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Abstract 

 
Techno-economic and systems studies on microalgal growth scenarios to date are 

abbreviated and missing a number of important variables.  By including these variables in 

a detailed model integrating biology, chemistry, engineering, and financial aspects, a 

more defined systems analysis is possible.  Through optimizing the model productivity 

based on the resulting net profit, the system analysis results in a more accurate 

assessment of environmental and economic sustainability of specific algal growth 

scenarios. Photobioreactor algal growth scenario optimization in the system model has 

resulted in realistic engineering design requirements based on algal growth requirements 

and fluid dynamics analysis.  Results show feasibility for photobioreactor growth 

scenarios to be economically sustainable when co-products are included, but definite 

technological advancements and productivity improvements must be made.  The main 

factors inhibiting a cost effective photobioreactor growth scenario are culture density, 

temperature, and lighting distribution for solar illuminated photobioreactors, and lighting 

cost for artificially illuminated photobioreactors. Open pond algal growth scenarios do 

not show any prospect of economic or environmental sustainability with current 

technology due to the large amount of surface area required, inefficient water use, and 
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low culture density.  All algal growth scenarios are inferior to petro-diesel regarding 

energy inputs, carbon emissions, and environmental sustainability.  No algal growth 

scenarios analyzed in this study meet the U.S. requirement of biofuel emitting at least 

20% less carbon emissions than diesel from crude oil. 
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 Chapter One: Introduction 

Global warming can be slowed and perhaps reversed only when society replaces 

fossil fuels with renewable, carbon-neutral alternatives such as biofuel (Miao & Wu, 

2004).  Energy self-sufficiency makes geo-political sense in the face of continuing 

conflicts with oil-generating countries (Putt, 2007).  Solar energy is renewable and 

sustainable, whereas all other fuels including fossil and nuclear are limited in amount and 

are exhaustible.  The photosynthetic process of producing biomass is an efficient use of 

solar energy, and provides food, fuel and chemicals.   
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Figure 1: The photosynthetic process. 
 

However, biofuel produced from plants such as palms, corn, sorghum, sugarcane, 

and soybeans have a number of detrimental effects such as deforestation and food 

shortages (Richardson, et al., 2010).  The CO2 emissions of these crops are shown to be 

comparable with that of obtaining oil from tar sands.  The U.S. Environmental Protection 

Agency also suggested that palm oil fails to meet the U.S. requirement of biofuel emitting 

at least 20% less carbon emissions than diesel from crude oil.  Currently, none of the 
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biodiesel being produced commercially from soybean oil in the U.S. and canola oil in 

Europe can compete with petroleum-derived diesel economically without tax credits, 

carbon credits, and other subsidies (Chisti, 2008).   

Biodiesel produced from algae could potentially be a ‘third generation’ biofuel 

which produces a minimal amount of CO2, can consume flue gas, clean wastewater, is 

not a food crop (first generation), and needs no productive land (second generation) 

(Carrington, 2012).  Biodiesel from microalgae may be the only renewable biofuel that 

has the potential to completely displace petroleum derived fuels without disrupting the 

food supply and potentially has a negative carbon balance (Richardson, et al., 2010).   
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Figure 2: Carbon imprint of Biofuels (Carrington, 2012). 
 

Besides biodiesel, microalgae can be used for the production of various energy 

carriers, including biomethane, biohydrogen, and bioethanol.  Microalgae are unique 

among biofuel crops in producing lipids which are easily converted to biodiesel with 

yields per unit area 100 times or more than any other photosynthetic organism.   The non-

lipid biomass can be used for bioenergy by converting it to methane, hydrogen, and/or 

electricity.  Algal biodiesel fuel is easily stored without pressurization, is high in specific 

energy and energy density, and is low in sulfur content and other characteristics that 

allow stringent emission controls (Greene & Plotkin, 2011).  Algal oil has been proven to 

meet fuel standards, and has superior lubricating properties to reduce wear.  Fuel 

efficiency decrease is only about 2% and particulate matter is reduced by about 27% 

when compared to petroleum diesel (Oilgae, 2013).  Biodiesel can be directly used in 

diesel engines and can play a significant role in diversifying transportation fuels.   

Technology for producing and using biodiesel has been known for more than 50 

years (Chisti, 2007).  For this reason the U.S. federal government and many state 

governments subsidize diesel fuel and its use has risen exponentially in recent years.  The 

U.S. government has a goal of replacing 20% of transportation fuels with biofuels by the 

year 2030 (Shen, et al., 2009).  This would require 28 billion gallons of biodiesel 

annually if it were the sole biofuel (Chisti, 2007). 

 Algae cultivation does not compete with food or feed crops, can be grown with 

brackish, salt or wastewater, and could benefit the small-scale farmer by generating 

employment and increasing rural electrification and incomes (Dismukes, et al., 2008) 



 

5 
 

(Alabi, et al., 2009) (Rittman, 2008).  Production of algal biofuels has potential for 

integration with other environmentally sustainable technologies such as carbon 

sequestration and clean-up from industrial and agricultural wastes generated from 

biological wastes and combustion.   Algal growth does eliminate NH4, NO3, and PO4 as 

well as heavy metals from wastewater, and greenhouse gas (GHG) from flue gas (Frac, et 

al., 2010) (Nagase, et al., 2001) (Olaizola, et al., 2003) (Wang, et al., 2010).   

Research conducted to study algae cultivation also benefits ecologists who have 

need of improving predictions of responses to environmental and climate change in 

marine ecosystems with phytoplankton at their base.  Microalgae contribute 

approximately half of the planet’s annual primary productivity by cycling 111 to 117 Pg 

carbon molecules annually (Flynn, et al., 2010).   

Background and Motivation   

Interest in growing algae commercially began nearly 100 years ago.  Although 

microalgal cultivation in laboratories has now been undertaken for over 50 years, our 

experience is still limited to a few out of the some 50,000 species, and even for these, 

only 30,000 have been identified with very limited understanding of their biology and 

ecology (Alabi, et al. 2009) (Frac, et al., 2010) (Chaumont, 1993).  The principles of 

cultivating algae in engineered raceways, open ponds and photobioreactors have been in 

place since the 1950’s.  In the ensuing decades the technological development of these 

principles into methods has been accomplished using the fields of biology, chemistry, 

mathematics, physics and production engineering.  Despite $40 million invested by the 

U.S. government from 1980 to 1984 and $250 million by Japan in the 1990’s, both 
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programs were abandoned largely because cultivating algae for biofuels alone is not 

considered economically feasible (Beneman, et al., 2004) (Sheehan, et al., 1998).   

Consistently maintaining high yields of healthy algae using a low-energy, reliable, 

chemical-free system is the biggest challenge to overcome the extra investment cost 

required in order for algae cultivation to become profitable and fully competitive. 

However, existing commercial applications remain limited to specialty food and feed 

ingredients despite repeated and ongoing research and government applications for 

effluent bioremediation and biofuel production. Numerous photobioreactors have been 

described in scientific literature and patents, but only a small proportion have been 

commercialized to date.  There exist many conflicting claims pertaining to algal 

productivity, required growth parameter values, design, and especially techno-economic 

prospects for growing algae with the intent of biofuel production.   

Microalgae systems are currently used worldwide on a limited scale for 

wastewater treatment where the biomass is usually not harvested, and for some high 

value end products such as human supplements and aquaculture (Lundquist, et al., 2010) 

(Benemann & Oswald, 1996).  Even in these commercial systems, algae growth is not 

standardized or optimized, which results in a wide range of quality and quantity of algae 

produced (Lopez-Elias, et al., 2008) (Degen, et al., 2001).  Therefore any improvements 

are made by empiric observations instead of scientific principles or bioassays.  The vast 

majority of companies trying to commercialize algae cultivation are not worthy of 

government grants, financial investment, or strategic partnership (Lux Research, 2012). 
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A rigorous assessment of the economics of production is necessary to establish 

competitiveness with petroleum-derived fuels (Chisti, 2008).  Lack of consistent data can 

lead to faulty assumptions and makes creating an accurate financial model difficult (R. 

Lacey, personal communication, May 31, 2011).  (Carvalho, et al., 2006) (Chaumont, 

1993) (Greenwell, et al., 2010) (Kwangyong & Choul-Gyun, 2002) (Bayless, et al.) 

(Patil, et al., 2008) (Alabi, et al., 2009) (U.S. DOE, 2010).  Many of the scientific and 

engineering assumptions in past studies require justification, such as the growth rates, 

productivity and lipid content. 

Growth of microalgae is influenced by many factors, such as abiotic factors (e.g., 

light, temperature, nutrients, dissolved oxygen content, CO2 concentration, pH, salinity, 

and toxic chemicals in the growth media), biotic factors (e.g., presence of bacteria, fungi, 

viruses and other algae), and operational factors (e.g., shear forces generated by mixing, 

dilution rate, and harvest method and frequency) (Shen, et al., 2009).  Less than optimal 

lighting contributes to lower productivity through either photoinhibition in the intensely 

illuminated zones or consumption of biomass by respiration in dark zones (Degen, et al., 

2001).  All of these factors influence each other leading to an infinite number of growth 

scenarios.  Microalgal research is most commonly centered on a single discipline, 

whether that is biology, chemistry, engineering, or financial.   Given the lack of 

multidisciplinary research and lack of specific productivity and growth parameter data for 

specific species, a scalable, commercially viable system for producing microalgae has yet 

to emerge, let alone one which is adaptable for every strategy or environment (Hu, et al., 

2008).   
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“Successful development of an algae-based biofuels and co-products industry 
requires the optimum combination of technical innovations in systems and 
processes, coupled with economic feasibility in the practical implementation and 
integrated scale-up for commercial production and marketing (U.S. DOE, 2010, 
p.93).”    

Rather than accumulate more data that is largely conjectural, this study intends to 

synthesize the large amount of data available from hundreds of studies into a reliable 

simulation for predicting growth rates, productivity, energy balance, cost parameters, and 

overall economic feasibility.  Furthermore, the model is adaptable to the user design, 

which is necessary given the variety of growth scenarios and environments that are 

possible.  This allows comparisons between various production processes to discover 

their fundamental limitations and potential for improvements within the scope of a 

design.  While there has been an enormous amount of research devoted to the particulars 

of algal growth parameters and biology, there is a fundamental need for an integrated 

systems and financial analysis, which enables use of large amounts of data to design a 

profitable algal growth scenario. 

Hypothesis 

  Previous economic analyses have been based on a number of site-specific 

assumptions, lack sufficient design details, and have not adequately addressed interfaces.  

Review of the decades of microalgal research and data led to the following hypotheses:  

Modeling an adaptable microalgae growing system enables design optimization to 

achieve higher productivity and reveals where production costs must be reduced with the 

goal of achieving economically viable algae biofuel.  Variables, analysis and interfaces 

not included in the previous studies thus far are important and impact results.  Factors to 
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optimize include algal productivity tied to algal species biological characteristics, pond 

and bioreactor design and operation, harvesting options and investment attractiveness 

using NPV (net present value) and IRR (internal rate of return).  

Commercial production of algae for biofuels has not taken place not only for lack 

of economic justification but also for lack of detailed systems analysis.  The following 

questions are among many concerning algal growth remaining to be answered:    What is 

the optimal productivity for specific algal species for a profitable algal growth scenario, 

including required light intensity, oxygen removal, shear stress, and CO2 availability?  

How do the geometry, mass flow rate, and culture density interact to affect algae 

productivity?  What are the techno-economic effects when algae are fed flue gas and/or 

wastewater?  What is the optimal approach when cost, CO2 feed rate, and O2 removal are 

integrated?  How does the carbon footprint of biofuel produced from microalgae compare 

to petroleum based fuels?  How do the economic feasibility and carbon footprint of open 

pond and photobioreactor growth scenarios compare? 

An integrated approach allows a practical, realistic approach to growing 

microalgae, which is necessary for commercial applications and for the potential 

environmental benefits of microalgal growth to be realized.   

Research Goals and Approach 

The goal is to close the business case for producing biofuel from microalgae by 

proving it is economically and environmentally sustainable.  The approach is to build a 

tool which enables determination of the economic and environmental feasibility of a 

certain design before investing time and expense in building it, as well as offer methods 
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for optimizing the design.  Through systems modeling important details may be included 

and analysis can be accomplished while still in the preliminary stages of the design 

process through incorporating basic algal biology with cultivation science and 

engineering.  

 This study presents an integrated approach to optimize algal growth through 

photobioreactor (PBR) or open pond design and involves a three-pronged approach: (a) 

research to gather data on growing specific algae species and expected results, (b) 

develop a system model for an algae growing operation adaptable to various growth 

scenarios with various inputs and specific end products, and (c) perform analysis on 

selected cases using commercial best practices and methods researched in the literature to 

determine the economic and environmental feasibility of growing microalgae to produce 

biofuels.  Factors to optimize include algal productivity, bioreactor and pond design and 

operation, harvesting options, and investment attractiveness. 

The system model developed and presented in this study is different from past 

models because it incorporates detail and interfaces not found in other studies.  The catch 

is for the model to simulate reality with sufficient fidelity.   

Outline 

This dissertation consists of 5 chapters including the background, motivation, 

hypotheses, and objectives of the research effort in Chapter 1.  Chapter 1 also provides a 

summary of related information and previous research and how it relates to this study.  

Chapter 2 presents the methodology including model calculations and design, as well as 

methodology behind the financial analysis. Chapter 3 summarizes results from the model, 
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optimization and financial analysis.  Chapter 4 discusses implications of findings and 

questions raised from the results.  Chapter 5 summarizes this research effort and presents 

conclusions and recommendations for further research. 

Definitions, Acronyms, and Abbreviations 

ALR: airlift reactor 

ASP: Aquatic Species Program (program run 1978-1996 by the U.S Department of 

Energy) 

ATP: an energy carrier for the reaction that takes place in photosynthesis 

BNR: biological nutrient removal 

COD: chemical oxygen demand  

DOE: U.S. Department of Energy 

EROI: energy return on investment (ER(Returned)/ES(System)) 

FLE: flashing light effect, sometimes called light-dark cycle, intermittent illumination, 

light intensity fluctuation, or dynamic light condition. 

GHG: greenhouse gas 

HLTP: horizontal-loop tubular photobioreactor  

HHV: higher heating value 

LED: light emitting diode 

LHV: lower heating value 

MWTP: Municipal Wastewater Treatment Plant 

NADPH: a co-enzyme carrier molecule to carry ions to a different stage of the 

photosynthesis reaction 
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PAR: photosynthetically active radiation (400-700 nm) 

Petro-diesel: petroleum-derived diesel 

PBR: photobioreactor, includes solar illuminated PBR’s and artificially illuminated 

ALR’s in this study  

QP: Quadratic Programming 

SQP: Sequential Quadratic Programming 

TOC : total organic carbon  

WWTP: Wastewater Treatment Plant 

Literature Review 

The difficulty with the data obtained through hundreds of studies performed on 

microalgae research is there have been widely disparate conclusions drawn about optimal 

growing conditions and growth rate depending on the study’s focus, culture conditions, 

and species and strain of algae used.  The variables influencing algal growth are 

interdependent.  When optimal parameters in one area such as CO2 feed rate or lighting 

are reported, other parameters may not be optimal or verifiable, which can lead to faulty 

conclusions.  Also, standards for measuring productivity vary between disciplines. 

The following literature review is organized similar to the study along three 

overlapping focus areas: the biological research, research involving cultivating 

microalgae in photobioreactors and open ponds, fluid dynamic and biological modeling, 

and techno-economic studies.   



 

13 
 

Biological Research 

Diatoms are the largest group of biomass producers on Earth.  Phytoplankton life 

forms span a range in size from the smallest uni-cells at a volume of less than 1 µm3 to 

large unicellular diatoms which may attain a volume of 109 µm3 (1 mm3) (Beardall, et al., 

2008).   

The internal density of diatom cells is an average of 1150 kg m-3, which implies 

mixing is required to maintain suspension.  However, this will change depending on the 

lipid concentration where a higher lipid concentration will result in a density less than the 

surrounding media.  Thus, in the nutrient deprivation holding tank, the cells should float 

to the top surface of the media as the lipids increase.  The model assumes the algal cell 

density to be 1150 kg m-3 for the purposes of fluid dynamics during the growth period.  

The cells also maintain suspension through intra-particular force created by a negative 

charge.  The control and understanding of interactions between cells and with surfaces is 

important, and continues to be a major target of research (Greenwell, et al. 2010). 

Determining the extent of nutrient limitation has been a fundamentally important 

question of aquatic scientists for decades.  Nutrient limitation of net primary production 

can be an important control on phytoplankton growth in aquatic environments and 

understanding it can help limit eutrophication (Ho, et al., 2003).  Metals used by 

phytoplankton include iron, manganese, zinc, copper, cobalt, cadmium, and 

molybdenum, in descending importance.  A higher metal concentration of one ion can 

inhibit uptake of other metals and phosphorus (Chisti, 2007).  In addition to the metal 

available in the medium, the quota of trace metal in phytoplankton may depend on the 
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light regime, the concentrations of major nutrients, and the concentrations of other trace 

metals.  Culture and field studies indicate trace metals can be important in controlling 

primary production and regulating community structure of marine phytoplankton (Ho, et 

al., 2003) (Berman-Frank, et al. 2007). 

The Redfield ratio for diatoms describes the necessary carbon, nitrogen, and 

phosphorus ratio: 106:16:1 (Sato, et al., 2010)  Diatoms generally require nitrogen, 

silicon, and phosphorus in a 16N:16Si:1P.  Most microalgae also require vitamin B12 

(cyanocobalamine), B1 (thiamine), and vitamin H (biotin).  EDTA 

(Ethylenediaminetetraacetic acid disodium salt dehydrate) is added to keep the trace 

metals in solution, although there are some reports that EDTA can inhibit growth of some 

species (Sonnekus, 2010).   

Chlorella kessleri and B. braunii cultures effectively eliminate nitrate and 

phosphorus in wastewater, reducing it by 88% to 98% in 10 to 14 days.  Similar results 

were obtained using ammonium as the nitrogen source instead of nitrate.  Even with 

concentrations of nitrogen reaching 1400 mg/mL, the culture showed no inhibition as 

long as pH is maintained within optimal range (Kwangyong & Choul-Gyun, 2002) 

(Miao, et al., 2008) (Tsukahara & Sawayama, 2005) (Hall, et al., 2010) (Wang, et al., 

2010).  Five planktonic diatoms showed no preference for organic or inorganic nitrogen 

sources under high and low light intensities in another study (Fisher & Cowdell, 1982).   

If wastewater contains a large amount of total dissolved solids, the resulting algal 

biomass may be assumed to contain these solids, and effectively limit available end 

products (Richmond, 2004), but larger particles as well as bacteria can safely and cost-
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effectively be removed with filters (Wang, et al., 2010).  Chinnasamy, et al. (2010) 

studied 27 species of green algae, 20 species of cyanobacteria and 8 species of diatoms in 

both treated and untreated wastewaters.  Results showed a consortium of 15 algae 

produced maximum biomass and lipids and removed 96% of nutrients in 72 hours. 

Many algae have the ability to produce 20 - 90% dry cell weight of storage lipids, 

which has been shown to increase under photo-oxidative stress, nutrient deprivation or 

other environmental conditions, but this mechanism is poorly understood and depends on 

the strain of algae (Tsukahara & Sawayama, 2005)  (Hu, et al., 2008) (Alabi, et al., 2009) 

(Food and Agriculture Organization of the United Nations, 1997) (Vega, et al., 2010).  

Many studies do not report the age of the culture when the lipid content analysis was 

performed, which may partially account for the wide range of results. 

High salinity produced high lipids in only one out of 10 species studied in 

Sonnekus (2010).   Older studies reported that the lipid content of the diatom Navioua 

pelliculosa increased by about 60% during a 14-hour silicon starvation period, but 

Rijstenbil, et al., (1989) found low salinity leads to inhibition and cell deformation (Food 

and Agriculture Organization of the United Nations, 1997).  Parrish & Wangersky (1987) 

found nitrogen stress while cultivating P. tricornutum does not result in any change in 

total lipids per cell, but does affect the types of lipids stored.  Yongmanitchai & Ward 

(1991) found increased lipid content and increased growth rates when nitrate and urea 

concentrations increased, while other studies found increased growth rates but no 

increase in lipid content (Carden, et al., 2002) (Illman, Scragg, & Shales, 2000).   

However, more recent studies reveal that nitrogen, silica, and phosphorus deficiency does 
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produce higher lipid content (Alcain, 2010) (Vega, et al., 2010).  Renaud, et al, (1991) 

found high photon densities significantly reduced the EPA content of Nannochloropsis 

oculata.   

It is generally agreed upon the algae must stop dividing before accumulation of 

lipids occurs, which makes a two stage cultivation process desirable. This is consistent 

with the view that the greatest accumulation of lipids occurs when algae have been in the 

same medium for the greatest period of time (Parrish & Wangersky, 1987). Siron, et al. 

(1989) found that by the end of the stationary phase the fatty acid content in P. 

tricornutum increased to three times of the fatty acid content during the exponential 

growth phase.  This is the same range as that reported for other diatoms, and may be due 

to the nitrogen deficiency occurring at the end of growth or light limiting due to the high 

density of the culture.  Also, the type of fatty acids changed, with the palmitic lipids 

increasing and specialized lipids such as EPA and pigments decreasing.  This emphasizes 

the importance of staging tanks to allow harvesting at specific times in the growth cycle 

depending on the algae species and the desired end products. 

Growing Methods 

It is possible to grow algae in open ponds, immobilized culture systems, or 

photobioreactors.  Open ponds are seasonal due to light and temperature changes, are 

easily contaminated, use a relatively large amount of land, yield low productivity, 

demand higher harvesting costs because of the large volume of water, and lose a large 

amount of water to evaporation.  The algae species which yield a high percentage of 

lipids also cannot compete with the fast-growing high carbohydrate algal species, so they 
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must be protected from contamination (Shen, et al., 2009).   Up to 25% of the culture is 

lost at nighttime in open ponds, depending on light level under which the biomass was 

grown, the growth temperature, and temperature at night (Demirbas & Demirbas, 2010).   

Operations parameters for raceways which are candidates for analysis and 

optimization include temperature, incident radiation, effects of covering raceways with 

greenhouses, nutrient availability, depth flow characteristics, geometry and channel 

dimensions and predation (James & Boriah, 2010).  The literature in general has found 

that open raceway ponds have a lower energy use and smaller CO2 footprint than 

photobioreactors, but the choice of materials for photobioreactors can make a significant 

impact on results, and most open pond energy analyses do not consider all the pumping 

and extra harvesting energy required with a much larger volume of water (Brentner, et 

al., 2011). 

Immobilized culture systems involve immobilizing the algae by growing them in 

a polymeric matrix or attached communities in shallow streams on rotating biological 

contactors.  Limited research has been done in this area and would be ideal in certain 

applications for its ease of harvesting, but it is limited to a certain number of algae 

species, has high material costs, and would be difficult to scale up (Shen, et al.,  2009) 

(Christenson & Sims, 2011).  Biofilm reactors are a subject of many companies’ pilot 

demonstrations, but remain to be proven or developed on an industrial scale (Christenson 

& Sims, 2011). 

Internally illuminated photobioreactors are preferable to open ponds for 

cultivating algae with the intent of biofuel production if they are economically 
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sustainable and profitable since they are more productive, but have been used in large-

scale biomass production only for high-value products (Chisti, 2007).   The volumetric 

productivity of photobioreactors is more than 13 times greater than raceway ponds 

(Chisti, 2007) (Richmond, 2004) (Greenwell, et al. 2010)   Numerous photobioreactors 

have been described in scientific literature and patents, but only a small proportion have 

been commercialized to date due to high construction and operating costs and complexity 

(Greenwell, et al. 2010) (Shen, et al., 2009). 

A photobioreactor is normally either bubble column or an airlift reactor (ALR), 

where the latter varies from the former in the type of fluid flow.  An ALR directs fluid 

circulation through the use of channels, with a riser for gas/liquid upflow and a separate 

channel for downflow (Merchuk & Gluz, 2002).  The most suitable algal growth system 

is situation, species and final purpose dependent (Iancu, et al., 2010).   

Gas Exchange 

Photobioreactors may be operated in batch, semi-continuous or continuous 

modes.  In a continuous culture, the substrate must be inoculated with a dose of 

microalgae and then continuously stirred.  CO2 is heavier than water and acidifies water.  

The gas exchange system which delivers CO2 and removes photosynthetically generated 

O2 is an integral part of the design and through an airlift pump and bubble sparging can 

provide the physical mixing, as well.  Physical mixing is required to ensure nutrients, 

algae, lighting, metabolites, heat and gases are distributed, and becomes more important 

as the culture density increases (Qiang & Richmond, 1996) (Carvalho, et al., 2006)(Frac, 

et al., 2010) (Lee & Palsson, 1994) (Chisti, 2007) (Preston, et al., 2001). 
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  It is important to obtain a reliable prediction of CO2 transfer rates for accurate 

design, scale-up and operation, but the range of CO2 percentages and feed rates in the 

literature span a wide range.  The CO2 delivery should be regulated through a pH-based 

monitoring and control system, so that the algae can absorb as much CO2 as possible 

while avoiding precipitation into salts and pH imbalance.  A balance can be achieved in 

pH through the acidifying effect of CO2 and alkalizing effect from nitrogen uptake 

(Behrens, 2005).  Research indicates a pH between 8.2 and 8.6 provides optimal 

productivity, and is the pH of natural seawater. (Raminathan, et al., 2011) (Alcain, 2010).  

However, pH for freshwater species will likely be lower at around 7.5 (Kong, et al., 

2010). 

Some research has used alkalis such as sodium hydroxide and calcium hydroxide 

to raise the culture pH above 10 to induce lysis, making it easier to harvest lipids (Molina 

Grima, et al., 2003).  The culture pH which induces lysis is species dependent, as more 

recent research reveals Chlorella sp. grows at near optimal productivity in media at a pH 

of 10 as long as nutrients are available (Wang, et al., 2010). 

The relationship between CO2 and pH, and their effect on phytoplankton requires 

further investigation, and is an area of increasing interest especially in marine waters due 

to climate change (A. Quigg, personal communication, May 20, 2011).  More studies on 

long-term exposures to elevated CO2 and decreased pH are needed to determine the true 

impacts.  There is a need for further experimentation using several strains and a variety of 

techniques to evaluate the effects on phytoplankton cells in terms of growth and 

photosynthesis (Beardall, et al., 2008). 
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Gas inlet CO2 concentrations in many biological studies are between 0.1 to 2.0%, 

with some results indicating highest productivity is obtained at 2.0% at 1 - 2 L/min per 

liter of culture (Hall, et al. 2001)  (Ranga & Ravishankar, 2007) (Thomas & Gibson, 

1990).  Studies more focused on carbon capturing mimic flue gases at up to 12% CO2 

partial pressure (Doshi, 2006).  Other studies found 85-85% CO2 absorption with 6-12% 

CO2 content, but determined the efficiency for CO2  transfer to the medium depends on 

the flue gas content, culture media alkalinity, water depth, and mixing velocity 

(Benemann, et al., 2009)  Olaizola, et al., (2003) determined microalgae can capture CO2 

under a wide variety of pH and gas concentrations, but the efficiency is directly 

dependent on the pH of the culture instead of the gas composition differences.   

Oxygen removal becomes an issue where the mixing is not optimal and in long, 

tubular photobioreactors where the oxygen concentration continues to rise along the 

length of the tube.  Within an upright, bubble sparged, artificially illuminated PBR, 

oxygen escape would be easily facilitated through the top surface of the photobioreactor 

if considered in the design. 

Some studies used fibers instead of a bubble sparger to deliver CO2 to the culture, 

which resulted in a physiochemical improvement but not a biotechnological gain 

(Ferreira, et al., 1998).  Research indicates that in cells up to 50 µm in diameter, the 

boundary layer thickness is equal to the radius of the cell, and whether this boundary 

layer leads to growth limitation depends on rates of diffusivity and nutrient transport at 

the cell surface, as well as mixing rate.  As mixing rate increases, the laminar boundary 

layer decreases (Alabi, et al., 2009) (Acien, et al. 2001) (Hondzo & Lyn, 1999).  Direct 
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measurement of boundary layer thickness has only been possible for relatively large 

colonial planktonic organisms, and evidence for boundary layer effects has been mixed, 

highlighting the need for further investigation.  

The bubble sparger can produce turbulent conditions and high mass transfer, and 

the turbulence also prevents biofouling on the reactor surfaces.  Laminar mixing is to be 

avoided since it permits cell precipitation and wall growth and does not allow oxygen to 

be released (Carvalho & Malcata, 2001) (Richmond, 2004) (Beardall, et al., 2008) .  It is 

important to avoid shear stress while mixing, although the amount of shear stress to be 

avoided depends on the individual species, and intensity of shear stress is difficult to 

determine in bioreactors (Chisti, 2007) (Peters, et al., 2006).  Research has revealed the 

effective viscosity (and shear rate) increases dramatically if slug flow is allowed to 

develop (Schumpe & Deckwar, 1987) (Merchuk & Gluz, 2002).   Dimensions of fluid 

microeddies should always exceed those of algal cells. Also, bubble breakup or 

coalescence can damage algal cells. (Qiang & Richmond, 1996) (Acien, et al., 2001) 

Although it is widely recognized that some form of shaking and aeration is 

necessary for culture health and growth rate, the rates of stirring or aeration are seldom 

quantified (Savidge, 1981).   In none of the studies were degrees of turbulence expressed 

in terms of variations in strain rate, stress or dissipation rate.  Also, there has not been an 

analysis done on how the culture media, culture density, saltwater, and temperature 

induced viscosity changes affect the shear stress. The shear stress was quantified 

indirectly using the flow rate and number and frequency of pump passages or power 

input. (Michels, et al., 2010) (Thomas & Gibson, 1990) (Contreras, et al., 1998).  Most 
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turbulence related studies induce turbulence on a shaker table, which is not applicable to 

an industrial scale algal growth facility (Peters, et al., 2006).   

In-depth knowledge of hydrodynamics/flow pattern in a photobioreactor design is 

key for design and scale-up (Al-Dahhan & Luo, 2006).  One study reported a velocity 

lower or higher than 0.055 m s-1 inhibited growth, which was found to be related to the 

specific gas-liquid interfacial area, the length scale of the microeddies and the bubble and 

viscous shear rate.   The geometry in this case was a cylindrical tube 0.09 m in diameter 

and 2 m high, and used air bubbled though a sparger 0.02 m in diameter with 60 µm 

pore-size (Contreras, et al., 1998).  Laboratory gas inlet velocities with tubes 0.01 - 0.1 m 

diameter and 1 - 2 m long are normally in the range of 0.04 - 0.09 m s-1 (Al-Masry & 

Chetty, 1996) (Barbosa, 2003) (Al-Dahhan & Luo, 2006).  Slightly larger 

photobioreactors report liquid velocities in the range of 0.5 m/s for a 0.2 m3 volume. A 

photobioreactor with a larger volume without any mechanical shaking or stirring will 

require a higher gas velocity.   Doshi (2006) used a velocity of 1 m s-1 in a volume of 

about 6 m3.  This also simulates flue gas conditions while providing the necessary 

nutrients for a  more dense culture and larger volume.  Lundquist, et al. (2010) proposed 

the optimal gas velocity to be 20 to 30 cm s-1 for open ponds, counter to a fluid velocity 

of 20 to 25 cm s-1, resulting in a bubble velocity of 0.05 m s-1.   This calculation was 

primarily based on limiting the power input required for the paddlewheel. 

Cleaning 

Photobioreactors must be periodically cleaned and sanitized which can be 

achieved through clean-in-place operations such as use of large slugs of air to 
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intermittently scour the surface areas, highly turbulent flow, and enzymes which digest 

the polymer glue that binds algal cells to the walls (Chisti, 2007).  Also, if the 

photobioreactor is large enough, the sides can be cleaned manually immediately 

following a harvest by wiping the interior surfaces. 

Culture Density 

Culture density is often not reported, and reported productivities vary widely 

depending on the study parameters.  The U.S. DOE Algal Technology Roadmap (2010) 

stresses there is an immediate need for standardization of productivity models and 

establishment of protocols for measuring yields, rates and densities.  Recommended 

optimal growth density in a laboratory is around 1e6 cells mL-1 (A. Quigg, personal 

communication, May 20, 2011), but densities in photobioreactors necessarily exceed that 

with 2e9 cells mL-1 or even 1.2 - 1.4e10  cells mL-1 (Chaumont, 1993).  Moreover, 

density reported in cells mL-1 does not reflect the size of the cells which can vary 

significantly depending on the species.   Obtaining robust data is difficult, and either 

commercial reports are grossly exaggerated or research models are grossly incorrect 

(Richmond, 2004).   

The relationship between the biomass concentration and turbidity is described by: 

Cb = 0.38 * OD625 where Cb is the biomass concentration (kg m-3) and OD625 is the 

optical density at 625-nm. (Contreras, et al., 1998)   

An equation developed to describe the relationship between the various growth 

parameters and cell density is Y = EmIoAK(1-e-acl) – GRcV, where Y = yield (g cells/h), 

Em= 0.20(the max attainable photosynthetic conversion on an energy basis), A =  
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illuminated  area (m2), K=0.156(g cells/h/W)energy equivalent of the algae, Io = light 

intensity (W/m2), a=extinction coefficient (L/cm/g), c = cell concentration (g/L), l = light 

path (cm), R = respiration rate (g carbon/g cells/h), V = culture volume (L), and G = ratio 

of g cells to G carbon (2.04) (Radmer, Behrens, & Arnett, 1986)  (Janssen, Tramper, Mui, 

& Wijffels, 2002). 

Many studies report that a maximum growth rate was found under certain 

conditions but don’t report what the maximum growth rate was and those that do report a 

growth rate vary widely, both in how it is computed and the actual amount (Alabi, et al., 

2009).  Open ponds and raceways report productivity in a range of about 10 - 60 g m-2 d-1.  

However, areal productivity has little meaning when a system is vertical, as is possible 

when photobioreactors are used (Tredici & Zittelli, 2010).  Productivity of algae grown in 

photobioreactors range from a volumetric productivity of  0.64 g L-1 d-1 to 173 g L-1 d-1 

(Alabi, et al., 2009) (Kang, et al., 2010) (Lee & Palsson, 1994) (Brune, et al., 2009) 

(Contreras, et al., 1998) (Raminathan, et al., 2011) (Sheehan, et al., 1998) (Putt, 2007) 

(Chisti, 2007) (Zou,et al., 2000) (Chaumont, 1993).  Also, productivity is often 

indistinguishable from growth rates in these studies, but in reality they are not 

synonymous.  Productivity includes the resulting cell composition, while growth rate 

refers only to how quickly the algae reproduce.  Achieving maximum growth rate will 

not always equate to optimal productivity, depending on the desired end products and 

vice versa (Pittman, et al., 2011). 

A culture undergoes an exponential growth phase until the nutrients become 

limited, self-shading increases, pH rises, and wastes build up.  Then the culture may 
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continue to grow linearally or enters a stationary phase during which density declines and 

bacteria may proliferate (Creswell, 2010) (Contreras, et al., 1998).  Diatoms also secrete 

autoinhibitors when a culture reaches a certain density.  Research indicates the 

autoinhibitory activity which slows growth at high densities can be reversed when the 

culture medium is replaced at least every 48 hours, as opposed to simply injecting new 

nutrients; thereby allowing growth to continue unabated, resulting in an exponential 

growth phase of up to 12 days (Zou, et al., 2000)  It may also be important to consider a 

lag phase during which the cells become acclimated to a new medium when introduced 

from an inoculum. 

Lighting 

The productivity of photobioreactors is largely determined by the light regime 

inside of the reactors, oxygen removal, nutrient availability, and shear stress (all of which 

are functions of mixing and gas exchange) (Janssen, et al., 2002).  Proper location of the 

light source and suitable gas-liquid thermodynamics determine growth rate and 

productivity (Frac, et al., 2010).  An efficient PBR should be designed to deliver only the 

photons required for the microalge to fix CO2 molecules (Akhilesh, et al., 2011). 

Ten patents were issued in two years for lighting inside of culture systems and 

continue to proliferate (Chaumont, 1993) (McCall, 2011) (Van Walsem, et al., 2011). 

Horizontal photobioreactors experience strong axial gradients with CO2, so vertical 

columns are preferred with CO2 introduced at the base.  However, this introduces less 

efficient optical density, which is remediated with an internally illuminated vertical 
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column photobioreactor.  Combining efficient illumination at high culture densities with 

efficient gas transfer is the goal (Richmond, 2004) (Greenwell, et al. 2010).   

Irradiance for maximum growth rate varies between studies, from 100-140 µmol 

photons m-2 s-1  (Beardall & Quigg, 2003), 150 µmol photons m-2 s-1 (Quigg, et al., 2006) 

280 µmol photons m-2 s-1, (this study found higher irradiance inhibited growth) (Hall, et 

al., 2003), 400 µmol photons m-2 s-1 (Kang, et al., 2010), 347 to 1584 µmol photons m-2 s-

1 (Lopez-Elias, et al., 2008)  500 µmol photons m-2 s-1 (Finkel, et al., 2007), to 1200 µmol 

photons m-2 s-1 (Contreras, et al., 1998) , and 1712 µmol photons m-2 s-1 at 5% CO2. 

(Chrismadha & Borowitzka, 1994)   Zou, et al. (2000) found increased growth rate in 

Nannochloropsis sp. at 3000 µmol photons m-2 s-1 when the culture medium was replaced 

every 48 hours, stirring was provided by bubbling 2% CO2 enriched air, and the light 

path was kept at 14 mm (not including self-shading). 

Augusti & Kalff (1989) found the relationship between cell size and maximum 

biomass density is independent of lighting and based on a relationship of 0.75 (3/4 rule), 

as the density varies by the -0.79 power of the cell volume.  However, only two light 

intensities were used (11 and 220 µmol photons m-2 s-1), and other physiological factors 

could have played a role, such as nutrient limitations.  Other studies since then have 

found cultures can be light limited even when irradiated at 220 µmol photons m-2 s-1, 

depending on the culture density and flow conditions  (Beardall & Quigg, 2003)  (Hall, et 

al., 2003) (Kang, et al., 2010) (Finkel, et al., 2007)(Contreras, et al., 1998) (Chrismadha 

& Borowitzka, 1994)  (Zou et al., 2000).   
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The key is for the light and nutrient conditions to be saturating so as to prevent 

respiration, but not excessive to ensure efficiency and prevent photoinhibition (Sonnekus, 

2010).    Most algae get light saturated at 20% solar light intensities, which is about 220 

µmol photons m-2 s-1, and conflicts with reports from studies cited above (Alabi, et al., 

2009).  Many studies indicate algae productivity increases with higher irradiance, but also 

depends on other factors such as gas exchange, culture density, mixing rate, and medium 

replacement (Beardall & Quigg, 2003)  (Hall, et al., 2003) (Kang, et al., 2010) (Finkel, et 

al., 2007) (Contreras, et al., 1998) (Chrismadha & Borowitzka, 1994)  (Zou et al., 2000). 

Only 48.7% of the incident solar energy reaching the earth’s surface is within the 

photosynthetically active band (400-740 nm) (Zhu, et al., 2008).  There are also differing 

reports on photosynthetic efficiencies depending on lighting source, species, time of day, 

and methods used.  The literature reports photosynthetic efficiencies ranging from 1.3% 

to 34% (Janssen, et al., 2002) (Ferreira, et al., 1998) (Chaumont, 1993) (Sheehan, et al., 

1998) (Miyamoto, 1997) (Behrens, 2005) (Tredici & Zittelli, 2010) (Ragni & D'Alcala, 

2007).  When considering sunlight as the light source, NREL found an algal 

photosynthetic average of 1.3% in their research (Sheehan, et al., 1998).  Miyamoto 

(1997) reports photosynthetic efficiency of 3 - 6% of total solar radiation, while Zhu et al 

(2008) reports 2.4% for C3 and 3.7% for C4 efficiency over a whole growing season.  

Behrens (2005) reports the photosynthetic efficiency of converting absorbed light into 

ATP and NADPH is 20% for red light. Janssen, et al. (2003) reports 10 - 20% efficiency 

of harvesting absorbed light energy in photosynthesis.   
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 Deviations from strictly linear correlations occur under stress conditions such as 

high photon flux or nutrient limitation.  Insufficient caution in lab experiments adds 

methodical errors, such as changing the medium, and causing different nutrient status.  In 

many cases high light intensities induce limitations in CO2 fixation.  The extent to which 

changes in energy production and energy quality affect cell function and downstream 

energy distributions is complex.  Some processes in marine primary producers run 

counter to photosynthetic metabolism and may confuse or complicate the interpretation 

of measurements.  Gas exchange measurements should thus provide estimates of net 

photosynthesis, if incubation is long enough for respiratory substrates to become labeled 

(Beardall, et al., 2008) (Suggett, et al., 2009). 

The photosynthetic capacity reaches a maximum before the end of the exponential 

phase of growth and declines thereafter.  Higher light intensity causes the photosynthetic 

capacity to decrease more rapidly, and high irradiance such as experienced in the sun on 

summer days cause photoinhibition (Tredici & Zittelli, 2010).  Cultures exposed to a 

prolonged period of darkness (up to 16 days at 18°C) maintain a high photosynthetic 

capacity. (Griffiths, 1973)  Research shows that biomass productivity and EPA 

productivity can be maximized by optimizing cell density, irradiance, addition of CO2 

and mixing. (Chrismadha & Borowitzka, 1994) (Lu, et al., 2001). 

P. tricornutum is able to sustain growth even at 10-4 of full sunlight, and adjust 

metabolic activity accordingly. (Beardall, et al., 2003)  Dark survival varies between 

species, may be temperature dependent, and may be prolonged by periodic sub-

compensation intensity illumination (Smayda & Mitchell-Innes, 1974).  Akhilesh, et al. 
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(2011) found that no light penetrates deeper than 30 cm irrespective of cell density, but 

this does not consider turbulence which will move algae in and out of the un-illuminated 

areas sufficiently to allow exposure to light while avoiding photoinhibition.   

At any given instant, most of the cells at optimal cell density are exposed to 

darkness.  The shorter the light path is, the higher the intensity of the light-dark cycles.  

Combining proper geometry of illumination with medium circulation can ensure cells are 

circulated at optimal frequency between light and dark zones.  The tube diameter is 

limited by illumination zone, depending on light placement, and the length is limited by 

maximum velocity without damaging the cells, rate of photosynthesis and removal of 

oxygen.  Research indicates short bursts of intense light followed by longer dark cycles, 

or ensuring the algae does not remain in either well-lit or dark areas for long periods 

permit a significant rise in productivity (Chisti, 2007) (Carvalho, et al., 2006) (Richmond, 

2004).  While there are slight variations on reported optimal light to dark ratio, the 

general consensus is a light to dark residence time with a ratio of 1:10 will yield optimal 

productivity (Frac, et al., 2010) (Acien, et al. 2001) (Chisti, 2007) (Lundquist, et al., 

2010) (Degen, et al., 2001).  

Temperature 

Optimal temperature for growing most microalgae is between 20 and 30°C.   

Photobioreactors with artificial lighting may require cooling at times, but this can be 

accomodated with cooling the input media as it is fed into the culture, and/or a simple 

heat exchanger.  Tubular PBR’s exposed to sunlight will rapidly overheat, unless they are 

cooled.  Cooling can be via heat exchangers or evaporative cooling (Chisti, 2008), but the 
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latter requires more water, a valuable resource.  Open ponds must be protected from both 

low and high extremes in temperature induced by the environment. 

Photosynthetic rate declines most rapidly during growth at higher temperatures, 

and while growth at lower temperatures does not affect their ability to photosynthesize at 

lower temperatures, it does reduce their ability to assimilate carbon dioxide at higher 

temperatures (Doshi, 2006)  (Morris & Glover, 1974).  Research has been performed at 

temperatures from 16 - 27°C but most often is performed around 20°C. (Alcain, 2010)  

(Finkel, et al., 2007)) (Contreras, et al., 1998)   21.5 to 23°C was shown to improve fatty 

acid production in P. tricornutum (Yongmanitchai & Ward, 1991).  Other studies suggest 

a temperature of 24 to 25°C produces better results than room temperature.  (Pisutpaisal 

& Boonyawanich, 2008)  Nannochloropsis oculata was grown at 27 +/- 1°C in Zou, et al. 

(2000) (Creswell, 2010).   

Harvesting 

Harvesting consists of recovery of algae from the media, and recovery of specific 

products from the algae.  Recovery of microalgal biomass requires one or more solid-

liquid separation steps which are made difficult due to the small size (3 - 30 µm 

diameters) of the cells (Molina Grima, et al., 2003).  Recovery of biomass from a 

photobioreactor is much easier than from a raceway pond, due to 30 times the microalgal 

concentration and much smaller surface area.  Filtration and centrifugation can be used 

for biomass recovery, but is a significant part of the cost model (Chisti, 2007).  Using 

filtration for biomass recovery directly in the media is difficult with the small size of the 

algae, since the filter would bind almost immediately and would be very slow (Putt, 
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2007).  However, filter presses, which combine filters with mechanical pressing, can 

effectively be used for denser product following centrifugation.  Filter presses are in 

common use throughout the food processing industry, and can be designed for small 

particulates such as algae. 

A low cost, energy efficient, and simple means of harvesting algae presented by 

Putt (2007) involves a three step process including flocculation and settling, dewatering, 

drying, and a mechanical press.  Drying the algae in an oven is energy intensive, but 

methane derived from biomass can be used to power the heater.  Supercritical CO2 is a 

“green”, highly effective solvent, but it requires high pressure equipment that is both 

expensive and energy intensive.  Chemical solvents present safety and health issues, and 

can be energy intensive.  They also lack efficiency when used in saltwater (Bilanovic, et 

al., 1988).  Solvents are often used in combination with mechanical pressing. 

Following harvesting of the lipids, they must undergo transesterification (process 

of adding three molecules of alcohol to one molecule of natural oil) to produce biofuel 

(Richardson, et al., 2010) (U.S. DOE, 2010) (Verma, et al., 2009).  This process is 

relatively mature and has been commonly used to convert vegetable oils into biodiesel 

(U.S. DOE, 2010).    

Fluid Dynamic and Biological Modeling 

Modeling techniques are of potential use to optimize algae growth, bioreactor 

design and operation, production facility operation, and for coupled operation, financial 

modeling and risk analysis.  Past models have focused on very small scale, and are 

simplistic, non-dynamic, and non-mechanistic with bioreactor-type applications typically 
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structured by deterministic ordinary differential equations (Greenwell, et al. 2010). 

Decades of microalgal research have provided the types of data required to fully develop 

or parameterize models for commercial exploitation of algae.  Coupled fluid dynamics 

and biological modeling offer additional potential with the main parameters being 

dilution rates, optical path length, and nutrient and light supply (Richmond, 2004) (U.S. 

DOE, 2010).     

Researchers have sought to explain the complexities of light distribution within 

photobioreactors using light distribution models which allows productivity to be 

predicted in some cases.  Turbulent flow in a photobioreactor affects culture producivity 

in part because of the high-frequency flashing light effect (FLE), which has been 

recognized for decades (Davis, et al., 1953) (Frederickson, et al., 1961).  The FLE is 

sometimes called the light-dark cycle (LDC), intermittent illumination, light intensity 

fluctuation, or dynamic light condition.  Models have also been developed to simulate 

growth of algae in bioreactors with different lighting schemes, different levels of mixing 

and reactor design, and one study included various strains of algae (Greenwell, et al. 

2010) (Sato, et al., 2010) (Degen, et al., 2001) (Molina Grima, et al., 2000). 

Two studies combined the three-state model with a model that predicts the 

trajectory of cells (Merchuk & Wu, 2003) (Sato, et al., 2009).  CFD was used to create a 

three-state model by Al-Dahhan & Luo (2006) to simulate movement with a radioactive 

particle to see phase distributions in a photobioreactor, and graph viscosity versus shear 

stress at different densities.  This study found CFD is not ready to be used under dynamic 

growth of microalgae to predict growth rate, but does have the potential.  Sato, et al. 
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(2010) developed a three-state model as well by incorporating a CFD two-phase turbulent 

model with a photosynthesis model representing the FLE which calculated the carbon 

fixation and the growth curve of the microalgae.  The results were moderately validated 

by cultivation experiments using real microalgae, but would benefit from including more 

parameters such as temperature. 

Hall, et al. (2003) proposed to show the influence of superficial gas velocity on 

gas hold-up, induced liquid velocity, and mass-transfer coefficient.  The study only 

revealed irradiance and gas velocity must be coupled (at 280 µmol photons m-2 s-1 and 

gas velocity of 0.41 m s-1) to maximize productivity.  In order to model CO2 mass 

transfer, hydrodynamic conditions such as gas expansion, bubble rise velocity, culture 

density, bubble mean diameter and interfacial area must be considered. (Grima, et al., 

1993) (Contreras, et al., 1998)   CO2 concentration is affected by two concurrent 

processes: gas-liquid mass transfer and CO2 consumption in chemical reaction.  At least 

one study has ignored the chemical reactions and based mass transfer coefficient solely 

on gas velocity and biomass concentrations (Contreras, et al., 1998).  Another more 

recent study developed a model to simulate physical-chemical parameters with diffusion 

and physical absorption based on Henry’s law and absorption with chemical reactions 

based on film theory (Iancu, et al., 2010).  Chemical reactions may also lead to varied 

rates of CO2 absorption, but the influence has not been investigated.   

Other fluid dynamic models involved designing arrangement of optical fibers and 

light distribution in a PBR using Monte-Carlo simulation (Zsuzsa, et al., 2001).  Trujillo, 

et al., (2008) studied enhancement of incident radiation due to bursting of bubbles at the 
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surface of an externally irradiated bubble tank PBR, experimentally and by CFD 

simulation.  Akhilesh, et al. (2011) attempted to determine light distribution in an open 

pond and to compare the simulation output to the light distribution obtained by the Cornet 

model, which was a one-dimensional simulation coupling light transfer and growth 

kinetics (Cornet, et al., 1992).  Data from Akhilesh, et al. (2011) found good correlation 

with the Cornet model, CFD analysis, and other studies, but examined a limited range of 

densities, considered solar lighting only, and the initial surface intensity was not 

explained clearly. 

Research has been conducted by mathematically modeling the mass transfer 

coefficients from titration curves of the carbonic acid, which indicated the liquid flow 

rate achieved higher efficiencies while the gas flow rate had no effect (Acien, et al. 

2001).  The volumetric mass transfer coefficient depends on the physical properties of the 

fluid, the fluid flow and the system and geometry of the gas injector (Iancu, et al., 2010).    

Organic substances, solids, phenols, alcohols, acids and electrolytes can 

appreciably modify density, surface tension, and ionic strength which can reduce 

coefficient transfer factors.  However, this requires further investigation, especially since 

at least one study revealed the culture density does not significantly affect the viscosity 

and surface tension of the culture medium (Grima, et al., 1993) (Talbot, et al. 1991)  (Lee 

& Hing, 1989).  The highest viscosities and non-Newtonian flow behavior are usually 

encountered at the end of batch cultivations as the density reaches its maximum 

(Schumpe & Deckwar, 1987). 
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Recent studies indicate the algae cells themselves alter the viscosity of the 

medium, depending on size, density, and whether they are motile or non-motile (Sokolov 

& Arnason, 2009).  A study in France even showed the spherical Chlamydomonas 

reinhardtii, a single-celled green algae with flagella, increase the viscosity of the medium 

in which they are swimming by a factor of two over the same culture density containing 

only dead cells (Rafai, et al., 2010).  Michels, et al. (2010) found shear-thinning only 

occured when thickener was added to the culture of Chaetoceros muelleri even when the 

algal concentration was 5 to 10 million cells/mL (5.9 - 11.84 wet g/L).   

Studies have been performed to develop computing software to make an energetic 

evaluation of cultivating marine macro-algae for biomass (Barberio, et al., 2005).  A 

simulation model in another biologically focused study was created consisting of 

photoadaptation, gross photosynthesis, and respiration under wide irradiance levels 

(Dismukes, 2008).  Yet another study focused on describing growth, CO2 consumption 

and H2 production for A. variabilis under different irradiances and CO2 concentrations.  

The model predicted growth, CO2 consumption, and O2 production within 30% 

(Berberoglu, et al., 2008). 

Techno-economic studies 

A few studies have argued that biofuel production from algae is both economical 

and environmentally sustainable (Chisti, 2008) (Batan, et al., 2010), while most view the 

long term viability and economics of biofuels from algae skeptically (Lux Research, 

2012) (US DOE, 2010) (Frank, et al., 2012) (Sun, et al., 2010).  Some techno-economic 

studies have been conducted which couple wastewater treatment with algal growth, and 
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these show the most potential of a sustainable and economical algal growth for biofuels 

scenario (Beal, et al., 2012) (Pittman, et al., 2011) (Christenson & Sims, 2011).   One 

valid criticism of all techno-economic studies is the total cost in fossil fuels for the algal 

growth facilities, supply of nutrients, and harvesting which result in a net negative energy 

output are not considered on a realistic scale. 

Most financial studies have concluded photobioreactors are not economically 

feasible except for growing inoculums (U.S. DOE, 2010).  The problem with making 

algae cultivation economical lies with the cost and complexity of the facilities needed to 

grow algae at an industrial scale (Lux Research, 2012).  It is generally agreed the 

cultivation of algae must be multipurpose to be economically feasible, such as extracting 

Eicosapentaenoic acid (EPA) from algae lipids prior to using the remaining lipids for 

biodiesel (Greenwell, et al. 2010) (Pedroni & Benemann, 2003).  There is also little 

published information on the environmental and public health impacts of algae 

cultivation or effluent compositions (Alabi, et al., 2009).   

Economic studies in the literature base capital cost estimates on local experience, 

assumptions, proprietary data and/or limited research, and are lacking in detailed analysis 

(U.S. DOE, 2010).  The proposed system in the studies is normally based on one or two 

different designs, and comparisons are impossible since the level of detail is not available 

while the range of inputs and outputs is extensive when based on experimental research 

and various species.  The U.S. DOE has begun an initiative to obtain consistent 

quantitative metrics for algal biofuel production in order to establish an “integrated 

baseline” (ANL;NREL;PNNL, 2012).  Richardson, et al., (2010) estimated the 
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production cost for algae using a Monte Carlo simulation methodology.  Critical input 

variables were determined stochastically, and only two scenarios were included.   

James & Boriah (2010) developed an open raceway model to simulate raceway 

design, algal growth, water quality, hydrodynamic and atmospheric conditions.  Several 

studies have been conducted with life-cycle analysis methods to estimate process energy 

consumption and greenhouse gas (GHG) emissions.  ANL;NREL;PNNL, (2012) 

harmonized the resource assessment (RA), life-cycle analysis (LCA), and the techno-

economic analysis (TEA) to refine the cost estimate.  The energy requirements for 

pumping was estimated as 1.23e-4 kWh per Liter, the pond mixing was estimated as 48 

kWh per hectare per day, and the harvesting options only included centrifuge power by 

gram of biomass and the use of organic solvents. 

Life cycle analysis (LCA) is the fundamental tool used to evaluate the 

sustainability of biofuels.  However, published standards are incomplete and not widely 

adhered to, which makes comparison between studies complicated (Batan, et al., 2010).  

Clarens, et al (2010) found that when considering nutrient demand, algal biomass can 

have higher life-cycle analysis than other crops.  Batan, et al. (2010) found an energy 

input of .93 MJ for every 1 MJ of energy produced and avoidance of 75 g of CO2 

emissions per MJ of energy produced.  However, as can be seen from comparison in 

Appendix B, there are many parameters not included in this analysis.  A life-cycle 

analysis (LCA) performed by Brentner, et al. (2011) included 160 pathways or 

combinations of different technologies for each process stage, but did not include labor, 

capital machinery, or transport infrastructure.  Frank, et al. (2012) found the fossil energy 
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for algal biofuel production was 2.5 times higher than for petro-diesel due to electricity 

consumption and nutrient (fertilizer) manufacturing.  However, this study also found 

significant GHG reduction by arbitrarily reducing the paddlewheel mixing power, and 

including this savings in their results with the higher productivity scenarios. 

Bayless, et al, found  that assuming power plant lifetime of 30 years, 8.8% 

auxiliary load for pumping and dewatering at average cost of $0.035 kW-hr, labor cost of 

$1 per ton for algal production (mostly for hauling biomass), will yield an approximate 

cost of $8 - 10 per ton of CO2  removed ($4.50 per ton capital cost, $2-3 operating cost, 

and $1-2 per ton for operating labor cost).  Long-term cost includes only $1.50 per ton for 

power consumption using self-generated photovoltaic power.  This does not include 

revenue from the sale or use of the biomass.  Lundquist (2011) assumed an average 

design and construction cost of $34,000/hectare per pond, and 2.0 kW/ha for paddlewheel 

operation. 

Lux Research (2012) assumed an algal growth rate based on the amount of 

sunlight only.  This study found the costs to exceed $412 per day, with revenues of only 

$279 per day assuming multiple end products.  Algal oil production costs ranging from 

$10.87 gallon-1 to $13.31 gallon-1 were found by Sun, et al., (2010).  They also concluded 

production costs drop dramatically with increased biomass and lipid yields.  Cost 

comparisons were acccomplished using spreadsheets with no simulation to determine  

operating and material costs.  ANL;NREL;PNNL, (2012) found the break even cost of 

production to be around $9.85 gallon-1 of diesel. 
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Inputs 

Nutrients can represent major technical and economic problems at commercial 

scales.  It is largely assumed that tapping into a wastewater source will lower the nutrient 

costs while making human supplements as a product impossible (U.S. DOE, 2010).   

Research began in the 1960’s at the University of California Berkeley into the 

potential of using wastewater as a source of nutrients to grow algae in large open ponds 

into which flue gas would be injected, harvesting the biomass by settling, digesting it to 

obtain methane gas which is then burned in the power plant, and recycling the digester 

effluents and CO2 back into the ponds (Benemann & Oswald, 1996).  This design showed 

potential of being relatively inexpensive assuming technical problems could be overcome 

and uncertainties resolved.  In fact, a carbon neutral plant has been proposed growing 

microalgae using flue gas and wastewater, and then burning the biomass to fuel the plant 

(Olaizola, et al., 2003).   

Extensive studies have been performed and microalgae are currently being used to 

remove nitrogen, phosphorus and heavy metals such as arsenic, cadmium, and chromium 

from wastewater (Patil, et al., 2008).  Algae can remove greater than 96% of nutrients in 

wastewater (Chinnasamy, et al., 2010).  Ammonium sulfate and urea can be used as 

inexpensive nitrogen sources.  C. vulgaris was grown very successfully in one study 

when fed commercial fertilizers (urea, nutri-calcium, ammonium sulfate, phosphorus plus 

(P+), potash-plus (K+), nitro-20 and di-ammonium phosphate (DAP)) instead of pure 

nutrient media (Ashraf, et al., 2011).  Seawater supplemented with nitrate and phosphate 
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fertilizers can also be an inexpensive medium for growing marine algae (Molina Grima, 

et al., 2000) (Frac, et al., 2010).   

Chisti (2007) found a biomass production cost of $2.95/kg in a photobioreactor 

and $3.80/kg in open pond.  James & Boriah (2010) quotes a current cost of $8 -1 5/kg 

for dry biomass, where the cost needs to be $0.25/kg dry biomass to be competitive with 

petro-diesel. Other studies have found the cost to vary from $0.47/kg (Chisti, 2007, in a 

forward-looking estimate with one hundred times increased production) to $6.93/kg 

(Michels, et al., 2010) (Christenson & Sims, 2011). 

End Products 

Microalgae are cultured for high value products (health supplemental: 

polyunsaturated fatty acids, vitamins, omega-3, biologically active substances: antiviral, 

antifungal, pigments, single cell protein), silicon, renewable energy (methane, biodiesel, 

ethanol, hydrogen), wastewater and animal wastes treatment, and CO2 fixation  (Al-

Dahhan & Luo, 2006) (Richmond, 2004).   Algae can also be 15-71% protein with well-

balanced amino acids, rich mineral content, vitamins, antioxidants, phycobiliprotins, 

essential fatty acids and polysaccharides.  Production cost analysis has been performed 

for cultivating algae to use in human supplements (Fournadzieva, et al., 2001) (Alabi, et 

al., 2009) (Frac, et al., 2010). 

High oil species of microalgae cultured in growth-optimized conditions of 

photobioreactors have the potential to yield 19,000 to 57,000 L of microalgal oil per acre 

per year. (Demirbas & Demirbas, 2010)  P. tricornutum is typically 25-31% lipid, 

Tetraselmis is 15-32%,  while B. braunii can contain 29-75% lipids (Fournadzieva, 
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Bohadgieva, Fytikas, & Popovski, 2001) (Sheehan, et al., 1998).  A study in Canada 

found photobioreactors have a cost of $24.60 per liter of algal oil, with 63% of that cost 

from capital.  The energy balance is -11.5 MJ/L and the CO2 balance is 4108 g/L with a 

carbon capture cost of around $793 ton-1 (Alabi, et al., 2009).  For economic success, 

productivity of over 100 tons hectare-1 year-1 is needed according to one report (Pedroni 

& Benemann, 2003).   

  Bussell, et al. (2008) conducted a study to determine CO2 absorption and 

parasitic load feeding flue gas from two 30kW gas turbines and diesel generators.  A 90% 

plus reduction of CO2 in exhaust gas was achieved with limited (<2%) parasitic load.  

Emissions were channelled through absorption columns into man-made algae ponds 

where CO2 was metabolized.  

Another study developed an economic model involving CO2 recovery from power 

plant flue gas and delivery to microalgae ponds.  A typical 500 MW power plant was 

used including CO2 extraction using compression, dehydration, and transportation to the 

ponds with a cost of $40 ton-1 of CO2 since directly using the flue gas was found to be 

more expensive.  The lipid profit was estimated at $1.4 gallon-1 and CO2 mitigation at 

$30 ton-1, so the project overall was shown to be economically attractive (Kaddam, 

1997).   

Yet another paper presented an initial analysis of potential greenhouse gas 

avoidance using algal biomass production coupled with recovery of flue gas combined 

with waste sludge and/or animal manure utilization.  The model includes 880 ha of ponds 

operating at growth rate of 20 g m-2 d-1 to capture 70% of 30.03 million kg of CO2 with 



 

42 
 

20% of biomass used for biodiesel, 50% for animal feed, and 30% digested to produce 

methane gas, with a greenhouse gas avoidance of 20%, 8.5% and 7.8% respectively, and 

a total of 36.3% and 26.3% after 10% parasitic energy costs required to deliver CO2 to 

algae and to harvest and process biomass and products.  Total parasitic energy 

requirement is estimated at 0.50 kW/kg of biomass. (Brune, et al., 2009) Most studies 

conclude that recovery of the biomass from the media contributes 20 - 30% of the total 

cost of producing the biomass (Molina Grima, et al., 2003).  Actual production costs of 

$15,000 ton-1 (James & Boriah, 2008) and $45,000 ton-1 (Tredicci, 2008) were reported 

for a photobioreactor growth scenario at the 2008 Biomass Summit, but the basis for 

these calculations remains undisclosed.



 
 
 
 
 
 
 
 
 
 

Chapter Two: Method 

The decades of algal research have produced large amounts of data that can be 

used to develop a system model incorporating financial analysis with the intent of 

determining whether algal growth for CO2 capture, wastewater treatment, and biofuel 

production is economical and sustainable.  Currently, the development process to grow 

algae with a desired end product in view is highly cost and labor intensive.  All 

preliminary design work, economic and process modeling is done using a complex 

system of spreadsheets.  This approach is not generating sufficient fidelity or sufficient 

confidence to gain investors due to a wide range of variables and the high potential for 

human error.  System-level analysis can be used to make intelligent trade-offs in a low-

risk, cost-effective virtual design environment.  Incorporating cost and energy factors 

enables a financial analysis and reveals whether the design is sustainable environmentally 

and economically. 

Every assumption in a system imposes constraints on innovation, and it is difficult 

to resolve them incrementally.  Up until now, physical experiments growing microalgae 

have tested at best 3 or 4 variations of designs, with revisions to only one or two 

parameters.  However, through using virtual design one is only limited by the 

imagination.  Algae production with the intent of biofuel production is perfect for system 

modeling since the design is comprised of many interconnected subsystems that rely on 

the performance of one another.  Physics at multiple scales can be applied to produce a 

collaborative engineering approach.  Software tools have developed to the stage where 
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system-level simulation is a feasible methodology to rapidly and continually fine-tune the 

entire product system in a virtual environment well before physical assembly and testing. 

Many products fail because multiple physical forces have not been considered, or 

because individual components fail to perform as expected when brought together.  

Photobioreactors have literally exploded due to accelerated algae growth unanticipated by 

researchers.  Consumers and partners will not invest in a product until it is proven to be 

reliable and consistent.  Creating such a simulation requires knowledge of the physics as 

well as data and process management.  Iterative analysis is required to test the effects of 

changing design parameters on the system as a whole.   

The model basis assumes biodiesel production from algae lipid content as the 

principal end product with the option of converting the biomass to methane to be burned 

for fuel, sold as animal feed, and/or used in human supplements.  As a model for a power 

plant the model uses a coal power plant since coal power plants for electricity generation 

far outnumber in quantity and emissions other industrial plants (U.S. Environmental 

Protection Agency, 2006).   Another option in the model is a wastewater treatment plant 

as a nutrient source.  The power and wastewater plants both lower costs by alleviating the 

cost of some nutrients, and increase revenue through CO2 consumption or wastewater 

treatment.  Integration with wastewater treatment brings cost benefits through nitrogen 

and phosphorus removal from wastewater. 
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Figure 3: CO2 Stationary Source Emissions by Category 
(http://www.netl.doe.gov). 

 
The algal plant is modeled as a system that uses open ponds or photobioreactors, 

and a variety of processing and refining technologies developed and documented in the 

literature and/or by commercial enterprises. 

System Model 

The intent of this model is to make it adaptable to optimize for various algae 

species, inputs, outputs, processes, and designs.  A common framework is developed to 

facilitate comparisons between different algae growth scenarios and to compare results 

with other transportation fuels.  Since many parameters are uncertain, especially 

productivity, the analysis examined a broad range of these variables.  Ultimately the goal 

is to optimize design parameters to attain the greatest net profit possible.  Simulation is a 

form of hypothesis testing, with each simulation run providing one or more pieces of 

sample data, which through inferential statistical methods can be used in a formal 

analysis (Chase, et al., 2006).  This analysis will reveal which algal growth scenarios 
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show the most potential and what innovations and/or improvements must be made to 

obtain favorable results. 

The model incorporates basic algal biology with cultivation science and 

engineering to suggest improvements in productivity while at the same time lower the 

cost of production (U.S. DOE, 2010).  Variables in this study which were not 

incorporated in many past techno-economic studies include the specific algal strain, the 

culture density, the algal strain lipid content and geometry, the growth rate, the lighting 

source and path length, the effective viscosity, and a fluid dynamics profile (see 

Appendix A).  The first step to model any system is to define the system, which in this 

study is the result of data collected from previous studies, and commonly results in a 

range of suitable values.  The calculations for productivity are based on purely biological 

growth rates with the various cellular size of that particular species.  The key input 

variables such as lighting, nutrients, CO2 were derived from the molecular composition of 

algae as requirements to support the productivity.  Where there is a range of values 

possible, the probability distribution is obtained using a range with a random number 

function.  

The second and third steps are identifying the system components and defining 

their properties and physics with equations, which are identified under separate headings 

within this paper.  This involves creating a library of reusable modules, which can then 

be added to Simulink system models and linked together (Matlab, 2012).  Object-oriented 

design involves identifying the components, analyzing and identifying patterns to 

determine what components are used repeatedly or share characteristics, and classifying 
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components on similarities and differences.  Use of a library prevents inconsistencies and 

errors, and enforces a consistent look and feel since changes in the library modules 

automatically apply to all models using those modules.  

Finally the model is built (in this case two models, one representing an open pond 

growth scenario and one representing a photobioreactor growth scenario), test scripts are 

written, and the simulation is run and validated.  The equations presented in this section 

are built inside of the specific applicable modules, which are linked to the inputs from 

other modules while the outputs are fed into other modules.  Values for parameters input 

by the user such as type of lighting, size of the power plant, or algae species are assigned 

in the module masks or the test scripts. Bringing disparate components together as a 

system requires integration of hundreds of variables, multi-physics analysis, flexible 

fidelity, and adaptable outputs.  Figure (3) shows the overall algal growth system and 

input variables, while Figure (4) is similar with a focus on process flow and required 

equipment. Screen shots of the models, library, and an example of a module are provided 

in Appendix D.   
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Figure 4: Algal growth flow chart with model inputs. 
 

The level of accuracy of the cost and power estimates depend on the actual project 

conditions and details.  With no input from the design and only choosing between various 

options available in the model, the model aims to deliver a Class 4 Feasibility or Pre-

Design Estimate, which is prepared using cost curves and scaling factors for major 

processes.  Cost accuracy goal is a range from -30% to +50%.  A parametric estimate is 

based upon statistical data and ranges of values collected from vendors.   

 

  
Primary 
Characteristic 

Secondary Characteristics 

ESTIMATE 
CLASS 

DEGREE OF 
PROJECT 
DEFINITION END USAGE METHODOLOGY 

EXPECTED 
ACCURACY 
RANGE 
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Class 5 0% to 2% Concept screening 

Capacity factored, 
parametric models, 
judgment or 
analogy 

L: -20% to -50%   
H: +30% to 100% 

Class 4 1% to 15% Study or feasibility 

Equipment factored 
or parametric 
models 

L: -15% to -30%   
H: +20% to +50% 

Class 3 10% to 40% 

Budget 
authorization or 
control 

Semi-detailed unit 
costs with assembly 
level line items 

L: -10% to -20%   
H: +10% to +30% 

Class 2 30% to 70% 
Control or 
bid/tender 

Detailed unit cost 
with forced detailed 
take-off 

L: -5% to -15%     
H: +5% to +20% 

Class 1 70% to 100% 
Check estimate or 
bid/tender 

Detailed unit cost 
with detailed take-
off 

L: -3% to -10%     
H: +3% to +15% 

 
Table 1: Cost estimate classification for process industries (DOE, 2011). 

 
Data required for a feasibility estimate include the product(s), process description, 

capacity, a general location, process flow diagram with equipment size and material, 

equipment list, major land cost, ratioed estimate for engineering, chemical quantities,  

construction costs (labor and indirect), and overall timing of execution (Kerzner, 2006).  

Equipment size and quantity will vary depending on the size of the facility which is 

determined by model inputs.  Therefore, this model does have the data necessary for a 

study or feasibility estimate. 
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Figure 5: Process flow diagram with equipment. 
 

In order to establish the necessary size of the facility, the investment cost and 

operational expenses as well as the resulting biomass and oil that a facility will produce 

must also be calculated.  Lack of mature engineering for photobioreactors and systems 

have made these calculations unreliable, but through more detailed fluids analysis this 

study attempts to make possible more reliable and efficient designs. Costs include land, 

design, capital, inoculums (to initiate and restart, depends on species if this is needed and 

if so where produced), harvesting, oil extraction, wastewater treatment, pumping, 

fertilizer (nutrients), carbon cost, power cost, labor, cooling, and cleaning.  Capital is a 

significant cost for building photobioreactors.   

The engineering design and construction cost estimating of algae production 

facilities straddle between agricultural, chemical, mechanical and civil engineering.  The 
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goal is to keep costs at an agricultural engineering level while mimicking the technicality 

of chemical engineering through the use of certain predictable calculations and statistics 

techniques.  

To provide evidence for the sustainability of growing algae for biofuel, the energy 

outputs must outweigh the energy inputs (Alabi, 2009).  In some cases the study attempts 

a first order EROI, which considers the actual energy production and consumption flows.  

However, the equipment, processes and methods used vary widely, and the economic and 

EROI results depend on the technologies used, the inputs, and location.  This paper 

outlines the important parameters to consider, and provides energy consumption and 

production data for the important processes.   

Open Ponds vs. Photobioreactors 

  Initially, the US Department of Energy became interested in algae due to claims 

of high productivity growing algae in photobioreactors; however Benemann, et al., 

(1982) found that open ponds displayed more potential than photobioreactors, which 

resulted in the ASP devoting most of the government research summarized in Sheehan, et 

al., (1998) to open pond growth scenarios.  The most recent algal technology roadmap 

released by the U.S. DOE does not consider photobioreactors with artificial lighting, but 

does acknowledge various benefits of solar illuminated photobioreactors (U.S. DOE, 

2010).   

Photobioreactors offer the advantages of requiring significantly lower water 

volume and land area, less CO2 loss to the atmosphere, better control of culture 

conditions, higher productivity and density (reducing harvesting costs), reduced 
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contamination risks, reduced damage from pumping, and yield consistency throughout 

seasons and weather changes.  Photobioreactors can guarantee a sustainable production 

process essential for industrial applications through providing a homogeneous and stable 

environment (Tredici & Zittelli, 1998) (U.S. DOE, 2010).  Open ponds are severely 

limited by the need for locations with sunny, temperate climates, sufficiently flat land, 

supplemental CO2, and possibly brackish water, seawater, or wastewater.  

ANL;NREL;PNNL, (2012) found only 5.5% of the land in the conterminous United 

States to be suitable for large-scale open pond microalgae production. 

 

Figure 6: Rough scoping assessment of preferred site locations for outdoor 
algae production (Source: U.S. DOE, 2010). 

 
Observational data from actual algae facilities show two times to ten times, or 

more, swings in output between summer peaks and winter months, and between daytime 

and nighttime, ranging from 7 g/m2/day to 25 g/m2/day (Lux Research, 2012).  The 

amount of water lost to evaporation is significant for open ponds even if the source is 

wastewater, brackish or salt water, and the impacts go further than water cost.  If flue gas 

is used, only 30% of the emissions can be used for open ponds, since the emissions at 

night or much of the winter could not be used (Benemann & Oswald, 1996).  The model 
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determines the amount of land required for an open pond growth scenario through adding 

10% to the surface area required for the ponds.  The photobioreactor land area is 

calculated by Equation (1). 

𝐿𝑃𝐵𝑅 =  𝜋(𝐷𝑃𝐵𝑅 + 1)2𝑄𝑃𝐵𝑅       Eq. (1) 

where LPBR is the required area of land in m2, 

DPBR  is the total PBR diameter in meters, 

and QPBR is the total quantity of PBR’s. 

The economic advantages of growing phototrophic cultures at very high cell 

concentrations in terms of reduced production and capital costs are presently curtailed by 

the necessity to continuously alleviate growth inhibition in such cultures.  Efficient 

growing methods would be characterized by high areal as well as volumetric 

productivity, which is currently the most possible with artificially illuminated 

photobioreactors.  Also, the issues of oxygen saturation and increasing pH along the 

length of a culture are easily solved with a vertical, artificially illuminated 

photobioreactor. 

The photobioreactor design requires a concurrent approach to insure that 

multidisciplinary design goals are achieved, and includes the following parameters: 

bubble size, gas flow rate, CO2 content, biomass density, specific growth rate, dissolved 

oxygen concentration, photosynthetic efficiency, pH, chemical reactions, nutrient 

sources, algal physiology, geometry, building materials, ease of scale-up, contamination 

control, and light delivery and distribution. 
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 In order to design a cost and power effective photobioreactor, the following 

problems must be resolved: 1) design must be universal and permit cultivation of various 

photosynthesizing organisms,  2) provide for uniform illumination of the culture surface 

and mass transfer of CO2 and O2,  3) prevent or minimize fouling, particularly of light-

transmitting surfaces,  4) high rates of mass transfer by means that neither damage cells 

nor suppress their growth,  5) volume of non- illuminated  parts should match optimal 

light: dark ratio, and 6)  energy consumption required for mass transfer and light surface 

must be optimized (Gabel, et al., 1996). 

The suitability for an open pond, photobioreactor, or hybrid system will depend 

on the upstream and downstream processing, resources available, location, financing, and 

products of the cultivation system.  This requires a techno-economic analysis which 

incorporates the design of the cultivation system (U.S. DOE, 2010).  The various 

assumed designs included in this study are as follows: 

• Open pond design is a user specified number of large surface ponds with a 

specified number of Liters in each pond with no shade or environmental 

control, where each pond has one paddlewheel and 20 gas spargers. 

• Solar illuminated PBR is a single tube bubble column design to optimize 

light exposure around the perimeter with a single gas sparger.   

• Artificially illuminated PBR is an ALR design with an internal and 

perimeter fluorescent or LED illuminated area and a single gas sparger. 

The total amount of Liters is user specified in both PBR growth scenarios, and the 

model determines optimal size of each PBR which in turn calculates the quantity of 
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PBR’s needed.  All PBR results prior to the optimization section apply to artificially 

illuminated PBR with ALR design densities of at least 40 g/L unless otherwise noted.   

Productivity 

The model is designed with options of growing four marine microalgae species: 

Phaeodactylum tricornutum (diatom), Tetraselmis cordiformis (flagellated green), 

Nannochloropsis salina, Chaetoceros muelleri, and one freshwater species, Chlorella 

vulgaris. 

P. tricornutum have a typical cell volume of 120 - 200 µm3, are typically 20 - 40 

µm long and 3.0 - 3.5 µm wide (Olenina, et al., 2006) (Greenwell, et al., 2010).  

Nannochloropsis salina algae are small, nonmotile spheres with a diameter of 

approximately 2 µm, and can grow in both marine and fresh water environments.  They 

are a rich source of a range of pigments and omega-3 fatty acids such as EPA which are 

valuable commercially (Hibberd, 1981).  Tetraselmis cordiformis is elliptical shaped 

marine algae with a diameter of 16 - 23 µm, and four flagella arising from an anterior 

depression of the cell body (Eishi & Toshihiko, 2000).    Chlorella vulgaris is spherical 

with a volume averaging 78 µm3.  All four species are capable of accumulating lipids, 

with the highest reported for Nannochloropsis at 68%, but reports vary widely (Sheehan, 

et al., 1998).  Chaetoceros muelleri is a diatom commonly used as feed for aquaculture, 

and is cylindrical in shape (Olenina, et al., 2006). 

 

Species 
Oil Content 
% Dry wt. 

Ankistrodesmus TR-87 28-40 

Botryococcus braunii 29-75 
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Chlorella sp. 28-32 

Cyclotella DI-35 42 

Hantzschia DI-160 66 

Isochrysis sp. 7-33 

Nannochloris 31 (6-63) 

Nannochloropsis 46 (31-68) 
Chaetocerus m. (Lopez-

Elias, et al., 2005) 29 

Phaeodactylum 
tricornutum 31 

Scenedesmus TR-84 45 

Stichococcus 33 (9-59) 

Tetraselmis suecica 24(15-32) 

 
Table 2: Oil content in selected algal species (Sheehan et al., 1998). 

 
Research performed cultivating Tetraselmis sp. report a range of lipid values from 

8.5 to 23 % of biomass.  Robustness and high productivity combined with moderate basal 

lipid content makes it a good candidate for biodiesel production (Sonnekus, 2010). 

Maximum productivity calculations used in the model are based on past research 

and biological calculations.  Since the range of productivity values in the literature is 

extensive, and depends on many variables, the model begins with a purely biological 

relationship.  Variables can be modified to enable analysis of different designs.  

Population dynamics may yield nonlinear growth rates.  Also, in high volumetric 

productivity systems, all the parameters related to growth, including oxygen generation, 

pH, CO2 absorption, and nutrient depletion change at a high rate (Tredici & Zittelli, 

1998).  The model assumes productivity can be optimized by applying known fluid 

dynamic principles to known algal responses (Degen, et al., 2001). 

Maximum growth rate for algae ranges between 1.12 and 1.15 per day.  Growth 

rates are determined with µ=(ln c-ln c0)/(t-t0) where c is the cell concentration in cells/mL 



 
 
 
 
 

57 
 

and t is measured in days. (Quigg, et al., 2006) (Greenwell, et al. 2010)  Thus the 

maximum and minimal growth rate for algae when conditions are optimal can be 

determined by: 

𝑐 =  𝑒𝜇𝑡+ln (𝑐𝑜)                            Eq. (2) 

The model uses Equation (2) for all growth scenarios growth rate to give open 

ponds a fair assessment, but conditions in an open pond growth scenario are less than 

optimal due to photoinhibition and lack of consistent fluid dynamics which affects 

nutrient availability, temperature changes, and contamination.  Therefore, the growth rate 

as exhibited in past algal growth scenarios and detailed in the literature may differ from 

Equation (2), especially in open pond growth scenarios.  Where 0.08 g/L per day and 

about 20 g/m2 per day has been proven realistic, the relationship between pond depth and 

productivity can be approximated per Equation (3). 

𝑑 =  −0.005 ∗ 𝑃𝑑 + 0.2               Eq. (3) 

where d is cell concentration in g/L per day, 

and Pd  is pond depth in centimeters.  
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Figure 7: Productivity in g/m2 per day in the literature (Richardson, et al., 

2010). 
 

Integrating biology in the model involves the cell size as this affects physiological 

rates, metabolic rate, light absorption, nutrient diffusion, uptake requirements, sinking 

rate, and grazing rates.  Quantitative relationships between phytoplankton cell size and 

physiological and ecological processes can be used to construct models of primary 

production (Flynn, et al., 2010). 

Volume of Nanno. s. was computed as volume of a sphere: 

 4
3
∗ 1 ∗ 10−6𝜋 = 4.9 ∗ 10−18𝑚3 

Volume of Tetra. c. is computed as volume of a trapezoid (Olenina, et al., 2006): 

1
2
∗ 18 ∗ 10−6 ∗ 9 ∗ 10−6 ∗ (15 ∗ 10−6 + 9 ∗ 10−6) = 1.94 ∗ 10−15𝑚3 

 Volume of Chaet. m.is computed as an oval cylinder: 

𝜋
4
∗ (7 ∗ 10−6)2 ∗ 9 ∗ 10−6 = 3.26 ∗ 10−16𝑚3 
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 Volume of Chlorella sp.is computed as a sphere: 

(5.23 ∗ 10−6)3 ∗ 𝜋/6 = 7.49 ∗ 10−17𝑚3 

 Volume of Phaedactylum t. is computed as a half parallelepiped: 

27 ∗ 10−6 ∗  
(3.5 ∗ 10−6)2

2
= 1.65 ∗ 10−16𝑚3 

 

Table 3: Summary of biological characteristics for algae species used in 
analysis. 

 
The internal density of diatom cells is an average of 1150 kg m-3, which enables 

the computation of grams/L from the number and volume of cells and growth rate of 1.12 

to 1.15 (Greenwell, et al. 2010).  Resulting culture density in g/L for all growth scenarios 

is calculated using Equation (4). 

𝑑 = 1150 𝑘𝑔
𝑚3 ∗  𝑐 ∗  𝑚

3

𝑐𝑒𝑙𝑙
       Eq. (4) 

Measurement of productivity in the literature is through the optical density of 

culture using a spectrophotometer or by using gravimetry, essentially drying the volume 

and weighing it.  Dry weight is normally 8.0 to 8.8% of wet weight (Watson, et al., 1963) 

(Contreras, et al., 1998).  The model uses a random number function between 8.0 and 

8.8%. 

The model uses this growth rate based on various species of algae and their 

respective cellular sizes for all growth scenarios.  The starting density in cells L-1 is 

Species Volume (m3) Lipid Content (%) Marine or Fresh
Phaeodactylum tricornutum 1.65E-16 31 Marine
Chlorella vulgaris 7.49E-17 28-32 Fresh
Nannochloropsis salina 4.19E-18 31-68 Both
Tetraselmis cordiformis 1.94E-15 15-32 Marine
Chaetoceros muelleri 3.26E-16 29 Marine
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varied to result in maximum optimal biomass density depending on the algal size after 

one day’s growth.  Normally the exponential growth phase is four days if the medium is 

not completely replaced (Zou, et al., 2000) (Lee & Palsson, 1994) (Thomas & Gibson, 

1990).  However, the model assumes the portion of algal growth is harvested every day 

which will provide for the required density to reach optimal density the following day 

(detailed in harvesting section of this study).  The recommended starting density to result 

in optimal biomass density after one day’s growth is an output from the model.  This is an 

improvement over current commercial methods of beginning cultures by volume of 

inoculum, which results in different qualities and quantities at the end of the growth 

period (Lopez-Elias, et al., 2008). 

The maximum density for photoautotrophic cultures is a function of light path and 

intensity, gas-liquid interfacial area, and shear rate.  The shorter the light path, the higher 

the optimal cell density and volumetric productivity (Degen, et al., 2001).   Higher 

densities of 50 – 60 dry cell mass g L-1 have been obtainable only with 2000-3000 µmol 

photons m-2 s-1, vigorous stirring, medium replacement every 2 days at high density, and 

a 20-30 day growing period, which in the majority of scenarios will not be cost-effective 

or sustainable  (Zou,et al., 2000) (Lee & Palsson, 1994).   

The model determines optimal density based on the light path length, flow path, 

and algal cell size versus the power and capital inputs necessary to provide light intensity 

and path length. 

Open pond productivity varies in the literature from 20 - 80 g m-3 d-1 (depending 

on the pond depth, where shallower depths result in higher density), which is at the 
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greatest a resulting density of 0.33 g L-1 after four days’ growth (.08 g/L d-1) (Beal, et al., 

2012).  Maximum open pond productivity is obtained with the most shallow pond depth, 

while lower productivity is associated with greater pond depth.  The growth rate for 

artificially illuminated photobioreactors presented in the previous section is a maximum 

wet density of 60 g L-1, or 180 times the density of open ponds. Solar illuminated 

photobioreactors have displayed a growth rate of 1.08 g L-1 day-1 (Camacho, et al., 1999). 

The model incorporates a loss of growth for open ponds from .1 - 10% to account 

for losses at night, extremely overcast days, and the risk of contamination.  Also, there 

are options for rural land or urban land for both open ponds and PBR’s to analyze the 

impact location has on net profit. 

Algae respond to changes in light, temperature, and nutrient availability 

dynamically through the organization of pigments, end products, and growth rates 

(MacIntyre & Cullen, 2005).  The resulting composition of the algae cell in comparison 

with the desired end product(s) is what determines the productivity.  As mentioned in the 

literature review, the growth rate may not be optimal in order to achieve maximum 

productivity.  The goal of an algal culturing system is to manipulate the inputs to result in 

the optimal desired end products with the most efficient cost and use of power. The 

model uses common patterns across the taxa for nutrient uptake, pigments, 

photosynthetic response and growth based on the general molecular formula for algae: 

CO0.48H1.83N0.11P0.01 (Demirbas & Demirbas, 2010). 

At the core of the simulation are the fluid properties in relation to obtaining 

optimal algal growth.  The fluid dynamic principles in an ALR detailed in the “small 
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scale turbulence” section are used to optimize growth conditions.  An organized mixing 

pattern is attained through using an ALR resulting in nearly constant light/dark cycle 

frequency approaching a ratio of 1:10.  Combining proper geometry of illumination with 

medium circulation can ensure cells are circulated at optimal frequency between light and 

dark zones.  The tube diameter is limited by illumination zone, depending on light 

placement, and the length is limited by the rate of photosynthesis and removal of oxygen.   

Lighting   

Plants in the wild are evolutionarily invested to ensure survival under extreme 

stress, at the expense of optimal photosynthetic efficiency.  Lighting must support 

photosynthesis for optimal growth rate while preventing photoinhibition.  There is 

evidence that algae in the wild are light-limited on bright summer days (Tredici & 

Zittelli, 1998).  Spatial light dilution or FLE is a means to overcome the light saturation 

effect used by plants in nature (Sato, et al., 2010).  Studies indicate the light/dark cycle 

for algae must be constant at different scales (Molina Grima, et al., 2000).  Artificial algal 

cultures have to compromise between maximizing light interception to attain maximum 

volumetric productivity and avoiding excess light which causes photoinhibition in order 

to achieve high light conversion efficiency.  Verification of photosynthetic efficiency for 

a specific design is necessary in determining economic feasibility of a plan for growing 

microalgae.  The design should be adaptable to the culture density and provide just 

enough light needed by the algae for the photosynthetic process. 

Solar light intensity varies between about 120 and 1400 µmol photons m-2 s-1, but 

varies depending on day length, season, cloud cover, time of year, and latitude (Torres & 
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Lopez,  2010).  Research indicates P. tricornutum is light saturated at 200 µmol photons 

m-2 s-1 or about 10% of full-sunlight intensity (Molina, et al., 2000) (Lundquist et al., 

2010).  Rate of mixing becomes ever more important as algal concentration increases to 

obtain maximum productivity and photosynthetic efficiency with greater light intensity, 

so that the higher the intensity of the light sources, the higher the optimal culture density 

(Qiang & Richmond, 1996).  At this point in time with current technology, optimal rate 

of mixing is only available technologically and from a perspective of energy use in 

PBR’s, while photoinhibition is unavoidable in an open pond growth scenario. 

In economic models of algal growth for biofuels the light measurement is a 

common source of error (Dimitrov, 2007).  In order to determine the photosynthetic 

efficiency one must consider the absorption efficiency and the conversion efficiency. 

Conversion Efficiency 

Photosynthetic organisms use at least eight photons to convert one molecule of 

CO2 into carbohydrate (CH2O)n; thus the maximum conversion efficiency of turning 

photosynthetically active radiation (PAR) into carbohydrate (ηtheo) can be estimated using 

Equation (5). 

 η𝑡ℎ𝑒𝑜 = 𝐻𝑉𝑐𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒
8∗𝐸𝑝ℎ𝑜𝑡𝑜𝑛

                Eq. (5) (Dimitrov, 2007) 

where HVcarbohydrate is the heating value of CH2O (~468 kJ mol-1) and Ephoton is the 

mean energy of a mole of PAR photons (~217.4 kJ).  This gives maximum theoretical 

photosynthetic conversion efficiency (ηtheo) of 27%.  The model assumes the theoretical 

conversion efficiency (ηtheo) of 27%. 
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Absorption Efficiency 

 Absorption efficiencies are much lower since plants cannot absorb every photon 

that falls to earth because of photosaturation, photoinhibition, and reflection, plants spend 

energy on other life-supporting functions, and transmission losses due to self-shading and 

reflection through the photobioreactor wall or water surface. Dimitrov (2007) estimated 

only 37% PAR energy is actually used leading to an overall photosynthetic efficiency 

using solar light of about 10% (27% * 37%).  This is still a 30 fold improvement over 

more normal agricultural yields (Sheehan, et al., 1998) (Miyamoto, 1997) (Zhu, et al., 

2008).   

The variations in reported photosynthetic efficiencies for microalgal cultures is 

likely due to differing light sources and the fact that pigment content can vary 20 - 100% 

diurnally for at least some algae species (Ragni & D’Alcala, 2007).  The absorption 

coefficient is difficult to predict and depends on other factors not completely understood, 

but it will not be 100% all of the time.   

The absorption efficiency can be optimized through light source, light spacing and 

efficient CO2 mass transfer.   LED (light emitting diodes) provide specific wavelengths, 

are light, small, have a very long life-expectancy and are so electrically efficient that heat 

generation is minimized (Lee & Palsson, 1994).  LED lighting in only wavelengths used 

by algae maximizes absorption especially when spacing allows optimal light path length 

while minimizing self-shading and reflection.  Photosynthetic optimal lighting 

wavelengths are in the blue spectrum at around 450 nm and in the red spectrum around 

678 nm.  Chlorophyll is excited only by photons with wavelengths of 680 and 700 nm 
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(red) (Schlagermann, et al., 2012) (Holdsworth, 1985).   Spectral ouptut at the 

photosynthetic absorption spectrum avoids unusable frequencies (converted into thermal 

energy), and improves overall energy conversion.  Although fluorescent lighting is not as 

an efficient use of energy as LED lighting, it can result in similar algal growth. In fact, 

the highest reported overall photosynthetic efficiency reported was 34%, and was 

achieved with fluorescent lighting through improving the gas exchange mass transfer 

coefficient using microporous hollow fibres (Ferreira, et al., 1998). 

  Biomass density affects both light intensity and light penetration.   According to 

Akhilesh, et al. (2011), dense cultures’ solar light zone is from 12.05 cm for .033 g cell 

mass per L, to 14.35 cm for .028 g cell mass per L, and up to 16.3 cm for .025 g cell mass 

per L.  The same study concluded that below 30 cm, there is no penetration of required 

light intensity regardless of the cell concentration.  Using the data gathered from 

Akhilesh, et al., an empirical exponential equation was developed to estimate light 

penetration in microalgal cultures: 

𝑃𝐿 = 30.0𝑒(−0.058𝑑)        Eq. (6) 

where PL is the path length in centimeters,  

and d is the culture density in g cell mass per L. 

This equation is a Beer-Lambert type equation: 

𝐼 =  𝐼0𝑒−𝑘𝐶𝑑 

where Io is the light intensity at the irradiated wall surface, 

k is the attenuation constant caused by algal concentration, (C) 

and d is the distance from the irradiated surface.   
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This equation underestimates penetration since it does not include the scattering 

phase function from the Radiative Transport Equation (RTE).  Light penetration will also 

be a condition of turbulence in the culture, which is discussed in the following section. In 

addition, other studies indicate algal growth continues at greater depths and at less than 

the required 200 µmol photons m-2 s-1 (Quigg, et al., 2006).  Air bubbles reportedly 

increase light penetration depth (Lee & Palsson, 1994).  Carvalho (2008) states a light 

path length of 2 - 5 cm for dense cultures. Additionally, most laboratory conditions for 

simple flasks with no or minimal induced fluid dynamics and diameters up to 8 cm easily 

obtain culture densities of 1e9 cells/L or at least 0.086 g/L (A. Quigg, personal 

communication, May 20, 2011)  (Al-Dahhan & Luo, 2006).  Wu and Merchuk (2003) 

demonstrated that algal growth up to 5.0e10 cells/L or about 4.3 g/L with very minimal 

air sparging and less than 200 µmol photons m-2 s-1 light intensities is possible.  As 

shown in the literature review, much higher densities up to 200 g/L (1e10 cells/mL) have 

been obtained in photobioreactors with LED lighting and optimal fluid dynamics.  

Richmond (2004) asserted ultra-high density cultures are obtainable in photobioreactors 

with light path lengths of 0.5 – 1.0 cm. 

Summarizing the range of possibilities available, Equation (7) was chosen to 

calculate light path length based on culture density in the model. 

𝑃𝐿 = 35.0𝑒(−0.035𝑑)                     Eq. (7) 

where PL is the path length in centimeters,  

and d is the culture density in g cell mass per L.   
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Furthermore, the model has a range of absorption efficiencies (Qabs)  depending 

on the lighting and gas exchange design.  LED lighting, assumed in PAR wavelengths of 

blue and red, with light path of <6 cm and optimal CO2  mass transfer results in the 

highest efficiency of 90%, while sunlight and bubbled CO2 is assumed at the lowest 

absorption efficiency of 40% .  The development of absorption factors in Table (2) are 

based on the above absorption efficiency analysis.  The factors which apply to the design 

for light source, light path, and gas exchange are totalled and divided by 10 to arrive at 

the photosynthetic absorption efficiency (Qabs). 

 

Light source Absorption Factor 
LED in red and blue 4 
Flourescent  3 
solar 2 
Light Path (cm) at Optimal 
Density 

 >10 3 
6-10 2 
<6 1 
Gas Exchange 

 diffusion 2 
sparging 1 

 
Table 4: Photosynthetic absorption factors. 

 

Overall Photosynthetic Efficiency 

By summing the absorption factors from Table 4 which are applicable to the 

design, dividing by 10, and then multiplying by the conversion efficiency (ηtheo = 27%), 

one arrives at the total photosynthetic efficiency (QT) of the design.  The light path will 
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vary as the optical density increases and decreases, which means the efficiency may 

decrease as the culture grows, unless the design accomodates increasing density with the 

light spacing or fluid dynamics. 

Another factor for determining photosynthetic efficiency involves the breakdown 

of carbohydrates by a photosynthetic organism when ATP energy (derived from PAR 

energy) is not available.  However, this should not be a significant factor in an artificially 

illuminated photobioreactor since the dark period will be a period of seconds rather than 

12 hours.  Algal culture systems using solar light only will experience a reduction in 

photosynthetic efficiency reflected by Qdark = 0.72 (Dimitrov, 2007).  The resulting total 

photosynthetic efficiency for algal cultures relying on only solar light is calculated with 

the following equation: 

QT = Qdark * ηtheo * Qabs            Eq.(6) (Dimitrov, 2007) 

The resulting total photosynthetic efficiency for algal cultures relying on artificial 

light is calculated with the following equation: 

QT = ηtheo * Qabs            Eq.(7) (Dimitrov, 2007) 

However, there are other lighting factors to consider including the transmission 

coefficient (Qtr) and cleanliness of the reactor wall (Qclean) (Dimitrov, 2007).  The likely 

material for any photobioreactor is polycarbonate with a transmission factor of 0.9, and 

cleanliness should be maintainable at 0.95.  The reduction in efficiency due to self-

shading is considered in the next section with path length, and light reflection should not 

be a significant factor for an internally illuminated photobioreactor.  One other 

consideration which is highly likely when using flue gas is the nitrogen source will be 
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NOx instead of ammonia, which requires energy from algal cells to process.  The 

assimilation of nitrate involves two transport and two reduction steps to produce 

ammonium in the chloroplast (Wang, et al., 2010).  This factor is labeled as Qlife, and is 

roughly equivalent to 0.9.  This factor is omitted only if the design is supplying nitrogen 

in the form of ammonia, which is likely if municipal wastewater is used. 

Thus for an internally illuminated photobioreactor: 

QT = ηtheo * Qabs * Qtr * Qclean * Qlife       Eq.(8) 

For solar illuminated photobioreactors: 

QT = Qdark * ηtheo * Qabs * Qtr * Qclean * Qlife     Eq.(9) 

And for open ponds: 

QT = Qdark * ηtheo * Qabs * Qlife                           Eq.(10) 

Thus, best case scenario (internally illuminated photobioreactor with ammonia as 

the nitrogen source) would be a resulting overall photosynthetic efficiency of: 

QT = .9 *.27*.9 *.95 = .21= 21% 

And worst case would be the solar illuminated photobioreactor with an overall 

photosynthetic efficiency of: 

QT = .72 * .4 * .27 * .9 *.95 * .9 = .06 = 6% 

This value concurs with Tredici & Zittelli (1998) with photosynthetic efficiency 

values for solar illuminated photobioreactors between 4.8 - 6.6%. 

Open ponds are a slight improvement over a solar illuminated photobioreactor 

with an overall photosynthetic efficiency of: 

QT = .72 * .4 * .27 * .9= .07 = 7% 
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When solar is the light source, however, another factor should be considered 

when the light is in excess and photoinhibition or light saturation occurs.  The resulting 

photosynthetic efficiency can decrease by up to 75%, resulting in the 1-3% efficiency 

reported in the literature for open ponds and solar illuminated photobioreactors (Sheehan, 

et al., 1998) (Lundquist, et al., 2010) (Tredici & Zittelli, 1998).  However, this can be 

minimized through turbulent mixing and spatial light dilution.  Also, photoinhibition can 

be avoided for the most part in artificially illuminated photobioreactors through optimal 

light intensity and placement, which is discussed in the gas exchange section of this 

paper. 

Light Irradiance 

Required light intensity or irradiance can be determined from Equation (11). 

 𝑄𝑎𝑣𝑔 =  𝐵𝑌[𝐸𝑐(1−𝐿)+ 𝐸𝑡𝐿]
𝑇𝑄𝑇

               Eq.(11)  (Chisti, 2007) 

where Qavg is the annual average required PAR energy (W L-1), 

BY is the wet algal biomass yield in g L-1, 

T is time (86400 s d-1), 

QT is the theoretical total photosynethic efficiency, 

Ec is the energy necessary for building 1 g of carbohydrate (17 KJ g-1), 

Et is the energy necessary for synthesizing 1 g of lipid (38 KJ g-1) (Shen, et al., 

2009) (Chisti, 2007), 

and L is lipid content.  

Qavg thus incorporates the total photosynthetic efficiency (QT) determined in the 

previous section which will depend on the design.  This analysis reveals partly why there 
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exists a wide range in reported photosynthetic efficiencies, irradiance levels, and 

productivities.  The required Watts per Liter can vary by a factor of three depending on 

the lighting and gas exchange design. 

The model determines required watts per Liter and sizes the fluorescent or LED 

lighting accordingly so that negligible photoinhibition will result.  Of course, this is not 

possible with solar lighting, so one could expect some photoinhibition and loss in 

productivity in a solar illuminated photobioreactor or open pond growth scenario.  

Gas Exchange 

  Carbon dioxide in atmospheric air is far too dilute to support algal maximum 

growth rate.  One solution to providing increased concentration of CO2 to algal cultures is 

pumping exhaust gas from a stationary source straight into the algal culture.  There are 

some 5,000 stationary CO2 sources available in the United States and Canada.  Natural 

gas power plants emit flue gas with the lowest percentage of CO2 at 3 - 5% while coal 

plants emit 9 - 14%, which all are within the range acceptable for algal growth 

(Lundquist, et al., 2010). 
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Figure 8: United States and Canadian CO2 Stationary Sources (Source: 
http://www.netl.doe.gov). 

 

Power plants also have up and down cycles, so there must be storage available or 

a design which accomodates pumping atmospheric air to the culture when flue gas is not 

available which averages between 11 - 35% of available hours in the year depending on 

the station and the year for an electricity generating coal plant (xcelenergy.com, 2011).  

The PBR growth scenario model includes cost for pumping and storing the flue gas to 
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maintain in storage at least one day’s requirement for the algal culture size and growth 

rate. 

Composition of flue gas depends on the source as shown in Table (5). 

 

Fuel type A. 
Bituminous 
coal 

B. Sub- 
bituminous 
coal 

C. Natural gas D. Natural gas E. Fuel oil 

Gas (wt) Utility boilers Gas Turb Comb Diesel 
CO2  (%) 18.1 24.0 13.1 5.7 6.2 
O2  (%) 6.6 7.0 7.6 15.9 17.0 
N2  (%) 71.9 68.1 79.3 78.4 76.7 
SO2  (ppm) 3504.0 929.7 0.0 0.0 113.1 
NO (ppm) 328.5 174.3 95.1 22.1 169.7 
NO2 (ppm) 125.9 66.8 36.5 8.5 65.0 

 
Table 5:  Composition of gas mixtures according to combusted material 

(Olaizola, et al., 2003). 

 
The potential exists that particulate matter and heavy metals from flue gas could 

inhibit growth or will produce inconsistent results in biomass and lipid productivity, but 

this has not been thoroughly investigated.  An existing power plant likely has methods in 

place for removing particulates and heavy metals from the flue gas to meet EPA 

regulations.  Therefore, the model assumes no additional cost for treatment of the flue gas 

then would likely already be present.   

Nitrogen is between 4 and 8 percent of dry weight of algae (80g per kilogram of 

algae), and phosphorus is 0.1 percent.  If wastewater or flue gas is not used, these 

nutrients, as well as iron and salt, if a marine diatom is being cultivated, must be 

purchased.   

A significant part of the energy equation and CO2 balance is based on securing a 

nitrogen source.  Nitrogen is more expensive than oil by a factor greater than three: 
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nitrogen costs $1.4/kg, while oil costs $0.4/kg.  A nitrogen source or nitrogen recovery 

and recycling is critical for large scale microalgae production to be cost effective and 

environmentally sustainable.  Combustion systems such as incinerator or power stations 

can provide nitrogen in gaseous forms, NOx.  Securing flue gas as a nitrogen source also 

has the added benefit of reducing NOx emission, which is needed to reduce ground level 

ozone (smog) (Richmond, 2004)  (Nagase, et al., 2001) (Cantrell, et al., 2008).  Unless an 

ammonia source (wastewater or fertilizer) is available, the model uses the growth factor 

(Qlife = 0.9 detailed in previous section) to reflect the lost algal productivity due to the 

need to fixate nitrogen. 

Minimal nutrition and CO2 requirements can be estimated using the general 

microalgal biomass stoichiometry: CO0.48H1.83N0.11P0.01  (Demirbas & Demirbas, 2010).   

Where the ratio between carbon in a molecule of CO2 to an algal cell is 1:1, the ratio of 

oxygen is about 4:1.  Therefore, carbon is limiting the algal growth, and it takes one 

molecule of CO2 (with a mass of 44 g) to produce an algal biomass of 23.36 g 

(12+0.48*16+1.83*1+.11*14+.01*31).  Thus the relationship in Equation (12) can be 

found for the total amount of CO2 needed for a given mass of algae. 

𝑥 =  23.36𝑦
44

                 Eq. (12) 

where x is the mass of CO2 in grams, 

 and y is the mass of dry algal biomass. 

Adding in the molecular weights of the elements yields: 

C(1.0*12)H(1.83*1)O(0.48*16)N(0.11*14)P(0.01*31)=C12H1.83O7.68N1.54P.31 
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Thus, the model determines the quantity of carbon, hydrogen, oxygen, nitrogen, 

and phosphorus consumed and contained in the resulting algal biomass where: 

C = 51%, H = 8%, O = 33%, N = 7%, and P = 1% of dry weight biomass yield. 

Data from a typical coal plant operating during 2010 is used to estimate approximate 

grams of nitrogen, phosphorus, and carbon available from the flue gas per MW of the 

power plant.  Since the N: Ox molecular mass will be in different ratios due to molecules 

of NO, NO2, NO3, and NO4, the estimate assumes the N will be 0.3 the mass of the NOx.  

The Redfield ratio for diatoms describes the necessary carbon, nitrogen, and phosphorus: 

106:16:1 (Sato, et al., 2010), which implies the required nitrogen may be greater in 

proportion to carbon and phosphorus than the molecular formula indicates.  The model 

assumes the necessary carbon is 53% of the biomass, necessary nitrogen is 8% of the 

biomass, necessary phosphorus is 5% of biomass, and silicon in the case of marine 

diatoms is equivalent to the nitrogen at 8% of biomass. 

A factor to consider from a carbon sequestration standpoint is that marine 

phytoplankton generally excrete 5% to 20% of the carbon they fix, but more may be 

released under stress.  Concentrations of dissolved organic carbon (DOC) in shallow and 

deep seas range from 0.4 to 7 g m-3, being highest and most variable in the photic layer 

(Jenkinson, 1986).  Therefore, some carbon fed to a culture will be released to the 

atmosphere.  The model considers only the amount of carbon contained in resulting 

biomass when calculating cost benefits of carbon sequestration from flue gas.  

Determining gas exchange is more complicated than the molecular formula for 

algae.  The fluid dynamics play a crucial role in gas exchange, but has been rarely 
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quantified in the literature.  Understanding of the productivity data in the literature is 

greatly increased if the gas recirculation is known, but measurements are uncommon.  

Theoretical methods for predicting the gas circulation do exist at least for one type of 

photobioreactor (Merchuk & Berzin, 1995). 

Fluid Dynamics 

Fluid dynamics is an important physical factor affecting the spatial distribution, 

nutrient uptake, and waste removal of microalgal cells within cultures; all of which affect 

the productivity (Preston, et al., 2001) (Degen, et al., 2001).   Over the size scales 

relevant to low Reynolds’ number organisms (10 - 100 µm), the motion is isotropic and 

homogeneous regardless of the manner in which it is generated (Preston, et al., 2001).  It 

is likely that fluid motion determines the rate of a physiochemical process which is 

associated with the cell surface absorption or active absorption unique to each ionic 

species.  Also, research indicates that the stimulus from fluid motion is transient 

(Savidge, 1981).  It is important for a design to consider not only the amount of 

turbulence desired, but also the method of inducing the turbulence. 

Inputs required for fluid motion analysis include: geometry of the growth volume, 

gas input geometry and flow volume, algae size, media viscosity, mechanical stirring 

geometry and rate, and light source geometry and intensity.  Outputs needed which affect 

algal growth rates include: eddy size (LK), dissipation rate (εD), local shear rate (τi), 

interfacial area (a), mass transfer coefficients (KL), gas holdup (φ), shear rate (γ), heat 

generation (degrees Celsius), and light/dark cycle time (FLE).  These variables determine 
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what cost and energy input are required to result in optimal algal growth and 

productivity. 

Large Scale Turbulence 

Large-scale turbulence is important to intermittently mix cells into lighted zones, 

distribute nutrients, prevent cell aggregates, and prevent temperature gradients for 

maximum photosynthesis and growth (Thomas & Gibson, 1990) (Merchuk & Gluz) 

(Degen, et al., 2001).  Mixing the cells into lighted zones was previously discussed in this 

paper, and in the literature as flashing light effect (FLE).  A typical light harvesting 

antenna in green algae consisting of 200 - 300 chlorophyll molecules can capture about 

one photon every 0.5 ms.  Ideally, each algae cell would be exposed to high light for only 

the 0.5 ms required to capture one photon.  However, this length of time is also 

dependent on the pigment content of each algae cell, which varies diurnally and by 

species.  The reaction centers in the cell can only process one exciton about every 5 ms, 

so the cell should then be kept in the dark for at least that period of time or the length of 

time required to achieve a light to dark residence time of 1:10 (Lundquist, et al., 2010) 

(Degen, et al., 2001).    

Open ponds experience a dark cycle every night, and while this is not optimal 

FLE, it does provide for a light: dark cycle seen in nature.  It has been demonstrated that 

algae often experience photoinhibition in full sunlight, and there will not be a large 

amount of self-shading due to a lower culture density.  However, the turbulence in an 

open pond will not be sufficient to provide sufficient culture mixing to induce a light: 
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dark cycle, so the model generates pond depth is equal to the light path length determined 

by Equation (7), except where noted. 

Mixing the culture through gas exchange is an ideal method of avoiding 

photoinhibition if designed correctly, especially in photobioreactors.  The gas must be 

supplied to provide nutrients anyway so there would be no or minimal added cost to use 

the gas supply as a source of agitation in the culture medium.  Mixing the culture with the 

gas supply also provides the necessary turbidity to avoid algal conglomeration in certain 

spaces and adhesion to surfaces for the most part, while allowing the CO2 and nitrogen to 

reach the cells and the oxygen to escape.  All of these interactions require modeling to 

achieve the optimal mixing rate with the lighting and density of the culture.   

For open ponds the gas exchange has normally been designed to be counter to the 

liquid flow, which in most cases results in a very slow bubble rise velocity and laminar 

flow.  As mentioned in the literature review, laminar flow is to be avoided in order to 

prevent algal conglomeration and temperature gradients, to better provide nutrients, and 

allow oxygen to be released (Carvalho & Malcata, 2001) (Richmond, 2004) (Beardall, et 

al., 2008) (Merchuk & Gluz, 2004).  Higher velocities must be avoided as well since they 

consume excessive energy and can create enough shear stress to damage the algae.   

In open ponds and perhaps large photobioreactors mechanical mixing is required 

in addition to the mixing provided by gas exchange. Paddlewheels used in open ponds 

result in turbulence at the paddles and laminar flow elsewhere.  However, there is 

evidence there is a helical flow pattern at the 180 degree turn in an open pond raceway, 

which would provide for some improvement from a laminar flow (James & Boriah, 
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2010).  Also, temperature gradients, while yielding less than optimal algal growth, could 

assist in creating laminar flow in an open pond scenario. 

A type of bioreactor which has been shown to provide optimal flow dynamics is 

an airlift reactor (ALR) (Merchuk & Berzin, 1995).    The design of an ALR can be 

modified to result in variations in fluid dynamics, bubble disengagement, and flow rates 

of the various phases (Merchuk & Gluz, 2002).  It also may be successfully used to 

control the mixing pattern to enable a regular light versus dark residence time of 1:10, 

with the objective of coming as close as possible to .5 ms to 5 ms (Degen, et al., 2001).  

Camacho, et al. (1999) found a solar illuminated vertical ALR to have higher 

photosynthetic efficiency than a horizontal-loop tubular photobioreactor (HLTP) despite 

higher light availability in the HLTP due to superior light-dark cycling.  The fluid 
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dynamics of an ALR will be further discussed in the following section.

 

Figure 9: Different types of ALR’s (adapted from Merchuk & Gluz, 2002). 
 

Thus, the light path length determined in the previous section can be multiplied by 

ten when optimal turbulence is present in a PBR to determine a diameter.  The model 

assumes an ALR design where the total diameter is a summation of light path length 

around the perimeter, light path length in the inner diameter, and ten times the light path 

length between the illuminated portions. 
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Figure 10: ALR design showing light: dark ratio (not to scale). 
 

 
Paddlewheels   

Power use increases by the cube of the flow velocity for open pond paddlewheels.  

The mixing energy required is calculated using Manning’s equation: 

𝐻𝑏 =  𝐾𝑣
2

2𝑔
                         Eq.(13) 

where Hb = headloss in the bend (m), 

 v = velocity (m s-1), 

 g = acceleration due to gravity (9.81 m s-2), 

 and K = kinetic loss coefficient for 180° bends (theoretically = 2). 

This will apply to sump pumps also since the flow will be directed around a baffle with 

4x 90° bends.   
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 Head loss due to friction along the length of the raceway and through PVC pipe is 

calculated as: 

 Hc = v2n2 (L
R

)
4
3                        Eq.(14)  

where n=roughness factor (0.018 for clay beds, 0.013 for concrete, 0.01 for PVC 

pipe), 

 L = length (m), 

 and R = hydraulic radius (A/P = D/4). 

The model considers head loss due to friction, bends, gas sumps, paddlewheels, and 

raceway depth.  The power savings are significant for concrete beds over clay beds, so 

the concrete roughness factor is used for all results. 

 The power required to overcome the total head loss is given by Equation (15): 

 𝑊 = 9.80 �𝑄𝑤ℎ
𝑒
�                             Eq.(15) 

where W = power required (W), 

 Q = channel flow (m3 s-1), 

 w = unit mass of water, 998 kg m-3, 

 h = total head loss (m), 

 e = paddle wheel and drive system efficiency (40% assumed), 

 and 9.80 = conversion factor in 𝑊∗𝑠
𝑘𝑔∗𝑚

. 

Finally the total energy consumption is represented by: 

 𝐸 =  𝑡𝑜𝑝∗𝑊∗3600
1000

                Eq. (16) 

where top = average time in hours pumps and paddlewheels are operating in a day, 
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1000 = watts/kilowatt, 

3600 = seconds/hour, 

 and E = kwh day-1. 

Average time for pump and paddlewheel operation is assumed to be eight hours per day 

for open ponds, and two hours per day for photobioreactor pumps.   Open ponds must 

pump additional water into the ponds to compensate for evaporation and have greater 

distance to pump the water and culture.  Paddlewheels are assumed to operate during for 

8 hours during daylight, which is a conservative estimate since daylight would likely be 

more than eight hours.   

Pumps   

 The head loss for pumping water and media into photobioreactors and open ponds 

is the sum of length traveled and change in elevation through pipes, valves, bends and 

tees to reach each photobioreactor or pond.   

hT = hB + hf + hE                 Eq.(17) 

The head loss for pumping in open ponds would be predominantly due to greater 

length and volume, while head loss from pumping to photobioreactors would be mostly 

due to elevation gain, which would be regained when the culture is harvested.  Assuming 

the desired velocity is low enough for the flow to remain laminar, and also assuming the 

medium viscosity and density are equal to water, the power required to pump water and 

media can be calculated with the Hagen-Poiseuille equation: 

 ℎ𝑓 =  32µLV
ρg𝐷2

                       Eq.(18) 

where hf = head loss (m),   
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µ = dynamic viscosity (1.08 x 10-3 Pa s for seawater, or 1.003 x 10-3 Pa s for fresh 

water,  1.983*10-5 Pa s for air), 

 L = length of pipe (m), 

 V = velocity, 

 D = hydraulic diameter (m), 

 ρ = fluid density (kg/m3), 

 and g = acceleration of gravity (9.81 m/s2).  

 Equation (15) is also used to determine the pump power required to pump media 

into and out of the cultures for both open ponds and photobioreactors, except the assumed 

efficiency for the pump is 70%.   

 The model uses dynamic viscosity calculated due to culture density, wastewater 

or media, salt, and temperature. 

Small-Scale Turbulence 

 The amount of shear stress which is healthy for an algal culture depends on the 

size and species of the algae, the culture density, and the viscosity of the medium.  A 

certain amount of turbulence is desired since it is necessary for gas exchange and nutrient 

availability, as well as preventing algae from adhering to surfaces.  Experiments reveal a 

hyperbolic relationship between shear forces and nutrient uptake rate, as well as algal 

culture growth rate (Peters, et al., 2006).   

Damage induced by shear stress has been demonstrated both in bubble columns 

due to gas sparging and in pumps due to the pumping action, where shear stress was 

quantified indirectly through liquid flow rate or the number and frequency of pump 
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passages (Michels, et al., 2010).  Cell damage in sparged reactors and open ponds can be 

classified into five possible mechanisms, one involving purely hydrodynamic forces 

acting on the cell (shear stress), and the other four involving interactions with bubbles.  

The cell-bubble damage mechanisms are: (1) cell interactions with bubble generation at 

the sparger (2) cell interactions with rising bubbles (3) cell interactions with bubbles 

coalescing and breaking up in the region of the bubble rise; and (4) cell interactions with 

bubbles at the air-medium interface (Contreras, et al., 1998).  For this reason, turbulence 

created through the gas delivery system requires further scrutiny in regards to cell 

interactions with bubbles and microeddies created by bubbles breaking up, but otherwise 

fluid motion is isotropic and homogeneous regardless of the manner in which it is 

generated over algal cell size scales (Preston, et al., 2001). 

 Small-scale effects of turbulence may include mechanical interference with cell 

functions, cell damage, or disruption of low-nutrient microzones around cells that 

facilitate nutrient uptake and waste removal (Thomas & Gibson, 1990).  Higher flow 

velocity has been shown to reduce microzone magnitude and overcome diffusive 

transport limitations which aid in algal nutrient uptake (Savidge, 1981) (Thomas & 

Gibson, 1990).  Also, research indicates nutrient uptake differs depending on which 

nutrient is being taken up for the same algae species, which means there are benefits to 

variations in turbulence (Thomas & Gibson, 1990) (Savidge, 1981) (Peters, et al., 2006). 

 Shear stress in the correct quantity stimulates microalgae.  There is evidence that 

some dinoflagellate microalgae species respond to shear stress through population growth 

inhibition and escape behavior such as bioluminescence.  Although it is not yet known 
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whether algae are responding to the fluid force, shear-stress dependence has been 

reported in other cell types, where the physical deformation of the cell by fluid forces 

acting on it elucidate a response from the cell (Maldonado & Latz, 2007).  Diatoms also 

have sensing systems for detecting and responding to shear stress within seconds, and 

make intracellular adjustments to changes in the cell boundary layer on the order of 

minutes (Falciatore, et al., 2000).  Studies reveal the dinoflagellates are the most sensitive 

to small-scale effects of turbulence, with diatoms, blue-green algae, and green algae 

being progressively less sensitive, in that order (Thomas & Gibson,1990).   

Fluid motion continues to have greater influence on rate-limited processes even 

when algae are capable of swimming (Preston, et al., 2001).  While research has 

produced evidence that turbulence affects several microalgal physiological processes, 

these effects have not been often quantified in terms of dissipation rate (ε), strain rate (γ), 

or shear stress (τ).  Thomas & Gibson (1990) found values of ε > 1.8 x 10-5 m2s-3, τ > 

0.04 dynes cm-2 (0.002 N m-2 or Pa), and γ > 4.4 rad s-1 (LK > .4 mm), resulted in culture 

degradation for flagellates, and Garcia Camacho, et al. (2007) found a strain rate above 

0.12 s-1 resulted in damage to Protoceratium reticulatum.  Flagellates are the most 

sensitive, so most algae species should be well within suitable growth conditions with 

values greater than those above.    

Indeed, for non-motile algal species it is especially important to provide sufficient 

turbulence in order to avoid sedimentation.  Flow intensities of up to 30-40 

oscillations/minute were necessary to avoid sedimentation for N. oculata in 12 mL 

volume of 2.0e6 cells/mL suspension.  40 oscillations/minute produced peak productivity 
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at ε = 6.9 x 10-4 m2s-3, γ = 6.77 s-1, and LK = 0.2 mm (Preston, et al., 2001).  Contreras, et 

al. (1998) found P. tricornutum demonstrated peak productivity at a shear rate of γ = 

7,000 s-1.  Maximum shear rate while maintaining laminar flow is about 150 s-1, and shear 

rates up to 14,000 s-1 (τ ≈ 20 Pa) can occur inside of a photobioreactor (Michels, et al., 

2010) (Contreras, et al., 1998).   In the sea, strain rate (γ) varies from 0.0003 s-1 to ~35-

250 s-1, assuming that η ≈ 1 mPa s, calculated from values of viscous dissipation of 

energy per unit volume, ε, for tumbled waves (Jenkinson, 1986).  Freshwater ponds and 

lakes exhibit strain rate (γ) values of .1 s-1  to 10 s-1 (ε ≈10-8 to 10-4 m2 s-3)  under intense 

conditions (Preston, et al., 2001).   The model uses strain rate also as an indicator of 

microeddy length scale compared to the algae size to maintain the microeddy length 

approximately 10µm longer than the cell length.  Although shear rate aids in estimating 

whether specified turbulence is advantageous to culture health, damage to algal cells 

depends on shear stress not on shear rate, except where the shear rate is indicative of 

microeddy length scale.   

Maximum shear stress prior to 52% to 66% loss in cell viability for the diatom 

Chaetoceros muelleri was found to be between 1 and 1.3 Pa when it is artificially induced 

through increasing viscosity of the medium using a thickener, and shear stress of 1.8 Pa 

could be applied to a culture with no thickener in the medium without losing viability 

indicating that flow instabilities could have influenced results (Michels, et al., 2010).  

Loss began in the first minute and continued only for 8 minutes, and further increases in 

shear stress did not result in further loss of viable cells, indicating only a certain 

percentage of cells are sensitive to shear stress.  Michels, et al. (2010) and other studies 
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induced stress mechanically rather than through turbulence created by inlet gas velocity 

(Maldonado & Latz, 2007) (Kong, et al., 2009) (Wang, et al., 2009).  Studies have 

speculated that shear stress disrupts cell division, so it is the cells in the process of 

dividing which lose viability.  No external damage is observed at shear stress up to 19.4 

Pa, indicating the damage is internal.  Complete destruction of cells only occurs at much 

higher shear of 50 - 100 Pa (Michels, et al., 2010).   While establishing a rough boundary 

of limits, the studies have been inconclusive on determining maximum shear stress. 

Maximum shear stress accommodated by the algae is a function of the algal cell 

size, species, viscosity, and the design of the photobioreactor.  General assumptions must 

be made and ranges decided on depending on the algae species and the required design.  

While shear stress is likely to negatively affect algae in a photobioreactor, reducing fluid 

velocity can lead to other complications, such as mass transfer which also negatively 

affects growth rate.  Studies indicate optimal mass transfer rates occur when the flow is 

heterogeneous or churn turbulent flow (Schumpe & Deckwar, 1987) (Merchuk & Gluz, 

2002).  Shear stress results depend on the culture density, gas velocity, viscosity, and 

temperature.  Model scenarios are chosen in which the shear stress is within 4 – 15 Pa, 

but the optimal shear stress will depend also on interfacial area and heterogeneous flow, 

which is covered in the following section. 

 The shear stress (τ, Pa) is related to the fluid shear rate (γ, s-1) and dynamic 

viscosity (η, Pa*s) by: 

 τ = ηγ                Eq. (19) 
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Viscosity is the measure of the ease with which a fluid moves in reponse to an applied 

force.  If the medium viscosity changes, the shear stress will be affected, even if the shear 

rate remains the same.  For a fluid sheared at a constant rate, the resulting shear stress 

will proportionally increase with gains in viscosity.  Thus, shear stress increases linearly 

with viscosity increase, resulting in a lower threshold for cultures in which the viscosity 

is raised by nutrients, algal cells, and/or wastewater.   

The viscous dissipation rate, ε (m2/s3), is related to the kinematic viscosity (m2/s) 

and shear rate by: 

 ε = γ2υ               Eq.(20) 

 The kinematic and dynamic viscosity are related by: 

υ = η/ρ                Eq.(21) 

where ρ is the fluid density (kg/m3) .  

 However, in a bioreactor there are additional factors to consider that contribute to 

dissipation rate which include wall friction and dissipation associated with bubbles with 

the latter being by far the greatest factor (Merchuk & Berzin, 1995).   

Microeddies resulting from turbulence must remain larger than the algae size, or 

damage to the algal cell and culture devastation will result.  The size of the smallest 

eddies is approximated using the Kolgomorov length scale: 

 𝐿𝐾 =  �υ
3

ε
�
1
4                             Eq.(22) 

Past results indicate in the vast majority of cases the Kolgomorov length scale will be 

greater (0.3 mm – 1.78 mm) than the algae length (10 - 100 μm) (Preston, et al., 2001).  

The microeddy length is extremely sensitive to simulated strain-dependent effective 
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viscosity (Jenkinson, 1986).  The boundary between turbulent and laminar flow is 

estimated by the Kolmogorov turbulence microscale, defined as the size at which 

turbulent eddies are dampened by molecular viscosity to laminar fluid shear.  Thus, 

microalgae experience fluid motion as laminar shear and velocity gradients within the 

fluid can cause mechanical shear stress on plankton (Preston, et al., 2001) (Hondzo & 

Lyn, 1999).   

 Fluid dynamics research indicates cell damage occurs when microeddy length is 

less than the length of the cell experiencing the eddy, and studies reveal the maximum 

growth rate for algae is obtained when turbulence is maintained such that microeddy 

length scale is approximately equal to or slightly greater than the algal cell length.  The 

growth rate not only decreases when the microeddies are smaller than the cellular 

dimension, but it also decreases when the microeddy length increases approximately 10 

μm beyond the length of the cell (Preston, et al., 2001) (Contreras, et al., 1998).    

 The model incorporates calculation of Kolgomorov length from viscous 

dissipation and bubble dissipation as a check to verify the resulting Kolgomorov length is 

no less than, but as close as possible to the cell length.  Strain rate is chosen within range 

of 250 - 15,000 s-1 to compare with shear stress and interfacial area.  

 Rheology  Most studies assume the viscosity of the medium is equal to fresh 

water, but in fact there are many variables to consider before assuming the viscosity.  

When marine algae are being grown and sea water is used, different properties than fresh 

water must be assumed.  Based on the relationship η = ρυ, seawater has a dynamic 

viscosity (η) of 1.076 x 10-3 Pa s, density (ρ) of 1028 kg m-3, and kinematic viscosity (υ) 
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of 1.047 x 10-6 m2 s-1 at 20ºC compared to 1.0027 x 10-3 Pa s, 998 kg m-3, and 1.0047 x 

10-6 m2 s-1, respectively, for fresh water at 20ºC (Kaye & Laby, 2005).   

 However, there are other factors affecting the viscosity including temperature, 

nutrients added which may be in excess if wastewater is used, and the algae itself as the 

culture density increases.   

Temperature   

A change in termperature has a higher impact on the kinematic viscosity (ν) of 

water than on the dynamic viscosity or density (Herbing & Keating, 2003).  Temperature 

of a culture can vary between 20ºC and 30ºC, with average assumed to be 25ºC.  The 

dynamic viscosity of water decreases with increasing temperature so that the viscosity of 

fresh water at 25ºC is 8.90e-4 Pa s.  Seawater change in kinematic viscosity (ν, x 10-6 m2 

s-1) can be determine with Equation (23). 

ν = 0.0005𝑇2 + 0.0496𝑇 + 1.8355                Eq.(23) 

where T is measured in degrees Celsius (Rawson & Tupper, 1968).   

 Freshwater dynamic viscosity variation with temperature (within 253.15K 

≤T≤383.15) at 0.1 MPa is described by Equation (24) (Huber, et al., 2009). 

η = ∫ 𝑎𝑖(𝑇)𝑏𝑖4
𝑖=1

                                                       Eq. (24)  

where T=T/(300K) and ai and bi are coefficients given in Table (6). 

i ai bi 
1 280.68 -1.9 
2 511.45 -7.7 
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3 61.131 -19.6 
4 0.45903 -40 

 
Table 6: Coefficients ai and bi for the viscosity of water at 0.1 MPa. 

The temperature dependent density is determined using Equation (25).  

ρ = β0 + β1T + β2T2 + β3T3 + β4T4 + β5T5 + β6T6                                                      Eq.(25) 

where ρ is the density of water in kg/m3 (Perry & Green, 2008). 

   T is the water temperature in degrees Celsius, 

 and β is defined as: 

  β0 = 998.845916 
  β1 = 6.5700985E-02 
  β2 = -8.7817835E-3 
  β3 = 8.3996043E-5 
  β4 = -7.8432029E-7 
  β5 = 4.6724264E-9 
  β6 = -1.2487522E-11 
 

Suspension   

Solid particles suspended in a conventional Newtonian liquid form a suspension.  

The f/2 medium with necessary nutrients used to grow marine cultures increases liquid 

density by 0.118 - 0.127 kg/m3, and the Bristol medium used for growing freshwater 

species adds 0.625 kg/m3.  Wastewater density can vary, but typically has a density of 

0.525 kg/m3 more than water alone, with unknown viscosity.  While the nutrients 

contained in growth mediums will be dissolved, Einstein’s intrinsic viscosity factor can 

be used to determine the effective viscosity from the particles in the wastewater (Einstein, 

1906) (Einstein, 1911).  
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 The viscosity increases as the density of the culture increases for non-motile algae 

and at a certain density for motile algae when the density affects their motility.  In 

passive suspensions, the viscosity increases with the volume fraction of particles.  The 

volume fraction is defined as the volume of the set of particles divided by the total 

volume of the suspension.    

 φ =  
4
3𝑁π𝑅

3

𝑉
                      Eq.(26)  

where N is the number of particles,  

V is the volume of the suspension, 

and φ is the volume packing fraction. 

 The effective viscosity (ηeff) of a suspension of passive spherical particles in a 

solvent of viscosity ηo depends on its volume packing fraction (φ).  Krieger & 

Dougherty’s (1959) semiemperical law provides a relationship: 

 ηeff  = ηo(1 − φ
φ𝑚

)−αφm                                      Eq. (27) 

where φm is the maximal packing volume fraction, which is set at 0.62.  For a dilute 

regime, where φ << 1, Equation (27) reduces to ηeff  ≈ ηo(1 + αφ).  Where α is known as 

Einstein’s intrinsic viscosity, and α = 2.5 ± 0.1 for passive and spherical particles in a 

strong dilution.  Rafai, et al., (2010) showed that the swimming motion of 

Chlamydomonas reinhardtii results in α = 4.5 ± 0.2.  Also, Brenner (1969) found a 

relationship for intrinsic viscosity of particles with gravity hindered rotation to be about 

4.  These relationships only apply to dilute solutions, but even at the optimal harvest 

density of 60 g/L, the solution is still strongly dilute (packing volume fraction (φ) of 
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~.06).  At such a strong dilution in a turbulent flow, rotation will be more influenced by 

fluid motion than gravity so that the rotation is not considered gravity hindered. 

Therefore, α = 2.5 ± 0.1  is assumed for the algal culture in open pond and 

photobioreactor growth scenarios.  The change in viscosity resulting from the algal 

culture itself at expected maximum density from the literature (60 g/L) is determined to 

be 1.6e-4 Pa s for seawater or 1.5e-4 Pa s for fresh water if the algae is non-motile.  

(Motile live algae could increase the dynamic viscosity even more by a factor of 127% to 

1.36e-3 Pa s, but are not included in the analysis to follow.) 

 The particles (TOC and COD) in wastewater can be calculated similarly, where 

TOC total 0.140 g/L and COD total 0.258 g/L after initial treatment, or a total of 398 

g/m3.  The size of these particles have been found to range from 0.4 - 200 μm, while the 

particles 100 - 200 μm will settle more easily, which means the majority of the particles 

remaining would be 0.4 – 5.0 μm  in size, making the volume average 8 - 9e-18 m3 

(Tiehm, et al.) (Wu & He, 2009).  The average density for these small particles are 

assumed to be roughly equivalent to water, so that 0.398 g/L = 0.398e-6 m3/L or 0.398e-3 

m3/m3. 

  Adding all the viscosity factors together results in Equation (28). 

ηT = ηeff + ηnut + ηsalt + ηww + ηtemp                  Eq.(28) 

 All the factors influencing the viscosity including the nutrients, culture density, 

salt or fresh water, wastewater and temperature effects are included in the model. 

Newtonian vs. Non-Newtonian Flow   
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Oceanographers consider the sea to be newtonian, which is to say the viscosity 

depends only on temperature and pressure, and the stress (τ) versus strain rate (γ), or 

viscosity, is linear.  However, research suggests microalgae cultures produce non-

Newtonian properties in growth media such as time-dependent shear thinning (Jenkinson, 

1986) (Rafai, et al., 2010).  Studies indicate assuming Newtonian behavior of cell 

cultures could cause substantial error in shear stress estimates (Michels, et al., 2010).  

 Non-Newtonian properties have been predicted for algal cultures since Newtonian 

fluid is valid only when particles rotate with the local vorticity of the fluid motion.  Free 

motion is only possible when the individual particles are not acted on by any external 

forces.  However, the center of mass of each inhomogeneous algal cell is not always at 

the geometric center, hence the gravitational field could be one of those external forces 

(Brenner, 1969).   

 When the externally applied torqe is anti-parallel to the vorticity, the torque slows 

down particle rotation, more mechanical energy is dissipated, and the effective viscosity 

is increased.  However, when the particle rotation is enhanced by the external torque, it is 

easier to shear the suspension and effective viscosity decreases (Brenner, 1969).  The 

design must consider the orientation of external gravitational, magnetic, and electrical 

fields in order to accurately determine the fluid behavior, a type of configurational 

anisotropy.   

Non-Newtonian flow may also result from cells producing polysaccharides and/or 

clustering, but are not necessary to obtain a strong modification of the effective viscosity 

(Merchuk & Gluz, 2004) (Jenkinson, 1986).  Clustering occurs when particles group 
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together in elongated aggregates due to dipole-dipole interaction of mechanical or 

electrical origin (Jibuti, et al., 2012).  Both external fields acting on the rotation of 

particles and the fields surrounding each particle have the possibility of changing the 

mechanical properties and thus the rheology of the medium (Jibuti, et al., 2012).  The 

model assumes the required turbulence will prevent any clustering, and will prevent any 

strong modification of viscosity from the external field, since the culture density is very 

low.  This is proven analytically below. 

A non-Newtonian fluid is one whose flow curve (shear stress versus shear rate) is 

non-linear or does not pass through the origin.  In other words, the apparent viscosity is 

not a constant at a given temperature and pressure, but also is dependent on flow 

conditions such as flow geometry, shear rate, and sometimes even on the kinematic 

history of the fluid element under consideration.  Shear-thinning or pseudoplastic fluids 

are the most common type of time-independent non-Newtonian fluid behaviour observed, 

and are characterized by an apparent viscosity which decreases with increasing shear rate 

(Chhabra & Richardson, 2008).  However, generally speaking the fluid will become 

Newtonian again at very high (>105 s-1) and very low (<10-2 s-1) shear rates, although the 

exact values will depend on the material (Chhabra & Richardson, 2008).   

The following analysis assumes microalgal suspensions are dilute sheared 

suspensions of non-colloidal approximately spherical particles in an external field.  

Nishikawa, et al. (1977) found a direct proportionality between the superficial gas 

velocity and the global shear rate in Equation (29). 
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γ = 5000 ∗ 𝑉𝐺     (VG > 0.04 m/s)                         Eq.(29)  

 Equation (29) has been used exclusiviely for bubble columns with gas-liquid and 

gas-liquid-solid viscous systems (Al-Masry & Chetty, 1996).  Schumpe & Deckwar 

(1987) found the shear rate to be smaller than predicted by Equation (29) (Merchuk & 

Gluz, 2004).  The correct solution for determining viscous shear rate is still to be found, 

and can vary up to three orders of magnitude depending on the equations used (Merchuk 

& Gluz, 2002).  Since the literature reveals a range of maximum shear stress levels, and 

Equation (29) has been widely accepted despite criticism, the model uses the above 

equation with a maximum shear stress predicted in the literature (~15-16 Pa) along with 

other factors to be detailed in the following sections.  

η =  η𝑜 �1 + 5
2
φ�            Eq.(30) (Einstein, 1906) 

Equation (30) is the viscosity of the suspension in the absence of an external field, or 

when the vorticity of the fluid motion is dominant over the external field.   

The hydrodynamic couple exerted by the fluid on the ith particle can be calculated 

using Faxen’s law: 

Li = 8πηoa3(ωo – ω)               Eq. (31) 

where a is the sphere’s radius,ω the angular velocity of the sphere, 

and ωo is the vorticity vector associated with the undisturbed flow: 

ωo = ½ rot Vo             Eq. (32) (Brenner, 1969) 

 where Vo is the velocity field in absence of particles. 
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However, Brenner (1969) showed balancing the hydrodynamic and external 

couples on each particle is implicitly equivalent to satisfying the angular momentum in 

Equation (33). 

Tx + G = 0                Eq. (33) 

where Tx is the deviatoric stress tensor or the vector invariant of the deviatoric 

stress in Cartesian tensor notation defined in Equation (34). 

(Tx)i = -εijkTkj                Eq. (34) 

where ε is the alternating isotropic triadic, 

and G is the external body couple per unit volume of suspension defined in 

Equation (35). 

G = -6ηoφ(ωo – Ω)             Eq.(35) (Brenner, 1969) 

 Gravity gives structure to the suspension.  However Brenner (1969) showed that 

when the shear rate effectively destroys the structure given by gravity, the Einstein 

Equation (30) applies.  The determining factor is a dimensionless constant defining the 

ratio betweeen the strengths of the dipolar and hydrodynamic couples, λ. 

λ = ρgd
6ηoωo

             Eq. (36) (Brenner, 1969) 

where ωo is the angular rotation of the particles, 

and d = |di| , where di  is the vector drawn from the geometric center of sphere i to 

its center of mass. 

As λ →∞, gravitational forces dominate, and where λ→0, the shear rate 

dominates.  Hence, when λ ≤ 1, the Einstein Equation (30) applies to derive the effective 

viscosity. 
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Analysis reveals in most cases, the cell radius (maximum d) is small enough to 

maintain λ ≤ 1 where ρ ≈ 1100 kg/m3, g = 9.81 m/s2, d ≤ 0.0003 m, ηo = 1.076 x 10-3 Pa s, 

and ωo > 500.  Where –γ/2 ≤ ωo ≤ γ/2, shear rate must be at least 1000 s-1 in order to apply 

the Einstein equation (VG ≥ 0.2 m/s).  Jibuti, et al. (2012) also showed that when φ << 1, 

Δηeff tends to 5/2φ.  When φ < 28%, Δηeff is linear, and it is fitting to follow the empirical 

law in Equation (37). 

Δηeff (φ, θ) = Δηo
eff (φ)(1 + 3

5
 θ)     Eq. (37) (Jibuti, et al., 2012) 

where θ = (γ
2
 + ωo) / ( γ

2
) represents the relative angular velocity of the particles 

divided by the vorticity of the shear flow (Jibuti, et al., 2012). 

 Also for a dilute regime (φ << 1), Faxen’s law can be applied to derive the shear 

stress exerted on each particle in Equation (38). 

σxy = 𝑁
2𝑉

8π𝑅3ω𝑜η         Eq. (38) (Jibuti, et al., 2012) 

 where N is the number of algal cells, 

 V is the volume of the liquid (m3), 

 R is the radius of the algal cells (m), 

 and ωo is the vorticity = γ/2 (s-1). 

 ALR Analysis Through including these factors in the calculation of the viscosity 

for dilute suspensions in the model, the shear stress profile can be derived or verified for 

a  given design, so that photobioreactor size, culture density, gas inlet velocity, gas inlet 

size and spacing, and light spacing can all be optimized.  CO2 transfer also may be 

optimized using fluid dynamics analysis to achieve heterogeneous flow, while avoiding 
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bubble breakup and small microeddies which may damage the algae (Contreras, et al., 

1998).  Open ponds will experience turbulence and resulting shear stress at the 

paddlewheels, with laminar flow downstream throughout the majority of the flow 

regardless of design.  The fluid dynamics for open ponds will not be optimal, which is 

reflected in the decreased culture density. 

 The model calculates dissipation due to viscosity and bubbles.  While the 

dissipation due to wall friction is very small, the energy dissipation due to the presence of 

bubbles should be considered.  Total energy dissipated from bubbles can be calculated 

using Equation (39). 

 ε𝐷 =  𝑄𝑖𝑛𝑃4 ln 𝑃4
𝑃1

                           Eq. (39) (Merchuk & Berzin, 1995) 

 where Qin is the incoming flow rate of gas (m3/s), 

and P4 and P1 are the pressures in the designated areas of the ALR shown in 

Figure (11). 
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Figure 11:  Schematic representation of ALR pressure regions (adapted from 
Merchuk & Berzin, 1995). 

 

In conventional stirred tanks, ponds or bubble column photobioreactors, the 

energy required for movement of the fluids is introduced focally.  Consequently, energy 

dissipation is very high in the immediate surroundings of the stirrer or sparger, and 

decreases away from it towards the walls.  This means the shear stress also will be 

greatest near the stirrer or sparger, and the culture will experience a large shear gradient, 

while a large portion of the culture experiences less than optimal turbulence (Merchuk & 

Gluz, 2004).   

 The ALR avoids these complications by using the pressure differential between 

the riser and downcomer to create fluid motion as defined in Equation (40). 
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 ∆𝑃 =  ρ𝐿g(φ𝑟 −  φ𝑑)     Eq.(40) (Merchuk & Berzin, 1995) 

where ΔP is the pressure difference between riser and downcomer, 

 ρL  is the liquid density, 

 g is the gravitational constant (9.81 m/s2), 

and φr and φd are the fractional gas holdup of the riser and downcomer, 

respectively. 

Energy input for an ALR is superior to that of agitated systems and bubble sparging for a 

given mass transfer rate, since the pressure differential produces much of the flow 

(Merchuk & Gluz, 2004).  Maximum shear in an ALR should be located at the 180° turn 

at the bottom of the reactor, but otherwise heterogeneous turbulence should be distributed 

in both the riser and the downcomer (Merchuk & Gluz, 2004).  There are four distinct 

sections with different flow characteristics in an ALR: the riser, the downcomer, the base, 

and the gas separator. 

 The gas holdup is the volumetric fraction of the gas in the total volume of a gas-

liquid-solid dispersion as defined in Equation (41). 

 Φ𝑖 =  𝑉𝐺
𝑉𝐺+ 𝑉𝐿+𝑉𝑆

    Eq.(41) (Merchuk & Berzin, 1995) 

where the subindexes L, G, and S indicate liquid, gas, and solid, and i indicates 

the region in which the holdup is located (Merchuk & Gluz, 2004).   

Holdup both gives an indication of mass transfer and flow circulation, although mass 

transfer also depends on the bubble size and distribution.  Where the flow is non-slip, and 

the gas velocity equals the liquid velocity, the gas holdup (Φ) is equal to the flowing 

volumetric concentration (β = 𝐽𝐺
𝐽

= 𝑄𝐺
𝑄𝐺+𝑄𝐿

 ) (Merchuk & Berzin, 1995).  An example of 
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such a case is when there are very small bubbles moving in a relatively fast liquid, and 

there is no influence of one phase of motion on the other.  Where the gas holdup is less 

than the flowing volumetric concentration, Φ < β, the liquid is driven by the gas 

(condition in the riser), and in the opposite case where the gas holdup is greater than the 

flowing volumetric concentration, Φ > β, the gas is driven by the liquid (condition in the 

downcomer).  The gas recirculation rate and downcomer gas holdup are calculated with 

Equation (42). 

JGd = 3.508φ𝑑
2  +0.22φ𝑑 + 0.00011      Eq. (42)(Merchuk & Berzin, 1995) 

Thus, the true gas superficial velocity can be calculated by adding the recirculating gas 

rate to the gas inlet rate.  

 The drift velocity of a swarm of bubbles is given by Equation (43). 

 𝑉𝑑 = 1.53 ��σg∆ρ
ρ𝐿2

��
0.25

(1 −Φ)1.5        Eq. (43) (Merchuk & Berzin, 1995) 

where σ = surface tension (N/m), 

 g= gravitational acceleration (9.81 m/s), 

 Δρ = difference in density between gas and liquid (kg/m3), 

 and ρ = density of liquid (kg/m3). 

Surface tension is determined by Equation (44) (Vargaftik, et al., 1983): 

 σ = 0.2358 �647.15− 𝑇𝐾
647.15

�
1.256

�1 + −0.625 647.15− 𝑇𝐾
647.15

�          Eq. (44)  

 where TK is the temperature in Kelvin. 

Equation (43) is valid for bubbles of diameters on the order of 0.1 to 2 cm, which covers   

those commonly observed in algae bioreactors.  Lower gas velocities produce finer 
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bubbles, so laboratory conditions with lower gas velocities may result in gas bubble 

diameters for which Equation (43) does not apply.   Generally, the bubble drift velocity 

should be representative of the two-phase flow in the riser of an ALR.  The distribution 

parameter (Co) has a narrow range, and one can make a judicious guess of its value in an 

unknown system (1.00 - 1.11).  The gas inlet velocity can be added to the drift velocity to 

determine the superficial gas velocity. 

 The liquid velocity in the riser can be obtained using Equation (45). 

𝑉𝐿𝑟 =  
𝐽𝐺𝑟�

1
Φ𝑟

− 𝐶𝑜�− (𝑉𝐺−𝐽)

𝐶𝑜(1− Φ𝑟)        Eq. (45) (Merchuk & Berzin, 1995) 

Geometric design of the bioreactor has a significant impact on gas holdup.  It is 

interesting to analyze variations in hydrodynamics created by changes in geometry of the 

ALR.  The bottom clearance can be used as a tool to increase the shear to control 

aggregation and produce turbulence needed by the algae to varying degrees.   

 Gas holdup is also an important factor involved with removal of waste oxygen 

from the culture media.  Oxygen removal is crucial in order to avoid damage to the 

culture, and must be kept below 35 mg/L according to one study (Carvalho, et al., 2006), 

and below 20 mg/L according to another (Acien, et al., 2001).  To prevent inhibition and 

damage, the maximum tolerable dissolved oxygen level should not generally exceed 

about 400% of air saturation value (or about 1 g/L) according to Chisti (2007).  Under 

high irradiance an algal culture can produce oxygen at a rate of 10 g m-3 min-1 (Chisti, 

2007), but this would depend on the culture density.  The equation for photosynthesis 

reveals that for every molecule of CO2 used in photosynthesis, one molecule of H2O is 
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used, and one molecule of O2 is released as waste.  Calculations indicate 1.932 g/L of O2 

will be produced to reach optimum culture density of approximately 60 g/L. 

 CO2 + H2O   [CH2O] + O2             Eq. (46) (Schlagermann, et al., 2012) 

 The model determines the quantity of oxygen produced by the specific culture 

density and the maximum length for the volume of algae so that the amount of dissolved 

oxygen doesn’t exceed .028 g/L, assuming turbulence is sufficient and the top of the 

photobioreactor allows escape into the atmosphere.  The volume of algae per length is 

dependent on both the algal density and the optimal photobioreactor diameter(s).  The 

depth of open ponds is verified by calculating quantity of g/L oxygen generated, and 

making some assumptions about how long it would take that oxygen to escape to the 

atmosphere.  The assumption is once the dissolved oxygen makes contact with air, the 

majority would escape as long as below 400% of air saturation or approximately below 1 

g/L.   

Mass Transfer 

Information needed to characterize flow in a bioreactor include gas holdup, 

bubble size, liquid velocity, and mass transfer rates, all being a function of the gas input 

rate and geometry of the system (Merchuk & Berzin, 1995).  In order to design a 

bioreactor with optimal CO2 mass transfer rates, the mean circulation time for the gas to 

complete one loop must be calculated and then used in Equation (47) to determine the 

residence time in any section of the reactor: 

 (𝑡𝑟)𝑛 =  𝑡𝑐
𝑉𝑛(1− ε𝑛)
𝑉𝐷(1− ε)                Eq. (47) (Contreras, et al., 1998) 

where tc is the mean circulation time, 

Sunlight 
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 Vn is the volume of the section, 

 VD is the volume of the reactor, 

 and εn is the dissipation rate in that section.  

 Characteristic mass transfer time for CO2 (tt) was evaluated by Doran (1993) in 

Equation (48). 

 𝑡𝑡 =  1
𝐾𝐿𝑎𝐿(𝐶𝑂2)                   Eq. (48) 

Where KLaL(CO2) is the volumetric mass transfer coefficient for CO2, which is linearly 

related to culture density and independent of gas velocity conditional upon the flow 

remaining heterogeneous.  During growth, the characteristic consumption time for CO2 

was expressed by Doran (1993) in Equation (49). 

 𝑡𝑟 =  
𝐶𝐶𝑂2
∗

� 1
𝑌𝐶𝑂2µ𝐶𝑏

�
                      Eq. (49) 

 where 𝐶𝐶𝑂2
∗ is the equilibrium constant of CO2 (0.45e-3 kg/m3), 

 µ is the growth rate, 

 Cb is the biomass concentration (kg/m3), 

 and YCO2 is the CO2 yield coefficient, assumed to be 0.55 (Contreras, et al., 1998). 

 Mass transfer is a function of interfacial area (aL) calculated with the mean bubble 

diameter in Equation (50). 

 𝑎𝐿 =  6ε
𝑑𝐵(1− ε)                   Eq. (50) (Contreras, et al., 1998) 

where dB is the mean bubble diameter, 

 and ε is the dissipation rate which depends on shear rate, viscosity, and bubble 

associated dissipation.  The available transfer time can be calculated using Equation (51).   
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𝑡𝑡−𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 =  𝑎𝐿
𝑉𝑑+ 𝑉𝑖

                           Eq. (51) (Contreras, et al., 1998) 

where Vd is the drift velocity,  

            and Vi the gas inlet velocity.  

 The shear rate in any zone can be estimated using Equation (52). 

 γ𝑛 =  ε𝑛(𝑡𝑟)𝑛
𝐻𝑛𝑉𝑛(𝑎𝐿)𝑛η𝐿

                         Eq. (52) (Contreras, et al. 1998) 

where n subscript indicate property of the particular zone, 

H is the height, 

V is the volume, 

and η is the growth rate.   

Thus, we have a relationship between mass transfer rate and shear rate for growth 

in a photobioreactor.  This approach offers a possibility of developing general 

correlations for mass transfer rate, applicable to any liquid of known rheological behavior 

(Merchuk & Berzin, 1995).  The areas of highest shear are near the bubble surface due to 

the velocity gradient experienced near the bubble walls.  Also, the wake behind bubbles 

is perfectly mixed and is the main factor of energy dissipation in a reactor.   

Nutrients 

The cost of supplementing nutrients can be complicated, especially if suitable 

seawater, flue gas, and/or wastewater is not available.  As presented in a previous section 

one arrives at the following nutrients needed derived from algal stoichiometry: C = 51%, 

H = 8%, O = 33%, N = 7% and P = 1% of dry weight biomass yield.  Additional 

nutrients/supplements include iron, salt, vitamin B12, biotin, thiamine, pH buffer, and 

antibiotics. Vitamin B12, biotin, and thiamine are cost prohibitive, so for the purposes of 
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this study the assumption is that they will be supplied by wastewater or otherwise not 

needed as supplements. 

The literature proposes growth media are generally inexpensive if supplemented 

with commercial nitrate and phosphate fertilizers and a few other micronutrients (Chisti, 

2007) (Molina Grima, et al., 2000).   The three most common forms of nitrogen are 

ammonia, nitrate and urea (U.S. DOE, 2010).   Nitrate is a poor form of nitrogen both 

because it is expensive and because it requires energy from cells to break it down, which 

is true for any form of nitrogen other than ammonia, and is included in the photosynthetic 

efficiency calculation.  However, if flue gas is being used the cost is alleviated and the 

loss in photosynthetic efficiency is not significant enough to offset the additional cost of 

supplying nitrogen as ammonia unless wastewater is available. 

Phosphorus, trace amounts of iron, and silicon or salt for marine algae must be 

supplemented in addition to the flue gas and/or wastewater depending on the composition 

of the wastewater in particular.  Phosphorus must be supplied in abundance since it tends 

to complex with metal ions so that not all of it is bioavailable (Chisti, 2007).  Phosphate 

fertilizers are known to be environmentally damaging and unsustainable.  There have 

been calculations which indicate the world’s supply of phosphate is in danger of running 

out (U.S. DOE, 2010).   

Strong evidence implicates dissolved iron as being a limiting resource for 

phytoplankton growth in the open ocean, particularly in high nutrient, low-chlorophyll 

regions.  The relationship between bioavailable iron and cellular response is not linear but 

depends on the history and physiology of the cells where cells regulate iron assimilation 
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at very low concentrations unless the cell is extremely iron-starved.  Research reveals the 

iron must be supplied at approximately 50 to 60 pM (Falciatore, et al., 2000).  However, 

the use of pH buffers also affects the availability of trace metals (Shi, et al., 2009), so an 

excess of iron must be supplied.  Ferric supplement can be used in the harvesting process 

as a flocullant, as well.   

Nutrients may also be recovered from the biomass after lipid extraction and 

recycled into the media.  Anaerobic digestion can be used to obtain an effluent of 

concentrated nutrients, but this has not been demonstrated in practice, would need a 

method of screening contaminants and digesters, and removes the possibility of using the 

biomass for other end products.  Therefore, the only nutrient which is assumed to be 

recycled in the model is salt at a rate of 80% assumed recycled. 

Assuming all nutrients must be supplied to the culture, energy requirements for 

CO2, nitrogen, phosphorus and antibiotics have been calculated to be 7MJ/kg, 59 MJ/kg, 

44 MJ/kg, and 50 MJ/kg, respectively (Beal, et al., 2012).  The energy inputs for the 

above nutrients are included in the carbon footprint and MJin/MJout calculations. 

pH buffer is another significant cost factor, which is often not included in techno-

economic analyses.  Using bubbled CO2 for pH control is unreliable.  Excess CO2 

generally results in a more acidic culture, but it can also cause a more alkaline culture to 

become more alkaline (Kong, et al., 2010) (Shi, et al., 2009) (Oaizola, et al., 2003)  

(Iancu, et al., 2010).   The pH of the culture determines what occurs when the CO2 

dissolves in water.  If the water is the natural pH of seawater more than 95% becomes 

bicarbonate (HCO3
-), the preferred carbon source for marine algae.  However in very 
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alkaline water with a pH of over 10.4 the predominant form is carbonate (CO3
2-), and in 

water where the pH dips below 6.5, carbonic acid (H2CO3) becomes dominant 

(Greenwood & Earnshaw, 1997).  Thus, a low pH rapidly leads to more acidity while a 

high pH rapidly leads to more alkalinity.  

Both scenarios are likely due to excess CO2 from flue gas and the alkalizing effect 

of algal growth (Lopez-Elias, et al., 2008).  Key chemical parameters are interdependent 

and are affected by the growth of the culture.  Therefore, two pH buffers (an acid and a 

base) are likely needed.  The amount will vary, but should be generally small.   

Sodium hydroxide (NaOH) can be used as an alkaline buffer, and reports even 

suggests it can be used to induce lysis (Wolf, 2012) (Molina Grima, et al., 2003).  At 

$230 - 290/ton, the price averages $.000276/gram.  Hydrochloric acid can be used as an 

acidic buffer.  Potassium hydrogen phthalate is used with sodium bicarbonate and 

hydrochloric acid to create the buffer, but is expensive at around $.0395/gram.  

Hydrochloric acid costs 0.000135 - $0.00027/gram.  The model assumes 2 - 200 grams of 

sodium hydroxide and/or hydrochloric acid (without the buffer) will be used per Liter per 

day to adjust the pH when the culture becomes too acidic or alkaline, respectively.   

The costs for supplying carbon, phosphorus, nitrogen, pH buffer, iron, antibiotics 

and salt to produce a given amount of biomass are included in the model (see Appendix 

C).  When wastewater and/or flue gas are supplied, the amount of carbon, phosphorus, 

and nitrogen decrease correspondingly.   
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Temperature 

Temperature must be maintained between 20 and 35º C in general and in a more 

specific range depending on the species.  An internally illuminated photobioreactor 

design must include a consistent building temperature to house the photobioreactors and a 

method of cooling the cultures such as a heat exchanger or cooling media input.   

Temperature is a major limiting factor for open ponds and solar illuminated 

photobioreactors.  Even in deserts where algae growth in open ponds should be possible, 

cold night-time temperatures can significantly impact growth during the day.  Since the 

normal depth for an open pond is 10 - 35 cm, the water body does not moderate the 

temperature and is subject to atmospheric fluctuations to a large extent (James & Boriah, 

2010).  One solution used in practice is to transfer algae to deeper settling ponds at night-

time and then back to shallow growth ponds during the day.  Another option is to cover 

the ponds with greenhouses or regulating the temperature, both of which will increase 

costs. 

Solar illuminated photobioreactors must be cooled with water sprays which may 

result in water losses as large as that of open ponds to evaporation.  However, the further 

complications to the media and disposal of brine common to open pond evaporation 

could be avoided.  The model does not include the cost of extra cooling needed when 

using solar illuminated photobioreactors, but is suggested as an additional area of 

research. 
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Photosynthetic organisms use at least eight photons to convert one molecule of 

CO2 into carbohydrate (CH2O)n; thus the heat generated during photosynthesis (Qtheo) can 

be estimated using Equation (53). 

Qtheo = HVcarbohydrate  - (8*Ephoton)          Eq. (53) (Dimitrov, 2007) 

where HVcarbohydrate is the heating value of CH2O (~468 kJ mol-1),  

Ephoton is the mean energy of a mole of PAR photons (~217.4 kJ), 

and Qtheo = -1271.2 kJ per mol of CO2 converted to carbohydrate (Dimitrov, 2007) 

(Zhu, et al., 2008).  The change in culture media temperature can be calculated using 

Equation (54). 

 ∆𝑇 =  𝑄𝑡ℎ𝑒𝑜
𝑐𝑝𝑚

      Eq. (54) (Dimitrov, 2007) 

where m is the mass of media in kilograms,  

and the specific heat (cp) of water is 4.19 kJ/kg*°C.   

The model uses Equations (53) and (54) to calculate increase in temperature as a 

function of culture density, as well as the necessary temperature of input water to replace 

the volume used by the photosynthetic process. 

The cooling due to the latent heat of evaporation (2257 kJ/kg) is used in 

determining the resulting temperature of open ponds.  However, since radiation from the 

Sun falls on the Earth at about 1368 W/m2, there should also be a heating affect in open 

ponds.  Where the albedo of open bodies of water is approximately 10 - 60%, depending 

on the sun’s altitude, an average of 30% is used in the model, so the radiation is equal to 

957.6 W/m2.  Also, the photosynthetic process will use approximately 3% of the sunlight, 

leaving, 928.87 W/m2.   
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 𝑇4 =  928.87 𝑊/𝑚2(1−𝑎𝑙𝑏𝑒𝑑𝑜)
4σ

           Eq. (55) 

where σ is the Stefan –Boltzmann constant at 5.7 x 10-8 W/ (m2 * K4). 

Using Equation (55), the resulting temperature is 252.6 K, or -20.55 °C, so the 

remaining thermodynamics of evaporation, weather, cooling at nighttime, heat absorbed 

by the clay or concrete bed are assumed to balance each other.  The model does not 

include cost of cooling or heating the open pond, but does calculate what the temperature 

of water to replace that used by photosynthesis should be to counteract additional heat 

generated from photosynthesis for all the growth scenarios.  More detailed analyses of the 

thermal dynamics of open ponds and solar PBR’s have been attempted and are 

recommended for further research. 

Contamination 

Algal predators are pervasive and little understood.  Whether the biotic 

environment can be controlled sufficiently to prevent culture contamination with 

zooplankton such as rotifers, bacteria, viruses, and/or fungi is an unanswered question in 

algal biofuels production (Lundquist, et al., 2010) (U.S. DOE, 2010).  Zooplankton 

grazing is one of the major algae production problems that must be overcome for open 

ponds.  The photobioreactor growth scenario has much more potential in this regard. 

The model incorporates a contamination risk of losing 0.1 - 10% of harvest for 

open ponds (this also incorporates loss of growth at nighttime).  This is a very 

conservative estimate since Chisti (2007) estimated 25% of the culture would be lost at 

nighttime alone. 
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Wastewater, Brackish and Seawater 

Many studies promoting algal growth for biofuel production include wastewater, 

brackish or seawater as sustainable and cost saving alternatives.  This requires further 

scrutiny. 

Wastewater treatment is a complex process which involves significant cost.  

Contributing to the cost is the removal of the nutrients nitrogen and phosphorus.  

Emphasis in wastewater treatment has changed to removing nutrients, chiefly nitrogen 

and phosphorus, which are the root causes of eutrophication of inland waterways and 

coastal dead zones (Lundquist, et al., 2010) (Kong, et al., 2010).  Capital costs of $0.41 to 

$2.41 per gallon of design flow to reduce nitrogen content to 5 mg/L have been cited 

(Hartman & Cleland, 2007).  As long as the essential nutrients are bioavailable in 

sufficient quantities so that no nutrients are limiting algal growth, research has indicated 

the growth rates remain close to optimal using wastewater as a growth medium (Wang, et 

al., 2010).     

When wastewater is used to sustain algal growth, the nutrients are removed from 

the wastewater, and the algal growth sustained results in additional products, benefitting 

both industries (Pittman, et al., 2011) (Beal, et al., 2012).  In order for algal growth with 

biofuel production to be truly sustainable, it cannot compete with agriculture, which 

means fresh water must not be used or must be limited to small amounts.   There are 

many sources of wastewater with different compositions including municipal, runoff 

from feedlots, energy power plants, and almost every other type of industrial plant.  Over 

8,000 municipal wastewater ponds exist in the U.S. (Lundquist, et al., 2010).   
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Coal power plant wastewater varies widely from plant to plant, but is generally 

acidic and supersaturated with gypsum (hydrated calcium sulfate), high concentrations of 

dissolved and suspended solids consisting of minerals, salts or metals, heavy metals, 

chlorides and occasionally organic compounds.  Studies indicate algae can thrive in 

media with high amounts of calcium and phosphorus, and even foster the precipitation of 

calcium phosphates, which allows easier removal when wastewater treatment is desired 

as an end product.  Although sulfur is not used by algae generally, research indicates that 

the precipitation and removal of the calcium sulfate and calcium phosphate can be 

facilitated by feeding the wastewater to the algal culture (Wang, et al., 2010).  However, 

power plant cooling water is normally recycled and used over and over, so the option to 

use it to feed an algal plant is not optimal or likely from the power plant’s perspective.   

Studies in this field predict using wastewater will produce inconsistent results in 

biomass and lipid productivity similar to the claims concerning using flue gas in algal 

cultures.  There are indications the lipid content drops when algae is grown in wastewater 

(Wang, et al., 2010) (Pittman, et al., 2011) (Chinnasamy, et al., 2010).   Phosphates are 

common in septic tanks, runoff from feedlots, runoff from agriculture and wastewater 

treatment plants, but with the exception of the latter, all these sources are likely 

contaminated with organic compounds and bacteria, which can be undesirable for 

controlled growth in algae cultures.  The inconsistent results will likely occur if the algae 

culture is fed untreated industrial, municipal, and feedlot waste streams, but this option is 

not included in the model since to benefit from wastewater treatment profits, a 

wastewater treatment plant must be present, which would enable primary wastewater 
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treatment prior to feeding to the algae (Clarens, et al., 2010).   Also, the large particles 

and bacteria can be removed from wastewater prior to use in the culture using glass 

microfiber filters, but the cost of filters for this application are not included in the model 

(Wang, et al., 2010).   

Municipal wastewater is attractive since it is high in nitrogen and phosphorus that 

must be removed in the wastewater treatment process anyway (Siemens, 2011).  A 

municipal wastewater treatment plant (MWTP) has different points in the treatment 

process, and studies conflict as to the best point at which to insert an algal growth 

scenario.   

Some studies promote the centrate stage, which is the waste generated in the 

sludge centrifuge and results in the highest concentration of nutrients for the algae.  

Traditional wastewater treatment at the centrate stage involves introducing activated 

sludge, which is a biological flocullant to degrade organic carbonaceous matter to CO2, 

but algae has been shown to assimilate the organic pollutants in a more environmentally 

friendly way without producing CO2.  When organic material is available to use as the 

carbon source, this also reduces the amount of CO2 needed by the algal culture, although 

the CO2 will still be necessary as a carbon source.  Centrate has an N/P ratio of 0.36 

(Wang, et al., 2010), when the molecular formula and Redfield ratio shows a ratio of 11 - 

16:1 is optimal, and a pH of around 10 when 8.2 to 8.6 is optimal.  The N/P ratio may be 

acceptable as long as the culture is not nitrogen limited.  As previously shown, a high pH 

can not necessarily be lowered (and growth rate increased to the optimal 1.12 – 1.15 day-

1) through increasing feed rate of flue gas (with increased CO2).  Despite these 
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challenges, Chlorella grown in wastewater centrate has been shown to have a growth rate 

of 0.948 day-1, and is capable of removing 83.0% of oxygen consuming organics over a 3 

day period in centrate material (Wang, et al., 2010).   

Other studies have indicated the ammonia to be too high in centrate to facilitate 

optimal algal growth, but the centrate can supplement ammonia in the final plant effluent 

which has been chlorinated and dechlorinated, and still requires biological nutrient 

removal (BNR) (Beal, et al., 2012).   BNR is a relatively new requirement for WWT and 

is not always required.  Research indicates the energy return on investment values for 

wastewater treatment plant and algal biofuels production facility independently are 0.37 

and 0.42 respectively, but when combined the EROI is 1.44 (Beal, et al., 2012). 

Typical municipal wastewater characteristics per Liter are: 140 mg total organic 

carbon (TOC), 75 mg HCO3, 5 mg CO3, 40 mg total N, 7 mg total P, and 430 mg 

chemical oxygen demand (COD) (Tchobanoglous, et al., 2003).  40% of the COD is 

removed after primary clarification, leaving 258 mg COD/L.  Roughly 66% of nitrogen 

and 75% of phosphorus are bioavailable in secondary effluent, leaving 26.4 mg/L and 5.3 

mg/L, respectively (Sturm & Lamer, 2011).  18.75 mg/L of carbon is available from 

bicarbonate, assuming the pH of the culture remains at the optimal 8.2 to 8.6.  Assuming 

all of the TOC is bioavailable, and adding in 1 mg L-1 carbon from the CO3,  the total 

carbon available for algal growth is 159.3 mg/L.   

 Wastewater treatment plants also generate 2.04 tCO2/day through methane 

conversion to electricity, which could be fed to the algae (Beal, et al., 2012).  If no flue 

gas is available to supplement carbon supply, the limiting nutrient will be carbon, 
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however, if flue gas is provided, nitrogen is limiting.  Also, the low N/P ratio for the 

wastewater at about 5:1 (when 11-16:1 is optimal) may be corrected through using flue 

gas as a source of nitrogen, also.  

Wang, et al., (2010) found heavy metals (Al, Ca, Fe, Mg, Mn, and Zn) were 

removed from wastewater at a rate of 56.5 to 100%.  Metals used by phytoplankton 

include iron, manganese, zinc, copper, cobalt, cadmium, and molybdenum, in descending 

importance.  Thus, cobalt and molybdenum needed by the algae would be lacking in the 

wastewater, while aluminum and magnesium are not needed for algal growth.  However, 

since they were removed from the wastewater in the above study, they are absorbed by 

the algal cells.  Aluminum would be undesirable if the biomass were used for human 

supplement or animal feed.  As long as the desired end products do not involve human 

supplement or animal feed, algae are very adaptable to available nutrients, and the option 

of using wastewater not only provides wastewater treatment, it also allows an 

inexpensive source of nutrients for the algal culture.   

Heavy metals present in the gases or wastewater may be assimilated into the 

biomass which significantly limits the available end products.  If heavy metals are not 

removed from the wastewater prior to injection into a culture, they will either become 

part of the biomass or remain in the culture medium.  If the end product is animal feed or 

human supplements the culture should be kept free of bacteria, suspended solids, 

dissolved metals and pesticides (Creswell, 2010) (Richmond, 2004).  The acceptability, 

digestibility, and nutritive value of the resulting algae biomass would need to be 

evaluated in each case.   Therefore, the model details costs and profits for human 
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supplements, aquaculture and animal feed separately as options for end products when 

flue gas and/or wastewater are used as inputs. 

Diatoms generally require nitrogen, silicon, and phosphorus in a 16N:16Si:1P 

ratio (although Dunaliella salina is grown in hypersaline medium >3 times seawater to 

discourage competing algae and grazers, while inducing high content of carotenoids 

within the algal cell) (Lundquist, et al., 2010)) (Sato, et al., 2010).  Depending on location 

when growing diatoms seawater can be an inexpensive option for growth media with 

basic fertilizer added for nutrients (Molina Grima, et al., 2000).  This is likely the most 

cost effective option if the culture is located close to the ocean or in areas of New Mexico 

where there is an underground salt aquifer, but it is uncommon for the power plant to be 

located adjacent to the beach.  Additionally, the salt water must be supplemented with 

large amounts of fresh water or the culture will become too saline (Patil, et al., 2008), and 

contaminants must be removed via filtration or treatment, similar to wastewater.  This 

also applies to brackish water.   

While it is desirable to use brackish or seawater since it removes the necessity for 

fresh water to some extent, fresh water will continue to be a necessity to dilute the 

salinity, especially in an open pond growth scenario where large quantities of water are 

lost to evaporation.  The amount of water lost to evaporation is significant for open ponds 

even if the source is wastewater, brackish or salt water, and the impacts go further than 

just more water consumption.  The evaporation rate in the sunny warm regions suitable 

for algae growth such as Tucson, Arizona are 100 inches year-1 (nsdl.org), which means 

an algae farm sized to consume flue gas from a 1,000 MW power plant (15,000 acre  
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(Benemann & Oswald, 1996)) would lose 5.4e9 ft3 (1.5e11 liters) of water year-1 to 

evaporation.  Equation (56) is used in the model to calculate water loss in m3 per day. 

𝑊𝐿 = 0.0069596 ∗ 𝐴                         Eq.  (56) 

where A is area in m2. 

This is also a consideration for density changes of the medium since in an average 

pond depth of 25 to 35 cm over a four day period, evaporation would result in a density 

change of up to 14%, depending on the pond depth.  The “blow-down” ratio (BNR) has 

been defined as the volume of water discharged divided by the volume of water supplied 

to the pond. 

     𝐵𝑁𝑅 =  𝑉𝑒𝑣
𝑉𝑠𝑢𝑝𝑝𝑙𝑦

                                                                                 Eq.  (57) 

Assuming no additional water is supplied for four days the resulting BNR of 14% 

would result in salinity nearly 10 times that of the influent water.  Also, the excess salts 

or brine must be recycled or disposed of either through injection underground or drying 

the salts and having them buried (Lundquist, et al., 2010).  Not only will this add cost to 

the process, but permits will also need to be acquired, not to mention this is not a 

sustainable or environmentally friendly practice.   

Thus, the approach used in the model still applies whether fresh water, brackish or 

seawater is used, which is to assume the cost of replacing water lost to evaporation.  The 

cost of supplementing salt as a nutrient would be negated by using brackish or seawater, 

but this would be more than offset by the need to dispose of excess salts or brine. 

In order for wastewater from any source to be considered a cost effective and 

desirable water and nutrient source for the algae culture resulting in optimal productivity, 
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the culture must have access to or include in the design some level of wastewater 

treatment plant, which is included in the model as an option.   It is important to have 

control over media inputs in order to mitigate risk of a culture crash or contamination 

which will damage the end product.   The potential cost benefit to a wastewater treatment 

plant was chosen conservatively to offset $0.06/gallon for WWTP operating costs and 

$0.41/gallon for WWTP capital costs (Hartman & Cleland, 2007).  This cost benefit is 

calculated in the model per the size of the algal farm in Liters. 

The model assumes 90% of the culture water not lost to evaporation is recycled. 

The water cost is a summation of water to replace that lost to evaporation (for open ponds 

only), to replace that lost to photosynthesis, and to replace the 10% lost to the process.  

Therefore, there is no cost benefit assumed to be gained from using brackish or seawater. 

 
Harvesting 

The harvesting process consists of many different steps which may include some 

or all of the following: flocculation, settling, centrifuging, lysis, membranes, solvents, 

filtration, and drying.  Combinations of methods can be classified as dry extraction 

(include filter press with solvents) or wet extraction (lysis induced through 

ultrasonication or raising the pH above 10), where dry extraction is the more proven 

technology.  While both electromagnetically and pH induced lyses are included in the 

model for cost comparisons, metabolically induced secretion is not included due to major 

hurdles that must be overcome. 

Optimizing the harvesting methods will depend on the algal strain, the growth 

scenario and resulting density, the location, and the planned end products.  Despite rough 
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estimates in some studies, energy requirements of harvesting options are largely 

unknown, and depend heavily upon the final algae concentration (U.S. DOE, 2010).   The 

model compares various harvesting options, none of which have been practiced on a large 

commercial scale for algal production, but all of which have been proven in the 

laboratory and/or for comparable commercial systems. 

Open ponds offer low construction and maintenance costs and are easy to scale up 

if the land space is available, but the loss in productivity does not allow them to be long 

term solutions and in the majority of cases, the land is not available.  Capital expenditure 

for photobioreactors is commonly assumed to be many times more than that of open 

ponds (Benemann, et al., 1982) (Sheehan, et al., 1998) (U.S. DOE, 2010).  Harvesting 

costs are generally assumed to contribute 20-30% of total cost of oil production through 

algal biomass (Verma, et al., 2009) (Hall, et al., 2003). 

Settling and Flocullants 

Research detailed in the literature review indicates a portion of the algal growth 

should be moved from the growth tank to a settling tank or clarifier every day (Lundquist, 

et al., 2010) (Zou, et al., 2000) (Lee & Palsson, 1994).  The medium can be drained from 

the growth tank with sufficient algae remaining to reach optimal density again after one 

day’s growth.  It is especially important to drain the medium if the species used is a 

diatom since the growth inhibitors secreted by the algal cells when the culture reaches 

high density will be present in the “old” medium.  Further investigation is required to 

determine what level of treatment or duration of rest the medium should undergo prior to 
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recycling back into the growing algae culture.  Therefore, the goal is to prevent the 

culture from reaching high densities, especially in a PBR growth scenario.   

The algal culture removed from the culture can be fed into settling tanks where 

cellulose and/or flocullants are mixed with the culture.  Given the right nutrient and light 

deprivation the algal lipid content should increase while in the settling tanks (Vega, et al., 

2010) (Lu, et al., 2001).  Clarifiers are relatively inexpensive to create, increase lipid 

productivity and significantly decrease harvesting costs.  The culture density can increase 

by 30 to 50 times when allowed to settle, depending on the algae species (Lundquist, et 

al., 2010).   

However, the resulting density for open pond culture will still be 60 times less 

than that of cultures grown in photobioreactors prior to settling.  Open pond productivity 

varies in the literature from 20 - 80 g m-3 d-1 (depending on the pond depth, while 

shallower depths result in higher density), which is at the greatest a resulting density of  

0.33 g L-1 (0.03%) after four days’ growth (Beal, et al., 2012).   However, the growth rate 

for photobioreactors presented in a previous section of this paper should result in a wet 

density of approximately 60 g L-1 (6%), or 180 times the density of open ponds.  Where 

the required density of slurry to begin harvesting is at least 1%, culture from 

photobioreactors can begin the harvesting process immediately, while the open pond 

culture must first be dewatered.  The literature assumes this required densification for 

open pond cultures to be through the use of clarifiers, settling or bioflocullation; thus, 

requiring no energy input (U.S. DOE, 2010) (Vasudevan, et al., 2012).    
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Multivalent cations and cationic polymers which neutralize the algal cells’ 

negative charge are useful as flocculants which include ferric nitrate, polyferric sulfate, 

chitosan, polyacrylamide, ferric chloride, aluminum sulfate, and ferric sulfate (Molina 

Grima, et al., 2003) (Kong, et al., 2010).  Metal salts may be unacceptable if biomass is to 

be used for aquaculture or other applications.   Polyacrylamide and chitosan are the only 

cationic polymers (non-metal), but they are not as effective for salt water flocculation 

(Molina Grima, et al., 2003).   Also, chemical flocculants make it more difficult to use 

biomass for anaerobic digestion to produce methane gas (Lundquist, et al., 2010)   

Flocculant effectivity increases with culture density, but research indicates there 

is no consistent correlation between the algae species and the quantity needed for optimal 

flocculation.  If a flocullant is used, the amount of flocculant required ranges between 40 

and 150 mg L-1, with costs estimated at $126/Mg (Benemann & Oswald, 1996).  Since 

ferric chloride costs only $4.4e-5/gram, the costs for flocullants are less than a dollar/day 

for a ~100,000 kg/year biomass facility.  Since the costs are minimal and the use of 

flocullants is not desirable or necessary, the model does not include a cost for 

flocculation material. 

Bioflocullation involves gravity settling that results in a 40- to 60-fold 

concentration factor and has been adopted by nearly all commercial algae producers, but 

has yet to be proven at a full-scale process (Benemann & Oswald, 1996) (Lundquist, et 

al., 2010).  This process may require a six-hour retention time to remove 95% of the 

algae biomass (Lundquist, et al., 2010).  The cost for bioflocullation is included in the 



 
 
 
 
 

125 
 

model through the cost of settling tanks sufficient to hold one third the total algal volume 

at a time. 

Lysing 

Another option to aid in or avoid flocculation and many of the harvesting steps all 

together is using alkalis such as sodium hydroxide and calcium hydroxide to raise the 

culture pH above 10, which is reported to induce lysis (Molina Grima, et al., 2003) 

(Wolf, 2012).  The lysis occurs because of a cation/anion differential causing the algae 

lipid vacuole to attach to the cell membrane and then excrete the lipids through the cell 

wall.  This affect can also be achieved through voltaic impulsion, and is being used as a 

proprietary process by Origin Oil and independent researchers (Origin Oil, 2012) (Wolf, 

2012) (Lundquist, et al., 2010).   

Thus, the cation/anion differential can be used to release the lipid content from the 

cells, where it will rise to the top of the media, while the biomass will sink to the bottom.  

Then harvesting consists of skimming the lipids from the top of the media and the 

biomass can be retrieved more easily once it has settled to the bottom.  This also 

alleviates the cost of hauling the entire biomass to a central oil extraction plant.  Another 

advantage of this method is preventing the algae from using carbohydrate energy stores 

by killing the algae quickly (Dimitrov, 2007).  The option of lysis through voltaic 

impulsion as a harvesting method is included in the model since equipment is available to 

purchase through Origin Oil (Origin Oil, 2012).  The use of pH to induce lysis is included 

as a cost comparison, but the process is yet to be proven and costs would be minimal. 
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Centrifuge, Filter Press and Conveyor Oven 

A centrifuge can be used with efficiencies of >95% at removing water content 

depending on the algal species and method of centrifugation (Molina Grima, et al., 2003).  

Most studies claim at the current time the high capital investment and operating costs 

make centrifuge economically and sustainably impractical (U.S. DOE, 2010).  Evodos 

(2011) has developed a centrifuge especially for microalgae, which, while being pricier 

than other types of centrifuge, is much more efficient and claims to produce a paste 

suitable for transport from a farm to a biomass processing facility.  The model compares 

both options of centrifuge: traditional and Evodos.   

Filters can also be used to remove water, but microfiltration was not used in the 

model since this is more cost-effective for small volumes, while centrifugation is more 

suited to larger volumes (Molina Grima, et al., 2003).  Filtration in large quantities would 

require almost constant cleaning of the filters which does not allow them to be cost-

effective.  Also, membranes were not included as an option since the technology is not 

developed sufficiently to be cost-effective and suitable for large volumes (Origin Oil, 

2012). 

However, a filter press could remove even more water following use of the 

centrifuge, and is commonly used for other products in the food processing industry.  An 

industrial filter press is included in the model for capital and operating cost comparisons.  

The biomass slurry must be processed rapidly or it can spoil within a few hours (Molina 

Grima, et al., 2003).   A conveyor oven can further dry the algae biomass to prevent 

spoiling for shipment and is included in the model for capital and operating cost 
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comparisons.  Algae can be spray dried, freeze dried, drum dried, sun dried, or oven dried 

and could be wound paper-like onto rolls for storage and shipment, if cellulose flocculent 

was used (Putt, 2007).   

Both filter press and conveyor oven cost values were derived from industrial 

products that were available in the market at the time of performing this research. 

Solvents 

There are significant energy benefits through avoiding conventional algal mass 

dehydration prior to lipid extraction (Soh & Zimmerman, 2011).  Additionally, protein 

extraction requires biomass that has not been dried previously (Molina Grima, et al., 

2003).  Solvents can be used prior to the dehydration step to increase the efficiency of 

extracting lipids and specific metabolites such as EPA, astaxanthin, and DHA from algal 

biomass, but many of these solvents such as hexane are toxic to the environment and 

render the remaining biomass unusable for animal feed or aquaculture (Molina Grima, et 

al., 2003) (Bligh & Dyer, 1959). Also cell pre-treatments that disrupt the cells; 

sonication, microwave, bead beating and lyophilization, have shown to enhance 

extraction yield by facilitating solvent contact with the cell contents (Soh & Zimmerman, 

2011).   

Organic solvents such as hexane, chloroform, and methanol are expensive, require 

several rinsing steps, and generate significant waste and environmental and health risks 

(Soh & Zimmerman, 2011).  Lundquist, et al. (2010) found the operational and capital 

cost for a solvent extraction facility to be $2,390,000 and $12,200,000, respectively, to 

process 105 MT d-1.  Free fatty acids have been extracted successfully by direct 
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saponification of wet biomass with KOH-ethanol mixture, but this process is not suitable 

for sensitive end products such as proteins (Molina Grima, et al., 2003).   

One green solvent proven to work that is not proprietary is supercritical carbon 

dioxide.  Extraction using supercritical CO2 at 100ºC and 30 MPa would take 1840 kWh 

of electricity while conventional press and hexane extraction would take 69 kWh of 

electricity and 17360 MJ of heat energy for drying to make 104 MJ of biodiesel (Soh & 

Zimmerman, 2011).  Converting to energy, conventional harvesting requires 17600 MJ 

(4.752e-7 kWh/Joule biodiesel) while super critical CO2 only requires 6850 MJ (1e-7 

kWh/Joule biodiesel).  Also, CO2 may be fed back to the cultures to facilitate increased 

production. 

The model uses both the costs of methanol and hexane themselves as well as the 

operating costs compared to the operating costs involved with bringing the required 

portion of CO2 fed to the culture to supercritical state. 

End Products 

Products are partitioned into fuel products and co-products.  The nature of the end 

products will be determined by the location and economics of the system.  

Potentially viable fuels produced from algae range from hydrogen and methane to 

alcohols, oil, biodiesel and coke.  The model targets transportation fuels and methane as 

desired fuel products.  Transportation fuels are the primary products from crude oil, are 

more compatible with existing fuel-distribution infrastructure in the U.S., and adequate 

specifications for these fuels already exist.   Also, it has been proven that biofuel derived 

from algae meets or exceeds the performance specifications for jet fuel, gasoline and 
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diesel (U.S. DOE, 2010).    Methane is included since the energy derived from methane 

can be fed back to the power plant supplying flue gas or applied to algal plant energy use.   

Biomass for Methane Production 

Power derived from biomass processing to methane can be used as the primary 

source of energy for most of the production and processing of the algal biomass or fed 

back to the power or wastewater plant.  Using the methane as close as possible to the 

source also reduces the amount of leakage from pipelines which is a large contributor to 

greenhouse gases at 1.4% of natural gas transported (Lelieveld, et al., 2005). 

Biogas yield in Joules, energy produced by microturbines using the methane, and 

profit per kW is calculated in the model simulation.  The amount of methane gas obtained 

from anaerobic digestion of algae biomass averages 5.0 cubic feet for every pound of 

biomass (Golueke, et al., 1956).  Analysis indicates that algal biomass cultivated in 

photobioreactors will yield 7,300 gallons and open ponds up to 6,000 gallons of methane 

fuel per acre per year.  In comparison, corn yields about 50 gallons of methane fuel per 

acre per year (Chisti, 2007).   

Content of algal biomass prior to lipid harvesting is represented by: 

CO0.48H1.83N0.11P0.01  (Demirbas & Demirbas, 2010) (Chisti, 2007).  Oil content is 

normally 70-75% carbon and 15-17% hydrogen (Food and Agriculture Organization of 

the United Nations, 1997) (Soh & Zimmerman, 2011), so the content after lipid removal 

should be:  

C(1-(1*0.73) H(1.83-(1.83*.16) = C0.27H1.53O0.48N0.11P0.01 
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Adding in the molecular weights of the elements yields: 

C(0.27*12)H(1.53*1)O(0.48*16)N(0.11*14)P(0.01*31)=C3.24H1.53O7.68N1.54P.31 

Therefore hydrogen is 1.53/13.46 = 11.4% of the algal biomass following lipid 

extraction, which is above the average 6 - 7% of most feedstocks where higher hydrogen 

content indicates higher quality of feedstock.  Energy contents of fuels are normally 

reported as Lower Heating Value (LHV) and Higher Heating Value (HHV).  HHV is 

greater by 10% than LHV for natural gas, but HHV is more difficult to achieve.  The 

appropriateness of using LHV or HHV depends on both the application where HHV is 

more appropriate for stationary combustion since the exhaust gases are cooled prior to 

discharging and the composition of the feedstock where higher hydrogen content leads to 

higher heating value.   With this background in mind, the energy derived from methane is 

set in the model at 48 MJ/kg (LHV of natural gas is 47.141 MJ/kg and HHV of natural 

gas is 52.22 MJ/kg) (GREET, 2010).  However, this energy still must be converted to 

electricity to be used by the algal or power plant.  (A green crude can be obtained from 

the entire biomass including lipids, but this option is not included in the model since 

profit from biodiesel and methane are relatively similar.) 

Microturbines are available to generate electricity from methane with efficiencies 

of 22 - 30% (EPA, 2004) (Columbia Boulevard Wastewater Treatment Plant, 2006).  The 

assumed composition of the biogas is 35% CO2 and 65% CH4 (Lundquist, et al., 2010). 

Another consideration of methane production is the generation of methane and 

N2O emissions, which can be 14% and 23%, respectively, of total pathway GHG 

emissions (Frank, et al., 2012).  While recovery is possible, this requires more energy 
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input.  Methane itself has a higher global warming potential than CO2; hence, any 

methane production scenario must handle the GHG accounting carefully.   

Biomass Recycling as Nutrient Source 

Efficiency of 90% can be assumed for recycling biomass to use as a nutrient 

source for the growing culture.  An anaerobic digester must be available and a method for 

screening or filtering the digester effluent prior to re-injection into the culture.  Nitrogen 

in the form of ammonia can be recovered from the methane liquid effluent and recycled 

to the culture (U.S. DOE, 2010).  It is more sustainable and environmentally responsible 

to recycle nitrogen for use in growing more algae or other crops.  This option is not 

included in the model, but results are compared if the nutrient cost is alleviated.  Similar 

to a wastewater treatment scenario, pH, salt and antibiotics still must be supplied, which 

are the majority of the nutrient cost.  (Salt is already assumed recycled at 80%). 

Biodiesel 

Algal oil can be used to produce green diesel with higher energy density, better 

cold flow performance, and compatibility with existing petroleum based infrastructure 

(James & Boriah, 2010).  Biofuel production in terms of gallons acre-1 year-1 are 

commonly given in the literature, but this is done only for open pond growth scenarios 

based on photosynthetic effectivity (1.8% - 4.7%) and average solar insolation (22MJ m-2 

day-1) (Vasudevan, et al., 2012) (U.S. DOE, 2010).  Fuel percentage has been calculated 

in the past as general lipid content with no consideration for conversion to biofuel.  

Biodiesel yield in the model is calculated as 80% of the lipid content with an energy 

content of 37,800 MJ ton-1 (Chisti, 2008).   
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The model captures the inputs/outputs to the transesterification process without 

the conversion to jet fuel, gasoline and diesel, since these are common to crude oil.  

There are various methods to carry out transesterification, but the model uses the 

operating costs of the most common; chemical transesterification through which 3 

molecules of an alcohol and a catalyst, such as sodium methoxide are added to the fatty 

acid (Verma, et al., 2009).  The model estimates transesterification costs using 20% 

energy content of biodiesel produced plus the cost of the methanol (Prueksakorn & 

Gheewala, 2006). 

It is difficult to predict the value of algae oil as a biodiesel feedstock since the 

exact composition of the algal oil depends on the species used and the process 

parameters, but this is similar to other alternative oils (Alabi, et al., 2009).  Additional, 

difficult-to-value incentives such as carbon credits and self-sufficiency with respect to oil 

would also accrue. 

Co-Products 

In order for an algal growth scenario to be economical, co-products must be 

considered in the analysis.  Deriving value from post-extraction algal residues is essential 

to the overall economic sustainability of algal fuel production (General Atomics, 2009).  

Of those shown below, EPA, animal feed, wastewater treatment, and animal feed are 

considered in the model.  Profit from CO2 mitigation is volatile and not a reality in many 

areas yet, but is included, as well.  Carotenoids, beta-carotene and astaxanthin are similar 

in profit to EPA, and algae for human supplements are already being grown 

commercially on a large scale. Any human supplements gleaned as co-products increase 
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the need for a sanitary and consistent growth system.  Chemicals as an end product 

requires further research not included in this study. 

Chemicals 

Other products include high value chemicals to be used in plastics and 

pharmaceuticals.  

EPA 

EPA retails at $2154 per kg, and requires 56.3 kg of P. tricornutum and 9400 L of 

solvent for every kilogram of the fatty acid.  The value of the residual algae oil after 

extraction of EPA is that of biodiesel feedstock at $0.50 per L.   The content of EPA 

averages between 2.57 and 3.47% content of dry cell mass for Nanno. sp. (Zou, et al., 

2000). 

Animal Feed 

After removal of lipids, algae cake can be sold as high quality animal feed at $246 

ton-1 (Alabi, et al., 2009) (Creswell, 2010).  The challenge will be to certify the algal 

protein for animal use, to market it to farmers, and to transport it to customers (Dimitrov, 

2007).  Protein-based animal feed is a medium value product, offers low production 

costs, no carbon credit potential, and there is danger of market saturation.   

Human Food Supplement 

Spirulina sells plant gate for about $10,000 ton-1 and higher, depending on quality 

and origin (Lundquist, et al., 2010).  All commercial Spirulina production currently uses 

raceway ponds. 
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Carotenoids, beta-carotene and astaxanthin 

Biomass sells plant gate for >$100,000 MT-1 with a 2% astaxanthin content 

(Lundquist, et al., 2010).  Production is limited to 100 MT per year worldwide and 

mostly with algae species Haematococcus in photobioreactors. 

Carbon Credits 

CO2 capture technologies range from $40 - $150 per ton.    The CO2 price forecast 

is detailed as starting at $15 per ton throughout the present decade, and increasing to $30 

- $50 per ton by the year 2030 (Johnston, et al., 2011).  The model uses a potential profit 

of $20 per ton for CO2 consumption from an industrial flue gas, assuming the period of 

implementation will be later on in this decade. 

Wastewater Treatment 

As covered in the previous section the potential cost benefit to a wastewater 

treatment plant was chosen conservatively to offset $0.06 per gallon for WWTP 

operating costs and $0.41 per gallon for WWTP capital costs (Hartman & Cleland, 2007).  

This cost benefit is calculated in the model per the size of the algal farm in Liters.  

Sensitivity Analysis 

The sensitivity analysis is a result of running the model simulation which has 

been built based on published algal growth parameters, fluid dynamics, known 

commercial practices, and laboratory findings which have been detailed in this paper.  

Because of the large number of input variables, a sensitivity analysis is performed for the 

two models (open pond and photobioreactor growth scenarios) in order to determine the 

sensitivity of net profit to input variables.  Sensitivity is determined by evaluating the 
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change in the average net profit, normalized, to the change in the input variable, 

normalized.  The sensitivity is determined by Equation (58): 

S = 
𝑌i−Yi−1

Yi
Xi−Xi−1

Xi

              Eq. (58) 

where S is the sensitivity, 

Y is the performance parameter (average net profit), 

and X is the input variable. 

The larger the sensitivity value, the more sensitive the performance parameter is 

to the input variable.  Only input variables with S ≥ 0.10 in one or both growth scenarios 

are included in the optimization. 

Each input variable included in Table (7) is assigned a value, Xi, the model is run 

and the average net profit is recorded.  Then the value for the input variable is changed to 

a new value, Xi-1, the model is run a second time, and the change in average net profit is 

recorded.  It is recommended to vary the initial starting value and the amount of change 

in X, in order to determine if the resulting sensitivity is a result from the normalization or 

selection location.  This is performed for each input variable specific to each growth 

scenario.  Each growth scenario has 18 input variables, but there is a quantity of two 

specific to PBR/ALR growth scenario: lighting and gas delivery through diffusion or 

sparging, and quantity of two specific to the Open Pond growth scenario: pond depth and 

paddlewheel velocity.  
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Table 7: Input variables manipulated for Sensitivity Analysis. 
 

Optimization 

Optimization of algal growth is an iterative effort involving many factors.  When 

only considering the algal growth factors, the parameters detailed in Figure (12) are 

involved.  The model analysis detailed in the fluid dynamics section determines how to 

optimize circulation time, hydrodynamic stress, lighting, mass transfer, and oxygen 

accumulation.  However, the goal of the optimization is maximum net profit, so growth 

factors are optimized in relation to the resulting net profit.  This means the optimized 

solution will not necessarily be the most productive solution, and the system optimum 

will not always be the unit optimum.  Also, when exhibiting an average net profit, the 

PBR/ALR Open Pond
culture density culture density
number of pbrs/ponds number of pbrs/ponds
lipid content lipid content
volume of pbr/pond volume of pbr/pond
bubble diameter bubble diameter
run duration run duration 
gas velocity gas velocity
filter press filter press
traditional centrifuge traditional centrifuge
evodos centrifuge evodos centrifuge
lysis lysis
organic solvents or sc co2 organic solvents or sc co2
conveyor oven conveyor oven
wastewater wastewater 
pipe diameter pipe diameter
cost of land (rural or urban) cost of land (rural or urban)
lighting (fluor or led) pond depth
diffusion or sparging paddlewheel velocity
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solution will optimize to a larger facility, while the opposite is true when a net loss is 

exhibited. 

 

Figure 12: Parameters affecting algal growth rate. 
 

The parameters to optimize for net profit in the PBR/ALR growth scenario 

include the culture density, geometry, and facility size.  The amount of oxygen/L 

produced is an important factor to consider in the design of the growth scenario 

geometry.  The turbulence analysis results make it possible to include fluid dynamics 

optimization in the model calculations outside of the optimization test scripts.  The model 

is also modified to calculate photobioreactor diameters and length, as well as pond depth 

based on the culture density, so that through optimizing the net profit based on the culture 

density the other parameters are optimized, as well.  With an artificially illuminated ALR 

design the internal lighted diameter and total diameter are outputs from the model.  Solar 

illuminated is a PBR tubular design with only an outer diameter (no internal lighting) and 

length as outputs. 

 



 
 
 
 
 

138 
 

 

Figure 13: PBR/ALR optimization flow. 
 

Light path length is calculated using the culture density, which is then used in the 

mass transfer module to determine the ALR diameters based on the 1:10 light path length 

and assuming constant flow velocity (detailed in the small scale turbulence section).  The 

resulting diameter is then used with the grams of oxygen produced to determine the 

maximum length so as not to exceed oxygen content of 0.028 g/L.   

Open pond growth scenario factors to optimize for net profit are facility size, 

inoculum density, and pond depth.  The open pond depth is simply a matter of 

determining the light path length based on the culture density, and using this value as the 

pond depth. The oxygen saturation is found to not play a factor in pond depth since the 

culture density is low enough that the light path length is dominant.   
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Figure 14: Open Pond optimization flow. 
 

Facility size is straight forward since a net profit causes facility size to go to a 

maximum while a net loss causes facility size to go to a minimum.  Therefore, for the 

initial optimization, which did not include the financial analysis, the only parameter to 

optimize is the inoculum density for both growth scenarios.  The optimization which 

includes financial analysis does reveal some exceptions with the facility size, but 

generally the same rule applies, and even then only increases the parameters to optimize 

to two. 

In constrained optimization, the general aim is to transform the problem into an 

easier sub-problem that can then be solved and used as the basis of an iterative process.  

Three different constrained optimization methods were used to verify results.  A large-

scale algorithm was used first (interior point method), followed by a medium-scale 

algorithm (sequential quadratic programming).  A direct search was used as the third 

method.  
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The large-scale algorithm calculates the Hessian by a dense quasi-Newton 

approximation and by a limited-memory, large-scale quasi-Newton approximation 

(Biggs, 1975). The Newton step is a linear approximation using a direct step, which is 

tried first.  If the algorithm cannot take a direct step then a conjugate gradient step is tried 

using a trust region.  If an attempted step does not decrease the merit function, returns a 

complex value, NaN, infinite or an error, the algorithm rejects the step and attempts a 

new, shorter step.  Equation (59) defines the direct step.  The Hessian can handle a matrix 

of variables to optimize, but the sensitivity analysis and modifications of the model 

simplify the optimization, which both speeds up the process and reduces chance for error. 

∇𝑥𝑥2 𝐿(𝑥, 𝜆) =  ∇2𝑓(𝑥) +  𝜮𝜆𝑖∇2𝑐𝑖(𝑥) +  𝜮𝜆𝑗∇2𝑐𝑒𝑞𝑗(𝑥)        Eq. (59) (Byrd, et al., 

2000) 

 Equation (59) solves the approximate problem through a sequence of equality 

constrained problems, which are easier to solve then the original inequality constrained 

problem (Equation 60). 

𝑚𝑖𝑛𝑓𝑛𝑒𝑡 𝑝𝑟𝑜𝑓𝑖𝑡 , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜𝑚𝑖𝑛 ≤ 𝐼𝐷𝑛𝑒𝑡 𝑝𝑟𝑜𝑓𝑖𝑡 ≤ 𝑚𝑎𝑥      Eq. (60) 

where ID is the inoculum density. 

 Equation (61) defines the conjugate gradient step where the algorithm tries to 

minimize a norm of the linearized constraints inside the trust region of radius R (Byrd, et 

al., 2000). 

∇𝑥𝐿(𝑥, 𝜆) =  ∇𝑥𝑓(𝑥) +  𝜮𝜆𝑖∇𝑐𝑖(𝑥) +  𝜮𝜆𝑗∇𝑐𝑒𝑞𝑗(𝑥) = 0           Eq. (61) 

 The medium-scale algorithm uses Kuhn-Tucker equations, also known as a 

Sequential Quadratic Programming (SQP) method since a QP sub-problem is solved at 
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each major iteration (Biggs, 1975) (Byrd, et al., 2000) (Han, 1977).  The second method 

uses more memory, but also increases functionality for better performance.  A step-size 

procedure is added to maintain the decrease of the merit function which enables global 

convergence, and makes it an extension to the Newton method (Han, 1977) (Matlab, 

2012).  A quadratic approximation of the Lagrangian function shown in Equation (62) is 

used. 

𝐿(𝑥, 𝜆) = 𝑓(𝑥) +  ∑ 𝜆𝑖𝑔𝑖(𝑥)𝑚
𝑖−1                                          Eq. (62)  

Similar to the large-scale algorithm, if an attempted step does not decrease the 

merit function, returns a complex value, NaN, Inf or an error, the algorithm rejects the 

step and attempts a new, shorter step.  At each major iteration a positive definite quasi-

Newton approximation of the Hessian of the Lagrangian function (Equation 62) is 

calculated.  Then the SQP method is solved using the form shown in Equation (63) for 

each matrix element. 

𝑚𝑖𝑛𝑞(𝑑) =  1
2
𝑑𝑇𝐻𝑑 +  𝑐𝑇𝑑              Eq. (63) 

The algorithm first calculates a feasible point if one exists, and then generates an 

iterative sequence of feasible points to converge to the solution.  The solution to the QP 

sub-problem produces a vector which is used to form a new iteration.  By providing a 

feasible point for the initialization, the minimum solution will be found more quickly 

through decreasing the merit function. 

The direct search does not require any information about the gradient of the 

objective function, but instead searches for a set of points around the current point, 

looking for a value lower than the value at the current point.  The set of points is called a 
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mesh, which is formed by adding the current point to a scalar multiple of a set of vectors 

called a pattern.  Various poll and search methods to improve efficiency may be used 

depending on the type of problem.  This method is desirable for finding global solutions 

involving more than one variable. 

The optimization is run using a set of two test scripts for each growth scenario 

(see Appendix E) (Matlab, 2012).  The objective function assigns initial values to the 

parameters which optimize the net profit, the algorithm, tolerances, maximum iterations, 

maximum and minimum limits, and the function to minimize.  The variables to optimize 

are included in the X0 matrix consisting of total Liters, inoculum density in cells/mL, and 

the lipid content for the PBR/ALR growth scenario. The variables to optimize in the open 

pond growth scenario are only the inoculum density in cells/mL and the lipid content.  

The objective function labels the results from the constraint function as ‘InitialCost’.  The 

screen prints the initial values for the X0 matrix.  The constraint function assigns the 

values to X, calls the appropriate model for simulation, and runs the optimization to 

minimize the mean of the costs per day.  Finally, the objective function displays the final 

values for the X0 matrix, as well as the minimized costs per day as ‘FinalCost’. 

The constraint function represents the function to minimize, and runs the model 

while assigning the values from the first test script for parameters and returning the 

results as the mean of the costs per day minus the profits per day, which is the variable to 

minimize.  The objective and constraint functions are combined into a merit function.  In 

order to locate local and global minimums, the initial values, tolerance on the constraints, 

the tolerance on the function to minimize, maximum evaluations, step length, quantity of 
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past iterations to remember, and the solver can all be modified to achieve improved 

results.  It is possible to watch the values in the model as displays while the iterations 

accumulate as well as produce a graph of the function results as a function of the iteration 

in order to verify if the results are converging or settling in a local minimum. 

Business Model 

In order to prove algal growth for CO2 capture and biofuel generation is 

economically feasible, the parameters must be narrowed down and years of research data 

must be compiled and integrated.  Flue gas and wastewater have proven to be efficient 

CO2 and nutrient culture sources.  The studies in the literature have shown flue gas is a 

biological solution to providing CO2 enriched air to the culture, and wastewater is 

similarly biologically feasible for providing necessary nutrients.   

The process model allows system integration with the necessary outputs, as well 

as the monetary values attached to the end products and inputs.  The business model 

details the necessary infrastructure, government incentives, laws, regulations and 

potential customers.  Key components of a successful agricultural based bioenergy 

industry are securing an economical and environmentally sustainable supply of biomass, 

creating value, added co-product streams, and improving delivery logistics.  By shifting 

the modeling approach and fidelity level in a customized manner, the model can be used 

to maximize speed and cost effectiveness while still ensuring the appropriate degree of 

accuracy for each stage of product design.  Simulations enable businesses to start with a 

systems model and then flow down requirements.  Trading off design features with 

performance criteria to optimize results is enabled before production even begins. 
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The model optimizes the cost/profit parameters with the algal growth and physics 

factors to determine the most profitable growth scenario considering cost of production.  

Further analysis is then completed which determines the financial feasibility of the 

project which is key to obtain investors. The financial feasibility for investors contained 

in this paper is a one point in time analysis, so potential investors are advised to consider 

further analysis as well as additional factors to the two parameters defined herein.  A 

decision for investment is a complex process involving many factors which are specific 

to each scenario, environment, timing and the investor him/herself. 

 The model assumes daily product and the cost of transporting to a refinery is not 

included.  The literature has found the key cost and price variables likely to have the 

biggest impact on the economic performance of the algal cultivation are those for 

petroleum crude, algal oil, carbon credits from carbon dioxide capture, and commercial 

fertilizer (Putt, 2007). 

Funding/Investment 

Commercial-scale production of biodiesel from microalgae requires massive 

investments in production facilities.  Evaluating the financial feasibility of a project can 

be done through calculating return on investment (payback), internal rate of return (IRR), 

and net present value (NPV) (Kerzner, 2006).  The payback period is the exact length of 

time needed for a firm to recover its initial investment from cash inflows.  It must be used 

as a supplemental tool to accompany other methods. 

NPV is calculated with equation (64). 

𝑁𝑃𝑉 =  ∑ � 𝐹𝑉𝑡
(1+𝑘)𝑡� −  Π            Eq. (64) 
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where FV is the future value of the cash inflows (FVi = PV (1 + k)n, where FVi is 

the initial value of the investment.), 

k is the discount rate equal to the firm’s capital (8% APR used in model), 

t is the time in number of years, 

and Π represents the initial investment. 

The NPV rule states that if the NPV is greater than or equal to zero dollars, accept 

the project.  If the NPV is less than zero dollars, reject the project (Kerzner, 2006).   

The IRR determines the minimum future growth rate where the present rate of 

cash inflows exactly equals the initial investment.  It is an indicator of the efficiency, 

quality, or yield of an investment, where the NPV is an indicator of the magnitude of an 

investment.  When the IRR is above bench mark it is attractive; otherwise the company is 

relatively unattractive. 

IRR is calculated with equation (65). 

𝐼𝑅𝑅 =  ∑ � 𝐹𝑉𝑡
(1+𝐼𝑅𝑅)𝑡� −  Π               Eq. (65) 

where IRR is the discount rate when NPV = 0. 

The timing of the cash flows is also important, where earlier cash flows are more 

advantageous.  The algal growth model does enable cash flows every week for the 

financial analysis, regardless of the farm size.  While cycle time can improve the IRR, 

reducing costs and increasing revenue have a much larger impact.  Reducing investment 

capital costs has the biggest impact on IRR, especially since in this case all capital 

investment is at the beginning of the project.  The IRR rule states that if the IRR on a 

project is greater than the minimum required rate of return – cost of capital (in this case 
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8%, or 8.32% since cash flow is weekly) – then the decision would generally be to go 

ahead with it.  Otherwise the best course of action would be to reject the investment. 

It is important to consider the fact that a higher interest rate then 8% may be 

charged for financing since this is an unproven and relatively risky venture.  To 

determine the cost of financing the site in terms of annualized capital cost (p) and daily 

capital cost, Equation (66) was used. 

𝑝 =  𝑡(1+𝑟)𝑛𝑟
(1+𝑟)𝑛  - 1              Eq.(66) 

where t is the total amount financed, 

r is the rate of return (8%), 

and n is the lifetime of the project in years (15). 

The cost of financing and operating is deducted from the total profit from 

products to determine the daily cash inflow.   

Also, insurance is not included, but must be considered a significant cost factor, 

possibly on the order of six figures. 

Risk Analysis 

Risk is high with algal growth on an industrial scale in general since algal growth 

on a large scale is uncommon and doesn’t exist with the goal of biofuel production.  Most 

studies to date have analyzed algal biomass and lipid production under laboratory 

conditions over short durations.  Although harvesting options have been proven in the 

laboratory, and for small scale commercial systems and/or comparable food systems, no 

harvesting options have been practiced on a large commercial scale for algal production. 
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In an open pond scenario a culture crash would most likely mean at least one 

entire pond’s growth lost, and likely several ponds.  A photobioreactor growth scenario 

would contain the contamination to one photobioreactor at a time, and contamination 

would be more unlikely than in an open pond scenario.  

Another risk unique to open ponds is poorer than average weather.  While the 

weather will affect solar illuminated photobioreactors to some extent, the effect on an 

open pond growth scenario would be much greater, and could mean little to no growth for 

an entire week or season at a time.  

Incentives 

The current tax credit for agriculturally-derived biodiesel is $1 per gallon. 

(Dimitrov, 2007)  Starting in 2012, biofuel produced from algae is included in a $1.01 per 

gallon production tax credit.  In the US, the Energy Dept. has granted a total of $348 

million in loans, grants, and tax exemptions since 2004 for research centers, fuel 

producers, and refiners.   The U.S. Department of Defense has awarded multi-year grants 

in millions of dollars to develop scalable processes for the cost-effective large-scale 

production of algae oil and jet fuel. None of this subsidizing is included in the model but 

are potential aids to minimize the risks detailed in the previous section.  

The EPA employs the Clean Air Interstate Rule (CAIR) and Acid Rain Program 

to reduce sulfur dioxide (SO2) and nitrogen oxides (NOx) emissions by 70% in 28 eastern 

states and the District of Columbia using a cap and trade system (Environmental 

Protection Agency, 2012).  However, since the cap and trade systems are revised and/or 
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dissolved often, and are different in each state, any potential profit from the cap and trade 

emission reduction from feeding flue gas to algae is not included in the model.   

Environmental Impact 

The environmental performance of algal biofuel production can vary considerably 

and is influenced by design and location considerations.  Life-cycle assessments of fuel 

production systems differ significantly in their assumptions and scope.  Vasudevan, et al. 

(2012) found wet extraction to be environmentally more favorable than petro-diesel, but 

the study only considered energy involved with the harvesting options and assumed a 

high yield per acre. Many studies assume the use of brackish water as opposed to fresh 

water will automatically make an algal growth system environmentally sustainable.  

However, they do not consider the energy involved with supporting growth and 

harvesting.  In order for algal growth to qualify as a green clean technology, each 

scenario must be examined to determine the actual carbon footprint. 

Algae Control & Regulation 

Successful implementation of algal growth on an industrial scale will predicate 

more control and regulation.  While the specifics of such control and regulation are yet to 

be seen, any investor must keep the potential of such in mind.  Assuming no biological 

altering of the microalgae and recycling most of the media helps alleviate some of this 

concern.  Also, microalgal growth with the intent of biofuel production is many years 

away from successful implementation on an industrial scale. 
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Customers 

The U.S. Navy is on an aggressive national security timetable to convert to 50% 

alternative fuels by 2020, which would require 8 million barrels per year in jet and 

marine fuels. They put out a request for the first 500,000 gallons of biofuels within a year 

of May 23, 2011 (Gardner, 2011).  The U.S. Government invoked the Defense 

Production Act of 1950 which authorizes the President and Congress to directly invest in 

the commercialization of vital defense technologies that would not otherwise reach 

commercial-scale production at affordable prices.  The DOE, USDA, and the U.S. Navy 

is each making $170 million available towards the commercialization of advanced 

biofuels, and that figure is expected to be matched at least 1:1 by the private sector.  

Starting in 2012 airline carriers with European routes have had to participate in the EU’s 

cap-and-trade system for CO2 and have to buy additional permits if they exceed limits.  

(Bloomberg Businessweek, 2011)   

On July 1, 2011, ASTM International gave approval for commercial airlines to 

mix fuel made from organic waste and nonfood plants with kerosene.  Airbus estimates 

that by 2030 plant-derived formulas could make up as much as 30 percent of the market 

for aviation ($140 billion).   (Bloomberg Businessweek, 2011)  The climate change 

impacts of biofuels depend not only on the lifecycle emissions and indirect land use 

effects, but also on the effects of high-altitude emissions when used as aviation fuel 

where the lowest amount of sulfur and contaminants are desired (Greene & Plotkin, 

2011).  Algal based jet fuel contains no sulfur and is low in contaminants.  Also, the Air 

Force has strict safety and quality standards for aviation fuel, which algal oil satisfies 
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(Gardner, 2011).   Through funding from airlines and the government, the start-up and 

demonstration of the facility can be completed, and subsequently the project can be 

refinanced at commercially viable rates (Lane, 2012). 

Partners 

Research collaborations exist between the military, federal agencies, universities, 

and industrial partners.  These partnerships enable a pooling of resources in pursuit of a 

shared R&D objective with benefits to both private and public entities.  The R&D focus 

should be on eliminating or minimizing the high risk barriers confronting the algal 

growth for biofuels industry.  Industry benefits through technological innovation, which 

in turn increases capital efficiency.  The partnerships should be based on common interest 

and benefits to all involved parties while not conflicting with the interest of other groups. 

Utilities and the Public Utility Commissions (PUC), whose statutes and rules the 

utilities must abide by, are conservative entities and need firm forecasts to allow algae 

entrepreneurs to form alliances and allow sharing of land and resources.  Carbon caps 

will aid in this if and when they are instituted in the U.S., but even then and until then, 

algal companies must be capable of demonstrating technical and economic feasibility.   

CO2 mitigation is considered a valuable end product as many industries seek to 

reduce their carbon footprint and carbon credits are becoming a commodity. Producing 1 

kg of algal biomass fixes 1.6 - 1.8 kg of CO2, and biomass doubling time can be as short 

as 3.5 hours.  (Patil, et al., 2008).  One mole of CO2 is required for the growth of one 

mole of microalgae, so one kg of CO2 can produce 25/44 kg of microalgae and 32/44 kg 

of oxygen.   
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Processing CO2 close to power plants eliminates the capital and operating costs 

for transportation, and eliminates opposition from localities opposed to pipelines.  More 

efficient plants may even exceed the requirement and sell their allowances.  Power plants 

will have powerful incentives to consider long-range strategic partnerships to bring algae 

to scale.  Studies have found the use of biofuels does recycle all or most carbon (less for 

open pond growth scenarios), which substantially reduces the net release of CO2 to the 

atmosphere (Wyman, 1994) (Bussell, et al., 2008).  The literature claims that for each 

liter of biodiesel consumed in place of fossil diesel, 3.3 kg of CO2 emissions are avoided 

(Alabi, et al., 2009). 

Electrical power plants are responsible for over one-third of the US emissions, or 

about 1.7 Gt CO2 per year.  Industrial processes most contributing to CO2 atmospheric 

concentrations consist of electric plants, hydrogen and ammonia production plants, 

cement factories and fermentative and chemical oxidation processes (Alabi, et al., 2009)  

Power-plant flue gas can serve as a source of CO2 for microalgae cultivation, and the 

algae can be co-fired with coal.  There are potentially significant benefits to recycling 

CO2 toward microalgae production, and there are a number of companies involved in 

algae-based CO2 sequestration worldwide  (Kadam, 2002).   

The DOE’s goal is to reduce the cost of carbon sequestration below $10 per ton of 

avoided net cost.  Presently it ranges from $35 to $264 per ton of CO2 by desulfurizing 

flue gas (Olaizola, et al., 2003).  Gas scrubbing could be simplified since NOx and SOx 

can also be effectively used by nutrients by the algae.  Scrubbing heavy metals from the 

flue gas, which is in most cases already an EPA requirement, prior to pumping into the 
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microalgal culture will enable the microalgae to be used for high value end products such 

as feed supplements and is in place already for power plant emissions.  
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Chapter Three: Results 

The only true test of a simulation is how well the real system performs with 

implementation of the model results.  Simulation results are also commonly evaluated 

using statistical procedures such as variance, regression analysis, and t tests (Chase, et al., 

2006).  There are three realistic alternatives to validate accuracy of the model: (1) print 

out all calculations used in the simulation and verify the calculations by separate 

computation, (2) verify model results with those reported in the literature, and (3) 

simulate present conditions and compare simulation results with the existing system 

(Chase, et al., 2006).  

This model has been validated through presenting the methodology and equations 

used to create the model, and now the results can be validated by comparing them with 

those reported in the literature.  In some cases the results differ with the literature, and 

when this occurs, the methodology is examined again to determine factors which cause 

the differences.  (Key outputs from the model are detailed in Appendix A, as well as a 

comparison with other studies as to the level of detail contained within Appendix B.) 

Results in the following sections up to the optimization section are results 

considering culture densities and corresponding light path length, which have been 

proven in real algal growth scenarios, except where noted to illustrate model results.  The 

maximum culture densities used are 40 - 50 g/L for artificially illuminated ALR’s, around 
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1 g/L for solar illuminated PBR’s, and 0.33 g/L for open ponds.  The light path length is 

calculated with Equation (7) unless otherwise mentioned. 

Algal Size and Density 

As mentioned previously, very few if any studies consider the algal density in 

terms of g/L based on the algal cell size. Phytoplankton size ranges over nine orders of 

magnitude in cell volume from <2 µm to 2000 µm. The resulting density affects the 

desired inoculum density, the desired growth duration, light path length (and in turn 

photobioreactor geometry and pond depth), the pH, required CO2, and the amount of 

oxygen produced. 
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Figure 15: Comparison between 5 algal species and resulting culture density 
after growth duration in days. 

 
The model allows the selection of one of the five algal species (detailed in 

methodology/system model/productivity section of this paper), which selection affects 

the algal cell size and the lipid content.  The inoculum density is adjusted in cells/mL, 

and the model calculates the equivalent in g/L per species with and without the growth 
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rate.  The density in g/L is then used for viscosity, geometry and lighting calculations.  

As is evident from Figure (15), the g/L is vastly different depending on the algae species 

chosen.   

 
Lighting & Productivity 

The model is designed to determine the light path length based on the culture 

density.  Analyzing the light path length alone provides invaluable insight into maximum 

culture density depending on the growth scenario considered.  The basic algal growth rate 

(Equation 2) yields maximum open pond density of 16.99 g/L at a depth of 

approximately 20 cm when Equation (7) is used to determine light path length.  However, 

this high density in an open pond growth scenario has never been proven in the literature. 

When the light path length and g/L of algal growth supported is combined with 

the pond depth to derive the productivity in g/m2 per day, the maximum areal 

productivity becomes apparent at a depth of slightly greater than 20 cm.  Also, shallower 

depths should be avoided for open ponds since they would encounter other issues such as 

greater photoinhibition and difficult to manage temperature increases.   
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Figure 16: Open pond areal productivity. 
 

However, where costs associated with greater surface area are much higher than 

profits associated with algal end products, the highest areal productivity does not result in 

the most cost efficient growth scenario.  Additionally bear in mind the possibility of 

lower productivity due to risks not included in the model calculations such as nighttime 

losses, contamination causing culture crash, and poor weather.   

Results from calculations contained in method/system model/lighting section of 

this paper reveal a wide range in Watts per Liter required depending on the design, light 

source, light path length, culture density, and gas delivery.  The most effective system 

requiring the least Watts per Liter is LED lighting, a light path length > 10 cm, and using 

a diffused gas delivery system. 
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Figure 17: Lighting required vs. algal biomass yield. 
 

Results for the net profit as a function of the culture density and lipid content are 

as expected.  The culture density is a very strong influencer on the algal facility net profit.  

Due to high losses in the open pond growth scenario, however, the higher culture density 

doesn’t surmount the costs so the culture density is inversely related to the net profit. 
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Figure 18: Net profit as a function of culture density for PBR growth 
scenario. 
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Figure 19: Net profit as a function of culture density for open pond growth 
scenario. 

 
Lipid content increases net profits for all growth scenarios but not as strongly as 

culture density.  Also, losses in the open pond growth scenario are so great that the lipid 

content barely has an effect on the net profit. 
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Figure 20: Net profit as a function of lipid content for PBR growth scenario. 
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Figure 21: Net profit as a function of lipid content for open pond growth 
scenario. 
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Large Scale Turbulence 

 

Figure 22: Paddlewheel operating cost as a function of flow velocity in a 
100,000 kg biomass/year facility. 

 
Flow velocity in an open pond growth scenario is a result of the paddlewheel 

velocity minus the head loss.  Assuming a paddlewheel velocity of 1 - 2 m/s, the resulting 

flow velocity in a pond of 20,000 Liters with head loss due to friction, bends and gas 

sumps considered is 0.03 m/s.  To maintain  a flow velocity of 1 m/s in all areas despite 

head loss due to friction, gas sumps, and bends is cost prohibitive (see Figure 22).   

Results reveal the power consumption for raceway paddlewheels lowers by 40% 

when the surface is concrete instead of clay, which at a rate of $0.11 per kWh would 
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result in a savings of $2.087e11 per year over a clay surface assuming a constant 8 

hours/day flow velocity of 1 m/s and an algae farm of 25 ponds, each holding 20,000 

Liters.  The model uses a roughness factor for concrete for all remaining open pond 

growth scenario calculations. 

Results for ALR geometry including the light path length, light: dark ratio of 

1:10, and maximum oxygen saturation at expected culture densities of 40 - 50 g/L are 

shown in Figure (23). 

 

Figure 23: ALR design geometry results for culture density 40 - 50 g/L (not 
to scale). 

 

Small Scale Turbulence 

The model calculates Kolgomorov length from both viscous and bubble 

dissipation. 
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Figure 24: Kolgomorov length and with bubbles as a function of gas velocity. 
 

Even when including bubble dissipation, the Kolgomorov length is longer than 

the cell by 5.4e-6 meters before maximum shear stress is reached at around a gas velocity 

of 2.5 m/s (see Figure 30).  Since the optimal flow dynamics are experienced 

approximately between 0 - 10 µm greater than the length of the algal cell, the hyperbolic 

effect on productivity will be evident as the length extends over 10 µm producing less 

than optimal results (Contreras, et al., 1998) (Preston, et al., 2001) (Peters, et al., 2006).  

Figure (25) reveals that in the 0.04 – 0.09 m/s gas velocity range used in laboratory 

studies, the Kolgomorov length is approximately 140 µm greater than the cell length. 
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Figure 25: Kolgomorov length minus Nanno s. cell length vs. superficial gas 
velocity. 

 
Rheology and effects on the culture viscosity reveal the flow is Newtonian at 

expected culture densities even when considering temperature increases and using 

wastewater as the culture medium.  Figure (26) compares expected packing fraction for 

microalgal cultures to results from Jibuti, et al. (2012).  In the range of expected 

densities, the model results concur with previous results and do not show any evidence of 
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non-Newtonian flow. 

 

Figure 26: Effective viscosity as a function of volume packing fraction - Blue 
line indicates model results, other results from Jibuti, et al., 2012. 
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Figure 27: Newtonian flow characteristics -- Blue shaded area indicates 
model results, other results from Chabra & Richardson, 2008. 

 

Results in Figure (27) indicate Newtonian flow in a range of expected 

photobioreactor culture densities.  When the culture density is increased beyond 

maximum, one does start to see the characteristics of a non-Newtonian flow.  Figure (28) 

shows the results at densities up to 270 g/L, and it is evident shear-thinning, or decreasing 

viscosity with increasing shear rate is taking place.  In this case, the model confirms data 

in the literature, but in normal operating conditions the culture density will never reach 

such a high density due to temperature, nutrient, light path length, and gas exchange 

restraints. 
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Figure 28:  Shear stress vs. superficial gas velocity at 42 - 270 g/L culture 
density where non-Newtonian flow is evident. 

 

Gas velocity ranges from around 0.3 m/s to 2.5 m/s result in a range of shear 

stress values which are as expected and may be acceptable for algal growth.  Further 

analysis reveals there is room to optimize the gas velocity based on shear stress per cell, 

interfacial area, geometry, and heterogeneous flow.  First, liquid velocity in the riser is 

analyzed for conditions when the liquid is driven by the gas (gas velocity > liquid 

velocity), which is evident zooming in at gas velocities in a range from 1.4 – 1.6 m/s (see 

Figure 30). 
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Figure 29: Liquid velocity in the riser as a function of superficial gas velocity 
(0 - 1.6 m/s). 
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Figure 30: Liquid velocity in the riser as a function of superficial gas velocity 
(1.4 - 1.6 m/s). 
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Figure 31: Model results for viscous shear stress as a function of superficial 
gas velocity. 

 

Model results for viscous shear stress reveal maximum shear stress is reached at a 

gas velocity between 2.5 and 3 m/s. Using Equation (40), the shear stress per cell can be 

calculated as a function of culture density and vorticity, and reveals extra margin at 

relatively low algal densities.  At a maximum of 4.5e-7 Pa shear stress per cell when 

culture density reaches 70 g/L, the viscous shear stress is dominant, and it seems 

reasonable to establish a maximum viscous shear stress at ~15-16 Pa.   
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Figure 32: Shear stress per cell vs. superficial gas velocity (culture density of 
42 - 70 g/L). 

 
Figure (33) validates the CO2 transfer rates at low culture densities calculated by 

equations detailed in the small-scale turbulence section of this paper.  The culture density 

was intentionally set at 0 - 2 g/L to compare the CO2 transfer rates from the literature to 

the model.  This low culture density is within the range of culture density expected for 

open ponds, but these equations only apply to ALR’s, where the expected culture density 

is much higher.   
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Figure 33: CO2 transfer time vs. superficial gas velocity of .01 - .085 m/s at 0 - 

2 g/L culture density -Blue line is model data, other results from Contreras, et al., 
1998. 

 
Since it has been determined it is important to achieve and maintain 

heterogeneous flow, model results were analyzed for indication of transition from bubbly 

flow to heterogeneous flow.  Transition to heterogeneous flow is very evident at low 

culture densities in Figure (36), and slightly evident at expected optimal culture densities 

in Figure (35). 
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Figure 34: Mean circulation time, holdup, bubble diameter, and interfacial 
area as a function of superficial gas velocity (Contreras, et al., 1998). 

 
 

 
Figure 35: Interfacial area as a function of superficial gas velocity (culture 

density 42-70 g/L). 
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Figure 36: Interfacial area as a function of superficial gas velocity (culture 

density 4-27 g/L). 
 

The bubble shear rate also shows a spike between .15 and .20 m/s especially 

evident with lower culture densities as shown in Figure (37).  It is possible optimal flow 

conditions have not been obtained in some studies because this initial hurdle to 

heterogeneous flow has been avoided, since the bubble shear rate sustained at this 

velocity will damage the microalgae. Since the assumptions regarding Newtonian flow 

and the flow dynamics having more influence than gravity are reliant upon λ ≤ 1 (shear 

rate > 1000 s-1, gas velocity > 0.2 m/s), there is additional reason to aim for 

heterogeneous flow.  Also, in laboratory test set-ups the photobioreactor diameter will be 

smaller which makes damaging slug flow more likely at lower gas velocities (Merchuk & 

Gluz, 2002). 
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Figure 37: Bubble shear rate as a function of superficial gas velocity (culture 
density 4-27 g/L). 

 
Optimal conditions are attained when the flow is heterogeneous and circulation 

time is independent of gas velocity.  The model is analyzed for gas velocity when the 

interfacial area reaches a near constant, which value is dependent on the geometry.  The 

results in Figure (39) with a smaller volume reveal more precisely than Figure (38) with a 

larger volume the gas velocities which produce a nearly constant interfacial area. 
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Figure 38:  Interfacial area as a function of superficial gas velocity in 785 L 
volume. 
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Figure 39:  Interfacial area as a function of superficial gas velocity in 100 L 

volume. 
 
Through combining shear stress, heterogeneous flow, and interfacial area, optimal 

growth conditions become apparent.  The model is modified to set to maintain shear rate 

between 7,000 and 8,000 s-1 (shear stress of 7 - 9 Pa) for the following results and 

optimizations. 
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Figure 40: Optimization zone for fluid properties based on shear rate, shear 
stress, heterogeneous flow, and interfacial area. 

 
Results concur with studies which state that the heterogeneous flow regime where 

circulation time is independent of velocity contains optimal characteristics for culture 

growth (Schumpe & Deckwar, 1987) (Doran, 1993).  The results also reveal it is possible 

to model the ALR flow dynamics using known equations in order to determine input 

parameter values which result in optimal flow conditions for algal growth. 

ALR Geometry and Pond Depth 

As presented previously, the model determines the maximum length for the 

volume of algae so the amount of dissolved oxygen does not exceed 0.028 g/L.  The pond 

depth and culture density are based on the light path length, since density is low enough 
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in open ponds that the light path length will limit algal growth long before oxygen 

saturation occurs.  Even at maximum density in the model for ponds of 16.99 g/L at 

minimum depth of 19.62 cm, there will be 0.002 g/L oxygen generated for every minute 

of growth.  Therefore the light path length is dominant for determining pond depth which 

means calculation of oxygen generated is for information only, and does not affect the 

design. 

 

Figure 41: Amount of oxygen produced per day as a function of open pond 
culture density. 

 

The volume of algae per length of ALR is dependent on both the algal density and 

the optimal ALR diameters, which are based on light path length.   
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Figure 42: ALR geometry as function of culture density (bottom line is length 
and top line is diameter). 
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Figure 43: Light path length as a function of culture density. 
 

As the culture density increases the diameter goes to 0 based on light path length, 

which causes the length to become unrealistic, but these high algal densities are not 

expected.  Also, this length is not realistic since growth will be limited by temperature, 

acidic pH effects, and higher pressure and viscosity changes at depth.    It is interesting 

that right about what will be found as optimal algal density (40 - 60 g/L) the length and 

diameter converge. 
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Figure 44: ALR geometry as function of culture density. 
 

Nutrients 

The results indicate there will be a wide range of nitrogen and CO2 available 

depending on the power plant, but most certainly the nitrogen will be the limiting factor 

when no wastewater is available as an additional nitrogen source.  A large algal facility 

would be necessary to consume the maximum amount of flue gas, and even then there 

will be a large amount of CO2 which will not be consumed.  The scenario represented in 

Figure (45) is representative of the PBR growth scenario required to consume all of the 

nitrogen from the flue gas of a 1000 MW power plant.  The facility will cover 17 acres 
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and produce nearly 1,900 barrels of biodiesel per day.  An open pond growth scenario 

with similar production and nitrogen consumed would require a facility of 9.4e9 acres. 

 

 

Table 8: Estimates of nitrogen and CO2 available from coal power plant flue gas and 
algal biomass supported (Comanche station emissions, 2010, Xcel Energy). 

 
 

 

Figure 45: 1000 MW coal power plant/PBR (7.5e7 L, 3.38e5 kg dry 
biomass/day) growth scenario.  

 
Nutrients which must be administered by the Liter of culture include salt, pH 

buffer and antibiotics.  Open pond growth scenario nutrient costs for these items are very 

high due to the large volume and low culture density.  Even with 80% of the salt recycled 

and the relatively cheap price of salt, it still remains the highest cost of all the nutrients.  

Also, even with the use of flue gas and wastewater or recycling biomass, all three of these 

CO2 kg/day kg dry biomass/day N kg/day kg dry biomass/day
4121-5297 8080.4-10386 1.55-4.55 22.14-65
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costs remain.  The cost of salt could be alleviated through the use of brackish or seawater, 

or through growing a fresh water species.   

 

 

Figure 46: Nutrient costs per day for PBR and open pond growth scenarios 
sized to produce ~100,000 kg dry biomass per year. 

 
Temperature 

Results partially reveal why culture density is limited at 60 - 70 g/L, since 

temperature would be unmanageable, although the light limitation would slow the 

photosynthetic process, effectively limiting temperature increase.  Through artificially 

increasing the culture density in the model it is verified the model is working correctly 

both with the increasing culture temperature and the decreasing cooling water 

temperature. 
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Figure 47: Temperature increase (from photosynthetic process only) vs. 
culture density at ultra-high culture densities. 
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Figure 48: Temperature increase (from photosynthetic process only) vs. 
culture density at expected maximum culture densities.  

 

Figure (47) shows the temperature increase when the culture density is increased 

beyond expected maximum, while Figure (48) displays the expected temperature increase 

at more realistic photobioreactor culture densities.  Figure (49) below proves the required 

temperature of water to keep the culture density at 20ºC is manageable.  The volume of 

water is calculated as the quantity required to replace the amount used in the 

photosynthetic process.  



 
 
 
 
 

189 
 

 

Figure 49: Cooling water temperature vs. culture density (water replaced for 
what is used in photosynthesis, to keep the culture at 20ºC). 

 

Capital Costs 

Despite claims that capital expenditure for photobioreactors is many times more 

than that of open ponds (Benemann, et al., 1982) (Sheehan, et al., 1998) (U.S. DOE, 

2010), the results show otherwise.  Model results for ~100,000 kg of biomass/year show 

capital costs for open pond growth scenario to be 19.23 times more than for a 

photobioreactor growth scenario.  This is due to a much larger surface area and Liters of 

culture (with much lower culture density) required for an open pond scenario.  Capital 

costs which are unique to ponds are the pond liner and paddlewheels.  Cost items 
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common to both growth scenarios tend to be much more expensive for open ponds 

because of the large surface area and greater dilution of the culture. 

In order for algal growth with biofuel production to be truly sustainable, it cannot 

compete with agriculture.  Results show the required land for an open pond growth 

scenario is not environmentally or financially sustainable.  If the U.S. government’s goal 

of replacing 20% of transportation fuels with biofuels by the year 2030 were to be 

fulfilled through open pond algal growth alone, about 25% of the total U.S. land area 

would  be covered in algae ponds (~6.25e8 acres).  Land cost is the most significant 

contributor to open pond capital costs in an urban setting ($1.27e9), with installation 

costs ($9.40e7) being a close second and the primary cost in a rural scenario.  Financing 

cost for a 100,000 kg of biomass per year open pond urban scenario is $150,000 per day 

and $14,500 per day for a rural scenario. 
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Figure 50: Capital costs for 100,000 kg biomass/year open pond growth 
scenario. 

 
Capital costs unique to photobioreactors include acrylic or glass and the lighting.  

At expected size for the tanks (over 200 gallons), the cost of glass and acrylic are about 

the same.  Glass is more likely to break or leak, but acrylic is easier to scratch and 

yellows under UV lighting.  Acrylic is also easier to mold into usable shapes and is much 

lighter for shipping.  The material cost is set high enough ($7.50/L) to provide for 2 - 3 

replacements over the 15 year financing for capital costs set in the model.  At a facility 

sized to produce 100,000 kg of biomass per year, the LED lighting capital cost is 

$6.51e7, while the capital cost for fluorescent lighting is $7.49e6.  Financing cost for a 

100,000 kg of biomass per year LED lighting urban scenario is $7,150 per day and $870 

per day for a rural scenario. 
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Figure 51: Capital costs for 100,000 kg biomass/year PBR growth scenario. 
 

Table (9) shows a comparison of investment per acre between model results and 

that found in the literature.  It becomes apparent why there is such a wide range of values 

when one considers how various growth scenarios differ in results and how variables not 

included in other techno-economic studies affect results (the studies used for comparison 

below are also included in Appendix B with variables included).  Also, despite higher 

costs per acre, the PBR growth scenarios are more cost effective when considering the 

profit: cost ratio rather than the areal productivity. 
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Model (ALR) Model (Solar PBR) Model (Pond) Richardson, et al (2010) Lux Research (2012) Putt (2007) Shen (2008)
7.30E+09 5.55E+09 196,272 42,774-77,095 81,704 13,897 266,640

Investment $/acre
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Table 9: Investment per acre for different growth scenarios and comparison 
with the literature. 

 
Harvesting Options 

Costs for photobioreactors are commonly reported to be many times more than 

that of open ponds, but higher volume due to greater dilution in an open pond growth 

scenario reveal otherwise.  The capital expenditure and operating expenses of 

photobioreactors can be designed to compete with and be less than open ponds from 

economical and energy perspectives.  Production and cost data for various harvesting 

options in open ponds and PBR growth scenarios are shown in Figure (52). 

 

 

 

Figure 52: Cost comparison of various harvesting options. 
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Sodium hydroxide lysis is included for a cost comparison, and costs are minimal, 

but this method of lysing algal cells is unproven outside of the laboratory.  Filter press 

and oven costs are minimal and similar for both growth scenarios since most of the 

culture medium is assumed to be recycled at this point in the process resulting in a similar 

culture concentration.  While the Evodos centrifuge costs more per unit, it has higher 

capacity and lower operating costs than a traditional centrifuge.  Despite claims in the 

literature, use of a centrifuge for ALR culture density is affordable, especially for an 

Evodos centrifuge.  Origin Oil lysis uses electromagnetic impulse, but is 25% more 

expensive than an Evodos centrifuge and cost is dependent on the culture density similar 

to centrifuges (Origin Oil, 2012).   The model results indicate financing harvest capital 

and operating costs contribute 1 - 5% toward the total cost (not including distribution 

pumping) (see Table 10), which is much lower than the 20 - 30% of total cost assumed in 

the literature (Verma, et al., 2009) (Hall, et al., 2003). 

Operating Costs 

The only costs for an open pond growth scenario which are manageable are 

replacing water other than that lost by evaporation and the cost of using supercritical CO2 

as a solvent.  Each of the individual remaining costs surpasses daily profits without even 

considering their summation.  The only PBR operating cost which surpasses daily profits 

on its own is the use of organic solvents, which can be avoided by using supercritical 

CO2 as a solvent. 

Replacing water lost to evaporation ($4.36e7 per day for a 100,000 kg biomass 

per year facility) is by far the most significant operating cost for an open pond growth 
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scenario.  The cost of replacing water not including evaporation is minimal since the 

model assumes 90% of the media is recycled, which addresses health and safety concerns 

regarding disposal and reduces costs significantly.  The cost of replacing water not 

including evaporation is calculated as 10% loss plus that used for photosynthesis for an 

open pond growth scenario ($341 per day for open pond 100,000 kg of biomass per year 

facility).  The highest operating cost for the PBR growth scenario are organic solvents, if 

used ($24,100 per day for a 100,000 kg of biomass per year facility) followed by the gas 

pump power ($2,210 per day for a 100,000 kg of biomass per year facility). 

Employees are a significant cost for open ponds because of the large surface area 

required.  The model calculates 0.08 employees are required per hectare.  Lighting is not 

a significant operating cost factor for a PBR growth scenario despite the high capital 

costs.  Nutrients are a high cost factor for open ponds because of the items required per 

Liter, including the pH buffer, salt, and antibiotics.  Water and gas pump and 

paddlewheel power are also significant cost factors for open ponds because of the 

increased distance involved with the large surface area and larger volume compared to 

the PBR growth scenario. 

One key finding is the amount saved by using supercritical CO2 as a solvent 

instead of traditional organic solvents (saves ~$25,000/day for 100,000 kg of biomass per 

year facility).  The cost of the supercritical CO2 includes only the energy cost of bringing 

the CO2 to supercritical state since the CO2 cost itself is minimal and may be fed back to 

the growing algae culture.   The total cost of the organic solvents calculated by the model 
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includes the cost for the materials and energy costs calculated by Soh & Zimmerman 

(2011). 

Water pump operating costs are calculated as 2 hours per day each for water and 

media for PBR’s, and 8 hours/day each for open pond growth scenarios.  Gas pump 

operating costs are calculated assuming they must be operating 24 hours per day since 

gas circulation is needed whenever light is present for algal growth, but also to maintain 

fluid dynamics necessary to distribute nutrients and to keep algae from settling and/or 

flocullating.  The gas pump operating costs are higher for PBR’s than open ponds ($1411 

> $119) because the gas is being pumped into the culture at a greater depth requiring 

more power. 

 

 

Figure 53: Operating costs per day for open pond and PBR growth scenarios 
producing approximately 100,000 kg dry biomass per year. 
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Figure 54: Comparison between capital and operating costs per day for open 
pond and PBR growth scenarios producing approximately 100,000 kg dry biomass 

per year. 
 
 
 

End Products 

Price for a barrel of biodiesel would need to be at least $10,313 to break even 

with the cost of production assuming no co-products in the most favorable algal growth 

scenario simulated with proven culture densities.  EPA profit is significant enough to get 

close to a profitable scenario, but the only product which yields sufficient profit to 

counter the costs of the algal growth facility and cost required to harvest and produce end 

items for a PBR growth scenario is wastewater treatment.   

Alibi, et al. (2009), found photobioreactors have a cost of $24.60 per liter of algal 

oil, with 63% of that cost from capital.  Model results reveal the cost per Liter of oil is 

much higher for all growth scenarios, while capital cost is a smaller portion of total cost, 
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especially for an open pond growth scenario.  For economic success, productivity of over 

100 tons per hectare per year is needed according to one report (Pedroni & Benemann, 

2003).  However, assuming this study is referring to dry weight biomass, even at 

approximately 16,000 tons of biomass/hectare per year, the scenario closest to showing a 

net profit (the artificially illuminated PBR) remains economically unsustainable.  Results 

are more positive for the solar illuminated PBR’s when wastewater is included since the 

culture density allows for greater volume and more Liters of wastewater to be treated per 

algal biomass yield. 

 

Table 10: Cost and profit comparisons for three different growth scenarios. 

Table (10) contains the mean of the model results where each algal growth 

scenario is sized to produce approximately 100,000 kg of dry biomass per year, which 

explains why the products have similar profits and yields.  Assumed algal densities are 40 

- 50 g/L for artificially illuminated ALR’s, around 1 g/L for solar illuminated PBR’s, and 

Variable Artificially lit ALR Solar lit PBR Raceway ponds
Profit per day $8,613.37 $8,698.77 $8,406.42
Costs per day $10313 (FLUOR)$11092(LED) $18,376.50 $7,184,000.00
% of cost from financing capital 39%(FLUOR)43%(LED) 21% 8%
Acres 0.02 0.23 6,601.30
kg biomass/year per acre 5,882,352.94 434,782.61 15.15
Cost per hectare $39,686.00 $197,766.90 $2,693.74
Cost per Liter of oil $91.04(FLUOR)$96.89(LED) $160.53 $64,783.05
Cost per kg of biomass $37.64(FLUOR)$40.49(LED) $67.07 $26,221.60
Nutrient cost per day $1,057.00 $4,562.25 $25,618.00
Nutrient cost per kg biomass $3.86 $16.65 $93.51
Harvesting cost per day $65.70 $658.28 $1,872.57
Harvesting % of total costs/day 1% 3.58% 0.03%
Biodiesel barrels per day 0.95 0.96 0.93
Biodiesel barrels/acre per year 20,397.06 1,523.48 0.05
Biodiesel profit per day $130.51 $131.23 $127.08
Animal feed profit per day $40.31 $41.15 $39.70
CO2 credit profit per day $11.94 $11.94 $11.94
EPA profit per day $8,442.55 $8,514.45 $8,227.70
Net profit per day -$1687.6(FLUOR)-$2466(LED) -$9,677.73 -$7,175,593.58
Net profit per day w/WWTP $7618(FLUOR)$6840(LED) $42,460.23 -$5,977,974.08
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0.33 g/L for open ponds.   Lipid content is an optimistic average of 46% of algal biomass 

for all three growth scenarios.  The nutrient cost for salt, pH buffer and antibiotics are per 

Liter of culture, which explains the rise in costs for solar illuminated PBR’s and open 

pond growth scenarios.  The harvesting scenario is the same for all three growth 

scenarios and includes the Evodos centrifuge, filter press, supercritical CO2, and a rural 

location.  Harvesting costs increase as the culture density decreases and volume of media 

increases. 

Wastewater Treatment 

The profit from wastewater treatment increases as the volume of water increases 

from artificially illuminated to solar illuminated PBR’s since the nitrogen and phosphorus 

removal is accomplished by a minimum culture density of 0.53 g/L. Nonetheless, 

integration with water treatment facilities shows the most potential of any of the available 

co-products. 

Municipal Wastewater Nutrients/Algal Biomass Supported 
N mg/L mg bm P mg/L mg bm C mg/L mg bm 

26.4 377.1 5.3 530 159.3 312.4 
 

Table 11: Algal biomass supported by municipal wastewater nutrients (mg of 
biomass). 
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Figure 55: Algal biomass supported by municipal wastewater nutrients. 
 

All bioavailable nitrogen and phosphorus would be removed in a PBR scenario, 

both solar and artificially illuminated, while it is likely at least 10 mg/L nitrogen and 160 

mg/L phosphorus would be remaining in an open pond scenario due to lower culture 

density (at assumed density of 0.33 g/L).  Photobioreactors are also advantageous over 

open ponds for wastewater treatment since water would not be lost to evaporation, and 

more control of the effluent is enabled.  However, the time required for the algal culture 

to achieve the same treatment efficiencies of the traditional activated sludge process is 3 - 

4 days compared to 4 - 6 hours for the traditional process (Wang, et al., 2010).  It is 

important to bear in mind that additional BNR (biological nutrient removal) may be 

necessary if nutrients are in excess of what is used by the algae.  Effluent from the algal 

culture will require treatment, but incorporating microalgal growth may remove the need 

for additional BNR.   
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Methane 

Methane yield in Joules as a function of dry weight biomass yield without 

considering conversion to electricity using microturbines is shown in Figure (56). 

 

Figure 56: Biogas yield as a function of biomass yield. 
 

Approximately 39,000 – 45,000 Joules of biogas can be produced from each gram 

of dry weight biomass after lipids are removed.  When the dry weight biomass yield is 10 

– 15 kg per day, the profit from biogas is approximately $13 - $19 per day when 

considering no loss in converting Joules to Watts.  However, when adding the conversion 

to electricity the results are somewhat disappointing.  The cost of financing the micro-

turbines (approximately $30,000/day for a 100,000 kg/year facility) is greater than the 

profit from the electricity produced (nearly $100/day for a 100,000 kg/year facility). 
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 Biodiesel 

Tables (12) and (13) show there is wide disparity in fuel yields per acre depending 

on the study and growth scenario chosen, which is why areal productivity results can be 

misleading.  The results for gallons per acre per year differ widely with Chisti (2007) 

claiming yields of 1000 - 6500 gallons per acre per year and Vasudevan et al. (2012) 

claiming 950 - 8100 gallons per acre per year.  ANL;NREL;PNNL (2012) adjusted the 

expected gallons per acre per year to between 1000 and 1500. 

 

Table 12: Gallons of fuel/acre/year from model and various algal studies. 
 

 

(DOE National Algal Biofuels Technology Roadmap, 2010)  

Table 13: Biofuel gallons of fuel/acre/year for various crops. 
 

Model results reveal profit from biodiesel to be only $0.40 - $0.50/kg of dry 

weight biomass yield at the current rate of $120 - $150 per barrel of oil.  The algal 

facility cannot compete with the price for petro-diesel, even at maximum productivity.  

Model (ALR) Model (Solar PBR) Model (Pond) Richardson, et al (2010) Lux Research (2012) Putt (2007)
1080765 421.45 0.0365 834390-1663305 17549 1.78

Production gallons of fuel/acre/year
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The most optimistic cost of producing biodiesel from microalgae is $10,313 per barrel 

($245.55 gallon-1). 

 

 

Figure 57: Biodiesel profit per day as a function of dry biomass yield per day. 
 

The cost of transesterification is approximately $25 per barrel of oil, so it 

represents 16 - 25% of biodiesel profit, but it contributes at most 0.2% to the algal facility 

overall costs. 

Human supplements 

The co-products which show the most potential of enabling a profitable biofuel 

production from algal growth facility are wastewater treatment and human supplements 
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(EPA, Carotenoids, beta-carotene and astaxanthin).  However, as shown in Table (14), 

the worldwide market for human supplements is quickly saturated with minimal biodiesel 

production.  Even when meeting all the market demand for human supplements, the 

biodiesel yield remains a small percentage (at best 0.05%) of what is consumed in the 

U.S. every day.  

 

Table 14: Worldwide market for human supplements vs. algae biodiesel yield 
and acres required. (Worldwide Market for Human Supplements Source: 

BCC Research, Inc, 2012). 
 

Carbon Credits 

Carbon credits only contribute approximately $12 per day in profits for a 100,000 

kg dry biomass per year facility.  Even at $50 per ton predicted by 2030, the profits 

remain minimal at approximately $30 per day. 

Animal Feed 

Animal feed profit is minimal at approximately $40 per day for a 100,000 kg dry 

biomass/year facility, but offers more potential than methane with no required conversion 

or processing.  No transportation costs are included in the model and the market could be 

quickly saturated, so this value may be more optimistic than is warranted. 

Supplement Worldwide Market/year % of total market* Biodiesel yield ** Acres(pond)*** Acres(PBR)***
EPA/DHA omega 3 $34,700,000,000.00 0.01 10000 3.033 billion 135.80
Beta-carotene $285,000,000.00 .016-6.5 15.38-6250 4.6  - 188 million .2-84.87
Astaxanthin $255,000,000.00 3 33.3 10 million 0.45
*~100,000 kg/year algal facility
**barrels/day at supplement market saturation, 18.96 million barrels consumed in US per day
***US total land area is 2.3 billion acres
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Life-Cycle Costs 

Life-cycle costs are the total cost to the organization for the ownership and 

acquisition of the product over its full life.  They include the cost of research and 

development, production, operation, support, and in some cases, disposal.  The analysis 

contained in this paper is a steady-state estimate, assumes all research and development is 

complete at the time of production, and does not include all overhead costs such as 

executive salaries or holiday/vacation pay.  Fabrication and assembly cost is calculated 

by acre, has few spare parts, assumes no training is required for the employees, and does 

not calculate disposal costs for used materials.  As such, the costs for a real world 

scenario would likely be higher than what is computed here by as much as 15%.   

Carbon Emissions & Energy Balance 

Even if algal growth utilizes waste streams and under-utilized resources, it still 

presents an environmental profile far inferior to fossil fuels.  Operating costs for the 

growth scenarios are calculated as 140.525 kilograms of CO2 produced per year for every 

kWh operating cost.  No carbon emissions resulting from materials have been included 

except for nutrients.  Carbon emission results from the model reveal algal growth 

facilities produce at least thirteen times more carbon emissions than petro-diesel per MJ 

even when energy contributions from methane and carbon consumption from flue gas are 

included.  Table (15) is presented as a conventional harvesting scenario using filter, oven 

and supercritical CO2 as a solvent.  PBR column applies to artificially and solar 

illuminated photobioreactors.  Carbon emissions per year resulting from using the 
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lighting is less than one gram for LED lighting and some 60,000 grams for fluorescent 

lighting.   

The energy put into the process is at least ten times more than the energy 

harvested from biodiesel and methane combined (MJin/MJout).  Also, the open pond 

growth scenario produces nearly two times more carbon emissions than photobioreactors.  

The cost per ton of CO2 captured far exceeds the DOE’s goal of carbon sequestration 

costs below $10 per ton, or even the current costs for carbon sequestration of $35 to $264 

per ton of CO2. 

   

Table 15: Overall carbon emission results compared to petro-diesel. 
  

Additionally, the energy contained in methane must be converted to electricity or 

burned directly to fuel the algal or neighboring power plant, and micro-turbines have an 

VARIABLE PBR POND
MJ in/Mj out 1.09E+01 5.49E+01
g of co2 produced by algal facility 6.78E+09 1.19E+10
g of co2 consumed/year from power plant 2.40E+08 2.09E+08
tons of co2 consumed/year from power plant 2.64E+02 2.30E+02
cost/ton of co2 "captured" 1.43E+04 1.54E+08
Total CO2 Emissions in grams 6.54E+09 1.17E+10
Barrels Biodiesel produced/year 3.43E+02 3.40E+02
MJ biodiesel produced/year 1.55E+06 1.51E+06
g of CO2/MJ biodiesel 4.22E+03 7.76E+03
MJ methane produced/year 4.25E+06 4.25E+06
g of CO2/MJ methane 1.54E+03 2.76E+03
g of CO2/MJ biodiesel + methane 1.13E+03 2.03E+03
g of CO2/MJ petro-diesel 8.60E+01

Carbon emissions & energy balance at a ~100,000 kg biomass/year facility



 
 
 
 
 

207 
 

efficiency of only 27%, which will affect the MJout value from the methane not included 

in the calculation in Table (15).   

The carbon capture cost of around $14,258.00 per ton for a PBR growth scenario 

and $154,222,422.79 per ton for an open pond growth scenario far exceeds that predicted 

by Alabi, et al. (2009), of $793 per ton.  Additionally, the capture process is incomplete 

since when the fuel is used the same carbon will be released into the atmosphere.   Table 

(16) contains more detail on contributing processes to the carbon emission operating cost 

total contained in Table (15), as well as the carbon emission operating costs for the 

centrifuge, organic solvents and lysis. 

 

Table 16: Comparison of operating carbon emissions involved in algal 
growth processes. 

 

Sensitivity Analysis 

Each of the input variables shown in Tables (17) and (18) was manipulated to 

verify changes resulting from selection of initial and final values resulting from the delta 

VARIABLE PBR POND
Organic solvents 2.85E+08 2.89E+08
Supercritical CO2 6.00E+07 6.08E+07
Lysis power 1.92E+07 2.45E+09
Nutrients 2.30E+08 1.16E+09
Transesterification 3.37E+06 3.51E+06
Lighting power (FLUOR) 6.46E+04 N/A
Gas pump power 6.43E+09 1.53E+08
Water/Media pump power 2.80E+03 6.65E+09
Oven power 1.10E+08 1.10E+08
Centrifuge power 4.00E+05 3.89E+07
Paddlewheel power N/A 3.80E+09

g of CO2 produced per year at a ~100,000 kg biomass/year 
facility
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between Xi and Xi-1.   However, there are input variables which have only two choices, so 

the values for X were either 0 or 1 with the exception of diffusion or sparging which is 

either 1 or 2 (reasons for this are detailed in Lighting/Absorption Efficiency section).  

These input variables include choice in lighting and gas delivery for PBR/ALR growth 

scenarios; and whether wastewater treatment is included or not, and the harvesting 

options of filter press, centrifuge, lysis, organic solvents or supercritical CO2, and 

conveyor oven for all growth scenarios.  Those variables use the value 0 for not 

incorporating the variable in the run and 1 for adding the variable into the run (or 1 for 

sparging and 2 for diffusion).  When the results were as expected and either a yes or no, 

the test runs were limited to one or two.   

Results for the remaining input variables were compared over several runs with 

different selections for a single variable, especially when sensitivity was found to be > 

0.10 or the results seemed surprising.  Results in Tables (17) and (18) show one sample 

of values used for Xi and Xi-1, but the resulting sensitivity was equivalent for any of the 

input values.   Sensitivity values did not show any results tied to selection location or the 

selection of input variable value.  Using the average, maximum or minimum net profit for 

Y also showed no impact on the resulting sensitivity, as long as the same selection of 

average, maximum or minimum was used for both Yi and Yi-1.  The variable row 

represents the X values, and the net profit row represents the Y values. 

 Sensitivity results indicate the economic viability of an algal growth scenario is 

most strongly tied to the parameters shown in Figure (51), where only factors with S ≥ 

+/- 0.10 in one or both growth scenarios are included (input variables for which S < +/- 
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0.10 include gas bubble diameter, gas velocity, filter press, traditional or Evodos 

centrifuge, lysis, conveyor oven, gas delivery through diffusion or sparging, flow velocity 

in pipes, and pipe diameter).  One variable had sensitivity value of zero for both growth 

scenarios, which was the gas bubble diameter.  This is expected since it does not have an 

influence on sparger costs, nor increase the growth rate in the model. 
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Table 17: PBR/ALR sensitivity analysis results. 

 

PBR/ALR Runs Xi and Yi Xi-1 and Yi-1 Normalization S (PBR)

culture density 5 35 60 0.416666667
net profit 10250 6214.8 -0.649288794
number of pbrs/ponds 4 70 71 0.014084507
net profit 8077.9 8195.8 0.014385417
lipid content 2 0.46 0.24 -0.916666667
net profit 8195.8 4862.8 -0.685407584
volume of pbr/pond 3 785 800 0.01875
net profit 4862.8 4959.2 0.019438619
bubble diameter 2 0.005 0.006 0.166666667
net profit 4960.7 4960.7 0
run duration (days) 10 1 10 0.9
net profit 1020300 1204600 0.152996845
gas velocity 3 0.01 1.01 0.99009901
net profit 2026.3 2056.3 0.014589311
pipe diameter 3 0.1 0.5 0.8
net profit 1020300 976670 -0.044672202
filter press 1 0 1 1
net profit 3957.87 3958.2 8.33712E-05
evodos (0) or traditional (1) centrifuge 2 0 1 1
net profit 1020300 9.71E+05 -0.050285655
lysis 1 0 1 1
net profit 3911.04 3958.2 0.011914507
organic solvents (0) or sc co2 (1) 2 0 1 1
net profit -25111.8 3958.2 7.344247385
conveyor oven 1 0 1 1
net profit 3852.97 3958.2 0.026585317
fluorescent lighting (0) or LED (1) 2 0 1 1
net profit 1135.2 775.14 -0.464509637
Integration with wastewater 3 0 1 1
net profit 4638.8 5509.8 0.158081963
sparging (1) or diffusion (2) 2 1 2 0.5
net profit 3958.2 4125.3 0.040506145
cost of land (rural or urban) 2 2300 103000 0.977669903
net profit 4960.7 4959.2 -0.000302468

0.026585

-0.46451

0.158082

0.081012

-0.00031

0.014735

-0.05584

8.34E-05

-0.05029

0.011915

7.344247

-1.55829

1.021365

0.747717

1.036726

0

0.169996
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Table 18: Open Pond sensitivity analysis results. 

 

Open Pond Runs Xi and Yi Xi-1 and Yi-1 Normalization S (pond)

culture density (w/o link to surface area) 5 3.00E-01 4.00E-01 0.25
net profit -5001400 -4995500 -0.001181063
culture density (with link to surface area) 2 0.3398 1.133 0.700088261
net profit -1.40E+11 -1.43E+11 -2.44E-02
number of pbrs/ponds 2 13 14 0.071428571
net profit -99056 -106510 -0.069984039
lipid content 2 0.46 0.24 -0.916666667
net profit -106510 -777350 -0.862983212
volume of pbr/pond 3 700000 710000 0.014084507
net profit -106510 -108000 -0.013796296
bubble diameter 1 0.005 0.006 0.166666667
net profit -1.40E+11 -1.40E+11 0
run duration (days) 7 1 10 0.9
net profit -1.40E+11 -1.40E+11 -0.000214577
gas velocity 2 0.1 2 0.95
net profit -142250 -136150 -0.044803526
pipe diameter 2 0.1 0.5 0.8
net profit -1.40E+11 -1.41E+11 0.006535948
pond depth (w/o link to surface area) 4 35 25 -0.4
net profit -108000 -90120 -0.19840213
pond depth (with link to surface area) 2 34.59 33.64 -0.02824019
net profit -1.40E+11 -1.43E+11 0.024419173
flow velocity 10 0.1 1 0.9
net profit -395034 -623403540 -0.999366327
filter press 1 0 1 1
net profit -1.40E+11 -1.40E+11 7.15154E-05
evodos (0) or traditional (1) centrifuge 2 0 1 1
net profit -1.40E+11 -1.40E+11 7.15103E-05
conveyor oven 1 0 1 1
net profit -1.40E+11 -1.40E+11 7.15154E-05
organic solvents (0) or sc co2 (1) 5 0 1 1
net profit -136150 163180 1.8343547
lysis 1 0 1 1
net profit -136247 -136150.3 -0.000710244
Integration with wastewater 4 0 1 1
net profit -2721500 3468498 1.784633579
cost of land (rural or urban) 3 2300 103000 0.977669903
net profit -108000 -256250 0.578536585

-0.00071

1.784634

0.59175

-0.00024

-0.04716

0.00817

0.496005

-1.11041

7.15E-05

-0.8647

7.15E-05

7.15E-05

1.834355

-0.00472

-0.97978

0.941436

-0.97954

0

-0.03488
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 The results for run duration were difficult to interpret due to the fact that the run 

duration did increase net profits as the duration increased up to ten days, but any further 

increase after ten days had no influence on the net profit.  The sensitivity of run duration 

for PBR/ALR growth scenarios is > 0.10 (0.17), so run duration is analyzed for impact in 

the PBR/ALR optimization.  The resulting sensitivity for the first ten days is < 0.10 (and 

zero over ten days) for the open pond growth scenario, but it was still considered in the 

optimization.  The open pond depth which was calculated prior to connecting the pond 

depth to the resulting surface area was only related to the light path length and the 

resulting culture density.  The results indicate the shallower depth of 25 cm yields less 

loss than a depth of 35 cm since greater culture density results in higher profits.  

However, after connecting the culture density, light path length, pond depth, and surface 

area so that a change in one affects all the others, thus, reflecting reality, results show the 

greater depth results in higher profits because the cost of the land is a bigger factor than 

any profit derived from the algae itself.  Also, it is interesting to note that after connecting 

the culture density and pond depth, the results from the same run indicate the sensitivity 

for pond depth is higher than for culture density (0.86 > 0.03), since the culture density 

must increase more for a corresponding increase in pond depth. 

 There are not any harvesting options which have a significant sensitivity except 

for using supercritical CO2 as a solvent as opposed to traditional organic solvents, 

especially for PBR/ALR growth scenario since the harvesting options represent a higher 

percentage of overall costs in this growth scenario.  Integration with wastewater has a 

higher sensitivity in an open pond growth scenario because a higher volume of water may 
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be treated resulting in higher profits than for a PBR/ALR growth scenario.  (This fact is 

ignoring the open pond culture density will likely not accomplish complete BNR.)   The 

PBR/ALR culture density shows a loss in average net profit when increased from 35 g/L 

to 60 g/L, which concurs with the optimization results.  The pipe diameter shows a higher 

net loss as it increases because of the increasing cost of the pipe material in both growth 

scenarios. 

 It’s also interesting to note the results for increasing the number of PBR’s/ponds 

and increasing the corresponding volume of each has opposite effects on each growth 

scenario.  Increasing facility size increases net profits for the PBR/ALR growth scenario 

while it decreases net profits for the open pond growth scenario.  Also, in both growth 

scenarios the net profits are slightly improved by increasing the PBR/pond size rather 

than increasing the number of PBR’s/ponds (only in relation to each other). 

 

Figure 58: Sensitivity Analysis results summary for variables with sensitivity 
> +/- 0.10. 
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Integration with wastewater treatment, land cost, lighting choices for 

photobioreactors, and organic solvents or supercritical CO2 used in harvesting operation 

all affect the outcome significantly but since they are on/off, it is not necessary to use an 

optimization tool to determine which choice is more cost effective.  For example, it is 

more cost effective to integrate wastewater treatment, locate the facility in a rural area, 

choose fluorescent lighting for artificially illuminated ALR’s, and use supercritical CO2 

as a solvent rather than organic solvents. The results of the optimization are analyzed for 

affects from including or not including wastewater treatment and choice in lighting.  All 

optimization scenarios assume a rural location and supercritical CO2 as a solvent rather 

than organic solvents. 

Lipid content, pond/PBR quantity and volume, culture density for a PBR growth 

scenario, and PBR volume/pond depth are the variables which affect the profit margin to 

a significant extent and which may be optimized.  Lipid content for all growth scenarios 

is optimized through choosing the algal species with the highest lipid content (Nanno. s. 

at 46%).  Botryococcus braunii has the potential for the highest lipid content in the 

literature (see Table 2) at 75%.  Comparisons are run in the optimization with 75% lipid 

content in an effort to improve the net profits.   

Flow velocity is optimized by the model by maintaining flow conditions within 

results detailed in the results/small scale turbulence section for the artificially illuminated 

ALR growth scenario.  The flow velocity for open ponds is set at 0.03 m/s since this is 

the maximum attainable velocity considering head loss as detailed in the results/large 

scale turbulence section. 
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Thus, the culture density as it relates to PBR geometry and pond depth (which are 

both related to culture density), and facility size and run duration when including 

financial analysis are the only variables necessary to optimize for a photobioreactor 

growth scenario.   Since pond depth is dependent on light path length which is dependent 

on culture density, the only variable to optimize is inoculum density resulting in culture 

density for the open pond growth scenario.  Similarly, since PBR volume is a function of 

light path length which is dependent on culture density, the optimal culture density will 

also result in the optimal PBR volume/geometry. 

Optimization 

This analysis met the requirements for a Class 4 Feasibility or Pre-Design 

Estimate, which means the cost accuracy goal is a range from -30% to +50%.  Therefore, 

results could be 30% improved or 50% worse than predicted by the average net profit.  

Also, specific values for net profit in the text are averages of the results, where the figures 

demonstrate there is a larger potential for higher losses/lower profits than vice versa. 

All of the optimizations include rural land cost and supercritical CO2, oven, and 

filter press for harvesting options; as well as multiple end products including methane, 

biodiesel, human supplements such as EPA, and carbon credits.  The effects of including 

wastewater treatment and different lighting choices for photobioreactors are included in 

the results.  The tolerance on constraints for all scenarios is 1e-12, and the tolerance on 

convergence is 1e-14.  Table (19) is a sample of optimization runs selected to 

demonstrate the range of values used and where the optimization found local or global 

minimum net costs or was constrained.  The ‘Final Cost’ is the objective function, where 
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a negative value indicates a net profit.  All three optimization methods were used with 

similar results. 

 The global minimum for open ponds is around an inoculum density of 5,000 

cells/mL, which is a culture density of 5.7e-4 g/L for algae species Nanno. s. As the algal 

species is modified, the matching global minimum exists at the inoculum density which 

results in the equivalent culture density.  (Results for Tetraselmis are around 12 cells/mL 

or 6.5e-4 g/L.).  The PBR and ALR growth scenarios have a global net cost minimum at 

the maximum culture density allowed by the model, but the artificially illuminated 

ALR’s also show a local minimum detailed in the sections to follow.   
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Growth Scen. Global/Local Run No. Variable X0 initial X0 final InitialCost FinalCost Minimum Maximum
L_total 7500 7500 7500 7500
inoculum_density 20000 6.50E+08 2000 6.50E+08
lipid_content 0.75 0.75 0.75 0.75
L_total 7500 7500 7500 7500
inoculum_density 20000 4.29E+08 2000 4.30E+08
lipid_content 0.75 0.75 0.75 0.75
L_total 7500 1.00E+06 1 1.00E+06
inoculum_density 5.00E+08 5.00E+08 2000 5.00E+08
lipid_content 0.75 0.75 0.75 0.75
L_total 7500 7.50E+03 7500 7.50E+03
inoculum_density 5.00E+08 5.00E+08 5.00E+08 5.00E+08
lipid_content 0.1 0.75 0.1 0.75
L_total 7500 7500 7500 7500
inoculum_density 2000 4.20E+08 2000 4.20E+08
lipid_content 0.75 0.75 0.75 0.75
L_total 7500 10000 1 10000
inoculum_density 2000 4.20E+08 2000 4.20E+08
lipid_content 0.75 0.75 0.75 0.75
L_total 7500 10000 1 10000
inoculum_density 2000 8.50E+10 2000 Inf
lipid_content 0.75 0.75 0.75 0.75
L_total 7500 7.50E+03 7500 7.50E+03
inoculum_density 2.00E+04 4.29E+08 2.00E+04 4.30E+08
lipid_content 0.75 0.75 0.75 0.75
L_total 200 7.50E+05 200 7.50E+05
inoculum_density 2000000 4.30E+08 2.00E+04 4.30E+08
lipid_content 0.1 7.50E-01 0.1 0.75
L_total 200 7.50E+05 200 7.50E+05
inoculum_density 2000000 8.48E+10 2.00E+04 Inf
lipid_content 0.1 7.50E-01 0.1 0.75
L_total 200 7.50E+05 200 7.50E+05
inoculum_density 2000000 5.00E+08 2.00E+04 5.00E+08
lipid_content 0.1 7.50E-01 0.1 0.75
L_total 200 7.50E+05 200 7.50E+05
inoculum_density 2000000 4.29E+08 2.00E+04 4.30E+08
lipid_content 0.1 7.50E-01 0.1 0.75
L_total 200 7.50E+05 200 7.50E+05
inoculum_density 2000000 8.48E+10 2.00E+04 Inf
lipid_content 0.1 7.50E-01 0.1 0.75

L_total 200 7.50E+05 200 7.50E+05
inoculum_density 5.00E+06 4.00E+08 2.00E+04 4.00E+08
lipid_content 0.75 7.50E-01 0.75 0.75
L_total 200 7.50E+05 200 7.50E+05
inoculum_density 5.00E+06 6.00E+08 2.00E+04 6.00E+08
lipid_content 0.75 7.50E-01 0.75 0.75
L_total 200 7.50E+06 200 7.50E+06
inoculum_density 5.00E+07 6.00E+08 2.00E+04 6.00E+08
lipid_content 0.75 7.50E-01 0.75 0.75

-150790

3constraint max 176.87 -1497900

2 179.62

Fluorescent 
ALR - w/ 

wastewater

constraint max 

constraint max 1 176.85 -68826

local 2 177.85 -67748

global 3 178.85 -1.49E+07

LED-w/o 
wastewater

LED ALR-w/ 
wastewater

-92341

solar lit PBR-
w/o 

wastewater

constraint max 1 179.96

global 3 180.02 -1.49E+07

2constraint max 180.02 -55859

-393.53203.91local

85.056 -496.876

Fluorescent 
ALR - w/o 

wastewater

1

2 85.056 -722.452

3 85.056 -1.62E+07

4

constraint max 

constraint max 

global

2local 203.9 -469.64

constraint max 1 203.9 -679.14

3 203.9constraint max -88467

constraint max 883.36 -488.58
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Table 19: Summary of optimization parameters and results for all growth 
scenarios included in this study. 

 
Open Pond  

Surprisingly, the optimal culture density is not a significant profit factor for an 

open pond growth scenario due to the growth rate/pond depth/cost relationships.  Despite 

lower growth rate and productivity with increasing depth, the solution goes to the greatest 

depth and nearly the lowest density possible in order to minimize the surface area.  Even 

when the costs of land and water evaporation are not included, the other costs dominate 

the optimization so that the growth scenario optimizes to the minimal size farm, 

regardless of loss in algal growth and productivity.  The dominate parameter is the size of 

the farm, with the optimization leading to the smallest farm possible.  The inoculum 

density goes nearly to the minimum to allow the greatest depth and smallest land area for 

the set quantity of Liters.  The minimum loss is seen at a culture density around 5e-4 to 

Growth Scen. Global/Local Run No. Variable X0 initial X0 final InitialCost FinalCost Minimum Maximum
L_total 200 7.50E+06 200 7.50E+06
inoculum_density 5.00E+07 6.00E+08 2.00E+04 6.00E+08
lipid_content 0.75 7.50E-01 0.75 0.75
L_total 200 7.50E+06 200 7.50E+06
inoculum_density 5.00E+06 6.00E+07 2.00E+04 6.00E+07
lipid_content 0.75 7.50E-01 0.75 0.75
L_total 200 7.50E+06 200 7.50E+06
inoculum_density 5.00E+06 6.00E+07 2.00E+04 6.00E+07
lipid_content 0.1 7.50E-01 0.1 0.75
inoculum_density 1 5307 1500 Inf
lipid_content 0.46 0.75 0.46 0.75
inoculum_density 5000 5074.4 1500 Inf
lipid_content 0.1 0.75 0.1 0.75
inoculum_density 10000 5103.5 1500 Inf
lipid_content 0.1 0.75 0.1 0.75
inoculum_density 1.50E+07 1.50E+03 1500 Inf
lipid_content 0.75 7.50E-01 0.46 0.75

inoculum_density 1 5375.2 1500 Inf
lipid_content 0.75 0.75 0.46 0.75
inoculum_density 1 5000 1500 Inf
lipid_content 0.46 0.75 0.46 0.75

1.38E+11 1.36E+11

1.38E+11 1.36E+11

1.36E+11 1.36E+11

1.36E+11 1.36E+11

1.38E+11 1.36E+11

global

global

constraint min

global

global

2

3

1

2

3

-230290

solar lit PBR-
w/ 

wastewater

global 1

2.44E+11 1.39E+11

Open Pond-
w/o 

wastewater

Open Pond-
w/ 

wastewater

-230290

-1616700

2constraint max 176.45

constraint max 3 177.81

1constraint max 176.7
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6e-4 g/L for the light path length determined by Equation (5), even when including 

wastewater treatment.   

 

Figure 59: Final Cost as a function of run iterations for open pond 
optimization. 

 
Even with an optimal depth for productivity of 19.31 cm (the minimum), a culture 

density of 16.99 g/L (0.33 g/L is expected), and a lipid content of 75%, the model still 

shows an average net loss of $491,820.00 per day in a rural open pond growth scenario 

with one pond of 20,000 Liters and filter press, oven, and supercritical CO2 as solvent 

harvesting options.   

The losses begin to increase at the expected density of 0.3398 g/L if calculation of 

light path length is modified to Equation (63).  At this density and light path length 
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calculation, losses remain at $1e8 per day or $4e7 per day if paddlewheel, pump and 

evaporating water cost are not included.  Open pond growth scenario shows a net profit 

only if Equation (63) is used for light path length, financing for harvest and land capital, 

pump power, paddlewheel power, evaporated water cost, and employee cost are not 

included.  The net profit is seen beginning at a culture density of 226 g/L and depth of 

35.88 cm, maximizing at 2265 g/L at a depth of 4.671 cm.  However, this high culture 

density is impractical and unrealistic for open ponds due to temperature, nutrient, light 

path length, and gas exchange restraints. 

𝑃𝐿 = 45.0𝑒(−0.001𝑑)              Eq. (63) 

 

Figure 60: Open pond net profit as a function of pond size. 
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Figure 61: Open pond net profit as a function of quantity of ponds. 
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Figure 62: Open pond net profit as a function of pond depth. 
 

Net losses increase as the farm size is increased, regardless of whether pond size 

or quantity of ponds is increased.  Wastewater treatment does decrease the net loss but is 

not sufficient to create a profitable scenario, and losses continue to increase as density 

and size increase.  Run duration only increases the cumulative net loss, so increasing the 

run duration is negative as indicated in the sensitivity analysis (see Table 18).  

Solar Illuminated PBR 

Solar illuminated PBR’s will optimize at the highest density and largest facility 

possible, including when wastewater treatment is included.  However, as stated 

previously, around 1 g/L is proven density for this growth scenario, and a density above 
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about 50 g/L is impractical due to temperature, nutrient, light path length, and gas 

exchange restraints.  An average net profit can be seen starting at a culture density of 2.5 

g/L, and diameter of 0.34 m when not incorporating wastewater treatment.  It is important 

to remember the model does not include additional cooling required for solar illuminated 

PBR’s during the heat of the day. 

 

Figure 63: Final Cost as a function of run iterations for solar illuminated 
PBR optimization. 
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Figure 64: Net profit as a function of culture density for solar illuminated 
PBR’s without wastewater treatment and lipid content of 75% (0-60 g/L). 
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Figure 65: Net profit as a function of culture density for solar illuminated 
PBR’s without wastewater treatment and lipid content of 75% (0-12 g/L). 

 



 
 
 
 
 

226 
 

 

Figure 66: Net profit as a function of culture density for solar illuminated 
PBR’s with wastewater treatment and lipid content of 46% (0-60 g/L). 
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Figure 67: Cooling water temperature as a function of culture density for 
solar illuminated PBR’s (0-12 g/L). 

 

Fluorescent Illuminated ALR 

In a fluorescent illuminated ALR without including wastewater treatment, a local 

minimum in net cost is found to exist at 47 - 48 g/L, which results in an ALR total 

diameter of 1.57 m and a maximum length of 2.7 m.  However, after showing a decrease 

in average net profit, the net profit again begins to increase beyond the initial optimal to 

whatever is set as the maximum constraint.  Thus, the 49 - 75 g/L culture density is a 

density to avoid because the likelihood of incurring a loss is higher.  Other than this break 

in slope, the net profit increases along with the culture density.  As the light path length 
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Equation (7) is adjusted, the optimal culture density changes accordingly with the 

geometry, but the light path length does not significantly impact net profit or cost.  At 

optimal density near 47 g/L the fluorescent ALR growth scenario begins to break even at 

a facility size of 10,000 L, shows an average net profit of $249.60/day without 

wastewater and $497.78/day with wastewater at a facility size of 20,000 L. Incorporating 

wastewater becomes more important as the facility size grows since results with a facility 

size of 1e8 Liters show an average net profit of $853,329.15 per day when incorporating 

wastewater treatment, and -$772,090 per day without incorporating wastewater.  Figure 

(68) shows the solution has located the global minimum at the boundary when inoculum 

density is set at infinity. 
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Figure 68: Final Cost as a function of run iterations for fluorescent 
illuminated ALR optimization with maximum culture density constraint set at 

infinity. 
 

 

Figure 69: Net profit vs. culture density for an ALR fluorescent illuminated 
growth scenario without wastewater treatment and lipid content of 75% (20,000 L 

facility). 
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Figure 70: Net profit vs. culture density for an ALR fluorescent lighting 

growth scenario with wastewater treatment and lipid content of 46% (20,000 L 
facility). 

 
Comparison between Figures (69) and (70) reveals that including wastewater 

treatment mitigates the risks of large losses which are more possible without the 

additional cost benefits of including wastewater treatment. 
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Figure 71: ALR diameter and length as a function of culture density. 
 

Figure (71) reveals where optimal density is found in relation to ALR total 

diameter based on light path length, and ALR length based on oxygen saturation.  The 

diameter goes to zero as the culture density increases, which causes the length to go to 

infinity.  At optimal density, however, the diameter and length are practical at 1.57 m and 

2.7 m, respectively.   

LED Illuminated ALR 

ALR’s with LED lighting do show a net profit, and although not quite as 

profitable as the fluorescent illuminated ALR, the optimization leads to the maximum 

size facility.  The capital cost of the LED lighting is only $0.13 more than that for 

fluorescent lighting, so the price need not reduce much in order to yield a more profitable 
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scenario.  Similar to fluorescent illuminated ALR’s, this growth scenario has a local net 

cost minimum at 48.6 g/L with the same geometry as the fluorescent illuminated ALR.  

The fact that both scenarios have local optimums in the same location confirms the 

results and verifies the optimal density is a result of the system interdependencies instead 

of the exact cost/profit ratio.   

The corresponding scenario with a 20,000 L facility at the local optimal density of 

approximately 48 g/L with LED lighting shows an average net loss of $20.65 per day 

without wastewater, and a net profit of $311.98 per day with wastewater. If capital cost 

per Watt is adjusted to match fluorescent at $0.35/Watt per year, the scenario starts 

showing a maximum net profit at a culture density of 22.65 g/L without including 

wastewater.  Similar to a fluorescent illuminated ALR the importance of incorporating 

wastewater treatment to show a net profit increases as the facility grows in size. 
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Figure 72: Optimization results for artificially illuminated ALR optimization 
with maximum culture density constraint set at infinity. 
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Figure 73: Net profit vs. culture density for an ALR LED lighting growth 
scenario without wastewater treatment and lipid content of 75% (20,000 L facility). 
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Figure 74: Net profit as a function of culture density showing ultra-high 
densities in an artificially illuminated ALR growth scenario. 

  

Figure (74) shows the local minimum is not visible in the slope when considering 

a larger range of culture densities.  Simultaneously, the risk increases as the range of 

potential profits cover a wider range with increasing culture density.  Even if the risk of 

loss could be reduced, the high algal density in Figure (74) is impractical due to 

temperature increase and reduced light path length, which are evident in model results 

(see figures below). 
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Figure 75: Light path length as a function of culture density at high densities. 
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Figure 76: Culture temperature as a function of culture density at high 
densities. 

 
 

Funding/Investment 

When determining the NPV (net present value) and IRR (internal rate of return) 

of an algal growth scenario, both the duration of operation and the size of the facility 

affect results.  The size of the facility affects investment viability because of the size of 

initial investment required.  All growth scenarios are examined with a time period of 15 

years operation and beginning at a relatively small size of 7,500 L since as the initial 

investment decreases the NPV improves. While NPV decreases as the facility size, and 

therefore, the initial investment increases, the IRR becomes a maximum at optimal 



 
 
 
 
 

238 
 

density at various sizes depending on the growth scenario.  Decreasing the market rate to 

0.0008 does decrease the gap between minimum and maximum NPV, but it remains 

negative and improves only for the worst case scenario. 

Since LED illuminated ALR’s at the determined capital cost of $0.48 per Watt per 

year shows negative NPV and IRR, the capital cost is manipulated to compare results and 

determine if a positive NPV can be achieved.  (At $0.35 per Watt per year the LED 

illuminated ALR is equivalent to fluorescent illuminated ALR in costs.)  A positive NPV 

is not achieved for LED lighting even at $0.10 per Watt per year, but the IRR does 

improve to a small extent.  The only growth scenario to show a positive IRR is the solar 

illuminated PBR when wastewater treatment is incorporated and lipid content is 75%.  

NPV is positive in the solar illuminated PBR growth scenario starting at a culture density 

of around 95 g/L, 75% lipid content, and incorporating wastewater treatment.  However, 

even then the IRR remains below the assumed market rate of 8% at 5.2%.  Surprisingly, 

the open pond growth scenario financial attractiveness does not improve when 

incorporating wastewater treatment due to the large losses. 

 

Growth Scenario Max NPV ($) Size (L) Culture Density(g/L) Annual IRR (%)
Solar lit PBR w/ WW -3.68E+07 3.50E+06 74-83 -4.68%

Solar lit PBR -3.98E+07 3.50E+06 74-83 -5.72%
Fluorescent lit ALR w/ WW -2.45E+08 5.50E+05 45-50 -26.00%

Fluorescent lit ALR -2.46E+08 5.50E+05 45-50 -28.08%
Fluorescent lit ALR -1.45E+10 5.00E+07 21-25 NaN

LED lit ALR ($0.48/W/year) w/ WW -2.90E+08 5.50E+05 45-50 -27.56%
LED lit ALR ($0.48/W/year) -2.97E+08 5.50E+05 45-50 -31.20%

LED lit ALR($0.10/W/year) w/ WW -6.52E+07 5.50E+05 45-50 -19.24%
LED lit ALR($0.10/W/year) -6.60E+07 5.50E+05 45-50 -20.28%

Open Pond (w/ and w/o WW) -1.25E+08 2.00E+04 .32-.36 NaN
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Table 20: Optimization results of various growth scenarios incorporating 
financial analysis (lipid content = 46%). 

 

 

Table 21: Optimization results of various growth scenarios incorporating 
financial analysis (lipid content = 75%). 

 

Growth Scenario Max NPV ($) Size (L) Culture Density(g/L) Annual IRR (%)
Solar lit PBR w/ WW 5.19E+06 3.50E+06 96-107 5.20%
Solar lit PBR w/ WW -1.82E+07 3.50E+06 74-83 0.35%

Solar lit PBR -2.12E+07 3.50E+06 74-83 -0.33%
Fluorescent lit ALR w/ WW -2.43E+08 5.50E+05 45-50 -22.36%

Fluorescent lit ALR -2.44E+08 5.50E+05 45-50 -22.88%
Fluorescent lit ALR -1.44E+10 5.00E+07 21-25 -24.96%

LED lit ALR ($0.48/W/year) w/ WW -2.95E+08 5.50E+05 45-50 -23.40%
LED lit ALR ($0.48/W/year) -2.95E+08 5.50E+05 45-50 -23.40%

LED lit ALR($0.10/W/year) w/ WW -6.34E+07 5.50E+05 45-50 -16.12%
LED lit ALR($0.10/W/year) -6.39E+07 5.50E+05 45-50 -17.16%

Open Pond w/ WW -1.25E+08 2.00E+04 .32-.36 -8.14%
Open Pond -1.25E+08 2.00E+04 .32-.36 NaN
Open Pond -3.87E+10 2.00E+04 148-165 NaN
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Figure 77: NPV for fluorescent illuminated ALR at interest rate of .08% 
(7,500 L). 
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Figure 78: NPV for fluorescent illuminated ALR at interest rate of 50% 
(7,500 L). 

 
Similarly, when the interest rate is raised to 50%, the worst case scenario NPV 

decreases, but the best case scenario NPV remains about the same which makes sense 

since a higher interest rate represents a higher risk. 

As a reminder, since this study represents a one point in time analysis and 

investment decisions are based on many additional factors specific to the situation, the 

conclusions drawn for investment attractiveness based on NPV and IRR should be 

subjected to further evaluation by potential investors. 
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Open Pond 

  Open pond growth scenario in this model will never be an attractive investment 

opportunity even when wastewater treatment is included.  Even when the gas and water 

pump energy, paddlewheel energy, employee cost, and land cost are set at zero, there still 

remains a net loss of some $43,000,000.00 per day for a 100,000 kg biomass/year 

facility.  NPV is -$1.25e8 and IRR is undefined when algal facility is one pond of 20,000 

liters at expected maximum algal density of 0.32 - 0.37 g/L regardless of wastewater 

treatment incorporation or lipid content.  Wastewater treatment improves net loss results 

by approximately $500,000, which is significant on its own, but only makes a small dent 

in the immense loss so that is not evident in the NPV or IRR.  The NPV continues to 

worsen as pond size or culture density increase and the IRR remains negative until it is 

undefined.  When a net profit per day was found through omitting several costs detailed 

in the optimization section and the light path length equation was modified, the NPV and 

IRR remain negative. 
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Figure 79: NPV as a function of culture density for Open Pond growth 
scenario. 

 

Solar Illuminated PBR 

 At a density of 2.5 g/L (the density at which net profit per day is first seen in the 

optimization) and a facility size of 7,500 L, the NPV is < 0 and payback period is 1,295 

years.  Also, the calculations for solar illuminated PBR’s don’t include an evaporated 

water replacement cost, but this could be a significant factor depending on the growth 

scenario and whether other cooling methods are implemented. 
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Figure 80: Net present value of solar illuminated PBR as a function of 
culture density (7,500 L). 
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Figure 81: Net profit of solar illuminated PBR as a function of culture 
density without wastewater treatment (7,500 L). 

  

 Annual IRR for a 7,500 L facility is positive starting at around a density of 11 

g/L, continues to increase as the density increases beyond practical, and reaches 3.86% at 

a density of 120 g/L when including wastewater treatment and a lipid content of 46%.   
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Figure 82: Weekly IRR of solar illuminated PBR as a function of culture 
density (7,500 L). 
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Figure 83: Weekly IRR of solar illuminated PBR as a function of culture 
density (20,000 L). 

 

A positive NPV and benchmark IRR for solar illuminated PBR’s at a proven 

culture density (~1 g/L) is never attained.   Annual IRR reaches 6.87% at a culture 

density of 107 g/L and facility size of 3.5e6 Liters, and continues to increase along with 

facility size as culture density increases.  NPV is positive starting at around a culture 

density of 95 g/L and a facility size of 3.5e6, with a respectable annual IRR of 5.2%. 
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Figure 84: Net present value of solar illuminated PBR as a function of 
culture density (3,500,000 L). 
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Figure 85: Weekly IRR of solar illuminated PBR as a function of culture 
density (3,500,000 L). 
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Figure 86: Weekly IRR of solar illuminated PBR as a function of facility size 
at culture density of ~95 g/L. 
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Figure 87: NPV of solar illuminated PBR as a function of facility size at 
culture density of ~95 g/L. 

  

Fluorescent Illuminated ALR 

ALR with fluorescent lighting at local optimal density of approximately 48 g/L 

shows a payback period of about 121 years.  Increasing the density doesn’t aid in the 

prognosis since increasing density also increases lighting requirements, reduces geometry 

and, thus, increases costs.  NPV and IRR are never positive in this growth scenario, even 

when including wastewater treatment and increasing lipid content to 75%.   
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Figure 88: NPV of fluorescent illuminated ALR as a function of culture 
density without wastewater (7,500 L facility). 
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Figure 89: Weekly IRR of fluorescent illuminated ALR as a function of 
facility size with wastewater (various densities, 75% lipid content). 
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Figure 90: NPV of fluorescent illuminated ALR as a function of culture 
density with wastewater and 75% lipid content. 
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Figure 91: Weekly IRR of fluorescent illuminated ALR as a function of 
culture density with wastewater, 75% lipid content and facility size from 1.1e5 to 

1.0901e8 Liters. 
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Figure 92: Weekly IRR of fluorescent illuminated ALR as a function of 
culture density, including ultra-high density (7,500 L facility). 
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Figure 93: NPV of fluorescent illuminated ALR as a function of culture 
density, with facility size from 10,000 L to 4e8 L. 
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Figure 94: Weekly IRR of fluorescent illuminated ALR as a function of 
facility size, at culture density of 23-26 g/L and 75% lipid content. 

 
Annual IRR for a fluorescent illuminated ALR growth scenario decreases with 

increasing facility size as well as increasing culture density up to a density of about 65 

g/L where the IRR begins to increase with the culture density but remains negative.  The 

IRR and NPV remain negative even when simulating optimized net profit conditions. 

LED Illuminated ALR 

An ALR with LED lighting exhibits a similar local optimal density as fluorescent 

illuminated ALR’s at 47 - 48 g/L.  This density possesses an NPV of -$3.1432e7, a 

weekly IRR of -23.4%, and payback period of over 100 years for a 7,500 Liter facility.  If 
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lighting capital is reduced to $0.10 per Watt per year, the initial investment is reduced 

sufficiently that the NPV is -$6.34e7 and annual IRR remains negative at -16.12% when 

wastewater is incorporated in a 550,000 Liter facility. An ALR with LED lighting capital 

cost adjusted to $0.35 per Watt per year has an annual IRR and NPV results identical to 

the fluorescent illuminated ALR.  Similar to the fluorescent illuminated ALR, a positive 

NPV and IRR are never found for the LED illuminated ALR growth scenario. 

 

Figure 95: NPV of LED illuminated ALR as a function of culture density 
(7,500 L). 
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Figure 96: Weekly IRR of LED illuminated ALR as a function of culture 
density (7,500 L). 
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Figure 97: Weekly IRR of LED illuminated ALR as a function of culture 
density for facility size 1.1e5 to 1.0901e8 L with wastewater treatment and lipid 

content of 75%. 
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Figure 98: Weekly IRR of LED illuminated ALR as a function of facility size 
with wastewater treatment and lipid content of 75%. 

 

Incorporating wastewater treatment in the LED and fluorescent illuminated ALR 

scenarios result in a slightly improved NPV, but it remains negative.  NPV and IRR 

remained negative in all artificially illuminated ALR growth scenarios. 
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Chapter Four: Discussion 

Comparison between this study and past studies reveals why there is so much 

disparity in the literature and among researchers concerning productivity and yield 

values.  The comparisons with the algal cell size and resulting productivity, between 

different algal growth scenarios, optimal density, and areal vs. volumetric productivity 

are illuminating and offer further insight for areas of needed standards for measuring 

productivity.  Also, cost factors which are not included in other techno-economic studies 

are revealed to greatly influence results, especially operating costs including pumping, 

creating large scale turbulence, and replacing evaporated water in open pond growth 

scenarios.  When these additional costs are included, the cost of harvesting is revealed to 

be a much smaller percentage of total costs than previous studies claim for all algal 

growth scenarios. Future studies do well to define productivity results, species, growth 

rate and lipid content assumed, growth scenario details including interfaces, cost factors 

which were included, and how cost factors which were not included might impact results. 

While detailed systems analysis was lacking in the literature, results indicate the 

commercial production of algae for biofuels has not been realized because it is neither 

economically viable nor sustainable.  The systems analysis performed in this study 

revealed the investment scenario for any algal growth scenario to be at present poor, even 

when various options are optimized, a daily net profit is evident, and costs are minimized.   

Despite a favorable business case due to increasing demand with many potential 
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customers and partners, the technology is lacking for algal produced biodiesel to be 

competitive with petro-diesel.  While financial investment optimizes at a specific facility 

size, scaling up of current processes and technologies do not solve the fundamental issues 

outlined below for any growth scenario.  Previous studies have proposed that advances in 

harvesting technologies are needed for economic viability of biofuel produced from algal 

growth.  However, results show the harvesting costs are a small portion of the total costs 

and the emphasis in technology development should be placed on increasing productivity 

more efficiently.  Inefficiencies with water use and fluid dynamics dominate for open 

ponds; temperature, low culture density, and lighting distribution are the main concern 

for solar illuminated photobioreactors; and lighting capital cost is the main concern for 

artificially illuminated photobioreactors. 

The only options which show the potential from a commercial standpoint to show 

a positive IRR are solar illuminated photobioreactors if the density can be proven 

achievable at around 76 g/L, wastewater treatment is included, efficient thermal 

management is achieved, and for artificially illuminated air lift reactors if the capital cost 

of the lighting is greatly minimized or not included.  The capital expenditure and 

operating expenses of a photobioreactor growth scenario are less than an open pond 

growth scenario from economical and energy perspectives.  Solar illuminated 

photobioreactors show the most potential of any growth scenario without any 

improvements in lighting efficiency.  Where the proven density for solar illuminated 

photobioreactors is around 1 g/L, the model shows a net profit beginning at around 2.5 

g/L, so growth improvements must be made.  Also, the inevitable temperature increase 
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for solar illuminated photobioreactors from solar heat must be compensated for or 

managed, and this calculation was not included in the model.   

LED illuminated air lift reactors show the most potential for sustainable algal 

growth if capital cost of LED lighting capital cost is reduced.  Fluorescent illuminated air 

lift reactors come in a close second, but even if the capital cost is reduced for fluorescent 

lighting, it will remain the less desirable option to LED lighting because of higher 

operating costs and carbon emissions.  Also, there will be some thermal effect of 

fluorescent lighting which was not included in the model.  Additional heat would be of no 

concern for LED lighting since only PAR wavelengths can be chosen with LED lighting.  

The light path length does not have significant impact on the artificially illuminated air 

lift reactors optimal density, but improvements in lighting distribution could reduce the 

amount of lighting required, thereby reducing the lighting capital cost.  The analysis 

involved in determining the required Watts/Liter is unique to this study as part of a 

techno-economic analysis which includes an artificially illuminated ALR growth 

scenario. 

While photobioreactors show a small potential for one day being an attractive 

investment opportunity, especially if partnering with governments or airlines to lower the 

initial investment, it is difficult to say the same for the open pond growth scenario.  The 

open pond growth scenario shows very little potential to be economically or 

environmentally sustainable.  The model used the same growth rate for all growth 

scenarios though it will likely be lower in open pond growth scenarios due to sub-optimal 

fluid dynamics, light and nutrient distribution.  A conservative estimate of only 0.1 - 10% 
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loss from open pond algal density for both nighttime losses and contamination was 

calculated.  Also, even though the application of open ponds will likely be in or close to 

an urban setting, the rural cost of land ($2300/acre) was used for calculating costs in the 

model except where noted.  Increasing the culture density of open ponds with all costs 

included does not ever yield a profitable scenario even if the lipid content is assumed at a 

maximum of 75%. Interestingly, when the model did not include reserving the inoculum 

density to continue algal growth following harvest, the results did concur with the 

literature to some extent and showed more potential.  It is likely this is a cause for many 

overestimates in the literature, besides omitting or over-simplifying other key costs such 

as pumping, employee and paddlewheel operating costs.  Costs for producing each 

kilogram of biomass are comparable to the literature only for the open pond rural 

scenario at unproven open pond algal density of 16.99 g/L, and not including many key 

costs such as paddlewheel, inoculum, and pump operating costs.   

Land is a limiting factor for open ponds not only for cost reasons, but also for 

environmental and cultural reasons since the large amount of land required will compete 

with agriculture.  While the required land is clearly objectionable, one also must consider 

the amount of land which is physically and politically available and that which is 

affordable.  When considered within the scope of locations with climate and water 

sources, the results are crippling.  Additionally, open pond algal farms will face health 

and safety concerns related to excessive water and land use, and environmental impact 

will be significant.  All the optimizations in this study included rural land cost, and 

supercritical CO2, oven, and filter press for harvesting options.  This means costs would 



 
 
 
 
 

267 
 

be raised substantially for an open pond growth scenario in an urban setting with different 

harvesting options. 

The most important steps to be taken in an open pond growth scenario are to 

lower water lost to evaporation and reduce the amount of surface area required.  Water 

use is a very large cost factor, and also raises societal and environmental concerns.  

Additionally, nearly all operating costs need to be reduced, including the pumping, 

paddlewheel, water, and employee costs.  All of these operating costs are related to the 

large amount of surface area required.  Replacing evaporated water and employee costs 

are the highest operating costs.  The energy required from the paddlewheels to maintain a 

flow velocity of 0.03 m/s for 8 hours per day is a significant open pond operating cost, 

closely following the pumping of gas to the 20 gas sumps per pond operating 24 hours 

per day.  Results reveal how the roughness factor for a concrete liner versus a clay liner 

affects costs significantly.  The full implications of the large surface area required for an 

open pond scenario to produce 100,000 kg of dry biomass per year (about 1 barrel of 

biodiesel per day) where the algal density is 0.32 - 0.37 g/L become evident.  The land 

required is some 825,000 acres or about 1289 square miles.  

Some more recent studies have concluded nutrients are a significant cost 

previously overlooked by most researchers in the past (Christenson & Sims, 2011) (US 

DOE, 2010) (ANL;NREL;PNNL, 2012).  Many studies do not include the cost of 

nutrients in their techno-economic analysis and very few, if any, include the biggest 

contributors to cost per the results contained in this study: pH, salt, and antibiotics (see 

Appendix B).  This is especially true for an open pond growth scenario since these 
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particular nutrients must be administered by the volume of media, not by the algal 

biomass yield.  However, past studies have assumed if wastewater is used, nutrients need 

not be supplied.  Results detailed here indicate the highest cost factors for nutrients would 

not be supplied by wastewater or flue gas, and may even be more important in a 

wastewater treatment scenario.  For example, the threat of contamination is much higher 

in a wastewater treatment scenario, which may necessitate more antibiotics.  Also, pH 

buffer will be more vital when using flue gas and/or wastewater.   This analysis reveals 

the costs for nutrients are significant and should be included in any realistic techno-

economic analysis. 

Some literature has found the key cost and price variables likely to have the 

biggest impact on the economic performance of the algal cultivation are those for 

petroleum crude, algal oil, carbon credits from carbon dioxide capture, and commercial 

fertilizer (Putt, 2007).  Brentner, et al. (2011) predicted the most sensitive impact factor 

to algal culture density is land use.  Findings here indicate the biggest impacts on the 

economic performance of algal cultivation are the culture density and corresponding 

required surface area which includes the land use, pumping, and employee cost.  

Commercial fertilizer is not a significant cost factor and is not required if flue gas or 

wastewater is supplied.  While the amount of flue gas from a typical power plant was 

found to be capable of supporting a very large algal facility, carbon credits and the price 

of petroleum would have to exceed what is predicted or even imagined in order for algal 

biofuel production to compete with petroleum.   
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The majority of profit in an algal growth scenario is from human supplements or 

wastewater treatment.  These two products cannot be produced simultaneously since 

wastewater treatment will make the algal product unfit for human consumption.  

Additionally, the human supplement product has a limited customer base and the market 

will be quickly saturated.  For these reasons, the product with the most potential to make 

algal biofuel production viable is wastewater treatment.  This study also revealed the 

culture density necessary for nitrogen and phosphorus removal from municipal 

wastewater, which is a higher density than expected in an open pond growth scenario.  

The culture density of solar illuminated photobioreactors will be the most effective of the 

growth scenarios for treating wastewater. 

The fluid dynamics design and optimization for air lift reactors show it is possible 

to use known equations to develop a model that allows optimization of productivity based 

on flow velocity and resulting fluid dynamics, mass flow rate, culture density, cost/profit 

ratio, CO2 feed rate, O2 removal, lighting and geometry.  Results reveal that a Newtonian 

flow can be assumed at expected algal densities and flow velocity.  No other studies had 

performed a viscosity analysis using equations developed to describe non-colloidal dilute 

suspensions in an external field including effects of culture media (nutrients or 

wastewater), culture density, saltwater and temperature.  Comparison of viscous shear 

stress to the shear stress per cell at expected culture densities reveal maximum shear 

stress margin prior to algal cell damage.    

Optimal algal growth conditions where the flow is heterogeneous, circulation time 

is independent of gas velocity, interfacial area reaches a near constant, and level of shear 
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stress is acceptable can be pinpointed through modeling.  Maintenance of heterogeneous 

flow is vital to avoid suboptimal homogeneous or potentially damaging transitional or 

slug flow.  Model results reveal that many studies have maintained suboptimal flow 

conditions which may produce non-Newtonian characteristics as gravity exerts a greater 

influence than the fluid dynamics (VG  ≤ 0.2 m/s) and is suboptimal homogeneous or slug 

flow with an eddy Kolgomorov length far exceeding the optimal 10 µm greater than the 

cell length.  Fluid dynamics analysis could improve growth results through determining 

what conditions maintain heterogeneous, churn turbulent flow.  This analysis indicates 

that in order to maintain heterogeneous flow and constant interfacial area shear rate 

should be kept between 7,000 and 8,000 s-1.  

A local optimal culture density is found for artificially illuminated air lift reactors 

around 47 - 48 g/L, which results in an air lift reactor total diameter of 1.57 m and a 

maximum length of 2.7 m based on maximum O2 levels.  The larger diameter enables 

easier cleaning of the PBR surfaces.  Also, results reveal the temperature increase from 

the photosynthetic process is manageable through replacing the volume of water used in 

the photosynthetic process at a cooler temperature.  The light path length limits pond 

depth prior to oxygen exceeding levels found to damage microalgal growth in open 

ponds. 

The optimized geometry also revealed the importance of adding a vertical 

component to an algal growth scenario to reduce all costs which are influenced by the 

amount of surface area and to improve fluid dynamics.  The solar illuminated 

photobioreactor design presented here may be optimized further through building helical 
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stacks of tubes.  Also, the optimized air lift reactor and solar illuminated culture densities 

result in a minimum diameter of 0.34 m, which eases concern over maintenance costs 

since the container may be cleaned through use of a pole mounted squeegee or similar 

apparatus.   

A cheaper, innovative method for light distribution would aid all growth 

scenarios, although this alone will not enable a profitable scenario for open ponds.  

Through light distribution the capital cost of lighting could be reduced as well as increase 

density and depth of the open pond growth scenario, thereby requiring less surface area.  

Results indicate that if light path length could be optimized through the use of mirrors or 

some other innovation, costs would at least remain more constant as culture density 

increases to a certain point (about 50 g/L for artificially illuminated air lift reactors and 

0.3398 g/L for open ponds).   

Results for harvesting options were interesting for a few reasons.  First, the 

harvesting costs are a much smaller percentage of overall costs (1 - 5%) than predicted by 

other studies.  Second, the cost savings as well as environmental benefits of using 

supercritical CO2 as a solvent instead of traditional solvents is significant.  Third, use of a 

centrifuge is not cost prohibitive if the culture density is close to photobioreactor density 

of 40 - 50 g/L contrary to what is stated in the literature.  Cost of inducing lysis using 

electromagnetism is nearly 25% greater than using a more efficient centrifuge.  Inducing 

lysis through manipulating pH shows significant cost benefits, but this process is yet 

unproven.  Even if harvesting costs are minimized, the costs detailed above for each 

growth scenario are dominant and prevent an attractive investment profile. 
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End product results include the fact that biogas and biodiesel profits remain 

minimal at the most of some $150.00 per day for a 100,000 kg of biomass per year 

facility.   Unless there is a more efficient method of applying methane to algal or power 

plant energy use, the methane yield does not justify the cost of the microturbines.  There 

is potential of using the methane directly in a power plant if located nearby, but profit is 

still negligible at less than $100 per day for a ~100,000 kg/year facility.  While 

wastewater treatment is the end product which shows the most potential, it is not 

sufficient to make an algal growth scenario a worthy investment.  

Another key finding from the study is the carbon emissions of all types of algal 

facilities exceed those of petro-diesel by at least thirteen times even when including 

carbon consumption of power plant flue gas.  The energy in to energy out ratio 

(MJin/MJout) is at least 10:1 for the PBR growth scenario and about 55:1 for the open 

pond growth scenario.  The carbon emissions from operating the facility only were 

included, so if one were to include the emissions resulting from producing the materials, 

the environmental impact would be revealed to be even more detrimental.  Even if the 

investment scenario is improved and an algal growth scenario is found to be financially 

attractive, it would remain environmentally disastrous.  In order to match or produce less 

carbon emissions than petro-diesel, huge strides in processing technology is necessary. 

 

 

 



 
 
 
 
 
 

 

 

Chapter Five: Summary 

Results show the variables not included in previous studies are important and 

impact results.  Through creating and running the system models, the worst and best case 

scenarios along with the accompanying technology have been revealed.  Productivity 

optimization based on the same algal growth rate has been accomplished in four different 

growth scenarios, and financial feasibility has been analyzed for each scenario.  Algal 

growth for biofuel production is not environmentally or economically sustainable with 

current technology, even when including integration with a power plant and/or 

wastewater treatment.  The only growth scenario to exhibit a positive NPV is solar 

illuminated photobioreactors at an unproven culture density.  While financial feasibility is 

lacking at proven productivities and lighting costs, the necessary algal densities in each 

growth scenario along with necessary reductions in costs have been identified.   

It took 27 years to achieve a 50% improvement in canola production.  

Improvement in productivity can be achieved through technical and biological 

approaches.  Improvements in system design for better light utilization and improved 

mixing as well as increased algal density for solar illuminated photobioreactors are 

necessary.  This study shows it is possible to standardize or optimize algal growth 

scenarios through modeling, which would result in more consistent quality and quantity 

of algae produced.  This study has also demonstrated that providing optimal fluid 

dynamics for nutrient distribution, waste removal and lighting distribution are easily 

solved with a vertical, artificially illuminated photobioreactor.  However, results indicate 
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that a scalable, commercially viable system for producing microalgae is not possible in 

any growth scenario at this time. 

Open pond growth scenarios do not show potential of ever being economically or 

environmentally sustainable with current technology, and would require reduction in 

input energy requirements for nearly every process.  Even if the potentially detrimental 

environmental effects of biologically altered algae are avoided, the health and safety 

concerns of waste disposal and water usage remain in an open pond growth scenario. 

While microalgae have the potential to be grown on brackish water and 

undesirable land, the energy inputs still far outweigh the energy derived.  In order to 

produce just a small percentage of the fossil fuels used annually, a microalgae open pond 

growth scenario would require an unacceptable amount of land area and fresh water.  

Photobioreactors, while capable of using much less land and water, require energy inputs 

which far exceed those required to access petro-diesel.   

The carbon footprint of filling a barrel with petro-diesel totals approximately 

4,500 grams of CO2.  Consider that every kilowatt-hour of electricity emits 15.9 grams of 

CO2, and the average American household uses 29 kilowatt hours (461 grams of CO2) of 

electricity every day.  This means the carbon footprint of living in an American house for 

ten days is roughly equivalent to the amount of petro-diesel required to fill a tank twice 

(assuming a ~15 gallon tank).  If the carbon footprint of burning that petro-diesel is 

added, approximately 67.6 grams of CO2 per gallon (EPA, 2012), the carbon footprint of 

burning one tank of petro-diesel is roughly equivalent to the carbon footprint of living in 

an American house for a week.  It is apparent that the main issue with petro-diesel is not 
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acquiring it (until supply began to dwindle), but the enormous demand and the burning of 

fossil fuels to satisfy our lifestyle. 

Even if a reliable, sustainable, and carbon neutral source of biofuel was secured, 

past history shows the demand would accelerate along with the supply.  Our culture 

energy demands must decrease along with a continuing search for sustainable and 

renewable energy supplies in order to successfully prevent or manage future energy 

shortage and climate change.  Presumably, as petro-diesel supply dwindles, a renewable 

source of transportation fuel will be required and become economically sustainable as the 

price rises.  However, if we hope to lessen our environmental impact or even maintain 

status quo through using biofuels derived from microalgae, tremendous improvements 

must be made in algal growth facility design and the technologies implemented. 

Further Research 

Accuracy of cost estimation would increase for both growth scenarios if the 

analysis incorporated a detailed schedule.  For an open pond scenario there are many time 

based effects on growth that were not considered or were minimized in this model such 

as necessary inoculum development in photobioreactors prior to introduction to open 

ponds, nighttime losses, cloudy days, poor or cold weather, and change in seasons.  This 

would enable more accurate estimates of pumping and storage volume needed.   If 

improved culture density is proven in solar illuminated photobioreactors or capital cost 

for artificial lighting is greatly reduced, performance of a Class 3, Budget Authorization 

or Control Estimate is recommended for that particular growth scenario (DOE, 2011).  

Also, some additional probable costs for photobioreactors which were not included in this 
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model include pH sensors, thermometers, CO2 and O2 sensors, and heat exchangers.  A 

more detailed model to determine temperature changes in an open pond growth scenario 

including all the environmental factors would be a useful endeavor.  Also, a thermal 

analysis for solar illuminated PBR’s and fluorescent illuminated ALR’s would improve 

result accuracy.  Further definition of optimal shear stress levels specific to each algae 

species is recommended. 

Solar illuminated photobioreactor modeling would benefit from including more 

detail, including pH, temperature, and more accurate water evaporation costs.  Including 

pH and temperature requirements for photobioreactor maximum lengths would be 

beneficial to further optimize geometry.  Further analysis into air lift reactor geometry is 

possible and recommended using the equations detailed in the small scale turbulence 

methodology section of this study.  More detail could also be included in the financial 

analysis such as transportation costs, shipment timing by farm size and production rate, 

and insurance. 

Additional research may reveal difference in paddlewheel technology or an 

entirely different method of inducing flow velocity in an open pond growth scenario.  

Accordingly, solutions to the massive amount of pumping involved must be presented, 

which could include adding a vertical component to the system while decreasing surface 

area required and new pumping technology.  

A novel method for controlling temperature in solar illuminated photobioreactors 

that doesn’t involve water evaporation could possibly make this growth scenario 

sustainable.  One option is to use excess thermal energy to power the facility.  Similarly, 
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lower cost lighting and/or better method for light distribution could possibly enable a 

sustainable artificially illuminated photobioreactor growth scenario. 

The model reveals is there is much potential in the basic algal growth rate and a 

need to obtain higher yields than reported in the past.  Additional data on beneficial 

viscous shear stress levels as a function of algae species and culture density will assist in 

defining design parameters. An improved solution for determining shear rate in 

photobioreactors is needed.  More research into light path length and the optimal shear 

stress per algal cell will improve result accuracy.  Innovative growth scenarios have some 

potential with microalgae, such as a growth scenario which includes small algal “farms” 

in each person’s home that utilizes energy already present, such as fans, solar, or 

wastewater leaving the house.  Biofilm reactors and immobilized algal growth systems 

were not included in the analysis due to lack of data, but this may be considered an area 

of potential study. 

Similar system modeling could be applied to other production scenarios, 

especially technologies considered environmentally sustainable to determine whether that 

claim is true or not.  Similar analysis will benefit any production cycle where 

improvements are currently made by empiric observations instead of scientific principles 

or bioassays.  Other applications for this type of modeling include optimizing the entire 

product system in a virtual environment well before physical assembly and testing, 

optimizing existing production processes, analysis of where costs must be minimized, 

and methods for improving productivity.  While cost/profit ratios can be identified 

without the use of a model, the results of modifying a process are not detailed sufficiently 
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for a complicated, interdependent process.  A system model can be used to simulate 

interfaces, which makes it possible to see downstream effects of changing a process.   
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Appendix A 

Outputs from Model: 

Fluid Dynamics Outputs: 
Shear stress  
Shear stress per cell 
Vorticity 
Surface Tension 
Bubble drift velocity 
Superficial gas velocity 
Kolgomorov length 
Kolgomorov length w/ bubble dissipation 
CO2 transfer time needed 
CO2 transfer time available 
Interfacial area 
Dissipation rate (viscous) 
Dissipation rate (bubbles) 
Effective viscosity (salt) 
Effective viscosity (fresh) 
Effective viscosity (ww) 
Pressure at depth 
Number of sparger pores required 

Other Physics Outputs: 
Power Plant flue gas output 
Types/amounts of gas required 
All nutrient amounts required 
Water required for photosynthesis 
Water lost to evaporation in open ponds 
Lighting watts required 
Increase in culture temp from photosynthesis 
Required water temp to replace that used in photosynthesis 
Algal density after one day's growth 
Light path length 
Recommended PBR diameter 
Yield dry weight of biomass 
Yield lipids 
Energy required/carbon footprint 
Amount of Oxygen created 
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Financial Outputs: 
Operating costs: 
Nutrients 
Transesterification 
Lighting watts required 
Harvesting equipment operating costs 
Water 
Capital/Financing Costs: 
Land  
Piping  
Pumps 
Harvesting equipment    
Lighting 
Acrylic for PBR's 
Pond liner 
Spargers 
Electrical installation 
Profit: 
Biodiesel 
Biogas 
Animal Feed 
EPA 
CO2 credits 
WW treatment 
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Appendix B 

Comparison with other techno-economic studies: 

 

�Culture density x x
Algal strain x x
Algal strain lipid content and size x
Growth rate x x
Lighting source/path length x
Biomass yield x x x x x
Effective viscosity x
Fluid dynamics profile x
Adaptable growth scenario x x
�Dry weight of biomass x x
�Operating costs x x x x x x
Carbon footprint of harvesting/lighting options x x
Energy req harvesting/lighting options x x x x
Cost of harvesting/lighting options x x
Paddlewheel operating cost x x x
�Transesterification cost/output x x
�Flue gas from coal power plant vs. algae reqts x
Nutrients supplied by wastewater x
�Nutrients needed/cost x x x

co2 x x x x
phosphorus x x x x
nitrogen x x x x x
iron x x x
antibiotics x
salt x
pH buffer x
energy req for nutrients x

�Pumping kWh/capex and opex x x
Water cost x x x x x x
�Water used for photosynthesis x
�Water lost to evaporation in open ponds x x x x
�Lighting watts req/day x
�Lighting capital and opex costs x
Increase in culture temp from photosynthesis x x
Employee cost x x x x x x
Organic Solvents x x x x x
Well Costs x
Employee tax x x
Supercritical co2 as a solvent x
�Capital cost x x x x x
Installation costs x x x x
Water Pumps x x x x
Tanks (Settling) x x x x
Harvesting Equipment   x x x
Harvesting Equipment sized by algal output x
Land x x x x x x
Pipelines x x x
Digester pit x x
Digester pit cover x x
Scrubber/dryer x
Flue gas pump x x x
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Variable Model
Shen, et 
al., 2008

ANL;NREL;
PNNL, 2012

Putt, 
2007

Richardson, 
et al., 2010

Lux Research, 
2012

Generator x x
Exhaust blower x x
Culture pumps x x
Spargers/Diffusers x x x
Paddlewheels x x x x
Pond Site Preparation x
Liner x x x x
Office x x
Financing cost x x x
�Profit from Biodiesel x x x x
�Profit from Biogas x x
�Profit from Animal Feed x x
�Profit from EPA x
�Profit from Beta-Carotene x
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Appendix C 

Values assigned to variables in model: 

 

Variable Value Units
rural land $2,300.00 per acre
urban land $103,000.00 per acre
electricity $0.11 per kWh
Photobioreactor material^ $7.50 per Liter
carbon credit*# $20.00 per ton
LED capital* $0.48 per W/year
Fluor capital* $0.35 per W/year
methanol for transesterification** 0.10 kg/kg oil
methanol as solvent***# 14.00 g/g biomass
cost methanol** $0.0018 per g
cost hexane or chloroform $0.06 per gram of biomass
EM lysis*** 23,040.00 L/day/unit
EM lysis*** capital $50,000.00 cost/unit
EM lysis*** maint $0.05 *capital cost/unit
EM lysis*** opex 0.002 kwh/liter
Filter press****opex $0.0000025 per dry weight g
Filter press****capital $9,009.00 per ton
conveyor oven operating 0.0028 kwh per gram
conveyor oven capital $9,009.00 per ton
wastewater particles 0.0004 m3/m3
wastewater treatment capital***** $0.41 per gallon of design flow
wastewater treatment operating profit $0.06 per gallon   
APR 0.08 .0832 effr/weekly
max O2 per L 0.028 g/L
iron nutrient $0.02 per pound
co2 nutrient $0.00153 per gram
phosphorus nutrient $0.0014 per gram
pH buffer .000552-.0011 $ per Liter of culture
antibiotics $0.005 per gram
salt .005-.008 $ per Liter of culture
nitrogen nutrient $0.0014 per gram
installation costs $7,600.00 per acre
cost fab pbr's $500.00 per pbr
spargers $197.00 per sparger (10/pond, 1/PBR)
paddlewheel $3,000.00 per paddlewheel (1/pond)
pond liner $4.00 per m2
digester pit $6,600.00 per digester pit
digester pit cover $12,600.00 per cover
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piping $12.70 per meter
generator $25,000.00 per generator
exhaust blower $1,000.00 per blower
tanks $1.14 per Liter (to hold .33 total volume)
water pump $500.00 per pump
culture pump $5,000.00 per pump
gas pump $10,000.00 per pump
water cost $0.375 per m3
microturbines capital cost****# $2,575.00 per kW generated
microturbine efficiency****# 27.000 %
engineering fee $7.00 % of total construction cost
biodiesel price per barrel $120-$150 per barrel
EPA content of lipid .0257-.0347 X lipid content
EPA price $2.15 per gram
microturbine capital cost $900.00 per kW produced
qty of employees 0.08 people per hectare
employee salary $60,000.00 per year
animal feed $246.00 per ton
co2 produced from electricity 140.53 kg/kwh per year
hours/day paddlewheel operation 8.00 hours/day
flow velocity in open pond 0.03 m/s

*Source: www.IndustryLED.biz, includes replacements and disposal fees, assumes constant operation
*# Source: Johnston, et al., 2011

**Source: Lux Research, 2012
***Source: Origin Oil.com, 2012
****Source: Micronics, opex includes energy, water, consumable parts, and labor
*****Souce: Hartman & Cleland, 2007, range of .41 to 2.41 to remove N to 5 mg/L
**#Source: Micronicsinc.com, 2013
***#Source: Bligh & Dyer, 1959
****#Source: EPA, 2004
^sourced from various sites, cost applies to glass and acrylic, priced to purchase 2-3x qty over 15 years
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Appendix D 

Screen shot of Matlab library: 

Screen 

shot of PBR model: 

 

Screen shot of open pond model: 
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Screen shot of mass transfer module: 
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Appendix E 

Optimization objective function for PBR/ALR growth scenario: 

clc; 
  
  
  
  
%% Set Initial Values 
  
L_total                   = 7500; % Initial value 
inoculum_density_cells_mL = 2000; % Initial value, 2.36x10^7 fluor 
lipid_content             = .75; %Initial value 
  
X0 = [L_total, inoculum_density_cells_mL, lipid_content]; 
  
InitialCost = CostFunction_PBR(X0); 
  
%% Display Initial Values 
  
disp('Initial Values'); 
  
L_total                       %#ok<NOPTS> 
inoculum_density_cells_mL     %#ok<NOPTS> 
lipid_content                 %#ok<NOPTS> 
InitialCost                   %#ok<NOPTS> 
  
%% Run Search 
options = optimset('MaxFunEvals',600,'Algorithm','interior-
point','DiffMinChange',400000,'TolCon',.000000000001,'TolFun',.00000000
000001,'Hessian','bfgs'); 
% options = 
optimset('MaxFunEvals',600,'Algorithm','sqp','TolCon',.00000000001,'Tol
Fun',.0000000000001); 
[X,FinalCost,ExitFlag,Output] = 
fmincon(@CostFunction_PBR,X0,[],[],[],[],[7500, 
2000,.75],[7500,420000000,.75],[],options); 
  
  
%% Get Final Values 
  
L_total                       = X(1); % Final value 
inoculum_density_cells_mL     = X(2); % Final value 
lipid_content                 = X(3); % Final value 
  
%% Display Final Values 
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disp('Final Values'); 
  
L_total                       %#ok<NOPTS> 
inoculum_density_cells_mL     %#ok<NOPTS> 
lipid_content                 %#ok<NOPTS> 
FinalCost                     %#ok<NOPTS> 

 

Constraint function for PBR/ALR growth scenario: 

function Cost1 = CostFunction_PBR(X) 
  
L_total                       = X(1); 
inoculum_density_cells_mL     = X(2); 
lipid_content                 = X(3);  
  
%% Write Parameters to Base Workspace 
  
assignin('base','L_total',L_total); 
assignin('base','inoculum_density_cells_mL',inoculum_density_cells_mL); 
assignin('base','lipid_content',lipid_content); 
  
  
%% Run Simulation 
% 
% ToWorkspace blocks will dump results within this function scope. 
% 
  
sim('pbr_system'); 
  
%% Calculate Cost 
% 
% 'pond_costs_per_day' and 'pond_profit_total_day' are vectors of 
length 
% 201 so use the average cost.  Minimum or maximum could also be used. 
% 
  
Cost = mean(costs_per_day - profit_per_day); 
Cost1 = mean(Cost); 
  
end 
 
 

Optimization objective function for Open Pond growth scenario: 

clc; 
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%% Set Initial Values 
  
inoculum_density_cells_mL = 150000000; % Initial value 
lipid_content             = .75; %Initial value 
  
X0 = [inoculum_density_cells_mL, lipid_content]; 
  
InitialCost = CostFunction(X0); 
  
%% Display Initial Values 
  
disp('Initial Values'); 
  
  
inoculum_density_cells_mL     %#ok<NOPTS> 
lipid_content                 %#ok<NOPTS> 
InitialCost                   %#ok<NOPTS> 
  
%% Run Search 
options = optimset('MaxFunEvals',600,'Algorithm','interior-
point','TolCon',.00000000001,'TolFun',.0000000000001,'Hessian','lbfgs')
; 
  
[X,FinalCost,ExitFlag,Output] = 
fmincon(@CostFunction,X0,[],[],[],[],[1500,.46],[Inf,.75],[],options); 
  
  
%% Get Final Values 
  
  
inoculum_density_cells_mL     = X(1); % Final value 
lipid_content                 = X(2); % Final value 
  
%% Display Final Values 
  
disp('Final Values'); 
  
  
inoculum_density_cells_mL     %#ok<NOPTS> 
lipid_content                 %#ok<NOPTS> 
FinalCost                     %#ok<NOPTS> 
 

Constraint function for Open Pond growth scenario: 

function Cost1 = CostFunction(X) 
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inoculum_density_cells_mL     = X(1); 
lipid_content                 = X(2);  
  
%% Write Parameters to Base Workspace 
  
assignin('base','inoculum_density_cells_mL',inoculum_density_cells_mL); 
assignin('base','lipid_content',lipid_content); 
  
  
%% Run Simulation 
% 
% ToWorkspace blocks will dump results within this function scope. 
% 
  
sim('open_pond_system'); 
  
%% Calculate Cost 
% 
% 'pond_costs_per_day' and 'pond_profit_total_day' are vectors of 
length 
% 201 so use the average cost.  Minimum or maximum could also be used. 
% 
  
Cost = mean(pond_costs_per_day - pond_profit_total_day); 
Cost1 = mean(Cost); 
  
end 
 

 

 


	Techno-Economic and Fluid Dynamics Analysis for Growing Microalgae with the Intent of Producing Biofuel Using a System Model
	Recommended Citation

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter One: Introduction
	Background and Motivation
	Hypothesis
	Research Goals and Approach
	Outline
	Definitions, Acronyms, and Abbreviations
	Literature Review
	Biological Research
	Growing Methods
	Gas Exchange
	Cleaning
	Culture Density
	Lighting
	Temperature
	Harvesting

	Fluid Dynamic and Biological Modeling
	Techno-economic studies
	Inputs
	End Products



	Chapter Two: Method
	System Model
	Open Ponds vs. Photobioreactors
	Productivity
	Lighting
	Conversion Efficiency
	Absorption Efficiency
	Overall Photosynthetic Efficiency
	Light Irradiance

	Gas Exchange
	Fluid Dynamics
	Large Scale Turbulence
	Pumps

	Small-Scale Turbulence
	Mass Transfer

	Nutrients
	Temperature
	Contamination
	Wastewater, Brackish and Seawater
	Harvesting
	Settling and Flocullants
	Lysing
	Centrifuge, Filter Press and Conveyor Oven
	Solvents

	End Products
	Biomass for Methane Production
	Biomass Recycling as Nutrient Source
	Biodiesel
	Co-Products
	Chemicals
	EPA
	Animal Feed
	Human Food Supplement
	Carotenoids, beta-carotene and astaxanthin
	Carbon Credits
	Wastewater Treatment


	Sensitivity Analysis
	Optimization

	Business Model
	Funding/Investment
	Risk Analysis
	Incentives
	Environmental Impact
	Algae Control & Regulation
	Customers
	Partners


	Chapter Three: Results
	Algal Size and Density
	Lighting & Productivity
	Large Scale Turbulence
	Small Scale Turbulence
	ALR Geometry and Pond Depth
	Nutrients
	Temperature
	Capital Costs
	Harvesting Options
	Operating Costs
	End Products
	Wastewater Treatment
	Methane
	Biodiesel
	Human supplements
	Carbon Credits
	Animal Feed

	Life-Cycle Costs
	Carbon Emissions & Energy Balance
	Sensitivity Analysis
	Optimization
	Open Pond
	Solar Illuminated PBR
	Fluorescent Illuminated ALR
	LED Illuminated ALR

	Funding/Investment
	Open Pond
	Solar Illuminated PBR
	Fluorescent Illuminated ALR
	LED Illuminated ALR


	Chapter Four: Discussion
	Chapter Five: Summary
	Further Research

	References
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E

