
University of Denver University of Denver

Digital Commons @ DU Digital Commons @ DU

Electronic Theses and Dissertations Graduate Studies

1-1-2016

PECCit: An Omniscient Debugger for Web Development PECCit: An Omniscient Debugger for Web Development

Zachary Ryan Azar
University of Denver

Follow this and additional works at: https://digitalcommons.du.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Azar, Zachary Ryan, "PECCit: An Omniscient Debugger for Web Development" (2016). Electronic Theses
and Dissertations. 1099.
https://digitalcommons.du.edu/etd/1099

This Thesis is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital
Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu.

https://digitalcommons.du.edu/
https://digitalcommons.du.edu/etd
https://digitalcommons.du.edu/graduate
https://digitalcommons.du.edu/etd?utm_source=digitalcommons.du.edu%2Fetd%2F1099&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.du.edu%2Fetd%2F1099&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.du.edu/etd/1099?utm_source=digitalcommons.du.edu%2Fetd%2F1099&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jennifer.cox@du.edu,dig-commons@du.edu

PECCit:

An Omniscient Debugger for Web Development

A Thesis

Presented to

the Faculty of the Daniel Felix Ritchie School of Engineering and Computer Science

University of Denver

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Zachary R. Azar

March 2016

Advisor: Professor Matthew J. Rutherford

c© Copyright by Zachary R. Azar 2016

All Rights Reserved

Author: Zachary R. Azar
Title: PECCit: An Omniscient Debugger for Web Development
Advisor: Professor Matthew J. Rutherford
Degree Date: March 2016

Abstract
Debugging can be an extremely expensive and time-consuming task for a software de-

veloper. To find a bug, the developer typically needs to navigate backwards through in-

fected states and symptoms of the bug to find the initial defect. Modern debugging tools

are not designed for navigating back-in-time and typically require the user to jump through

hoops by setting breakpoints, re-executing, and guessing where errors occur. Omniscient

debuggers offer back-in-time debugging capabilities to make this task easier. These de-

buggers trace the program allowing the user to navigate forwards and backwards through

the execution, examine variable histories, and visualize program data and control flow.

Presented in this thesis is PECCit, an omniscient debugger designed for backend web de-

velopment. PECCit traces web frameworks remotely and provides a browser-based IDE to

navigate through the trace. The user can even watch a preview of the web page as it’s being

built line-by-line using a novel feature called capturing. To evaluate, PECCit was used to

debug real-world problems provided by users of two Content Management Systems: Word-

Press and Drupal. In these case studies, PECCit’s features and debugging capabilities are

demonstrated and contrasted with standard debugging techniques.

ii

Acknowledgements

First, I would like to thank my advisor, Dr. Matthew Rutherford. Dr. Rutherford

was not only a fantastic advisor, but a great mentor and friend. His patience, reassurance,

and guidance were invaluable. I would also like to thank my parents, family, friends, and

girlfriend. Their continual support and love during these years at the University of Denver

made this accomplishment possible. Lastly, I would like to thank the other members of my

oral defense committee, Dr. Chris GauthierDickey and Dr. Davor Balzar, for their time and

feedback.

iii

Contents

1 Introduction and Background 1
1.1 Background: Traditional Debugging Methods 3

1.1.1 Log-Based Debugging . 3
1.1.2 Debugger/IDE Debugging . 4

1.2 Background: Software Failures . 5
1.2.1 A Software “Bug” . 5
1.2.2 Fixing Software Failures . 8

1.2.2.1 Understanding the Code 8
1.2.2.2 Localizing the Root Cause 9

1.3 The Shortcomings of Modern Debuggers 9
1.4 Should Developers Be Debugging Differently? 12
1.5 Omniscient Debugging . 14
1.6 Introducing PECCit . 15

2 Related Work 17
2.1 Omniscient Debuggers . 17
2.2 Replay-Based Debuggers and Tracing . 24
2.3 Reverse-Executing Debuggers . 33
2.4 Query-Based Debuggers . 36
2.5 Fault Localization and Automated Debugging 39

3 PECCit 42
3.1 PHP, Web Pages, and Frameworks . 43
3.2 Automated Debug Server (ADS) . 44
3.3 PECCit Session Manager . 46

3.3.1 Managing Sessions . 47
3.3.2 Changing Settings . 49
3.3.3 System Status . 50

iv

3.3.4 Sending Commands . 50
3.4 PECCit Inspector . 50

3.4.1 Step Navigation . 51
3.4.2 File Navigation and Execution Path Highlighting 54
3.4.3 Variable Pane, Variable Inspection, and Variable Differencing . . . 55
3.4.4 Query Info Pane . 58
3.4.5 Search Tool . 60
3.4.6 Step Finder Pane . 62
3.4.7 Capturing . 66

3.5 Implementation . 69
3.5.1 Automated Debug Server . 70

3.5.1.1 Xdebug . 70
3.5.1.2 ADS Design and Workflow 72
3.5.1.3 PECCit Settings . 74
3.5.1.4 Database and Session Storage 77
3.5.1.5 Capturing . 78
3.5.1.6 Language Independence 80

3.5.2 PECCit Web Interface . 81
3.5.2.1 Handling the Data . 82
3.5.2.2 PECCit Session Manager Implementation 83
3.5.2.3 PECCit Inspector Implementation 84

4 Evaluation and Analysis 87
4.1 Case Study 1: Non-Admin Can Upgrade Database 89

4.1.1 Background . 89
4.1.2 Problem . 90
4.1.3 Setup . 91
4.1.4 Using PECCit . 93
4.1.5 Analysis . 94

4.2 Case Study 2: Missing Logo on Theme 98
4.2.1 Background . 98
4.2.2 Problem . 98
4.2.3 Setup . 100
4.2.4 Using PECCit . 100
4.2.5 Analysis . 103

4.3 Case Study 3: Duplicate Stores In Plugin 105
4.3.1 Background . 105
4.3.2 Problem . 106

v

4.3.3 Setup . 106
4.3.4 Using PECCit . 108
4.3.5 Analysis . 115

4.4 Case Study 4: Incorrect View Count Plugin 116
4.4.1 Background . 116
4.4.2 Problem . 116
4.4.3 Setup . 118
4.4.4 Using PECCit . 118
4.4.5 Analysis . 128

4.5 Case Study 5: Capitalized Titles in Drupal Theme 130
4.5.1 Background . 130
4.5.2 Problem . 130
4.5.3 Setup . 130
4.5.4 Using PECCit . 131
4.5.5 Analysis . 139

4.6 Case Study Analysis . 139

5 Conclusion 142
5.1 Future Work . 143

5.1.1 Performance Improvements . 144
5.1.2 Additional Features . 144
5.1.3 Language Independence Improvements 145

Bibliography 146

vi

List of Figures

1.1 Software Infection (Source [Zel05]) . 7

3.1 PECCit System Overview . 45
3.2 PECCit Session Manager: Sessions Table 47
3.3 PECCit Session Manager: Additional Features 48
3.4 PECCit Session Manager: Launching the Inspector 48
3.5 PECCit Session Manager: Changing Settings 49
3.6 PECCit Session Manager: Sending Commands 51
3.7 PECCit Inspector . 52
3.8 PECCit Inspector: Step Tree . 53
3.9 PECCit Inspector: Labeled with Variable Pane Open 54
3.10 PECCit Inspector: Navigation Buttons . 55
3.11 PECCit Inspector: Source Code File Select 56
3.12 PECCit Inspector: Variable Inspect Tool 58
3.13 PECCit Inspector: Inspection Results . 59
3.14 PECCit Inspector: After $v Has Been Set to 14 60
3.15 PECCit Inspector: Example of Variable Differencing 61
3.16 PECCit Inspector: Query Info . 62
3.17 PECCit Inspector: Search Tool for Variable Name 63
3.18 PECCit Inspector: Search Tool for Variable Value 64
3.19 PECCit Inspector: Search Tool with Inspect Results 65
3.20 PECCit Inspector: Jumping to Step From Search/Inspect Results 65
3.21 PECCit Inspector: Step Finder . 67
3.22 PECCit Inspector: Step Finder from Step Tree 68
3.23 PECCit Inspector: Capture Showing Incomplete Web Page 68
3.24 PECCit Inspector: Using Chrome DevTools with Capture 69
3.25 PECCit Workflow Diagram . 73

4.1 Case Study 1: Forum Post . 92

vii

4.2 Case Study 1: Update Screen . 93
4.3 Case Study 1: Session Manager . 95
4.4 Case Study 1: First Session . 96
4.5 Case Study 1: Second Session . 97
4.6 Case Study 2: Forum Post . 99
4.7 Case Study 2: Preview With Image . 100
4.8 Case Study 2: Home Page Without Image 101
4.9 Case Study 2: Header File . 102
4.10 Case Study 2: Step Finder . 103
4.11 Case Study 2: Modification Settings Before Fix 104
4.12 Case Study 2: Home Page With Image . 104
4.13 Case Study 2: Modification Settings After Fix 105
4.14 Case Study 3: Forum Post . 107
4.15 Case Study 3: Test Plugin with Test Store 108
4.16 Case Study 3: Sessions . 109
4.17 Case Study 3: Store Search . 111
4.18 Case Study 3: Step Finder . 112
4.19 Case Study 3: $store data Array . 113
4.20 Case Study 3: Variable Inspector Tool . 113
4.21 Case Study 3: Results of Variable Inspector 114
4.22 Case Study 3: $stores Array . 114
4.23 Case Study 4: Forum Post . 117
4.24 Case Study 4: Home Page with Incorrect Formatting 118
4.25 Case Study 4: Test Page with Correct Formatting 119
4.26 Case Study 4: Sessions . 120
4.27 Case Study 4: Search Tool Results for ”12” 121
4.28 Case Study 4: Inspect Tool in Search Results 122
4.29 Case Study 4: Results of Inspecting $results->today 122
4.30 Case Study 4: Results from pvc get stats() of Home Page 123
4.31 Case Study 4: Differences Tool on Two Lines 123
4.32 Case Study 4: Results from pvc stats counter() of Home Page 124
4.33 Case Study 4: Results from pvc stats show() of Home Page 125
4.34 Case Study 4: Using Step Finder . 125
4.35 Case Study 4: Results from pvc stats show() of Page 126
4.36 Case Study 4: How the Home Page versus the Test Page Retrieves Content

in the Theme . 126
4.37 Case Study 4: Using the Normal Version Instead of Excerpt Version on the

Home Page . 127

viii

4.38 Case Study 4: Initialization of Hooks . 128
4.39 Case Study 4: Home Page with Correct Page Count Formatting 129
4.40 Case Study 5: Forum Post . 131
4.41 Case Study 5: Capitalized Content . 132
4.42 Case Study 5: The PECCit Session . 134
4.43 Case Study 5: Choosing the File in Step Finder 134
4.44 Case Study 5: Before Page Print . 135
4.45 Case Study 5: After Page Print . 136
4.46 Case Study 5: $page Variable . 136
4.47 Case Study 5: First Capture of Unstyled Front Page 137
4.48 Case Study 5: Second Capture of Unstyled Front Page 137
4.49 Case Study 5: Chrome DevTools Showing CSS Properties 138
4.50 Case Study 5: Chrome DevTools With Deselected CSS Property 138

ix

Chapter 1

Introduction and Background

Debugging is an extremely important facet of software engineering. The process can

be quite frustrating though, often requiring more time and energy than developers would

like to devote. One study found that debugging can take almost 50% of a developer’s time

[LVD06]. This lost time results in lost money. According to a study by the National In-

stitute of Standards and Technology, the national cost of inadequate testing and debugging

was estimated to be $59.5 billion [Tas02]. The study argued that improvements to the

infrastructure could reduce this cost by nearly $22.2 billion.

Debugging can be difficult with standard debugging techniques because of the way

bugs infect a system. To find a bug, the developer typically needs to navigate backwards

through infected states and symptoms of the bug to find the initial defect. To assist with

this process, most developers have settled with either log-based debugging or breakpoint

debuggers with an Integrated Development Environment (IDE) [SPTH14]. Though these

1

techniques can work, they are unable to help the developer work backward through infected

states. One strategy that is underutilized is Omniscient Debugging [Lew03].

Omniscient debugging, also known as back-in-time or reverse debugging, allows a de-

veloper to debug forward and backward in time within the same execution trace. It achieves

this by tracing the program as it’s running. Once done tracing, the user can step for-

ward/backward, search through variables and values, query about variable histories, and

ultimately learn a lot more about the execution than a standard debugger.

Presented with this thesis is PECCit, an omniscient debugger designed for web devel-

opers. PECCit traces web frameworks and provides a browser-based IDE which the user

can use to move bidirectionally through a trace. PECCit can provide variable histories,

arbitrary access through system states, variable/value searching, and execution path high-

lighting. PECCit also provides a novel feature called capturing which allows the user to

watch the web page as it’s being built line-by-line. PECCit is designed to be language in-

dependent such that further improvements could extend the tool for other web development

languages.

PECCit was used to debug real-world problems through case studies. The problems

were taken from support forums for the two most common Content Management Systems:

WordPress1 and Drupal2. In these case studies, PECCit’s features and debugging capabili-

ties are demonstrated and contrasted with standard debugging techniques.

1https://wordpress.org/
2https://www.drupal.org/

2

https://wordpress.org/
https://www.drupal.org/

1.1 Background: Traditional Debugging Methods

Debugging is typically performed using a combination of two tactics. The first is log-

based debugging. This is when the developer inserts some code that either prints infor-

mation to the console or output buffer or logs the information to a file or other form of

storage. The second traditional strategy for debugging is using a debugger or Integrated

Development Environment (IDE) which offers breakpoint debugging. This allows the user

to step through the execution of the code, stop at conspicuous places where a bug may be,

and analyze variables and the call stack. The following sections examine these two in more

detail.

1.1.1 Log-Based Debugging

Log-based debugging is excellent for quickly gaining information and solving small

bugs but has major problems with scalability and practicality when bugs get even slightly

more complex. With log-based debugging, the developer can quickly add a print statement

to the code to learn more about a variable or about the code execution. For example if a

C++ developer wanted to learn more about the variable x at a particular moment in time,

they could insert std::cout<<“x is ” <<x <<std::endl; into their code to print the variable

to the screen. The user must then re-execute the code and watch for the printed variable.

This is a quick strategy and works fine for small problems but doesn’t scale.

Log-based debugging is unable to scale because logs get too large, the user needs to

guess when and what to print, and re-execution could be slow or impossible. Printing

a single variable can be done quickly but printing all variables in scope (which may be

3

necessary to debug the problem) quickly makes the logs massive and unreadable. This

also alters the code as these log statements need to be inserted throughout the code. Log

statements might be repeated over and over if the print is in a loop or long-running program.

The log can get too large to walk through and it can sometimes be difficult to match log

messages with the line of code / time of execution that printed the log. The user also needs

to guess where to insert the log messages and what to print. If they guess wrong, the needed

information to find/fix the bug might not be printed and the user will need to re-execute and

try again. Each time, these re-executions could require quite a bit of time (especially if

there is a lot of logging) and maybe the re-execution is impossible like if the execution is

time-sensitive or if the bug is difficult to reproduce due to non-deterministic execution (like

unpredictable input/output).

1.1.2 Debugger/IDE Debugging

A more sophisticated solution than log-based debugging is using a debugger or Inte-

grated Development Environment (IDE). These tools allow developers to stop the execu-

tion of a program using breakpoints and often allow the user to inspect the variable values

and call stack at that paused moment in time. Once an execution is halted, many of the

tools allow the user to step forward in time to see how the remaining lines of code affect

the variables and execution. With tools like Step Over, Step Into, and Step Out, the user

is able to navigate forward in time while watching the variables and execution. For web

4

development, common debuggers/IDEs include Visual Studio3, NetBeans4, Eclipse5, and

PHPStorm6.

Debuggers/IDEs have been the standard for debugging practices for years as they can

be very effective tools for finding bugs. Suppose a developer wanted to see what value

is assigned to a variable x in this Java code int x = findAllEntries(); . They could set a

breakpoint at this line and see what value is assigned to x during the execution. Knowing

this, the developer could make a hypothesis as to where a bug is occurring. These debug-

gers are common tools in industry and education but they have major limitations due to

their forward-in-time nature. Before examining these shortcomings (see Section 1.3), the

following section examines how a bug enters a program and how developers fix these bugs.

1.2 Background: Software Failures

This section discusses software bugs (also known as infections), how they damage an

execution, and how they can be fixed by understanding the code and localizing the root

cause.

1.2.1 A Software “Bug”

A software bug is an infection in the program[Voa92]. Zeller explains that a program

failure caused by a bug can be visualized in four steps[Zel05]:

3https://www.visualstudio.com/
4https://netbeans.org/
5https://eclipse.org/
6https://www.jetbrains.com/phpstorm/

5

https://www.visualstudio.com/
https://netbeans.org/
https://eclipse.org/
https://www.jetbrains.com/phpstorm/

The programmer creates a defect

This is the root cause where the programmer writes a piece of code (consciously or

inadvertently) that ultimately causes the failure.

The defect causes an infection

The defective code is executed in such a way that the “the program state differs from

what the programmer intended.”[Zel05]

The infection propagates

The infection could cause other infections. It could get masked or hidden. In unex-

pected ways, the infection moves throughout the execution and program states.

The infection causes a failure

The infection causes a noticeable error to the developer or user. This is the symptom

of the initial defect and could be directly caused by the defective code or indirectly

from another place that the infection had spread.

A software infection can be visually interpreted as Figure 1.1 from [Zel05]. The pro-

gram most likely starts from a correct/sane state. Then, the execution hits code that con-

tains a defect. This is the “bug.” This code might erroneously cause an infection that could

change a program state to something that the developer wasn’t intending. This state and

erroneous code could propagate through the execution (even when used with correct code)

to infect other program states. Some of these states could be masked or not even noticed.

Finally, the developer or user observes a failure.

6

Figure 1.1: Software Infection (Source [Zel05])

7

1.2.2 Fixing Software Failures

Whether developers are creating a new program or maintaining a shipped product, pro-

grammers ultimately want to fix software failures quickly and in their entirety. To fix a

software failure, the developer first needs to make a mental model of the program’s behav-

ior and how the source code is creating that behavior. Next, the developer must localize

where the defect is in the code. Finally, the developer must fix the bug and test. Though

important, this thesis will not discuss in detail fixing and testing software bugs as this is

outside of the scope of the research presented. The following subsections look at these first

two steps and how tools can help developers.

1.2.2.1 Understanding the Code

First, the developer must make a mental picture of what they believe the code is doing

and what it’s actually doing. Often, developers will start by searching through the code

(manually or using a search tool) to find relevant code that could be causing or demon-

strating the unintended behavior [KMCA06]. Through this navigation through the code

(sometimes while the program is actually executing using a breakpoint debugger), the de-

veloper is learning more about the behavior and the system state and how that compares to

the intention of the program and the intentional system state. This process has been called

Bridging the Gulf of Evaluation [ND86]. Once the developer understands the purpose of

the code and where system states are differing from their intended behavior, they can start

to try to find the bug.

8

1.2.2.2 Localizing the Root Cause

Next, the developer moves through these infected system states trying to localize the

root cause. This step is called localization when the developer must look throughout the

source code/states to find the initial defect [LF95]. What makes this non-trivial is that

not only does the developer need to search through the code (space) but they must also

search through the system states as they change through time [CZ05]. This process can

be demonstrated with Figure 1.1 where the developer finds one of the lower (later in time)

infected states and works backward to find that initial defect. This backward movement

and dependency connections can also be understood as a cause-effect chain [Zel02] where

the developer realizes that A caused B which caused C etc. Once the developer has moved

back far enough, they can isolate and fix the defect.7 Development tools like debuggers

help to find bugs but they cannot move backward through space and time.

1.3 The Shortcomings of Modern Debuggers

The major reason traditional debuggers/IDEs are not the ideal tool for debugging is their

forward-in-time nature. As discussed in Section 1.2.2.2, the developer typically starts at the

symptom of the bug or observable failure and works their way back up the infection to find

the root cause. The developer must understand the forward direction of the cause and effect

chain, but typically they ask questions in the backward direction like “why was this variable

7Once the defect is fixed, the question remains whether this was truly the root cause. For example from
Figure 1.1, the developer might have changed code which fixes one of the intermediate infected states but the
developer might not have found the initial defect. There is another field of research involving software testing
to determine if other bugs exist in the program. Software testing and bug prevention is not examined in this
thesis

9

set to this value?” or “why did this code execute?”. Traditional debuggers are only able

to move forward. Thus, the developer must make a guess as to where the bug occurs and

pick a time before the defect so that they can move forward into it. They set a breakpoint

at this location and re-execute. If they’re lucky/intuitive and they did pick a point before

the defect, then they could still miss the bug if they Step Over where the error occurs. In

this scenario, the developer stepped too far and must again re-execute (and potentially pick

a new breakpoint). This is not a scalable solution as sometimes these programs need to run

for quite some time before the bug occurs or breakpoint breaks. Also, a breakpoint might

be part of a long loop in which case the developer might need to manually step forward

quite a few times to find the bug. This process is error-prone as it only takes one step too

many to overstep and require another re-execution.

Some modern debuggers have advanced tools which can help the developer set better

breakpoints like conditional breakpoints and data breakpoints [Zel05]. Conditional break-

points allow the developer to say “break when x equals 5.” Data breakpoints (also called

watchpoints) allow the user to say “break whenever x changes.” These advanced break-

points can be quite powerful if the developer knows which variables/values are important

to help find the bug. The fallbacks of these tools are that they can result in much slower

execution, the developer needs to know which variables/values to watch before starting the

execution, and the developer is still able to under-step (go too far back resulting in too many

steps required to find the bug) or overstep (step past the bug requiring the developer to try

again and re-execute).

Another weakness of modern debuggers is their temporary and limited awareness of

information during the execution. At a breakpoint, the debugger tells the user of the current

10

scope of variables/values and the current call stack. The debugger has no knowledge of

what happened prior to the breakpoint and no intuition of what will come after. As soon as

the user takes another step, the information of the previous state is gone. If the user wants to

compare the two steps, the developer must write down the information or save it elsewhere

which is error-prone and time consuming. Also once the debugging session is over, nothing

is saved or remembered from the execution. A developer can’t ask the debugger “was

function foo() ever called?” or “what values were assigned to x throughout the execution?”

once the debugging session is over. Most developers would agree that being able to ask

these questions would be an extremely handy feature of modern debuggers.

Since everything is forgotten after the debugging session concludes, the developer is

unable to discuss or share their experience with other developers. To do so, the developer

would need to write down their results or take screenshots (both of which are not very

helpful for other developers). One study found that the most frequent source of information

for a developer is her coworkers [KDV07].

Along the same lines, modern debuggers have a difficult time with bug reproduction.

Often, it’s difficult to reproduce a bug even if a developer is given clear instructions on how

to do so. The same study found that some developers had such a hard time reproducing a

bug that they would often just create a remote-desktop connection to the bug report author’s

computer so they could see the bug [KDV07]. Modern debuggers do not help with this

task. Also if the bug is hard to recreate (perhaps due to non-deterministic qualities like

unpredictable input/output), then that forgotten debugging session might have held the key

to finding the defect but now it’s gone and can’t be reproduced. In the modern age where

11

software teams work remotely and software has gotten more and more complex, a scalable

and shareable solution must exist.

1.4 Should Developers Be Debugging Differently?

Debugging remains to be one the most tedious and time consuming activities that a

developer faces even with modern debuggers [Zel05]. A study published in 2008 reported

that 72% of companies that they surveyed admitted that their debugging process was “prob-

lematic” [Bal08]. Interestingly though, the study noted that 62% of the companies said that

their “defect management and testing approach either ‘did not require improvement’ or that

it wasn’t possible to create change in their approaches (despite problems)” [Bal08]. The

same study reported that 37% of developer time was spent toward debugging. Of the com-

panies reported, 67% reported that it takes 2-10 workdays to fix bugs and 11% said that it

takes 11-30 days. It is obvious that debugging could be improved, but perhaps companies

do not know how to improve it or that they believe modern debuggers are as good as they’re

going to get.

Debugging strategies could clearly be improved, but deciding on the qualities of the

next-generation debugger is not particularly straightforward. When looking over various

debugging stories, Eisenstadt examined what made the bugs in the stories difficult, what

their root cause was, and how the developers eventually solved them [Eis97]. He found

that “more than 50% of the difficulties are attributable to just two sources: large temporal

or spatial chasms between the root cause and the symptom, and bugs that rendered debug-

ging tools inapplicable.” For the inapplicable tools category, the developers would find that

12

having debugging activated would mask the bug or that they couldn’t recreate it (or the

debugging configuration removed the bug). Also in the study, he suggests the ideal tool

that could help the developers who participated.

“We have identified a niche that really needs attention; the most heavily popu-
lated cell in our three-dimensional analysis suggests that a winning tool would
employ some data-gathering or traversal method for resolving large cause/ef-
fect chasms in the case of memory-clobbering errors” [Eis97]

Thus, Eisenstadt’s recommended tool could potentially gather data about the execution, let

the developer traverse quickly through the execution, illuminate cause-effect chains, and

potentially help with variable initialization and value changing.

Through Eisenstadt’s research [Eis97] along with the research about how bugs infect a

system [Voa92, Zel05] and how bugs are fixed using a mental model [KMCA06, ND86] and

localization [LF95, CZ05, Zel02], we can begin to identify qualities of a next-generation

debugger that could lead to more efficient debugging. The next-generation debugger would

ideally move forward and backward through time and space allowing the user the ability

to move backward through the infection. The ideal tool could quickly answer questions

like “was this code executed?” and “what are all of the values that were assigned to this

variable?”. The tool could help us make a better mental model of the program and behav-

ior. Also, it should be more scalable and sharable in that it should reduce the number of

re-executions and allow the user to save and share debugging sessions. This would be espe-

cially helpful if the bug is difficult to recreate or the program is long running. Interestingly

enough, all-seeing debuggers have been available for quite some time which offer all of

these features. They are called Omniscient Debuggers.

13

1.5 Omniscient Debugging

Omniscient debuggers offer a multitude of powerful capabilities to the developer. The

term Omniscient Debugging was first coined by Bil Lewis in 2003 [Lew03] but the concept

has been around for years [Bal69]. Omniscient debuggers typically function by performing

a trace of the execution as it runs. Everything that happens during the execution (i.e. a

function is called, a variable is initialized, a variable’s value is changed, etc.) is saved

and the developer is able to traverse forward and backward through this trace after the

execution has completed. The developer can move through the different lines of code that

were executed, examine the various variable states, and often ask questions like “was this

function called?” and “what values were assigned to this variable?”.

Despite being built for many different languages and having alternatives like query-

based debugging and replay-based Debugging (see Chapter 2), omniscient debugging and

similar tools have not been widely adopted by industry nor education [SPTH14].8 One

reason could be the performance drawbacks. While it’s being traced, program execution

can be quite slow. Also, these traces can get large and require lots of space. Though

researchers have made considerable efforts in making these traces smaller and executions

more scalable [PTP07, LGN08, BM14], performance overhead can quickly intimidate a

developer. However the time required to perform the trace, leading to a quick debugging

session to find the bug, might be less than the total time required to debug the program

using a traditional debugger.

8Bil Lewis, a major proponent for omniscient debugging, even expresses his surprise/concern about the
lack of interest in omniscient debugging on his website http://www.lambdacs.com/debugger/.

14

http://www.lambdacs.com/debugger/

Ultimately, omniscient debugging could be the missing strategy that greatly reduces

debugging time for software developers. It naturally allows for backward traversal of exe-

cution steps to find infected system states. Users can quickly jump through time (execution

steps) and space (source code) to better understand the code and localize the root cause

of the infection. Though expensive in resources, these tools often provide settings to the

user which can greatly reduce overhead and trace size. A software field where omniscient

debuggers are lacking however is in backend web development (see Chapter 2).

1.6 Introducing PECCit

Presented in this thesis is PECCit, an omniscient debugger designed for backend web

development. PECCit traces web frameworks remotely and provides a browser-based IDE

to navigate through the trace. The user can step forward and backward through the trace and

access arbitrary locations instantly. PECCit provides variable histories allowing the user to

see when variables were created and changed throughout the entire execution. The user can

also search through these variables and values and determine what changes were made to

system state across lines of code. PECCit also has execution path highlighting allowing the

user to quickly see which files and lines of code were used in the execution. Additionally,

PECCit offers a novel feature called capturing which allows the user to watch a preview

of the web page as it’s being built line-by-line. PECCit is controlled and used entirely in

the browser allowing for team collaboration and scalability. Resource requirements and

overhead can be decreased using various PECCit trace settings.

15

The remainder of this thesis is structured as follows: Chapter 2 discusses related work

including other omniscient debuggers as well as other debugging alternatives to standard

debuggers/IDEs; Chapter 3 presents PECCit’s various features and outlines how PECCit

was implemented; In Chapter 4, PECCit is evaluated through the use of case studies and its

successes and weaknesses are discussed; Lastly in Chapter 5, the thesis is concluded with

a discussion of current debugging practices as well as improvements that could be made to

PECCit.

16

Chapter 2

Related Work

There are a number of other omniscient debuggers and debugging strategies in both the

commercial and academic sectors [Eng12]. They include omniscient debuggers, replay-

based debuggers, reverse-executing debuggers, query-based debuggers, and fault localizing

and automated debuggers. Each of these strategies have the same goal: to make debugging

easier and more efficient. They differ in their implementation and provided features. The

following sections discuss these different strategies and how they compare to PECCit.

2.1 Omniscient Debuggers

Multiple omniscient debuggers exist in industry/academia but there are subtle differ-

ences in their implementation and functions that make them all unique. The majority of

these debuggers use an event driven strategy which is different from PECCit’s implementa-

tion. Typically in the event driven strategy, code is inserted into the program either when it

is loaded into a virtual machine or into the byte code at runtime. This code will report back

17

to the omniscient debugger when important events occur like a function call or variable

change. These events are timestamped and displayed to the user after the execution in such

a way that the user can see everything important that happened during the execution of the

program. This is different from PECCit in that no code is inserted using PECCit.1 Instead

of waiting for an important event, PECCit is constantly logging what is going on at every

line of code. This makes PECCit slower in that it’s not native code, but much more versa-

tile because it is not language/virtual machine dependent like the debuggers in this section.

Other tools have to insert code that is specific to that language. PECCit simply needs to talk

with a debugger that is capable of interrupting an execution and reporting variable values

(see Section 3.5 for more information on the implementation of PECCit and Section 3.5.1.6

on language independence).

The concept of omniscient debugging dates back to 1969 with the publication of EX-

DAMS (EXtendable Debugging And Monitoring System) [Bal69]. EXDAMS was an im-

pressive contribution with a number of features. It enables the user to scroll forward and

backward in time (after execution) through statements and variable values, analyze errors,

and flowback through data to see where values are derived by creating an inverted value

tree. It works by analyzing the code statically and building a model of the program and

control functions. During this phase, it also inserts debug statements into the code specific

to EXDAMS which is then used during runtime to build a “history tape” which it then uses

to playback the execution to the user. These features are powerful, but the system assumes

that the compiler doesn’t dramatically change the code and that the source code is in a

compatible language so that it can insert appropriate debug statements.

1Except if capturing is enabled. When enabled, the program inserts lines of code during the execution to
retrieve the current output buffer. See Section 3.5 for more details.

18

An early omniscient debugger which works with a subset of C is PROVIDE, a “Process

Visualization and Debugging Environment” [Moh88]. While their interpreter executes the

code, PROVIDE records all states in a database. Users are able to start the debug session

before the program has finished and indirectly make queries on that database to understand

more about the execution and state changes. While they are navigating, users can move

forward, backward, and to arbitrary states. Along with other features, PROVIDE was one

of the first successful visual tools for debugging. With PROVIDE, functions, variables,

and other components are shown visually to the user and the user manipulates his view

to understand more about the state changes and interactions. The tool only works with a

subset of C however and only supports integers, characters, and one-dimensional arrays.

Another older implementation of an omniscient debugger is ZStep95 for the Lisp pro-

gramming language [LF95, ULF97]. The interactive tool is designed to help programmers

watch how static code is run dynamically, both in the forward and reverse directions. The

user is able to use the Graphical User Interface (GUI) to run and edit Lisp code and vi-

sually examine bugs, code flow, and errors. The researchers focused heavily on the user

interface/experience of the GUI and put most of their attention into how they could best

display the data from the underlying omniscient debugger to help the user understand the

execution enabling them to find bugs.

One of the first and most prominent omniscient debuggers for Java was presented by

Bil Lewis with his implementation called ODB [LD03, Lew03]. With this publication,

he also coined the name Omniscient Debugging. The implementation is open-source and

available online2. The tool is Java specific and works by inserting code into the Java classes

2http://www.lambdacs.com/debugger/

19

http://www.lambdacs.com/debugger/

as they are loaded into the JVM. The inserted code fires events when something important

happens, like variable alteration or a function call. ODB provides a GUI with multiple

panes but can also be used as an Eclipse3 or NetBeans4 plugin. Thus, the tool could be used

for web development if the language used is Java, but it is not specifically designed for web

development. The tool is very customizable and is able to handle complex functionality

like debugging multithreaded programs and complex filtering searches like “when does

foo(x,y) get called with parameters x=13 ,y=20?”. Like other implementations, ODB is

event driven where an event triggers ODB code which marks a timestamp and alters internal

data structures to keep track of variable changes and code control. In 2006, Bil was invited

to talk at Google TechTalks about ODB and omniscient debugging.5

Another important Java implementation is TOD, a “Trace-Oriented Debugger” pre-

sented by the University of Chile [PT09, PTP07]. TOD functions similarly to ODB as it

is event based and inserts code into the classes as they load in the JVM. TOD aims to out-

perform ODB in terms of scalability. Instead of storing the events and program structure in

memory as ODB does, TOD stores events and program structure into separate databases.

Their system allows for more scalable performance with parallelized and distributed qual-

ities. TOD is capable of complex queries and is able to tone back performance statically

(pick which classes to record) and dynamically (manually turn on recording during run-

time). TOD can work as a standalone application or an Eclipse plugin.

An option for Squeak, a SmallTalk dialect, is Unstuck released in 2006 [HDD06]. Sim-

ilar to other event based systems, Unstuck injects code into the Squeak byte code during

3https://eclipse.org/
4https://netbeans.org/
5https://www.youtube.com/watch?v=xpI8hIgOyko

20

https://eclipse.org/
https://netbeans.org/
https://www.youtube.com/watch?v=xpI8hIgOyko

runtime. The code fires events when methods are called, when they return, and when vari-

ables are altered. These events are stored during runtime and a trace is built out of these

events once processed. The trace information is then used to recreate state and a standalone

GUI which allows the user to move around the execution and do simple searching, variable

highlighting, and object back-tracing.

Lienhard, Gı̂rba, and Nierstrasz also offer a solution in Squeak which could be ex-

tended to other languages with object-oriented virtual machines [LGN08]. They recognize

the power behind omniscient debugging but also note that the slowdown during execution

as well as the memory overhead can make the practice impractical. Thus, they provide

a model for saving the execution information in the form of object aliases and support

the performance benefits with a Squeak implementation. Anytime an object is referenced

(created, copied, destroyed, etc) an alias is created acting like a middle man between the

reference and the actual object. This alias is in charge of remembering information about

the history of the object. For example, suppose there is a Person object p with a name field.

That name property will point to an alias which points to the actual object (a string). Then

when the name is changed, the alias will remember the old name and update with the new

name. When execution is stopped, the user can look back through the history in the aliases

to see everything that happened. Also, these aliases are smartly garbage collected as the

various objects die (unless they were used as the target of a method call or as a parameter).

Therefore, not all variables and events remain in memory. This makes the implementation

faster and more space efficient. However, this could also mean that a needed variable for

debugging could have gone out of scope and deleted. The authors do not make an attempt

to understand/keep all dependent variables as they chose to forgo this feature for speed.

21

In addition to these speedups, all aliasing is done in memory so debugging is efficient but

heavily memory consuming.

A currently available commercial, omniscient debugger is UndoDB by Undo Software6.

UndoDB supports C and C++ on Linux machines and Android devices. Once installed,

it replaces all of the functionality of gdb7 but claims to add much, much faster process

recording (see Section 2.3 for information on gdb’s process recording). As it has similar

commands to gdb, it can be used on the command line or integrated into common developer

tools like Emacs8 and Eclipse. UndoDB is similar to PECCit in that it is a full omniscient

debugger which allows arbitrary access and variable inspection. Like PECCit, the user can

save the sessions and send/share them with other developers. PECCit is different in that

it targets web developers (offering web specific tools like capturing), addresses a different

programming language (PHP), and provides its own GUI.

Another “Historical Debugger” is the IntelliTrace feature built into Microsoft Visual

Studio9. IntelliTrace is a new feature in the latest 2015 Enterprise Edition and it works

with VB, C#, ASP.NET, Microsoft Azure, Windows Forms, WCF, WPF, etc. It does not

support C++.10 This is a commercial feature as the Enterprise Edition is quite expensive11.

It doesn’t trace everything but it records exceptions, .NET Framework calls, and function

calls (arguments and return values). The function call tracing is not enabled by default as

it can incur quite a bit of overhead.12 With IntelliTrace, the user can filter modules that

6http://undo-software.com/
7gdb is the standard C/C++ debugger on a linux machine. More information can be found at https:

//www.gnu.org/software/gdb/
8https://www.gnu.org/software/emacs/
9https://www.visualstudio.com/

10https://msdn.microsoft.com/library/dd264915.aspx
11https://www.visualstudio.com/products/visual-studio-enterprise-vs
12https://msdn.microsoft.com/library/dd264915.aspx#Anchor 4

22

http://undo-software.com/
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/emacs/
https://www.visualstudio.com/
https://msdn.microsoft.com/library/dd264915.aspx
https://www.visualstudio.com/products/visual-studio-enterprise-vs
https://msdn.microsoft.com/library/dd264915.aspx#Anchor_4

they’re interested in, save sessions to a file, and search through historical data. It can also

monitor and record apps running on other servers or in production. There is even an API

hookup to the IntelliTrace system allowing for programatic control. Though IntelliTrace

works for C# and ASP.NET (and thus can debug web applications), it is not web focussed

like PECCit so it doesn’t offer features like capturing and automatically getting the query

info. It’s also built into a larger and more expensive enterprise framework.

Diver is an omniscient debugger that focusses on displaying run-time behavior to the

user [MS10]. The tool only saves execution sequence information like function calls (it

does not save variable and state information). Research with the tool focuses on user un-

derstanding of the code using the various views and sequence diagrams. It is provided as a

set of plugins for Eclipse.

Expositor is an interesting academic contribution as it works on top of UndoDB’s com-

mercial omniscient debugger [KFH13]. It allows the user to write scripts to make queries

on the UndoDB debugger. These scripts can programmatically navigate around the trace

and quickly find information. Expositor offers internal data structures to navigate the vari-

ous time/state snapshots of UndoDB to offer features like mapping, filtering, and scanning.

Though these features are powerful, there could be a learning curve as developers will

need to learn how to write these scripts including the API and classes to use Expositor.

This could be an excellent solution for advanced developers who need to debug complex

problems on C/C++ (and who have purchased UndoDB).

Another powerful, commercial omniscient debugger available for Java is Chronon.13

The Chronon system uses two tools: the Recording Server and the Time Traveling Debug-

13http://chrononsystems.com/

23

http://chrononsystems.com/

ger. The Recording Server records Java applications. It boasts minimal overhead and is

designed for long-running programs. Recording can be stopped/started dynamically and

controlled remotely using a web application. Recording sessions can be saved, shared, and

automatically created/flushed. The creators report excellent performance which they at-

tribute to static analysis of the code. The analysis yields predictions which can be used to

limit the amount of recording to non-obvious sections of code (like non-deterministic ac-

tions)14. The Chronon Time Traveling Debugger (Eclipse plugin) is used to examine these

recordings and offers execution path highlighting, variable inspection, arbitrary jumping,

as well as many other features. PECCit shares many of these features, though PECCit is

aimed at web development with features like capturing and a browser-based debugger.

2.2 Replay-Based Debuggers and Tracing

To combat the overhead of omniscient debugging, a new strategy was born based on

replaying the execution. Some researchers argued that maintaining full traces of programs

might not always be necessary to debug programs and offer back-in-time debugging. With

a traditional debugger if the user wants to break at a point farther back than their current

paused location, the user sets a breakpoint at that location farther back in the code and

re-executes the program. Replay-based debuggers work in this same way. When the user

wants to travel back-in-time, the debugger will re-execute the program automatically and

break earlier for the user. There are three main hurdles for replay-based debuggers: long-

running programs, non-determinism through input/output (I/O) and race conditions, and

offering variable histories.
14http://chrononsystems.com/blog/chronon-3-recorder-internals

24

http://chrononsystems.com/blog/chronon-3-recorder-internals

Long-running programs can make replay-based approaches unpractical. If the user

wants to step only a few statements back in time, the debugger would need to re-execute

the entire long-running program to offer that. Thus, most replay debuggers offer check-

pointing. With checkpointing, the debugger will make periodic checkpoints throughout

the first execution. At these checkpoints, the debugger will take a snapshot of the system

state. Then when the user wants to go back in time, the debugger will return to one of these

checkpoints and re-execute from the checkpoint instead of re-executing from the begin-

ning of the program. This can save lots of time at the cost of periodic resource use during

the first execution. One problem that can still disrupt the re-execution is non-determinism

though.

Non-determinism in a program can cause major issues for replay-based debuggers since

they can only function properly if the re-execution perfectly matches the initial execution.

If they didn’t match, the system state or execution path from the back-in-time re-execution

might not be the same as the first execution so the user could have difficulty trying to debug

an infected state from the first execution. Non-determinism can be caused by I/O (file

contents could change, or the user could click a different button), race conditions (perhaps

the program is multithreaded and the thread CPU scheduling was slightly different in the

re-execution), or even system calls. Some of the replay-based approaches check for non-

determinism and if it could exist, warn the user and become inoperable. To handle I/O,

others record everything coming in and out of the program so that re-executions can be

faithfully recreated. To handle multithreading, others use tools (like [CS98]) to recreate

exact thread scheduling.

25

The last hurdle that some debuggers have is variable histories (if they want to offer that

feature). This feature allows the user to ask “what are all of the values that were assigned

to x?” or “break at the last place that x changed.” With this first question, the answer is

similar to that of watchpoints from Chapter 1 where the replay-based debugger replays the

program and watches x. The second question is more difficult because the debugger doesn’t

know the last place x was changed prior to the current break point without rerunning and

reaching the current breakpoint. In this scenario, some replay-based debuggers actually

replay the execution twice. The first time, x is watched like a watchpoint and the debugger

writes down every moment in time x changes. Once the execution reaches the current

break point, the program is re-executed (again) until it reaches the point it wrote down the

final change to x and pauses the debugger here for the user. With PECCit, finding the last

change of x is nearly instant since everything is recorded the first time. However, the first

execution of replay-based debuggers is much faster than omniscient debuggers like PECCit

since replay-based debuggers only perform small maintenance work and not full tracing.

Thus, replay-based debuggers offer similar features to omniscient debuggers like PEC-

Cit but they use different strategies (with different pitfalls). During execution, the replay-

based debuggers are much faster. However, that speed improvement might be lost during

the debugging stages when the user wants to travel back-in-time or access variables multi-

ple times. PECCit and other omniscient debuggers take an upfront “let’s record everything

in case we need it” approach to debugging. Replay-based debuggers take a “let’s wait and

see what the user wants, then perform various re-executions if the user needs more infor-

mation” approach. Replay-based debuggers have to worry about things like long-running

programs and I/O which are not as big of an issue for omniscient debuggers. Long-running

26

programs for omniscient debuggers typically require lots of resources, though this can be

controlled by the proper use of settings or periodically releasing data. I/O and threading

information is saved the first time for omniscient debuggers so there is no need to perfectly

recreate them since omniscient debuggers rely on traces instead of actual execution for

re-execution and replay. With proper trace settings, variable history information is nearly

instant with omniscient debuggers since this data is stored. Replay-based debuggers do not

have this luxury (though this makes their first execution much faster since they don’t need

to store anything). The remaining portion of this section discusses some of the replay-based

debuggers throughout academia and industry.

One of the first replay-based debuggers was COPE [ACS84] published in 1984. The

COPE system uses checkpointing to reduce re-execution time and it recycles space by

deleting old blocks (traces of the execution). This limits the system in how far back it can

recover, but reduces space requirements.

Another older replay-based debugger was IGOR which was published in 1988 [FB88].

The prototype worked for C programs. It also uses checkpointing to cutdown re-execution

time. The system is capable of changing out code dynamically and even attempts to handle

the difficulties presented from I/O operations.

An early publication of debugging parallel programs using a replay-based approach is

Recap [PL88]. Also published in 1988, Recap was designed to periodically make check-

points of a multithreaded program while it’s running. The user is able to select one of these

checkpoints and start execution from that point. The tool works by acting as a middle-man

for all system calls and memory handles. Also, it periodically asks all code to stop and

perform a checkpoint. At this checkpoint, the code forks a new process and suspends it.

27

Thus if the user wants to replay execution from a checkpoint, the suspended process at that

checkpoint is unsuspended and the logged signals/system calls are used from the original

execution in the replay.

Another solution for parallel programs in C was RecPlay [RDB99]. This tool was de-

signed with practicality in mind by placing time consuming computation in the replay stage

and making recording of the program extremely fast. This allowed the user to always have

recording on and only use replaying when needed. During the replay phase, the system per-

forms on-the-fly data race detection and informs the user of any non-deterministic activity

or race conditions. It takes the stance that these data races are bugs and informs the user of

these conditions. If no race is detected, the system guarantees a correct re-execution.

bdb was another early replay-based debugger [Boo00]. It was published in 2000 and

works for C and C++. bdb uses checkpointing to cutdown on re-execution time. It also

records all I/O from system calls so that re-executions are faithfully recreated.

Another published replay-based debugger is Reverse Watchpoint [MT03]. Though pro-

totypes were made in C, the major contribution was written for Java. Using a byte code

transformer, Reverse Watchpoint inserts code into classes which the user would like to de-

bug. The tool allows the user to ask questions like “when was variable x last changed?”.

It does this by using the strategy described earlier in Section 2.2. The first re-execution

watches the variable x for all changes, then the next re-execution breaks on the last place

that it was changed. The authors note that their tool has low overhead since they are us-

ing byte injection. However, Reverse Watchpoint does not have solutions for the common

replay-based pitfalls like long-running programs and non-determinism.

28

Another solution that works on Linux systems is Jockey [Sai05]. With Jockey, there is

no need to change the source code or run the code in a special engine. Jockey is a shared

object file that runs as part of the target application. Jockey takes hold of the process

and intercepts I/O and other non-deterministic actions that the program takes. Thus, it

can record what happens and accurately replay an execution. Since Jockey runs on the

same process as the target application though, problems arise if the application is malicious

with memory. Jockey and the target application are part of the same process and share

all resources. Thus, Jockey must take precautionary measures so that it does not affect

the target process nor be affected by it. Since everything is logged, Jockey is capable of

replaying non-deterministic programs allowing the user to debug the program using replay-

based approaches.

Created by a number of researchers at Microsoft, Nirvana is a run-time engine which

can provide back-in-time debugging [BCdJ+06]. As an engine, Nirvana sits on top of the

operating system and programs can run on the engine. When configured, Nirvana takes

control of applications and threads running on it and inserts code into the execution. The

code inserted is used to create a highly compressed trace file which can be fed back to the

engine to simulate the execution of the program. Using checkpointing and the trace file, the

researchers claim that they built back-in-time functionalities into a debugger, though their

primary research goals appear to be the Nirvana framework and another framework called

iDNA. Back-in-time debugging is more of a complimentary feature of the tracing.

A more recently published back-in-time debugger using replay-based strategies is Tardis

[BM14]. This publication presents some of the generic algorithms for performing replay-

based debuggers, then explains the implementation and features of Tardis. Though the

29

algorithms could be used generically in any managed runtime environment (like Java,

JavaScript, etc.), Tardis uses the .NET Common Language Runtime (CLR)15 to hook into

the compiler and replace code which will add hooks for the debugger, record variable states,

and intercept environment interactions like memory allocation, I/O, and thread schedul-

ing. Tardis uses highly optimized/compressed checkpoints (snapshots) to keep overhead

low and uses interesting strategies like full tracing during the forward execution after a

re-execution from a checkpoint to improve debugging experience.

Following Tardis, Mark Marron, PhD16 appears to be porting some of the strategies

to Microsoft’s next-generation Microsoft Edge Browser17. The browser’s developer tools

include a time-traveling debugger which offers “interrogative virtualization.” Similar to

TARDIS, the system is replay based with checkpoints, recorded events and non-deterministic

actions, and tracing on checkpoint replay. The browser, along with this back-in-time fea-

ture, have not been released yet. Though the solution targets web development like PEC-

Cit, it appears to mainly focus on frontend development (JavaScript in the browser once

the page is already built) whereas PECCit addresses the need for a backend debugger while

the page is being built. It also doesn’t appear to offer a capturing feature.

QueryPoint is another tool that can be used for frontend web development as it is de-

signed for JavaScript [MBP11b, Mir12]. It is an implementation of the lastChange al-

gorithm [MBP11a] which is a replay-based strategy. QueryPoint is a Firefox plugin that

interacts with Firebug18, the primary debugging tool for Firefox. With execution paused at

a breakpoint, the user can ask QueryPoint to find the Last Change of a variable or object

15https://msdn.microsoft.com/en-us/library/8bs2ecf4(v=vs.110).aspx
16http://research.microsoft.com/en-us/um/people/marron/
17https://channel9.msdn.com/blogs/Marron/Time-Travel-Debugging-for-JavaScriptHTML
18http://getfirebug.com/

30

https://msdn.microsoft.com/en-us/library/8bs2ecf4(v=vs.110).aspx
http://research.microsoft.com/en-us/um/people/marron/
https://channel9.msdn.com/blogs/Marron/Time-Travel-Debugging-for-JavaScriptHTML
http://getfirebug.com/

property. QueryPoint will re-execute the program, saving information about the system

state every time the variable is changed. Once the re-execution hits the paused point, the

information from the last time the variable was changed is returned to the user. The authors

report their tool is highly efficient and has an edge over other replay-based debuggers be-

cause it doesn’t have to worry about non-determinism in re-executions (as long as the bug

is reproducible) because of the way that the tool re-executes and saves state information.

Another recently published frontend web tool is Timelapse with Dolos [BBKE13]. Do-

los is a system capable of recording execution in JavaScript using Webkit19. Once the

session is recorded, Timelapse is able to visually walk through the replays with timelines,

events, bookmarks, etc. Dolos is reported to be fast and scalable while offering deter-

ministic re-execution using I/O logging. Admitting that there is still a possibility of non-

determinism, the authors note that Dolos can actually warn the user if it suspects infidelity

in the re-execution. What’s also interesting is the authors performed a small study with

developers to see if their tool improved debugging. The authors didn’t find a significant

time difference when debugging programs when compared to traditional tools, but they

found that expert developers were better able to incorporate the tool into their debugging

strategies while the tool seemed to distract the less experienced developers.

Related to replay-based debuggers, other researchers have tried to identify how to make

these tools better. Netzer and Weaver examined how to efficiently checkpoint long-running

programs [NW94]. They present an adaptive approach to tracing a program such that it can

be re-executed from incremental checkpoints. They present optimal and approximation

algorithms which allow a system to adapt to the running program and decide what to trace

19A web engine used in Chrome and Safari. See https://webkit.org/

31

https://webkit.org/

and how often to trace. Xu, Rountev, Tang, and Qin examined how to make checkpoints

more efficient [XRTQ07]. They present a strategy for statically analyzing the code. Their

analyzer determines what to trace and what to ignore which can be inferred later during

replay using control-dependence-based slicing.

Other replay-based tools exist that address entire systems. King, Dunlap, and Chen pub-

lished their time-traveling virtual machines which can debug operating systems [KDC05].

Simics was released in 1998 as a commercial tool which was a full system virtual platform

[MCE+02, EAW10]. Simics could simulate a full system (including multiple computers,

processors, files, network, devices, running different programs, etc.) and offered check-

pointing and replaying. These tools, though quite powerful, address a very different debug-

ging space than the user level (specifically, backend web development space) that PECCit

addresses.

A related field of research just focuses on performing full traces of systems and pro-

grams [ZG05]. The strategies which these tools use to perform the traces dictate how

they can best be used for debugging (and a number of other applications). The WET

tracing strategy intertwines the data and control flow histories of the execution allowing

for easier reverse execution and debugging [ZG05]. The Tralfamadore system traces low-

level machine execution which is excellent for tracing operating system code and kernels

[LCH+12]. Once a trace has been performed, the user can use Tralfamadore to make

queries on the traced execution to better debug and understand the code’s behavior. Thus,

this tool could also be categorized as a query-based debugger (see Section 2.4). Queries

could include “show me a histogram of all parameters ever passed to function foo()” and

“what are the common paths of packets through the network stack”. An older publication

32

presented the TRAPEDS system which focussed on fully tracing multicomputers [SF89].

Though the primary focus is tracing, each of these tools could be used for debugging in a

non-traditional way using replay-based techniques.

2.3 Reverse-Executing Debuggers

Another solution for back-in-time debugging is reverse-executing debuggers. These

debuggers offer back-in-time navigation, but in a linear fashion. They execute in the reverse

direction by undoing each execution statement. This is quite different from omniscient

debuggers. Since omniscient debuggers trace entire executions, they typically offer instant

access to arbitrary locations in the execution. Reverse-executing debuggers simply execute

in both directions. Thus if the user wants to access a point much farther back than the

current paused position, the reverse-executing debugger will reverse, step-by-step, back to

that point. Reverse-executing debuggers still offer powerful, back-in-time functionality but

at the cost of execution overhead as well as the time required to execute backwards to reach

the desired location.

One of the earliest reverse-executing debuggers was presented in 1971 [Zel73, Zel71].

This tool, called Retrace, was built for PL/I and was a function added to the language.

The programmer could reverse the order of execution, but they had to write code to do it

programatically. Thus, the execution couldn’t be interacted with while it was running.

Another reverse-executing debugger is Cornell’s Program Synthesizer [TR81]. Pub-

lished in 1981, this full-fledged IDE offered many features still offered today by modern

IDEs including code templates, a full screen GUI with a tree and text editor, and a diag-

33

nostic interpreter to find problems. The program also offered a back-in-time debugger. The

debugger used basic reverse-execution strategies by storing system changes and restoring

them with each reverse step.

Another reverse-executing debugger was Spyder [ADS91]. This tool was quite pow-

erful as the user could stop execution (or have it stop on an error), travel in the reverse

direction, change some of the code, and then resume execution after the change. To move

backward, the tool remembers a series of change-sets which log all of the necessary infor-

mation to essentially undo each line of code. The tool also offers Dynamic Program slicing

to help determine which statements/variables could have an affect on a given variable (more

on Dynamic Slicing in Section 2.5).

Another tool that attempts to handle reverse execution for a symbolic debugger was

presented by Cheng, Fuchs, and Chung [CFC01]. Their tool functions by inserting code

into a copy of the program code during compilation which logs old variable values into

a history buffer during execution. Since there are two versions of the code, the user can

enable/disable debugging in real time. Also, the user can specify which subroutines to

record and the compiler will pick which subroutine to run (original or instrumented). In

reverse order, the values are removed from the history buffer. To save space, the buffer is a

wraparound so reversibility is limited by space.

A major visual contribution is the Java Interactive Visualization Environment (JIVE)

[RR05, GJ04, GJ05].20 JIVE is a standalone tool or Eclipse Plugin [CJ07] that allows

the user to visualize the execution and changing system states of a Java program. It uses

the Java Platform Debugging Architecture (JPDA) to receive important events from the

20http://www.cse.buffalo.edu/jive/

34

http://www.cse.buffalo.edu/jive/

execution and creates two models: the object model and the sequence models. After the

execution with these models and their interactions, JIVE presents the execution (sequence

and objects) in diagrams similar to UML so that the user can learn more about and debug the

execution. The user is able to step back (using reverse-stepping by undoing state changes)

to watch as the sequence diagrams and object diagrams change. The user can also search

through variable histories. The tool is especially good at helping the user understand the

Java program being debugged and could be useful for education.

Probably the most known reverse-executing debugger is provided by gdb21 called Pro-

cess Record22. When enabled, gdb will record the execution by logging the effects of each

instruction during runtime. Then if the user wants to travel in the reverse direction, the

debugger uses the logs to undo each line of code as per the user’s request. The user can

customize the logging behavior (linear/circular) and instruction limit. The developers at

Undo Software argue that the recording is extremely slow and resource consuming though

(see Section 2.1 for more information about UndoDB).23

TotalView is a commercial, reverse-executing debugger24. The tool is for C/C++ pro-

grams on Linux machines and offers a standalone IDE. The user is able to turn debugging

on/off in real-time and the tool supports multithreading, I/O, distributed and network ap-

plications, etc.25 It is designed for High Performance Computing (HPC) so it works with

many of the common parallel frameworks/libraries including OpenMP and MPI. As it is a

21https://www.gnu.org/software/gdb/
22https://sourceware.org/gdb/wiki/ProcessRecord
23http://undo-software.com/undodb/
24http://www.roguewave.com/products-services/totalview
25http://www.roguewave.com/products-services/totalview/features/reverse-debugging

35

https://www.gnu.org/software/gdb/
https://sourceware.org/gdb/wiki/ProcessRecord
http://undo-software.com/undodb/
http://www.roguewave.com/products-services/totalview
http://www.roguewave.com/products-services/totalview/features/reverse-debugging

commercial product, the exact details about how it records are not publicly available but

the debugger appears to use a reverse-executing strategy.

2.4 Query-Based Debuggers

Another alternative strategy for debugging programs is query-based debugging. These

debuggers allow the user to ask questions like “why did x equal 14?”, “why did this code

execute?”, and “how many elements in list L have positive values?”. Some of the tools can

pause execution based on these queries like “break when foo(x,y) is called with parameters

12 and 4”. Some of these tools require the user to write code before execution. Others

can query on-the-fly. Some even come up with the questions for you. Though not classi-

fied as back-in-time debuggers, they similarly answer questions during or after execution

using tracing and other methods. These queries can be quite complex involving multiple

functions and lots of data. Thus, they are much more powerful than the simple conditional

breakpoints provided by modern debuggers.

OPIUM is a query-based debugger for Prolog [Duc99b]. It is a trace analyzer in that

as the program is running, the various events are stored as a trace in a database. The

user is able to write questions/queries about these events and the debugger will pause the

Prolog execution when the query is true. Interestingly since these queries are just yes or no

questions, the user actually writes the queries in Prolog to debug the Prolog program.

As an adaption of OPIUM in C, COCA was created [Duc98, Duc99a]. COCA is built

on top of gdb and the user is able to query the program state/execution using control flow

information and runtime data. COCA, like OPIUM, is used on the command line, queries

36

are written in Prolog (with a few primitives added), and is able to conditional break execu-

tion using these advanced queries.

DUEL is a similar tool built on top of gdb [GH93]. DUEL uses it’s own, C-like, lan-

guage to make queries. It allows the user to ask questions like “how many elements of list L

have a positive value?” and “does list L contain two elements with identical value fields?”.

Though it’s built on top of gdb for C programs, it’s designed to work with other debuggers

and languages. One hurdle is that learning the DUEL language to ask questions could have

a learning curve.

Another query-based debugging tool was released for Self, a dialect of SmallTalk

[LHS97]. This tool allows users to search large object spaces and object relationships.

The queries can be made on-the-fly or saved for later use. The query language is also based

in Self (the authors argue that the query language should be similar to the traced language to

reduce the learning curve for developers). In a query, the user specifies the search domain

(where to search) and the constraints for that domain.

A query-based debugger for Java is Caffeine [GDJ02]. This tool is designed using the

Java Platform Debugger Architecture (JPDA) to keep track of important events during the

execution. Before the code is executed, the developer writes questions in Prolog. On-the-

fly, the system runs these queries as the program is executing allowing the user the ability

to ask questions about the running program. These queries can look for simple events

like “how many times does foo() get called?” or search for complex relationships like “is

this class a singleton (and truly only created once)?”. These features are powerful, but the

developer must write the queries before the execution and are limited by their own mastery

of Prolog.

37

A very unique and powerful tool is Whyline [KM04, KM08]. Originally created for

Alice (an educational programming language), this now Java specific tool is capable of

creating questions and answers about a program’s execution . It works similarly to other

event based approaches by inserting code into Java classes as they load in the JVM. How-

ever once the execution is complete (and the events and variables are stored in a trace), the

tool generates questions for the developer like “why did x equal 14?” , “why did getVal()

return 20?”, “why did this execute?”, and conversely “why didn’t this execute?”. The tool is

capable of answering these questions visually allowing the user to navigate around the dif-

ferent events. It uses static/dynamic program slicing and other techniques to generate and

answer these questions (See Section 2.5 on program slicing). In a very small user study,

the authors found that novice developers using Whyline were able to debug a particular

program twice as fast as expert developers who did not have Whyline.

A similar tool to Whyline was published for one-way constraints [VZBJ04]. With the

tool, the user is able to ask questions like “why did this happen?” and “Something’s Wrong.

Please suggest a reason”. The program uses constraint slicing which is a form of program

slicing (see Section 2.5 for more information on Program Slicing) except that the entire

dataflow is not saved reducing overhead. The slices are displayed to the user visually so

that the user can understand what code and variables affect the variable in question. When

the user asks questions, the tool looks through these slices and the relationships of these

dependencies to suggest a problem/solution.

38

2.5 Fault Localization and Automated Debugging

As discussed in Section 1.2.2.2 of the introduction, the ultimate goal of debugging is to

find the root cause of the infection (and fix it). The tools and research discussed thus far

help a developer manually find these bugs but quite a bit of research has been performed on

fault localizing tools which aim to find the defect for the user [WD09] . Some of the tools

even suggest corrections for the defect. Though the goal of finding the bug is the same goal

as that of the PECCit system, their strategy is quite different. PECCit is an interactive tool

that assists the user in finding the bug. Fault localization tools use a mixture of source code

analysis, execution tracing, and automation to find the bug. This section briefly discusses

these tools.

A major area of research for fault localization is Program Slicing [XQZ+05]. There are

different strategies for program slicing but the overall idea is that given an execution point

and a subset of variables (known as the slicing criterion), program slicing is the process

of finding all statements/variables that could have directly or indirectly had an impact on

that subset of variables. The slices can be used for debugging, code comprehension, testing

and coverage, parallelization, etc. Originally published by Weiser in 1979, static slicing

examines the source code and based on all possible executions, argues which statements

could affect the variable set [Wei79]. Dynamic slicing (published by Korel and Laski in

1988 [KL88]) executes the program and finds the slice based on what actually happened

during that single execution.

Multiple studied slicing algorithms have been researched [XQZ+05, ZGZ03] and these

strategies can be combined with other technologies to provide powerful debuggers (like the

query-based Whyline debugger [KM08] or the reverse-executing Spyder debugger [ADS91]

39

as discussed previously). The computation and traces from slicing can yield a heavy

overhead so there is lots of research on making the slicing process faster and smaller

[ZG04, DPS96, WR04].

Though there are a number of other strategies and algorithms for performing fault local-

ization through automated debugging ([Zel02, LNZ+05]), one that stands out in particular

(because of its technology relation to PECCit) is presented by Artzi, Dolby, Tip, and Pis-

toia [ADTP10]. This research involves automated testing and debugging of dynamic web

pages written in PHP. In their earlier work ([AKD+08, AKD+10]), the researchers used

concrete and symbolic execution strategies to white-box test PHP applications. The test-

ing tool, named Apollo, could even simulate user interaction. This tool could be used to

find paths and interactions within the PHP framework that resulted in malformed HTML

errors. The tool could show that the errors existed, but couldn’t find them. Then in 2010,

they combined their tool with an adaptation of the Tarantula algorithm ([JH05, JHS02]) to

perform fault localization [ADTP10]. Thus, Apollo would automate thousands of tests and

when HTML errors were found, the buggy execution traces were used in the Tarantula al-

gorithm to pinpoint which lines of code most likely caused the errors. With some algorithm

modifications, they showed that their tool was very successful. A few years later, a number

of the same researchers published a tool which could actually repair a lot of those errors

(if the errors were caused by incorrectly printing string literals – which surprisingly quite a

few are) [SSA+12].

As mentioned, PECCit has a fundamentally different approach to debugging than the

fault localizing/automated works mentioned in this section. Strategies such as program

slicing, statistical debugging, and automated testing were created to help users find (and

40

sometimes fix) bugs with a more hands-off approach. The user often needs to initially

interact (like setting the slicing criterion when using program slicing) but once started,

the tool does the rest. With PECCit, the debugger enables the user to take control of the

debugging process and provides tools and data to assist. Some argue that these automated

approaches aren’t very effective ([PO11]) though others have found strategies to easily find

and fix small/specific bugs ([SSA+12]). The PECCit system offers benefits such as filtered

traces, remote access, web page capturing, live and single recording (can debug live web

traffic, and often only need to trace it once as opposed to many, many automated tests), and

variable inspection which most automated debuggers and fault localizers do not offer.

41

Chapter 3

PECCit

This chapter presents the features and implementation details of PECCit: a powerful

implementation of an omniscient debugger for web developers. “PECCit” was originally an

acronym for Post-Execution Code Comprehension but its capabilities quickly outgrew just

allowing the user to understand the code. Its design was intended for web developers using

PHP (as there was a need for an omniscient web debugger as seen in Chapter 2). However,

PECCit could be used with other languages as it doesn’t rely on language specifics or code

injection (see Section 3.5.1.6 on language independence). PECCit allows the user to trace

an execution, move forward and backward in time while examining the execution path,

inspect variable histories, and even watch as a web page is built line-by-line.

PECCit is a system of programs that all function together to offer an omniscient de-

bugger. It uses a number of languages and technologies including C++, MySQL, PHP,

HTML, CSS, JavaScript, jQuery, AJAX, a REST API, Bootstrap, etc. More information on

PECCit’s implementation can be found in Section 3.5. From a high-level view, PECCit is

42

an execution tracer for PHP web frameworks and it provides a browser-based debugger to

explore the traces. The three major components of the PECCit system are the Automated

Debug Server (ADS), the PECCit Session Manager, and the PECCit Inspector. The com-

bined system offers a powerful and customizable omniscient debugging experience for a

web developer at any experience level. Before discussing the three major PECCit compo-

nents, the basics of PHP web pages and frameworks will be covered.

3.1 PHP, Web Pages, and Frameworks

PHP1 is a scripting language that is commonly used for web development. It is open-

source and allows developers to quickly create dynamic web pages. It can be embedded

directly into HTML and the latest version (PHP 5) allows Object Oriented Programming.

As of July 16th, 2015, PHP is used by approximately 81.9% of the top 10 million sites

worldwide.2 PHP code, often mixed with HTML, is interpreted, executed, and the output

is then sent back to the user. The most common interpreter is the Zend Engine3.

When a user requests a PHP web page (like http://zachazar.com/index.php), the PHP

interpreter will build and return a web page back to the user. This PHP page might have

HTML in it and it might include/link other PHP files as well. Often, site administra-

tors will use Content Management Systems (CMS) and other frameworks written in PHP.

These frameworks are typically open-source, community supported, and provide common

features that most sites need like user and content management, content types, and easy

appearance customization through themes. The most popular CMS frameworks are Word-
1https://www.php.net/
2http://w3techs.com/technologies/overview/programming language/all
3https://www.zend.com/en/community/php

43

http://zachazar.com/index.php
https://www.php.net/
http://w3techs.com/technologies/overview/programming_language/all
https://www.zend.com/en/community/php

Press4 and Drupal5 and they are both written in PHP. These frameworks can get quite large

and there is often a steep learning curve for a new developer to understand how these frame-

works build the web pages and manage the data. Thus, debugging these frameworks can

often be difficult, especially for new developers. The following sections examine the three

main components of the PECCit system and show how they can help a developer debug

web pages and frameworks.

3.2 Automated Debug Server (ADS)

The Automated Debug Server (ADS) is the backend of the PECCit system and is re-

sponsible for tracing the executions. When the PHP interpreter is executing the code, it

interacts with an extension called Xdebug6. Xdebug can stop the execution and report in-

formation including variables/values, call stack, etc. The ADS is a software system written

in C++ which communicates with Xdebug. Through this interaction, it learns everything

about the execution and saves it to a MySQL database. More technical information about

Xdebug, the communication between the ADS and Xdebug, and how the information is

stored can be found in Section 3.5.1.

The ADS, database, Xdebug interaction is demonstrated in Figure 3.1. When a user (the

laptop in the figure) requests a web page like index.php which might use multiple PHP files,

the ADS will interact with the PHP engine through Xdebug as it builds the page. During

these interactions, the ADS writes down everything that happens including which lines of

code were executed and all variables and values. The ADS can even capture the page as
4https://wordpress.org/
5https://www.drupal.org/
6http://xdebug.org/

44

https://wordpress.org/
https://www.drupal.org/
http://xdebug.org/

Figure 3.1: PECCit System Overview

45

it’s being built to show what the page looks like at each line of code. Once the execution is

complete, the debugging information is saved as a session and stored in a database. All of

this is done on the server of the web framework that is being debugged.7

The user can set various settings which affect how the ADS traces the executions. These

settings include how deep to step into a trace, how many children of a variable are stored

(for an array or object), which files to trace (called a whitelist), and to enable/disable web

page capturing (when the ADS saves previews of what the page looks like as it’s being

built). A detailed list of the settings offered are provided in Section 3.5.1.3. Once sessions

are saved into the database, they are managed using the PECCit Session Manager.

3.3 PECCit Session Manager

The PECCit Session Manager (see Figures 3.2 and 3.3) is a web application that allows

the user to manage the saved sessions, manage settings for the PECCit system, view the

system status, and send commands to the ADS. These various features are outlined in

the following sections. The page is built using HTML, CSS, and JavaScript and more

information about how the application is implemented can be found in Section 3.5.2.2.

As shown in Figure 3.1, the PECCit Session Manager interacts with the PECCit database

through the web interface.

7As PECCit is a standalone component and talks to the debug engine over the network, it doesn’t neces-
sarily have to run on the server containing the test framework. See Section 3.5 for more details.

46

Figure 3.2: PECCit Session Manager: Sessions Table

3.3.1 Managing Sessions

The primary purpose of the PECCit Session Manager is to manage and handle sessions.

The user can see which sessions have completed, check their analytics data, and delete

them (see Figure 3.2). The row color indicates the status of the session (with green mean-

ing complete and successful, red meaning complete but with errors, and blue meaning in

progress). At the top of the sessions table, the user can refresh the session list manually

(with the refresh button) or set the table to refresh itself regularly (stopwatch button). On

the side of each row, the user can refresh the stats for the session (reload icon) and delete

the session (X icon). By clicking the magnifying glass icon (see Figure 3.4), the user can

launch the PECCit Inspector for that session (see Section 3.4).

47

Figure 3.3: PECCit Session Manager: Additional Features

Figure 3.4: PECCit Session Manager: Launching the Inspector

48

Figure 3.5: PECCit Session Manager: Changing Settings

3.3.2 Changing Settings

Tracing all variables and values for a session can be quite expensive in terms of the

time required and database space. Thus, it’s best to adjust the settings before debugging a

session. These settings, as listed in Section 3.5.1.3, control how many variables are saved

and for which files to perform variable tracing.

Through the PECCit Session Manager, the user is able to change the active settings

for the ADS. The current settings are listed in the table (see Figure 3.3) and they can be

refreshed using the refresh icon. The user can click the + icon to bring up a dialog to

change/add settings (see Figure 3.5). The ADS retrieves the settings at the beginning of

each session so the desired settings for a session should be set prior to the execution.

49

3.3.3 System Status

As the ADS is a separate component from the web application, it can be helpful to

see the status of the system (see Figure 3.3). Statuses include Stopped, Running, Waiting

for ADS, and Waiting for Connection. Though the ADS has only been discussed so far,

the PPM component is the PECCit Process Manager. It is the primary component that

listens on the network for a possible session and passes off the connection to the ADS.

With the System Status table, the user can manually refresh the status or set the application

to automatically refresh the status table regularly.

3.3.4 Sending Commands

The user can send commands in real-time to components in the system (see Figures 3.3

and 3.6). The only currently offered commands are Cancel and Shutdown. The Cancel

command will cancel the current session that the ADS is tracing. The Shutdown com-

mand will cancel a session (if one is running), shutdown the ADS, and shutdown the PPM

which quits the program. As the PECCit Session Manager and PECCit Inspector are sep-

arate components from the ADS, these web applications can still be used with the ADS

shutdown. The table shows important information like when the command was sent and

if/when the component received it.

3.4 PECCit Inspector

The PECCit Inspector looks like a modern debugger/IDE but is much more powerful

(see Figure 3.7). With the Inspector, the user can debug a session by moving forward/back-

50

Figure 3.6: PECCit Session Manager: Sending Commands

ward through the trace, browse the source code with Execution Path Highlighting, inspect

variable values and variable history, and watch previews of the page being built. As it is

a web application, the user does not need to download any additional software to use the

Inspector. Also since it’s in the browser, multiple sessions can all be open at the same time.

More information about the implementation of the PECCit Inspector is in Section 3.5. The

following sections discuss the various features and tools of the PECCit Inspector.

3.4.1 Step Navigation

During a trace when a single line of code is executed, it is called a step in the PECCit

system. The term step represents a line of code in a file being executed at a moment in

time. Thus, the same line of code could belong to many steps (like a loop). The user is able

51

Figure 3.7: PECCit Inspector

52

Figure 3.8: PECCit Inspector: Step Tree

to navigate through these steps using the Step Tree and the Step Navigation Buttons (see

Figures 3.8 and 3.9). When a user clicks a step in the Step Tree, the corresponding line of

code is highlighted in the Source Code Pane. The user can click on any step in any order

or they can use the Navigation Buttons. When right-clicked in the Step Tree, the user can

search for all steps that occur at that same line of code (see Figure 3.22). This utilizes the

Step Finder which is explained more in Section 3.4.6.

The user can click the navigational buttons to perform a Step Forward, Step Into, Step

Back, and Step Out (see Figure 3.10). The Step Forward command will navigate to the

next step at the current depth. The Step Into command will navigate to the next step that

is deeper than the current step. For example, the user can use this command to follow the

execution of a function call. The Step Out command will go back to the step that is one

level higher than the current level (like stepping out of a function call). The final, and most

53

Figure 3.9: PECCit Inspector: Labeled with Variable Pane Open

unique, navigational tool is the Step Back allowing the user to go back one step in time.

This utility is not offered with modern debuggers.8

3.4.2 File Navigation and Execution Path Highlighting

The file list located above the Source Code Pane is a list of all of the files that were

used during the execution of the session. The user can click a file in the list to load and

view it (see Figure 3.11). The files are retrieved from the server using lazy loading so that

they are only retrieved if they are needed when debugging in the Inspector. The source

code is syntax highlighted and the user can click the magnifying buttons to zoom in and

8Technically, the Step Out button uses back-in-time functionality as well. Other debuggers use a Step Out
which resumes forward execution until the end of the current function call. PECCit travels back-in-time to
when the function was first called.

54

Figure 3.10: PECCit Inspector: Navigation Buttons

out. The blue highlighted line is the line that corresponds to the currently selected step in

the Step Tree. This line represents the next step that will be taken in the execution (i.e.

the blue line has not occurred yet). All lines of source code that are executed at some

point during the session have red highlighting. This means that, without using the Step

Tree and navigational tools, the user can quickly see which lines of code were executed.

This feature is called Execution Path Highlighting and can be very useful when debugging.

These features are shown in Figure 3.9.

3.4.3 Variable Pane, Variable Inspection, and Variable Differencing

PECCit offers multiple tools related to variables since often the most needed informa-

tion when debugging are the variables and their values at certain times during the execution.

When the user clicks on a step, the local variables that were present during that step in the

execution are shown in the Variables Pane (see Figure 3.9). In this pane, variables are listed

alphabetically. For scalar variables (boolean, integer, float, string), the variable is shown

with a leaf icon and included is the variable’s name, type, and value. Arrays are shown with

a folder icon and include the name, type, and size. Objects are shown with a star icon and

55

Figure 3.11: PECCit Inspector: Source Code File Select

56

list the name, classname, and number of properties. Users can click the arrays and objects

in the Variable Pane to expand them and learn more about their contents and properties

respectively. Examples of each of these types are shown in Figure 3.9.

A powerful tool that PECCit offers is Variable Inspection. The user can right-click a

variable in the Variable Pane to bring up an option to “Inspect” the variable (see Figure

3.12). When clicked, PECCit will list every step when the variable’s value changed includ-

ing when the variable was first initialized (see Figure 3.13). PHP is a dynamically typed

programming language so variables can change types throughout their lifetime. Thus when

Variable Inspection lists all of the steps where the variable changed, it also lists the vari-

able’s type, value (if the type is scalar), classname (if it’s an object), facet (additional info

like public, private, constant, etc.), and number of children/properties (if it’s an array or ob-

ject). The steps also include a button which, when clicked, move the Step Tree to that step

in the execution. For example, Figure 3.13 shows the locations where variable $v changed.

If the user clicks the second step button (where $v is set to 14), then the Inspector jumps

to the location immediately after $v is set to 14 as shown in Figure 3.14. This feature is

similar to that of watchpoints described in Section 1.3. It instantly answers questions like

“what values were assigned to x throughout the execution?” and “when was the last time x

was changed?”.

Another useful tool that PECCit provides is Variable Differencing. Often, a developer

just wants to quickly know what a line of code achieved during the execution without

examining it in detail. With Variable Differencing, the user can select multiple steps in

the Step Tree and the Variable Pane will show any variables that changed over those steps.

This is useful for finding what kinds of side effects a deep function call might have. With

57

Figure 3.12: PECCit Inspector: Variable Inspect Tool

a standard debugger, the debugger only knows the variables at one moment in time and the

user has to manually write down those values if they want to compare them. With PECCit,

just ask if any differences occurred. For example in Figure 3.15, the user has highlighted

three steps which essentially asks “show me every variable that changed from line 3 up to

line 6.” In this case, the array was populated and the page name variable was changed.

3.4.4 Query Info Pane

The Query Info Pane shows the superglobal variables9 that were available at the begin-

ning of the execution. These include cookies, request parameters from GET/POST, and

server info. This pane is purely informational and can be helpful when the user is curious

9http://php.net/manual/en/language.variables.superglobals.php

58

http://php.net/manual/en/language.variables.superglobals.php

Figure 3.13: PECCit Inspector: Inspection Results

59

Figure 3.14: PECCit Inspector: After $v Has Been Set to 14

about how the request was received and what data was sent with the request (like cookie

data). See Figure 3.16 for an example query where a GET parameter was specified. This is

another feature that makes PECCit web development specific.

3.4.5 Search Tool

The Search Tool allows the user to search the variable names and values that were saved

during the session. Users have the option of using wildcards in the search which will match

items which contain the search term instead of perfectly matching it (for example, a search

for ‘data’ would only match ’the database’ if wildcards were used). Figure 3.17 demon-

strates searching for a variable name and Figure 3.18 demonstrates a value search. When

a variable is found, the user can use Variable Inspection by right-clicking the variable. For

60

Figure 3.15: PECCit Inspector: Example of Variable Differencing

61

Figure 3.16: PECCit Inspector: Query Info

example, Figure 3.18 shows the results of searching for the value 136. The user inspects

the variable using the Variable Inspector yielding results shown in Figure 3.19. Then, the

user clicks the second step to see when (the immediate moment after) the variable was set

to 136 (see Figure 3.19).

3.4.6 Step Finder Pane

The Step Finder Pane lets the user search for steps within a file. When the user specifies

a file (and not a line number) and clicks “Find Steps”, the tool will find every time a step

occurred within that file during the execution (see Figure 3.21). When a line is specified,

the tool will return every time that specific line of code was executed. The user can then

click the step button to navigate immediately to that moment during the execution. When

the user right-clicks a step in the Step Tree, the Step Finder Pane is automatically opened,

62

Figure 3.17: PECCit Inspector: Search Tool for Variable Name

63

Figure 3.18: PECCit Inspector: Search Tool for Variable Value

64

Figure 3.19: PECCit Inspector: Search Tool with Inspect Results

Figure 3.20: PECCit Inspector: Jumping to Step From Search/Inspect Results

65

populated with the step’s information, and searched (see an example in Figure 3.22). This

tool can be helpful when the user wants to know every time a function was called, when a

particular line of code was executed, or when execution first entered a file. In the example

in Figure 3.22, the user can easily view every time a Post object was created. Execution

Path Highlighting shows which lines of code were executed but the Step Finder allows the

user to jump to that step immediately.

3.4.7 Capturing

Captures, presented in the Capture Pane, are previews of what a website looks like

when it’s being built during the execution. This is a novel feature provided by PECCit that

is not offered by other debugging tools. For example, Figure 3.23 shows a capture of a

test web page after the header was printed but the rest of the page hadn’t been printed yet.

Capturing must be specifically enabled in the settings and is only performed on whitelisted

files.10 When the user navigates through the steps with the Capture Pane open, they can

watch as the page is being built line-by-line. The page content is presented in an <iframe>

instead of a flat image so the user can still inspect and interact with the HTML, CSS, and

JavaScript of the capture using their favorite browser tool like Chrome’s DevTools11. For

example, Figure 3.24 shows a capture that is being examined by the user using Chrome

DevTools. Though it has a few shortcomings as discussed in Section 3.5.1.5, this is a very

powerful tool.

10If the user wants to capture without variable tracing, just set the tracing settings conservatively by setting
the Property Max Depth and Property Max Children settings to 0. See Section 3.5.1.3 for more detailed
information about settings.

11https://developer.chrome.com/devtools

66

https://developer.chrome.com/devtools

Figure 3.21: PECCit Inspector: Step Finder

67

Figure 3.22: PECCit Inspector: Step Finder from Step Tree

Figure 3.23: PECCit Inspector: Capture Showing Incomplete Web Page

68

Figure 3.24: PECCit Inspector: Using Chrome DevTools with Capture

3.5 Implementation

The PECCit system is comprised of various components and software systems that

communicate with each other. As it is used to help developers debug and learn more about

web applications which are inherently distributed systems, it itself is a distributed system

with independent pieces. From a very high-level perspective, the PECCit system is com-

posed of two main systems. The first is the Automated Debug Server (ADS). This system

is responsible for recording everything that happens in a target framework during a web

request. The second system is the PECCit Web Interface. This is responsible for display-

ing that information back to the user in a comprehensive and understandable way through

the PECCit Session Manger and the PECCit Inspector components. These two systems are

69

shown in the high-level diagram of PECCit in Figure 3.1. This chapter describes how these

systems work from a software level and the implementation behind PECCit’s features.

3.5.1 Automated Debug Server

The Automated Debug Server (ADS) is the backend component for the PECCit system.

It is responsible for tracing the execution of a web request. The following subsections

discuss how the ADS interacts with the execution using Xdebug, how the software was

designed, how sessions are stored, how PECCit offers the novel feature of capturing, and

how PECCit was designed to be language independent.

3.5.1.1 Xdebug

Xdebug12 is an open-source extension for the Zend Engine13. It is written in C and was

originally developed by Derick Rethans14. Xdebug is an incredibly powerful tool to use

when developing PHP websites. It has the ability to better visualize and dump variables,

collect function and stack traces, and even analyze code via code coverage and profiling.

The most important feature that it has, for PECCit, is the ability to debug PHP scripts

remotely.

Xdebug’s remote debugging functionality is feature rich and is used by many popular

IDEs. Xdebug lists some of these IDEs15 including Eclipse, Emacs, Komodo, Notepad++,

NetBeans, etc. Once Xdebug is compiled and installed, PHP is configured to use Xdebug,

and Xdebug’s remote debugging is enabled, a remote debugger is able to use Xdebug to
12http://xdebug.org/
13https://www.zend.com/en/community/php
14http://derickrethans.nl/
15http://xdebug.org/docs/remote

70

http://xdebug.org/
https://www.zend.com/en/community/php
http://derickrethans.nl/
http://xdebug.org/docs/remote

step through the execution of a PHP script and perform the basic functionality of a debug-

ger. Xdebug and the remote interface use an open-source protocol to communicate called

DBGp16.

Using DBGp, the remote debugger is able to perform multiple debugging actions in-

cluding the following:

• Set and get breakpoints

• Step into, step over, step out, stop, and other commands that affect the continuation

of the debugging session

• Retrieve the call stack and stack depth

• Retrieve the context including variables and their values

• Evaluate and execute pieces of code and expressions

When configured and the user provides a remote host address and remote port, Xdebug

communicates with the remote IDE using the DBGp protocol over TCP on the network.

When a request comes in to the server to execute a PHP script, Xdebug will check the

request to see if the user wants to debug the request. A user specifies if they want to debug

a request by including information either in the URL GET parameters, in the POST data, or

as a cookie. Conveniently, there are extensions for the popular browsers which will include

this Xdebug metadata automatically. When developing PECCit, the Chrome extension

Xdebug Helper17 was used. When a request for a page is made and the request is sent with

16http://xdebug.org/docs-dbgp.php
17https://github.com/mac-cain13/xdebug-helper-for-chrome

71

http://xdebug.org/docs-dbgp.php
https://github.com/mac-cain13/xdebug-helper-for-chrome

the Xdebug metadata, Xdebug will ask the remote host if it would like to remotely debug

the request.

3.5.1.2 ADS Design and Workflow

The ADS acts as an automated, remote debugger that communicates with Xdebug.

Figure 3.25 demonstrates this interaction. In the figure, the top right outer box is the user’s

browser.18 The user first requests the target page (TP) over HTTP (like http://example.com/

index.php). The Xdebug Chrome Extension adds Xdebug information to the request before

it is sent out. The request is sent to the server where the target framework (TF) exists.

The TF could be a common framework like WordPress or Drupal, or it could be a custom

PHP site. When the request comes in, it is handled by the PHP engine. Before executing,

Xdebug sees the extra debug information in the request and stops the execution. It contacts

the remote host to see if it would like to perform remote debugging. In the case of the

PECCit system, the remote host is the ADS.

The ADS proceeds to interact with Xdebug during the execution. It regularly asks

Xdebug, using the DBGp protocol, to perform debugging actions like step into/over the

next statement, retrieve the stack depth, retrieve the variables and values, etc. During the

execution, all of the data retrieved is saved in the database as a session. Once the execution

is complete, the page that the PHP engine built is returned back to the user’s browser

(as shown in Figure 3.25) and the ADS finalizes the session in the database. The ADS

then waits on a socket (hence why server is in the name) for another session to connect.

18Chrome was used for developing and testing PECCit.

72

http://example.com/index.php
http://example.com/index.php

Figure 3.25: PECCit Workflow Diagram

Specifically, the PECCit Process Manager (PPM) waits on the socket and when a new

connection is made, the request is handed off to the ADS.

The ADS was written in C++ and was designed and tested on various Unix machines

(Mac OS X and CentOS).19 The ADS executable is started through the command line. The

program was designed to use MySQL20 for the database (though this could be abstracted

in future work). The installation of MySQL creates a mysql.h file which includes defini-

tions of various necessary classes and functions that PECCit uses. Also, the ADS uses the

MySQL Connector/C21 library to interact with the database.

19As the ADS is a prototype used in research, it has not been tested for robustness on various operating
systems and compiler versions (including on Windows machines).

20https://www.mysql.com/
21http://dev.mysql.com/doc/connector-c/en/index.html

73

https://www.mysql.com/
http://dev.mysql.com/doc/connector-c/en/index.html

Another dependency that PECCit uses is an XML parsing and traversal library called

Rapid XML22. This lightweight library is written in C++, is licensed under the MIT li-

cense23, and was created by Marcin Kalicinski. Since Rapid XML is a library, it does

not require installation. Rapid XML is included in the PECCit software project unaltered.

Rapid XML allows for very fast traversal of XML which is crucial for parsing the responses

sent from Xdebug.

3.5.1.3 PECCit Settings

Tracing can be quite expensive in terms of execution overhead, database storage, and

memory usage. Though it’s possible to fully trace a session such that every line of code

is traced and all variables are saved, it is often too costly and the extra data is not needed

during debugging. To make PECCit more practical, various settings can be used to reduce

the amount of tracing that the ADS performs during an execution. These settings are listed

below:

Whitelist

The Whitelist is the most important setting in the PECCit system. The ADS will

only save variable data and perform capturing when the execution is currently in a

file on the whitelist. The whitelist is a list of terms (semicolon separated) that are

matched against file paths to see if the file path contains the term. For example if

the whitelist is “index;utils”, then “/index.php” will be traced, all files under “/utils/”

will be traced, but “/post.php” will not be traced. Thus, it can be used to specify

22http://rapidxml.sourceforge.net/
23http://rapidxml.sourceforge.net/license.txt

74

http://rapidxml.sourceforge.net/
http://rapidxml.sourceforge.net/license.txt

individual files or entire subdomains. For files not on the whitelist, the execution

path will still be saved but the variable data and captures will not be. The Whitelist

setting is important because saving variable data and captures is expensive and should

only be performed on files/folders where the developer suspects a bug. The default

is “ / ” which specifies that all files are on the whitelist.

Step Max Depth

As more and more functions are called, the call stack gets deeper accordingly. By

default, PECCit will perform a Step Into into each of these function calls. This can

sometimes get expensive however (for example, a deep recursive call). Thus, the

system will start to perform a Step Over once the call stack depth reaches the Step

Max Depth setting. It will resume using Step Into commands once the current stack

depth is below the Step Max Depth setting. The default is 50.

Property Max Depth

Properties (variables) can potentially own additional variables (for example, an array

or object). These owned properties could own their own properties and this owner-

ship chain can go arbitrarily deep (or even infinite loop if the object refers to itself or

children refer to their parents). The ADS will only ask for more information about

property children up to the depth set by the Property Max Depth setting. The default

is 4.

Property Max Children

As mentioned, properties can own other properties (like an object or array). The

ADS will automatically ask for more information for each of these children. Thus,

75

a property with lots of children could slow down the trace considerably. To increase

performance, the ADS will only ask for more information from the children up to the

number set by the Property Max Children setting. The default is 75.24

Check Commands Frequency

Internally, the ADS is looping and sending hundreds of messages to Xdebug to com-

plete the trace. If the ADS checked for new commands from the user after every mes-

sage (see Section 3.3.4 about sending commands to the ADS), performance would

drop dramatically. Thus, it checks after a certain number of cycles as set by the Check

Commands Frequency setting. If this number is large, it checks less often resulting in

a performance boost. However the longer it waits to check, the longer a command is

delayed before it’s received by the ADS. The default is 100 which results in a fairly

instant response.

Exclude Address

This is a very technical setting for how the database should compare variables. In

the database, each variable is stored with an address field which is its location in

memory during the execution. If this setting is set to true, then PECCit does not use

the memory address field when comparing two variables to see if they are the same.

When set to false, the addresses of the variables are used. The address field can help

to distinguish between two variables that are seemingly identical (same name, type,

etc.). Further testing with this setting could yield performance improvements. The

default is true and the setting should not be changed without testing.

24Xdebug itself must actually the limit the number of children that can be asked for. If this number is set
quite large, Xdebug slows down dramatically. Thus, a very large Property Max Children should not be used.

76

Capture On

The Capture On setting enables/disables capturing when set to true/false respectively.

Capturing, as shown in Section 3.4.7, can be used to preview a site as it’s being built

line-by-line. Capturing can dramatically reduce performance however and should

only be used when it’s needed. The default is true which automatically enables cap-

turing.

Site

The Site setting is the name of the top-level domain of the website. For example,

“http://www.zachazar.com”. This setting is used when displaying captures in the

PECCit Inspector. Specifically, the iframe that houses the capture is given a <base>

tag with the Site setting so that links are displayed correctly in the iframe.

3.5.1.4 Database and Session Storage

The database is an important component of the PECCit system. All session and system

information is stored in the PECCit database. The database used is MySQL25 since it’s

popular, fast, and open-source. The ADS communicates with the database to save session

information and retrieve settings and commands. The web interface uses the database to

retrieve the session info and update commands and settings.

As discussed in Section 3.4.1, a session is primarily composed of a collection of steps.

Each step represents a line of execution that the program performed. Thus, a step is simply

a line number and a reference to a file. The order in which these steps occur signifies the

order of the execution statements during the program. Throughout the execution of the

25https://www.mysql.com/

77

https://www.mysql.com/

program, there are various variables that go in and out of scope. As variables can take

on different values (and in PHP, these variables can take on different types), the PECCit

system stores these variable values as contexts. Then for each step, the particular context

of a variable is saved in a closure connecting the step to all of the variable values that were

in scope during that step. PECCit uses this somewhat complex schema to reduce repetition

but still store all necessary data and references.

The database stores other information that is also important for sessions and system

operations. Each session has analytics data that saves information about timing, number

of messages, errors, etc. The database also stores captures which are linked to the steps

to provide web page previews for the user. For system operations, the database stores

statuses for the components, commands sent from the components, and PECCit system

settings. This schema is crucial for PECCit operations, though experimentation with other

architectures and technologies could improve performance.

3.5.1.5 Capturing

Capturing is a novel tool that PECCit provides web developers. It allows developers the

ability to watch as the web page is being built line-by-line (after the execution). The core

technology that enables PECCit to allow capturing is PHP’s Output Buffering26. When

Output Buffering is enabled (which it is, by default, on production servers), output from

PHP that is sent to the browser is first stored in an output buffer. Once this output buffer fills

up, the execution ends, or the user specifically flushes it, the contents of the output buffer

are flushed and sent to the browser. If the PHP script is still creating more content for the

26http://php.net/manual/en/book.outcontrol.php

78

http://php.net/manual/en/book.outcontrol.php

page, new content goes into the now-empty output buffer and the process continues. This

mechanism improves performance as it is more efficient to send medium sized messages to

the browser rather than a large number of small ones.

Output buffering can also be controlled by the user. A developer can programmatically

control when the buffer is flushed, how much is saved, and they can even retrieve the

contents of the buffer without sending it. This feature can be used to change something

about the page after it’s built or gain information about the complete page like total page

size or time to build. Output buffering can also be helpful when using template files to

collect their output and use the output within other template files.

For PECCit, the output buffer presents the opportunity to save what the page looks

like after every step. To do this, PECCit inserts code into the beginning of the execution

(using Xdebug) which enables output buffering with a very large buffer.27 Once enabled,

the output buffer slowly fills with the page that would normally be sent to the browser.

Then during execution when on a whitelisted page, the ADS inserts code using Xdebug to

retrieve everything in the output buffer (and not flush it). This data is called a capture in

the PECCit system and is stored in the database. When the execution finishes, the output

buffer is flushed automatically and sent to the browser.

One drawback to capturing is that it has a direct impact on the execution that it is

debugging. As mentioned, capturing inserts code into the running execution. This could

have undefined side effects on the execution if the framework being debugged strongly

relies on output buffering being disabled or uses output buffering itself. When testing

PECCit though, having capturing enabled did not appear to negatively impact WordPress

27See http://php.net/manual/en/function.ob-start.php for more details on enabling output buffering.

79

http://php.net/manual/en/function.ob-start.php

nor Drupal frameworks which both use output buffering to buffer template files. Further

testing on the impacts of output buffering could be beneficial in future work.

3.5.1.6 Language Independence

PECCit is designed to be language independent. The system, unlike most omniscient

and back-in-time debuggers, does not use code injection nor virtual machine control (unless

capturing is enabled). Instead, it gains all of its information about the execution from

a debugging engine offering remote debugging. PECCit is designed to interact with the

debugging engine using the DBGp28 protocol.

Thus, PECCit could be used with other languages/systems if they offer remote debug-

ging using DBGp. ActiveState29, a company which sells a powerful IDE called Komodo30,

offers remote debugging software that use DBGp for debugging Perl, Python, Ruby, and

Tcl.31 These tools can be used by other IDEs, like PECCit, to remotely debug an exe-

cution in one of these languages. For example, Vdebug32 is a multi-language debugger

that relies on remote, DBGp debugging and the authors encourage the use of ActiveState’s

components.33

Though in theory PECCit could debug any language with a DBGp compliant debugger,

the system has not yet been tested to do so. There may be known and unknown complica-

tions within the ADS and PECCit Web Interface that need to be addressed. For example,

28http://xdebug.org/docs-dbgp.php
29http://www.activestate.com/
30http://www.activestate.com/developer-tools/komodo/komodo-ide
31Their latest versions of these remote debugging components can be found at http://downloads.activestate.

com/Komodo/releases/9.3.2/remotedebugging/
32https://github.com/joonty/vdebug
33See Vdebug’s documentation at https://github.com/joonty/vdebug/blob/master/doc/Vdebug.txt .

80

http://xdebug.org/docs-dbgp.php
http://www.activestate.com/
http://www.activestate.com/developer-tools/komodo/komodo-ide
http://downloads.activestate.com/Komodo/releases/9.3.2/remotedebugging/
http://downloads.activestate.com/Komodo/releases/9.3.2/remotedebugging/
https://github.com/joonty/vdebug
https://github.com/joonty/vdebug/blob/master/doc/Vdebug.txt

the ADS relies on the debugger offering certain features like retrieving the call stack and

variable values. If the DBGp compliant debugger didn’t offer those functions, PECCit’s

tracing might be corrupted. Also, certain pieces of the DBGp messages are optional (like

providing a classname when retrieving an object) which could interfere with PECCit’s trac-

ing ability. The PECCit Web Interface also hasn’t been tested with other languages and is-

sues may occur. For example, one known issue is the PECCit Inspector always uses syntax

highlighting for the PHP language and does not check for the language of the source code.

Through testing and further improvements (see Section 5.1.3), PECCit could potentially be

used with many other languages besides PHP.

Another known limitation to language independence is PECCit’s capturing function-

ality. Currently, as described in Section 3.5.1.5, PECCit retrieves captures using output

buffering, a function specific to PHP. However, a form of output buffering is offered by

other languages as well. Ruby on Rails offers Streaming34. ASP.NET offers Response

Buffers35. Perl offers buffering through its IO:Handle36. These technologies could be uti-

lized to offer capturing with other languages as well, though further testing and develop-

ment would be needed (see Section 5.1.3).

3.5.2 PECCit Web Interface

The PECCit Web Interface provides the two web applications that can be used to access

the PECCit system: the PECCit Session Manager and the PECCit Inspector. When the user

requests one of these applications, it is built dynamically using a combination of template

34http://api.rubyonrails.org/classes/ActionController/Streaming.html
35https://msdn.microsoft.com/en-us/library/ms526001(v=vs.90).aspx
36http://perldoc.perl.org/IO/Handle.html

81

http://api.rubyonrails.org/classes/ActionController/Streaming.html
https://msdn.microsoft.com/en-us/library/ms526001(v=vs.90).aspx
http://perldoc.perl.org/IO/Handle.html

files (HTML, CSS, JavaScript, etc) and information from the database (as shown in Fig-

ure 3.25). These applications are capable of presenting and altering data in the database

and managing sessions. The following subsections describe the implementation of these

applications and how the web Interface constructs them.

3.5.2.1 Handling the Data

There is a lot of data contained in the PECCit system with large variable traces, cap-

tures, source code, analytics, commands, etc. PECCit utilizes two classes in the PEC-

Cit Web Interface which manage this data. The first, and most important, is the Session-

Manager class. This PHP class is responsible for accessing all session information in the

database. It is able to retrieve a list of sessions, all of their variables/values, captures, ana-

lytics, settings, etc. It can also read, syntax highlight, and return source code files. It is the

primary utility class to access the database and debugging information.

The second necessary class that the Web Interface uses is the SystemManager class.

It is capable of reading the system statuses of the different PECCit components in the

database and can send messages to the different components through the database. The

SessionManager and SystemManager classes are shown in Figure 3.25 along with their

interactions with the Target Framework (for source code) and with the database (for session

and system information).

Using these two classes, the PECCit Web Interface offers a REST API37 to handle

the PECCit system data. The API is capable of returning session information, system

37Representational State Transfer (REST) is a common protocol that client-server architectures often use
to request, alter, and transfer data. More information can be found at http://www.ics.uci.edu/∼fielding/pubs/
dissertation/rest arch style.htm or https://en.wikipedia.org/wiki/Representational state transfer.

82

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://en.wikipedia.org/wiki/Representational_state_transfer

commands and statuses, captures, source code, etc. The data returned is often in JSON

format or raw HTML to be inserted into a web page using JavaScript. The REST API

also allows for modifications to the system like changing settings, sending commands, and

deleting sessions.

3.5.2.2 PECCit Session Manager Implementation

As discussed in Section 3.3, the PECCit Session Manager is a web application which

manages and controls the entire PECCit system. It is built by the Web Interface using PHP

and template files. When built, the most recent session/system data is built into the page

using the SessionManager and SystemManager classes.

The application utilizes JavaScript (specifically, jQuery38) to respond to user interac-

tions. The JavaScript code uses AJAX39 to query the REST API to adjust the page dynam-

ically without having to reload the page. For example when the user clicks to refresh the

session list (see Figure 3.2), a JavaScript function is fired which makes an AJAX request

to the REST API on the server asking for the list of sessions. When it receives the list, a

callback function is executed which replaces the list being displayed on the user’s browser

with the latest list received from the server. It uses AJAX to refresh and delete sessions,

refresh and change settings, refresh and send system commands, and refresh the system

status list.
38jQuery is a JavaScript library that improves upon JavaScript functions including handling AJAX calls

and traversing/modifying the DOM. See https://jquery.com/ for more information.
39AJAX is a strategy for querying the server for data without the need to reload the page. See https:

//developer.mozilla.org/en-US/docs/AJAX

83

https://jquery.com/
https://developer.mozilla.org/en-US/docs/AJAX
https://developer.mozilla.org/en-US/docs/AJAX

The PECCit Session Manager (as well as the PECCit Inspector) primarily uses Boot-

strap40 for appearance and web page layout. Bootstrap is an open-source, frontend frame-

work that enables a developer to quickly build responsive web applications that look great

without much additional styling. In the PECCit Session Manager, Bootstrap supplies the

basic styling (layout, fonts, tables, etc.) and a few JavaScript/jQuery plugins (the modals

used for creating settings and commands). Of course, PECCit also has custom CSS to

adjust styling but Bootstrap greatly assisted in getting PECCit up and running quickly by

providing lots of features out of the box.

3.5.2.3 PECCit Inspector Implementation

The PECCit Inspector is a much more complicated component than the Session Man-

ager. As discussed in Section 3.4, the PECCit Inspector is capable of browsing source code

and variables, searching for variables, and displaying captures for a session. When the

page is first requested by the user, not everything is built into the page as there is a lot of

information involved in a session. Instead, only the basic layout and minor information is

returned with the page.

The PECCit Inspector uses AJAX and lazy-loading to improve performance and us-

ability. Once the page is returned to the user, an AJAX request is sent to the REST API to

retrieve the steps for the session. This takes time (as there are typically thousands of steps

in a single request) so retrieving them using an AJAX request allows the user to explore the

Inspector while they load. Then additional information is only retrieved when the user asks

for it (lazy-loading). For example when a user clicks a step in the Step Tree (see Figure

40http://getbootstrap.com/

84

http://getbootstrap.com/

3.8), the source code for that file, the variables for that step, and the capture are retrieved

dynamically using multiple AJAX requests to the REST API. This greatly improves per-

formance as the user might not need all information for all steps and all source code files

when they’re debugging. Once something is retrieved (like the source code for a file or a

list of variables), then it is saved in the browser so it won’t need to be retrieved again. The

other tools like Step Finder and Search also utilize AJAX and REST. This strategy allows

the PECCit Inspector to have reasonable load times while still allowing access to a vast

amount of information (as the user needs it) without needing to reload the page.

The Step Tree and Variable Pane (see Figure 3.9) are powered by a JavaScript library

called jsTree41. jsTree is open-source under the MIT License42 and is capable of creating

and displaying interactive trees to the user. The user can expand tree items, drag and

drop, search, etc. using the library. On the PECCit Inspector, jsTree is used to display

the steps and variables to the user. This enables the user to see the steps and variables in

an expandable and easy-to-read format. On creation, the tree is customized in the PECCit

Inspector for certain icons and clicks. The library itself is unaltered however.

Similarly to the PECCit Session Manager, Bootstrap is used for basic styling and lay-

out. In addition to layout and font, it provides the input groups used by the Step Finder

and Search, and the tooltips used by the step navigation buttons (see Figure 3.10). Most

importantly, it provides the tabbing functionality used by the various panes.

Captures, similarly to variables, are retrieved from the REST API using AJAX when

the user clicks on a step. The contents of the capture (HTML, CSS, JavaScript, etc.) are

41https://www.jstree.com/
42https://opensource.org/licenses/MIT

85

https://www.jstree.com/
https://opensource.org/licenses/MIT

displayed to the user using an <iframe>43. As discussed in Section 3.4.7, this iframe acts

like a small browser so the user can interact with the contents of the capture like it’s an

actual web page (and debug it using browser tools like Chrome’s DevTools44).

43https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
44https://developer.chrome.com/devtools

86

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://developer.chrome.com/devtools

Chapter 4

Evaluation and Analysis

Evaluation of a software tool like PECCit can be difficult without a large, human-based

empirical study. Often, tools will do performance testing ([LGN08, LHS97, BM14]) to

show that their tool doesn’t require much overhead (at least compared to similar tools) but

this doesn’t necessarily support that the tool is useful. Since PECCit doesn’t aim for perfor-

mance benchmarks, performance testing wouldn’t be an effective evaluation. Other tools

(in addition to performance testing) will perform user studies with a handful of developers

([KM08, MBP11a, BBKE13]). Though encouraging, these studies typically have far too

few participants to support a definitive claim of value presented by the tool.

Other researchers used their tool on real-world problems to demonstrate its effective-

ness. For example, one group used their tool to find bugs in real-world web applications

[ADTP10]. Another tool was used to find a bug in the popular Firefox browser [KFH13].

Another tool was shown to help a developer answer possible conjectures about two Java

frameworks [GDJ02]. These case studies demonstrate effectiveness, though admittedly

87

they do not prove it. As PECCit was designed to offer features not previously offered by

similar tools (omniscient debugging for backend web development), the case study strategy

was used to demonstrate its effectiveness.

The case studies chosen were questions/topics/bugs brought up by real people from

support forums. Four of the case studies use the WordPress framework1 from the corre-

sponding support forum2. One case study uses the Drupal framework3 from its support

forum4. WordPress and Drupal are popular Content Management Systems (CMS) with

users ranging from no coding experience to advanced developers. The two frameworks

were both chosen because there are thousands of posts for support for each system, they

are complex frameworks with many working pieces, and the backend of both WordPress

and Drupal are written in PHP. The goal of these case studies is to show how a developer

new to WordPress or Drupal could use PECCit to solve potentially complex problems.

The case studies do not necessarily solve the problems but often lead the developer into a

direction to solve them.

The case studies were not picked at random, but were selected based on their presumed

likelihood of demonstrating the various features of PECCit. PECCit traces the backend of

a web framework as it is building the content of a page. Thus, forum questions involving

front end appearance (i.e. “the font is too small”) or JavaScript interaction (i.e. “the button

doesn’t work”) were ignored as they are not (typically) created by backend bugs but rather

CSS and JavaScript (though as you will see in Case Study 5, the ‘bug’ was actually in

CSS). Other forum posts involving separate entities like cacheing, security, e-commerce,

1https://wordpress.org/
2https://wordpress.org/support/
3https://www.drupal.org/
4https://www.drupal.org/project/issues/

88

https://wordpress.org/
https://wordpress.org/support/
https://www.drupal.org/
https://www.drupal.org/project/issues/

and social media connectors were also ignored since reproducing the post’s reported bugs

would be nearly impossible without the user’s credentials to the third parties often used by

these entities. A number of posts do not report buggy activity but rather ask about plugin

features (or request them). These posts were also ignored as only posts reporting buggy

activity most likely caused by the backend framework were considered.

The researcher in these case studies was moderately experienced with web development

but was only slightly experienced with WordPress and Drupal. The researcher had previ-

ously developed with HTML, CSS, PHP, and JavaScript. They were familiar with the basic

functionality of WordPress and Drupal, but were inexperienced with more advanced top-

ics like plugin/theme development, AJAX requests, and how WordPress and Drupal build

pages. The user was familiar with how to debug with PECCit including how to use the

settings properly.

4.1 Case Study 1: Non-Admin Can Upgrade Database

4.1.1 Background

The WordPress community regularly releases major and minor updates to the Word-

Press core framework and plugins to fix bugs, to patch issues, etc. To update WordPress,

the site administrator can either:

• Use the wp-admin web interface to perform the update through the browser

• Setup the site to perform automatic updates without the site administrator needing to

interfere

89

• Update manually by downloading the latest version on the server and replacing the

necessary files

For each of the techniques after the files have been updated, the database needs to be

updated. The update often needs to change the structure/schema of the database or its

content. While the database update is in progress, the site might have strange behavior as

users might retrieve an old or partial copy during the update. It is best to perform updates

at low-usage times and on a test site first.

4.1.2 Problem

Typically after updating a plugin, the site administrator visits any link under the /wp-

admin/ subfolder and the WordPress framework redirects the administrator to a page which

encourages the administrator to perform a database update (WordPress will perform the

update for you). In this ticket5 (see Figure 4.1), the issuer noticed that if anyone (even

anonymous users) go to /wp-admin/, the WordPress core will ask if they want to update.

This includes visitors who are not logged in as an administrator.

This could result in various problems. Maybe the administrator has purposefully not

performed the update because:

• They think it could damage the site.

• The site/server is experiencing heavy traffic and they worry it could result in down

time.
5https://core.trac.wordpress.org/ticket/34200

90

https://core.trac.wordpress.org/ticket/34200

• The administrator is performing a database backup (which is recommended) in case

the update breaks something.

• Probably most dangerously, maybe the site updated automatically but the administra-

tor hasn’t logged in yet to update the database (and perform a backup of the database

first).

Since an anonymous user can update the database without an administrator being aware,

they could inadvertently/maliciously affect the website. By updating the database, they

could cause the site to have downtime during high peak usage, it could cause errors to the

appearance, or even potentially expose security concerns.

4.1.3 Setup

The issuer of the bug said that they noticed the update request when they upgraded

from WordPress version 4.30 to 4.31 (though this apparently occurs with most, if not all,

updates). To prepare for debugging, a fresh install of WordPress using version 4.30 was

installed on the development server. The site was then upgraded the site to 4.31. As the

development server used is not configured to allow WordPress to update itself, the manual

method was used for the update. As an anonymous (non-logged in) user, the /wp-admin/

subfolder was visited in the testing browser and confirmed that it does ask to update the

database without needing to login (see Figure 4.2). In this case study, assume the developer

is not experienced with WordPress and does not know how to fix this problem or even learn

more about it.

91

Figure 4.1: Case Study 1: Forum Post

92

Figure 4.2: Case Study 1: Update Screen

4.1.4 Using PECCit

In another browser (and signed out), the researcher activated the Xdebug chrome ex-

tension to debug. The main goal was to view the execution of a visitor to /wp-admin/,

specifically the execution path and no the variable data. Thus in the Session Manager, the

researcher enabled a deep Step Path Depth and turned off variable tracing and capturing.

Next, the user turned on the PECCit system and visited /wp-admin/ in the separate browser

(as an anonymous visitor) and verified that PECCit is running in the Session Manager. The

request finished after 34 seconds and another request immediately went through the sys-

tem. PECCit tracks this second request automatically and it finished after 44 seconds (see

Figure 4.3). The first page, as seen through the browser, appeared to have redirected to the

second. After running, the PECCit Inspector was used on the first request. Normally if a

visitor goes to wp-admin as an anonymous user, it would ask them to log in. Instead since

93

the database needed to be updated, the page was redirected and asked the user to update.

The next question was to see where it made the decision to redirect the user.

Since PECCit sees the entire execution, one can quickly jump to the final steps of the

execution using Step Over (see Figure 4.4). Here the code path entered an elseif clause

since apparently the db version option didn’t match the wp db version variable (most likely

setup in initialization). As a new WordPress developer, the user might note that appar-

ently WordPress keeps track of what version it’s currently using and it makes sure that the

database is on that version. Since the versions didn’t match, the execution decided to redi-

rect the user to the upgrade.php page. Right here (or in the elseif clause), the code really

should check if the user is logged in. Looking in the documentation, there is a function

current user can($capability) which checks if the current user to the page can perform a

capability. Perhaps the update-core capability could be used here. If the user is logged

in and has the privilege to update core, then they can update the database. Inserting this

conditional would probably fix this bug and make the system more secure when performing

updates. Even more secure would be to check if the user is logged in on the redirected site

as well. Using the PECCit Inspector on the second session (the redirected page), one can

see (see Figure 4.5) that WordPress doesn’t check if the user is logged in. Perhaps before

including the update.php file and displaying the option to the user, the framework should

check if the user is logged in.

4.1.5 Analysis

PECCit was useful in this case study because it allowed the developer to quickly view

the execution path. The user didn’t have to dig through source code and guess what would

94

Figure 4.3: Case Study 1: Session Manager

be executed. It could be argued that a standard debugger could have been used to perform

this walkthrough of the execution path. However if the user steps too far or if the developer

accidentally clicks to perform the database update, then they would have to reinstall every-

thing and do it over again since standard debuggers do not save debugging sessions. With

PECCit, the user just had to visit the link and everything was saved to a session. Even if

they accidentally clicked to update, the session is saved so they can walk through it when-

ever they had time or if they wanted to show someone else. Also, perhaps the user wasn’t

expecting the redirect and wants to analyze the redirect session. PECCit automatically

records everything so the redirect was saved as well. A traditional debugger might not be

configured to debug the second, unexpected request. In this example, PECCit was useful

for understanding the execution path and moving forward in time very quickly without the

fear of a “step over” command overstepping the mark.

95

Figure 4.4: Case Study 1: First Session

96

Figure 4.5: Case Study 1: Second Session

97

4.2 Case Study 2: Missing Logo on Theme

4.2.1 Background

WordPress works by having a main core (which handles management of content, users,

pages, routing, etc), plugins (which give additional functions like e-commerce, widgets,

etc), and a theme. The theme is responsible for the basic appearance of the site. Often,

themes will allow users to edit their logo and site title. Many themes are free and are

created and maintained by the community. In the WordPress support forum, a user asked

about a free theme which was having an issue.6

4.2.2 Problem

In the forum post (see Figure 4.6), the user was finding that they could upload a logo to

be used by a theme called Trident-Lite7, but the logo wasn’t appearing when they looked

at the site. Oddly, they saw the logo when they previewed the site from the administrator

panel, but not when they viewed the actual site. The question/issue had initially been asked

6 months prior to this case study but no one responded to the inquiry. An additional user

responded a couple days prior to the study asking if the user had found a way to fix the bug

indicating that the bug could still be present.

6https://wordpress.org/support/topic/logo-missing-2
7https://wordpress.org/themes/trident-lite/

98

https://wordpress.org/support/topic/logo-missing-2
https://wordpress.org/themes/trident-lite/

Figure 4.6: Case Study 2: Forum Post

99

Figure 4.7: Case Study 2: Preview With Image

4.2.3 Setup

A fresh install of a WordPress site was created on the research server. The Trident-

Lite theme was installed, a logo image was added, and the modifications were saved. This

successfully recreated the bug. One was able to see the logo image in the preview (see

Figure 4.7) but when the main site was visited, the image was not there (see Figure 4.8).

4.2.4 Using PECCit

First, the code responsible for printing the logo needed to be found. As the logo was part

of the header of the page, the researcher looked in a file called header.php and, by browsing

through the source code on the command line, found the code which would print the logo

100

Figure 4.8: Case Study 2: Home Page Without Image

image (see Figure 4.9). Tracing is expensive so finding this file allowed the trace to be fairly

specific by listing the header.php file on the whitelist. It appeared that the logo would only

print based on certain theme settings that were retrieved using the get theme mod() func-

tion. Looking in the WordPress documentation, this function belongs to a core WordPress

file called theme.php. This file contains functions which are useful to theme developers (in-

cluding the get theme mod() and set theme mod() functions which can be used to get/set

theme settings in the database). This WordPress core file was whitelisted as well. For the

rest of the settings, capture was turned off, a deep step max was set, and a reasonable max

children and property max depth were used. Then with debugging enabled and the ADS

running, the researcher visited the home page.

The trace required a little over 3 minutes and completed successfully. From looking at

the source code earlier, line 72 of the header.php file appeared to be the beginning of the

101

Figure 4.9: Case Study 2: Header File

if statements for printing the logo (see Figure 4.9). Thus, this was a good place to start

debugging. The Step Finder (see Figure 4.10) was used to directly jump to that line in the

execution. At this point, Step Into was used to discover that get theme mod(“trident logo”

) correctly returned a file name, but get theme mod(“trident logo type”) didn’t return

“image” as the trident logo type theme modification wasn’t specified (see Figure 4.11).

Thus, the line of execution goes to the else clause and the logo-text is printed.

Using this information, it appears that the theme settings weren’t correctly saved when

the logo was uploaded. The user quickly gained valuable insight into the bug. On a hunch,

the researcher went back to the administrator panel where the logo image could be selected.

To test, the text logo option was toggled and saved. Then the image logo option was toggled

and saved. It was presumed that this specifically told the theme to use the logo image. When

visiting the main page, it appeared that this fixed the bug as the image was correctly being

displayed (see Figure 4.12).

To see what happened, the same trace was performed now that it was working. It

required about the same amount of time. Doing the same actions as before in the PECCit

Inspector, it was confirmed that this time get theme mod(“trident logo type”) returned

“image” (see Figure 4.13). Thus, the logo was printed to the screen and the side effect of

102

Figure 4.10: Case Study 2: Step Finder

the bug was fixed. Note here that the bug itself (not correctly saving the logo settings when

installed) was not fixed.

4.2.5 Analysis

PECCit was valuable in this case study because it allowed one to quickly jump to a line

of code in the execution, see what happened there, and what the variable values were. This

is similar to a breakpoint in a standard debugger. What’s powerful here though is that the

debugging sessions are saved and show what the variables were at that time (like the theme

modification settings). This debugging session could be shared with the theme developer

to give them insight into how to fix the bug. As a PECCit user, the researcher was able

to quickly find the bug, fix it temporarily, and gain insight into the bug’s location to tell

the theme developer without really needing to understand how WordPress works or how

103

Figure 4.11: Case Study 2: Modification Settings Before Fix

Figure 4.12: Case Study 2: Home Page With Image

104

Figure 4.13: Case Study 2: Modification Settings After Fix

the theme was designed. Also since PECCit is an omniscient debugger, one could step

backward and forward in time without worrying about overstepping. With the ability to

whitelist the trace, a partial trace was performed of only the files of interest which saved

time and storage.

4.3 Case Study 3: Duplicate Stores In Plugin

4.3.1 Background

As mentioned in Case Study 2: Missing Logo on Theme, WordPress allows the use of

plugins to extend the core functionality of the framework. One plugin is called WP Store

Locator8. It allows the site administrator the ability to add stores to the site and the users

8https://wordpress.org/plugins/wp-store-locator/

105

https://wordpress.org/plugins/wp-store-locator/

can search for stores near their location. The plugin displays the nearby stores on a Google

Map embedded on the page.

4.3.2 Problem

A user wrote on the support forum (see Figure 4.14) that they were seeing duplicate

entries for stores on their page.9 They wrote that the same store will sometimes show up

four different times in the search list and, even though the duplicate stores are at the same

location, they show different distances. Before starting the case study when navigating to

the user’s site (an all-natural fertilizer site), it was confirmed that entries were showing up

four times (though unfortunately, a screenshot wasn’t taken of the user’s site before they

fixed it).

4.3.3 Setup

The WP Store Locator plugin was installed on a test WordPress site. A test store was

added to the plugin and the location was specified. When navigating to the browser, one

could see the test store in the results list as well as on the map (see Figure 4.15). The store

only showed up once however. The settings were adjusted trying to recreate the duplication

problem that the user was experiencing but unfortunately the duplication problem could

not be reproduced. Thus, the purpose of this case study is to demonstrate what a developer

might do if they were seeing a duplication problem.10 Using PECCit on the client’s system

9https://wordpress.org/support/topic/multiple-copies-of-stores-returned-in-search
10It’s often difficult to exactly recreate a problem that someone is experiencing and describing on a support

post without access to the database and the code (another plugin or other custom code could be interfering).

106

https://wordpress.org/support/topic/multiple-copies-of-stores-returned-in-search

Figure 4.14: Case Study 3: Forum Post

107

Figure 4.15: Case Study 3: Test Plugin with Test Store

could alleviate this problem because the traces can be saved and shared with others (even

if the technical team nor developer can’t access the database nor recreate the issue).

4.3.4 Using PECCit

First, a deep step trace (without capturing nor variable tracing) was performed. The goal

was to see what lines of code were executed using the Execution Path Highlighting feature

of PECCit. When traced, surprisingly two requests came into the system (see Sessions

1 and 2 in Figure 4.16). Since PECCit automatically records everything coming in, both

108

Figure 4.16: Case Study 3: Sessions

requests were recorded (which is a very nice feature since it was not known that the second

request was going to come. A traditional debugger most likely would not break on this

request). The first request appeared to load the appearance of the page while the second

request, an AJAX request from the browser, searched for store locations and returned them.

Since the AJAX request dealt with the the list of stores and the support post referred to

duplicates in the list of stores, then the AJAX request was most likely where the bug would

be.

The PECCit Inspector was used to analyze the AJAX request. Instead of following

the lines of execution, the researcher wanted to quickly see where in the code the data

(stores) were loaded. The user clicked on the source files to quickly scan the Execution Path

Highlighting. After trying a couple files, the frontend/class-frontend.php file was examined

with the presumption that this could perhaps be a frontend issue. Quickly scrolling, one

109

could see that most of the coverage was in a store search() function. A comment above it

read “Handle the Ajax search on the frontend” indicating this might be near the bug (see

Figure 4.17). At the end of the function, there was a line of code that was sending (as

JSON) a variable called $store data. It would be handy to see the value for $store data,

but the file was not whitelisted for this session. Since this was an AJAX request and the

number of steps were low for the session, it was decided to retry the AJAX request but

with the whitelist changed to trace the entire plugin. With this setting, all execution in the

plugin would be traced. On the test site, a “search” was performed for nearby stores to fire

the AJAX request again. After about one minute, the session was done (see Session 3 in

Figure 4.16).

With this new session, there was no need to waste any time to get to that same line of

code. To quickly jump there, the Step Finder was used to look for that line of code in the

file (see Figure 4.18). Next, the Variables tab for the $store data variable was examined.

Here, one could see that it was an array containing the one store that was expected (see

Figure 4.19). If one were the site administrator having the duplication problem, this would

be a great place to check if there were four items for each single item.

Let’s say that there were four items in $store data. Next, one would need to find out

where that $store data array is loaded. The developer could search through source code

and, if they were using a traditional debugger, re-fire the AJAX request and break on that

initialization line hoping they haven’t over stepped, but they don’t need to do any of that

with PECCit. All one needs to do is right-click the variable and Inspect (see Figure 4.20).

In the inspection results (see Figure 4.21), the first step is where the variable initially came

into scope and is uninitialized. The second step is more interesting because this is where

110

Figure 4.17: Case Study 3: Store Search

111

Figure 4.18: Case Study 3: Step Finder

it became an array. Clicking on the second step, PECCit shows earlier in time when the

$store data variable was initialized to an array in a find nearby locations() function. Here,

one could step forward to see how the plugin developer queried the database to find nearby

locations. On line 208, one can see that the database is queried (through WordPress’s

database abstraction) for the nearby stores (see Figure 4.22). The developer can look at

the $stores variable to see what is returned from the query. In this case, it is the single

store. This would be an important place for the user with the duplication problem to see

if there are duplicate entries in $stores. If there are, the error is most likely caused by a

corrupt database, an incorrect SELECT statement, or the results are corrupted during the

abstraction process (maybe from another plugin) since the results are directly returned from

querying through the database abstraction. If there are not duplicate locations, there could

be an error caused by line 211 where filters are altering the data.

112

Figure 4.19: Case Study 3: $store data Array

Figure 4.20: Case Study 3: Variable Inspector Tool

113

Figure 4.21: Case Study 3: Results of Variable Inspector

Figure 4.22: Case Study 3: $stores Array

114

4.3.5 Analysis

This case study highlights a number of powerful tools that the PECCit system offers.

First, the automatic tracing was able to capture the second, unexpected AJAX request.

Next, the Execution Path Highlighting feature allowed for quickly seeing what code was

executed in the plugin without being familiar with the plugin or WordPress AJAX handling.

Next, it was easy to rerun the AJAX request but with different settings (specifically, variable

tracing). The sessions required very little time (under 1 minute each) since the whitelist

was specific. Next, Step Finder was used to quickly jump to the line of code that seemed

interesting. One could argue that this process was similar to a standard debugging session

where one starts debugging, sets a breakpoint into the future, then “resumes” until the

breakpoint is hit. However in this scenario, the user wanted to go to that line of code with

the intention of going backwards after that (something standard debuggers don’t offer).

With the Variable Inspector and the tools that omniscient debugging give, one was able

to go back in time to see when and where the $store data variable was initialized and

populated. Not only that, but the researcher was able to see the values of other variables

like $stores which previously weren’t of interest. Lastly as with the other case studies,

these sessions can be saved and shared with other developers. They can even be viewed

and walked through at the same time by other developers since the application is web based.

Thus, recreation on the developer’s side isn’t necessary if the client can capture the faulty

behavior in a single trace on their side.

115

4.4 Case Study 4: Incorrect View Count Plugin

4.4.1 Background

WordPress can get fairly complicated under the hood with all of the different plug-

in/theme options for interacting with page creation, interrupting the system, and altering

the framework’s work process. Hooks are a standard way for plugins and templates to in-

teract with pages being built. Hooking11 is a way for the developer to attach to / remove

code from a particular event (action hook) or alter data fired with a particular event (filter

hook). For example when WordPress’s core is building the footer, it fires a wp footer event

that a plugin or theme can hook to and change the footer’s appearance.

4.4.2 Problem

A number of users in a support forum12 were having problems with a plugin that they

were using called Page View Count13 as shown in Figure 4.23. This plugin allows the site

administrator to attach statistics to a page showing the visitors how many times a page has

been viewed (that day and all time) as well as a number of other features/settings. The

forum users explained that the count was showing incorrect values and displaying oddly on

the home page but it was working fine on other pages. Thus for whatever reason, it was

malfunctioning on the home page.

11http://codex.wordpress.org/Glossary#Hook
12https://wordpress.org/support/topic/counts-disappeared
13https://wordpress.org/plugins/page-views-count/

116

http://codex.wordpress.org/Glossary#Hook
https://wordpress.org/support/topic/counts-disappeared
https://wordpress.org/plugins/page-views-count/

Figure 4.23: Case Study 4: Forum Post

117

Figure 4.24: Case Study 4: Home Page with Incorrect Formatting

4.4.3 Setup

Using the test WordPress site used for the other case studies, the Page View Count

plugin was downloaded and installed. The settings were altered such that a count would

be displayed on every page (including the home page). It was verified that the count was

incorrectly displayed on the home page (see Figure 4.24) and was not counting visits when

users would visit the page. A test page (non-home page) was created and confirmed that

the count was correctly displayed on this page and it was increasing correctly when users

would visit the page via other browsers. (see Figure 4.25).

4.4.4 Using PECCit

To start, a variable trace of the home page was performed with a large step max and

a whitelist of the entire plugin. The max children and property depth were moderate and

capturing was turned off. The session required around 6 minutes to trace (see Session 1 in

Figure 4.26). The page created during the trace had the page count issues and it showed

118

Figure 4.25: Case Study 4: Test Page with Correct Formatting

the page count as “12”. Since it was unknown in the code where there was a problem

or even when the plugin was used during the execution, the Search tool was used. The

variable value of “12” was searched (since that was the page count) as shown in Figure

4.27. The first variable was inspected (see Figure 4.28) which found when the variable was

created (see Figure 4.29). After clicking the link, one could see that the variable was used

in a function called pvc get stats() (see Figure 4.30). The level of execution was 13 levels

down, so it would have been very difficult to find this step so quickly without the Search

tool. The function appeared to be responsible for creating the HTML that would show

the page count for this page. The $output html variable (which was going to be returned)

looked fine at this line of code but the last line of code appeared to apply filters to the

HTML.

119

Figure 4.26: Case Study 4: Sessions

The next question was, “do any of those filters change the HTML causing the bug?” At

this point, one could step forward and manually look at the $output html variable in hopes

of spotting a difference (if one exists) but instead the Variable Differences tool was used

(as described in Section 3.4.3). Thus, one could simply highlight the next Step and confirm

that there were no differences made to the variable from the filtering (see Figure 4.31).

Stepping out (to get a better grasp of where the code execution had gone), the func-

tion had been called by a function called pvc stats counter() (see Figure 4.32) which was

called by a pvc stats show() (see Figure 4.33). The resulting HTML being created seemed

correct. To compare this HTML, a trace of the test page where the count was being dis-

played correctly was performed (see Session 2 in Figure 4.26). Using the Step Finder (see

Figure 4.34), the line where the HTML was created was instantly jumped to and it looked

identically formatted to that created by the home page (see Figure 4.35). Thus, something

was altering the HTML – perhaps the theme. Stepping out in the front page session, one

could see that the theme was using a front-page.php file. Stepping out in the page session,

it appeared to be using a content-page.php theme file to display the page. Looking at these

120

Figure 4.27: Case Study 4: Search Tool Results for ”12”

121

Figure 4.28: Case Study 4: Inspect Tool in Search Results

Figure 4.29: Case Study 4: Results of Inspecting $results->today

122

Figure 4.30: Case Study 4: Results from pvc get stats() of Home Page

Figure 4.31: Case Study 4: Differences Tool on Two Lines

123

Figure 4.32: Case Study 4: Results from pvc stats counter() of Home Page

files, one could see that the two files retrieved the page content differently (see Figure 4.36).

The home page used a get the excerpt() WordPress function to get the content and the page

used a the content() WordPress function. Looking in the documentation, these functions

are associated with the get the excerpt14 and the content15 hooks respectively. Curiously,

it was noted that that the plugin had a function for retrieving the page view count when

an excerpt is requested (which is what is needed on the home page), but Execution Path

Highlighting showed that this function wasn’t being used for the home page (see Figure

4.37).

Using grep16, the plugin was searched for where these hooks were attached. Hooks are

attached using the add action and add filter so these strings were used as search patterns.

The hooks were found in a plugin-init.php file (see Figure 4.38). It appears that this is

where the bug is. The plugin author decided to hook to the excerpt and the theme was

14https://developer.wordpress.org/reference/hooks/get the excerpt/
15https://developer.wordpress.org/reference/hooks/the content/
16grep is a tool that can be used to search through files and content for a specific search pattern. See the

manual page at http://www.gnu.org/software/grep/manual/grep.html

124

https://developer.wordpress.org/reference/hooks/get_the_excerpt/
https://developer.wordpress.org/reference/hooks/the_content/
http://www.gnu.org/software/grep/manual/grep.html

Figure 4.33: Case Study 4: Results from pvc stats show() of Home Page

Figure 4.34: Case Study 4: Using Step Finder

125

Figure 4.35: Case Study 4: Results from pvc stats show() of Page

Figure 4.36: Case Study 4: How the Home Page versus the Test Page Retrieves Content in the
Theme

126

Figure 4.37: Case Study 4: Using the Normal Version Instead of Excerpt Version on the Home Page

127

Figure 4.38: Case Study 4: Initialization of Hooks

using the get the excerpt. Interestingly, the author had a line to hook to the get the excerpt

event but it was commented out (also visible in Figure 4.38). To attempt to fix the bug, the

comment was removed from this line and the faulty hook was commented out. Now when

visiting the homepage, it appeared that the bug was fixed and the page count was displaying

correctly (see Figure 4.39).

4.4.5 Analysis

As the user is presumed to be new to WordPress development, it cannot be said if

the bug was caused by the theme’s author using the wrong hook or the plugin’s author.

However, what can be said is that PECCit made it easy to navigate through the framework

and find what was needed to fix the bug. This case study showed the use of variable tracing,

variable inspection, variable differencing, the Step Finder, the Search tool, Execution Path

Highlighting, and backward step operations. Using the Search tool, one was able to quickly

128

Figure 4.39: Case Study 4: Home Page with Correct Page Count Formatting

jump into the action without having to scan through source code and guess where to start

debugging.

With a standard debugger, the user would have had to guess where to set a breakpoint

and hope that they didn’t over jump. Also, the user most likely couldn’t have had two

debugging sessions going on at once with a traditional debugger so they would need to

write down or remember the variable names to compare. With this example and PECCit,

the user had the two sessions open in different tabs and easily looked between them (see

Figure 4.36). Variable inspection was used to see where variables where created/changed

and the user jumped back in time to when the page view stats were calculated. Variable

differencing was used to see if certain lines changed the variables that appeared to be related

to the bug. The user was able to step out and back to understand the call stack (but then

step in if needed and move through time freely). The traces required around 6 minutes each

which, understandably, most developers would probably not want to wait. Thus, further

improvements to speed could make this case study even more realistic (see Section 5.1.1).

129

4.5 Case Study 5: Capitalized Titles in Drupal Theme

4.5.1 Background

Similarly to WordPress, Drupal has a main core (which handles content management,

users, etc), modules (which add functionality like WordPress plugins), and a theme (which

is responsible for the appearance of the site).

4.5.2 Problem

Using the Business theme17, a user was finding that the theme was automatically capi-

talizing all of the words in the titles of their content (see Figure 4.40 for the forum post).18

They preferred that the theme leave the capitalization decisions to the user as they did not

want words like “the” and “a” to be capitalized.19

4.5.3 Setup

With the assumption that the developer is new to Drupal (and perhaps even web devel-

opment), a reasonable guess as to what was happening is that some code in their Drupal

instance (whether it is Drupal core or the theme) was overriding their title content with cap-

italization. To see this in action, Drupal was installed on a research server and the Business

theme was downloaded and installed. An article was created with the title “all lowercase
17https://www.drupal.org/project/business
18https://www.drupal.org/node/2579699
19Assuming that the theme is causing this to happen, it is most likely a feature of the theme instead of

a bug. However, this case study refers to this action as a bug since the code causing the capitalization is
incorrectly displaying the content (according to the users and their desired behavior).

130

https://www.drupal.org/project/business
https://www.drupal.org/node/2579699

Figure 4.40: Case Study 5: Forum Post

title please” with specifically all lowercase characters. When the front page was visited,

the bug was recreated successfully where the title was capitalized (see Figure 4.41).

4.5.4 Using PECCit

It could be beneficial to see where in the execution the title was getting printed. Perhaps

the theme was overriding the title string with a function like strtoupper()20. From here,

there are two initial strategies that could be used. One, the developer could search through

all of the source code for that function and all similar functions (like ucfirst()21) using a

tool like grep which could yield nothing. Two, the user could trace an execution and use

the Search Tool in the PECCit Inspector to look for a title variable (assuming, possibly

20http://php.net/manual/en/function.strtoupper.php
21http://php.net/manual/en/function.ucfirst.php

131

http://php.net/manual/en/function.strtoupper.php
http://php.net/manual/en/function.ucfirst.php

Figure 4.41: Case Study 5: Capitalized Content

132

erroneously, that there is one with that name) or for the value “all lowercase title please”

(assuming, again possibly erroneously, that the title is stored perfectly in that format and

a variable takes on that value). These strategies seemed error prone and time consuming.

Instead, the capture tool was tried first to solve the issue with the goal of watching the page

as it’s being built.

When capturing, strict settings are important to reduce execution overhead so it is worth

taking the time to think about the settings before tracing. Since it was assumed the devel-

oper understands that Drupal uses themes for appearance, though they don’t need to know

how they work, a good first try was to whitelist the entire theme. Since whitelisting an

entire folder could be expensive, the settings for variable tracing (Property Max Depth and

Property Max Children) were set very conservatively. Also since it can’t be assumed at

what depth the theme would execute, a deep Step Max Depth was used. With the settings

adjusted using the PECCit Session Manager, the homepage was visited with capturing en-

abled.

The session only required 25 seconds to trace (see Figure 4.42). When examined with

the PECCit Inspector, it was not immediately obvious when/where in the execution the title

was printed. Since the theme is responsible for printing, it was most likely printed in a

theme file but finding the execution would have taken a long time using the Step Forward

and Step In tools. Thus, the user decided they wanted to view the captures in one of the

theme files. As there were multiple files, the first file tried was html.tpl.php (see Figure

4.43) and the first step in the file was found using the Step Finder and clicked.

With the Capture Pane open, the Step Forward button was repeatedly pressed. The file

appeared to be setting up the HTML with the basic necessities like <head > information.

133

Figure 4.42: Case Study 5: The PECCit Session

Figure 4.43: Case Study 5: Choosing the File in Step Finder

134

Figure 4.44: Case Study 5: Before Page Print

During these steps, the Captures were blank. Then when line 12 was executed, the entire

page was printed with the capitalization error (see Figures 4.44 and 4.45). Looking at the

$page variable in the Variable Pane, it appeared the page had already been built and was

just being printed at this line (see Figure 4.46). Perhaps another theme file was responsible

for building this variable and it was overriding the title text. Next, the page–front.tpl.php

was selected in the Step Finder.

Using the same strategy, the Step Forward button was pressed continuously while

watching the Capture Pane. The file appeared to be constructing the page and (interest-

ingly) the title of the article was lowercase. Also, the page appeared to be unstyled (see

Figures 4.47 and 4.48). The page content was identical to the styled page and it seemed

that the only thing that was different was the styling and the capitalization.

135

Figure 4.45: Case Study 5: After Page Print

Figure 4.46: Case Study 5: $page Variable

136

Figure 4.47: Case Study 5: First Capture of Unstyled Front Page

Figure 4.48: Case Study 5: Second Capture of Unstyled Front Page

137

Figure 4.49: Case Study 5: Chrome DevTools Showing CSS Properties

Figure 4.50: Case Study 5: Chrome DevTools With Deselected CSS Property

With this discovery, the user hypothesized that the culprit was actually CSS and not a

backend framework issue. In Google Chrome, the title link on the homepage was inspected

using the Google Chrome DevTools22 to see the CSS properties for the element. Here, the

bug was found. The <h2> element had a text-transform CSS property set to capitalize

which was most likely causing the capitalization (see Figure 4.49). To test, the property

was deselected in Chrome DevTools which resulted in the title being displayed as it was

intended with all lowercase letters (see Figure 4.50).

22https://developer.chrome.com/devtools

138

https://developer.chrome.com/devtools

4.5.5 Analysis

Though the bug was ultimately caused by a front end issue with CSS, PECCit was

still helpful in identifying the problem. The user was able to smartly trace the execution

with capturing enabled in under half a minute. The user could see the various theme files

and how they played a role in constructing the page. With capturing, it’s very easy to get

mesmerized stepping through the execution watching as the preview changes line-by-line.

As an educational tool, it enables the user to learn more about a framework without telling

them but by showing them and giving them the tools to explore the framework themselves.

As a debug tool, the capture functionality allows the developer to quickly narrow down

files and functions where the bug could be as they watch how these functions interact with

page construction.

4.6 Case Study Analysis

While these case studies do not prove the PECCit system’s performance or novelty,

they demonstrate its usefulness when debugging real-world web development problems. In

these case studies, the user was able to get a better grasp of the internal workings of the

target framework while quickly moving through the execution to find/understand the bugs

that were presented. As with all PECCit traces, the debugging sessions themselves could

be saved and shared with other users. The case studies demonstrate that novice users could

use the tool to learn more about a web framework (educationally helpful) and developers

could use the tool to quickly examine source code, variable histories, the execution path,

and page creation to find and fix bugs.

139

These case studies indirectly present some of the shortcomings of the PECCit system

as well. First, variable tracing can be slow and resource consuming. The storage of lots

of variables in a large framework like WordPress can quickly grow in size on the server.

Large traces also require quite a bit of time, which many users might not readily adopt

even if the trace could help find the bug. Since these traces can grow so quickly, the proper

tweaking of settings and whitelisting is crucial. This means that using PECCit could have a

learning curve as it takes some practice to recognize which files should be whitelisted and

what settings will likely maintain a balance between performance and adequate information

needed to find a bug.

The PECCit system offers powerful tools, demonstrated in these case studies, that could

make PECCit more effective than traditional debuggers for web development. In these case

studies, the Step Forward and Backward functionalities were utilized to move forward and

backward in time. This is quite powerful compared to the linear forward movement of a

traditional debugger. The Search functionality was used to quickly find variables and val-

ues of interest (something that traditional debuggers would be unable to do since variable

values are not known after an execution). The Execution Path Highlighting feature was

demonstrated allowing the user to quickly see which lines of code were executed. Tradi-

tional debuggers are stuck in a moment in time and (besides knowing the call stack) do

not know which functions and files are going to be used or which were referenced in the

past. The Step Finder was regularly used to quickly jump to a line of code and a time in

execution (quick arbitrary access).

The Variable Inspector was utilized to look back through a variable’s history to see ex-

actly when the variable took on certain values. Traditional debuggers do not save this infor-

140

mation. Some traditional debuggers offer conditional breakpoints, like “break when $x=5”

but this breakpoint needs to be very specific and one must think of these breakpoints before

running the execution. It was demonstrated that the sessions are automatically recorded and

saved so unexpected requests (like an AJAX call) are not missed. Also, these sessions can

be inspected in parallel and shared with others. Finally, PECCit offers capturing which can

let the user see the page as it’s being built. The case study utilizing capturing demonstrated

how the tool can be used educationally as well as for debugging. It demonstrated that cap-

turing is even helpful when debugging CSS on the frontend by showing how it alters the

display of the content.

141

Chapter 5

Conclusion

Debugging can be an extremely costly, but important, task for a developer. The time

required to rid bugs from a system can take weeks if not months and thousands of dollars

[Gib94]. Surprisingly, debugging strategies commonly used by developers are outdated

and newer debugging technologies are not widely accepted [SPTH14]. If more developers

and programmers used back-in-time debuggers, they could potentially save a lot of time

and money.

Omniscient debugging is a back-in-time debugging strategy which allows the user to

trace an execution and examine it. The user can step forward and backward through the

execution, examine variable histories, and instantly access arbitrary steps in the execution.

As debugging often requires developers to travel backward through infected states to find

the initial defect, omniscient debuggers can greatly assist developers with their back-in-

time nature. Other debugging strategies exist as well like replay-based debugging, query-

142

based debugging, and reverse-executing debuggers which also offer much more features

than the standard breakpoint debugger.

Presented along with this thesis is PECCit, an implementation of an omniscient debug-

ger for backend web developers. PECCit is able to trace a PHP framework and display

the execution information (control and data flow) to the user in a browser based IDE. With

PECCit, the user can navigate forward and backward in time, examine variable histories,

inspect the execution path, and search through program states. PECCit even offers a novel

feature called capturing allowing the user to watch as the web page is built line-by-line.

The system was designed to be language independent such that future work could extend

the tool to other languages. PECCit is a powerful tool that developers can use to debug

programs more efficiently using back-in-time strategies. PECCit’s various features were

demonstrated in case studies of real-world problems and compared to tactics used with

standard debuggers.

5.1 Future Work

PECCit is a distributed system with lots of moving pieces. It can always be improved

upon. These improvements could make the system faster and traces smaller. They could

provide more features to developers using the tool. They could also make the tool more

language independent allowing for a larger user base. The following sections examine these

improvements.

143

5.1.1 Performance Improvements

Though PECCit offers reasonable performance, as shown in the case studies in Chapter

4, the current implementation was designed with prototype and research proof-of-concept

in mind rather than performance. To decrease execution overhead, multithreading could

be used by the ADS when parsing and handling messages. Also to reduce overhead, other

database techniques could be experimented with like in-memory replicas and index im-

provements. Additional filtering options (filter by function, file type, lines of code, etc.)

could help the user make the settings more specific to improve performance as well. Also,

static analysis of the code could provide a major boost to performance. By examining the

source code prior to execution or on-the-fly, PECCit could perhaps make assertions about

which variables could change on each line resulting in fewer messages needed to ask for

variables.

5.1.2 Additional Features

PECCit could also be improved with additional features. One feature would be to snap-

shot the source code files between sessions to guarantee that the debug sessions correctly

match up with the source code even if the source code has changed. Since PECCit is aware

of the entire control and data flow, other features for the PECCit Inspector could be im-

plemented to better help the developer understand the system (like control flow diagrams

similar to those used in Diver [MS10] and data flow diagrams like those used in JIVE

[RR05]). Other features could be added to the PECCit Inspector to improve functionality

like the ability to annotate and save information in a session, to bookmark or save step lo-

144

cations, improved lazy loading of steps to decrease load time, and an improved appearance

with more cross-browser compatibility.

5.1.3 Language Independence Improvements

Though the structural design of PECCit encourages language independence by using

remote debugging instead of code injection, there is still work to be done to allow PEC-

Cit to be truly language independent. First, PECCit needs to be tested extensively with

other languages. Most likely, the ADS would need to be improved to account for small

language differences. Also, capturing currently relies on a language feature (specifically

PHP’s Output Buffering). Similar utilities would need to be explored for other languages.

As mentioned in Section 3.5.1.6, other languages offer similar features to output buffering

that could be used to implement capturing. In future versions of PECCit, the ADS would

detect automatically (from the debug engine) which language is being executed and would

switch its capturing strategy to reflect the language. Further work is necessary to implement

and test these language independent features.

145

Bibliography

[ACS84] James E. Archer, Jr., Richard Conway, and Fred B. Schneider. User recovery
and reversal in interactive systems. ACM Trans. Program. Lang. Syst., 6(1):1–
19, January 1984.

[ADS91] Hiralal Agrawal, Richard A. DeMillo, and Eugene H. Spafford. An execution-
backtracking approach to debugging. IEEE Softw., 8(3):21–26, May 1991.

[ADTP10] Shay Artzi, Julian Dolby, Frank Tip, and Marco Pistoia. Practical fault local-
ization for dynamic web applications. In Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ICSE ’10,
pages 265–274, New York, NY, USA, 2010. ACM.

[AKD+08] Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Danny Dig, Amit Parad-
kar, and Michael D. Ernst. Finding bugs in dynamic web applications. In
Proceedings of the 2008 International Symposium on Software Testing and
Analysis, ISSTA ’08, pages 261–272, New York, NY, USA, 2008. ACM.

[AKD+10] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M.D.
Ernst. Finding bugs in web applications using dynamic test generation and
explicit-state model checking. Software Engineering, IEEE Transactions on,
36(4):474–494, July 2010.

[Bal69] R. M. Balzer. Exdams: Extendable debugging and monitoring system. In Pro-
ceedings of the May 14-16, 1969, Spring Joint Computer Conference, AFIPS
’69 (Spring), pages 567–580, New York, NY, USA, 1969. ACM.

[Bal08] Melinda-Carol Ballou. Improving software quality to drive business agility.
IDC Survey and White Paper, 2008.

[BBKE13] Brian Burg, Richard Bailey, Andrew J. Ko, and Michael D. Ernst. Interactive
record/replay for web application debugging. In Proceedings of the 26th An-

146

nual ACM Symposium on User Interface Software and Technology, UIST ’13,
pages 473–484, New York, NY, USA, 2013. ACM.

[BCdJ+06] Sanjay Bhansali, Wen-Ke Chen, Stuart de Jong, Andrew Edwards, Ron
Murray, Milenko Drinić, Darek Mihočka, and Joe Chau. Framework for
instruction-level tracing and analysis of program executions. In Proceedings
of the 2Nd International Conference on Virtual Execution Environments, VEE
’06, pages 154–163, New York, NY, USA, 2006. ACM.

[BM14] Earl T. Barr and Mark Marron. Tardis: Affordable time-travel debugging in
managed runtimes. SIGPLAN Not., 49(10):67–82, October 2014.

[Boo00] Bob Boothe. Efficient algorithms for bidirectional debugging. In Proceedings
of the ACM SIGPLAN 2000 Conference on Programming Language Design
and Implementation, PLDI ’00, pages 299–310, New York, NY, USA, 2000.
ACM.

[CFC01] Shyh-Kwei Chen, W. Kent Fuchs, and Jen-Yao Chung. Reversible debugging
using program instrumentation. IEEE Trans. Softw. Eng., 27(8):715–727, Au-
gust 2001.

[CJ07] Jeffrey K. Czyz and Bharat Jayaraman. Declarative and visual debugging in
eclipse. In Proceedings of the 2007 OOPSLA Workshop on Eclipse Technology
eXchange, eclipse ’07, pages 31–35, New York, NY, USA, 2007. ACM.

[CS98] Jong-Deok Choi and Harini Srinivasan. Deterministic replay of java multi-
threaded applications. In Proceedings of the SIGMETRICS Symposium on
Parallel and Distributed Tools, SPDT ’98, pages 48–59, New York, NY, USA,
1998. ACM.

[CZ05] Holger Cleve and Andreas Zeller. Locating causes of program failures. In
Proceedings of the 27th International Conference on Software Engineering,
ICSE ’05, pages 342–351, New York, NY, USA, 2005. ACM.

[DPS96] Richard A. DeMillo, Hsin Pan, and Eugene H. Spafford. Critical slicing for
software fault localization. In Proceedings of the 1996 ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis, ISSTA ’96, pages
121–134, New York, NY, USA, 1996. ACM.

[Duc98] Mireille Ducassé. Coca: A Debugger for C Based on Fine Grained Control
Flow and Data Events. Research Report RR-3489, INRIA, 1998.

147

[Duc99a] Mireille Ducassé. Coca: An automated debugger for c. In Proceedings of
the 21st International Conference on Software Engineering, ICSE ’99, pages
504–513, New York, NY, USA, 1999. ACM.

[Duc99b] Mireille Ducassé. Opium: An extendable trace analyzer for prolog. The Jour-
nal of Logic programming, 39(1):177–223, 1999.

[EAW10] Jakob Engblom, Daniel Aarno, and Bengt Werner. Full-system simulation
from embedded to high-performance systems. In Rainer Leupers and Olivier
Temam, editors, Processor and System-on-Chip Simulation, pages 25–45.
Springer US, 2010.

[Eis97] Marc Eisenstadt. My hairiest bug war stories. Commun. ACM, 40(4):30–37,
April 1997.

[Eng12] J. Engblom. A review of reverse debugging. In System, Software, SoC and
Silicon Debug Conference (S4D), 2012, pages 1–6, Sept 2012.

[FB88] Stuart I. Feldman and Channing B. Brown. Igor: A system for program debug-
ging via reversible execution. In Proceedings of the 1988 ACM SIGPLAN and
SIGOPS Workshop on Parallel and Distributed Debugging, PADD ’88, pages
112–123, New York, NY, USA, 1988. ACM.

[GDJ02] Y. Guéhéneuc, R. Douence, and N. Jussien. No java without caffeine: A tool
for dynamic analysis of java programs. In Automated Software Engineering,
2002. Proceedings. ASE 2002. 17th IEEE International Conference on, pages
117–126, 2002.

[GH93] Michael Golan and David R Hanson. Duel-a very high-level debugging lan-
guage. In USENIX Winter, volume 107, page 118. Citeseer, 1993.

[Gib94] W Wayt Gibbs. Software’s chronic crisis. Scientific American, 271(3):72–81,
1994.

[GJ04] Paul V. Gestwicki and Bharat Jayaraman. Jive: Java interactive visualization
environment. In Companion to the 19th Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems, Languages, and Applications, OOP-
SLA ’04, pages 226–228, New York, NY, USA, 2004. ACM.

[GJ05] Paul Gestwicki and Bharat Jayaraman. Methodology and architecture of jive.
In Proceedings of the 2005 ACM Symposium on Software Visualization, Soft-
Vis ’05, pages 95–104, New York, NY, USA, 2005. ACM.

148

[HDD06] Christoph Hofer, Marcus Denker, and Stéphane Ducasse. Design and imple-
mentation of a backward-in-time debugger. In NODe 2006, pages 17–32. GI,
2006.

[JH05] James A. Jones and Mary Jean Harrold. Empirical evaluation of the tarantula
automatic fault-localization technique. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering, ASE ’05,
pages 273–282, New York, NY, USA, 2005. ACM.

[JHS02] James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of test in-
formation to assist fault localization. In Proceedings of the 24th International
Conference on Software Engineering, ICSE ’02, pages 467–477, New York,
NY, USA, 2002. ACM.

[KDC05] Samuel T. King, George W. Dunlap, and Peter M. Chen. Debugging operating
systems with time-traveling virtual machines. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference, ATEC ’05, pages 1–1,
Berkeley, CA, USA, 2005. USENIX Association.

[KDV07] Andrew J. Ko, Robert DeLine, and Gina Venolia. Information needs in collo-
cated software development teams. In Proceedings of the 29th International
Conference on Software Engineering, ICSE ’07, pages 344–353, Washington,
DC, USA, 2007. IEEE Computer Society.

[KFH13] Yit Phang Khoo, Jeffrey S. Foster, and Michael Hicks. Expositor: Scriptable
time-travel debugging with first-class traces. In Proceedings of the 2013 In-
ternational Conference on Software Engineering, ICSE ’13, pages 352–361,
Piscataway, NJ, USA, 2013. IEEE Press.

[KL88] Bogdan Korel and Janusz Laski. Dynamic program slicing. Information Pro-
cessing Letters, 29(3):155–163, 1988.

[KM04] Andrew J. Ko and Brad A. Myers. Designing the whyline: A debugging in-
terface for asking questions about program behavior. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’04, pages
151–158, New York, NY, USA, 2004. ACM.

[KM08] Andrew J. Ko and Brad A. Myers. Debugging reinvented: Asking and answer-
ing why and why not questions about program behavior. In Proceedings of
the 30th International Conference on Software Engineering, ICSE ’08, pages
301–310, New York, NY, USA, 2008. ACM.

149

[KMCA06] Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. An
exploratory study of how developers seek, relate, and collect relevant informa-
tion during software maintenance tasks. IEEE Trans. Softw. Eng., 32(12):971–
987, December 2006.

[LCH+12] Geoffrey Lefebvre, Brendan Cully, Christopher Head, Mark Spear, Norm
Hutchinson, Mike Feeley, and Andrew Warfield. Execution mining. In Pro-
ceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution
Environments, VEE ’12, pages 145–158, New York, NY, USA, 2012. ACM.

[LD03] Bil Lewis and Mireille Ducasse. Using events to debug java programs back-
wards in time. In Companion of the 18th Annual ACM SIGPLAN Confer-
ence on Object-oriented Programming, Systems, Languages, and Applications,
OOPSLA ’03, pages 96–97, New York, NY, USA, 2003. ACM.

[Lew03] Bil Lewis. Debugging backwards in time. arXiv preprint cs/0310016, 2003.

[LF95] Henry Lieberman and Christopher Fry. Bridging the gulf between code and
behavior in programming. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, CHI ’95, pages 480–486, New York, NY,
USA, 1995. ACM Press/Addison-Wesley Publishing Co.

[LGN08] Adrian Lienhard, Tudor Gı̂rba, and Oscar Nierstrasz. Practical object-oriented
back-in-time debugging. In Proceedings of the 22Nd European Conference on
Object-Oriented Programming, ECOOP ’08, pages 592–615, Berlin, Heidel-
berg, 2008. Springer-Verlag.

[LHS97] Raimondas Lencevicius, Urs Hölzle, and Ambuj K. Singh. Query-based de-
bugging of object-oriented programs. In Proceedings of the 12th ACM SIG-
PLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications, OOPSLA ’97, pages 304–317, New York, NY, USA, 1997.
ACM.

[LNZ+05] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jor-
dan. Scalable statistical bug isolation. In Proceedings of the 2005 ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
PLDI ’05, pages 15–26, New York, NY, USA, 2005. ACM.

[LVD06] Thomas D. LaToza, Gina Venolia, and Robert DeLine. Maintaining mental
models: A study of developer work habits. In Proceedings of the 28th Interna-
tional Conference on Software Engineering, ICSE ’06, pages 492–501, New
York, NY, USA, 2006. ACM.

150

[MBP11a] Salman Mirghasemi, John J Barton, and Claude Petitpierre. Debugging
by lastchange. Technical report, Technical Report. EPFL-REPORT-164250,
2011.

[MBP11b] Salman Mirghasemi, John J. Barton, and Claude Petitpierre. Querypoint: Mov-
ing backwards on wrong values in the buggy execution. In Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European Conference on Foun-
dations of Software Engineering, ESEC/FSE ’11, pages 436–439, New York,
NY, USA, 2011. ACM.

[MCE+02] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full system
simulation platform. Computer, 35(2):50–58, Feb 2002.

[Mir12] Salman Mirghasemi. Querypoint Debugging (Semi-Automated Inspection of
Buggy Execution). PhD thesis, IC, Lausanne, 2012.

[Moh88] T. G. Moher. Provide: A process visualization and debugging environment.
IEEE Trans. Softw. Eng., 14(6):849–857, June 1988.

[MS10] Del Myers and Margaret-Anne Storey. Using dynamic analysis to create trace-
focused user interfaces for ides. In Proceedings of the Eighteenth ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, FSE
’10, pages 367–368, New York, NY, USA, 2010. ACM.

[MT03] Kazutaka Maruyama and Minoru Terada. Debugging with reverse watchpoint.
In Proceedings of the Third International Conference on Quality Software,
QSIC ’03, pages 116–, Washington, DC, USA, 2003. IEEE Computer Society.

[ND86] Donald A. Norman and Stephen W. Draper. User Centered System Design;
New Perspectives on Human-Computer Interaction. L. Erlbaum Associates
Inc., Hillsdale, NJ, USA, 1986.

[NW94] Robert H. B. Netzer and Mark H. Weaver. Optimal tracing and incremen-
tal reexecution for debugging long-running programs. In Proceedings of the
ACM SIGPLAN 1994 Conference on Programming Language Design and Im-
plementation, PLDI ’94, pages 313–325, New York, NY, USA, 1994. ACM.

[PL88] Douglas Z. Pan and Mark A. Linton. Supporting reverse execution for parallel
programs. In Proceedings of the 1988 ACM SIGPLAN and SIGOPS Workshop
on Parallel and Distributed Debugging, PADD ’88, pages 124–129, New York,
NY, USA, 1988. ACM.

151

[PO11] Chris Parnin and Alessandro Orso. Are automated debugging techniques actu-
ally helping programmers? In Proceedings of the 2011 International Sympo-
sium on Software Testing and Analysis, ISSTA ’11, pages 199–209, New York,
NY, USA, 2011. ACM.

[PT09] G. Pothier and E. Tanter. Back to the future: Omniscient debugging. Software,
IEEE, 26(6):78–85, Nov 2009.

[PTP07] Guillaume Pothier, Éric Tanter, and José Piquer. Scalable omniscient debug-
ging. In Proceedings of the 22Nd Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems and Applications, OOPSLA ’07, pages
535–552, New York, NY, USA, 2007. ACM.

[RDB99] Michiel Ronsse and Koen De Bosschere. Recplay: A fully integrated practical
record/replay system. ACM Trans. Comput. Syst., 17(2):133–152, May 1999.

[RR05] Steven P. Reiss and Manos Renieris. Demonstration of jive and jove: Java as
it happens. In Proceedings of the 27th International Conference on Software
Engineering, ICSE ’05, pages 662–663, New York, NY, USA, 2005. ACM.

[Sai05] Yasushi Saito. Jockey: A user-space library for record-replay debugging. In
Proceedings of the Sixth International Symposium on Automated Analysis-
driven Debugging, AADEBUG’05, pages 69–76, New York, NY, USA, 2005.
ACM.

[SF89] C. B. Stunkel and W. K. Fuchs. Trapeds: Producing traces for multicomputers
via execution driven simulation. In Proceedings of the 1989 ACM SIGMET-
RICS International Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS ’89, pages 70–78, New York, NY, USA, 1989. ACM.

[SPTH14] B. Siegmund, M. Perscheid, M. Taeumel, and R. Hirschfeld. Studying the ad-
vancement in debugging practice of professional software developers. In Soft-
ware Reliability Engineering Workshops (ISSREW), 2014 IEEE International
Symposium on, pages 269–274, Nov 2014.

[SSA+12] Hesam Samimi, Max Schäfer, Shay Artzi, Todd Millstein, Frank Tip, and Lau-
rie Hendren. Automated repair of html generation errors in php applications
using string constraint solving. In Proceedings of the 34th International Con-
ference on Software Engineering, ICSE ’12, pages 277–287, Piscataway, NJ,
USA, 2012. IEEE Press.

152

[Tas02] Gregory Tassey. The economic impacts of inadequate infrastructure for soft-
ware testing. National Institute of Standards and Technology, RTI Project,
7007(011), 2002.

[TR81] Tim Teitelbaum and Thomas Reps. The cornell program synthesizer: A
syntax-directed programming environment. Commun. ACM, 24(9):563–573,
September 1981.

[ULF97] David Ungar, Henry Lieberman, and Christopher Fry. Debugging and the ex-
perience of immediacy. Commun. ACM, 40(4):38–43, April 1997.

[Voa92] Jeffrey M. Voas. Pie: A dynamic failure-based technique. IEEE Trans. Softw.
Eng., 18(8):717–727, August 1992.

[VZBJ04] Bradley T. Vander Zanden, David Baker, and Jing Jin. An explanation-based,
visual debugger for one-way constraints. In Proceedings of the 17th Annual
ACM Symposium on User Interface Software and Technology, UIST ’04, pages
207–216, New York, NY, USA, 2004. ACM.

[WD09] W Eric Wong and Vidroha Debroy. A survey of software fault localization.
Department of Computer Science, University of Texas at Dallas, Tech. Rep.
UTDCS-45, 9, 2009.

[Wei79] Mark David Weiser. Program Slices: Formal, Psychological, and Practical
Investigations of an Automatic Program Abstraction Method. PhD thesis, Uni-
versity of Michigan, Ann Arbor, MI, USA, 1979. AAI8007856.

[WR04] Tao Wang and Abhik Roychoudhury. Using compressed bytecode traces for
slicing java programs. In Proceedings of the 26th International Conference
on Software Engineering, ICSE ’04, pages 512–521, Washington, DC, USA,
2004. IEEE Computer Society.

[XQZ+05] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin Chen. A brief
survey of program slicing. SIGSOFT Softw. Eng. Notes, 30(2):1–36, March
2005.

[XRTQ07] Guoqing Xu, Atanas Rountev, Yan Tang, and Feng Qin. Efficient checkpoint-
ing of java software using context-sensitive capture and replay. In Proceedings
of the the 6th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations of Software Engineer-
ing, ESEC-FSE ’07, pages 85–94, New York, NY, USA, 2007. ACM.

153

[Zel71] Marvin Zelkowitz. Reversible Execution As a Diagnostic Tool. PhD thesis,
Cornell University, Ithaca, NY, USA, 1971. AAI7117676.

[Zel73] M. V. Zelkowitz. Reversible execution. Commun. ACM, 16(9):566–, Septem-
ber 1973.

[Zel02] Andreas Zeller. Isolating cause-effect chains from computer programs. In Pro-
ceedings of the 10th ACM SIGSOFT Symposium on Foundations of Software
Engineering, SIGSOFT ’02/FSE-10, pages 1–10, New York, NY, USA, 2002.
ACM.

[Zel05] Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[ZG04] Xiangyu Zhang and Rajiv Gupta. Cost effective dynamic program slicing. In
Proceedings of the ACM SIGPLAN 2004 Conference on Programming Lan-
guage Design and Implementation, PLDI ’04, pages 94–106, New York, NY,
USA, 2004. ACM.

[ZG05] Xiangyu Zhang and Rajiv Gupta. Whole execution traces and their applica-
tions. ACM Trans. Archit. Code Optim., 2(3):301–334, September 2005.

[ZGZ03] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. Precise dynamic slicing
algorithms. In Proceedings of the 25th International Conference on Software
Engineering, ICSE ’03, pages 319–329, Washington, DC, USA, 2003. IEEE
Computer Society.

154

	PECCit: An Omniscient Debugger for Web Development
	Recommended Citation

	Introduction and Background
	Background: Traditional Debugging Methods
	Log-Based Debugging
	Debugger/IDE Debugging

	Background: Software Failures
	A Software ``Bug''
	Fixing Software Failures
	Understanding the Code
	Localizing the Root Cause

	The Shortcomings of Modern Debuggers
	Should Developers Be Debugging Differently?
	Omniscient Debugging
	Introducing PECCit

	Related Work
	Omniscient Debuggers
	Replay-Based Debuggers and Tracing
	Reverse-Executing Debuggers
	Query-Based Debuggers
	Fault Localization and Automated Debugging

	PECCit
	PHP, Web Pages, and Frameworks
	Automated Debug Server (ADS)
	PECCit Session Manager
	Managing Sessions
	Changing Settings
	System Status
	Sending Commands

	PECCit Inspector
	Step Navigation
	File Navigation and Execution Path Highlighting
	Variable Pane, Variable Inspection, and Variable Differencing
	Query Info Pane
	Search Tool
	Step Finder Pane
	Capturing

	Implementation
	Automated Debug Server
	Xdebug
	ADS Design and Workflow
	PECCit Settings
	Database and Session Storage
	Capturing
	Language Independence

	PECCit Web Interface
	Handling the Data
	PECCit Session Manager Implementation
	PECCit Inspector Implementation

	Evaluation and Analysis
	Case Study 1: Non-Admin Can Upgrade Database
	Background
	Problem
	Setup
	Using PECCit
	Analysis

	Case Study 2: Missing Logo on Theme
	Background
	Problem
	Setup
	Using PECCit
	Analysis

	Case Study 3: Duplicate Stores In Plugin
	Background
	Problem
	Setup
	Using PECCit
	Analysis

	Case Study 4: Incorrect View Count Plugin
	Background
	Problem
	Setup
	Using PECCit
	Analysis

	Case Study 5: Capitalized Titles in Drupal Theme
	Background
	Problem
	Setup
	Using PECCit
	Analysis

	Case Study Analysis

	Conclusion
	Future Work
	Performance Improvements
	Additional Features
	Language Independence Improvements

	Bibliography

