
University of Denver University of Denver 

Digital Commons @ DU Digital Commons @ DU 

Electronic Theses and Dissertations Graduate Studies 

1-1-2017 

Data-Centric Situational Awareness and Management in Data-Centric Situational Awareness and Management in 

Intelligent Power Systems Intelligent Power Systems 

Xiaoxiao Dai 
University of Denver 

Follow this and additional works at: https://digitalcommons.du.edu/etd 

 Part of the Other Electrical and Computer Engineering Commons, Power and Energy Commons, and 

the Systems and Communications Commons 

Recommended Citation Recommended Citation 
Dai, Xiaoxiao, "Data-Centric Situational Awareness and Management in Intelligent Power Systems" (2017). 
Electronic Theses and Dissertations. 1378. 
https://digitalcommons.du.edu/etd/1378 

This Dissertation is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It 
has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital 
Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Denver

https://core.ac.uk/display/217241655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.du.edu/
https://digitalcommons.du.edu/etd
https://digitalcommons.du.edu/graduate
https://digitalcommons.du.edu/etd?utm_source=digitalcommons.du.edu%2Fetd%2F1378&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=digitalcommons.du.edu%2Fetd%2F1378&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=digitalcommons.du.edu%2Fetd%2F1378&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=digitalcommons.du.edu%2Fetd%2F1378&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.du.edu/etd/1378?utm_source=digitalcommons.du.edu%2Fetd%2F1378&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jennifer.cox@du.edu,dig-commons@du.edu


Data-centric Situational Awareness and Management in

Intelligent Power Systems

A Dissertation

Presented to

the Faculty of the Daniel Felix Ritchie School of

Engineering and Computer Science

University of Denver

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

Xiaoxiao Dai

November 2017

Advisor: Jun Zhang



c© Copyright by Xiaoxiao Dai 2017

All Rights Reserved



Author: Xiaoxiao Dai
Title: Data-centric Situational Awareness and Management in Intelligent Power
Systems
Advisor: Jun Zhang
Degree Date: November 2017

Abstract

The rapid development of technology and society has made the current power

system a much more complicated system than ever. The request for big data based

situation awareness and management becomes urgent today. In this dissertation,

to respond to the grand challenge, two data-centric power system situation aware-

ness and management approaches are proposed to address the security problems in

the transmission/distribution grids and social benefits augmentation problem at the

distribution-customer lever, respectively.

To address the security problem in the transmission/distribution grids utilizing

big data, the first approach provides a fault analysis solution based on characteri-

zation and analytics of the synchrophasor measurements. Specifically, the optimal

synchrophasor measurement devices selection algorithm (OSMDSA) and matching

pursuit decomposition (MPD) based spatial-temporal synchrophasor data charac-

terization method was developed to reduce data volume while preserving compre-

hensive information for the big data analyses. And the weighted Granger causality

(WGC) method was investigated to conduct fault impact causal analysis during sys-

tem disturbance for fault localization. Numerical results and comparison with other

methods demonstrate the effectiveness and robustness of this analytic approach.
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As more social effects are becoming important considerations in power system

management, the goal of situation awareness should be expanded to also include

achievements in social benefits. The second approach investigates the concept and

application of social energy upon the University of Denver campus grid to provide

management improvement solutions for optimizing social cost. Social element –

human working productivity cost, and economic element – electricity consumption

cost, are both considered in the evaluation of overall social cost. Moreover, power

system simulation, numerical experiments for smart building modeling, distribution

level real-time pricing and social response to the pricing signals are studied for

implementing the interactive artificial-physical management scheme.
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Chapter 1

Introduction

1.1 Motivation and Background

As the precondition for normal power system operations, security problems al-

ways receive the highest priority in power system operation and management. After

the first wide-area blackout occurred in Northeast United State and Canada in 1965,

condition monitoring of the power system became an important subject [1]. Sys-

tem status should be constantly monitored, that abnormal conditions should be

detected and identified once it appears, or even before it happens, and system oper-

ators should be notified to take proper actions. The system conditions, e.g. voltage,

current, frequency and power flow, are changing all the time to meet the genera-

tion and consumption balance, thus successful system monitoring requires adequate

data, accurate analysis, efficient visualization tools and well trained operators to

make wise decisions.

Although the importance of system condition monitoring has been addressed

and a lot of efforts has been made, the development of human society keeps pushing

its complexity to new levels. Aging of old facilities and infrastructures results in

higher probability of equipment failure; rapid increase in electricity demand places
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even greater burdens on the system and forces the power grids to expand; growth

of renewable energy resources adds unstable elements to the grids; integration of

large-scale distributed energy resources (DERs) introduces more uncertainties to the

power system and is gradually changing the structure of the traditional power grids;

what’s more, concerns about environmental issues and rising of demand response

are changing the way of power system operation and management.

Big or small blackouts started to appear across the world after 1965. After the

2003 Southeast U.S. and Canada blackout, the largest blackout in American history,

the concept of “situation awareness” was officially put forward in the final report

of task force [2]. And as a result of fast technology development, a vast amount

of smart sensors, e.g. phasor measurement units (PMUs), frequency disturbance

recorders (FDRs), smart meters, and sensors for building monitoring, have been

widely installed to insure adequate data are recorded and provided for power system

situation awareness. Not only the amount of available data is increasing rapidly,

many more new types of data are also introduced into the power system, such as

weather event data and health condition monitoring data, and following the trend

of technology development, power system entered the Era of big data.

Coming of the Era of big data brings opportunities as well as challenges. Ex-

tremely large data sets guarantee that every moment and every aspect of the power

system are monitored, but effective and efficient big data analyses become an issue.

How to pick out real useful information from the data, how to increase the data

processing speed, how to make best use of the data and how to make the data ac-

tionable are some of the major concerns of the researchers and operators. In the last

few decades, researches on the data-driven/model-based approaches, e.g. machine

learning and deep learning, proved that they can be a very promising solution to

the big-data analysis. Compared with the computational approaches, data-centric

system modeling can make better use of the measurement data, because it can dig
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out more hidden information from the data, some of which are not even intuitively

understandable. What’s more, the data-centric modeling approaches have gradually

exhibited the ability to work not only as an passive analytic tool, but also actively

interact with the real system, providing advices while optimizing itself, which may

make the system real “smart”.

Extremely large scale data based situation awareness not only provides solutions

for security problems in power systems. Upon secure and stable system operations,

grid owners, utility companies and even users started to pursue higher goals, e.g.

economic profits and social benefits. Demand side management becomes a very

popular and important subject then, because its goal is to manage demands from

the users’ side to relieve the burden of peak time generation and transmission, which

enlarges the benefits of both the grids and the users. Besides, installation rate of

resident renewable generations and interests in electrical vehicles are climbing to

respond to the environmental protection policies, which also brings the end users

to the front of the power system managements. Involvement of end users brought

in even more data with extremely high uncertainty and variability. User experi-

ences, such as comfort level, health conditions and working efficiency, are critical

feedbacks for intelligent power systems to improve their management strategies at

the distribution-customer level.

In this dissertation, two data-centric situation awareness and management ap-

proaches are proposed to address security and social benefits augmentation problems

in the intelligent power systems. Although occurrence of faults is much frequent at

the distribution level, failures happened at the transmission level usually lead to

severe consequences. Therefore, the first data-centric approach in this paper focuses

on fault analysis algorithms for both transmission and distribution grids. And the

second approach emphasizes the social benefits in the distribution-customer grids

because most frequent interactions between end users and the grids emerge here.

3



1.2 Contribution

This dissertation represents two data-centric situation awareness and manage-

ment approaches for solving power system security problem in the transmission

and/or distribution grids and social benefits augmentation problem in the distribu-

tion - customer grids. Contributions of this work are listed below:

1. A two-layer synchrophasor data based approach is proposed for power system

situational awareness in the transmission/distribution grids. Specifically, in

the distribution grids, where the security monitoring system is not as mature

as that in the transmission grids, and the topology information of which in

some area is incomplete or totally missing, the only efficient way to detect and

analyze faults is data-centric approaches.

(a) The proposed approach characterized the PMU data in the spatial do-

main through secondary voltage control zones determination using a novel

relative electrical distance calculation algorithm, which computes the

electrical coupling ratio in dual-direction.

(b) The optimal synchrophasor measurement devices selection algorithm (OS-

MDSA) is developed on the basis of optimal sunchrophasor measurement

devices placement algorithm (OSMDP), which reduce the number of syn-

chrophasor measurement devices while keeping the smart grid fully ob-

servable.

(c) The data is further characterized in the temporal domain applying match-

ing pursuit decomposition.

(d) The weighted Granger causality is introduced for fault causal impact

analysis.
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2. A model-based parallel computing approach is proposed for distribution - cus-

tomer level management to optimize overall social benefits, and the University

of Denver campus grid is selected as the test bench to demonstrate the capa-

bility of the approach.

(a) Working efficiency cost of building occupants together with energy con-

sumption cost are considered in this paper as parts of the social cost to

illustrate the concept of “social energy”.

(b) The human working efficiency model quantifies human comfort level, and

associates it to monetary value.

(c) Neural network is used to establish test building consumption models,

both static and dynamic models are investigated.

(d) Distribution locational marginal pricing algorithm is proposed in this

paper to predict and reflect interactions between electricity users and the

electricity suppliers.

(e) Neural Network based iterative adaptive dynamic programming algo-

rithm is introduced for solving optimization problems of the complex

highly nonlinear system.

1.3 Dissertation Outline

Arrangement for the rest of the dissertation is given as the following.

Chapter 2 first reviews related works on PMU development and power grid

fault detection techniques. Then a review of the current demand-side management

schemes and technologies is given.

Chapter 3 depicted the synchrophasor data based situational awareness approach

in transmission grids. Specifically, the optimal synchrophasor measurement de-

vices selection (OSMDSA) algorithm, hidden Markov models based fault detection
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method and weighted Granger causality based fault impact analysis are presented

in detail.

Chapter 4 describes a socio-technical power system under the concept of so-

cial energy. University of Denver’s campus grid was used as a case study, and

its HVAC management strategy is studied aiming at maximizing social energy uti-

lization. To form the socio-technical system of the campus grid, neural network

based consumption models, human working efficiency quantification, distribution

locational marginal pricing are introduced. For solving optimal HVAC strategy,

two cases, where the system is assumed to be static and dynamic respectively, and

distributed iterative adaptive programming algorithm and Neural Network based it-

erative adaptive dynamic programming are introduced and applied in the two case,

respectively.

At last, Chapter 5 concludes all the works done for this dissertation and proposed

possible future directions of the current research.
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Chapter 2

Literature Review

2.1 Current situation of modern power grid security

monitoring

With the evolution of energy and power technology, the emerging Smart Grid

(SG), featured by security monitoring, distributed renewable energy generation and

demand-response control, is facing a new challenge in extremely large data sets,

namely the Big Data challenge [3,4]. The data sources of a future electrical SG, are

heterogenous, including smart metering devices such as phasor measurement units

(PMUs) and frequency disturbance recorders (FDRs), automated revenue meter-

ing at the electricity market side, synchrophasor measurement data for situational

awareness, SG component state and operation control data, as well as large data sets

from sources other than SG measurements, such as geographic information system

data. For example, in the State Grid Corporation of China, more than 2500 PMUs

are equipped at the end of 2013, and the number will increase in the future [5].

This means that the widely located synchrophasor measurement devices can pro-

vide abundant data, and the analysis and information extraction from the big data

becomes an imperative issue for SG monitoring, security and control [6–8].
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Based on the big data collected by the synchrophasor measurement devices,

many big data based computational approaches are applied in smart grid to address

different problems, such as smart grid monitoring, distributed control, renewable

energy forecasting, etc. [9, 10]. In [11], a cloud-based software platform is designed

for big data analysis in smart grid. A model for utilizing cloud computation is

used for smart grid big data management in [12]. However, these approaches bring

up the question of how to effectively and efficiently characterize and manage the

power system big data, and therefore, it is critical and urgent to develop a charac-

terization approach for this purpose. In the spatial domain, it is proposed to use

the optimal synchrophasor measurement devices placement (OSMDP) to reduce the

number of synchrophasor measurement devices while keeping the smart grid fully

observable [13,14]. In temporal domain, the matching pursuit decomposition (MPD)

with Gaussian atom dictionary is used to characterize the signals [15–17]. Based

on these technical methods, in this paper, an effective and highly accurate data-

driven solution of fault analysis is proposed to respond to the Big Data challenge in

characterization and analytics of the synchrophasor measurement system data.

In this paper, we propose a framework for characterizing and managing the

data generated by the synchrophasor measurement devices in the spatial-temporal

domain. Specifically, in the spatial domain, the secondary voltage control (SVC)

is used to divide the SG into a number of SVC zones. Within each SVC zone,

a subset of synchrophasor measurement devices on their corresponding buses are

selected based on an optimal synchrophasor measurement devices selection algo-

rithm (OSMDSA), which is based on OSMDP. In [18,19], the SVC is analyzed, and

the determination algorithms for the SVC zones and the pilot buses are studied.

In [20, 21], different algorithms are studied on OSMDP, and different test scenarios

are considered and compared. Based on SVC and OSMDP, the proposed approach

provides a hierarchical and dynamic spatial characterization of the synchrophasor
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measurements. In the time domain we propose to use the MPD with Gaussian atom

dictionary for fully characterizing the signals [15, 16].

In the last few decades, research of data-driven approaches and machine learn-

ing, e.g., the support vector machine (SVM) and artificial neural network (ANN),

indicates that there is a promising way to detect and diagnose SG faults [22, 23].

Using the generated spatial-temporal characteristics, various hidden Markov models

(HMMs) are trained for detection and identification of SG faults to achieve situa-

tional awareness. To identify and locate the major impact bus in the presence of

a fault, Granger causality [24] is introduced to study the fault impact causality

analysis among all the buses in the SG.

2.2 Demand-side management schemes and techniques

Ever since the term “demand side management (DSM)” was proposed in 1979

and was firstly introduced to the public by Electric Power Research Institute in the

1980s [25,26], nearly four decades has passed. The rapidly increased power demand,

newly integrated energy forms new patterns of energy market operations, and policy

and social requirements all push the DSM techniques to improve. In the meanwhile,

breakthroughs in communication technology, enhancements in computation power,

new forms of energy supply and storage, and the expanding involvement of con-

sumers into energy management rendered DSM new possibilities and variations.

2.2.1 Demand-side management in residential, industrial and com-

mercial sectors

Residential houses, which nowadays are capable of integrating PV panels, various

smart appliances and electrical vehicles, seem to offer the highest flexibility for DSM.

Besides, the household’s flexible living schedule, or the different living patterns of

households (regarding DSM for a community other than for just a single house),

make DSM for residential buildings even more elastic.

9



Both task-scheduling and energy-managing schemes are applied in residential

DSM [27]. Task-scheduling schemes focus on the activation/deactivation time of

schedulable appliances (e.g. dish washers, washing machine, dryer, rice cookers, and

electrical vehicles’ battery charging) and/or distributed energy resources (DERs),

in response to market signals (price changes or incentives) or availability of renew-

able generations. While energy-managing schemes deal with the operation of non-

schedulable devices, such as HVAC systems, heat pumps, and refrigerators, aiming

at reduce their consumption or enhance their energy efficiency.

In the case study of [28], the optimal scheduling problem of five DERs, plug-in

hybrid vehicle, space heater, storage water heater, pool pump, and the PV system

in a smart home environment was studied. The co-evolutionary version of particle

swarm optimization (CPSO) was applied to solve the scheduling problem in order

to maximum net benefit while keeping the living condition in a comfortable range.

In [29], driven by the dynamic electricity pricing system adopted in Jeju Island,

the authors implemented genetic algorithm for scheduling 15 appliances in a smart

home, in pursue of lower electricity cost. While in [30] and [31], load-shifting problem

of schedulable loads and consumption reduction problem for non-schedulable loads

for multiple users/buildings are combined and studied.

Despite the huge potential of residential DSM, the largest obstacle in front of its

real world applications might be the willingness of the households to participate in

such programs. Although some utility companies offer incentives or put penalties

to encourage or force their customers to participate in DSM programs, the fear of

private information reveal, relatively low profitability comparing to the installation

and maintenance costs of smart meters and devices, concerns of uneven incentives, or

even no elasticity for load shifting (for those whose energy consumption only covers

basic living needs) can prevent the households to support and join such programs.
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DSM programms have much larger market in the non-residential sectors. Accord-

ing to the latest energy review by the U.S. Energy Information Administration [32],

non-residential sector, which consists of transportation, industrial and commercial,

consumed 79% of the overall energy in 2016. Since the term “demand” in trans-

portation is not in the sense of “energy”, demand management in transportation

refers to different concepts and goals [33, 34], thus we only talk about DSM in the

industrial and commercial sectors here. Compared to single household, industry and

commercial owners should be much more eager and positive to the DSM programs

in order to reduce energy costs and avoid penalty for over-consumption at peak

periods [35]. Besides, the larger scale of these sectors also gives opportunities for

DSM to make “louder sound”.

For industries, DSM tasks are more specific and specialized, for they need to

deal with certain types of devices and production processes, and very specific re-

quirements need to be meet to ensure safe and successful production. [36] conducted

an empirical investigation on the potential, strategies and barriers of DSM applica-

tions in the refrigerated systems in German. And in [37], the researchers evaluated

the feasibility and efficiency of DSM in cement-making industry by discussing the

equipments and processes in cement production, operational limitations of cement

plants, and the amounts and sources of energy used in the cement-making processes.

For commercial customers, DSM are mostly applied on buildings, including of-

fices, academic buildings, laboratories, gyms and arenas and so on [38–40]. Unlike

residential houses which reflects very high flexibility, nor industrial sites, operation

and energy usage patterns of which follow strict rules, commercial buildings are

something in between. DSM for commercial customers generally doesn’t have high

temporal flexibility, for example during working hours (for offices, classrooms and

laboratories) or events (for arenas and stadiums), certain equipments and facilities

have to be on and work for certain hours. But on the other hand, buildings of the
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same type may have similar consumption patterns [27]. DSM of commercial build-

ings are generally realized through control of HVAC systems, lighting systems and

operation modifications of heavy load equipments [41–44].

2.2.2 Integrations of human factors in demand-side management

development

In early studies of DSM, the goals/objects were simply the reduction of peak-hour

loads or reduction of energy costs. Later, other concerns were taken into account,

for instance the emission costs, startup, operation and maintenance costs [45–47].

Number of DSM schemes with multiple objects is increasing and the scenarios and

algorithms are becoming more complicated. The study in [48] tries to minimize both

the operational cost and load power for residential customers, [49] aims at maximiz-

ing the expected market profits for the retailer and minimizing electricity cost for

consumer at the same time, and [31] tries to achieve minimum power consumption

while ensuring maximum social welfare for residential households.

More recently, the researchers started to notice the human factors in DSM, either

the effect of users’ behavior on consumption patterns, or the importance of users’ ex-

perience with the DSM programs. [43] research investigated the energy consumption

profile in a multi-purpose academic building with respect to the occupants behav-

ior, and indicates strong relationship between consumption and occupants behavior

(e.g. number of occupants, duration of staying in the buildings). [42,50] investigate

electricity consumption model of office buildings with respect to occupants’ behav-

ior. [31,51–53] implemented users’ comfort/discomfort/satisfaction level to the DSM

programs they developed. And [54, 55] input user preferred temperature ranges as

system constraints.

Back into the three sectors we discussed above, effects of human behavior on

the consumption pattern in residential houses could be very complicated to model,
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since the living habits, preference and criteria towards life quality are quite different

from person to person. However, households may exhibit higher tolerance to the

DSM control schemes. Using HVAC control as an example, as long as the indoor

temperature is in the comfort range, the households won’t feel huge difference of the

temperature. While this is quite different in the commercial sector, for tempera-

ture changes directly affect the workers’/users’ working performance [56,57], which

could be in the top priorities of business owners, universities or research institutes.

Behavior effects of workers in the industrial sector are in another sense, for their

activities directly affect the production processes. And these kinds of behavior ef-

fects are the most difficult ones to model and evaluate, but play very important

roles in industry. For better understanding and implementation of human factors

in the DSM schemes, complicated behaviors modeling techniques and investigations

on behavior quantification have to be improved and conducted.

2.2.3 Techniques and algorithms used in current demand-side man-

agement programs

Traditional optimization algorithms have been widely used in DSM. For example,

linear programming [48, 52, 58], reinforcement learning [59], Lagrangian algorithm

[60], convex optimization [31,61], and particle swarm algorithm [28]. As the objects

of DSM programs becoming compound, the algorithms are becoming more complex,

that only sub-optimal solutions can be found, or computational complexity would be

too high to find optimal solutions. Therefore, heuristic optimization were introduced

[44]. What’s more, utilization of distributed algorithms and game theories [30,49,62]

is also increasing.
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Chapter 3

Synchrophasor Data Based

Situational Awareness in

Transmission/distribution Grids

3.1 Formulation and Summary of the Proposed Ap-

proach

Based on the background of increased PMU utilization in SGs [5], in this chapter,

it is assumed that the synchrophasor measurement devices are located on every bus

of the SGs, and the voltage measurements S is denoted as {s1(t), s2(t), s3(t), · · · , sn(t)},
which are collected by the widely located synchrophasor measurement devices, where

t denotes time, and si(t) is the voltage signal from bus i.

Considering the computation complexity of the proposed approach, the system

operation state of SG is divided into two states: normal state Λ0, and fault state

Λφ, which contains M1 fault types Λ(m), m = 1, 2, 3, · · · ,M1. As shown in Fig. 3.1,

the proposed approach can be divided into two data analytic layers. The first layer

is used to determine the SVC zones Ωi1 and pilot buses Ψ in the normal state of SG,
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Figure 3.1: The flowchart of proposed approach.

where i1 ∈ {1, 2, 3, · · · , k}. The second layer is used to identify the fault and locate

the fault in the fault located SVC zone. Between the two layers, a fault detection

part based on HMM is designed as a trigger to start the second layer.

As shown in Fig. 3.1, in the first layer, the system parameters are collected for

relative electrical distance (RED) calculation (Block 1 and 2). Then, with the k-

means clustering algorithm, the SVC zones Ωi1 are determined, and pilot buses Ψ of

the given SVC zones are also determined (Block 3 and 5). In Block 4, the collected

voltage signals from the pilot buses are processed using MPD for feature extraction

and noise suppression.

Between the first layer and second layer, an HMM based detector is designed as

a trigger for the second layer. Specifically, in Block 6, two trained HMMs Λ0 and

Λφ are used to detect if the SG is in abnormal states. If the fault state is detected,

the second layer of the proposed approach is triggered for fault identification and

location.
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In the second layer, using the voltage measurements from the pilot buses Ψ,

the fault can be located in a SVC zone with WGC (Block 7). With the topology

information of the located SVC zone, the OSMDSA is used to select the synchropha-

sor measurement devices in the located SVC zone, which ensures full observability

(Block 8 and 9). In Block 10, the MPD is used to extract features and suppress

noise from the voltage signals. In Block 11, the fault is identified with different fault

modelled HMMs. In Block 12, the fault is located using WGC.

In some scenarios, a fault occurs on the edge of several adjacent SVC zones.

In these conditions, aiming to locate the fault, the proposed approach can selected

them according to WGC determination (Block 7). In Block 9 and 10, the OSMDSA

can dynamically treat the selected SVC zones as a larger combined SVC zone, and

compute the optimal synchrophasor measurement devices for fault identification and

location.

3.2 Spatial-Temperal Synchrophasor Data Characteri-

zation

3.2.1 Determination of SVC Zones and Pilot Buses

The approach for determining the SVC zones and pilot buses is described as

following.

Relative Electrical Distance

There are several methods to define and calculate the RED for the SVC zones

and pilot buses [19, 63–65]. In this chapter, the proposed approach is focusing on

wide area monitoring for SG with big data background. The RED is based on the

linearized model of the power flow equation as following
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⎡
⎢⎣ ΔP

ΔQ

⎤
⎥⎦ =

⎡
⎢⎣Jpθ Jpv

Jqθ Jqv

⎤
⎥⎦×

⎡
⎢⎣ Δθ

ΔV

⎤
⎥⎦ . (3.2.1)

where ΔP and ΔQ are two vectors denoting the variances of active power and reac-

tive power, respectively; Δθ and ΔV are vectors denoting the variances of voltage

angle and voltage magnitude, respectively; Jpθ, Jpv, Jqθ, and Jqv are the sub-matrices

of Jacobian matrix. Equation (3.2.1) is the power flow equation from the Newton-

Raphson method, which indicates the relationship between the variance of active

and reactive power, and the variance of voltage angle and voltage magnitude [66].

The voltage is strongly coupled with reactive power and weakly coupled with

active power. Generally speaking, the reactive power plays an important role in

voltage control and voltage stability analysis [64, 66]. In this chapter, the injection

active power is set as constant, which means ΔP = 0, then the sensitive between

reactive power and voltage can be computed as following

SE = ΔV/ΔQ = (Jqv − JqθJ
−1
pθ Jpv)

−1. (3.2.2)

The voltage sensitivity between bus i and j can be derived as

γij =
ΔVi
ΔVj

= (
ΔVi
ΔQj

)/(
ΔVj
ΔQj

) =
SEij

SEjj
(3.2.3)

where ΔVi and ΔVj are the voltage variances at bus i and j, respectively; ΔQj is

the variance of reactive power at bus j. The electrical coupling ratio between bus i

and j is defined as

dcij �
√
γ2ij + γ2ji (3.2.4)

The electrical coupling ratio dcij denotes the relationship of voltage coupling between

bus i and j. If there is strong voltage coupling between bus i and j, the electrical

coupling ratio dcij is large. deij � 1/dcij represents the RED between bus i and j. If

there is strong voltage coupling between bus i and j, the RED deij is small. Then the
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RED matrix De can be built, where De ∈ Rn×n, and deij is an element at row i, and

column j. Furthermore, compared with the traditional single-direction electrical

coupling ratio in [67, 68], the proposed approach computes the electrical coupling

ratio in dual-direction as equation (3.2.4), which provides a more comprehensive

measurement about the relative electrical distance between the two buses.

Determination of SVC zones

According to the above defined equations, the problem of SVC zones determina-

tion can be transferred to a clustering problem. In a given SG, the buses with small

REDs are clustered into the same SVC zone, the buses with large REDs are clus-

tered into different SVC zones. Through the algorithms such as genetic algorithm

and annealing algorithm, the buses can be clustered into several SVC zones [63,64].

In this chapter, the k-means algorithm is implemented to cluster the buses into

different clusters.

First, an initial set of k means {η1, η2, η3, · · · , ηk} of k corresponding clusters is

given. Then, each bus in the smart grid is assigned to the cluster which yields the

least distance between its mean to the element among all clusters as following

Ω
(t1)
i1

= {ξi : d(ξi, η(t1)i1
) � d(ξi, η

(t1)
j1

) ∀j1, 1 � j1 � k}. (3.2.5)

where t1 is the iteration number; i1 ∈ {1, 2, 3, · · · , k}; ξi = [dei1 d
e
i2 ... d

e
in] is the ith

row in De, which indicates the RED from bus i to other buses; and d(·, ·) represents
the Euclidean distance function in the RED matrix De. The new means of each

cluster is updated as in (3.2.6) and the data set is re-clustered until the means

converge [69, 70].

η
(t+1)
i1

=
1

|Ω(t)
i1
|

∑
ξj2∈Ω

(t)
i1

ξj2 . (3.2.6)
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Determination of Pilot Bus

In a given SVC zone, a pilot bus is chosen to represent the voltage variances of

the zone. Based on the discussion above, this condition requires the REDs between

the pilot bus and the other buses are short. Let Ωi1 be the bus set of SVC zone i1,

the total RED between bus i and other buses in the given SVC zone Ωi1 is calculated

as

Hi =
∑
j∈Ωi1

deij . (3.2.7)

where j is the bus index in SVC zone Ωi1 . Based on (3.2.7), the pilot bus q can be

determined as following

q = arg min
i

(Hi). (3.2.8)

In some SVC zones, it is possible that multiple pilot buses are selected according to

(3.2.7) and (3.2.8).

3.2.2 Optimal Synchrophasor Measurement Devices Selection Al-

gorithm

Basic Optimal Synchrophasor Measurement Devices Selection Algorithm

The objectives of OSMDSA are to minimize the number of synchrophasor mea-

surement devices, while to ensure full system observability. This means, in an

observable SG, each bus must be observed at least once

fi =
n∑

j=1

uj � 1, i = 1, 2, 3, ..., n (3.2.9)

where fi refers to the number of times that the ith bus is observed through syn-

chrophasor measurements, uj is defined as a binary decision variable as
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uj =

⎧⎪⎨
⎪⎩

1 A synchrophasor measurement device is selected at bus j

0 otherwise
(3.2.10)

Based on [71, 72], the concept of topological observability is adopted and the

following rules are applied for optimal synchrophasor measurement devices selection.

• If the voltage phasor and current phasor at one end of a branch are known,

the voltage phasor at other end of that branch can be obtained using Ohm’s

law.

• If the voltage phasors at both ends of a branch are known, the current phasor

through this branch can be calculated.

The measurements such as bus voltage phasors and branch current phasors, directly

obtained from the synchrophasor measurement devices, are referred to as direct mea-

surements. Measurements derived by employing the above two rules are referred to

as indirect measurements, or pseudo measurements. In an observable network, each

and every bus must be observed at least once by using direct or indirect measure-

ment. Then, based on (3.2.9) and (3.2.10) the problem can be formulated as

min
ui

F =

n∑
i=1

ciui (3.2.11)

subject to constraints:

fi =
n∑

j=1

ai,juj � 1, i = 1, 2, 3, ..., n (3.2.12)

where aij is the (i, j)th entry of system connectivity matrix defined as

aij =

⎧⎪⎨
⎪⎩

1 if i = j or if i and j are connected

0 otherwise
(3.2.13)
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ci is the cost of selecting a synchrophasor measurement device at bus i, which can be

the economic cost, the communication cost, computation cost, or the combination

of the above cost. In our problem, the cost of a synchrophasor measurement device

selection at each bus is assumed to be 1 per unit.

The basic OSMDSA algorithm can ensure system observability when the system

is in the normal operation states. In addition, it can also ensure system observability

in the presence of certain types of faults, which do not change the topology of the

SGs.

Optimal Synchrophasor Measurement Devices Selection Algorithm Con-

sidering Single Line Outage

Certain types of system faults, such as transmission line outage can change grid

topology, and the OSMDSA approach described in (3.2.9)-(3.2.13) can then be ex-

tended to more robust derivative approaches, which are resilient to be these faults.

In this chapter, we investigate the scenario where a single line outage occurs in the

power system, and the resulting OSMDSA approach is able to provide data char-

acterization with full system observability. It is noted that, other faulty scenarios,

such as single synchrophasor measurement device disable, controlled islanding, etc,

can also result in different spatial data characterizations.

Transmission line outage is a typical fault in SG [21, 66]. Single line outage

(SLO) may cause loss of observability for one of its terminal buses, which would

otherwise be observable using the current phasor of that line. For a power network

with M lines. The constraints of SLO can be presented as

fi =

n∑
j=1

ali,juj � 1, ∀i, ∀l, (3.2.14)

where l � M , the parameter ali,j = 0 if the lth outage line is used to connect buses

i and j, and ali,j = ai,j otherwise.
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In summary, jointly using the constraint (3.2.14) and the objective function

(3.2.11), the OSMDSA-SLO approach is formulated, which provides the optimal

data characterization for this scenario.

3.2.3 Time-Frequency Characterization of Synchrophasor Measure-

ments

The MPD, proposed in [15,16], is an effective time-frequency analysis algorithm.

In this chapter, MPD with Gaussian atom dictionary is used to characterize syn-

chrophasor data in the temporal-domain and extract the signal features represented

by the amplitude, time-shift, frequency-shift and variance of the Gaussian atoms.

Matching Pursuit Decomposition for Feature Extraction

On bus i, a continuous voltage signal si(t) can be decomposed as a weighted

summation of the Gaussian atoms as

si(t) =

∞∑
p=1

αp gp(t) , (3.2.15)

where αp is the amplitude coefficient for the Gaussian atom gp(t), gp(t) is selected

from a given Gaussian atom dictionary, and p is the index. To prove the complete-

ness of the expression (3.2.15), it is provided the following lemma.

Lemma 1 : The voltage signal si(t) can be represented using decomposition

with finite iterations and a remainder rN (t) as

si(t) =

N−1∑
p=1

αp gp(t) + rN (t) , (3.2.16)

with ||rN (t)|| decaying exponentially in a finite dimensional space.

Proof : With the notations in (3.2.16), the MPD algorithm is described as

follows. Let r1(t) = si(t), and the atoms gp(t) is selected from a very redundant
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Gaussian atom dictionary D as the one that has the maximum magnitude of the

projection on rp(t), p = 1, 2, 3 · · ·P . Specifically gp(t) is obtained using

gp(t) = arg max
g(e)(t)∈D

∣∣ ∫ ∞

−∞
rp(t) g

(e)(t)dt
∣∣ , (3.2.17)

where e = {τ, ν, σ} are the time-shifting, frequency-shifting and related shape pa-

rameter for the Gaussian atoms. After gp(t) is obtained, the corresponding coeffi-

cient αp is calculated as

αp =< rp(t) , gp(t) >=

∫ ∞

−∞
rp(t) g

∗
p(t)dt , (3.2.18)

where g∗p(t) is the complex conjugate of gp(t). (3.2.16) yields an energy conservation

equation

||si(t)||2 =
N−1∑
p=1

||αp gp(t)||2 + ||rN (t)||2 . (3.2.19)

The decay of ||rN (t)|| depends upon the correlation between the residues and the

dictionary elements. It is defined that the correlation ratio of a function si(t) with

respect to D as


(si(t)) = sup
g(e)(t)∈D

< si(t), g
(e) >

||si(t)|| . (3.2.20)

And it can be proved that [15]

κ(
) = inf 
(si(t)) > 0. (3.2.21)

Based on (3.2.20) and (3.2.21), in [15, 16] it is proved that the ||rN (t)|| decays

exponentially in a finite dimensional space

||rN (t)|| � ||si(t)||(1− ι2κ2(
))N/2 , (3.2.22)

where ι is an optimality factor with 0 < ι � 1, and satisfies

| < rN (t), gN (t) > | � ι
(rN (t))||rN (t)|| . (3.2.23)
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Based on (3.2.19) and (3.2.22), the original signal si(t) can be decomposed with

limited residual in finite Gaussian atom dictionary with iteration N , and the fact is

given by

||si(t)||2 −
N−1∑
p=1

||αp gp(t)||2 � ε||si(t)||2 , (3.2.24)

where ε = (1− ι2κ2(
))N/2 is a desired precision value that decays exponentially. It

is able to conclude that expression (3.2.16) is complete in the sense of exponentially

decaying residual energy.

Therefore, the MPD analysis can decompose a voltage signal with a controllable

residual signal power, and usually, if a very redundant Gaussian atom dictionary is

used, after a small number of decomposition iterations, the extracted signal features

can be used to synthesize the original signal with very high fidelity. The voltage

signal can be represented with a group of parameters {α, τ, ν, σ}. As a result, it is

expected that this approach can fully characterize the synchrophasor measurements

in temporal domain.

An Example on Transmission Line Grounding in IEEE 39-Bus System

A transmission line ground fault in the IEEE 39-bus system is illustrated with

MPD analysis in Fig. 3.2. The simulation duration is 4 s with a transmission line

grounding fault occurring between bus 5 and bus 6 for 10 cycles. The voltage signal

is collected from bus 4. The MPD uses 1,800,000 Gaussian atoms and 30 iterations.

In this case, in order to test the robustness of the proposed MPD, the test signal-

to-noise ratio (SNR) is 25 dB, which is much lower than the typical noise (72 dB)

in synchrophasor measurement devices [73, 74].

As shown in Fig. 3.2(a), the green curve is the original voltage signal of trans-

mission line grounding, which illustrates the large voltage deviation caused by fault

from 2000 ms to 2200 ms. In Fig. 3.2(b), the red curve is the original voltage signal
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(a) (b)

(c) (d)

Figure 3.2: (a) The original signal of voltage drop curve, (b) the original signal with
noise and the synthesis curve using MPD, (c) the original signal and synthesis curve
using MPD, (b) the time-frequency analysis of the synthesis curve using MPD.

with noise and the blue curve is the synthesis voltage signal, which is extracted from

the red curve using the composition of selected Gaussian atoms. The synthesized

signal suppresses the noise of the red curve, and recovers the original voltage signal,

especially for the large voltage deviation caused by the fault between 2000 ms to

2200 ms. In Fig. 3.2(c), this is the comparison between the original signal and syn-

thesis signal. Although there are small voltage deviations between the original and

the synthesized voltage signals, for example a small voltage deviation occurs about

1500 ms, the energy of the residual signal takes only 0.03% of the original signal.

And the ratio of residual signal energy can be computed as following:

rreen =
||r′N (t)||2
||r′1(t)||2

, (3.2.25)

where r′1(t) is the original signal without noise, r′N (t) is the residual signal between

the original signal r′1(t) and the synthesized signal, and r1(t) is the original signal
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with noise. As Fig. 3.2(d) illustrates, although there are a lot of noise, the original

voltage signal can be recovered using several Gaussian atoms with a controllable

residual energy, which are used to represent the feature of the original signal. This

indicates the proposed MPD can extract the feature of the voltage signal and sup-

press the noise.

3.3 Data Analysis for Fault Detection, Identification

and Location

3.3.1 Hidden Markov Models for Fault Detection and Identification

Using the spatial characterization obtained by OSMDSA, and the temporal char-

acterization by MPD, the SG situational awareness can be achieved. In this section,

a data-driven SG fault detection and identification approach are investigated to

validate and evaluate the proposed data characterization approach.

The detailed process of fault detection is depicted as following. Different HMMs

are trained to detect and identify different types of faults in SG for situational

awareness. In this chapter, five typical faults in SGs are studied, which are generator

ground, load loss, generator outage, single-phase transmission line outage, and three-

phase transmission line outage. As shown in Block 6 in Fig. 3.1, two HMMs, Λ0 and

Λφ are trained and then used to detect normal and abnormal operating conditions,

respectively. Specifically, Λ0 is the HMM for normal conditions, which is trained by

the collected data in normal operation conditions. Λφ is the HMM for abnormal

conditions, which is trained by the collected data in abnormal operation conditions

as mentioned before.

Through training, for the normal operation conditions, the parameters λ0 ={
π0, A0, B0

}
are computed to represent the initial states distribution vector, the

hidden state transition matrix, and the state-dependent observation matrix, respec-
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tively. Using the Baum-Welch algorithm [75], the maximum-likelihood estimate for

λ is given by

λML = arg max
λ

logP (β|λ,Λ) , (3.3.1)

where β is the observation symbol sequence obtained from MPD, λ is the parameter

set of HMM Λ. For the abnormal operations, the parameters λφ=
{
πφ, Aφ, Bφ

}
are computed similarly. Then, using testing data, a confusion matrix is generated

from the detection results to evaluate the detection performance of the proposed

approach. A detection result using IEEE 39-bus system is shown in Table 3.1,

which indicates the high performance of the normal/abnormal detection.

Table 3.1: Confusion Matrix of Fault Detection Between Normal and Abnormal
conditions in IEEE 39-bus System

Normal Abnormal

Normal 100%(280/280) 0(0/280)

Abnormal 0(0/280) 100%(280/280)

In fault identification, for themth fault type, an HMM Λ(m) is trained to identify

the fault typem after the fault occurs. In Λ(m), the parameters λ(m)=
{
π(m), A(m), B(m)

}
represent the initial state distribution vector, the hidden state transition matrix, and

the state-dependent observation density matrix, respectively [75].

As the faults of the generator ground, load loss, and generator outage do not

change the topology of the SGs, the basic OSMDSA is used for spatial charac-

terization when we test these hypothesis in fault identification. The single phase

transmission line outage and three-phase transmission line outage can change the

topology of SGs. As a result, when we test the hypothesis correponding to these

two fault scenarios, the SG can be observed by the results of OSMDSA with SLO.
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3.3.2 Weighted Granger Causality Based Fault Causal Impact Anal-

ysis

Using the Granger causal analysis, causal relationships between any pair of the

buses in the system can be computed, thus the effect of a certain bus on all the other

buses can be generated and presented. Let si = [si(1) si(2) · · · si(lw) · · · si(Lw)]
T

denotes the measurement time series from Bus i with discrete time index lw = 1 to

Lw, and T denotes matrix transpose. ζ(lw) = [s1(lw) s2(lw) · · · sn(lw)]T denotes

the measurement from Bus 1 to n at discrete time point lw. The realization of

Granger causality estimation is based on vector autoregressive modelling (VAR) of

time series. Fitting our test data into a pcth order VAR(pc) model gives

ζ(lw) =

pc∑
kc=1

Ckc · ζ(lw − kc) + εlw , (3.3.2)

where Ckc are the regression coefficients matrix corresponding to time lag kc, and

εlw are the residuals which are modeled as white Gaussian random vectors. The

model order pc is estimated by the Bayesian information criterion according to the

number of samples Lw, number of variables n (number of buses in our case), and

number of trials. Numerically, Granger causality evaluates the degree to which the

past of the causer variable helps predict the causee variable conditional on the past of

the causee itself. Since none of the variables/buses are absolutely independent from

other buses in the system under investigation, we cannot simply ignore the other

buses while evaluating the causality between a selected pair. Thus to calculate the

Granger causality from Bus j to i (i �= j) actually means to calculate the Granger

causality from bus j to i conditioned on all the other buses indexed by ri,j , where

ri,j is the vector of all the bus indexes except i and j. In this way, the full regression

for the Bus i is recast as
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si(lw) =

pc∑
kc=1

(
Cii,kcsi(lw−kc)+Cjj,kcsj(lw−kc)+Crr,kcsri,j (lw−kc)

)
+εilw , (3.3.3)

where sri,j [lw] is the measurement vector from the buses indexed by ri,j , Cxx,kc

are the regression coefficient matrices corresponding to time lag kc for the data

component from Bus x. And Σii ≡ cov(εilw) is defined as the covariance of εilw . To

evaluate the impact of Bus j on bus i, we then compute the reduced regression by

omitting the sj(lw) component from the full regression, which gives

si(lw) =

pc∑
kc=1

(
C′

ii,kcsi(lw − kc) +C′
rr,kcsri,j (lw − kc)

)
+ ε′ilw , (3.3.4)

and Σ′
ii ≡ cov(ε′ilw). Then the Granger causality from Bus j to Bus i conditioned

on Buses ri,j is

Gj→i|r ≡

⎧⎪⎨
⎪⎩

ln
|Σ′

ii|
|Σii| for i �= j

0 for i = j
(3.3.5)

However, the Granger causality focuses merely on the causal relationship between

two variables, and the basic property of the signals themselves are ignored, for exam-

ple the strength of fluctuation of the signal during the fault. Generally, the further

a bus locates from the impact source, the weaker the impact this bus might receive,

hence the smaller the fluctuation would be. Relying solely on the Granger causality

estimation, some buses might be identified as the bus with major impacts due to

only local disturbances. To complement to Granger causality the information from

strength of signal fluctuations, we propose the fluctuation strength weighted Granger

causality. The weighted Granger causality Rij balances the Granger causality value

of each paired variables by the ratio of their variance, which can be expressed as
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Rij = Gj→i|r ·
var(sj)

var(si)
. (3.3.6)

Then the fault impact causal analysis is accomplished by summarizing the total

effect for each bus upon all the other buses, and buses with the largest total effect

are identified as the major impact sources.

3.4 Numerical Simulation and Results

In order to demonstrate the big data characterization approach and its associ-

ated data-driven application on fault detection and identification, the IEEE 39-bus

system (System 1) and IEEE 118-bus system (System 2) are employed for experi-

ments on numerical simulations. All the simulations are executed using a computer

with 3.60 GHz Intel i7 CPU and 32 GB RAM. The time consumption for each sim-

ulation is less than 10 s. In this chapter, the IEEE 39-bus system and IEEE 118-bus

system are modeled in PSCAD to simulate the normal and abnormal operation con-

ditions, which includes the generator grounding, load loss, generator outage, single

transmission line outage, and three-phase transmission line outage. Matlab is used

to compute the numerical results with the HMM and WGC toolbox [76,77]

3.4.1 OSMDSA within a Single SVC Zone

In Table 3.2 and 3.3, the OSMDSA results of the proposed approach for System

1 and 2 are demonstrated, respectively. For each SVC zone, the selected optimal

synchrophasor measurement devices can be dynamically computed by OSMDSA

as shown in Table 3.2 and 3.3. With the dynamic OSMDSA, the full SG can be

observed with reduced number of synchrophasor measurement devices. For example,

in System 1, the 7 synchrophasor measurement devices located at the pilot buses

are selected to determine the SVC zone, if a fault is located in SVC zone III. Then,

the synchrophasor measurement devices located at bus 4, 7, 11, 13, 31, and 32 are
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Table 3.2: Proposed OSMDSA with SVC zones in System 1

SVC
zone

Bus
Number

Pilot
Bus

Result of Basic
OSMDSA

Result of OSMDSA
with SLO

I 2, 3, 18,
25, 30, 37

2 2, 3, 25 2, 18, 30, 37

II 1, 9, 39 1 1, 9 1, 9

III 4-8, 10-14,
31, 32

7, 11 4, 7, 11, 13, 31, 32 4, 6, 8, 11, 13, 31, 32

IV 15-17,
19-24, 35,

36

16 16, 20, 22, 33, 36 15-17, 19, 22, 23,
33-36

V 26, 27, 28,
29, 38

28 27, 28, 38 27, 28, 38

Table 3.3: Proposed OSMDSA with SVC zones in System 2

SVC
zone

Bus Number Pilot
Bus

Result of Basic
OSMDSA

Result of OSMDSA
with SLO

I 1-20, 117 2, 13 2, 5, 7, 9, 12, 13, 18,
19

2, 3, 5, 7, 8, 10-12,
15, 17, 19, 20, 117

II 21-23, 25-32,
113-115

114 22, 25, 28, 30, 32,
114

21, 22, 25, 27, 28,
30-32, 113, 114

III 33-48 39, 45 33-35, 37, 41, 45, 46 33, 34, 36-39, 41-43,
45, 47, 48

IV 49-69, 116 57, 67 49, 53, 56, 59, 64,
67, 116

49, 51, 53, 56, 57,
59, 62, 64, 65, 67,

68, 116
V 24, 70-81,

97-99, 118
78,118 24, 71, 74, 78, 80,

118
24, 70, 71, 73, 74,

76, 78, 80, 81, 97-99,
118

VI 82-96,
100-102

88, 93 82, 84, 86, 88, 90,
93, 95, 101

82, 84, 86-88, 90, 92,
94, 95, 101

VII 103-112 108 103, 106, 108, 110 103, 105, 106, 108,
110-112

selected by the basic OSMDSA. Therefore, the total number of selected optimal

synchrophasor measurement devices is 11, which is 28.2% of all the synchrophasor

measurement devices.
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For a simulation period of 12 s, 12000 data samples are collected for system anal-

ysis [73]. After 30 MPD iterations for feature extraction, the 12000 data samples

are condensed into 30 four-dimensional feature vectors [α, τ, ν, σ]T , with each repre-

senting the amplitude, time-shifting, frequency-shifting and variance of the selected

Gaussian atoms. The total data number is 30×4=120, and the data compression

rate, which is defined as the data volume generated by the spatial-temporal char-

acterization to the original data volume, is 1.00%. Considering the scenario above,

the synchrophasor measurement devices selection rate is 28.2%. Therefore, for this

scenario, the total data compression rate can reach 0.282% with controllable residue

energy.

3.4.2 OSMDSA within Several SVC Zones

Different from the scenario where faults can be located in a single SVC zone,

some faults occur at the adjacent areas between two or several SVC zones. In these

scenarios, these SVC zones are combined to form a single SVC zone.

For example, as shown in Fig. 3.3, a transmission line outage occurs between

bus 100 and bus 103 between SVC zone V I and SVC zone V II. According to

WGC, SVC zone V I and V II are both identified as faulty areas. With the topol-

ogy information, the optimal synchrophasor measurement devices are selected. Two

different synchrophasor measurement devices selection methods are shown in Ta-

ble 3.4, Method 1 is to select synchrophasor measurement devices in two separate

SVC zones, and Method 2 is to select synchrophasor measurement devices in the

combined SVC zone, which is the combination of SVC zone V I and V II. Compar-

ing these two methods, the number of selected synchrophasor measurement devices

using Method 2 is smaller in both the results of basic OSMDSA and OSMDSA with

SLO. It can be expected that the proposed approach can reduce more synchrophasor

measurement devices in larger SGs.
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Table 3.4: Comparison of Dynamic OSMDSA in Different Scenarios

Result of OSMDSA Result of OSMDSA with SLO

Location Location

Method 1 82, 84, 86, 88, 90, 93, 95, 101, 103, 106,
108, 110 (12 in total)

82, 84, 86-88, 90, 92, 94, 95, 101, 103, 105,
106, 108, 110-112 (17 in total)

Method 2 82, 84, 86, 88, 90, 92, 95, 100, 105, 110
(10 in total)

82, 84, 86-88, 90, 92, 94, 95, 100, 105, 107,
109, 111, 112 (15 in total)

3.4.3 Fault Detection and Identification

Five representative fault types are employed for evaluating the proposed char-

acterization approach, which are generator grounding, load loss, generator outage,

single transmission line outage, and three-phase transmission line outage. The Gaus-

sian atom dictionary is built with 1,800,000 Gaussian atoms and the MPD iteration

number is set to 30. For evaluating fault detection and identification performance,

280 and 400 random faults are simulated to generate training and testing data in

System 1 and System 2, respectively. An additive white Gaussian noise (AWGN)

with SNR 50 dB is added to the measurement for evaluating the performance with

noisy measurements [73, 74].

With all the synchrophasor measurement devices selected in System 1 and 2, the

results of the fault detection and identification rates are demonstrated in Table 3.5.

The result illustrates that the noise impacts heavier in fault identification than

detection. Incorporating the OSMDSA results, the fault detection and identification

rates are illustrated from Table 3.6.

Compared with Table 3.5, the average detection rates of the proposed approach

in Table 3.6 are 100% in the scenarios with noise and without noise, which indi-

cate the proposed approach has high fault detection performance. Considering the

scenarios without noise, in Table 3.6, the fault identification rates of the proposed

approach are only slightly lower than the fault identification rates in Table 3.5,

which indicates the high performance in fault identification. Especially, considering
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Figure 3.3: An example of fault location in the IEEE 118 bus system.

single line outage, the proposed approach selects more synchrophasor measurement

devices, which leads to higher identification rates than the basic OSMDSA. Consid-

ering the noise scenarios, in Table 3.6, the identification rates of proposed approach

are slightly lower than the identification rates in Table 3.5. However, the maximum

difference is smaller than 10%, and the minimum identification rate of the proposed

approach is higher than 80%.

3.4.4 Compared with Other Approaches

Data Compression

In [78,79], the optimal synchrophasor measurement devices placement is studied

to reduce the number of synchrophasor measurement devices while ensuring the full
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Table 3.5: Fault Detection and Identification with Synchrophasor Measurement
Devices Fully Placed

Without Noise Detection Identification

System 1 100%(280/280) 95.7%(268/280)

System 2 100%(400/400) 96.6%(386/400)

SNR = 50 dB Detection Rate Identification Rate

System 1 100%(280/280) 92.8%(260/280)

System 2 100%(400/400) 93.5%(374/400)

Table 3.6: Fault Detection and Identification with Proposed Approach

Without Noise Detection Identification Identification with SLO

System 1 100%(280/280) 90.0%(252/280) 92.1%(258/280)

System 2 100%(400/400) 90.3%(361/400) 92.8%(371/400)

SNR = 50 dB Detection Rate Identification Rate Identification with SLO

System 1 100%(280/280) 82.8%(232/280) 86.8%(243/280)

System 2 100%(400/400) 83.2%(333/400) 87.3%(349/400)

system observability. In this chapter, the dynamic OSMDSA is proposed based on

the background that the synchrophasor measurement devices can be widely located

in SGs. Combined with SVC zones and pilot buses, the proposed dynamic OSMDSA

can provide essential information of the grid with a fewer synchrophasor measure-

ment devices. With MPD, according to the analysis in Section 3.4.1, the proposed

approach is able to decrease the data compression rate to 0.282% according to the

results in Table 3.2, 3.3 and 3.4. Compared with the optimal synchrophasor mea-

surement devices placement, the proposed OSMDSA is more effective and flexible

in big data processing and feature extraction.
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Fault Detection and Identification

In [22, 23], ANN and SVM are studied to detect and diagnose faults in SGs.

ANN is a supervised learning model with hidden neurons in different layers, which

can be used for fault classification and pattern recognition. SVM is also a supervised

learning model, which builds a hyperplane with different kernels for feature classi-

fication. As shown in Table 3.7, compared with the result with ANN and SVM,

the proposed approach has the best performance in detection and identification.

As shown in Table 3.8, the proposed approach has the shortest time consumption

because it provides a significant data compression rate, which dramatically reduces

the computation load.

Fault Location

Compared with the model based sensitivity analysis approach in [80–82], the

proposed WGC analysis is an effective and accurate approach for fault location.

The model based sensitivity analysis requires the detailed dynamic model of the

SGs, topology information of the SGs, and it also incurs large computation load and

long simulation time. Although SG can be accurately modeled, however, in most

real-world situations large-scale SGs can not be accurately modeled due to lack

and change of system information and parameters, especially under time-varying

operating conditions. Our proposed method can be used for analysis of causality

without accurate information of SG typology and system parameters. And thus, it

is valuable in security assessment with partial system information. Combined with

the MPD, the proposed WGC can locate the fault precisely under noise-effected

scenarios. In our simulations, 60 faults are simulated at random locations in the

two test systems with noise or without noise, the successful fault location rate is

100%.
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Table 3.7: Performance Comparison of Different Methods with Reduced Number of
Synchrophasor Measurement Devices

Detection Identification Identification, 50 dB

ANN 94.2% 83.6% 78.7%

SVM 95.6% 81.3% 75.5%

Proposed Method 100.0% 92.4% 87.1%

Table 3.8: Time Consumption Comparison of Different Methods with Reduced Num-
ber of Synchrophasor Measurement Devices

System 1 (S) System 2 (S)

ANN 470.2 1482.6

SVM 590.2 1924.7

Proposed Method 2.7 3.6

Further, even for large-scale SG which can be accurately modeled, the proposed

WGC method provides an approach for rapid and rough determination of event

cause, which will provide valuable apriori information for subsequent security as-

sessment and contingency analysis. The above reasons justify our novel application

of the WGC approach.

3.5 Chapter Conclusion

To respond to the big data challenge in modern SGs, we aim to provide our

initial considerations, investigation, and to propose a fault analysis solution based

on characterization and analytics of the synchrophasor measurements.

The main contributions of this chapter can be concluded as: the proposed two-

layer dynamic OSMDSA provides the spatial characterization of the synchropah-

sor measurement system, and MPD is used for characterizing the signals in the

temporal-domain. Combing the spatial-domain and temporal-domain characteri-
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zations, the volume of the Big Data is substantially reduced, while preserving the

comprehensive information in the data. To evaluate the proposed approach, a HMM

based SG situational awareness method is proposed to investigate the fault detection

and identification; the WGC for SGs is proposed to analyze the causal relationship

of the buses during system disturbance.

The numerical results and comparison with other methods demonstrate that,

although the data volume is reduced below 1% of the original data volume, the situ-

ational awareness performance was only slightly affected, and this fact demonstrate

the effectiveness and robustness of the proposed analytics approach in synchrophasor

based Big Data.
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Chapter 4

Social Energy Mining in

Distribution Grids

The inherent nature of energy, physicality, sociality and informality, determined

that development of power systems would eventually come to a point, that active

informative interactions between the society and the power system will be an in-

evitable part for further improvements. And today’s cheap sensor manufacturing,

maturing big data analyses and boost of intelligent techniques have paved the way

to this revolutionary point to transfer the existing power system to a social energy

system.

A social energy system is a complex of physical energy systems, physical social

systems, and the artificial virtual systems derived from the physical systems. The

artificial virtual systems are derived with certain purposes that concern the joint

operation of the socio-technical systems. Utilizing the multifaceted data collected

from the socio-technical systems, through sufficient interacting and massive com-

puting, knowledge automation of the systems is gained, and intelligence in system

control and management is generated. The knowledge and intelligence in turn are

applied in the social energy system, achieving a truely automated and intelligent

joint socio-technical system design and management.
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Figure 4.1: Technical scheme of the DU social energy system case study.

In this chapter, we provide a case study on a campus power grid to demon-

strate the concept of social energy. The case study includes the elements of power

system operation, smart building modeling, real-time pricing mechanism, and hu-

man behavior modeling. The technical scheme of the case study is demonstrated in

Fig. 4.1, using the concept of parallel intelligence and control. The detailed technical

description of the case study is introduced in this section.

In previous literature, a lot of studies have proved the relationship between

comfort and work performance. Indoor temperature is a critical factor of the indoor

environment, which can affect human behavior in many ways such as perceived air

quality, working performance, thermal comfort, etc. [56] The U.S. federal govern-

ment regulates CO2 emission for universities, as a result, university facility managers

are required to meet the green house reduction regulation in order to avoid financial

penalties by targeting on energy cutback. However, some of the strategies are not

efficient and may cause reduction in comfort. The occupants who feel uncomfort-

able are less productive need more time to accomplish their tasks, which may lead

to more energy consumption and environmental degradation [83]. [57,84] show that

with $2 saving per employer when indoor temperature is within comfortable range,
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and the working efficiency will reduce 2% per degree Celsius when the temperature

is higher than 25◦C.

This case study proposes a smart building power consumption strategy by jointly

considering the interactions between the campus power grid and the community ar-

tificial system. Six buildings in the University of Denver are chosen as the target

buildings for demonstration, and Table 4.1 provides the basic information about

them. Work productivity is considered as one of the essential factors in the method-

ology as work performance varies considerably under different indoor temperatures.

Table 4.1: Basic Information about the 6 target buildings

Name Building Type Area (ft2) Floor

1 Ritchie Center Fitness center 440000 4

2 Law Building Academic 181000 4

3 Sturm Hall Academic 245000 4

4 Daniels Building Academic 110536 6

5 Newman Center Performing art 180000 5

6 Olin Hall Academic 40000 2

The case study is divided into two parts regarding the power consumption model

of the target buildings. We started the case study under a simpler condition, where

the consumption of each hour of the day is independent from each other, more

specifically the buildings’ power consumption is solely a function of the indoor tem-

perature settings and outdoor temperatures of the current time et = h(T in
t , T out

t , t).

And indoor temperature T in
t is the management variable, and the hourly lowest

overall costs of the system is set as the management object. We expanded the sce-

nario into a more realistic and complex one in the second part of the case study

by replacing the static consumption model with a dynamic consumption model. In

this scenario, consumption, outdoor temperature and hour together form the state

of the system at time t, which is xt = [et, T
out
t , t]ᵀ. And consumption et is not only

a function of outdoor temperature T out
t and the control input indoor temperature
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setting T in
t , but also a function of previous consumption et−1. And the minimiza-

tion of 24-hour aggregated overall costs is set as the management object. Neural

Networks are used in both parts to learn and train the consumption profile models

for each building. And training data are generated by the smart building models,

which are built in the software eQUEST [85].

It should be noted that distribution locational marginal real-time pricing is im-

plemented to reflect the changing of energy usage and utility expenses. The DLMP

calculation is developed in MATLAB environment based on MATPOWER simula-

tion toolbox [86]. Given the human work performance model, energy consumption

profile models and the DLMP, distributed iterative adaptive programming [87] is ap-

plied to find out the optimal indoor temperature settings for the 6 target buildings

in the first part, and Neural Network implementation of iterative adaptive dynamic

programming [88] is introduced to solve the optimization problem.

4.1 Case study of social energy implementation in a

campus grid with static building energy consump-

tion model

The technical artificial part of the campus social energy system described in

Fig. 4.1 is composed of three key models. This section will give detailed description

of the three models, and how they cooperate and interact with each other to guide

the energy management system.

4.1.1 Human Work Performance Model

Indoor temperature is one of the fundamental characteristics of the indoor envi-

ronment. It can be controlled with a degree of accuracy depending on the building

and its HVAC system. The indoor temperature affects thermal comfort, perceived
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air quality, sick building syndrome symptoms and performance at work [57]. In this

study, the work productivity P is referred to the effects of temperature on perfor-

mance at office work [56], and the human work performance model can be expressed

as

ξ = g(T in) (4.1.1)

= 0.1647524 · (5
9
· (T in − 32))− 0.0058274 · (5

9
· (T in − 32))2 +

0.0000623 · (5
9
· (T in − 32))3 − 0.4685328

where ξ is the work productivity, T in is the indoor temperature settings which

satisfies 64 � T in � 79. And Fig. 4.2 shows the relationship between indoor tem-

peratures and the corresponding work efficiency. It should be pointed out that,

although according to [89], the ideal temperature range for university buildings is

between 68◦F and 74◦F, the temperature bracket in our study is designed from 64◦F

and 79◦F, as the target buildings include a fitness center.

Figure 4.2: Work efficiency as a function of indoor temperature.
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Let ξk,t and uk,t denotes the work productivity and indoor temperature setting

in building k at time t, respectively, (4.1.1) can be rewritten as

ξk,t = g(uk,t). (4.1.2)

In addition, we denote ξt = [ξ1,t ξ2,t · · · ξ6,t]ᵀ and ut = [u1,t u2,t · · ·u6,t]ᵀ, xt is the

control variable in this case study.

4.1.2 The Neural Network Based Energy Consumption Profile Mod-

els

We utilize eQUEST [85] as the building simulation tool, which can provide com-

prehensive and detailed calculations about HVAC systems and simplistic assump-

tions for lighting and plug loads. The hourly report from the simulation system can

provide sufficient information for training the neural network models for predicting

power consumption. Table 4.2 shows partial simulation results of the hourly energy

consumption on July 1st for the Ritchie center. It is noted that the simulation gen-

erated much more information and results, however, due to space limitation only

the following is included in this chapter.

Table 4.2: Partial simulation results of Ritchie center on July 1st from 15 : 00 to
20 : 00

Hour Tin (◦F) Tout (
◦F) Energy (BTU)

15 64 94 1.08× 107

16 64 92 1.31× 107

17 64 92 1.70× 107

18 64 93 2.03× 107

19 64 89 2.22× 107

20 64 85 2.19× 107

Simulated data of one entire year with constant indoor temperature setting at

64, 67, 70, 73, 76 and 79 ◦F were generated for all the 6 buildings, and the sample
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data on all workdays were picked for training the neural network energy consumption

models. For each individual building, a two-layer feed-forward network with sigmoid

hidden neurons and linear output neurons is trained with the Levenberg-Marquardt

backpropagation algorithm. Hour, indoor temperature setting and outdoor temper-

ature are the inputs, and energy consumption is the output of the neural network

model. 75% of the sample data are randomly selected as training data, 15% as val-

idation data and 15% as testing data. Table 4.3 lists the number of hidden neurons

for training the consumption model of each building and the regression R-value of

the training results. The average R-value is 0.92, which demonstrates that the 6

energy consumption neural network models are acceptable. Thus, energy consump-

tions of building k at time t, which is denoted as ek,t can be expressed as functions

of indoor temperature setting uk,t, time t and outdoor temperature T out
t

ek,t = hk(uk,t, t, T
out
t ) (4.1.3)

et = H(ut, t, T
out
t )

where et = [e1,t e2,t · · · e6,t]ᵀ.

Table 4.3: Number of hidden neurons for training the target buildings and the
regression R-value of the training results

Index Building Hidden Layer R-value

1 Ritchie 30 0.88

2 Law 20 0.96

3 Sturm 30 0.96

4 Daniels 30 0.94

5 Newman 50 0.86

6 Olin 5 0.94
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4.1.3 Distribution Locational Marginal Pricing for DU Campus

Grid

To indicate the influence of load changing on both financial aspect and campus

power system side, distribution locational marginal pricing is introduced to associate

the physical system to the artificial system. The detailed campus power system

configurations is depicted in [90]. Fig. 4.3 shows the topology of DU campus power

system. Using a power system simulator developed based on DU campus power

system, the AC-OPF based DLMP is introduced to implement the real-time pricing

mechanism.

arg max
pbj ,p

g
i

z =
N∑
j=1

(cj − pbj) · qcj (4.1.4)

−
M∑
i=1

(pgi − si) · qsi

s.t.
M∑
i=1

qsi −
N∑
j=1

qcj − LP (V, θ) = 0 (4.1.5)

M∑
i=1

Qsi −
N∑
j=1

Qcj − LQ(V, θ) = 0 (4.1.6)

fj(V, θ) � fMax
j (4.1.7)

qMIN
si � qsi � qMAX

si (4.1.8)

QMIN
si � Qsi � QMAX

si (4.1.9)

VMIN
i � Vi � VMAX

i (4.1.10)

where z is the system social surplus that is gained from our DLMP calculation,

N = 57 is the total number of campus buildings and j is the index of buildings;

M = 3 is the total number of electricity suppliers and i is the index of those

generators; cj stands for the building bid price for each power generation and si

represents the offer price from each power generation; pbj is the distribution locational
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marginal price at each building j, and pgi stands for the distribution locational

marginal price at supply bus i; qcj is the power demand at building j; qsi is the power

supply from bus i; V and θ are voltage magnitude and angle, respectively; fj stands

for the power flow at jth line, which is limited by fmax
j = 400 A; qsi is the active

power output from each power source and the maximum capacity qMAX
si = 12.7 MW,

while Qsi is the reactive power output from the corresponding energy generation and

the maximum capacityQMAX
si = 11 MVar; Vi stands for the voltage magnitude of the

ith bus with power injection, in this case study VMIN
i = 0.90 pu and VMAX

i = 1.10

pu; and LP (V, θ) and LQ(V, θ) are the total active power loss and reactive power

loss in the DU campus power gird, respectively.

For the convenience of later calculation, we express the DLMP of the target

buildings pt = [p1,t p2,t · · · p6,t]ᵀ simply as a highly nonlinear and complex function

Γ(·) of energy consumption et, and thus as a function of the control variable ut as

pt = Γ(et) = Γ(H(ut, t, T
out
t )). (4.1.11)

4.1.4 Overall Social Cost

To address the overall social cost, a novel method is demonstrated in this section.

Based on the aforementioned system configurations and social energy methodology,

the formulation for the overall social cost comprises two major parts: the utility

cost, which is calculated by the end-use energy and the corresponding DLMPs; the

cost of work productivity, which is determined by the cost of performance reduction

and the amount of working personnels. (4.1.12) defines the formulation for calcu-

lating the overall social costs ψt at time t of the target buildings in University of

Denver’s campus grid.
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Figure 4.3: The network topology of DU campus grid.

ψt =
6∑

k=1

[pk,t · ek,t + α(1− ξk,t) · ok,t] (4.1.12)

= pt · et + α(1− ξt) · ot (4.1.13)

= Γ[H(ut, t, T
out
t )] ·H(ut, t, T

out
t ) + α[1− g(ut)] · ot

= Ψ(ut, t, T
out
t ,ot) (4.1.14)

where ψt is the overall cost at time t, α is the annual saving for each personnel when

the working productivity is 1 it is in the unit of dollars, and ot = [o1,t o2,t · · · o6,t]ᵀ

where ok,t is the number of occupants in building k at time t. It should be noted that,
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the outdoor temperature T out
t and number of occupants ot are obtained through

learning historical data and are directly related to the time t in a day. For this

reason, at a certain time point t, parameters t, T out
t and ot are known and they

are no more variables. Hence the overall social cost is solely the function of the

indoor temperature settings ut. The goal of the case study is to find, at time point

t, the best indoor temperature settings ût which can generate the most economic

combination between HVAC costs and work productivity. Therefore, the problem

can be formulated as the following

ût = arg min
ut

Ψ(ut) (4.1.15)

s.t. 64 � uk,t � 79

4.1.5 Distributed iterative adaptive programing for solving the min-

imum social cost

Searching in the vector space of ut = [u1,t u2,t · · ·uk,t]ᵀ can be inefficient and

computationally costly, especially when the number of target buildings increases.

Therefore, we chose the distributed iterative adaptive programing (DIAP) [87] to

solve (4.1.15). Simply speaking, the DIAP algorithm updates the control variable of

only one building at a time, and iterates through all the buildings until the control

sequence stops changing significantly. Details of the procedures are narrated as the

following.

Define K = {1, 2, · · · , 6} to be the set of building indices. Denote uη̄,t = {uk,t|k ∈
K, k �= η}, then the object cost function can be written as Ψ(uη,t,uη̄,t). Let l =

0, 1, 2, · · · be the iteration index, and {ηl} be a sequence which satisfies ηl ∈ K,

for ∀l = 0, 1, 2, · · · . At the beginning of iteration when l = 0, construct the initial

control sequence uη0,t = [u01,t u
0
2,t · · ·u06,t]ᵀ, and for ∀t = 1, 2, · · · , 24 the iteration

starts as
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ũη0,t = arg min
u0
η0

,t

Ψ(u0η0,t,u
0
η̄0,t), (4.1.16)

ψ̃η0,t = Ψ(ũη0,t,u
0
η̄0,t). (4.1.17)

Construct a new control sequence based on (4.1.16) and (4.1.17) as uη1,t =

[u11,t u
1
2,t · · ·u16,t]ᵀ, where u1k,t = u0k,t for k �= η0, and u

1
k,t = ũη0,t for k = η0. Then for

∀l = 1, 2, 3, · · · and the corresponding ηl, the DIAP algorithm will continue as

ũηl,t = arg min
ul
ηl
,t

Ψ(ulηl,t,u
l
η̄l,t

), (4.1.18)

ψ̃ηl,t = Ψ(ũηl,t,u
l
η̄l,t

). (4.1.19)

And construct the next new control sequence uηl+1,t = [ul+1
1,t u

l+1
2,t · · ·ul+1

6,t ]
ᵀ, where

ul+1
k,t = ulk,t for k �= ηl, and u

l+1
k,t = ũηl,t for k = ηl.

The iteration stops at l = L, when |ψ̃ηL,t − ψ̃ηL−δ ,t| � β1 and |uηL,t − uηL−δ ,t| �
β2, where δ = {1, 2, · · · , 5}, β1, β2 are threshold constraints. Thus the optimal

indoor temperature settings at time t is ût = uηL,t, and the minimum social cost is

ψ̂t = ψ̃ηL,t. Detailed numerical results are provided in the following section.

4.1.6 Results and Discussion

We selected one typical summer week, July 25th to 29th, and one typical winter

week, Feb 22nd to 26th, as the test period to demonstrate the concept of social

energy. Figs.4.4 to 4.9 show the results in the summer week, and Figs.4.11 to 4.16

are results for the winter week.

In each of these figures, the plot at the down-right corner displays the outdoor

temperature changes in each day (left axis), and the number of occupants with re-

spect to time (thick light blue curve to the right axis). Here we assume that the
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Figure 4.4: Test conditions and results for Ritchie center in a typical summer week.

occupancy change is the same everyday, in each building, respectively. The up-left

plot shows the optimized indoor temperature settings calculated by the DIAP algo-

rithm, and the up-right and down-left plots demonstrate the corresponding power

consumptions and hourly costs corresponding to the optimized temperature settings,

respectively.

We can observe from these figures that the change of hourly cost does not follow

exactly the pattern of the power consumption change, and the cost is affected by

both the power consumption and the occupancy number’s change. For example, in

Fig. 4.6 and 4.7, at 13 : 00 there is a clear drop in cost caused by the dramatic drop

of occupancy. And in Fig. 4.8, the cost curves receive much stronger affects from

the occupancy change than from the consumption change.

The overall social cost of the 6 target buildings during the test weeks are provided

in Fig. 4.10 and Fig. 4.17. In these two figures, solid lines with “•” markers are the
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Figure 4.5: Test conditions and results for the Law building in a typical summer
week.
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Figure 4.6: Test conditions and results for Sturm Hall in a typical summer week.
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Figure 4.7: Test conditions and results for the Daniels building in a typical summer
week.
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Figure 4.8: Test conditions and results for Newman center in a typical summer week.
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Figure 4.9: Test conditions and results for Olin Hall in a typical summer week.

total hourly costs of the target buildings applying the optimized indoor temperature

settings, and different colors denote different days. What’s more, we also provide

some more test results with 3 baseline reference temperature settings for comparison.

The dotted lines with markers “+”, “×” and “◦” display the total costs when

the indoor temperatures are set to 64◦F, 71◦F and 79◦F, respectively. Comparing

between the curves with same color but different markers, it is easy to find that the

solid lines are always the lowest.

54



0 2 4 6 8 10 12 14 16 18 20 22 24
Hour

0

10

20

30

40

50

60

H
ou

rly
 C

os
t (

$)

July,25
July,26
July,27
July,28
July,29

Figure 4.10: Comparison of the overall social cost of the 6 target buildings in the
test summer week with different indoor temperature settings.
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Figure 4.11: Test conditions and results for Ritchie center in a typical winter week.
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Figure 4.12: Test conditions and results for the Law building in a typical winter
week.
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Figure 4.13: Test conditions and results for Sturm Hall in a typical winter week.
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Figure 4.14: Test conditions and results for the Daniels building in a typical winter
week.
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Figure 4.15: Test conditions and results for Newman center in a typical winter week.
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Figure 4.16: Test conditions and results for Olin Hall in a typical winter week.
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Figure 4.17: Comparison of the overall social costs of the 6 target buildings in the
test winter week with different indoor temperature settings.
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4.2 Case study of social energy implementation in a

campus grid with dynamic building energy consump-

tion model

In the above section Sec.4.1, we present an example of the technical virtual sys-

tem for the DU’s campus grid to demonstrate the concept of social energy. The tech-

nical virtual system receives and processes real world measurement data, evaluates

target buildings’ energy consumption, predicts energy suppliers’ response, quantifies

occupants’ comfort level, optimizes between energy costs and occupants’ efficiency

costs, and eventually provides management advices for reducing the overall system

costs. In order to better understand and observe the working mechanism of the tech-

nical virtual system, we simplified the buildings’ energy consumption models, which

assumes that consumption is determined solely by the current state and operation

of the system. However in real situation, a building’s energy consumption is not

only related to ongoing “event” (ongoing operations, current environment param-

eters, current occupants’ behaviors, etc.), but also affected by its previous status

(consumption profiles from the passed period, previous environment parameters,

operation strategy of facilities at previous time points, etc.).

Therefore, in this section, we intend to update the consumption model to a

dynamic model and integrate it into the same socio-technical system developed

above. Due to the limited access to the real system, we didn’t add extra system

parameters to describe the system’s status, but sticking to the parameters and

variables used in Sec.4.1. Let xt denote the state of the entire system at time k, and it

is composed of energy consumptions of the 6 target buildings et = [e1,t e2,t · · · e6,t]ᵀ,
outdoor temperature T out

t , and hour of the day t, which is expressed in the following:
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xt = [eᵀt , T
out
t , t]ᵀ (4.2.1)

And it follows the following state function

xt+1 =

⎡
⎢⎢⎢⎢⎣
et+1

T out
t+1

t+ 1

⎤
⎥⎥⎥⎥⎦ = F (xt,ut) =

⎡
⎢⎢⎢⎢⎣
H(et,ut, T

out
t+1, t)

G(T out
t )

t+ 1

⎤
⎥⎥⎥⎥⎦ , (4.2.2)

in which et+1 = H1(et,ut, T
out
t+1, t) is the dynamic consumption model, and it is dif-

ferent from the consumption model defined in Equation 4.1.3. And T out
t+1 = G(T out

t )

is the outdoor temperature forecast model. Both of the models will be obtained by

training time series nonlinear autoregressive with external input (NARX) Neural

Networks.

Recall the cost function defined in Equations 4.1.12 - 4.1.14 in Section 4.1, in

which the control variable ut only affects the hourly cost ψt = Ψ(ut), thus it is

reasonable to set it as the objective function to be minimized. While in the case

discussed in this section, where control decisions ut influence all system states be-

yond the time point t, the goal of system management turns out to be minimizing

accumulated cost beyond current time point t, no matter what management strate-

gies have been applied before. To implement this idea, We first define the cost-to-go

function J(·, ·) of the system as

J(xt,ut) =
∞∑
i=t

γi−t ·Ψ(xi,ui), (4.2.3)

where Ψ(xt,ut) is the utility function previously defined in Equations 4.1.12 - 4.1.14

which is recalled here as
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Ψ(xt,ut) = pt · et + α(1− ξt) · ot
= Γ(ut,xt) ·H(ut,xt)︸ ︷︷ ︸

energy cost

+α[1− g(ut)] · ot︸ ︷︷ ︸
human cost

. (4.2.4)

In the cost-to-go function 4.2.3, ut = (ut,ut+1,ut+2, · · · ) is the control sequence

beyond time t, and 0 < γ < 1 is the discount factor. And our goal is to find the

optimal control sequence u∗
t = (u∗

t ,u
∗
t+1,u

∗
t+2, · · · ), which results in the optimal

(specifically minimum in this case study) cost-to-go J∗(xt), which is

J∗(xt) = inf
ut

J(xt,ut) = J(xt,u
∗
t ). (4.2.5)

It is obvious that Equation 4.2.5 can hardly be solved directly for highly nonlin-

ear systems, especially in our case, the calculation of real-time electricity prices

is achieved by solving another optimization problem, which means we don’t have

a deterministic function to describe the relationship between electricity prices and

loads. And it is inferred that we are doing optimization problem with “internal black

boxes”. Therefore we need a more robust method and we propose to apply Neural

Network based iterative adaptive dynamic programming algorithm [88, 91–93] to

solve the minimum cost problem.
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4.2.1 Neural Network based iterative adaptive dynamic program-

ming for minimizing aggregated overall cost of the social en-

ergy system

According to Equations 4.2.3 and 4.2.5, we can rewrite the optimal cost-to-go

function as

J∗(xt) = Ψ(xt,u
∗
t ) +

∞∑
i=t+1

γi−tΨ(xi,u
∗
i )

= Ψ(xt,u
∗
t ) + γJ∗(xt+1)

= min
ut

{Ψ(xt,ut) + γJ∗(xt+1)}. (4.2.6)

This is the Bellman optimality equation for dynamic programming. it indicates that,

assuming the optimal control sequence from t+ 1 has been achieved and applied to

the system, the optimal control vector for time t can be obtained by

u∗
t = argmin

ut

{Ψ(xt,ut) + γJ∗(xt+1)}

= argmin
ut

{Ψ(xt,ut) + γJ∗(F (xt,ut)}, (4.2.7)

where xt+1 = F (xt,ut) is the state function defined in 4.2.2. It allows us to optimize

system performance over only one time step, which largely reduces the computa-

tional complexity and makes the solution to this problem feasible. Therefore, the

major task here becomes finding the solution of the state dependent optimal cost-

to-go function J∗(xt).

First proposed by Paul J. Werbos in [91], and widely used in control theories

later, the core of adaptive dynamic programming [94], also called approximate dy-

namic programming in other literatures [91, 93], is to design a critic network for

approximate the cost-to-go function J through training. And iterative adaptive

dynamic programming combined and integrated value iteration into the training

62



process of the critic network. The critic network updating mechanism is described

in the diagram shown in Fig. 4.18.

Train 
Critic Network 

Model 
Network

Critic Network

+ +
min

Model 
Network

Critic Network
+1

+ +
min

Replace

Train 
Critic Network 

Replace

Iteration 

Iteration 
+1

...

Figure 4.18: Update mechanism of the critic network in iterative adaptive dynamic
programming.

As most of the traditional value iteration algorithm, we choose the quadratic

form of the system states as the initial value function J0(xt) = xᵀ
tP0xt, where P0 is

a positive-definite matrix, and we choose P0 = λIn, λ is an arbitrary positive scalar,

and In is an n× n unity matrix, with n = 8 is the length of the state vector in our

case. We define J i(xt) as the value function in the ith iteration, the iteration will

start as

J1(xt) = min
ut

{Ψ(xt,ut) + γJ0(xt+1)}

= min
ut

{Ψ(xt,ut) + γJ0(F (xt,ut))}.

Then construct and initialize a neural network of a certain structure as the critic

network, and we denote this critic network as NN : {W0,B0} , whereW0 is the set of

63



its weights and B0 is the set of its biases. Using the values J1(xt) as training targets,

we can update the network parameters as {W0,B0} → {W1,B1}. Substituting the

initial value function with the newly obtained J1(·), and the algorithm will iterate

as

J i(xt) = min
ut

{Ψ(xt,ut) + γJ i−1(xt+1)}

= min
ut

{Ψ(xt,ut) + γJ i−1(F (xt,ut))} (4.2.8)

for iteration index i = 2, 3, · · · . The parameters of the critic network {Wi−1,Bi−1} →
{Wi,Bi} will be trained and updated using J i(xt) as targets. It can be proved [95]

that when i approaches infinity i → ∞, value function approaches the optimal

cost-to-go function J i(xt) → J∗(xt).

4.2.2 Proof of convergence of the iterative value function to the

optimal cost-to-go function

Convergence of the iterative value function [88,95] is proved in the following.

Theorem 4.2.1. Suppose that there exist constants 0 < ρ < ∞, 0 � ε � 1, and

1 � ε � ∞, which satisfy 0 � J∗(xt+1) � ρΨ(xt,ut), and 0 � εJ∗(xt) � J0(xt) �

εJ∗(xt), ∀xt, and ∀ut, then the following inequalities hold uniformly:

[1 +
ε− 1

(1 + ρ−1)i
]J∗(xt) � J i(xt) � [1 +

ε− 1

(1 + ρ−1)i
]J∗(xt) (4.2.9)

Therefore, the value function J i(xt) converges to J
∗(xt) when i approaches infinity,

which is lim
i→∞

J i(xt) = J∗(xt).

Proof. We first start from the lower bound of the inequality in Equation 4.2.9, when

i = 1,
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J1(xt) = min
ut

{Ψ(xt,ut) + γ · J0(xt+1)}

� min
ut

{Ψ(xt,ut) + γ · εJ∗(xt+1)}. (4.2.10)

If there exists a constant K1, which satisfies K1 � 0 and 1 + ρK1 = ε −K1, with

ρΨ(xt,ut)− γ · J∗(xt+1) � 0, Equation 4.2.10 can be recast as

J1(xt) � min
ut

{Ψ(xt,ut) + γ · εJ∗(xt+1) +K1[ρΨ(xt,ut)− γ · J∗(xt+1)]}

= (1 + ρK1) ·min
ut

{Ψ(xt,ut) + γ · J∗(xt+1)}

= (1 + ρK1) · J∗(xt) (4.2.11)

where K1 =
ε−1
1+ρ � 0. Further when i = 2, it can be deduced that

J2(xt) = min
ut

{Ψ(xt,ut) + γ · J1(xt+1)}

� min
ut

{Ψ(xt,ut) + γ · (1 + ρK1)J
∗(xt+1)}

� min
ut

{Ψ(xt,ut) + γ · (1 + ρK1)J
∗(xt+1) +K2[ρΨ(xt,ut)− γ · J∗(xt+1)]}

= (1 + ρK2) ·min
ut

{Ψ(xt,ut) + γ · J∗(xt+1)}

= (1 + ρK2) · J∗(xt) (4.2.12)

with K2 = 1
1+ρ−1 ·K1 � 0 to satisfy K2 � 0 and 1 + ρK2 = (1 + ρK1) −K2. And

further when i = i, the following can be easily obtained,

65



J i(xt) = min
ut

{Ψ(xt,ut) + γ · J i−1(xt+1)}

� min
ut

{Ψ(xt,ut) + γ · (1 + ρKi−1)J
∗(xt+1)}

� min
ut

{Ψ(xt,ut) + γ · (1 + ρKi−1)J
∗(xt+1) +Ki[ρΨ(xt,ut)− γ · J∗(xt+1)]}

= (1 + ρKi) ·min
ut

{Ψ(xt,ut) + γ · J∗(xt+1)}

= (1 + ρKi) · J∗(xt), (4.2.13)

where Ki =
1

1+ρ−1 ·Ki−1 � 0. And by mathematical induction we will have

Ki =
1

(1 + ρ−1)i−1
·K1 =

ε− 1

(1 + ρ−1)i
ρ−1 (4.2.14)

J i(xt) � [1 +
ε− 1

(1 + ρ−1)i
] · J∗(xt) (4.2.15)

Therefore, the lower bound of the inequality 4.2.9 is proved. Following the same

procedures, the upper bound of the inequality can be proved.

4.2.3 Procedures to train the critic network for approximating the

optimal cost-to-to function

Since the rationale and feasibility of finding the optimal cost-to-go function for

solving the minimum system cost problem have been explained and proved, here

we summarize the detailed step-by-step implementation of the iterative adaptive

dynamic programming algorithm.

(i) Train NARX consumption model et+1 = H(et,ut, T
out
t+1, t) and outdoor tem-

perature forecast model T out
t+1 = G(T out

t ). And form the system state model

xt+1 = F (xt,ut).
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(ii) Set the value of max iteration imax, and desired accuracy ϑ for the critic

network training.

(iii) Randomly choose ι state vectors {x1
t ,x

2
t , · · · ,xι

t}. Set the discount factor

γ = 0.6 in the case study. And construct and initialize the critic network’s

parameters {W0,B0}.

(iv) Set the iteration index i = 0, and set P0 = λ · I8.

(v) Set the iteration index i = i+1, and solve Equation 4.2.8 to obtain the updated

estimation of the critic network {J i(x1
t ), J

i(x2
t ), · · · , J i(xι

t)}.

(vi) Train the critic network and update its parameters {Wi,Bi}.

(vii) If i > 1, go to (viii); Else if J0(xι
t) > J1(xι

t), ∀xι
t, go to (viii); Otherwise,

increase λ and go back to (iv).

(viii) If i > imax, or |J i(xj
t )− J j(xι

t)| � ϑ, for j = 1, 2, · · · , ι, go to (ix); Otherwise,

go back to (v).

(ix) The optimal cost-to-go function is achieved by J∗(xt) = J i(xt), and the neural

network NN : {Wi,Bi} can output for further computation.

(x) Terminate the iterative algorithm.

In the numerical experiment conducted in this case study, we set and ι = 240 and

γ = 0.6. Constant λ = 1 was initially set, but updated by the algorithm to λ = 5.

And the algorithm eventually stopped at i = 103.

4.2.4 Result and discussion

Same as in Section 4.1, we chose the same days (5 successive days in summer, and

5 successive days in winter), to demonstrate and test the concept and algorithm in
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this section. However, since the amount of figures generated is huge, we only selected

test results from one of these days, July 26th, to present here.
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Figure 4.19: (a) Outdoor temperatures and the cost components for the entire
system, (b) Number of Occupants in the 6 target buildings.

Figure 4.19(a) plots out the optimized aggregated overall cost for each hour of

the testing day, and the corresponding energy cost and human working efficiency

cost are also provided. As part of the system’s state, as well as the driven variables of

the campus energy system, outdoor temperature changes and number of occupants

in the 6 target buildings are shown in Figure 4.19. And Figures 4.20 to 4.25 look at

the 6 target buildings separately by presenting the individual HVAC management

strategies (indoor temperature control), energy consumption profiles and hourly

real-time electricity prices information for each of them.
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Figure 4.20: (a) Suggested indoor temperature settings vs. outdoor temperatures,
and the power consumption for Ritchie Center, (b) Real-time hourly electricity rate
vs. power consumption for Ritchie Center.
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Figure 4.21: (a) Suggested indoor temperature settings vs. outdoor temperatures,
and the power consumption for the Law building, (b) Real-time hourly electricity
rate vs. power consumption for the Law building.

We can see from the overall costs plotted in Figure 4.19(a), that it presents not

only current system cost, but also an estimation of future aggregated costs applying

the current management strategy. By comparing the consumption profiles in Figures

4.20 to 4.25, it is obvious that Ritchie Center’s energy consumption is much higher

than others’, making it the major contributor to the energy cost in the system.
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Figure 4.22: (a) Suggested indoor temperature settings vs. outdoor temperatures,
and the power consumption for Sturm Hall, (b) Real-time hourly electricity rate vs.
power consumption for Sturm Hall.
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Figure 4.23: (a) Suggested indoor temperature settings vs. outdoor temperatures,
and the power consumption for the Daniels buildings, (b) Real-time hourly electric-
ity rate vs. power consumption for the Daniels buildings.

And let’s look at two featured point during the test period. The first one is

9 : 00 o’clock, when the working hour begins and a sharp increase in amount of

occupants appears. Due to this change, a peak of all types of costs occurs. And at

this time the total amount of occupants in the system reflects to be the largest, which

leads to a trend for most of the academic buildings to set their indoor temperatures

to 71 − 72◦F , which induces the highest working efficiency and in turn guaranties
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the lowest human costs. And at this time, Ritchie Center’s temperature setting

drops to a low value. Although this setting seems to be unwise, for it leads to high

consumption for that hour, but it is the one suggested by the evaluation algorithm

as it may lay good start for the future times.
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Figure 4.24: (a) Suggested indoor temperature settings vs. outdoor temperatures,
and the power consumption for Newman Center, (b) Real-time hourly electricity
rate vs. power consumption for Newman Center.

The second featured point is 18 : 00 o’clock. At this time point, the outdoor

environment still remains hot, occupants of the academic buildings start to leave,

while visitor amount of Ritchie Center and Newman Center maintains large. Here,

we can observe a very random selection of indoor temperatures in those academic

buildings, since human cost is no longer the leading factor at this time.

4.3 Chapter Conclusion

This chapter presents an initial investigation into the intension and extension of

the social energy concept. A case study of consumer level social energy is provided in

the context of DU campus power grid, involving power system simulation, numerical

experiments for smart building modeling, distribution level real-time pricing and

social response to the pricing signals. Although the energy system studied in this
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Figure 4.25: (a) Suggested indoor temperature settings vs. outdoor temperatures,
and the power consumption for Olin Hall, (b) Real-time hourly electricity rate vs.
power consumption for Olin Hall.

chapter is largely simplified, it still gives us a vision into the interactions among the

users, energy systems and the electricity suppliers.

What’s more, the Neural Network based iterative adaptive dynamic program-

ming algorithm was introduced for solving highly nonlinear cost minimization prob-

lem with “black-box” models included. Convergence of the solution and detailed

neural network implementation procedures are provided. This robust algorithm

can reduce the complexity of such computation consuming problems, and reveals

high feasibility and ability for a solution even when the case approaches real world

systems.

The case study only provides an application scenario of a relatively small smart

community, but our vision for social energy is that, it can be applicable in different

social and technical scales and provide a multi-layered solution to benefit the socio-

technical system.
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Chapter 5

Conclusion

The request for big data based situation awareness is urgent today. In this dis-

sertation, two data-centric approaches for power system situation awareness and

management are proposed to address the security problems in the transmission

and/or distribution grid and social benefits augmentation problem at the distribu-

tion - customer lever, respectively.

The first approach provides a fault analysis solution based on characterization

and analytics of the synchrophasor measurements. Specifically, the OSMDSA and

MPD based spatial-temporal synchrophasor data characterization method was de-

veloped to reduce data volume while preserving comprehensive information for the

big data analyses. And the WGC method was investigated to conduct fault impact

causal analysis during system disturbance for fault localization. Numerical results

and comparison with other methods demonstrate the effectiveness and robustness

of this analytics approach.

The second approach investigates the concept and application of social energy

upon the University of Denver campus grid to provide management improvement

solutions for optimizing social cost. Social element – human working productivity

cost, and economic element – electricity consumption cost, are included in the eval-
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uation of social cost. Moreover, power system simulation, numerical experiments

for smart building modeling, distribution level real-time pricing and social response

to the pricing signals are studied for implementing the interactive artificial-physical

management scheme. What’s more, the robust iterative adaptive dynamic program-

ming algorithm was introduced, which is capable of solving complex system control

problems.

The following directions are proposed as possible future works for the research

work done in this dissertation.

• Current research work only includes 6 buildings in a small scale power grid

as investigation object, and the technical system structure is simplified, which

considers the HVAC system with indoor temperature control as the control

means. To expand this work for generating more realistic benefits to society,

updating current system to approach real world system is a promising direc-

tion. As more elements and factors, which affect the system’s performance in

various ways, robustness of the proposed algorithm can also be examined.

• As the interface to integrate social elements into the socio-technical system,

development of more advanced human behavior and feedback modeling could

be conducted.

• The demand-side management scheme investigated in this dissertation is a

centralized scheme, which is usually time consuming. With the large scale ap-

plications of decentralized algorithms, comparison research using decentralized

management algorithms, such as game theory, or development of centralized-

distributed combined schemes could be conducted.
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