

of Granger causality realization because of the large number of lag observations

[83]. In regards to EEG channels, only the region of interest channels for analysis

of Granger causality was extracted. The approach for finding Granger causality is

to compute the causality graph or causality network for a certain task and then use

the graph for vertex strength method of graph learning to identify the most acti-

vated or causal channel among all twenty-six channels. The computation of Granger

causality have some constraints that should be considered, as the large number of

trials with different tasks give undesirable results and signal interference. Also, the

window length should not be too short, nor too long; this is a trade-off between

data likelihood stationary seek and model fit accuracy [83]. The shorter window

length helps the data to be stationary, whereas the large number of trails should be

implemented by short windows. The longer window improves the computation of

multivariate autoregressive model fit. The window length in this thesis depends on

the verbal fluency activation. In the approach of Granger causality, the strength of

channels that are mostly causal with other channels is interpreted by extracting the

feature strength of channels. This method is proposed in the previous chapter for

the graph learning technique. Next, the channel strength of the Granger causality is

visualized with head maps. The investigation of verbal fluency research procedure

by Granger causality begins by filtering signals in order to define the most effec-

tive frequency band for verbal fluency behavior. The details of Granger causality

filtering are provided in the following section. Then, the focus is on the effective

frequency band in order to apply the approach with each verbal fluency task. Also,

we applied the channel strength technique for each Granger causality graph of a sin-

gle test. As well, we demonstrated the channel strengths of each Granger causality
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graph by head maps in order to compare most causal and activated channel between

all verbal fluency tasks.

3.2.1 Granger Causality Filtering

Many earlier studies on verbal fluency test for fMRI have reported that the

activated areas are in the left inferior frontal gyrus [69, 74, 70, 75]. The verbal

fluency activation for EEG signals has been proposed in [77] as in the gamma band

for Broca’s area. The purpose in this study is to investigate the causality activation

within three frequency bands (alpha, beta, and gamma) for all the verbal fluency

tasks with forty-five trails for each of the datasets PD1 and HC1. Since the research

includes a large number of trails for verbal fluency tasks, the window length is

shortened due to the discussion in the previous section up to 300 ms before the

participant speaking. The procedure of EEG Granger causality filtering starts with

computing the Granger causality of each frequency band that results in a graph of

Granger causality. Channel strength of the causality graph helps the visualization of

complex graphs, such as the previous Granger causality graphs, in two-dimensional

representation. The channel strength graph learning technique is used to extract

the features of each channel for Granger causality. Finally, the channel strength of

Granger causality in head maps after normalizing the strength values is illustrated

in order to distinguish the difference between the three frequency bands.

3.2.2 Overview of Granger Causality Filtering

Granger causality filtering of verbal fluency has multiple procedure steps in

order to determine the most effective frequency band. The procedure analyzes

two datasets (PD1 and HC1) for verbal fluency analysis such as phonemic fluency,

semantic fluency and category semantic fluency. The first step of analyzing each

dataset is down-sampling the signals to 240 Hz. The second step is extracting the
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region of interest (ROI) for EEG channels which contains twenty six channels in the

BA 44, BA 45, BA 4 and BA 6. The third step is filtering the signal with band

pass filter in the frequency band (alpha band, beta band, and gamma band). The

fourth step is averaging the signals of multivariate channels with forty five trials

for each computation of Granger causality and the window length of time epoch

is 300 ms before subject speaking. The fifth step is applying Granger causality

multivariate time series which produces a Granger causality graph for the averaged

signals. The sixth step is extracting the graph features which are denoted as the

channel strength in order to visualize the causality of the averaged signal. The

seventh step is illustrating the normalized values of channel strengths for the region

of interest (ROI) by head maps. The procedure of Granger causality looks for the

best effective frequency band for causality in the Broca’s area during verbal fluency

tasks. The following flow chart demonstrates the procedure process for the Granger

causality analysis of verbal fluency as in the Figure 3.3.

Alpha Band

EEG signals consist of five major frequency bands, as mentioned in Chapter 1.

The Alpha band is a slow wave appearance of an EEG signal that appears usually

for adults when they are relaxing or closing their eyes. The datasets PD1 and HC1

were filtered by a band pass filter from 8 Hz to 12 Hz and then generated granger

causality for an average of forty-five trails of verbal fluency tests with 300 ms before

participants speak.

In general, the Alpha band does not show any effective Granger causality in

the area of verbal fluency, located in the left frontal channels for the two data sets

PD1 and HC1 as in Figure 3.4a and Figure 3.4b. Also, we can note from channel

strengths of both datasets that the greatest channel strengths do not belong to the

verbal fluency channels, as shown in Figure 3.5a and Figure 3.5b. Furthermore, the
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Figure 3.3: The flow chart for Granger causality filtering of PD1 and HC1.
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channel strength with head maps of the region of interest of both datasets as in

Figure 3.6a and Figure 3.6b is evident for Granger causality activation in the left

inferior area.
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(a) for PD1

(b) for HC1

Figure 3.4: Granger causality for 26 EEG channels in alpha band which is averaged
for 45 trails and the window starts 300 ms before PD1 and HC1 subjects speak.
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(a) for PD1

(b) for HC1

Figure 3.5: Channel strength causality for 26 EEG channels in alpha band for the
Granger causality graph in the alpha band for subjects PD1 and HC1.
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(a) for PD1 (b) for HC1

Figure 3.6: Head maps of Granger causality channel strength in alpha band
where the values are normalized for visual comparison of Granger causality channel
strengths between subjects PD1 and HC1.

Beta Band

The Beta band has faster frequency waves and appears when patients are

anxious, or they have their eyes open. The band pass filter is used for the frequency

band from 13 Hz to 32 Hz. The computation of Granger causality is also averaged

for forty-five trials and the times window is 300 ms before subjects speak. In the

Beta band, there is no considerable Granger causality in the area of verbal fluency

channels for the two datasets, as shown in Figure 3.7a and Figure 3.7b. Also, the

strongest channel strengths are not channels in Broca’s area, as in Figure 3.8a and

3.8b. The head maps of Granger causality channel strength in the Beta band are

given in Figure 3.9a and 3.9b.
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(a) for PD1

(b) for HC1

Figure 3.7: Granger causality for 26 EEG channels in beta band where it is averaged
for 45 trails and the time window is 300 ms before PD1 and HC1 subjects speak.
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(a) for PD1

(b) for HC1

Figure 3.8: Channel strength causality for 26 EEG channels in beta band for the
Granger causality graph in the alpha band for subjects PD1 and HC1.
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(a) for PD1 (b) for HC1

Figure 3.9: Head maps of Granger causality channel strength in beta band where the
values are normalized for visual comparison of Granger causality channel strengths
between subjects PD1 and HC1.

Gamma Band

The gamma band is the fastest frequency wave of EEG signals. It appears in

short-term memory or recognized tasks, like sound or sensation. The band pass

filter is designed from 33 Hz to 45 Hz where the computation of Granger causality

of verbal fluency tasks is averaged for 45 trails with 300 ms before participants

speak. The gamma frequency band has the most considerable Granger causality

for verbal fluency channels, which are in the left Broca’s area with other channels,

shown in Figure 3.10a and Figure 3.10b. The Granger causality channel strength

shows the highest causality channel strength are channels of left frontal areas, as in

Figure 3.11a and Figure 3.11b. Also, the head maps of Granger causality channel

strength can demonstrate activation in Broca’s area for both PD1 and HC1 in the

gamma band, as evident in Figure 3.12a and Figure 3.12b. As a result, the gamma

band is the most effective frequency band for Granger causality analysis of verbal

fluency tasks averaged for 45 trails.
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(a) for PD1

(b) for HC1

Figure 3.10: Granger causality for 26 EEG channels in gamma band which is av-
eraged for 45 trails and the time window is 300 ms before PD1 and HC1 subjects
speak.
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(a) for PD1

(b) for HC1

Figure 3.11: Channel strength causality for 26 EEG channels in gamma band for
the Granger causality graph in the alpha band for subjects PD1 and HC1.
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(a) for PD1 (b) for HC1

Figure 3.12: Head maps of Granger causality channel strength in gamma band
where the values are normalized for visual comparison of Granger causality channel
strengths between subjects PD1 and HC1.

3.2.3 Granger Causality of Verbal Fluency

Since the most active frequency band for Granger causality of verbal fluency

tasks is the gamma band, the focus of analysis is only on this frequency band in

order to investigate the relationships of different channels of verbal fluency tasks

for all datasets PD1, PD2, HC1 and HC2. The objective is to define interactions

within Broca’s channels of each verbal fluency task where researchers expect the

most causal channels to be Ft7 and F7. The computation for Granger causality

begins with an average of five trails for each task, and the time window is 600 ms

before the subjects speak. The computation of Granger causality is applied for the

average of trials with a single fluency task. The total number of Granger causality

analysis for each verbal fluency task is ten. Granger causality channel strength is

found for each computation.

3.2.4 Overview of Verbal Fluency Analysis Model

Granger causality analysis has multiple procedure steps in order to achieve the

proposed method. The method analyzes four datasets (PD1, PD2, HC1 and HC2)
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for verbal fluency analysis such as phonemic fluency, semantic fluency, category

semantic fluency and reading fluency. The first step of analyzing each dataset is

down-sampling the dataset to 240 Hz. The second step is extracting the region of

interest (ROI) for EEG channels which are twenty six channels in the BA 44, BA

45, BA 4 and BA 6. The third step is filtering the signal with band pass filter in

the gamma band. The fourth step is averaging the signals of multivariate channels

with five trials for each computation of Granger causality and the time window of

is 600 ms before subject speaking. The fifth step is applying Granger causality

multivariate time series regression which produces a Granger causality graph for

the averaged signals trials. The sixth step is extracting the graph features which is

denoted as the channel strength in order to visualize the causality of the averaged

signal. The seventh step is illustrating the normalized values of channel strengths

for the region of interest (ROI) by head maps. The eighth step is applying Granger

causality statistical testing which indicates the significance of channel strengths. The

computation of Granger causality is repeated ten times for a single verbal fluency

task. The Granger causality method is applied for each dataset of PD1, PD2, HC1

and HC2. The ninth step is applying graph learning for support vector machine

in order to classify the channels which are considered as the most causal channels

for PD datasets and HC datasets. The tenth step is summarizing the SVM soft

margin classification of the verbal fluency for PD vs. HC. The following flow chart

demonstrates the procedure process for the Granger causality analysis of verbal

fluency as in the Figure 3.13

Phonemic Fluency

The performance of phonemic fluency is based on patients generating as many

words that start with a certain letter, such as F, A and S, as they can think of in 60s.

The computation of Granger causality is based on the average of five trials and 600
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Figure 3.13: The flow chart of Granger causality analysis for verbal fluency tasks.
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ms before speaking onset when the total number of iterations is ten computations. A

sample of Granger causality computation is presented in Figure 3.14 for each dataset

PD1, PD2, HC1 and HC2. The most causal channels in general for PD1 and PD2

is channel Ft7 for most of the Granger causality computations; however, the most

causal channel for HC1 and HC2 is channel Fc5 for most of the computations as

in Figure 3.14. The highest Granger causality channel strength for each iteration of

PD patients is Ft7 and for healthy controls Fc5, as shown in Figure 3.15. Also, it

is clear from the head maps that Ft7 is the most activated channel for PD patients

and Fc5 channel is activated for healthy controls, as in Figure 3.16.

The second sample of computation for Granger causality graphs, channel strengths

and head maps of PD1, PD2, HC1 and HC2 are illustrated in Figures 3.17, 3.18,

and 3.19, respectively. The values of channel strength for the most causal channels

in each Granger causality computation are listed in order to use them as feature

classes of graphs for PD1, PD2, HC1 and HC2, as in the following Tables 3.1, 3.2,

3.3 and 3.4.
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(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.14: Sample Granger causality graphs for phonemic fluency shows a number
of causalities in the Broca’s area channels for PD1 in channel Ft7 causing other
channels, PD2 in channel Ft7 and F7, HC1 in channel Fc5 and HC2 in channel
Fc5.
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(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.15: Sample Granger causality channel strengths for phonemic fluency
shows the causality strength of each channel in the Granger causality graph for
each dataset.
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(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.16: Sample Granger causality head maps for phonemic fluency shows the
area of activation in the head map for each dataset during phonemic fluency.

48



No./Channel Ft7 Fc5

1 0.449 0.16

2 0.54 0.21

3 0.325 0.24

4 0.385 0.32

5 0.445 0.266

6 0.395 0.36

7 0.285 0.24

8 0.125 0.24

9 0.21 0.16

10 0.21 0.17

Table 3.1: Channel strength values (Ft7 and Fc5) of phonemic fluency for PD1.

No./Channel Ft7 Fc5

1 0.46 0.23

2 0.63 0.21

3 0.65 0.285

4 0.18 0.15

5 0.3 0.49

6 0.28 0.6

7 0.4 0.33

8 0.15 0.39

9 0.35 0.1

10 0.198 0.245

Table 3.2: Channel strength values (Ft7 and Fc5) of phonemic fluency for PD2.
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No./Channel Ft7 Fc5

1 0.35 0.52

2 0.37 0.49

3 0.27 0.65

4 0.225 0.59

5 0.2 0.5

6 0.18 0.48

7 0.28 0.575

8 0.3 0.415

9 0.35 0.325

10 0.225 0.395

Table 3.3: Channel strength values (Ft7 and Fc5) of phonemic fluency for HC1.

No./Channel Ft7 Fc5

1 0.56 1.05

2 0.62 1.22

3 0.85 0.44

4 0.7 0.21

5 0.4 0.59

6 0.14 0.5

7 0.2 0.3

8 0.59 0.63

9 0.45 0.73

10 0.12 0.22

Table 3.4: Channel strength values (Ft7 and Fc5) of phonemic fluency for HC2.
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(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.17: Sample Granger causality graphs for phonemic fluency shows a number
of causalities in the Broca’s area channels for PD1 in channel Ft7 causing other
channels, PD2 in channel Ft7, HC1 in channel Fc5 and HC2 in channel Fc5.

The statistical test for the models of Granger causality for phonemic fluency

are given in the bootstrapping histograms for B=1000 times with replacing channel

strength values of all the channels within the ten computations of a dataset, such

as PD1, PD2, HC1 and HC2 as in Figure 3.20. The bootstrapping of the channel

strengths shows the distribution of channel strength values for 1000 times. The

distributions of the bootstrapping are assumed to be normally distributed for each

dataset. The goal of the bootstrapping is to present the probability of each value of

channel strength. The p-test threshold for the models of Granger causality is set as
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(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.18: Sample Granger causality channel strength for phonemic fluency shows
the causality strength of each channel in the Granger causality graph for each
dataset.

52



(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.19: Sample Granger causality head maps for phonemic fluency shows the
area of activation in the head map for each dataset during phonemic fluency.
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(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.20: Histogram of bootstrapping for phonemic fluency of all the datasets.
The distribution shows the probability of the channel strength values.
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α = 0.05, and the p-value should be less than or equal to the significance level α.

The null hypothesis H0 of the Granger causality statistical test is assumed as ”no

differences between channel strengths values under test and all the channel strength

in each dataset”. On other hand, the assumption of the alternative hypothesis H1

is related to ”differences between the channel strength values under test and all

other values in the dataset”. The statistical test is one sided of the bootstrapping

for Granger causality analysis where the vertical coordinates are the probability

values which are computed under the null hypothesis for the different outcomes of

channel strengths in the horizontal coordinates as in Figures 3.20. The statistical

significance p-value is the area which is less than or equal to the significance level

α. The p-value of the channel Ft7 values for PD1 and PD2 is significant where the

p-value ≤ 0.05. For instant, Ft7 channel strength value of PD1 of the first sample

is 0.449 where this value in the bootstrapping histogram of PD1 has its p-value

is p ≤ 0.05 which is considered as statistical significant and the null hypothesis is

rejected. Furthermore, the p-value of the channel Fc5 values for HC1 and HC2 is

significant where the its p-value is p ≤ 0.05. For example, Fc5 channel strength value

for HC1 of the first sample is 0.52 where this value in the bootstrapping histogram

of HC1 has its p-value is p ≤ 0.05 which is considered as statistical significant and

the null hypothesis is rejected.

Semantic Fluency

The performance of semantic fluency is based on participants generating as

many words as as possible that are categorized with a given category (for instance,

animals) in 60 s. The computation of Granger causality is based on the average

of five trials and 600 ms before speaking onset when the total number of iterations

is ten computations. A sample of Granger causality computation for each dataset

PD1, PD2, HC1 and HC2 is presented Figure 3.21. The finding from the results is
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No./Channel Ft7 F7

1 0.61 0.575

2 0.62 0.485

3 0.68 0.71

4 0.43 0.38

5 0.35 0.45

6 0.55 0.43

7 0.28 0.425

8 0.25 0.35

9 0.3 0.45

10 0.27 0.49

Table 3.5: Channel strength values (Ft7 and F7) of semantic fluency for PD1.

that the most causal channel causing other channels for PD1 and PD2 is channel

Ft7 for most of the computations; however, the most causal channel for HC1 and

HC2 is channel F7 for most of the computations, as observed in Figure 3.21. As

well, the highest Granger causality channel strength for each computation of PD

patients is Ft7 and for healthy controls F7, as shown in Figure 3.22. From the head

maps, it is evident that Ft7 is the most activated channel for PD patients, and the

F7 channel is activated for healthy controls, as in Figure 3.23.

The second sample of computation for Granger causality graphs, channel strengths,

and head maps of PD1, PD2, HC1 and HC2 are illustrated in Figures 3.24, 3.25

and 3.26, respectively. The values of channel strength for the most causal channels

are listed in order to use them as feature classes of graphs for PD1, PD2, HC1 and

HC2 in the following Tables 3.5, 3.6, 3.7 and 3.8.
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(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.21: Sample Granger causality graphs for semantic fluency shows a number
of causalities in the Broca’s area channels for PD1 in channel Ft7 causing other
channels, PD2 in channel Ft7, HC1 in channel F7 and HC2 in channel F7.
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(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.22: Sample Granger causality channel strengths for semantic fluency shows
the causality strength of each channel in the Granger causality graph for each
dataset.

No./Channel Ft7 F7

1 0.35 0.26

2 0.348 0.155

3 0.13 0.76

4 0.225 0.29

5 0.15 0.25

6 0.9 1.1

7 0.11 0.1

8 0.2 0.095

9 0.11 0.1

10 0.35 0.16

Table 3.6: Channel strength values (Ft7 and F7) of semantic fluency for PD2.
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(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.23: Sample Granger causality head maps for semantic fluency shows the
area of activation in the head map for each dataset during semantic fluency.
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No./Channel Ft7 F7

1 0.14 0.36

2 0.12 0.6

3 0.46 0.36

4 0.2 0.4

5 0.205 0.22

6 0.25 0.425

7 0.245 0.252

8 0.24 0.3

9 0.17 0.225

10 0.29 0.395

Table 3.7: Channel strength values (Ft7 and F7) of semantic fluency for HC1.

No./Channel Ft7 F7

1 0.3 0.6

2 0.1 1.3

3 0.88 0.98

4 1.2 0.48

5 1.78 0.9

6 1.45 1.35

7 0.81 1.59

8 0.61 0.9

9 0.46 0.95

10 0.12 0.35

Table 3.8: Channel strength values (Ft7 and F7) of semantic fluency for HC2.
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(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.24: Sample Granger causality graphs for semantic fluency shows a number
of causalities in the Broca’s area channels for PD1 in channels Ft7 and F7 causing
other channels, PD2 in channel Ft7, HC1 in channel F7 and HC2 in channel F7.
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(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.25: Sample Granger causality channel strength for semantic fluency shows
the causality strength of each channel in the Granger causality graph for each
dataset.
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(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.26: Sample Granger causality head maps for semantic fluency shows the
area of activation in the head map for each dataset during semantic fluency.

63



(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.27: Histogram of bootstrapping for semantic fluency of all the datasets.
The distribution shows the probability of the channel strength values.

The statistical test for the models of Granger causality for semantic fluency are

given in the bootstrapping histograms for B=1000 times with replacing channel

strength values of all the channels within the ten computations of a dataset, such

as PD1, PD2, HC1 and HC2 as in Figure 3.27. The bootstrapping of the channel

strengths shows the distribution of channel strength values for 1000 times. The

distributions of the bootstrapping are assumed to be normally distributed for each

dataset. The goal of the bootstrapping is to present the probability of each value

of channel strength. The p-test threshold for the models of Granger causality for

semantic fluency is set as α = 0.05, and the p-value should be less than or equal to
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the significance level α. The null hypothesis H0 of the Granger causality statistical

test is assumed as ”no differences between channel strengths values under test and

all the channel strength in each dataset”. On other hand, the assumption of the

alternative hypothesis H1 is related to ”differences between the channel strength

values under test and all other values in the dataset”. The statistical test is one sided

of the bootstrapping for Granger causality analysis where the vertical coordinates

are the probability values which are computed under the null hypothesis for the

different outcomes of channel strengths in the horizontal coordinates as in Figures

3.27. The statistical significance p-value is the area which is less than or equal to

the significance level α. The p-value of the channel Ft7 values for PD1 and PD2

is significant with the p-value ≤ 0.05. For example, Ft7 channel strength value for

PD1 of the second sample is 0.62 where this value in the bootstrapping histogram of

HC1 has its p-value ≤ 0.05 which is considered as statistical significant and the null

hypothesis is rejected. Furthermore, the p-value of the channel F7 values for HC1

and HC2 is significant with the p-value ≤ 0.05. For example, F7 channel strength

value for HC1 of the second sample is 0.6 where this value in the bootstrapping

histogram of HC1 has its p-value ≤ 0.05 which is considered as statistical significant

and the null hypothesis is rejected.

Category Semantic Fluency

The second type of semantic fluency is category semantic fluency where the per-

formance of category semantic fluency is based on participants abilities to generate

words that are categorized into different given areas and then switched between

them (example: animals to jungle animals); subjects state as many words as they

can in 60 s. The computation of Granger causality is based on the average of five

trials and 600 ms before speaking onset when the total number of iterations is ten

computations. A sample of Granger causality computation for each dataset PD1,
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No./Channel Ft7 F7

1 0.55 0.36

2 0.435 0.25

3 1.1 0.68

4 0.68 0.33

5 0.45 0.43

6 0.43 0.45

7 0.26 0.51

8 1.05 0.6

9 0.93 0.45

10 0.8 0.54

Table 3.9: Channel strength values (Ft7 and F7) of category semantic fluency for
PD1.

PD2, HC1 and HC2 is presented in Figure 3.28, establishing that the most causal

channel with other channels for PD1 and PD2 is channel Ft7 for most of the itera-

tions; however, the most causal channel for HC1 and HC2 is channel F7 for most of

the iterations, as in sample Figure 3.28. Additionally, the highest Granger causality

channel strength for each iteration of PD patients are Ft7 and for healthy controls

F7, as demonstrated in Figure 3.29. It is clear from the head maps that Ft7 is the

channel that is more often activated for PD patients, and the F7 channel is more

often activated for healthy controls, as in Figure 3.30.

The second sample of computation for Granger causality graphs, channel strengths,

and head maps of PD1, PD2, HC1 and HC2 are illustrated in Figures 3.31, 3.32

and 3.33, respectively. The values of channel strength for the most causal channels

are listed in order to use them as feature classes of graphs for PD1, PD2, HC1 and

HC2 as in the following Tables 3.9, 3.10, 3.11 and 3.12.

The statistical test for the models of Granger causality for category semantic

fluency are given in the bootstrapping histograms for B=1000 times with replacing
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(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.28: Sample Granger causality graphs for category semantic fluency shows
a number of causalities in the Broca’s area channels for PD1 in channel Ft7 causing
other channels, PD2 in channel Ft7 and Af7, HC1 in channel F7 and HC2 in channel
Ft7 and F7.
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(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.29: Sample Granger causality channel strengths for category semantic flu-
ency shows the causality strength of each channel in the Granger causality graph
for each dataset.

No./Channel Ft7 F7

1 0.26 0.2

2 0.59 0.28

3 0.44 0.19

4 0.1 0.22

5 0.2 0.275

6 0.3 0.13

7 0.205 0.395

8 0.108 0.44

9 0.16 0.54

10 0.26 0.65

Table 3.10: Channel strength values (Ft7 and F7) of category semantic fluency for
PD2.
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(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.30: Sample Granger causality head maps for category semantic fluency
shows the area of activation in the head map for each dataset during category
semantic fluency.
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No./Channel Ft7 F7

1 0.2 0.58

2 0.22 0.57

3 0.1 0.75

4 0.18 0.53

5 0.1 0.6

6 0.19 0.495

7 0.2 0.42

8 0.14 0.34

9 0.175 0.4

10 0.1 0.53

Table 3.11: Channel strength values (Ft7 and F7) of category semantic fluency for
HC1.

No./Channel Ft7 F7

1 1.05 0.6

2 0.34 0.54

3 0.2 0.35

4 0.9 0.7

5 0.5 0.4

6 0.9 0.41

7 0.26 0.73

8 0.63 0.3

9 0.2 0.5

10 0.7 0.8

Table 3.12: Channel strength values (Ft7 and F7) of category semantic fluency for
HC2.
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(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.31: Sample Granger causality graphs for category semantic fluency shows
a number of causalities in the Broca’s area channels for PD1 in channel Ft7 causing
other channels, PD2 in channel Ft7, HC1 in channel F7 and HC2 in channel F7.
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(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.32: Sample Granger causality channel strength for category semantic flu-
ency shows the causality strength of each channel in the Granger causality graph
for each dataset.

72



(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.33: Sample Granger causality head maps for category semantic fluency
shows the area of activation in the head map for each dataset during category
semantic fluency.

channel strength values of all the channels within the ten computations of a dataset

such as, PD1, PD2, HC1 and HC2 as in Figure 3.34. The bootstrapping of the

channel strengths shows the distribution of channel strength values for 1000 times.

The distributions of the bootstrapping are assumed to be normally distributed for

each dataset. The goal of the bootstrapping is to present the probability of each

value of channel strength. The p-test threshold for the models of Granger causality

is set as α = 0.05, and the p-value should be less than or equal to the significance

level α. The null hypothesis H0 of the Granger causality statistical test is assumed as

”no differences between channel strengths values under test all the channel strength
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(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.34: Histogram of bootstrapping for category semantic fluency of all the
datasets. The distribution shows the probability of the channel strength values.
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in each dataset”. On other hand, the assumption of the alternative hypothesis H1

is related to ”differences between the channel strength values under test and of all

other values in the dataset”. The statistical test is one sided of the bootstrapping

for Granger causality analysis where the vertical coordinates are the probability

values which are computed under the null hypothesis for the different outcomes of

channel strengths in the horizontal coordinates as in Figures 3.34. The statistical

significance p-value is the area which is less than or equal to the significance level

α. The p-value of the channel Ft7 values for PD1 and PD2 is significant with the

p-value is p ≤ 0.05. For instant, Ft7 channel strength value for PD1 of the first

sample is 0.55 where this value in the bootstrapping histogram of PD1 has its p-

value≤ 0.05 which is considered as statistical significant and the null hypothesis is

rejected. Furthermore, the p-value of the channel F7 values for HC1 and HC2 is

significant with the p-value is p ≤ 0.05. For example, F7 channel strength value for

HC1 of the first sample is 0.58 where this value in the bootstrapping histogram of

HC1 has its p-value ≤ 0.05 which is considered as statistical significant and the null

hypothesis is rejected.

Reading Fluency

The last type of verbal fluency tests is reading fluency where its performance is

based on subjects reading as much of a given text as possible in 60s. The compu-

tation of Granger causality is based on the average of five trials and 600 ms before

speaking onset when the total number of iterations is ten computations. A sample

of Granger causality computation for each dataset PD1, PD2, HC1 and HC2 is pre-

sented in Figure 3.35. The most causal channel causing other channels for PD1 and

PD2 is channel Ft7 for most of the computations; however, the most causal channel

for HC1 and HC2 is channel F7 for most of the iterations, as in Figure 3.35. Also,

the highest Granger causality channel strength for each iteration of PD patients is
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No./Channel Ft7 F7

1 0.14 0.39

2 0.2 0.6

3 0.2 0.63

4 0.18 0.22

5 0.2 0.18

6 0.13 0.2

7 0.26 0.325

8 0.16 0.26

9 0.125 0.34

10 0.11 0.22

Table 3.13: Channel strength values (Ft7 and F7) of reading fluency for PD1.

Ft7 and for healthy controls, F7, as shown in Figure 3.36. It is also evident from

the head maps that Ft7 is a more frequently activated channel for PD patients, and

F7 channel is more often activated for healthy controls, as evident in Figure 3.37.

The second sample of computation for Granger causality graphs, channel strengths,

and head maps of PD1, PD2, HC1 and HC2 are illustrated in Figures 3.38, 3.39,

and 3.40 respectively. In regards to the rest of the results, the values of channel

strength for the most causal channels are presented in order to use them as feature

classes of graphs for PD1, PD2, HC1 and HC2 in the following Tables 3.13, 3.14,

3.15 and 3.16.

The statistical test for the models of Granger causality for reading fluency are

given in the bootstrapping histograms for B=1000 times with replacing channel

strength values of all the channels within the ten computations of a dataset such

as PD1, PD2, HC1 and HC2 as in Figure 3.41. The bootstrapping of the channel

strengths shows the distribution of channel strength values for 1000 times. The

distributions of the bootstrapping are assumed to be normally distributed for each

dataset. The goal of the bootstrapping is to present the probability of each value of
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(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.35: Sample Granger causality graphs for reading fluency shows a number
of causalities in the Broca’s area channels for PD1 in channel F7 causing other
channels, PD2 in channel Ft7 and F7, HC1 in channel F7 and HC2 in channel Ft7
and F7.
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(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.36: Sample Granger causality channel strengths for reading fluency shows
the causality strength of each channel in the Granger causality graph for each
dataset.

No./Channel Ft7 F7

1 0.285 0.449

2 0.09 0.47

3 0.195 0.448

4 0.12 0.37

5 0.225 0.39

6 0.22 0.3

7 0.137 0.29

8 0.27 0.2

9 0.34 0.195

10 0.272 0.454

Table 3.14: Channel strength values (Ft7 and F7) of reading fluency for PD2.
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(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.37: Sample Granger causality head maps for reading fluency shows the
area of activation in the head map for each dataset during reading fluency.
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No./Channel Ft7 F7

1 0.24 0.52

2 0.125 0.495

3 0.145 0.41

4 0.2 0.45

5 0.25 0.7

6 0.4 0.83

7 0.56 0.48

8 0.22 0.33

9 0.35 0.55

10 0.23 0.46

Table 3.15: Channel strength values (Ft7 and F7) of reading fluency for HC1.

No./Channel Ft7 F7

1 0.5 0.95

2 0.55 0.76

3 0.8 0.62

4 0.71 0.68

5 1.1 0.82

6 0.72 0.4

7 0.69 0.595

8 0.19 0.49

9 0.4 1.2

10 0.39 1.55

Table 3.16: Channel strength values (Ft7 and F7) of reading fluency for HC2.
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(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.38: Sample Granger causality graphs for reading fluency shows a number
of causalities in the Broca’s area channels for PD1 in channel Ft7 causing other
channels, PD2 in channel Ft7 and F7, HC1 in channel F7 and HC2 in channel F7.
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(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.39: Sample Granger causality channel strength for reading fluency shows
the causality strength of each channel in the Granger causality graph for each
dataset.
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(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.40: Sample Granger causality head maps for reading fluency show the area
of activation in the head map for each dataset during reading fluency.
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(a) for PD1 (b) for PD2

(c) for HC1 (d) for HC2

Figure 3.41: Histogram of bootstrapping for reading fluency of all the datasets. The
distribution shows the probability of the channel strength values.
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channel strength. The p-test threshold for the models of Granger causality is set as

α = 0.05, and the p-value should be less than or equal to the significance level α.

The null hypothesis H0 of the Granger causality statistical test is assumed as ”no

differences between channel strengths values under test and all the channel strength

in each dataset”. On other hand, the assumption of the alternative hypothesis H1

is related to ”differences between the channel strength values under test and all

other values in the dataset”. The statistical test is one sided of the bootstrapping

for Granger causality analysis where the vertical coordinates are the probability

values which are computed under the null hypothesis for the different outcomes of

channel strengths in the horizontal coordinates as in Figures 3.41. The statistical

significance p-value is the area which is less than or equal to the significance level

α. The p-value of the channel F7 values for PD1 and PD2 is significant with the

probability being p ≤ 0.05. For example, F7 channel strength value for PD1 of the

first sample is 0.39 where this value in the bootstrapping histogram of PD1 has its

p-value ≤ 0.05 which is considered as statistical significant and the null hypothesis

is rejected. Furthermore, the probability of the channel F7 values for HC1 and HC2

is significant with the probability being p ≤ 0.05. For example, F7 channel strength

value for HC1 of the first sample is 0.52 where this value in the bootstrapping

histogram of HC1 has its p-value≤ 0.05 which is considered as statistical significant

and the null hypothesis is rejected.
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Chapter 4

Graph Learning

4.1 Support Vector Machine

Linear support vector machine is considered one of the easiest machine learning

techniques for classification, as it maps the feature classifications of linear data

space into linear classification with linear hyperplane. It can be achieved by finding

the best possible hyperplane that separates the feature classes of the linear data.

The hyperplane of linear separation of SVM is placed at the maximum separation

region (margin) when the theory is to minimize the normal vector of the hyperplane.

The technique of SVM soft margin is applied when a perfect hyperplane does not

exist. This method selects the best hyperplane that can separate the data points

as clean as possible by maximizing the distance from the margin to the data points

in each class. It is also based on the trade-off between the maximum margin and

small error penalty of the slack variables. The optimization problem of SVM soft

margin is subject to the slackness degree, which indicates whether the points fall

into the correct region or are misclassified. The data points in this thesis are the

two maximum values of Granger causality channel strengths for each verbal fluency

task (phonemic fluency, semantic fluency, category semantic fluency, and reading

fluency). These data points fall into two regions of PD=-1 and Control= 1 where
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PD is for (PD1 and PD2) and Control is for (HC1 and HC2). The total number of

data points vector for each PD or Control class is twenty because the total number

of computation iterations for Granger causality is ten times for each verbal fluency

task of each dataset. The dataset of the data points is divided into two subsets

for training and testing data points. The ratio of dividing the training points and

testing points is considered to be 90% of the total data points for training and 10%

of the total data points for testing. The training points are achieved by eighteen

points for PD and eighteen points for HC where the testing points are two points

for each class. Therefore, the total number of data points for training are thirty

six points and for testing are four points. The testing points are selected as one

data point from each dataset of PD1, PD2, HC1 and HC2 in order to examine the

classification procedure for the two classes.

Phonemic Fluency

The set of data points for the phonemic fluency is collected from the results

of the computation of Granger causality channel strength, as in Figure 3.15. We

noticed from the ten iterations of Granger causality channel strength that PD1 and

PD2 have the channel Ft7 as the highest or considerably highest causal value for

most of the iterations. Also, we noticed HC1 and HC2 have the channel Fc5 as

the highest or considerably highest causal for other channels for most of the ten

iterations. The total number of points in the SVM dataset for phonemic fluency is

forty belong to the channel strength of Ft7 and Fc5 for the two classes denoted as

PD and HC. The dataset is subdivided into training and testing datasets where the

ratio is 90% and 10% respectively. We used one data point for classification testing

for each dataset PD1, PD2, HC1 and HC2 with total of four testing data points

and thirty six training data points. The SVM soft margin is given in Figure 4.1.
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Figure 4.1: SVM soft margin of PD Vs Control of phonemic fluency shows the
classification of training and testing points where the ratio is 90:10 respectively.

HC (Fc5) PD (Ft7)

HC (Fc5) 16 4

PD (Ft7) 3 17

Table 4.1: Confusion matrix of SVM soft margin of phonemic fluency summarizes
the classification of phonemic fluency.

The confusion matrix of the phonemic fluency shows the information of the data

points which is subdivided to the training points and the testing points. These data

points which are correctly classified and misclassified fall into each class, as in Table
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4.1. The true negative rate is for PD patients that have the most causal channel

during phonemic verbal in channel Ft7 is 85%. Furthermore, the true positive rate

for healthy control subjects is 80% for channel Fc5, which is most causal when

they perform phonemic fluency. The accuracy rate of the confusion matrix which

indicates the correctly classified data points for the two classes of PD and HC is

82%.

Semantic Fluency

The set of data points for semantic fluency is collected from the results of the

computation of Granger causality channel strength, as in Figure 3.22. We noticed

from the ten iterations of Granger causality channel strength that PD1 and PD2

have the channel Ft7 as the highest or considerably highest causal value for most of

the iterations. Also, we noticed HC1 and HC2 have the channel F7 as the highest

or considerably highest causal for other channels for most of the ten iterations. The

total number of points in the SVM dataset of semantic fluency is forty belong to

the channel strength of Ft7 and F7 for the two classes PD and HC. The dataset

is subdivided into training and testing datasets where the ratio is 90% and 10%

respectively. We used one data point for classification testing for each dataset PD1,

PD2, HC1 and HC2 with total of four data points and thirty six training data

points. The SVM soft margin is given in Figure 4.2.
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HC (F7) PD (Ft7)

HC (F7) 14 6

PD (Ft7) 4 16

Table 4.2: Confusion matrix of SVM soft margin of semantic fluency summarizes
the classification of semantic fluency.

Figure 4.2: SVM soft margin of PD Vs Control of semantic fluency shows the
classification of training and testing points where the ratio is 90:10 respectively.

The confusion matrix for semantic fluency demonstrates the information of the

data points which is subdivided to the training points and the testing points. These

data points which are correctly classified and misclassified that fall into each class,

as in Table 4.2. The true negative rate is for PD patients that have the most

causal channel during semantic verbal in channel Ft7 is 80%. Furthermore, the true
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positive rate for healthy control subjects is 70% for channel F7, which is most causal

when they perform phonemic fluency. The accuracy rate of the confusion matrix for

the semantic which indicates the correctly classified data points for the two classes

of PD and HC is 75%.

Category Semantic Fluency

The set of data points for the category semantic fluency are collected from the

results of the computation of Granger causality channel strength, as in Figure 3.29.

We noticed from the ten iterations of Granger causality channel strength that PD1

and PD2 have the channel Ft7 as the highest or considerably highest causal value

for most of the iterations. Also, we noticed HC1 and HC2 have the channel F7

as the highest or considerably highest causal for other channels for most of the ten

iterations. The total number of points in the SVM dataset of category semantic

fluency is forty belong to the channel strength of Ft7 and F7 for the two classes

PD and HC. The dataset is subdivided into training and testing datasets where the

ratio is 90% and 10% respectively. We used one data point for classification testing

for each dataset PD1, PD2, HC1 and HC2 with total of four testing data points

and thirty six training data points. The SVM soft margin is given in Figure 4.3.
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Figure 4.3: SVM soft margin of PD Vs Control of category semantic fluency shows
the classification of training and testing points where the ratio is 90:10 respectively.

HC (F7) PD (Ft7)

HC (F7) 14 6

PD (Ft7) 5 15

Table 4.3: Confusion matrix of SVM soft margin of category semantic fluency PD
Vs Control summarizes the classification of category semantic fluency.

The confusion matrix of the category semantic fluency illustrates the information

of the data points which is subdivided to the training points and the testing points.

These data points which are correctly classified and misclassified fall into each class,

as in Table 4.3.The true negative rate for PD patients that have the most causal

channel during semantic verbal in channel Ft7 is 75%. Furthermore, the true positive

rate for healthy control subjects is 70% for channel F7, which is most causal when
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they perform phonemic fluency. The accuracy rate of the confusion matrix for the

semantic which indicates the correctly classified data points for the two classes of

PD and HC is 72.5%.

Reading Fluency

The set of data points of the reading fluency test are collected from the results

of the computation of Granger causality channel strength, as in Figure 3.36. We

noticed from the ten iterations of Granger causality channel strength that PD1 and

PD2 have the channel Ft7 as the highest or considerably highest causal value for

most of the iterations. Also, we noticed HC1 and HC2 have the channel F7 as

the highest or considerably highest causal for other channels for most of the ten

iterations. The total number of points in the SVM dataset of reading fluency is

forty belong to the channel strength of Ft7 and F7 for the two classes PD and HC.

The dataset is subdivided into training and testing datasets where the ratio is 90%

and 10% respectively. We used one data point for classification testing for each

dataset PD1, PD2, HC1 and HC2 with total of four testing data points and thirty

six training data points. The SVM soft margin is given in Figure 4.4.
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HC (F7) PD (Ft7)

HC (F7) 14 6

PD (Ft7) 3 17

Table 4.4: Confusion matrix of SVM soft margin of reading fluency PD Vs Control
summarizes the classification of reading fluency.

Figure 4.4: SVM soft margin of PD Vs Control of reading fluency shows the classi-
fication of training and testing points where the ratio is 90:10 respectively.

The confusion matrix of the reading fluency illustrates the information of the

data points which is subdivided to the training points and the testing points. These

data points which are correctly classified and misclassified fall into each class, as

in Table 4.4. The true negative rate for PD patients that have the most causal

channel during semantic verbal in channel Ft7 is 85%. Furthermore, the true positive

94



rate for healthy control subjects is 70% for channel F7, which is most causal when

they perform phonemic fluency. The accuracy rate of the confusion matrix for the

semantic which indicates the correctly classified data points for the two classes of

PD and HC is 77.5%.
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Chapter 5

Discussion and Future Work

5.1 Conclusion

Electroencephalographic (EEG) signals consist of valuable information about

brain activity for investigating interaction and causality of different brain areas dur-

ing the performance of behavior tasks. Signal processing tools play an important

role in analyzing EEG signals that are recorded with a number of electrodes on the

brain scalps of subjects at the Colorado Neurology Institute (CNI). The method

of the study includes processing tools, which classify the brain activity frequency

bands during performance of behavior tasks. Multivariate Granger causality method

is used to identify the causality components of an EEG signal in regions of inter-

est for participants of Parkinson’s Disease (PD) and healthy controls. The channel

strength of the Granger causality graph determines the most causal channel in rela-

tion to others during different behavior task performance. When channel strength is

significant for a number of computations, the support vector machine (SVM) helps

to classify the statistical chances of appearance for PD patients and healthy controls.
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5.1.1 Current Work

The study applies the method of Granger causality to two main behavior tasks,

which are finger movement behavior and verbal fluency for PD patients and healthy

controls. PD patients have difficulties when they start movements and switch be-

tween movements; they may have difficulties with mental activity when they switch

from one thought to another.

Finger Movement Behavior

The main purpose of this research is to identify pathological connectivity in

motor cortical areas in Parkinson’s Disease patients. The task for this study inves-

tigates brain connectivity in relation to tapping (with the left or right hand) when

subjects hear an audio cue. The study reveals increased connectivity in the left and

right motor planning areas (F3 and F4) when the recognition of the left and right

motor planning areas had a rate 83.3% for F3 and 91.7% for F4. As well, there is

increased connectivity in the left and right sensorimotor integration areas (C3 and

C4) when the recognition rate is 91.7% for C3 and 91.7% for C4. These promising

results of research have already been accepted to Asilomar conference 2015 [56].

Verbal Fluency

The main purpose of this thesis is to identify pathological connectivity in Broca’s

area within Brodmann’s area for verbal fluency in Parkinson’s Disease subjects.

This study investigates brain connectivity for verbal fluency tasks, such as phonemic

fluency, semantic fluency, category semantic fluency, and reading fluency for subjects

when they generate as many words as they can think of in 60 seconds. The study

concludes that there is connectivity in Broca’s area of Brodmann’s area of BA44 and

B45 EEG electrodes (Ft7 and Fc5) for phonemic fluency. And the recognition rate

of PD vs. HC in phonemic fluency is 85% for PD participants and 80% for healthy
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controls. Also, there is increased connectivity in Broca’s area of Brodmann’s area of

BA44 and B45 (Ft7 and F7) for semantic fluency when the recognition rate is 80%

for PD participants and 70% for healthy controls. As well, there is also increased

connectivity in Broca’s area of Brodmann’s area of BA44 and B45 (Ft7 and F7)

for category semantic fluency when the recognition rate is 75% for PD participants

and 70% for for healthy controls. Finally, there is connectivity in Broca’s area

of Brodmann’s area of BA44 and B45 (Ft7 and F7) for reading fluency when the

recognition rate is 85% for PD participants and 70% for for healthy controls.

5.1.2 Future Work

From the two behavior studies on motor movement and verbal fluency, the

promising results show great potential for extended applications in the medical field;

these applications can be used to identify the cortical information flow patterns for

different behavior tasks or to identify information patterns of patients who are on

or off medication, or have deep brain stimulation, etc.

The further work includes the investigation of brain connectivity for multi-

behavior performances, such as verbal fluency and tapping together, Furthermore,

applying the developed approach for more participants in order to further validate

the conclusions we drew in the thesis.

98



Bibliography

[1] M. Teplan, “Fundementals of EEG measurment,” Measurement Science Review,

vol. 2, p. Section 2, 2002.

[2] S. L. Bressler and A. K. Seth, “Wiener Granger causality: A well established

methodology,” NeuroImage, vol. 58, no. 2, pp. 323–329, 2011.

[3] M. Z. Koubeissi, “Niedermeyers electroencephalography, basic principles, clin-

ical applications, and related fields, 6th ed,” Archives of Neurology, vol. 68,

no. 11, p. 1481, 2011.

[4] H. H. Jasper, “The ten-twenty electrode system of the international federa-

tion,” Electroencephalography and Clinical Neurophysiology, vol. 10, pp. 371–

375, 1958.

[5] J. Chiang, Z. J. Wang, and M. J. McKeown, “EEG source extraction by au-

toregressive source separation reveals abnormal synchronization in Parkinson’s

disease,” IEEE Engineering in Medicine and Biology Society, pp. 1868 – 1872,

2009.

[6] S. Haufe, V. V. Nikulin, K.-R. Mller, and G. Nolte, “A critical assessment of

connectivity measures for EEG data: A simulation study,” NeuroImage, vol. 64,

pp. 120–133, 2013.

99



[7] I. Daly, F. Pichiorri, J. Faller, V. Kaiser, A. Kreilinger, R. Scherer, and

G. Muller-Putz, “What does clean EEG look like?,” in IEEE Engineering in

Medicine and Biology Society, pp. 3963–3966, September 2012.

[8] I. Daly, M. Billinger, R. Scherer, and G. Muller-Putz, “On the automated re-

moval of artifacts related to head movement from the EEG,” IEEE Transactions

on Neural Systems and Rehabilitation Engineering, vol. 21, no. 3, pp. 427–434,

2013.

[9] M. A. Jamal, Analysis and Classification of EEG signals using Mixture of Fea-

tures and Committee Neural Network. PhD thesis, National Institute of Tech-

nology, Rourkela-769008, Odisha, India, 2012.

[10] L. Zhang, G. Zhong, Y. Wu, M. G. Vangel, B. Jiang, and J. Kong, “Using

Granger Geweke causality model to evaluate the effective connectivity of pri-

mary motor cortex, supplementary motor area and cerebellum,” Journal of

Biomedical Science and Engineering, vol. 03, pp. 848–860, September 2010.

[11] J. Orgogozo and B. Larsen, “Activation of the supplementary motor area during

voluntary movement in man suggests it works as a supramotor area,” Science,

vol. 206, no. 4420, pp. 847–850, 1979.

[12] M. Catalan, “The functional neuroanatomy of simple and complex sequential

finger movements: a PET study,” Brain, vol. 121, no. 2, pp. 253–264, 1998.

[13] M.-P. Deiber, R. Passingham, J. Colebatch, K. Friston, P. Nixon, and R. Frack-

owiak, “Cortical areas and the selection of movement: a study with positron

emission tomography,” Experimental Brain Research, vol. 84, no. 2, 1991.

[14] C. Andrew and G. Pfurtscheller, “Event-related coherence as a tool for study-

ing dynamic interaction of brain regions,” Electroencephalography and Clinical

Neurophysiology, vol. 98, no. 2, pp. 144–148, 1996.

100



[15] P. Manganotti, C. Gerloff, C. Toro, H. Katsuta, N. Sadato, P. Zhuang, L. Leo-

cani, and M. Hallett, “Task-related coherence and task-related spectral power

changes during sequential finger movements,” Electroencephalography and Clin-

ical Neurophysiology/Electromyography and Motor Control, vol. 109, no. 1,

pp. 50–62, 1998.

[16] K. J. Friston, “Functional and effective connectivity in neuroimaging: A syn-

thesis,” Human Brain Mapping, vol. 2, no. 1-2, pp. 56–78, 1994.

[17] Q. Gao, H. Chen, and Q. Gong, “Evaluation of the effective connectivity of

the dominant primary motor cortex during bimanual movement using Granger

causality,” Neuroscience Letters, vol. 443, no. 1, pp. 1–6, 2008.

[18] M. Boenstrup, J. Feldheim, K. Heise, C. Gerloff, and F. C. Hummel, “The

control of complex finger movements by directional information flow between

mesial frontocentral areas and the primary motor cortex,” European Journal of

Neuroscience, vol. 40, pp. 2888–2897, September 2014.

[19] K. Friston, L. Harrison, and W. Penny, “Dynamic causal modelling,” NeuroIm-

age, vol. 19, no. 4, pp. 1273–1302, 2003.

[20] M. J. Kaminski and K. J. Blinowska, “A new method of the description of

the information flow in the brain structures,” Biological Cybernetics, vol. 65,

pp. 203–210, July 1991.

[21] G. Deshpande, S. LaConte, G. A. James, S. Peltier, and X. Hu, “Multivariate

Granger causality analysis of fMRI data,” Human Brain Mapping, vol. 30, no. 4,

pp. 1361–1373, 2009.

[22] A. Brovelli, M. Ding, A. Ledberg, Y. Chen, R. Nakamura, and S. L. Bressler,

“Beta oscillations in a large-scale sensorimotor cortical network: Directional

101



influences revealed by Granger causality,” Proceedings of the National Academy

of Sciences, vol. 101, no. 26, pp. 9849–9854, 2004.

[23] C. Granger, “Economic processes involving feedback,” Information and Con-

trol, vol. 6, no. 1, pp. 28–48, 1963.

[24] J. B. Rowe, “Connectivity analysis is essential to understand neurological dis-

orders,” Frontiers in Systems Neuroscience, vol. 4, 2010.

[25] A. Roebroeck, E. Formisano, and R. Goebel, “Mapping directed influence over

the brain using Granger causality and fMRI,” NeuroImage, vol. 25, no. 1,

pp. 230–242, 2005.

[26] A. Schlgl and G. Supp, “Analyzing event-related EEG data with multivariate

autoregressive parameters,” Progress in Brain Research, vol. 159, p. 135147,

2006.

[27] F. Babiloni, F. Cincotti, C. Babiloni, F. Carducci, D. Mattia, L. Astolfi,

A. Basilisco, P. Rossini, L. Ding, and Y. e. a. Ni, “Estimation of the corti-

cal functional connectivity with the multimodal integration of high-resolution

EEG and fMRI data by directed transfer function,” NeuroImage, vol. 24, no. 1,

pp. 118–131, 2005.

[28] M. Baker, K. Kapse, A. McMahon, and M. OBoyle, “Connectivity in math-

gifted adolescents: Comparing structural equation modeling, Granger causality,

and dynamic causal modeling,” in Image Analysis and Interpretation (SSIAI),

2012 Southwest Symposium Conference of the IEEE, pp. 93 – 96, 2012.

[29] N. Wang, Y. Wang, Y. Li, Y. Tang, and J. Wang, “Gamma oscillation in

brain connectivity in emotion recognition by granger causality,” in Biomedical

Engineering and Informatics (BMEI), 2011 4th International Conference on

IEEE, pp. 762 – 766, October 2011.

102



[30] C. Dongwei, W. Fang, W. Zhen, L. Haifang, and C. Junjie, “EEG based emo-

tion recognition with brain network using independent components analysis

and Granger causality,” in International Conference on Computer Medical Ap-

plications (ICCMA), pp. 1 – 6, 2013.

[31] M. Ghasemi and A. Mahloojifar, “Disorganization of equilibrium directional

interactions in the brain motor network of Parkinson’s disease: New insight of

resting state analysis using Granger causality and graphical approach,” Journal

of Medical Signals and Sensors, vol. 3, no. 2, p. 6978, 2015.

[32] C. Hammond, H. Bergman, and P. Brown, “Pathological synchronization in

Parkinson’s disease: networks, models and treatments,” Trends in Neuro-

sciences, vol. 30, no. 7, pp. 357–364, 2007.

[33] N. Fogelson, “Different functional loops between cerebral cortex and the sub-

thalmic area in Parkinson’s disease,” Cerebral Cortex, vol. 16, no. 1, pp. 64–75,

2005.

[34] D. Williams, “Dopamine-dependent changes in the functional connectivity be-

tween basal ganglia and cerebral cortex in humans,” Brain, vol. 125, no. 7,

pp. 1558–1569, 2002.

[35] J. Hirschmann, T. zkurt, M. Butz, M. Homburger, S. Elben, C. Hartmann,

J. Vesper, L. Wojtecki, and A. Schnitzler, “Differential modulation of STN

-cortical and cortico-muscular coherence by movement and levodopa in Parkin-

son’s disease,” NeuroImage, vol. 68, pp. 203–213, 2013.

[36] E. Lalo, S. Thobois, A. Sharott, G. Polo, P. Mertens, A. Pogosyan, and

P. Brown, “Patterns of bidirectional communication between cortex and basal

ganglia during movement in patients with Parkinson disease,” Journal of Neu-

roscience, vol. 28, no. 12, pp. 3008–3016, 2008.

103



[37] B. N. Jvor-Duray, M. Vinck, M. van der Roest, A. B. Mulder, C. J. Stam,

H. W. Berendse, and P. Voorn, “Early-onset cortico-cortical synchronization in

the hemiparkinsonian rat model,” Journal of Neurophysiology, vol. 113, no. 3,

pp. 925–936, 2014.

[38] R. Soikkeli, J. Partanen, H. Soininen, A. Pkknen, and P. Riekkinen, “Slowing of

EEG in Parkinson’s disease,” Electroencephalography and Clinical Neurophysi-

ology, vol. 79, no. 3, pp. 159–165, 1991.

[39] J. Weyhenmeyer, M. E. Hernandez, C. Lainscsek, T. J. Sejnowski, and

H. Poizner, “Muscle artifacts in single trial EEG data distinguish patients with

Parkinson’s disease from healthy individuals,” in Engineering in Medicine and

Biology Society (EMBC), 2014 36th Annual International Conference of the

IEEE, pp. 3292 – 3295, 2014.

[40] J. S. George, J. Strunk, R. Mak-McCully, M. Houser, H. Poizner, and A. R.

Aron, “Dopaminergic therapy in Parkinson’s disease decreases cortical beta

band coherence in the resting state and increases cortical beta band power

during executive control,” NeuroImage: Clinical, vol. 3, pp. 261–270, 2013.

[41] N. Crone, “Functional mapping of human sensorimotor cortex with electrocor-

ticographic spectral analysis. I. alpha and beta event- related desynchroniza-

tion,” Brain, vol. 121, no. 12, pp. 2271–2299, 1998.

[42] P. Brown, “Oscillatory nature of human basal ganglia activity: Relationship

to the pathophysiology of Parkinson’s disease,” Movement Disorders, vol. 18,

no. 4, pp. 357–363, 2003.

[43] M. Moazami-Goudarzi, J. Sarnthein, L. Michels, R. Moukhtieva, and D. Jean-

monod, “Enhanced frontal low and high frequency power and synchronization in

104



the resting EEG of parkinsonian patients,” NeuroImage, vol. 41, no. 3, pp. 985–

997, 2008.

[44] S. J. Palmer, P. Wen-Hsin Lee, Z. J. Wang, W.-L. Au, and M. J. McKeown,

“Theta, beta but not alpha-band EEG connectivity has implications for dual

task performance in Parkinsons disease,” Parkinsonism & Related Disorders,

vol. 16, no. 6, pp. 393–397, 2010.

[45] M. Sharman, R. Valabregue, V. Perlbarg, L. Marrakchi-Kacem, M. Vidailhet,

H. Benali, A. Brice, and S. Lehricy, “Parkinson’s disease patients show reduced

cortical-subcortical sensorimotor connectivity,” Movement Disorders, vol. 28,

no. 4, pp. 447–454, 2012.

[46] J.-M. Melgari, “Alpha and beta EEG power reflects L-dopa acute administra-

tion in parkinsonian patients,” Frontiers in Aging Neuroscience, vol. 6, 2014.

[47] M. Neufeld, S. Blumen, I. Aitkin, Y. Parmet, and A. Korczyn, “EEG fre-

quency analysis in demented and nondemented parkinsonian patients,” De-

mentia, vol. 5, no. 1, pp. 23–28, 1994.

[48] B. Pasquereau and R. S. Turner, “Primary motor cortex of the parkinsonian

monkey: Differential effects on the spontaneous activity of pyramidal tract-type

neurons,” Cerebral Cortex, vol. 21, no. 6, pp. 1362–1378, 2010.

[49] E. Brazhnik, A. V. Cruz, I. Avila, M. I. Wahba, N. Novikov, N. M. Ilieva, A. J.

McCoy, C. Gerber, and J. R. Walters, “State-dependent spike and local field

synchronization between motor cortex and substantia nigra in Hemiparkinso-

nian rats,” Journal of Neuroscience, vol. 32, no. 23, pp. 7869–7880, 2012.

[50] J.-S. Brittain and P. Brown, “Oscillations and the basal ganglia: Motor control

and beyond,” NeuroImage, vol. 85, pp. 637–647, 2014.

105



[51] P. Brown, “Abnormal oscillatory synchronisation in the motor system leads to

impaired movement,” Current Opinion in Neurobiology, vol. 17, no. 6, pp. 656–

664, 2007.

[52] A. N. Vardy, E. E. van Wegen, G. Kwakkel, H. W. Berendse, P. J. Beek, and

A. Daffertshofer, “Slowing of M1 activity in Parkinsons disease during rest

and movement : An MEG study,” Clinical Neurophysiology, vol. 122, no. 4,

pp. 789–795, 2011.

[53] E. Herrera, F. Cuetos, and R. Ribacoba, “Verbal fluency in Parkinsons dis-

ease patients on/off dopamine medication,” Neuropsychologia, vol. 50, no. 14,

pp. 3636–3640, 2012.

[54] J. B. Pereira, C. Junqu, D. Bartrs-Faz, M. J. Mart, R. Sala-Llonch, Y. Compta,

C. Falcn, P. Vendrell, l. Pascual-Leone, and J. Valls-Sol, “Modulation of verbal

fluency networks by transcranial direct current stimulation (tDCS) in Parkin-

sons disease,” Brain Stimulation, vol. 6, no. 1, pp. 16–24, 2013.

[55] A. Almalaq, X. Dai, J. Zhang, S. Hanrahan, J. Nedrud, and A. Hebb, “Causal-

ity graph learning on cortical information flow in Parkinsons disease patients

during behaviour tests,” in IEEE Signal Processing Society, 49th Asilomar Con-

ference on Singals, Systems and Computers, 2015. Unpublished.

[56] [online] ”Asilomar Conference on Signals Systems and Computers” Available:

http://asilomarsscconf.org/. [Accessed: May 11 2015].

[57] J. B. Pereira, C. Junqu, M. J. Mart, B. Ramirez-Ruiz, D. Bartrs-Faz, and

E. Tolosa, “Structural brain correlates of verbal fluency in Parkinson’s disease,”

NeuroReport, vol. 20, no. 8, pp. 741–744, 2009.

106



[58] C. Randolph, A. R. Braun, T. E. Goldberg, and T. N. Chase, “Semantic fluency

in Alzheimer’s, Parkinson’s, and Huntington’s disease: Dissociation of storage

and retrieval failures.,” Neuropsychology, vol. 7, no. 1, pp. 82–88, 1993.

[59] D. M. Jacobs, K. Marder, L. J. Cote, M. Sano, Y. Stern, and R. Mayeux, “Neu-

ropsychological characteristics of preclinical dementia in Parkinson’s disease,”

Neurology, vol. 45, no. 9, pp. 1691–1696, 1995.

[60] J. D. Henry and J. R. Crawford, “A meta-analytic review of verbal fluency

performance following focal cortical lesions.,” Neuropsychology, vol. 18, no. 2,

pp. 284–295, 2004.

[61] S. Abrahams, L. H. Goldstein, A. Simmons, M. J. Brammer, S. C. Williams,

V. P. Giampietro, C. M. Andrew, and P. N. Leigh, “Functional magnetic res-

onance imaging of verbal fluency and confrontation naming using compressed

image acquisition to permit overt responses,” Human Brain Mapping, vol. 20,

no. 1, pp. 29–40, 2003.

[62] M. Pihlajamaki, H. Tanila, T. Hanninen, M. Kononen, M. P. Laakso, K. Par-

tanen, H. Soininen, and H. J. Aronen, “Verbal fluency activates the left medial

temporal lobe: A functional magnetic resonance imaging study,” Neurobiology

of Aging, vol. 21, p. 106, 2000.

[63] C. D. Frith, K. J. Friston, S. Herold, D. Silbersweig, P. Fletcher, C. Cahill, R. J.

Dolan, R. S. Frackowiak, and P. F. Liddle, “Regional brain activity in chronic

schizophrenic patients during the performance of a verbal fluency task,” The

British Journal of Psychiatry, vol. 167, no. 3, pp. 343–349, 1995.

[64] J. L. Cummings, A. Darkins, M. Mendez, M. A. Hill, and D. F. Benson,

“Alzheimer’s disease and Parkinson’s disease: Comparison of speech and lan-

guage alterations,” Neurology, vol. 38, no. 5, pp. 680–680, 1988.

107



[65] A. K. Troyer, M. Moscovitch, G. Winocur, L. Leach, Freedman, and Morris,

“Clustering and switching on verbal fluency tests in Alzheimer’s and Parkin-

son’s disease,” Journal of the International Neuropsychological Society, vol. 4,

no. 2, pp. 137–143, 1998.

[66] D. Muslimovic, B. Post, J. D. Speelman, and B. Schmand, “Cognitive profile

of patients with newly diagnosed Parkinson disease,” Neurology, vol. 65, no. 8,

pp. 1239–1245, 2005.

[67] U. Ellfolk, J. Joutsa, J. O. Rinne, R. Parkkola, P. Jokinen, and M. Karrasch,

“Striatal volume is related to phonemic verbal fluency but not to semantic

or alternating verbal fluency in early Parkinsons disease,” Journal of Neural

Transmission, vol. 121, no. 1, pp. 33–40, 2013.

[68] E. A. Hirshorn and S. L. Thompson-Schill, “Role of the left inferior frontal

gyrus in covert word retrieval: Neural correlates of switching during verbal

fluency,” Neuropsychologia, vol. 44, no. 12, pp. 2547–2557, 2006.

[69] S. G. Costafreda, C. H. Fu, L. Lee, B. Everitt, M. J. Brammer, and A. S.

David, “A systematic review and quantitative appraisal of fMRI studies of

verbal fluency: Role of the left inferior frontal gyrus,” Human Brain Mapping,

vol. 27, no. 10, pp. 799–810, 2006.

[70] S. Wagner, A. Sebastian, K. Lieb, O. Tscher, and A. Tadic, “A coordinate-based

ALE functional MRI meta-analysis of brain activation during verbal fluency

tasks in healthy control subjects,” BMC Neuroscience, vol. 15, no. 1, p. 19,

2014.

[71] S. L. Thompson-Schill, M. D’Esposito, G. K. Aguirre, and M. J. Farah, “Role

of left inferior prefrontal cortex in retrieval of semantic knowledge: A reeval-

108



uation,” Proceedings of the National Academy of Sciences, vol. 94, no. 26,

pp. 14792–14797, 1997.

[72] S. Schwartz and J. Baldo, “Distinct patterns of word retrieval in right and

left frontal lobe patients: a multidimensional perspective,” Neuropsychologia,

vol. 39, no. 11, pp. 1209–1217, 2001.

[73] J. V. Baldo, A. P. Shaimamura, D. C. Delis, J. Kramer, and E. Kaplan, “Ver-

bal and design fluency in patients with frontal lobe lesions,” Journal of the

International Neuropsychological Society, vol. 7, no. 5, pp. 586–596, 2001.

[74] B. T. Gold and R. L. Buckner, “Common prefrontal regions coactivate with dis-

sociable posterior regions during controlled semantic and phonological tasks,”

Neuron, vol. 35, no. 4, pp. 803–812, 2002.

[75] S. Heim, S. B. Eickhoff, and K. Amunts, “Specialisation in Broca’s region for

semantic, phonological, and syntactic fluency?,” NeuroImage, vol. 40, no. 3,

pp. 1362–1368, 2008.

[76] [online]. ” Brainm.com Electrode Postions ” Available:

http://www.brainm.com/software/pubs. [Accessed: Jun 17 2015].

[77] A. Juphard, J. R. Vidal, M. Perrone-Bertolotti, L. Minotti, P. Kahane, J.-P.

Lachaux, and M. Baciu, “Direct evidence for two different neural mechanisms

for reading familiar and unfamiliar words: An intra-cerebral EEG study,” Fron-

tiers in Human Neuroscience, vol. 5, 2011.

[78] M. C. Cervenka, “Electrocorticographic functional mapping identifies human

cortex critical for auditory and visual naming,” NeuroImage, suppl. C, pp. 267–

276, April 1 2013.

[79] X. Chen, Z. Syed, and A. Hero, “EEG spatial decoding with shrinkage opti-

mized directed information assessment,” in Acoustics, Speech and Signal Pro-

109



cessing (ICASSP), 2012 International Conference on IEEE, pp. 577 – 580,

2012.

[80] Handbook of Time Series Analysis; Recent Theoretical Development and Appli-

cations. Wille-VCH, 1 ed., 2015.

[81] W. Hesse, E. Mller, M. Arnold, and B. Schack, “The use of time-variant EEG

Granger causality for inspecting directed interdependencies of neural assem-

blies,” Journal of Neuroscience Methods, vol. 124, no. 1, pp. 27–44, 2003.

[82] K. J. Blinowska, R. Kus, and M. Kaminski, “Granger causality and information

flow in multivariate processes,” Physical Review E, vol. 70, no. 5, 2004.

[83] L. Barnett and A. K. Seth, “The MVGC multivariate Granger causality tool-

box: A new approach to Granger-causal inference,” Journal of Neuroscience

Methods, vol. 223, pp. 50–68, 2014.

[84] D. Posada and T. Buckley, “Model selection and model averaging in phyloge-

netics: Advantages of Akaike information criterion and Bayesian approaches

over likelihood ratio tests,” Systematic Biology, vol. 53, no. 5, pp. 793–808,

2004.

[85] C. J. Keylock, “Constrained surrogate time series with preservation of the mean

and variance structure,” Physical review. E, Statistical, nonlinear, and soft

matter physics, vol. 73(2), no. 3, 2006.

[86] S. Hu, J. Cao, Yu. Zhang, K. Kong, Wanzeng. Yang, Y. Zhang, and X. Li,

“More discussions for granger causality and new causality measures,” Cognitive

Neurodynamics, vol. 6, p. 3342, Sep 27 2011.

[87] B. Efron and R. Tibshirani, An introduction to the bootstrap. New York: Chap-

man & Hall, 1994.

110



[88] C. Diks and J. DeGoede, Global analysis of dynamical systems, ch. A general

nonparametric bootstrap test for Granger causality., pp. 391–403. 2001.

[89] J. Richiardi, S. Achard, H. Bunke, and D. Van De Ville, “Machine learning

with brain graphs: Predictive modeling approaches for functional imaging in

systems neuroscience,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 58–70,

2013.

[90] F. Fallani, L. Costa, F. Rodriguez, L. Astolfi, G. Vecchiato, J. Toppi, G. Borgh-

ini, F. Cincotti, D. Mattia, and S. e. a. Salinari, “A graph-theoretical approach

in brain functional networks. possible implications in EEG studies,” Nonlinear

Biomed Phys, vol. 4, no. Suppl 1, p. S8, 2010.

[91] L. d. F. Costa, F. A. Rodrigues, G. Travieso, and P. R. Villas Boas, “Character-

ization of complex networks: A survey of measurements,” Advances in Physics,

vol. 56, no. 1, pp. 167–242, 2007.

[92] S. Yin, X. Gao, H. R. Karimi, and X. Zhu, “Study on support vector machine-

based fault detection in Tennessee eastman process,” Abstract and Applied

Analysis, vol. 2014, pp. 1–8, 2014.

[93] X. Xu, I. W. Tsang, and D. Xu, “Soft margin multiple kernel learning,” IEEE

Trans. Neural Netw. Learning Syst., vol. 24, no. 5, pp. 749–761, 2013.

111


	Electroencephalogram Based Causality Graph Analysis in Behavior Tasks of Parkinson’s Disease Patients
	Recommended Citation

	tmp.1448318886.pdf.lIjzD

