
University of Denver University of Denver

Digital Commons @ DU Digital Commons @ DU

Electronic Theses and Dissertations Graduate Studies

1-1-2015

Fail-Safe Testing of Web Applications Fail-Safe Testing of Web Applications

Salah Boukhris
University of Denver

Follow this and additional works at: https://digitalcommons.du.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Boukhris, Salah, "Fail-Safe Testing of Web Applications" (2015). Electronic Theses and Dissertations.
1011.
https://digitalcommons.du.edu/etd/1011

This Dissertation is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It
has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital
Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Denver

https://core.ac.uk/display/217241638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.du.edu/
https://digitalcommons.du.edu/etd
https://digitalcommons.du.edu/graduate
https://digitalcommons.du.edu/etd?utm_source=digitalcommons.du.edu%2Fetd%2F1011&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.du.edu%2Fetd%2F1011&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.du.edu/etd/1011?utm_source=digitalcommons.du.edu%2Fetd%2F1011&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jennifer.cox@du.edu,dig-commons@du.edu

Fail-Safe Testing of Web Applications

A Dissertation

Presented to

the Faculty of the Daniel Felix Ritchie School of Engineering and

Computer Science

University of Denver

in Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

Salah Boukhris

August 2015

Advisor: Anneliese Andrews

c© Copyright by Salah Boukhris, 2015

All Rights Reserved

Author: Salah Boukhris
Title: Fail-Safe Testing of Web Applications
Advisor: Anneliese Andrews
Degree Date: August 2015

Abstract

This dissertation introduces an approach to generate tests to test fail-safe behav-

ior for web applications. We apply the approach to a commercial web application.

We build models for both behavioral and mitigation requirements. We create miti-

gation tests from an existing functional black box test suite by determining failure

type and points of failure in the test suite and weaving required mitigation based

on weaving rules to generate a test suite that tests proper mitigation of failures. A

genetic algorithm (GA) is used to determine points of failure and type of failure that

needs to be tested. Mitigation test paths are woven into the behavioral test at the

point of failure based on failure speci�c weaving rules. A simulator was developed

to evaluate choice of parameters for the genetic algorithm. We showed how to tune

the �tness function and performed tuning experiments for GA to determine what

values to use for exploration weight and prospecting weight. We found that higher

defect densities make prospecting and mining more successful, while lower mitiga-

tion defect densities need more exploration. We compare e�ciency and e�ectiveness

of the approach. First, the GA approach is compared to random selection. The

results show that the GA performance was better than random selection and that

the approach was robust when the search space increased. Second, we compare the

GA against four coverage criteria. The results of comparison show that test require-

ments generated by a genetic algorithm (GA) are more e�cient than three of the

four coverage criteria for large search spaces. They are equally e�ective. For small

ii

search spaces, the genetic algorithm is less e�ective than three of the four coverage

criteria. The fourth coverage criteria is too weak and unable to �nd all defects in

almost all cases. We also present a large case study of a mortgage system at one of

our industrial partners and show how we formalize the approach. We evaluate the

use of a GA to create test requirements. The evaluation includes choice of initial

population, multiplicity of runs and a discussion of the cost of evaluating �tness.

Finally, we build a selective regression testing approach based on types of changes

(add, delete, or modify) that could occur in the behavioral model, the fault model,

the mitigation models, the weaving rules, and the state-event matrix. We provide

a systematic method by showing the formalization steps for each type of change to

the various models.

iii

Acknowledgements

I would like to express my deepest gratitude to my advisor, Prof. Andrews, for

her excellent guidance, caring, patience, as well as providing me with valuable advise

for doing research. I would never have been able to �nish my dissertation without

the guidance of Prof. Andrews.

My thanks also go to the members of my major committee, Dr. Matthew Ruther-

ford and Dr. Rinku Dewri for reading previous drafts of this dissertation during my

preliminary exam and providing many valuable comments that improved the pre-

sentation and content of this dissertation. I am deeply grateful to them for the long

discussions that helped me sort out the technical details of my work.

Special thanks go to Dr. Linda Bensel-Meyers, who was willing to participate as

an external chair in my �nal defense committee at the last moment.

I would like to present my sincere thankfulness to my dear mother and my

deceased father, who died on December 26, 1997, for their great role in my life and

their numerous sacri�ces for me and for my brothers and sisters.

Last but not least, I would like to thank my wife for her understanding and

love during my years of study and taking care of my four kids Nosiba, Tasnim ,

Suhayb, and Suhail. Her support and encouragement cheered me up and stood by

me through the good times and bad. Also, grateful thanks to my brothers and

sisters and all my family and relatives who receive my deepest gratitude and love

for their dedication and the many years of support during my study that provided

the foundation to continue this journey.

iv

Contents

Acknowledgements . iv
List of Tables . viii
List of Figures . xi

1 Introduction 1

2 Background 6
2.1 MBT Web testing . 6
2.2 Fail-Safe Behavior . 7
2.3 Testing Fail-Safe Behavior . 9
2.4 Genetic Algorithms and Software Testing 10
2.5 Regression Testing . 16

3 Approach 19
3.1 Process . 19
3.2 FSMWeb: the Behavioral Model . 21

3.2.1 Example . 25
3.3 Failures (F), State-Event matrix (SE) 26
3.4 Mitigation Requirements and Mitigation Models 28
3.5 Determine Black Box Test Requirements 31

3.5.1 Representation of Population 31
3.5.2 Initial population selection . 33

3.6 Generating the Failure Mitigation Test Paths (FMT) 36
3.7 Generate Executable Tests, Execute and Validate 39
3.8 Fitness evaluation and determination of next generation 41

3.8.1 Fossil Record (FR): . 41
3.8.2 Fitness Function: . 42
3.8.3 Generate New Generation . 43

3.9 Stopping Criteria . 44

4 Validation of GA approach 47
4.1 Description of Simulator . 47
4.2 Initial Population . 50
4.3 Tuning of the GA . 53

v

4.4 Comparsion GA vs. Random . 54
4.5 Single Runs vs. Multiple Runs . 56

5 GA vs. Coverage Criteria 60
5.1 Coverage Criteria (CC) . 60
5.2 Design of Experiments . 61

5.2.1 Parameter Settings . 63
5.2.2 GA vs. C1 . 64
5.2.3 GA vs. C2/C3 . 66
5.2.4 GA vs. C4 . 72

5.3 Comparison of Various Case Studies and Model Types 78

6 Case Study - Mortgage System 81
6.1 General Description . 81
6.2 FSMWeb Behavioral Model . 83

6.2.1 Partition FSMWeb model . 83
6.2.2 Input Constraints for Logical Web Pages 90
6.2.3 Generate Test Paths through Clusters 91
6.2.4 Aggregate Paths to Generate Abstract Tests 97

6.3 Failure Applicability and Mitigation Requirements 98
6.4 Generate Test Requirements . 104
6.5 Comparison of E�ort GA vs. Exhaustive Search 111

7 Regression Testing Process 113
7.1 Example . 124
7.2 Changes to the Behavioral Model (BM) 125

7.2.1 Classify BT into obsolete, reusable and retestable behavioral
tests . 126

7.2.2 Build New SE' matrix . 128
7.2.3 Build New Search Space SP' and FMT� 129

7.3 Changes to State-Event Matrix (SE) 132
7.4 Changes to Failure Types (F) . 136
7.5 Changes to BM , Failure Types (F) and State-Event Matrix (SE) . . 141
7.6 Changes to Mitigation Models (MM) 147

7.6.1 Determine Mitigation Test Paths for Changed Mitigation Mod-
els . 148

7.6.2 Failure Mitigation Tests Based Retestable Mitigation Tests . . 148
7.6.3 Build New Failure Mitigation Tests 149
7.6.4 Potential Impact on Other Failure Mitigations 150

7.7 Changes to Weaving Rules (WR) . 151
7.8 Discussion . 152
7.9 Case Study . 153

7.9.1 Changes to BM . 153

vi

7.9.2 Changes to SE . 159
7.9.3 Changes to F . 160
7.9.4 Changes to BM, F, and SE . 163
7.9.5 Changes to MM . 165
7.9.6 Changes to WR . 167

8 Future Work 168

9 Conclusion 171

Bibliography 177

vii

List of Tables

1.1 Collaboration: Comparison, Basic Strategy 5

3.1 Constraints on inputs . 22
3.2 FSMWeb constraint of typical input types 23
3.3 Test paths through AFSM,FSM1,FSM2 26
3.4 Test Paths for BM . 26
3.5 State-Event Matrix SE . 28
3.6 Mitigation Requirements . 30
3.7 Search Space SP . 33
3.8 Mitigation Patterns and Weaving Rules 40
3.9 Selected (p, e) Pairs and resulting FMT 41

4.1 Random vs. defect potential . 52
4.2 Percentage of Mitigation Defects Found 54
4.3 Parameter settings for GA vs Random Comparison 55
4.4 E�ectiveness: GA vs. Random . 55
4.5 E�ciency: GA vs. Random . 57
4.6 Multiple Runs of GA . 58

5.1 Simulation parameter for typical D=20% 63
5.2 Simulation parameters for low defect density D=5% 64
5.3 Large Search Space: GA vs. C1 - 20% defect density 66
5.4 Small Search Space: GA vs. C1 - 20% defect density 67
5.5 Large Search Space: GA vs. C1 - 5% defect density 68
5.6 Small Search Space: GA vs. C1 - 5% defect density 69
5.7 Large Search Space: GA vs. C2/C3 - 20% defect density 70
5.8 Small Search Space: GA vs. C2/C3 - 20% defect density 71
5.9 Large search space of GA vs. C2/C3 - 5% defect density 73
5.10 Small Search Space: GA vs. C2/C3 - 5% defect density 74
5.11 Large search space: GA vs. C4 - 20% defect density 75
5.12 Small Search Space: GA vs. C4- 20% defect density 76
5.13 Large search space: GA vs. C4 - 5% defect density 77
5.14 Small Search Space: GA vs. C4- 5% defect density 78

viii

5.15 Summary of case studies using di�erent behavioral models 79
5.16 E�ciency Comparison . 80

6.1 Technical details of Mortgage System 83
6.2 Decomposition of Mortgage system into Partitions 87
6.3 Nodes for CD Form-FSM . 89
6.4 Nodes for SE Form-FSM . 90
6.5 Annotation of Aggregate FSMs for Mortgage System 92
6.6 Input Constraint for Home Cluster 92
6.7 Input Constraint for Search Cluster (SE) 93
6.8 Annotated Aggregation FSMs for LPD Cluster 94
6.9 Input Constraint for Closing Documents (CD) FSM 95
6.10 Test Sequence for Closing Documents (CD) FSM 95
6.11 Test Paths of Aggregate FSMs for Mortgage System 96
6.12 Test Paths of FSMs for LPD Cluster 96
6.13 Test Paths for Home page . 96
6.14 Test Paths for Search (SE) . 97
6.15 Test Paths for Closing Documents (CD) Service 97
6.16 Statistics of Tests Size . 98
6.17 Paths generated by substitution of T1 98
6.18 Paths generated by substitution of T3 99
6.19 Failure types in Cluster Closing Documents(CD) 100
6.20 Mitigation Requirement . 101
6.21 State-Event Matrix for CD Cluster 102
6.22 Total Length of abstract test paths T1 and T3 104
6.23 Initial FMT for �rst generation . 106
6.24 E�ectiveness of GA . 107
6.25 FMT for last generation . 108
6.26 fmti that found defects . 109
6.27 The results of run GA on the whole system 110
6.28 Time Budget Comparison between GA vs. Exhaustive search 111
6.29 The size of BT for CD vs. Mortgage system 112

7.1 Variables description used in regression testing process 114
7.2 Classi�cation of BT after the changes 129
7.3 New State-Event Matrix SE ′ . 129
7.4 New Search Space SP ′ . 131
7.5 FMT ′′ for modi�ed model BM ′. 132
7.6 New State-Event Matrix SE' . 134
7.7 The New Search Space SP ′ . 135
7.8 Selected pairs and constructing FMT ′′ for Fse. 135
7.9 Reusable tests after deleting failures f2 and f3 137
7.10 New State-Event Matrix SEa . 138

ix

7.11 New Mitigation Requirements . 138
7.12 New Search Space SPa due to the added failure Fa 139
7.13 Selected pairs and constructing FMTFa from them. 139
7.14 Selected pairs and FMT ′′ . 140
7.15 New State-Event Matrix SE ′ . 144
7.16 New Search Space SP ′1 (BM change and f2, f3 deleted) 144
7.17 New Search Space SP ′2 (new failures) 144
7.18 New Search Space SP ′3 (applicability change) 145
7.19 Constructing FMT ′1 with PE

′
1. 145

7.20 Constructing FMT ′2 with PE
′
2 . 146

7.21 Constructing FMT ′3 with PE
′
3. 146

7.22 PE and resulting FMT ′′. 150
7.23 PEWR and resulting FMT ′′. 151
7.24 Classi�cation of BT . 155
7.25 New State-Event Matrix SE ′ based on the changes to BM 156
7.26 Constructing FMT ′′ for modi�ed model BM ′ 158
7.27 New State-Event Matrix SE ′ based on the changes to SE 159
7.28 Selected pairs and Constructing FMT ′′ for Fse 160
7.29 Reusable tests after deleting failures f1 and f2 161
7.30 New state-event matrix SEa . 161
7.31 New Mitigation Requirements of f11 162
7.32 Selected pairs and Constructing FMTFa 162
7.33 State-Event Matrix for CD Cluster 163
7.34 Constructing FMT ′1 with PE

′
1 . 165

7.35 Constructing FMT ′2 with PE
′
2 . 166

7.36 Constructing FMT ′3 with PE
′
3 . 166

7.37 FMT ′ for modi�ed mitigation model MM10 166
7.38 FMT ′ for modi�ed weaving rule WR 167

x

List of Figures

1.1 Topics related to our approach. 4

2.1 The pseudo code for GA . 11

3.1 Test Generation Process . 20
3.2 Three Optional Inputs, Any Order 24
3.3 Behavioral Models BM . 25
3.4 Try Other Alternatives: Mitigation Model. 29
3.5 Mitigation Models. 30
3.6 Algorithm for selecting initial population 35
3.7 Mitigation Patterns. 38
3.8 GA Approach . 45
3.9 Algorithm for creating New Generation 46

6.1 Loan processing user types and access privileges. 83
6.2 Mortgage System Logical View . 84
6.3 Aggregate FSMs with Partition and Top Level Navigation 86
6.4 Loan Processing Data (LPD) Cluster 88
6.5 FSM For Closing Documents (CD) Service 89
6.6 Logical Web pages and Navigation for Home Cluster 89
6.7 Logical Web pages and Navigation for Search Cluster 90
6.8 Mitigation Models. 103

7.1 Regression Testing Process . 114
7.2 Behavioral Models BM , BM ′ . 124
7.3 The new search space SP' due to the Changes to BM, SE, and F . . . 142
7.4 Modi�ed Mitigation Model MM4. 149
7.5 Changes to BM of CD sub-system. 154
7.6 Modi�ed Mitigation Model MM10. 167

xi

Chapter 1

Introduction

Web applications have became the backbone of today's business life through e-

commerce and the communications industry. According to [24], in 2008, 73% of

the population used the internet in the United States resulting in over $204 billion

dollars in on-line sales. This also implies that failures in critical web applications

could result in losses of millions of dollars. For example, eBay lost more than $3

million in customer credits and $4 billion in market capitalization because of 22

hours of system outage. The real cost of system failure is in lost revenue, frustrated

customers, and the negative impact on a company's value [59].

This makes it imperative that an adverse impact of failures be avoided. In other

words, external failures such as a server or database crash must be properly miti-

gated. The web application must also be tested whether mitigations work according

to requirements.

Unfortunately, existing Model-Based Testing (MBT) techniques emphasize func-

tional testing, but not the testing of proper failure mitigation. Given the large

potential losses these failures can carry when they are not properly mitigated, test-

ing failure mitigation is quite important. It is conceptually possible to add failure

transitions and mitigation behavior to an existing functional model and then use

1

whatever MBT has been developed for it. One strategy for testing fail-safe behavior

alongside functional behavior is to integrate fault models with behavioral models:

Marisa et al. [28], [70] integrate Fault Trees (FT) and State Charts (SC) while

HyeonJeong et al. [41] integrates UML State Diagrams and FTs. These approaches

have their limitations and challenges: Possible mismatches between notations and

terminologies used in the behavioral vs. the fault models, requiring a step to make

them compatible. In the not so unusual case where a decent number of failures can

occur in many behavioral states, when multiple fault trees exist and when mitiga-

tion behaviors themselves are non-trivial, this can lead to large, cumbersome, highly

connected models that obscure primary functionality. In other words, this can lead

to scalability problems. These approaches also cannot leverage an existing test

suite. Finally, there is no explicit mitigation model or mitigation patterns. Hence

integrating failures and their mitigation into existing models has its drawbacks.

This dissertation proposes a method to enhance an existing MBT technique,

FSMWeb [9] that leverages a test suite derived from the model and transforms it into

a series of mitigation tests for various failures. This does not require merging primary

functional behavior descriptions with mitigation behavior in the face of failures.

Rather, mitigation tests are woven into various stages of an existing behavioral

test at various points of failure based on weaving rules speci�cally de�ned for each

mitigation type. This is not unlike weaving code aspects into primary code in aspect-

oriented programming [33], although the speci�c weaving rules di�er, of course and

we are weaving mitigation test aspects into behavioral tests rather than working

with code.

Besides avoiding potential model bloat, this approach also has the advantage

that we can proceed with functional testing as usual, so existing test suites do not

have to be regenerated, failures can be injected at selected points in the existing

2

test suite, and a mitigation test is created by modifying the functional test at the

point of failure with required mitigation behavior.

Web applications also tend to evolve overtime. This requires regression testing

of the software, including proper failure mitigation. Rather than testing the entire

web application from scratch, it would be useful to have a selective regression testing

of proper failure mitigation.

This dissertation has as its major goal to develop a black-box MBT technique

for web applications that is able to:

• Leverage an existing testing approach for web applications (FSMWeb [9])

• Systematically models required mitigation behavior for failures via mitigation

patterns.

• Generates fail-safe mitigation test requirements (via a genetic algorithm).

• Builds a fail-safe mitigation test suite.

• Develops a selective regression test suite.

We also validate this approach via a case study and simulation experiments and

compare it to other approaches.

This dissertation is a combination of di�erent ideas that are related in testing

web application and background to build our models (see Figure 1.1):

• Model-based testing:

� Using �nite state machine (FSM) testing [21] [37] [38] [60].

� FSM in modeling the design of web application [42] [48], especially FSMWeb

[9].

� Testing web applications [64] [66] [50] [9] [8] [61].

3

• Fail-safe behavior:

� Failure types and classi�cations [3] [59] [10] [51] [34].

� Failure-Exception handling patterns [77] [49] [15] [18].

� Exception handling patterns for process and work �ow models [46] [35]

[55] [31] [71].

� Testing Exception handling [56] [39] [69].

� Testing Fail-safe behavior [72] [27] [70] [41] [28].

• GA and software testing [2] [58] [68] [53] [13] [74] [54] [43] [23] [75] [40].

Figure 1.1: Topics related to our approach.

4

Table 1.1 illustrates how this work is related to similar work [6], and describes

the overlapping areas in more detail.

Table 1.1: Collaboration: Comparison, Basic Strategy

Domain Model Test Regression Tools Experiments

Requirements testing

Other work [6] Safety-critical (C) EFSMs Coverage Cri-
teria

Basic Strategy None Comparison (GA,CC)

This work Web App. FSMWeb GA Basic Strategy/ Simulator Comparison (GA,CC, R),

Full Formalization Tuning GA,

Evaluate initial Pop. vs. R,

Single vs. multiple runs

This dissertation is organized as follows: Chapter 2 describes related work in

functional testing of web applications, fault and failure taxonomies for web applica-

tions, exception handling as a means of failure mitigation and general approaches

to test fail-safe behavior. We also discuss the existing work in Genetic Algorithms

(GA) used to �nd defects in software via black box testing, since part of our ap-

proach uses a GA. Chapter 3 describes our MBT approach to fail-safe testing of

critical web applications, including a testing process. Chapter 4 evaluates the per-

formance of the GA approach with a series of experiments. Chapter 5 presents a

comparison with respect to e�ectiveness and e�ciency (using GA, coverage criteria

[6] or random selection to generate mitigation test requirements). Chapter 6 applies

the approach to a major case study. Regression testing is introduced in Chapter 7.

Chapter 8 suggest further work. Chapter 9 draws conclusion.

5

Chapter 2

Background

2.1 MBT Web testing

Two major techniques have been proposed for functional (black box) testing of

web applications, Di Lucca et al. [50] and Andrews et al. [9, 8, 61]. The �rst revolves

around the creation and use of decision tables. It is suitable for unit and integration

test. The second is based on a hierarchical collection of compressed FSMs that,

in conjunction with a test database, allow both integration and subsystem testing.

The FSMWeb model combines both behavioral and structural characteristics (as

de�ned in Di Lucca et al. [50]), since it models web inputs and navigation between

pages, in addition to behavioral characteristics. Its attempts at compression make

it a desirable candidate to investigate for fail-safe testing of web aplications. The

FSMWeb approach falls into the larger category of FSM based techniques used for

testing. Testing with FSM models has a long and varied history [21, 37, 38, 60].

In addition to FSM models used for testing, there is also extensive work on testing

FSMs for correct behavior. For a survey on the latter see David and Mihalis [44].

Other methods use non-FSM models for testing web applications such as using a

UML meta model [64], but the model neither validates the scalability nor clari�es

6

the di�erence between static web sites and dynamic web sites. Some other studies

use user session data for initial test data generation such as in Sreedevi et al. [66].

FSM-based test generation has been used to test a large number of application

domains including compilers, real-time process control systems, networking, data

processing, and telephony. FSMs have also been used to model the design of web

sites and web applications [42, 48]. Kung et al. [42] propose to generate test cases

from an object-oriented test model that uses FSMs to model functional behavior.

A key limitation of many of these �nite state approaches is state explosion which

limits their scalability. FSMWeb addresses this issue through FSM compression with

savings of orders of magnitude in size [8]. This advantage is one of the reasons why

we chose to investigate the use of FSMWeb for fail-safe testing.

2.2 Fail-Safe Behavior

As de�ned in Ammann and O�utt [3], a fault is a static defect in a software

artifact, e.g. incorrect instructions or requirements. Failures can also be events that

are external to the software under test, such as a database crash, loss of network

connection, or unavailability of a server on which the software depends. Fail-safe

mitigation testing is interested in the latter.

Several papers try to classify failures or provide a fault taxonomy, some as-

sociate required mitigation actions with types of faults or failures. Pertet and

Narasimhan [59] address causes and e�ects of web failures. Most failures are caused

by: software failures, human/operator errors, hardware/environmental failures, and

security violations. Their e�ects are unavailable systems, exceptions, access viola-

tions, incorrect answers, data loss and corruption, and poor performance. Several

papers have attempted to classify faults in web applications. Ardagna et al. [10] clas-

7

si�es web fault types into infrastructure and middle-ware faults, web service faults,

and web application faults. In addition, they specify types of recovery actions as

retry services, substitute services, completion of missing parameters, reallocation of

services and changing process structure. Similarly, Ma and Tian [51] categorize

web service failures as host, network, or browser failures, source or content failures,

and user errors. Underlying error types include permission denied, no such �le or

directory, stale NSF �le handle, etc. Guo and Sampath [34] consider logic faults and

compatibility faults. Logic faults include subcategories: browser interaction faults,

session faults, paging faults, server-side parsing faults, etc. While these papers are

useful in classifying web faults and failures, only one ([10]) considers both failures

and recovery.

Zeng et al. [77] addresses recovery in the form of exception management for

composite web services. They consider application exceptions and process de�ned

exceptions. A service can be unavailable or fail. Service execution can be delayed,

time out, or experience QoS degradation. Recovery action types include retry, skip,

replace, try alternative, compensate, and time out. Lu et al. [49] provides a formal

de�nition of exceptions and exception handling policies for state charts. The policies

include skip, abort, retry, try alternative, compensate, replace, and timeout. Finally,

Brambilla et al. [15] classi�es exceptions as user-generated, application generated or

infrastructure related. Exception handling follows �ve policies: accept, reject, abort,

ignore, and resume. Cabral and Marques [18] provides an analysis of how often

Java and .Net applications use the following types of exception handlers: empty, log,

alternative, throw, continue, return, rollback, close, assert, delegates, and others.

In addition to recovery and/or exception handling policies (which are almost al-

ways informally de�ned), more formal exception handling patterns have been de�ned

for process and work �ow models ([46],[35],[55],[31],[71]). However, none of these

8

address testing exception handling (or fault/failure mitigation). In Oprisa [56] an

exception handling FSM is constructed and the W-method is used to generate test

cases. Jiang and Yuanpeng [39] construct an exception control �ow graph and use

DU coverage criteria on variables related to an exception. Sinha and Harrold [69]

also investigates white box testing of programs with exception handling constructs

using control �ow and data �ow analysis. However, no exception handling poli-

cies or patterns are de�ned in these studies. Moreover, these categorizations overlap

without being comprehensive or consistent in the absence of a set of widely accepted

failure-mitigation testing models. Unmitigated or improperly mitigated failures can

be costly.

2.3 Testing Fail-Safe Behavior

Fault Tree Analysis (FTA) is commonly used in safety critical system analysis

to recognize the potential causes of unsafe conditions. FTA is a top-down deductive

analysis technique used to detect the speci�c causes of possible hazards [72][27].

The top event in a fault tree is the system hazard. FTA works downward from

the top event to determine potential causes of a hazard. It uses boolean logic to

represent these combinations of individual faults that can lead to the top event [27].

However, Constructing a Fault Tree (FT) can be a time consuming task[41]. One

strategy for testing fail-safe behavior alongside functional behavior is to integrate

fault models with behavioral models: [28] and [70] integrate State Charts and FTs,

while [41] integrates UML State Diagrams and FTs. These approaches have a vari-

ety of limitations and challenges. These include: (1) possible mismatches between

notations and terminologies used in the FT vs. the behavioral model, requiring a

step to make the FT and the behavioral model compatible; (2) potential scalability

9

problems when multiple or large FTs exist or a fault can occur in a large portion

of behavioral states; (3) they cannot leverage an existing behavioral test suite; and

(4) there is no formal mitigation model, nor exception handling patterns.

2.4 Genetic Algorithms and Software Testing

Genetic algorithms and Genetic programming are based on Evolutionary Algo-

rithms (EA). These algorithms are soft computing techniques inspired by Charles

Darwin's principle of the survival of the �ttest [63]. There are four well-established

main types of EA and most widely used techniques: Genetic Algorithms (GA), Ge-

netic Programming (GP), Evolution Strategy (ES), and Evolutionary Programming

(EP) [1]. Genetic algorithms (GA), which were originally developed by John Holland

in the 1960s, are search algorithms based on natural selection and natural genetics.

Genetic programming (GP) was introduced by John Koza [63], who had the idea

to allow a computer to solve problems without being explicitly programmed to do

so. Genetic programming can be seen as an expansion of Genetic algorithms. GP

creates a computer program as the solution while GA will create a string that rep-

resents the solution [63]. Evolution strategy (ES) and Evolutionary Programming

(EP) allow varing length of individuals in the population; the selected individuals

are subjected to mutation to produce children with no crossover [63]. The main dif-

ferences between the four kinds of algorithms are the representation of the solutions

and the use of variation operators [1].

GA has been used in di�erent areas such as optimization, automatic program-

ming, machine learning, economics, immune systems, ecology, population genetics,

evolution and learning, and social systems [63]. The main goal of GA is to develop

10

successive generations of ever better combinations of parameters which improve the

overall solution. The GA as adaptive search technique is not guaranteed to �nd the

optimal solution, however it often �nds a good solution in a brief time [63].

Algorithm 1: The pseudo code for GA

Require: Search Space

Ensure: Finding Solution

population representation;

Initialize(population);

Evaluate(population) using Fitness function;

while stopping condition not satis�ed do

Selection(population)

Crossover(population)

Mutate(population)

Evaluate(population)

end while

Figure 2.1: The pseudo code for GA

The GA usually performs the following cycle [63] [52] (see a basic algorithm for

a GA as shown in Algorithm 1):

1. A randomly initialized population of individuals is generated. Each individual

is usually represented as a string of bits called a chromosome. Each bit is a

gene. A chromosome is a possible candidate solution of a given problem.

2. A �tness function is associated with each individual. It is used to evaluate the

adequacy and quality of an individual.

3. A selection process is used to extract a subset from the current population.

11

4. A new generation is created by a crossover operation that takes two individuals

and exchanges their information at a randomly selected position.

5. In order to prevent individuals from becoming too similar, a mutation process

is applied by randomly modifying some information of a selected individual.

6. Each individual of the new population is evaluated again, and the procedure

is repeated (step 2) until a speci�c termination condition is ful�lled.

The key to the successful use of a GA is to represent the problem as well as

its solution in terms of a chromosome. The most commonly used representation is

a binary string. However, representations with a more complicated data structure

have been used [63]. Crossover is used to increase the quality of the reproduction

populations and force convergence while mutation processing guarantees the entire

search space will be searched and restores lost information or adds information to the

population. The balancing between exploration where bad solutions have a chance

to go to the next generation, and exploitation where good solutions go to the next

generation more often than bad ones, is more important within the mechanism of

the selection. Di�erent selection strategies signi�cantly a�ect the performance of

the GA [62]. Tournament selection, roulette wheel, and rank-based roulette wheel

selection are the most common selection schemes. In tournament selection, the

number of individuals are selected randomly from the population, and the selected

ones will compete against each other based on the highest �tness to be included in

the next generation. In proportional roulette wheel, the selection of the population

is based on a proportion of their �tness values which corresponds to a portion of

a roulette wheel. Finally, in rank-based roulette wheel selection, the selection is

based on its �tness rank relative to the whole population and a selection probability

according to their ranks instead of their �tness values.

12

The use of GA in software testing is known as a type of search-based software

testing (SBST) that includes many other meta-heuristic optimizing search tech-

niques. Meta-heuristic search algorithms have been used to automate a variety of

software testing activities such as test case generation, test case selection, and test

case prioritization. There are several reasons that make the use of GA popular in

software testing [2]. First, based on the survey paper Harman et al. [36], GAs have

been widely studied, experimented and applied in software testing. Large amounts

of empirical data are available for di�erent parameter settings. This helps to se-

lect the appropriate parameters for solving a speci�c problem making it easier for

researchers to learn how to adapt a GA to a given problem [2]. Second, the per-

formance of GA has shown better results than local search algorithms, although

there is no proof indicating that GA outperforms other global search algorithms [2].

Finally, GA has many well-known implementations and resource tools that signi�-

cantly facilitate their practical application [2].

Ali et al. [2] analyze the use and results of search-based algorithms in test

generation, including Genetic Algorithms (GA). They report that the majority of

techniques (78%) have been applied at the unit level and do not target speci�c faults

(as we are interested in), but focus on structural coverage criteria like node, branch,

or path coverage. By contrast, our goal is to target speci�c fault types and to test

at various points of the test suite whether mitigation works properly.

Patton et al. [58] suggest a GA approach for focused software usage testing.

Their goal is to test based on usage frequency with the objective of �nding failures

and then suggest further similar, but di�erent test cases that reveal faults. Their

work is inspired by the failure pursuit sampling of Schultz et al. [68]. The latter

generated fault scenarios for testing intelligent controllers for autonomous vehicles.

13

Patton et al. try to maximize two objectives: the likelihood of occurrence (usage

frequency) and failure intensity (consisting of a combination of failure density and

severity). This requires a multi-objective GA technique. They avoid creating single

dominant individuals using niching [53]. A niche represents a subpopulation that

is similar, but di�erent.

Berndt and Watkins [13] and Watkins et al. [74] also introduce a multi-objective

�tness function that changes based on results from previous testing cycles, i.e a

relative �tness function changes as the population evolves, based on the knowledge

gained from prior generations (the "fossil record"). Individuals are rewarded based

on novelty, proximity, and severity. Novelty encourages new areas of the search

space to be explored, regardless of the type of error generated. Proximity measures

how close an individual is to previously found defects. Severity measures its impact

valuing detection of defects with severe consequences more highly. Three types of

tests are generated: explorers (high uniqueness), prospectors (some uniqueness, but

also close to a found defect), and miners (close to found defects). McCart et al.

[54] attempt to reduce the computational burden of the �tness function calculation

(such as distances from entries in the fossil record and distance calculations from

individuals in the fossil record that detected errors) by using sampling, adjusting

the frequency of sampling, de�ning defect boundaries and keeping individuals with

similar distance to the origin in a bin.

While this test generation approach has only been used for system testing of

complex distributed systems via long sequence testing, its goals have similarities

with our objectives and we decided to see whether a similar strategy could help in

selecting positions in a test suite and failure types to inject at that position so as to

generate tests that explore the search space, prospect in the larger vicinity of found

mitigation defects, and mine for further mitigation defects in the immediate vicinity

14

of a found defect. It is worth exploring whether a similar strategy that combines

exploring with prospecting and mining using a fossil record might be useful for our

purposes.

Last et al. [43] describe an extension of GA algorithms that uses a varying

probability of crossover depending on the age of an individual (young, middle, old).

Age is represented as a Fuzzy Logic function. Very young and old o�-spring have

a lower probability of crossover, thus enabling more exploration in the young and

avoiding a local optimum due to premature convergence in the old. A Fuzzy Rule

base directs crossover of mixed age populations. The inputs to the programs un-

der test are 100 Boolean expressions using AND, OR, and NOT. A single error is

injected by randomly selecting an AND or OR operator and �ipping it. Test cases

consist of 100 bits (one for each expression). The �tness function of a test is one,

if it can distinguish between the correct and incorrect expression, zero otherwise.

Experiments showed an increased capability of recognizing the erroneous expression.

While our testing problem is very di�erent, this approach represents another way

to distinguish between exploration and searching in the vicinity.

A series of papers [23, 75, 40] have addressed generating tests for a path through

an EFSM using GA, such as Kalaji et al. [40]. Since we assume that the test suite

exists, this is less applicable to our problem. However, any of a number of search-

based or non-search based technqiues could be used to �nd inputs for the mitigation

paths once they are woven into the behavioral test suite (cf. Chapter 2.1). Partial

regeneration as suggested in [4] from the point of failure injection is also an option.

15

2.5 Regression Testing

Web applications maintenance cycles are similar to those of other software sys-

tems. They include corrective, perfective, or adaptive maintenance as well as

product evolution through enhancements. The Standard for Software Engineering-

Software Maintenance, ISO/IEC 14764 [14] includes four categories of maintenance:

• Corrective maintenance: unscheduled modi�cation to correct discovered faults

of a software product in order to keep a system operational, e.g. the removal

of errors in the code.

• Adaptive maintenance: modi�cation of the software product due to changes in

the environment or changes to requirements, e.g. the modi�cation of software

for a new operating system.

• Perfective maintenance such as improving e�ciency and performance to pre-

vent problems in the future, e.g. modi�cation of code to improve performance.

• Preventive maintenance: Modi�cation of a software product after delivery to

detect and correct latent faults in the software product before they become

e�ective faults to prevent malfunctions in the future.

ISO/IEC 14764 [14] classi�es adaptive and perfective maintenance as enhancements,

and groups together the corrective and preventive maintenance categories into a

correction category. Regression testing is a very vital task after each maintenance

round in order to verify and validate the modi�ed web application and ensure that

both new and existing features are working properly. This process is often done

with existing test cases from previous release(s). Regression testing can be very

expensive especially for very large web systems, for which a retest all approach [73]

is too costly. Corrective maintenance does not change any of the models used in

16

our approach. Hence, one could simply rerun the entire fail-safe test suite. Given

its expense, this wastes resources. A better approach is to trace model elements to

code modi�cations and execute tests that include these model elements only. The

other types of maintenance activities cause model changes. This can cause some

test paths and associated test cases to become obsolete. In addition, new tests may

have to be generated to cover added model elements. Rothermel and Harrold have

de�ned �ve steps for selective regression testing [65]:

• "Select T ′ ⊆ T (T ′ is a set of test cases after modi�cation of the program P ′ ,

and T is a test suite).

• Test P ′ using T ′, establishing P ′'s correctness with respect to T ′.

• If necessary to achieve coverage requirements, create a set of new test cases

T ′′ for P ′.

• Test P ′ with T ′′, establishing P ′'s correctness with respect to T ′′."

In our case, depending on which parts of our models change, T can be the behavioral

test suite BT , mitigation test suite MTj, or even the failure mitigation test suite

FMT and hence T ′, T ′′ can be also refer to any of these. This dissertation describes

a method for selective regression testing of fail-safe testing in web applications based

on the test generation methodology used in chapter 3. We also adopt the classi�-

cation of test cases and the formalization of the changes to the FSMWeb models

based on Leung and White [47] and Andrews et al. [7]. The framework is based

on classifying behavioral tests as retestable, obsolete, and reusable. Retestable tests

are those that are still valid and test portions of the application that may be a�ected

by the change. Obsolete tests are those that are no longer applicable. Behavioral

tests that do not test software modi�cation and produce the same result are reusable

tests.

17

Andrews and Do [4] explain in detail how to use partial regeneration for an

FSMWeb model. The goal is to replace obsolete test cases with tests without full

regeneration. In the study, they de�ne thresholds to determine whether partial or

full regeneration is warranted. Our goal here is to also develop an approach for

partial regeneration of obsolete tests.

18

Chapter 3

Approach

3.1 Process

The black box test generation process for testing fail-safe behavior consists of

the following steps (see Figure 3.1)

1. Generate test cases from the behavioral model (section 3.2).

2. Identify failure events and their mitigation (section 3.3).

3. Generate mitigation tests from the mitigation models (section 3.4).

4. Generate test requirements using a GA (section 3.5).

5. Apply weaving rules at the points of failure in the behavioral test suite to

generate fail-safe test paths (section 3.6).

6. Generate, execute and validate tests (section 3.7).

7. Evaluate Fitness (section 3.8).

8. If necessary, generate more test requirements (section 3.9).

The proposed failure mitigation test process assumes that a technique for black box

testing of required functionality exists via a behavioral model (BM), associated

19

Figure 3.1: Test Generation Process

behavioral testing criteria (BC), and behavioral test paths (BT). In our case we

will use an existing web application MBT approach, FSMWeb [9]. We assume that

system requirements exist that identify types of failure events and any required

mitigation actions, e.g via hazard and risk analysis [30]. This is used to build

failure mitigation models (MM) for which mitigation coverage criteria (MC) can be

identi�ed and mitigation test paths (MT) can be created. Since all external failures

are not possible in all behavioral states, a State Event Matrix (SE) determines

which failure types are possible in which behavioral states. This matrix and the

test paths BT are then used in a heuristic search (GA) to determine mitigation

test requirements. The failure mitigation test paths (FMT) are then created based

on selecting an appropriate mitigation test (m ∈ MT) and weaving it into the

behavioral test according to the weaving rules associated with the selected mitigation

test. These are then transformed into executable tests, executed, and validated.

This is a process external to the GA and partly manual, hence orders of magnitude

more expensive than generating test requirements. The result of validation is used

20

to determine values of the �tness function and to determine a new generation of

test requirements, or to determine that enough tests were generated (i.e. the GA

terminates). The following sections describe each of these steps in more detail.

3.2 FSMWeb: the Behavioral Model

Functional testing for web application follows the approach in [9]:

• Build a hierarchical model HFSM:

� Partition the web application into clusters (Cs).

� De�ne Logical Web Pages (LWPs) and Input-Action constraints for each.

� Build FSMs for clusters as a multi-level hierarchy.

� Build an Aggregate FSM (AFSM) to represent the top level of the appli-

cation.

• Generate tests from the HFSM.

� Generate paths through each FSM that meet the coverage criteria.

� Aggregate paths to form abstract tests.

� Choose inputs along the paths to create executable tests.

The term cluster is used to refer to collections of software modules/web pages

that implement a logical, user level function. The �rst step partitions the web

application into clusters. At the highest level of abstraction, clusters represent

functions that can be identi�ed by users. At a lower level, clusters represent cohesive

software modules/web pages that work together to implement a portion of a user

level function.

Many web pages contain HTML forms, each of which can be connected to a dif-

ferent back-end software module. To facilitate testing for these modules, web pages

21

are modeled as multiple Logical Web Pages (LWPs). A LWP is either a physical

web page or the portion of a web page that accepts data from the user through an

HTML form and then sends the data to a speci�c software module. FSMWeb is

a functional model meant for black-box testing. Hence the web application can be

written in any language appropriate for web applications(e.g. HTML, JavaScript,

.. etc.). LWPs are abstracted from the presentation de�ned by the HTML and

are described in terms of their sets of inputs and actions. All inputs in a LWP are

considered atomic: data entered into a text �eld is considered to be only one user

input symbol, regardless of how many characters are entered into the �eld. There

may be rules about the inputs. Some inputs may be required; others may be op-

tional; users may be allowed to enter inputs in any order; or a speci�c order may be

required. Table 3.1 shows the input constraints for both types while Table 3.2 shows

how typical input types found in web applications are represented as constraints on

(single) edges in an FSMWeb model.

Table 3.1: Constraints on inputs

Input Choice Order

Required (R) Sequence (S)

Required Value (R(parm)) Any (A)

Optional (O)

Single Choice (C1)

Multiple Choice (Cn)

This edge annotation via input-action constraints is one of the saving sources

for an FSMWeb model because options for input selection and sequencing no longer

need to be coded explicitly (which would in�ate a traditional state-based model).

Figure 3.2 shows how an FSM model that represents a selection with only three

choices is reduced to two nodes and one transition in FSMWeb.

The lowest level cluster FSMs are generated with only LWPs and navigation

between them. Input-action constraints annotate each edge [9]. Higher level FSMs

22

Table 3.2: FSMWeb constraint of typical input types

Input Type FSMWeb Edge Annotation

Text Field R (input name)

Text Area Field

Optional Text Field O (input name)

Optional Text Area Field

Optional Checkbox

Radio Box C1 (option 1, ..., option n)

Drop Down Box

(with n options)

Optional Radio Box O (C1 (option 1, ..., option n)

(with n options)

Set of Checkboxes O (Cn (option 1, ..., option n))

Multi-Select Box A (option 1, ..., option n)

(with n options requiring 0 to n selections)

represent FSMs from a lower level cluster by a single node and may contain LWP

nodes as well. Ultimately, a top level Aggregate Finite State Machine (AFSM) is

formed and represents a �nite state model of the application at the highest level of

abstraction.

Test sequences are generated during phase 2 of the FSMWeb method. A test

sequence is a sequence of transitions through the application FSM and through each

lower level FSM. FSMWeb's test generation method �rst generates paths through

each FSM based on some graph coverage criterion such as edge coverage. These

paths are then aggregated based on an aggregation criterion for each FSM's paths,

such as all combinations or each path at least once [9].

This process results in a set of aggregate paths. We call them abstract tests. The

�nal step of test generation is selecting inputs to replace the input constraints for

the transitions of the aggregate paths.

Input selection uses a technique [61] that builds two databases: a synthetic

database, which consists of values that are consumed during testing, and an appli-

23

S0

S1

S4S2

S0S3

i1
i2

i3

i2 i3

i3

S0S5

i2

S6

S9S7

S0S8

i1 i3

i3

S0S10

i1

S11

S14S12

S0S13

i1 i2

i2

S0S15

i1

R(i1, i2, i3)
A(i1, i2, i3)

S0SnS0S0

w/o FSMWeb

w/ FSMWeb

Figure 3.2: Three Optional Inputs, Any Order

cation database, which contains values previously inserted by the application being

tested. Values are saved into the application database during execution and saved

into the synthetic database during testing. Details about the database creation and

input selection can be found elsewhere [61].

Hence, an HFSM = {FSMi}ni=0 with a top level FSM0 = AFSM . Each FSM

has nodes that represent LWPs or clusters. Edges are internal or external to an

FSM. External nodes span cluster boundaries. (They become internal at the next

higher level.) External edges can either enter or leave a cluster FSM.

The FSM Tool parses HTML �les and builds a FSMWeb model. The user

can select coverage criteria such as node, edge, edge-pair, simple round trip and

24

prime path coverage. The FSM Tool then generates test paths through each cluster

that satisfy the selected criteria. For aggregation criteria, FSM Tool o�ers all-

combinations, each choice and base choice coverage.

3.2.1 Example

Figure 3.3 shows three FSMs and two levels of hierarchy1. This is an exam-

ple of a behavioral model (BM). Solid circles represent LWP nodes, the others

are cluster nodes (i.e c1 and c2 in AFSM). It also shows FSM1 and FSM2 for c1

and c2 clusters. Table 3.3 shows paths through each FSM that achieve edge cov-

erage. These test paths are aggregated to form abstract tests through the AFSM.

As aggregation coverage criterion we use all combinations [9]. We illustrate this on

t01 = n1c2n2. Substituting t21 and t22 for c2 results in two paths: p1 = n1n5n7n2

and p2 = n1n5n6n7n2. Both paths consist of LWP nodes and do not have to be

aggregated further.

Figure 3.3: Behavioral Models BM

1For simplicity, we omitted input predicates

25

Table 3.3: Test paths through AFSM,FSM1,FSM2

FSM Test paths

AFSM t01 = n1c2n2, t02 = n1c1n2

FSM1 t11 = n3n4n3

FSM2 t21 = n5n7, t22 = n5n6n7

Aggregation of t02 which visits cluster node c1 requires aggregation of one test

path through FSM1. This results in one path. There are 3 paths when test paths

are fully aggregated. Table 3.4 shows these paths, including derivation rules used

and test path lengths.

Table 3.4: Test Paths for BM

Test Test Paths BT Derivation Rules Full test path Length

t01 : n1c2n2

bt1 n1t21n2 c2 → t21 n1, n5, n7, n2 4

bt2 n1t22n2 c2 → t22 n1, n5, n6, n7, n2 5

t02 = n1c1n2

bt3 n1t11n2 c1 → t11 n1, n3, n4, n3, n2 5

3.3 Failures (F), State-Event matrix (SE)

External failures can occur in web application as a result of physical (net-

work and system domain) failures, application failures, or client error (user gen-

erated/Interaction) [20, 32]. Examples of fault-type taxonomies related to web

applications are described in [34, 10, 51]. Many systems, including safety critical

systems and web applications have requirements for mitigating failures. This may

include speci�ed exception handling such as retry or exception-driven rework.

26

Examples of possible external failures are:

• f1: Unavailability, e.g. no network connection.

• f2: Time out, e.g. web session has no activity for a period of time.

• f3: Parameter incompatibility, e.g. input data mismatch (e.g. integer vs.

string).

• f4: Response error, e.g. Database server is busy or does not save the data.

• f5: Misunderstood behaviour, e.g. try to access web service that requires a

di�erent user type.

• f6: Work�ow inconsistency, e.g. client using back and forth browser naviga-

tion.

• f7: Incorrect order, e.g. some service should have been completed before a

speci�c step.

• f8: Browser incompatibility.

• f9: Interface change, e.g. data mapping of an external web service is changed.

• f10: Incorrect service, e.g. wrong response from accessing an external web

service .

We only need to test proper failure mitigation for those failure types that have mit-

igation requirements. Let F = {f1, ..., fk} be the failure types, and S = {s1, ..., sn}

be the behavioral states. Failures may not be applicable in all behavioral states.

For example, a failure type such as no network connection is applicable in all states,

but a failure type such as expired session is not applicable in the entry portal state.

Hence, we need to de�ne which failure types can occur in which behavioral states.

27

We express this in a State-Event matrix SE where element seij is given by:

seij =

1, if failure type j applies in node i in S

0 Otherwise.

Using our example in section 3.2.1, we assume 4 failure types are applied. SE is

de�ned as shown in Table 3.5.

Table 3.5: State-Event Matrix SE

Behavioral States
(N)/ Failure Type (f)

n1 n2 n3 n4 n5 n6 n7 dpe

1 1 0 0 1 1 0 1 0.58

2 0 0 1 0 1 1 0 0.43

3 0 1 0 1 1 1 1 0.72

4 0 1 0 0 0 0 1 0.29

dps 0.25 0.50 0.25 0.50 0.75 0.50 0.75

3.4 Mitigation Requirements and Mitigation Mod-

els

We assume that the failure events and any mitigation actions are stated explicitly

in the requirements. If they are not, two situation may occur:2

1. Mitigation requirements are implicit and the tester needs to take the extra

step to make them explicit.

2Ammann and O�utt [3] mention these situations as not uncommon, hence causing issues for
many testing techniques.

28

2. The requirements document is silent about whether mitigation is required. In

this case, a tester may assume that mitigation is not required and proceed

accordingly.

Mitigation requirements can be expressed in the form of mitigation models. For

example, try other alternatives is shown in Figure 3.4.

Figure 3.4: Try Other Alternatives: Mitigation Model.

Each failure fj is associated with a corresponding mitigation model MMj where

j = 1,. . . ,k. We assume that the models are of the same type as the behavioral

model BM (e.g. an FSMWeb model). Graph-based [3], mitigation coverage criteria

MCj can be used to generate mitigation test pathsMTj = mtj1 , . . . ,mtjhl for failure

fj. Assuming MC as "edge coverage" for the mitigation model in Figure 3.4, the

following three mitigation test paths ful�ll MC: MT={mt1, mt2, mt3} where mt1 =

{n11, n12, n15}, mt2 = {n11, n13, n15}, mt3 = {n11, n14, n15}.

Mitigation models can be very small for some failures and the mitigation can be

an "empty action". For example, if there is a rollback to state sb with immediate

stop, the mitigation action only consists of adding a transition from sb to sf , the

�nal state. The weaving rule would specify what node to rollback to, in this case

sb. On the other hand, some mitigation models may consist of a full set of alterna-

tive behaviors that completely replace the remainder of the original test. We will

illustrate this in the section 3.6.

29

Using the example of failure types in section 3.3, the corresponding mitigation

requirements are summarized in Table 3.6 with the corresponding mitigation models.

Figure 3.5: Mitigation Models.

Table 3.6: Mitigation Requirements

MM Explanation Model

MM1 Go to Fail Safe State: keep the
system running even if there is no
connectivity

see Figure 3.5-a, MT1 = {mt11}
where mt11 = si, sg and sg =
LWP : errorpage

MM2 End All: session expire, so start
over from the start node

MT2 = φ and sb = n1,where sb is
the start node

MM3 Fix & proceed: parameter incom-
patibility such as data mismatch

see Figure 3.5-b, MT3 = {mt31}
where mt31 = si, si

MM4 Alternative: incorrect service see Figure 3.5-c ,
MT4 = {mt41,mt42} where
mt41 = si, s1, s2, si+1 and
mt42 = si, s1, s3, si+1

30

3.5 Determine Black Box Test Requirements

The goal in this step is to de�ne what types of failures should be injected at

which point in the behavioral test suite. Since large test suites and many failure

types o�er a sizeable number of combinations to chose from, it makes sense to use a

genetic algorithm (GA). We want to emphasize here that we use the GA to search

for test requirements, not for test cases. The test requirements state where in the

execution of the behavioral test a failure f ∈ F needs to be injected. These test

requirements need to be transformed into test paths, executable test cases and then

need to be executed and validated. The result of validation provides necessary

information to compute the �tness of the test requirements. This makes �tness

evaluation expensive compared to generating test requirements and hence we need

to carefully consider this cost of �tness evaluation. The next subsections describe

each step in more detail.

3.5.1 Representation of Population

The black box test requirements need to de�ne:

• A test path where a failure event occurs

• A position in the test where the failure event is injected during test execution.

Since the test paths vary in length, a 3-dimensional population is not ideal. However,

the length of the Behavioral test paths (BT) is �xed. The behavioral test path suite

(BT) is a set of test paths:

BT = {bt1, bt2, ..., btl} where l is number of test paths.

31

We arrange the behavioral test path suite (BT) into a single dimension (I) by

concatenating the test paths: I = (bt1 ◦ bt2 ◦ ... ◦ btl)

Each test path is a sequence of nodes. Thus,

I = (s11, ..., s1n1 , s21, ..., s2n2 , ..., sl1, ..., slnl
)

Length(I) =
∑l

i=1 len(ti) where 1 ≤ i ≤ l

Hence, we encode the test path suite rather than individual test paths. Now,

the position in the test path suite identi�es both test and position in a particular

test. This leads to a two-dimensional representation. The �rst dimension of the

search space is the number of possible positions p in I (1 ≤ p ≤ Length(I)). The

second dimension is the possible number of failure types where the types of failures

are given by:

F = {f1, f2, ..., fk} and 1 ≤ e ≤ |F | are the possible values for dimension 2.

Individuals in the population are then de�ned as a pair of one position p in the

test path suite and one failure type e: (p, e).

The search space is the cartesian product of all possible positions p in the test

suite and failure types e. The search space is: (p, e) where 1 ≤ p ≤ Length(I) and

1 ≤ e ≤ |F |.

Feasible Region: Not all combinations of (p, e) are feasible, since it is possible

that some failures are not applicable in some behavioral states. To account for this,

we use the SE matrix de�ned in section 3.3 to help de�ne the feasible region. Let

node(p) be the index of the behavioral state at position p, then the Feasible Region

is de�ned as:

{(p, e)|1 ≤ p ≤ Length(I), 1 ≤ e ≤ |F | , se(node(p),e) = 1}

Using the example in Figure 7.2 and Table 3.4 in section 3.2.1, the concatenation

of behavioral tests BT results in I = bt1 ◦ bt2 ◦ bt3, and length(I) = 4 + 5 + 5 = 14

32

where I = bt1 ◦ bt2 ◦ bt3 = n1, n5, n7, n2, n1, n5, n6, n7, n2, n1, n3, n4, n3, n2 .

The index of the node in position p = 2 is node(2) = 5.

Given the 4 failure types, the search space size is: SP = 14 ∗ 4 = 56 (see Table

3.7). There are 27 feasible pairs.

Table 3.7: Search Space SP

I bt1 bt2 bt3

Position (p) 1 2 3 4 5 6 7 8 9 10 11 12 13 14

F/N n1 n5 n7 n2 n1 n5 n6 n7 n2 n1 n3 n4 n3 n2

f1 1 1 1 0 1 1 0 1 0 1 0 1 0 0

f2 0 1 0 0 0 1 1 0 0 0 1 0 1 1

f3 0 1 1 1 1 1 1 1 1 0 0 1 0 1

f4 0 0 0 1 0 0 0 1 1 0 0 0 0 1

3.5.2 Initial population selection

We use defect potential to create the initial population. Higher defect potential

is assumed to carry a higher probability of �nding a defect. We use the defect

potential of an individual (p, e) for selecting the initial population. It is a measure

of the likelihood of a mitigation defect to occur. A mitigation defect is more likely

to be found if the failure that triggers the defective mitigation occurs. Hence, the

probability of a failure occurring contributes to the defect potential. Likewise, the

more types of failures can occur in a state, the higher its defect potential. We

compute defect potential as the percentage of possible states and failures types that

can occur respectively. For state si ∈ S, the defect potential is:

dps(i) = 1
|F |

∑|F |
j=1 seij

33

where |F | is the number of failure types and seij is an element in the state-failure

event matrix SE. Similarly, for failures fj of type j the defect potential is:

dpe(j) = 1
|S|

∑|S|
i=1 seij

where |S| is the number of behavioral states and seij is an element in the state-

failure event matrix SE. In section 3.3, Table 3.5 represents an example of the SE

and values for dps and dpe.

Algorithm 3.6 speci�es how to select the initial population creates individuals

(p, e) that give behavioral state coverage and failure type coverage. It begins by

determining for each failure type j the behavioral state si with the highest dps(i).

It then determines the earliest position p where this state occurs and adds the pair

(p, j) to the initial population. It removes si from further consideration. After all

failure types have been matched with a position, if there are still states left whose

index i′ has not been chosen, we determine the failure type j′ with the highest

dpe(j′), and the earliest position p′ where the state occurs and add (p′, j′) to the

population until all states are covered.

Back to our example, I = (n1, n5, n7, n2, n1, n5, n6, n7, n2, n1, n3, n4, n3, n2), 1 ≤

p ≤ 14. Note that indexing is required, since state n1 occurs three times (in p = 1,

p = 5 and p = 10). The example from Table 3.5 has 4 failure types, hence 1 ≤ e ≤ 4.

By applying (Algorithm 2) to this example, the initial population is selected

as follows:

1. Determine each failure type with Max dps(s) and select the �rst position p in

I where s occurs: (2,1); (7,2); (8,3); (4,4);

2. For the remaining states determine state with Max dpe(e) and select �rst

position p in I: (1,1); (11,2); (12,3);

34

Algorithm 2: Algorithm for selecting initial population

Require: seij matrix, dps, dpe, I

Ensure: Compute Initial Population (p, j) for GA

Cover all failures, all states

Pop=φ

Set S of states in BM

for j=1 to |F | do

Determine state s with max|S|i=1(dps(i)) for failure type j and SE(s, j) = 1

p ← Select �rst such position p in I

S=S \ {s} /* remove s from S */

Pop=Pop ∪ {(p, j)}

end for

while S 6= φ do

Select s ∈ S

Determine failure type j with max|F |j=1(dpe(j)) for s

p ← Select �rst position p with s in I

S=S \ {s} /* remove s from S */

Pop=Pop ∪ {(p, j)}

end while

Figure 3.6: Algorithm for selecting initial population

To ascertain whether using defect potential as de�ned here actually is reasonable

(rather than multiple runs with a random initial population), we performed a series

of experiments where we compared both. These are reported in section 4.2.

35

3.6 Generating the Failure Mitigation Test Paths

(FMT)

Now that we have the initial test requirements, (i.e the position -failure type

pairs (p,e)), we know where (p) in the test suite to inject which type of failure (e).

We use mitigation test pathsMTe for the failure and weave them into the behavioral

test at position (p) subject to weaving rules. The weaving rules are based on the

type of mitigation. F is a set of failure types: F = {f1, f2, .., fk}. Each failure is

linked with a mitigation model such that:

fj :: (Mj,MTj, wrj)

where fj is a failure of type j

MMj is a mitigation model for it

MTj is a test suite for Mj

wrj is a weaving rule based on mitigation Mj

Assume we have t ∈ BT , p ∈ I, fe ∈ F and mt ∈ MTe. We now build a failure

mitigation test path fmt ∈ FMT using this information and the weaving rules wre

∈ WR as follows:

• keep path represented by t until failure position p.

• apply failure of type e (fe) in p.

• select appropriate mt ∈MTe. For example, if the aggregation criteria speci�es

that all mt ∈ MTe need to be covered, we need to select each and create a

mitigation test for each.

• apply weaving rule wre to construct fmt.

36

We now explain weaving rules more formally for each type of mitigation. Let

t = {s1 . . . sb . . . node(p) . . . sf . . . sk}. let sg be a fail safe state.

1. Fix

Option 1: Compensate ((Partial) Fix and proceed) mitigates a failure and contin-

ues with the remainder of the behavioral test. So, fmt =s1 . . .node(p) mt node(p)

. . . sk. mt may be zero, if mitigation does not require user involvement (inputs). See

rule 4.

Option 2: Go to fail-safe state (Fix and stop) mitigates a failure and ignores the

remainder of t: fmt =s1 . . .node(p) mt sg. mt may be empty if there is no �x.

2. Rollforward

Option 1: Rollforward mitigates the failure, and proceeds.

fmt =s1 . . .node(p) mt sf . . . sk where sf is the node in t to which we rollfor-

ward. If only rollforward and no other actions are required mt is empty and fmt

=s1. . .node(p)sf . . . sk.

Option 2: Deferred �xing. If the failure can only be �xed after reaching the rollfor-

ward node sf then smt becomes: fmt = s1 . . .node(p) sf mt sf+1 . . . sk.

Note that further variants of this weaving rule can exist, like a state sdf between sf

and sk at which the failure mitigation mt is inserted. t = s1 . . . sb . . .node(p) . . . sf

. . . sdf . . . sk. fmt = s1 . . .node(p)sf . . . sdf mt . . . sk.

3. Rollback

Option 1: Rollbackward. Apply mitigation path mt from point of failure and roll-

back to node where failure occurred and continue with remainder of behavioral test.

fmt =s1. . .node(p) mt sb . . . sk where sb is a node before node (p).

Option 2: Rollbackward and stop.

fmt =s1. . .node(p) mt sb.

Option 3: Retry once. fmt = s1 . . .node(p) node(p)r . . . sk where r=1.

37

4. Internal compensate (no user action required)

Test immediate system �x. For example, this can happen if a system switches auto-

matically to di�erent backup web server. To test this merely requires applying the

failure and continuing to execute the original test t. In this case, we do not have

to modify the original test at all (note that the assumption is that the system deals

with the failure internally without any change in black-box behavior).

We analyze the fault taxonomy for web applications in [34, 59] for possible mit-

igations. As a result, it is found there are eight themes or patterns of mitigations

(see Figure 3.7). Some of them show similarity to [49, 46, 15].

Figure 3.7: Mitigation Patterns.

While weaving rules in this section are representative, they are not meant to be

comprehensive. We expect that, over time, we may �nd some more or �nd that

some are more common than others. Table 3.8 summarize all weaving rules.

38

Let PE = {(p, e)| pair selected by GA}. Weaving mti ∈ MTi into a test at

position p (pair(p,i)) results in a failure mitigation test path fmt. However, in case

of multiple mitigation test paths (i.e |MTi| > 1), we need to decide what weaving

criterion for MTi to use. We have two options:

• All combinations, that is we weave each mti ∈ MTi for every occurrence of

pair (k,i) , 1 ≤ k ≤ length(I), (k, i) ∈ PE.

• We merely cover all mti ∈MTi, but not at every possible position (k, i) ∈ PE.

The �rst option results in at least |MTe| fail-safe mitigation test cases for each (p,e)

pair, hence is more costly. If there are x such (p,e) pairs in PE the number of fmts

is |MTe| × x. The second criterion results in max{|MTe|, x} fmts.

Using the example in section 3.2.1, Table 3.9 shows the selected pairs and the

fmts created based on them. The �rst column in Table 3.9 numbers each failure

mitigation test (fmt1 − fmt9). The second column lists each (p, e) pair in PE.

The third column refers to the failure type whose mitigation is tested. The fourth

column states the node at position p. The �fth column identi�es the behavioral

test used in constructing fmti (i = 1, · · · , 9). The sixth column identi�es which

mitigation model is used as described in Table 3.6. The seventh column lists which

mtij is used as described in Table 3.6. The last column shows the failure mitigation

tests.

3.7 Generate Executable Tests, Execute and Vali-

date

The set of failure mitigation test paths now have to be transformed into exe-

cutable tests. For the FSMWeb model, this means resolving the input predicates

39

Table 3.8: Mitigation Patterns and Weaving Rules

Mitigation pattern Weaving Rule Name WR#

Alternative Fix - option 1 1

FMT =s1 . . .node(p) mt node(p) . . . sk

Retry Rollback - option 3 2

FMT =s1 . . .node(p) node(p)r . . . sk

Fix and Proceed Fix - option 1 3

FMT =s1 . . .node(p) mt node(p) . . . sk

End Activity Rollforward - option 1 4

FMT =s1 . . .node(p) mt sf . . . sk

End All Rollback - option 2 5

FMT =s1 . . .node(p) mt sb

Rollback Rollback - option 1 6

FMT =s1 . . .node(p) mt sb . . . sk

Ignore No user action required 7

Internal compensate

Go to fail-safe Fix - option 2 8

FMT = s1 . . .node(p) mt sg

(cf. section 3.2). The sequences of inputs form the executable tests. These are

now executed. The failure is injected at the proper position in the test execution.

Execution monitoring is used to reveal mitigation defects. We record any failure

mitigation defects found for each test requirement (p, e). This information is used

to determine the value of the �tness function.

40

Table 3.9: Selected (p, e) Pairs and resulting FMT .

pairs Failure Node BT used MM used mtij used FMT

1 (2,1) f1 n5 bt1 MM1 mt11 n1, n5, sg

2 (11,2) f2 n3 bt3 MM2 mt21 n1, n3, n1

3 (7,3) f3 n6 bt2 MM3 mt31 n1, n5, n6, n6, n7, n2

4 (8,4) f4 n7 bt2 MM4 mt41 n1, n5, n6, n7, s1, s2, n7, n2

5 (8,4) f4 n7 bt2 MM4 mt42 n1, n5, n6, n7, s1, s3, n2

6 (12,3) f3 n4 bt3 MM3 mt31 n1, n3, n4, n4, n3, n2

7 (8,1) f1 n7 bt2 MM1 mt11 n1, n5, n6, n7, sg

8 (6,2) f2 n5 bt2 MM2 mt21 n1, n5, n1

9 (4,3) f3 n2 bt1 MM3 mt31 n1, n5, n7, n2, n2

3.8 Fitness evaluation and determination of next

generation

3.8.1 Fossil Record (FR):

For each test requirement and its associated test case(s) test validation results

indicate whether it helped �nd a failure mitigation defect or not. For each genera-

tion, we record this information in the fossil record. A fossil record entry is a triplet

(p, e, d) where (p, e) is a test requirement from a given generation and d is a boolean

value that is 1 if a mitigation defect was found through the test requirement and 0

if it was not.

The fossil record stores the old population of test requirements for further com-

parison with new population data. The �tness function uses this information when

it tries to determine either very novel test requirements (compared to those from

prior generations) or mine around test requirements that helped �nd mitigation de-

fects (i.e. generate new test requirements that are similar). This makes the �tness

function relative, rather than absolute.

41

3.8.2 Fitness Function:

Similar to James et al. [54], it provides for exploring, prospecting and mining.

Exploring rewards novelty as being farther away from individuals in the fossil record,

while prospecting and mining use functions that either measure the distance from

known mitigation defects (farther is better) or search closely around existing defects.

First, the �tness function is using the novelty (S) of an individual (p, e). It is

computed as the distance from each new individual to each entry in the current

fossil record:

S(pc, ec) =
∑|FR|−1

q=0

√
(pc−pq)2
length(I)

+ (ec−eq)2
|F |

where pc is a position (point of failure) to be evaluated

ec is a failure type at the point of failure to be evaluated

pq is the position of the fossil record

eq is the failure type of the fossil record

length(I) is the total number of positions

|F | is total number of failure types

FR = {(pq, eq, dq)|(pq, eq, dq) in Fossil Record}

|FR| is the total number of (p, e) pairs in FR

The second part of the �tness function uses proximity (R) of individuals to

individuals with known mitigation defects. It helps the search to focus attention

on error-weighted regions of the search space. Based on the individuals in the fossil

record that triggered defects, R is calculated as the distance for the new individual

from all individuals in the fossil record that triggered a defect.

R(pc, ec) =
∑

(p,e,1)∈FRd

√
(pc−p)2
length(I)

+ (ec−e)2
|F |

42

where p, and e are the position and failure type in the fossil record that triggered a

mitigation defect. FRd = {(p, e, 1)|(p, e, 1) ∈ FR and (p,e) found mitigation defect}

After executing the test cases associated with a given individual (p, e), R is used as

follows, depending on whether (p, e) triggered a mitigation defect:

R(pc, ec) =

R(pc, ec) if (pc, ec) found a mitigation defect;

1
R(pc,ec)

Otherwise.

That is, if a mitigation defect was found, we prospect away from the known

defects, if (p, e) did not trigger a mitigation defect, we mine around individuals that

are known to trigger defects. The overall �tness function tries to balance exploration,

prospecting and mining as in James et al. [54] as follows:

Fitness = (ws × S1.5)2 × (wr ×R1.5)2

where ws is a weight for exploration and wr is a weight for prospecting and mining.

3.8.3 Generate New Generation

This step consists of 3 parts. First, the GA ranks the individuals in the current

population by their �tness values and selects the top half (i.e. we use the median of

the �tness values as a cut o�). These are candidate pairs for the new generation.

Second the GA selects a proportion of these most �t individuals for crossover,

based on a crossover rate (CR). We chose a CR=0.5. That means the GA selects

50% of the most �t individuals and exchanges their positions. Crossover between

two individuals (p1, e1) and (p2, e2), is accomplished by exchanging the positions,

thus creating new individuals (p1, e2) and (p2, e1).

43

The third step is to mutate a certain percentage of the current population. This

percentage is called mutation rate (MR). For example, if the mutation rate is 30%

to mutate (p, e) into the (p′, e), the GA randomly selects 30% of the individuals and

randomly selects a p′ 6= p as the new position for them. The algorithm removes

duplicates and individuals that are infeasible based on the SE matrix.

Note that the population sizes of successive generations are dynamic similar to

[57, 12].

3.9 Stopping Criteria

The GA will continue as long as new generations are created, or the number of

test requirements has not reached its limit (i.e we have a limited test budget). If the

test budget has not been exhausted, we attempt to create a new generation, subject

to the following condition: there is at least one individual in the current generation

with a higher �tness function than individuals in the fossil record.

If the mutation and crossover do not produce new individuals (i.e. because the

test requirements are not feasible according to the SE matrix, or are duplicates of

individuals in the Fossil Record) the algorithm also stops.

Algorithm 3.8 shows the pseudocode of the approach and algorithm 3.9 shows

the pseudocode of creating a new generation.

44

Algorithm 3: GA Approach

Require: State-Event Matrix (SE), Novelty Weight ws, Proximity

Weight wr, Crossover rate (CR), Mutation Rate (MR), Failure

types F, Concatenate of behavioral test (I)

Ensure: Selected Best Pairs (p, e)

1: Generation of pairs Gen = φ /* Gen is an Array of (p, e, d, FF)

where d is defect found and FF �tness function Initial ∀(p, e) : d =

false and FF = null */

2: Fossil Record FR = φ

3: NoGeneration = 0

4: while More Generation Needed do

5: if NoGeneration = 0 then

6: /* compute initial population based on dpe, dps */

7: Gen ← ComputeInitialPopulation(SE) /* see Algorithm

No. 4 */

8: else

9: /* Generate New Generation */

10: /* use crossover rate, mutation rate, old Gen and search space

to generate new Gen */

11: /* if i>1, Gen is the best individual selected on line 46 */

12: Gen← GenerateNewPopulation(Gen,CR,MR, I)/* see Al-

gorithm No. 3 */

13: end if

14: NoGeneration = NoGeneration+ 1

15: Results = φ

16: End Loop

Results← (p, e, d) /* Enter (p, e, d) into Results */

d = true

IF defect found using (p,e) Then

/* Record Defect (p,e,d) where d is defect found */

Evaluate Tests (p, e)

Execute Tests (p, e)

Generate Tests (p, e)

Loop ∀(p, e) ∈ Gen

∀(p, e) ∈ Gen : d = false

/* External Process */

17: if NoGeneration > 1 then

18: /* Compute Fitness Function */

19: for c = 0 to length(Gen) do

20: S = 0 : R = 0

21: /* Compute Novelty S */

22: Sum = 0

23: for l = 0 to length(FR) do

24: Sum ← Sum + ([(Gen[c].p − FR[l].p)2/length(I)] +

[(Gen[c].e− FR[l].e)2/length(F)])

25: end for

26: S ← SQR(Sum)

27: /* Compute Proximity R */

28: Sum = 0

29: for d = 0 to DefectFound do

30: Sum← Sum+([(Gen[c].p−FR[IndexDefect[d]].p)2/length(I)]+

[(Gen[c].e− FR[IndexDefect[d]].e)2/length(F)])

31: end for

32: if Gen[c].d is true then

33: R← SQR(Sum)

34: else

35: R← 1/SQR(Sum)

36: end if

37: Fitness value for individual

38: Gen[c].FF = (ws × S1.5)2 × (wr ×R1.5)2

39: end for

40: /* Select individuals with highest FF for crossover and mu-

tation */

41: /* These individuals will be used for crossover and mutation

*/

42: Gen← {Gen|Gen.FF ≥Median(Gen.FF)}

43: end if

44: /* Store best Selection in FR */

45: FR← Gen

46: DefectFound = 0

47: for f1 = 0 to length(FR) do

48: for f2 = 0 to length(Results) do

49: /* defect found */

50: if FR[f1] = Results[f2] and Results[f2].d is true then

51: /* Keep defect index position to be used in Fitness Func-

tion */

52: IndexDefect[DefectFound]← f1

53: DefectFound← DefectFound+ 1

54: end if

55: end for

56: end for

57: end while

58: Output: FR includes Best Pairs

Figure 3.8: GA Approach

45

Algorithm 4: Algorithm for creating New Generation

Require: Generation of pairs (Gen), Crossover rate (CR), Mutation Rate (MR),

Length of concatenate a behavioral test (I)

Ensure: Generate New Population for GA

/* Crossover */

Split← Integer(length(Gen)× CR) /* Split index position in Gen */

/* Swap positions */

p1[]← φ

p2[]← φ

/* Split the position vector from �rst position to Split index position in Gen */

p1 ← Slice(Gen.p, 0, Split)

/* Split the position vector from Split index position to the end in Gen */

p2 ← Slice(Gen.p, Split, length(Gen))

/* Merge two position vectors p1 and p2 */

Gen.p←Merge(p1, p2)

/* Mutation */

Number of Mutation positions MutP ← Integer(length(Gen)×MR)

for pm = 0 to MutP do

SelectedPair ← Random(Gen) /* Random Selection of individual from Gen /

Selected position p′ ← Random(length(I)) /* Random Selection of position

from I /

/* Replace position p in selected individual with p′ */

Gen[SelectedPair] ← {(p′, e)|p′ ∈ I ∧ p′ 6= Gen[SelectedPair].p, 1 ≤ p′ ≤

length(I)}

end for

Figure 3.9: Algorithm for creating New Generation

46

Chapter 4

Validation of GA approach

There are several parts of this approach that need to be analyzed and evaluated.

The most important is the GA approach, since it is at the core of the proposed test

approach. In this section we address the following questions:

1. What mitigation defect density rates occur in practice and what are good

weights wr and ws to use for them?

2. For commonly occurring mitigation defect densities, does the GA algorithm

generate individuals which when converted to fail-safe mitigation tests trigger

mitigation defects?

3. Is the approach scalable?

4. How do the results compare with random generation of individuals both in

terms of e�ectiveness and e�ciency.

4.1 Description of Simulator

We built a simulator that allows to vary the following variables:

1. Test suite size (length(I))

47

2. Failure types (|F|)

3. Mitigation defect density (D)

4. Applicability level (AL)(percentage of �1� entries in the state-event matrix)

5. Duplication factor (DF). This variable is de�ned as DF = length(I)/|S|. that

is, the length of the concatenated test suite divided by the number of states in

the behavioral model. It computes the average number of times a state occurs

in I.

6. Crossover rate (CR)

7. Mutation rate (MR)

8. Exploration weight (ws)

9. Prospecting and mining weight (wr)

10. Number of runs per problem (NR)

11. Type of (p,e) pair (test requirement) generation. The simulator supports the

following approaches: GA, Random, and CC (Coverage Criteria).

The �rst two variables describe the problem size and characteristics. length(I) and

|F| determine the size of the search space. The mitigation defect density is used to

determine how many mitigations are defective. These are marked with (d), so it can

be determined later whether a selected (p,e) pair uncovers a mitigation defect or

not. The applicability level is used to determine the number of '1' in the state event

matrix which is generated next. Using the duplication factor, the simulator deter-

mines the number of states in the behavioral model and generates a concatenated

test suite as a sequence of nodes.

The remainder of the variables are used to con�gure the GA and to determine

the number of runs for each problem.

48

The simulator selects one or more of the (p,e) pair generation approaches (GA,

Random) and determines the set of test requirements ((p,e) pairs). Then it deter-

mines whether or not they found a defect and computes defect coverage for each

approach. We use the following dependent variables:

• Test requirements ((p,e) pairs)

• The number of test requirements.

• The set of mitigation defects found

• The number of mitigation defects found

• The percentage of mitigation defects found.

The simulator computes the (p,e) pairs needed for testing, determines how many

mitigation defects were found and the proportion of mitigation defects found. It also

selects the same number of (p,e) pairs randomly and determines the number of mit-

igation defects found through random selection so we can compare GA performance

a against random selection.

We use the simulator to tune the weight of the �tness function, compare our (de-

terministic) initial population to random selection, and compare GA against random

selection of test requirements (section 4.4). Finally, since the cost of �tness evalua-

tion on an actual case study is expensive and caused us to abandon the traditional

GA approach of multiple runs, we compared single run performance against multiple

runs.

After we set up the simulator's parameters values, the simulator will automati-

cally build the state-event matrix (SE) based on applicability level percentage value

(AL). The value of �1� entries in the state-event matrix will be distributed randomly.

Next, the simulator constructs a defect state event matrix based on the mitigation

49

defect density (D) by multiplying the number of '1' in the SE matrix with the defect

density D and rounding to the next integer. The result is the number of defective

mitigations. For example, if the SE matrix contains 100 of '1' entries and D=5%,

there are 5 mitigation defects. These are randomly selected and marked in the de-

fect state event matrix. Whenever a (p,e) pair's �tness is evaluated, the simulator

looks up the node in position p and checks whether the defect state event matrix

for (node(p),e) is marked as having a defect.

4.2 Initial Population

Since we determine the initial population deterministically, rather than randomly

using multiple runs, we need to evaluate how good the initial population is. Table

4.1 shows the results comparing initial population selected via defect potential (Al-

gorithm ??) against multiple runs of randomly selected initial populations (10 runs).

The �rst column lists the number of generations generated. The second and third

columns list results for using defect potential for selecting the initial population

(pairs needed in each generation and cumulative percentage of defects found, re-

spectively). Columns 4 and 5 list the results for selecting the initial population

randomly.

The simulator's parameters values are selected based on our case study (section

6) as follows:

1. Test suite size (length(I))=169

2. Failure types (|F|)=10

3. Mitigation defect density (D)=5%

4. Applicability level (AL)=42%

50

5. Crossover rate (CR)=0.5

6. Mutation rate (MR)=0.3

7. Exploration weight (ws)=3

8. Prospecting and mining weight (wr)=1

9. Number of runs=10

The results show that using the defect potential is more e�cient. Using defect

potential �nds all mitigation defects in fewer generations with fewer (p, e) pairs

(last row of Table 4.1). The results show that random selection of initial population

needs 5 additional generations and 182 additional test requirements compared to

using defect potential. In addition using defect potential �nds earlier (�rst defect

found in generation 1 vs. 3).

51

Table 4.1: Random vs. defect potential

(based on 10 runs)

of Generation
Initial population based on defect potential Random Initial Population

of pairs Defect Found % # of pairs Defect Found %

intial popluation 16 33% 12 0%

2 20 33% 15 0%

3 21 33% 18 33%

4 23 33% 21 33%

5 26 33% 23 33%

6 29 33% 25 33%

7 30 33% 28 33%

8 33 67% 32 33%

9 36 67% 34 33%

10 37 67% 36 33%

11 40 67% 37 33%

12 41 100% 38 33%

13 40 67%

14 41 67%

15 43 67%

16 44 67%

17 47 100%

Total pairs 352 534

52

4.3 Tuning of the GA

An important question in making the GA approach described in section 3 was

what values to use for exploration weight and prospecting weight. Basically higher

defect densities pro�t from a higher weight for prospecting and mining (wr > ws)

while lower defect densities show GA results when the exploration weight is higher

(ws > wr).

To determine what are "high" and "low" defect rates, we rely on Sawaelpong et

al. [67] who report that 19-23% of exception handling routines have defects. They

consider 20% a high defect rate and 5% a low one. In their tuning experiments,

they vary ws and wr for search spaces varying from 800-2000 and found that for

high defect rates wr = 3 and ws = 1 had the highest defect coverage while for low

defect rates wr = 1 and ws = 3 performed better. When defect rates are in between

(neither high, nor low) unequal weights do not fare as well. This is summarized in

Table 4.2. For the high defect rate of 20% biasing towards prospecting and mining

uncovers between 88-92% of the defects, while for the lower defect rate of 15%, only

78% of the defects are found. Similarly, biasing towards exploration for the low

defect density of 5% �nds between 95%-100% of the mitigation defects while this

biasing does not work as well for the higher defect rate of 10%: only between 73-

85% of the mitigation defects are found. It is thus important to consider expected

mitigation defect rate when selecting these weights in the �tness function.

We next turn to the selection of values for crossover and mutation rate. We used a

crossover rate of CR=0.50 and a mutation rate of MR=0.30. Typical crossover rates

based on De Jong's simulations are between 0.5-0.6 [16, 22]. As for the mutation

rate, theoretical work reports a rule of thumb of 1/N (N is the number of genes,

in our case N = 2) [11]. By contrast typical mutation rates in the literature are

53

Table 4.2: Percentage of Mitigation Defects Found

wr=3 ws=1 wr=1 ws=3

length(I) ×|F | 20% 15% 10% 5%

800 92 78 80 95

1000 88 78 85 100

2000 92 78 73 95

around 0.15 [16]. The mutation rate we chose is a compromise between the two. As

is common practice in GA experiments [2], we used 10 simulation runs per problem.

4.4 Comparsion GA vs. Random

We performed a series of simulation experiments to compare the performance of

the GA with random selection of test requirements ((p, e) pairs). Table 4.3 shows

the values of the parameters chosen. length(I) is the length of the test suite, |F |

is the number of failure types. length(I) × |F | is the size of the potential search

space (the GA removes infeasible pairs based on the SE matrix), D is the mitigation

defect density. This was chosen to be small, since it makes for a more di�cult search

problem. The GA parameters were chosen as explained in section 4.3.

The results are shown in Table 4.4. The leftmost column shows length(I)× |F |.

The second column reports the number of (p, e) pairs needed to �nd the defect

percentage reported in column three for the GA. The last column reports percentage

of mitigation defects found by random search using the same number of (p, e) pairs.

The GA �nds all mitigation defects while random search never �nds all defects and

is unable to �nd any defects for 6 of the 10 problems.

The next question was whether random generation was just less e�cient and

would have eventually caught up with the GA approach if allowed to generate more

54

Table 4.3: Parameter settings for GA vs Random Comparison

length(I) F length(I) ×|F | D AL CR MR ws wr NR

40-400 5 200-2000 5% 80% 0.5 0.3 3 1 10

Table 4.4: E�ectiveness: GA vs. Random

length(I)× |F | # of pairs (p,e)
GA Random

% Defect Found % Defect Found

200 31 100 50

400 34 100 50

600 39 100 25

800 34 100 0

1000 38 100 0

1200 38 100 0

1400 39 100 0

1600 32 100 0

1800 32 100 0

2000 35 100 33

55

individuals. Table 4.5 explores this. It lists the number of individuals needed to

reach the �rst defect, to reach 50% of the defects, and to reach 100% of the defects

for both GA and Random based generation. As before we varied population between

200 and 2000. If random generation did not reach a detection level, the table reports

n/a. For smaller search spaces (populations 200, 400, 600) Random generation

initially �nds mitigation defects faster, but, unlike the GA approach it plateaus

and is unable to �nd all mitigation defects. We also show initial faster �nding of

mitigation defects for population 2000, but, again Random generation is unable to

achieve detection of all mitigation defects. For all other population sizes GA is more

e�cient throughout.

4.5 Single Runs vs. Multiple Runs

The results of selecting the population for a generation are a set of test require-

ments (i.e. (p, e) pairs). They are used to generate failure mitigation paths and

executable test cases. These must be executed and validated. All of these steps

are manual, hence orders of magnitude more expensive than generating test require-

ments. This also makes the cost of multiple runs prohibitive. Multiple runs are

possible when the use of a GA is explored with a simulator as in [58][13]. However,

when actual test cases need to be generated, executed, and validated to determine a

test requirements' �tness, this GA evaluation cost becomes prohibitive for multiple

runs. We then must be willing to accept a local rather than global optimum as long

as the mitigation defects are found, For quantitative results on evaluation cost see

section 6.5 in our case study. Note also the global minimum in terms of number of

test requirements is equal to the number of mitigation defects that exist.

56

Table 4.5: E�ciency: GA vs. Random

Search Space First defect Found First reach 50% First reach 100%

200
GA 9 14 29

R 7 12 n/a

400
GA 24 24 30

R 21 21 n/a

600
GA 25 25 28

R 21 21 n/a

800
GA 17 23 32

R 28 48 n/a

1000
GA 37 37 37

R n/a n/a n/a

1200
GA 32 32 36

R n/a n/a n/a

1400
GA 27 27 34

R 49 49 n/a

1600
GA 24 32 36

R 87 n/a n/a

1800
GA 20 24 26

R 68 n/a n/a

2000
GA 22 28 31

R 17 93 n/a

57

Cantú-Paz [19] explore whether multiple runs of a GA can reach solutions of

higher quality or reach acceptable solutions faster. Their results suggest that with

a �xed evaluation budget a single run reaches a better solution than multiple inde-

pendent runs.

We used the simulator with the data of subsystem CD of our case study in Chap-

ter 6 to evaluate single vs. multiple runs. We perform independently 10 di�erent

runs. Table 4.6 shows the results. The �rst column identi�es the generations. Next,

for each of the runs (Run #1 to Run #10) two results are reported per genera-

tion: the number of individuals in a given generation (test requirements) and the

cumulative population of defects found so far.

Table 4.6: Multiple Runs of GA

Run#1 Run#2 Run#3 Run#4 Run#5 Run#6 Run#7 Run#8 Run#9 Run#10

G1 11 0% 11 33% 11 33% 11 33% 11 33% 11 33% 11 33% 11 33% 11 33% 11 33%

G2 16 33% 15 33% 17 67% 16 33% 16 33% 16 33% 16 33% 15 33% 15 33% 15 33%

G3 18 33% 17 33% 21 67% 19 33% 19 67% 19 33% 18 33% 19 33% 18 33% 19 33%

G4 20 33% 18 33% 23 67% 20 67% 21 67% 20 33% 19 67% 22 33% 19 33% 21 33%

G5 23 33% 21 67% 24 67% 23 67% 24 67% 21 33% 23 67% 24 33% 21 67% 24 33%

G6 23 33% 23 67% 26 67% 26 67% 26 67% 26 33% 26 67% 26 33% 25 67% 27 33%

G7 24 33% 26 67% 28 67% 28 67% 27 67% 29 33% 27 67% 28 33% 26 67% 29 33%

G8 25 33% 30 67% 29 67% 31 67% 28 67% 30 33% 28 67% 29 33% 28 67% 30 33%

G9 27 33% 31 67% 33 67% 32 67% 29 67% 33 67% 30 67% 30 33% 30 67% 31 33%

G10 28 33% 32 67% 33 67% 33 67% 31 67% 36 67% 31 67% 30 33% 32 67% 32 33%

G11 30 33% 33 67% 35 67% 36 67% 33 67% 37 67% 32 67% 33 33% 35 67% 32 33%

G12 32 33% 34 67% 36 67% 38 67% 36 67% 40 67% 33 67% 35 33% 36 67% 34 33%

G13 34 33% 36 67% 38 67% 40 67% 38 67% 41 67% 34 67% 37 33% 37 67% 35 67%

G14 35 33% 37 67% 39 67% 40 100% 40 67% 41 100% 35 67% 38 33% 38 67% 38 67%

G15 38 33% 39 67% 41 100% 41 67% 36 67% 39 33% 40 67% 39 67%

G16 39 33% 40 67% 42 67% 37 67% 40 33% 40 100% 40 67%

G17 42 33% 41 67% 43 67% 38 67% 42 100% 41 100%

G18 44 33% 42 67% 43 100% 39 67%

G19 45 100% 42 100% 40 67%

G20 42 67%

G21 42 100%

554 568 434 393 548 400 595 498 451 498

As for e�ectiveness, each run �nds all mitigation defects. The runs di�er in

e�ciency. Run #7 needs the most generations (21), while Run #4 and Run #6

need the least (14). Similary, Run #7 generates the most test requirements (595)

while Run #4 needs the fewest (392). By only performing one run, we risk sacri�cing

58

some e�ciency. However, any of these runs requires fewer test requirements than

an exhaustive search. As Chapter 6 will demonstrate, the cost of exhaustive search

is prohibitive in practice.

59

Chapter 5

GA vs. Coverage Criteria

5.1 Coverage Criteria (CC)

We did compare the performance of the GA to random selection of fail-safe

scenarios, and the results show GA performance was better than random selection.

In this chapater, we compare the approach against Coverage Criteria de�ned by

Andrews et al. [6]:

Criteria 1 (C1): All combinations, i.e. all positions p, all applicable failure types e

(test everything). This is clearly infeasible for all but the smallest models. It would

require length(I) × |F | pairs if SE contains all "1"s.

Criteria 2 (C2): All unique nodes, all applicable failures. This only requires:∑k
j=1

∑|S|
i=1 (SE(i,j)=1) combinations i.e. the number of one entries in the State-

Faiture matrix (SE). When some nodes occur many times in a test suite only one

needs to be selected by some scheme. This could lead to not testing failure recovery

in all tests. An alternative is to require covering each test as well.

Criteria 3 (C3): All tests, all unique nodes, all applicable failures. Here we simply

require that when unique nodes need to be covered they are selected from tests that

have not been covered.

60

A weaker criterion is not to require covering all applicable failures for each

selected position. Note that C2 and C3 require the same number of pairs. Its

e�ectiveness is the same, whether a failure f occurs in position p or p′ where

node(p) = node(p′) = s is irrelevant for mitigation failure detection. That is, a

test would �nd (or not �nd) a mitigation defect for a failure in state s, no matter

where in the test suite s occurs.

Criteria 4 (C4): All tests, all unique nodes, some failures (only one failure per

position, but covering all failures). Some failure means that collectively all failures

must be paired with a position at least once, but not with each selected position as

in criteria 3.

Coverage criteria are attractive, since they allow for systematic algorithmic gen-

eration of points of failure and failure types. Depending on the criteria, a strong

one may not scale to larger problems while a weaker one may not be e�ective. For

example, requiring all applicable failure events in all states in each test to be cov-

ered, is infeasible for all but the smallest behavioral models and a small number of

failure types. For smaller test problems, test criteria are feasible and may be better.

5.2 Design of Experiments

We extended the simulator in section 4.1 to run experiments to investigate the

following research questions:

• Under which conditions can we use the GA or the coverage criteria?

• How does the GA test strategy compare to the use of the four coverage criteria

(C1-C4) both with respect to e�ciency and e�ectiveness?

61

• Is there a di�erence in performance when we have a small search space vs. a

large one?

The simulator takes the same independent and dependent variables as described in

section 4.1.

We report on a series of simulation experiments that compares the two strategies

with respect to e�ectiveness and e�ciency. Speci�cally, we compare the two strate-

gies in light of di�erent problem sizes. By problem size we mean the combination

of number of failure types and size of the test suite. GAs tend to work well in large

search spaces, so the question becomes at what point is the problem too small for a

GA to be used meaningfully. Conversely, depending on the test criteria, some may

become rather expensive, i.e leading to a large number of testing requirements.

We investigate and compare the two strategies for large and small problems and

considers both e�ciency and e�ectiveness. We do this via simulation experiments.

To increase validity, we also present a comparisons of GA and coverage criteria for

generating test requirements via a series of case studies:

• Three web applications (student services, a mortgage system, and one of its

subsystems)

• Four safety critical systems (Two versions of a railroad crossing control system

(RCCS), an insulin pump, and an aerospace launch vehicle)

The case studies are investigated by seeding mitigation defects and evaluating whether

the GA and/or the coverage criteria �nd the defects and how many test requirements

are needed.

62

5.2.1 Parameter Settings

For the GA parameters, we use the same parameters as were identi�ed and ex-

perimented with in section 4.1: mutation rate MR=0.3, crossover CR=0.5, number

of runs NR=10. We chose a defect rate D that is close to the one reported by

Sawaelpong et al. [67]: D=20%. Based on the results of tuning the GA in section

4.3 (see Table 4.2) we selected exploration weights wr=3 and ws=1. We vary the

size of length(I)× |F | from 10 to 2000. We keep the applicability level at the same

level as in the prior experiments. The duplication factor is kept at 2 for the small

search space (10-100). That means on average a speci�c state in the behavioral

model occurs in the test suite twice. Note that the duplication factor of one of the

RCCS example is about 3. The duplication factor for the case studies reported in

section 5.3 for the small search spaces vary from 2-14 (rounded to closes integer).

A lower duplication factor makes for a more di�cult search problem since there

are fewer opportunities to �nd a mitigation defect for a failure that occurs in a

particular state. For the larger search spaces, we set the duplication factor to 20.

This is smaller than the duplication factor of 31 for the large case study reported in

section 5.3, again, to make it a harder problem, so as to be conservative. Table 5.1

summarizes the parameter selection for the typical mitigation defect density of 20%.

Table 5.1: Simulation parameter for typical D=20%

length(I)× |F | DF CR MR wr ws NR

10-100 2 0.5 0.3 3 1 10

200-2000 20 0.5 0.3 3 1 10

63

Table 5.2 summarizes the simulation parameters for the low defect density of

D=5%. Note that D=5% for length(I)× |F |=10 is not possible as it results in less

than one mitigation defect.

Table 5.2: Simulation parameters for low defect density D=5%

length(I)× |F | DF CR MR wr ws NR

20-100 2 0.5 0.3 1 3 10

200-2000 20 0.5 0.3 1 3 10

We now use the simulator with these parameters to compare GA performance

against coverage criteria (C1-C4).

5.2.2 GA vs. C1

C1 represents the equivalent of an exhaustive search as the test requirements

((p, e) pairs) state that all feasible combinations be tested. C1 guarantees 100%

mitigation defect coverage. Table 5.3 shows simulation results for a mitigation defect

density of 20%. The �rst column shows the potential search space length(I) × |F |

(the GA removes infeasible pairs based on the SE Matrix). It varies from 200-2000.

The second column shows the number of pairs the GA generates. The third column

shows the percentage of mitigation defects found by the pairs reported in column 2.

Columns 4 and 5 report this information when using coverage criterion C1.

Both GA and C1 �nd all mitigation defects, but GA does so much more ef-

�ciently. Column 6 shows this quantitatively by computing the fraction of pairs

needed by the GA vs C1. The GA only needs between 3.4%-5% of the pairs re-

quired by C1, it is clearly more e�cient. Both approaches are equally e�ective.

Next, we consider the typical mitigation defect rate of 20% with the small search

space. Table 5.4 shows these results. It is organized the same as Table 5.3. While

64

the GA again generates fewer pairs it is not able to �nd all mitigation defects until

length(I)×|F | reaches 70. Hence C1 is more e�ective for length(I)×|F | ∈ {10, 20,

30, 40, 50, 60}. It is also interesting to note that the relative e�ciency (column 6)

is not as good as for the larger search spaces. The GA now needs between 33.3%-

62.5% of the number of pairs C1 requires. We have to conclude then that for this

experiment, C1 is recommended over GA as long as length(I)× |F | ≤ 60.

Next, we turn to the low mitigation defect rate of 5%. Table 5.5 shows the results

for I × |F | ranging between 200-2000 while Table 5.6 shows it for length(I) × |F |

ranging from 20-100. Both tables are organized identical to Table 5.3.

A defect density of 5% represents a more di�cult search problem. Table 5.5

shows that for the larger potential search space the GA �nds all mitigation defects.

What is interesting is that it does not need many more pairs to do this than for the

larger mitigation defect rate. The relative e�ciency compared to the larger miti-

gation defect ratio is also similar (Table 5.3 shows a slightly wider range [3.4-5.0]

versus [3.8-4.6] in Table 5.5).

We next investigate the low mitigation defect rate D=5% for the small search

space. Results are reported in Table 5.6 (organized the same as Tables 5.3-5.5).

Note that it was not possible to investigate length(I) × |F | = 10, since with a

D=5% this would result in less than one defect, hence is not possible.

As before for the higher defect rate (Table 5.4), the GA is unable to detect all

mitigation defects for the very small search spaces (less than 80 in this case), hence

C1 is more e�ective. When the defect rate decreases, it takes a larger potential

search space (80 vs. 70) to become successful at �nding all defects. Note that we do

65

not report relative e�ciency until both GA and C1 �nd all defects since comparing

e�ciency of an ine�ective approach compared to one that does �nd all defects is

pointless.

Table 5.3: Large Search Space: GA vs. C1 - 20% defect density

length(I)× |F | GA GA C1 C1 GA/C1

of pairs Defect % defect

pairs required%

200 7 100% 160 100% 4.3%

400 11 100% 320 100% 3.4%

600 17 100% 480 100% 3.5%

800 25 100% 640 100% 4.0%

1000 28 100% 800 100% 3.5%

1200 30 100% 960 100% 3.5%

1400 39 100% 1120 100% 3.1%

1600 53 100% 1280 100% 5.0%

1800 57 100% 1440 100% 4.0%

2000 70 100% 1600 100% 4.3%

5.2.3 GA vs. C2/C3

Next, we compare GA performance to coverage criteria C2 and C3. C2 and C3

result in the same number of test requirements. Although positions in a pair may

di�er, the same combinations of states and failures are tested (see section 5.1). In

other words, C2 and C3 do not di�er in what states and failures need to be covered,

only in whether states can be selected from any t ∈ BT or whether all t ∈ BT need

to be covered. This results in selection of di�erent positions p for C2 vs. C3.

66

Table 5.4: Small Search Space: GA vs. C1 - 20% defect density

length(I)× |F | GA GA C1 C1 GA/C1

of pairs Defect % defect

pairs required%

10 5 50% 8 100% 62.5%

20 7 50% 16 100% 43.8%

30 8 50% 24 100% 33.3%

40 12 50% 32 100% 37.5%

50 16 67% 40 100% 40.0%

60 23 83% 48 100% 47.9%

70 26 100% 56 100% 46.4%

80 28 100% 64 100% 43.8%

90 32 100% 72 100% 44.4%

100 35 100% 80 100% 43.8%

67

Table 5.5: Large Search Space: GA vs. C1 - 5% defect density

length(I)× |F | GA GA C1 C1 GA/C1

of pairs Defect % defect

pairs required%

200 6 100% 160 100% 3.8%

400 12 100% 320 100% 3.8%

600 22 100% 480 100% 4.6%

800 27 100% 640 100% 4.2%

1000 34 100% 800 100% 4.3%

1200 43 100% 960 100% 4.5%

1400 46 100% 1120 100% 4.1%

1600 60 100% 1280 100% 4.7%

1800 61 100% 1440 100% 4.2%

2000 72 100% 1600 100% 4.5%

68

Table 5.6: Small Search Space: GA vs. C1 - 5% defect density

length(I)× |F | GA GA C1 C1 GA/C1

of pairs Defect % defect

pairs required%

20 9 0% 16 100%

30 11 0% 24 100%

40 15 0% 32 100%

50 16 50% 40 100%

60 20 50% 48 100%

70 24 50% 56 100%

80 30 100% 64 100% 46.9%

90 35 100% 72 100% 48.6%

100 37 100% 80 100% 46.3%

As before, we �rst analyze the performance of GA vs coverage criteria for the

typical mitigation defect rate of 20% (both large and small problem), then for the

low mitigation defect rate of 5%. All other parameter values are as indicated in

section 5.2.1.

Table 5.7 shows the results for D=20% and length(I) × |F | ∈ {200,...., 2000}.

It is organized identical to the earlier result tables. Both GA and C2/C3 are able

to �nd all mitigation defects (see columns 3 and 5). The number of pairs does not

di�er as much as for GA vs. C1 (section 5.2.2), although GA needs fewer pairs. The

relative e�ciency of the GA is between 62.5% and 87.5%.

We next turn to the small potential search space. Table 5.8 shows results for

the small search spaces ranging from 10-100 and a mitigation defect density of

69

Table 5.7: Large Search Space: GA vs. C2/C3 - 20% defect density

length(I)× |F | GA GA C2/C3 C2/C3 GA/(C2/C3)

of pairs Defect % defect

pairs required %

200 7 100% 8 100% 87.5%

400 11 100% 16 100% 68.8%

600 17 100% 24 100% 70.8%

800 25 100% 32 100% 78.1%

1000 28 100% 40 100% 70.0%

1200 30 100% 48 100% 62.5%

1400 39 100% 56 100% 69.6%

1600 53 100% 64 100% 82.8%

1800 57 100% 72 100% 79.2%

2000 70 100% 80 100% 87.5%

70

20%. The GA does not reach 100% e�ectiveness until a search space of 70, showing

C2/C3 is more e�ective for search spaces ranging from 10-60. The number of pairs

is comparable: C2/C3 ranges from 5-40 pairs, GA ranges from 5-35 pairs. We thus

recommend to use C2/C3 for potential search spaces of less than 70, and GA for

larger ones.

Table 5.8: Small Search Space: GA vs. C2/C3 - 20% defect density

length(I)× |F | GA GA C2/C3 C2/C3 GA/(C2/C3)

of pairs Defect % defect

pairs required %

10 5 50% 5 100%

20 7 50% 8 100%

30 8 50% 12 100%

40 12 50% 16 100%

50 16 67% 20 100%

60 23 83% 24 100%

70 26 100% 28 100% 92.9%

80 28 100% 32 100% 87.5%

90 32 100% 36 100% 88.9%

100 35 100% 40 100% 87.5%

As before, we next consider the lower mitigation defect rate of D=5%. Table 5.9

shows results for the large potential search space while Table 5.10 shows results for

the small one. As with the higher mitigation defect rate, both GA and C2/C3 are

able to �nd all defects for the larger search space.

What is interesting is that decreasing the defect rate does not appear to a�ect

the number of pairs the GA needs very much although the trend is for an increased

71

number of pairs for the smaller mitigation defect rate. This is also illustrated by

comparing relative e�ciency: for the lower defect rate, GA needs up to 93.8% of

pairs C2/C3 needs while for the higher one GA needs no more than 87.5% of the

number of pairs C2/C3 requires.

Similarly, when comparing results for the small search space between the lower

(Table 5.10) and higher (Table 5.8) defect rates, initially the GA is not able to �nd

all defects (length(I) × |F | ≤ 80). When it �nally does, it requires slightly fewer

pairs than C2/C3.

Overall, it appears that lowering the defect rate from 20% to 5% does not have a

huge impact in e�ectiveness or e�ciency. C2/C3 and GA are equally e�ective, with

GA being only slightly more e�cient.

In summary, for large search spaces GA and C2/C3 are equally e�ective; the GA

has a slight advantage in e�ciency over C2/C3. Based on the results, we recommend

using coverage criteria for small search spaces (until 70 for D=20% and until 80 for

D=5%) over using a GA.

5.2.4 GA vs. C4

C4 is the weakest of the four coverage criteria and requires the fewest (p,e) pairs.

We �rst compare results for large search spaces and defect rates of 20% (Table 5.11)

and 5% (Table 5.13). In both cases the results are very strong: The GA �nds

all defects while C4 is unable to �nd any. C4's relative higher e�ciency is hence

irrelevant. The criteria is too weak. We turn to the small search space next. Table

5.12 reports results for D=20% while Table 5.14 summarizes results for D=5%.

The GA does not �nd all defects until length(I)× |F | reaches 70 (D=20%) and 80

(D=5%). Therefore, we can not recommend GA for small potential search spaces.

72

Table 5.9: Large search space of GA vs. C2/C3 - 5% defect density

length(I)× |F | GA GA C2/C3 C2/C3 GA/(C2/C3)

of pairs Defect % defect

pairs required %

200 6 100% 8 100% 75.0%

400 12 100% 16 100% 75.0%

600 22 100% 24 100% 91.7%

800 27 100% 32 100% 84.4%

1000 34 100% 40 100% 85.0%

1200 43 100% 48 100% 89.6%

1400 46 100% 56 100% 82.1%

1600 60 100% 64 100% 93.8%

1800 61 100% 72 100% 84.7%

2000 72 100% 80 100% 90.0%

73

Table 5.10: Small Search Space: GA vs. C2/C3 - 5% defect density

length(I)× |F | GA GA C2/C3 C2/C3 GA/(C2/C3)

of pairs Defect % defect

pairs required %

20 9 0% 8 100%

30 11 0% 12 100%

40 15 0% 16 100%

50 16 50% 20 100%

60 20 50% 24 100%

70 24 50% 28 100%

80 30 100% 32 100% 93.8%

90 35 100% 36 100% 97.2%

100 37 100% 40 100% 92.5%

What is interesting, however, is that C4 does not detect all defects for any of

the potential search spaces, although it does better than for the larger potential

search spaces. For the 20% defect rate (Table 5.12) it starts out with detecting

50% of the defects for length(I) × |F | = 10 and decreases steadily to 20% when

length(I) × |F | = 90. It appears that as the potential search space increases, its

ability to �nd mitigation defects decreases. When considering the lower defect rate

D=5%, the results do not show a trend (Table 5.14, column 5) such as decreasing

e�ectiveness with increasing potential search space.

In summary, the GA is more e�ective than C4 for large search spaces for both

defect rates. It has issues �nding defects for small search spaces. Overall, we cannot

recommend C4.

74

Table 5.11: Large search space: GA vs. C4 - 20% defect density

length(I)× |F | GA GA C4 C4

of pairs Defect % defect

pairs required %

200 7 100% 2 0%

400 11 100% 4 0%

600 17 100% 6 0%

800 25 100% 8 0%

1000 28 100% 10 0%

1200 30 100% 12 0%

1400 39 100% 14 0%

1600 53 100% 16 0%

1800 57 100% 18 0%

2000 70 100% 20 0%

75

Table 5.12: Small Search Space: GA vs. C4- 20% defect density

length(I)× |F | GA GA C4 C4

of pairs Defect % defect

pairs required

10 5 50% 2 50%

20 7 50% 5 50%

30 8 50% 8 50%

40 12 50% 10 50%

50 16 67% 13 50%

60 23 83% 15 43%

70 26 100% 18 43%

80 28 100% 20 38%

90 32 100% 23 20%

100 35 100% 25 20%

76

Table 5.13: Large search space: GA vs. C4 - 5% defect density

length(I)× |F | GA GA C4 C4

of pairs Defect % defect

pairs required %

200 6 100% 2 0%

400 12 100% 4 0%

600 22 100% 6 0%

800 27 100% 8 0%

1000 34 100% 10 0%

1200 43 100% 12 0%

1400 46 100% 14 0%

1600 60 100% 16 0%

1800 61 100% 18 0%

2000 72 100% 20 0%

77

Table 5.14: Small Search Space: GA vs. C4- 5% defect density

length(I)× |F | GA GA C4 C4

of pairs Defect % defect

pairs required

20 9 0% 5 50%

30 11 0% 8 50%

40 15 0% 10 0%

50 16 50% 13 50%

60 20 50% 15 0%

70 24 50% 18 0%

80 30 100% 20 0%

90 35 100% 23 33%

100 37 100% 25 0%

5.3 Comparison of Various Case Studies and Model

Types

In this section, we compare di�erent case studies with respect to size of PE

and e�ectiveness and e�ciency of using GA vs. C1-C4 when seeding 5% of the

mitigations with defects. We chose D=5% to make it a more di�cult search problem.

Table 5.15 summarize the case studies. The �rst column identi�es the type of model

used. There are three case studies using FSMWeb [9], one case study using an EFSM

(Extended Finite State Machine), and three case studies using a Communicating

Extended Finite State Machine (CEFSM). Column 2 identi�es the case studies and

provides a reference where details of the case study can be found. The �rst is a

student services web application (CSIS), the second a large mortgage application,

78

Table 5.15: Summary of case studies using di�erent behavioral models

Behavioral
Model

Case Study # of
States

of
Tran-
si-
tions

of
F

Size
of
BT

Length(I) AL

FSMWeb [9]

CSIS [9] 16 20 3 6 70 33.33%

Mortgage Syatem 127 224 10 266 3998 40.00%

Closing Documents Sub System 12 9 10 12 169 41.67%

EFSM[45] RCCS -1 [6] 4 8 4 4 24 81.25%

CEFSM [45]

Launch System [26] 21 34 14 5 49 45.92%

Insulin Pump [26] 15 23 4 11 74 61.67%

RCCS-2 [26] 14 19 4 11 58 60.71%

underwriting, and management system, the third is one of its subsystems that deals

with closing documents. These are all web applications. The Railroad crossing

control system (RCCS-1) in EFSM format is a simpli�ed version of the RCCS-2 in

CEFSM format. Additionally, we also use CEFSM models of an aerospcae launch

vehicle and an insulin pump. These are all examples of safety critical systems. The

next two columns show the number of states and transitions, respectively. They

vary from 4 in the RCCS-1 to 127 in the mortgage system, and from 8 transitions

in RCCS-1 to 224 for the mortgage system. Column 5 shows the number of failure

types. CSIS only has 3, while the launch vehicle has 14. Column 6 lists the number

of tests for each case study, ranging from 4 to 266. The length of the test suite is

given in column 7. It ranges from 24 to 3998. The product of columns 5 and 7

de�nes the size of the search space (minus infeasible pairs). The last column shows

the applicability levels for each case study. Applicability levels are usually lower

when certain failures only apply in certain phases of processing. For example, in the

launch vehicle case study, failure types are speci�c to a launch phase and are not

applicable to earlier or later phases. The highest is for the RCCS-1.

79

The mortgage system is the largest. The insulin pump and RCCS-2 have the

same number of test cases and the same number of failures, but they di�er in the size

of the search space. RCCS-1 has the smallest search space. As mentioned before,

we seeded each case study with 5% defective mitigations. Table 5.16 shows the size

of the search space length(I)× |F | in column 2 for each case study summarized in

Table 5.15. The remaining columns show the number of (p, e) pairs needed when

using GA, C1, C2, C3, and C4, respectively. Except for C4, all �nd 100% of the

defective mitigations. The last column shows the percentage of defective mitigations

found by C4.

As we showed in the simulation experiments, using the GA is much more e�cient

than C1. It compares in e�ciency with C2 and C3. C4 is too weak a testing criterion

and is unable to �nd all mitigation defects except for RCCS-1. For four of the seven

case studies, it is unable to �nd any of the mitigation defects.

Table 5.16: E�ciency Comparison

Application length(I)× |F | GA C1 C2 C3 C4

C4
Defect
Found
%

CSIS 210 14 97 16 16 9 0%

Mortgage System 39980 485 27986 508 508 127 0%

CD 1690 41 638 50 50 12 0%

RCCS-1 96 17 76 13 13 4 100%

Launch System 686 128 386 135 135 21 0%

Insulin Pump 296 25 189 37 37 15 50%

RCCS-2 232 29 138 34 34 14 50%

80

Chapter 6

Case Study - Mortgage System

6.1 General Description

We illustrate our approach on a commercial web application. The mortgage sys-

tem is an example of a critical web application as failures can be drastic: borrowers

lose their home, the company loses its value, and employees lose their jobs. Not all

system components are critical, e.g. components not related to the loan process.

The system provides di�erent services in each stage of the loan process. It includes

the following functions:

1. Create the loan.

2. Acknowledge the loan based on the type of pricing.

3. Review the loan to make an approval decision.

4. Request legal documentation via external web services (Document disclosure).

5. Keep and update accounting information for funding and selling the loan

through selected warehouse banks and investors who buy loans.

6. Close the loan by shipping and tracking the loan's data with the investor.

81

7. Manage various data used in the system e.g. adding/editing/deleting users or

investors via an administration tool.

8. Provide utilities for loan processing e.g. import/export loan data.

First, the loan o�cer users (LO) start creating the loan in the system by entering

borrower information and loan data. The system integrates with other big warehouse

mortgage data systems to import loan data via an external web service. After

creating the loan, the quality control users (QC) will price the loan and set up

the loan type and loan program for acknowledgement. Next, reviewer users (RU)

evaluate the loan data and provide the decision (approve or decline). In some

situations, the reviewer could decide to suspend the loan. Once the loan is approved,

the loan specialist users (SU) make sure the loan documents are legal and assign loan

details. Loan specialist will request the legal document for the loan agreement using

an external web service. Accounting users (AU) �ll out the required information for

funding the loan and assigning the loan to a warehouse bank based on the credit

available, such as the funding amount and funding date. Accounting users will also

enter selling information once the loan is sold to a target investor. The closer users

(CU) ship the loan to the investor and track investor de�ciencies. The loan tool

helps the users to generate and import loan data using di�erent formats. Finally,

a management tool exists to administer loan data in the system (e.g. users, banks,

and investors data). This is accessible only for Admin users. The system requires

a user name and password to login. Based on user type di�erent functions are

available. Figure 6.1 shows the loan processing by user type. The system is built

using ASP.net, C#, Telerik Rad Controls for ASP.net AJAX, Hibernate technology,

SQL server 2008R, and IIS7 technologies. The system was built by 20 sub-projects.

82

It consists of 6887 �les with a total size of about 1.48 Gigabytes. Table 6.1 shows

some technical details about the system.

Table 6.1: Technical details of Mortgage System

Cyclomatic Complexity 170476

Max. Depth of Inheritance 9

Max. Class Coupling 1490

Lines of Code 257592

Number of Files 6887

Size in Gigabytes 1.48

SQL database Tables 204

Number of web pages 127

Figure 6.1: Loan processing user types and access privileges.

6.2 FSMWeb Behavioral Model

6.2.1 Partition FSMWeb model

Figure 6.2 shows a logical view of mortgage system, and its HTML links. The

system requires the user to enter the user name and password. Then web services

83

are available based on user type. The home page shows all loans that will be closed

in the current week. The user can also navigate to show loans in the next or previous

Figure 6.2: Mortgage System Logical View

week. Some user types can see all system loans in the home page except LO, SU

and RU who can only access their loans since every loan is tied to the LO, SU

and RU in the loan processing life cycle. Figure 6.3 illustrates valid navigation

across the top level partitions of the system. Loan processing data (LPD) can

be accessed either from the home page or by searching a speci�c loan. From the

84

home page, the user can access speci�c LPD by clicking on the loan number that

appears in a selected week. In the search page, the result of a search is a list of

loans. The user can access any loan from the list by clicking on the loan number,

or if the search resulted in just one explicit loan, the system will be automatically

directed to view the LPD for that loan. Loan processing data (LPD) includes all

data information that is related to the loan processing as shown in Figure 6.1. LPD

is divided into nine di�erent sub web services: Loan Pro�le (LP), Loan in process

(LIP), Closing Document (CD), Funding Form (FF), Accounting Form (AF), Audit

Form (UF), Loan Balancing (LB), Post Closing (PC), and Loan Notes (LN). The

LP page represents all main loan information such as loan number, borrower name,

loan amount etc. Loan in process (LIP) is a cluster service derived from the LPD

cluster. LIP is further divided into four clusters that include loan status (LS), lock

screen (KT), review screen (RT), and insurance screen (IT). The Loan status (LS)

form shows all important dates related to the loan processing. The Lock tab (KT)

represents all required data for acknowledgment of the loan prices. The Review tab

(RT) contains conditions that need to be met prior to closing and the disposition

data for the loan that shows if the loan is approved or not. All information related to

insurance companies are located on insurance tab (IT). Next, the Closing Document

(CD) cluster contains all pages related to legal loan documents and fees as well as

closing instructions. Funding information is showing in the Funding Form (FF)

cluster, and Accounting data related to the loan is represented in the Accounting

Form (AF) partition. A list of all audit questions related to the loan are in the Audit

Form (AF) cluster. The Loan Balance form (LB) cluster shows the loan balance. All

tracking and shipping data are in the Post Closing form (PC) cluster. Any comment

and notes are represented on the Note Form (LN) cluster. Navigation among the

LPD clusters is shown in Figure 6.4. The Loan Tool (LT) cluster includes all utility

85

pages that relate to import or export of data to and from the system. Finally, the

Administration (Admin) cluster represents all management data used in the system.

Table 6.2 identi�es who will have the right to access a particular loan processing

service within the loan status which is required for every single loan function. For

example, the loan status must be in Open status and the user type has to be a

quality control user (QC) in order to lock the loan and have access to the lock tab

(KT) cluster in the LDP cluster. Table 6.2 shows all cluster services at various levels

next to the user type and loan status for each service.

Figure 6.3: Aggregate FSMs with Partition and Top Level Navigation

86

Table 6.2: Decomposition of Mortgage system into Partitions

AFSM Cluster User Type Loan status

Entry Portal (w0) All Any

Home Page All Any

Search Page (SP) Simple Search /Advance Search All Any

Loan Processing Data (LPD)

Loan Notes Form (LN) All Any

Loan Pro�le Form (LP) LO Open

LIP

Loan status tab (LS) All Any

Lock Tab (KT) QC Open-Lock

Review Tab (RT) RU Lock-Suspended

Approve with condition

Insurance Tab (IT) RU Lock-Suspended

Approve with condition

Closing Document Tab (CD) SU Approve to close

Approve with condition

Funding Form (FF) AU Approve to close

Funding - Sold

Accounting Form (AF) AU Approve to close

Funded � Sold

Audit Form (UF) QC Not Funded or Sold

Post Closing Form (PC) CU Funded � Sold

Loan Balance Form (LB) QC/LO Approve to close

Approve with condition

Note (LN) All Any

Loan Tool (LT)

Title policy Entry (LT1) CU Funded - Sold

Deed of Trust Mass (LT2) CU Funded - Sold

Import Investor de�ciencies (LT3) QC Funded - Sold

Import Warehouse Bank (LT4) QC Funded - Sold

Admin

Users (A1)

Admin NA
Branches (A2)

Investors (A3)

Warehouse Banks (A4)

87

Figure 6.4: Loan Processing Data (LPD) Cluster

The full model of this commerical web application consists of (127) LWPs, (22)

clusters, and (224) transitions. Due to page limitations, we present only a key

portion to illustrate the approach. We will detail the Closing Documents (CD)

cluster as an example. Figure 6.5 shows the navigation among the logical web pages

that represent the Closing Documents (CD) service. Table 6.3 shows the nodes and

logical web pages related to (CD). Table 6.5 shows the notations of the aggregate

FSMs that is presented in Figure 6.3. The navigation is based on the following

design decisions for the mortgage system:

• The Loan status should be Approved by (RU) user.

• Only (SU) user role has access to the service.

• SU can request the loan documents via an calling external web service either

through the Documents to Close page (DC) or the Closing instructions (CI)

page.

Obviously, other choices for which navigation is allowable could be de�ned, but this

initial set is used to illustrate the testing technique. We also decided to simplify

the design somewhat. For example, we are not showing cancel buttons for each web

88

page. Thus the example shows how one would deal with this kind of navigation

without the extra clutter of showing all cancel buttons one might have.

Figure 6.5: FSM For Closing Documents (CD) Service

Table 6.3: Nodes for CD Form-FSM

Node LWP Explanation

np3 Selection tab menu Select service from tab

DC Documents to close Request legal document and showing requested documents

CI Closing Instructions Request legal document and showing closing fees

SI Show past instructions Show the history of requested documents

Similarly, we de�ne logical web pages and navigation among them for the Home

cluster. There is only one cluster node in the Home cluster as shown in Figure 6.6.

Next, we describe the logical web pages for the Search Page (SE) cluster. Figure 6.7

Figure 6.6: Logical Web pages and Navigation for Home Cluster

89

shows the logical web pages and the navigation among them. Table 6.4 summarizes

these nodes and corresponding logical web pages.

Figure 6.7: Logical Web pages and Navigation for Search Cluster

Table 6.4: Nodes for SE Form-FSM

Node LWP Explanation

SP Simple Search Page use simple query form to search for loan

SR Search Result Page Display the result of search

EE Export to Excel Export the result of the search to Excel

AS Advance Search Page Search for any loan based on a description

6.2.2 Input Constraints for Logical Web Pages

Table 6.5 shows all annotations on Aggregate FSM transitions for the top level

navigation of the mortgage system (see Figure 6.3). Table 6.6 and Table 6.7 show the

input constraints for Home and Search clusters. The FSM transition constraints for

LPD of Figure 6.4 are shown in Table 6.8. Table 6.9 demonstrates all FSM transition

90

constraints for the CD cluster as shown in Figure 6.5. In the transition annotation

tables, the leftmost column encodes each set of constraints (Σ). The second column

describes the action of the transitions, the third identi�es the constraints, the forth

column identi�es transitions by their pre- and post-nodes, and the �fth column (Ω)

lists the next node, or output. This information is used to provide a partial test

oracle for the test input. As an example, the �rst row in table 6.9 is a transition

from np3 (menu selection bar) to access the Documents to Close page (DC) tab. The

codes are assigned arbitrarily as a matter of convenience: as a reference for the full

constraint in the constraint columns (column 3). The outputs (in the column marked

Ω) are the target states of the transitions. These will be used during execution as a

test oracle to check against the state the application actually reached.

6.2.3 Generate Test Paths through Clusters

For the Closing Documents (CD) service, we apply transition coverage to the

FSMs, generating test sequences to cover each transition. A test sequence is a

sequence of FSM edges and their annotations (constraints). Test sequences for the CD

FSMs is shown in Table 6.10. The �rst column indicates which edges are covered, the

second column indicates the constraint sequence (using the input alphabet de�ned

in the Σ columns in Table 6.9. Thus, the �rst sequence in Table 6.10 for the CD

FSM covers edges:(np3,CI) (CI,SI)(SI, CI)(CI,np3) from Table 6.10 and the FSM in

Figure 6.5,and uses the test sequence of constraints: p3_1, p3_o. We apply edge

coverage to FSMs for generating test cases as given in Table 6.11. For more detail

on graph based testing criteria see [3]. Test paths of the LPD cluster are given in

Table 6.12. Table 6.13 and Table 6.14 represent the test paths for the Home and

Search pages. Test paths for Closing Documents (CD) are shown in Table 6.15.

91

Table 6.5: Annotation of Aggregate FSMs for Mortgage System

Σ Actions Constraints Transition Ω

z Dummy edge, re�ect access R(n0,Click) (Home/SE/LT/ n0

to menu bar LPD/Admin,n0)

a Access Home tab R(tab=Home,Click),
Any(User Type,Loan
Status)

(n0,Home) Home

b Access Search tab R(tab=SP,Click), Any(User
Type,Loan Status)

(n0,SE) SE

c

Access Loan Tool tab R(tab=LT,Click), (n0,LT) LT

R(User Type in
(CU,QC,AU,RU),

Loan Status in (Open,Lock,

Approve to
Close,Funded,Sold))

d Access Admin tab R(tab=Admin,Click), (n0,Admin) Admin

R(User Type=Admin)

e Access to LPD R(A(Borrower
Name,Click)),

(Home,LPD) LPD

A(User Type, Loan Status)

f
Access to LPD O(R(Loan Number,Click), (SE,LPD) LPD

R(Search Result match

Speci�c Loan,Click))

i Login the system R(User Name,Password) (w0,n0) n0

o Log out the system R(Logout,Click) (w0,n0) w0

Table 6.6: Input Constraint for Home Cluster

Σ Actions Constraints Transition Ω

a1 View Next or Previous Week R(C1(left,right),Click) (VC,VC) VC

92

Table 6.7: Input Constraint for Search Cluster (SE)

Σ Actions Constraints Transition Ω

b1 Clear Search,
Reset the search
page

R(Clear,Click) (SP,SP) SP

b2 Switch to Ad-
vanced Search

R(Advanced Search,Click) (SP,AS) AS

b3 Switch to Simple
Search

R(Simple Search,Click) (AS,SP) SP

b4 SP's Result of
searching match
List of loans

R(A(Search Query List),Click) (SP,SR) SR

b5 Excel Export
the list result of
searching

R(List Search Result,Click) (SR,EE) EE

b6 Dummy edge,
re�ect access
back to SR

R(O(Export, Cancel),Click) (EE,SR) SR

b7 AS's Result of
searching match
List of loans

R(A(Search Text),Click) (AS,SR) SR

f

Result of search-
ing match one
loan

O(R(Search List=Speci�c Loan, Click), (SR/AS/SP, LPD) LPD

R(Search Text=Speci�c Loan,Click),

R(Search Loan Number,Click))

z Back to n0 R(Logout, Click) (SP/AS,n0) n0

93

Table 6.8: Annotated Aggregation FSMs for LPD Cluster

Σ Actions Constraints Transition Ω

po Dummy edge, re�ect
Back to ne

R(ne,Click) (LP/LIP/CD/ ne

FF/AF/UF/LB/

PC/LN,ne)

p1
Access LP tab R(tab=LP,Click) (ne,LIP) LIP

Editing: R(User type=LO, Loan sta-
tus=Open)

Viewing: A(User type , Loan status)

p2 Access LIP tab R(tab=LIP,Click), A(User type,Loan Sta-
tus)

(ne,LIP) LIP

p3

Access CD tab R(tab=CD,Click) (ne,CD) CD

Editing: R(User type=SU, Loan Status in
Approve to Close, Approve with Condition)

Viewing: A(User type,Loan status)

p4

Access FF tab R(tab=FF,Click) (ne,FF) FF

Editing: R(User type=AU, Loan Status in
Approve to Close,Funded,Sold)

Viewing: A(User type,Loan status)

p5

Access AF tab R(tab=AF,Click) (ne,AF) AF

Editing: R(User type=AU, Loan Status in
Approve to Close, Funded,Sold)

Viewing: A(User type,Loan status)

p6
Access UF tab R(tab=UF,Click) (ne,UF) UF

Editing: R(User type=QC, A(Loan Status))

Viewing: A(User type,Loan status)

p7

Access LB tab R(tab=LB,Click) (ne,LB) LB

Editing: R(User type in QC,LO, Loan Sta-
tus in Approve to Close,Approve with Con-
dition)

Viewing: A(User type,Loan status)

p8

Access PC tab R(tab=PC,Click) (ne,PC) PC

Editing: R(User type=CU,Loan Status in (Funded,Sold))

Viewing: A(User type,Loan status)

p9 A(User type,Loan
Status)

R(tab=LN,Click) (ne,LN) LN

Editing/Viewing: A(User type,Loan Status)

p10 Add note R(Add,Click) (LN,AN) AN

p11 Back to Notes R(O(Save,Cancel),Click) (AN,LN) LN

p12
Update Loan pro�le
by calling external
web service

R((import button,Click), User type in Ad-
min,LO, Loan Status =Open)

(LP,LP) LP

p13 Revert Funding R ((Revert button,Click), User type=AU,
Loan Status = Funded)

(FF,FF) FF

z Back to n0 R(n0,Click) (ne,n0) n0

94

Table 6.9: Input Constraint for Closing Documents (CD) FSM

Σ Actions Constraints Transition Ω

p3_1 Access CD R((tab= CD, Click), User
type=SU, Loan Status in Ap-
prove to close,Approve with
condition)

(np3,DC) DC

p3_2 Access CI R((tab= CI, Click), User
type=SU, Loan Status in
Approve to close,Approve with
condition)

(np3,CI) CI

p3_1_1 Calling ex-
ternal web
service

R((Sync from IDS,Click), User
type=SU, Loan Status in Ap-
prove to close,Approve with con-
dition)

(DC,DC) DC

p3_2_1 Calling ex-
ternal web
service

R((Sync from IDS,Click), User
type=SU, Loan Status in Ap-
prove to close,Approve with con-
dition)

(CI,CI) CI

p3_2_2 Access SI R((Show Past Instructions
,Click), User type=SU, Loan Sta-
tus in Approve to close,Approve
with condition)

(CI,SI) SI

p3_2_3 Back to CI R(Close,Click) (SI,CI) CI

p3_o Back to
np3

R(np3,Click) (DC/CI,np3) np3

po Back to ne R(ne,Click) (np3,ne) ne

Table 6.10: Test Sequence for Closing Documents (CD) FSM

Edge Sequence Constraint Sequence Constraint

(np3,DC) (DC,np3) p3_1,p3_o R((tab= CD,Click), User
type=SU, Loan Status in
Approve to close,Approve with
condition)

(np3,CI) (CI,SI)(SI,CI)(CI,np3) p3_2,p3_2_2,p3_2_3,p3_o O(R((tab= CI,Click),R((Show
Past Instructions ,Click)), User
type=SU, Loan Status in Ap-
prove to close,Approve with
condition)

(np3,CI) (CI,CI) (CI,np3) p3_2,p3_2_1,p3_2_2,p3_o R((tab= CI,Click), User
type=SU, Loan Status in
Approve to close,Approve with
condition)

95

Table 6.11: Test Paths of Aggregate FSMs for Mortgage System

Test # Path

T0 w0,n0,Home,n0,w0

T1 w0,n0,Home,LPD,n0,w0

T2 w0,n0,SE,n0,w0

T3 w0,n0,SE,LPD,n0,w0

T4 w0,n0,LT,n0,w0

T5 w0,n0,Admin,n0,w0

Table 6.12: Test Paths of FSMs for LPD Cluster

Test # Path

TLPD1 ne,LP,LP,ne

TLPD2 ne,LIP,ne

TLPD3 ne,CD,ne

TLPD4 ne,FF,FF,ne

TLPD5 ne,AF,ne

TLPD6 ne,UF,ne

TLPD7 ne,LB,ne

TLPD8 ne,PC,ne

TLPD9 ne,LN,AN,LN,ne

Table 6.13: Test Paths for Home page

Test # Path

THome VC,VC

96

Table 6.14: Test Paths for Search (SE)

Test Case Path

TSE1 SP,SR,EE,SR

TSE2 SP,SP,AS,SR

TSE3 SP,AS,SP,AS,SR

Table 6.15: Test Paths for Closing Documents (CD) Service

Test Case Path

TLPDCD1
np3,DC,DC,np3

TLPDCD2
np3,CI,SI,CI,np3

TLPDCD3
np3,CI,CI,np3

6.2.4 Aggregate Paths to Generate Abstract Tests

The aggregation sequence is based on the input constraint abbreviations of Ta-

ble 6.9. This means that each input needs to be replaced with the corresponding

constraint in Table 6.9. For each node in the mortgage system services aggregate

sequence, the test sequences for the lower level FSMs must be substituted. For

example, the LPD cluster appears twice in two di�erent abstract test cases of Ag-

gregate FSMs. The LPD cluster is covered by the nine test sequences given in Table

6.12. If the test criterion were to generate sequences with all combinations of paths,

substitution would result in 9+9=18 paths.

Table 6.16 summarizes the number of tests through individual cluster FSMs,

their length as well as the number of aggregated abstract test paths and their length.

Note that it takes approximately 2 months to test the whole system.

As a more detailed example, we will perform the substitution for T1 and T3 paths

from Table 6.11. This means substituting test sequences in Table 6.12 for LPD in

97

Table 6.16: Statistics of Tests Size

Mortgage System CD Cluster

Number of tests through FSMs 106 3

Size of test suite (Number of nodes) 127 12

number of aggregated tests 266 12

Size of aggregated test suite 3998 169

order to resolve all test paths for (CD). This results in a total of 12 abstract test

paths as shown in a Table 6.17 and Table 6.18.

Table 6.17: Paths generated by substitution of T1

Clusters Test No. Test Path

Home-LPD-CD TCD1 w0,n0,VC,VC,ne,np3,DC,DC,np3,ne,n0,w0

Home-LPD-CD TCD2 w0,n0,VC,VC,ne,np3,CI,CI,np3,ne,n0,w0

Home-LPD-CD TCD3 w0,n0,VC,VC,ne,np3,CI,SI,CI,np3,ne,n0,w0

6.3 Failure Applicability and Mitigation Require-

ments

Again using the Mortgage system, we will detail the cluster Closing Docu-

ments(CD). Table 6.19 lists mitigations for all failure types and gives an example of

each.

Corresponding mitigation requirements are summarized in Table 6.20 which also

speci�es the corresponding mitigation models and associated weaving rules for each

failure type. The last column in the table refers to the weaving rule number de�ned

in Table 3.8. Table 6.21 shows the State-Event matrix for the (CD) cluster. It

98

Table 6.18: Paths generated by substitution of T3

Clusters Test No. Test Path

SE-LPD-CD TCD4 w0,n0,SP,SR,EE,SR,ne,np3,DC,DC,np3,ne,n0,w0

SE-LPD-CD TCD5 w0,n0,SP,SP,AS,SR, ne,np3,DC,DC,np3,ne,n0,w0

SE-LPD-CD TCD6 w0,n0,SP,AS,SP,AS, SR,ne,np3,DC,DC,np3,ne,n0,w0

SE-LPD-CD TCD7 w0,n0,SP,SR,EE,SR,ne,np3,CI,SI,CI,np3,ne,n0,w0

SE-LPD-CD TCD8 w0,n0,SP,SP,AS,SR,ne,np3,CI,SI,CI,np3,ne,n0,w0

SE-LPD-CD TCD9 w0,n0,SP,AS,SP,AS,SR,ne,np3,CI,SI,CI,np3,ne,n0,w0

SE-LPD-CD TCD10 w0,n0,SP,SR,EE,SR,ne,np3,CI,CI,np3,ne,n0,w0

SE-LPD-CD TCD11 w0,n0,SP,SP,AS,SR,ne,np3,CI,CI,np3,ne,n0,w0

SE-LPD-CD TCD12 w0,n0,SP,AS,SP,AS,SR,ne,np3,CI,CI,np3,ne,n0,w0

indicates that not all failure types are applicable in all states although some are.

For example, f1 (no network connection) is applicable in all states. f2 (session is

expired) is not applicable only for the entry portal web page (node w0). Similarly,f6

(user switches back and forth in the browser) can occur in all states except the entry

portal web page w0. In the (DC) state, all failure types except f10 can occur (DC

doesn't export data). The last row and column show dpe and dps which are used

to construct the initial population.

99

Table 6.19: Failure types in Cluster Closing Documents(CD)

Failure Type Mitigation Example

f1: unavailability Go to Fail Safe State No network connec-
tion

f2: time out End ALL Session expire

f3:Parameter incompatibility Fix & proceed Input error (Integer
vs. string)

f4: response error Rollback Database server re-
sponse error

f5: Misunderstood behaviour End Activity Access tab needs spe-
ci�c user role.

f6: Work�ow inconsistency Ignore back and forth user
browser navigation

f7: incorrect order Fix & proceed Required loan process
step

f8: Browser incompatibility Retry Java Script for view-
ing does not work cor-
rectly

f9: Interface change Roll Back External service
changes the mapping

f10: incorrect service Alternative incorrect service to ex-
port data grid into a
�le

100

Table 6.20: Mitigation Requirement

MM Explanation Model WR#

MM1 Go to Fail Safe State: keep
the system running even if
there is no connectivity

see Figure 6.8-a, MT1 =
{mt11} where mt11 = si, sg
and sg = LWP : errorpage

8

MM2 End All: session expire, so
start over from the start
node

MT2 = φ and sb =
w0,where sb is the start node

5

MM3 Fix & proceed: parameter
incompatibility such as data
mismatch

see Figure 6.8-b, MT3 =
{mt31} where mt31 = si, si

3

MM4 Rollback: database server
error

MT4 = φ where sb = DC
,and sb is DC state where
trying to save data

6

MM5 End Activity: misunder-
stood behaviour such as try
to access CD cluster with-
out having SU user role

MT5 = φ where sf =
np3,and sf is a menu selec-
tion bar of CD cluster

4

MM6 Ignore: work�ow inconsis-
tency

Internal compensate 7

such as using browser navi-
gation

MM7 Fix & proceed: incorrect or-
der

see Figure 6.8-c ,
MT7 = {mt71} where
mt71 = si,mti, si

3

MM8 Retry: Java Script error MT8 = φ where node(p)r 2

MM9 Rollback: Interface change MT9 = φ where sb = np3 6

MM10 Alternative: incorrect ser-
vice

see Figure 6.8-d , MT10 =
{mt1,mt2} where mt1 =
si, n1, n2, si and mt2 =
si, n1, n3, si

1

101

Table 6.21: State-Event Matrix for CD Cluster

Behavioral
States/ Fail-
ure Type
(f)

w0 n0 VC ne np3 SP SR AS EE DC CI SI dpe

1 1 1 1 1 1 1 1 1 1 1 1 1 1.0

2 0 1 1 1 1 1 1 1 1 1 1 1 0.9

3 1 0 0 0 0 1 0 0 0 1 0 0 0.3

4 0 0 0 0 0 1 0 1 0 1 0 0 0.3

5 0 0 0 0 0 0 0 0 0 1 1 1 0.3

6 0 1 1 1 1 1 1 1 1 1 1 1 0.9

7 0 0 0 0 0 0 0 0 0 1 0 0 0.1

8 0 0 0 0 0 0 0 0 0 1 1 0 0.2

9 0 0 0 0 0 0 0 0 0 1 1 0 0.2

10 0 0 0 0 0 0 1 0 0 0 1 1 0.3

dps 0.2 0.3 0.3 0.3 0.3 0.5 0.4 0.4 0.3 0.9 0.7 0.5

102

Figure 6.8: Mitigation Models.

103

6.4 Generate Test Requirements

In our case study and from Table 6.16, we know that the CD cluster has a test

suite of length 169. Given the 10 failure types, the total search space including

infeasible positions is 169*10=1690. However, the number of infeasible pairs in

search space is 1052 which is about 62% of the total search space in the CD cluster.

Because not all failures are applicable in behavioral states, the feasible search space

is 638 which is about 38% of all pairs. By contrast, the Mortgage system overall has

a test suite length of 3998 with a total search space of 39980 (including infeasible

pairs). The feasible search space is 13034 which is about 32% of all pairs.

To illustrate our approach, we use the GA on the CD cluster using the abstract

tests determined in Table 6.17 and 6.18. Table 6.22 shows the behavioral test paths

BT for them. It identi�es the clusters it covers, the test number, the sequence

of nodes and the length of each test path. The last row shows the length of the

concatenated test paths.

Table 6.22: Total Length of abstract test paths T1 and T3

Clusters Test No. Test Path Total Length

Home-LPD-CD TCD1 w0,n0,VC,VC,ne,np3,DC,DC,np3,ne,n0,w0 12

Home-LPD-CD TCD2 w0,n0,VC,VC,ne,np3,CI,CI,np3,ne,n0,w0 12

Home-LPD-CD TCD3 w0,n0,VC,VC,ne,np3,CI,SI,CI,np3,ne,n0,w0 13

SE-LPD-CD TCD4 w0,n0,SP,SR,EE,SR,ne,np3,DC,DC,np3,ne,n0,w0 14

SE-LPD-CD TCD5 w0,n0,SP,SP,AS,SR,ne,np3,DC,DC,np3,ne,n0,w0 14

SE-LPD-CD TCD6 w0,n0,SP,AS,SP,AS,SR,ne,np3,DC,DC,np3,ne,n0,w0 15

SE-LPD-CD TCD7 w0,n0,SP,SR,EE,SR,ne,np3,CI,SI,CI,np3,ne,n0,w0 15

SE-LPD-CD TCD8 w0,n0,SP,SP,AS,SR,ne,np3,CI,SI,CI,np3,ne,n0,w0 15

SE-LPD-CD TCD9 w0,n0,SP,AS,SP,AS,SR,ne,np3,CI,SI,CI,np3,ne,n0,w0 16

SE-LPD-CD TCD10 w0,n0,SP,SR,EE,SR,ne,np3,CI,CI,np3,ne,n0,w0 14

SE-LPD-CD TCD11 w0,n0,SP,SP,AS,SR,ne,np3,CI,CI,np3,ne,n0,w0 14

SE-LPD-CD TCD12 w0,n0,SP,AS,SP,AS,SR,ne,np3,CI,CI,np3,ne,n0,w0 15

Total length of |I|: 169

104

The initial population creates individuals (p, e) as follows:

• Pick each failure type with Max(dps). This results in 10 pairs:

(DC, f1); (CI, f2); (SP, f3); (AS, f4); (SI, f5); (SR, f6);

(DC, f7); (DC, f8); (DC, f9); (SI, f10)

• Pick remaining nodes with Max(dpe). This results in 6 pairs:

(w0, f1); (n0, f1); (V C, f1); (ne, f1); (np3, f1); (EE, f1)

Table 6.23 shows the failure mitigation test paths (FMT) for the �rst generation.

The �rst column identi�es the test, the second column shows the test requirement

(p,e) used to construct the test. The next two columns state failure type and node

at position p. The �fth column identi�es the mitigation model as described in Table

6.20. The last two column states the resulting fail safe mitigation test fmt and

which behavioral test bt was used to create it. Notice that f10 has two mitigation

test paths for MM10 as explained in Table 6.20 and hence two failure mitigation

tests for pair (105,10).

Next, we explore e�ectiveness of the GA for this case study. We assumed a

mitigation defect rate of 5% and seeded the CD subsystem with three defects, similar

to what used in [5] as the lower defect density. Since the number of ones in the state-

event matrix (see Table 6.21) is 50, 50 × 5% = 2.5. The number of seeded defects

after rounded up to 3. It represents a more di�cult search problem for the GA that

helps to assess the robustness of the approach.

Table 6.24 shows how many pairs and number of generations were needed to

detect all defects. The GA generated 47 (p,e) pairs to �nd all 3 mitigation defects.

There are a total of 21 generations.

105

Table 6.23: Initial FMT for �rst generation

(p,e) Failure Node MM used FMT BT used

1 (46,1) f1 DC MM1 w0,n0,SP,SR,EE,SR,ne,np3,DC,sg TCD4

2 (19,2) f2 CI MM2 w0,n0,VC,VC,ne,np3,CI,w0,n0,VC,VC,ne,np3,CI,CI,np3,ne, TCD2

n0,w0

3 (40,3) f3 SP MM3 w0,n0,SP,SP,SR,EE,SR,ne,np3,DC,DC,np3,ne,n0,w0 TCD4

4 (56,4) f4 AS MM4 w0,n0,SP,SP,AS,AS ,SR,ne,np3,DC,DC,np3,ne,n0,w0 TCD5

5 (32,5) f5 SI MM5 w0,n0,VC,VC,ne,np3,CI,SI,np3 TCD3

6 (41,6) f6 SR MM6 TCD4 TCD4

7 (61,7) f7 DC MM7 w0,n0,SP,SP,AS,SR,ne,np3,DC,mti,DC,DC,np3,n_e,n0,w0 TCD5

8 (75,8) f8 DC MM8 w0,n0,SP,AS,SP,AS, SR,ne,np3,DC,DC,DC,np3,ne,n0,w0 TCD6

9 (8,9) f9 DC MM9 w0,n0,VC,VC,ne,np3,DC,DC,np3 TCD1

10 (105,10) f10 SI MM10 w0,n0,SP,SP,AS,SR,ne,np3,CI,SI,n1,n2,SI,CI,np3,ne,n0,w0 TCD8

10 (105,10) f10 SI MM10 w0,n0,SP,SP,AS,SR,ne,np3,CI,SI,n1,n3,SI,CI,np3,ne,n0,w0 TCD8

11 (1,1) f1 w0 MM1 w0,sg TCD1

12 (2,1) f1 n0 MM2 w0,n0,sg TCD1

13 (3,1) f1 VC MM3 w0,n0,VC,sg TCD1

14 (5,1) f1 ne MM4 w0,n0,VC,VC,ne,sg TCD1

15 (6,1) f1 np3 MM5 w0,n0,VC,VC,ne,np3,sg TCD1

16 (42,1) f1 EE MM6 w0,n0,SP,SR,EE,sg TCD4

106

From Table 6.24, the GA �nds the �rst defect in the �rst generation and it takes

7 generations to �nd the next defect, but it takes only 4 more generations to �nd

the third defect.

Table 6.24: E�ectiveness of GA

of Generation # of pairs Defect Found %

initial population 16 33%

2 20 33%

3 21 33%

4 23 33%

5 26 33%

6 29 33%

7 30 33%

8 33 67%

9 36 67%

10 37 67%

11 40 67%

12 41 100%

Table 6.25 shows the FMTs for the last generation. There are 41 pairs which are

converted into failure mitigation test paths.

Table 6.26 shows the fmts that detected the 3 mitigation defects. Pair (7,1)

�nds the defect for f1 (unavailability of network) at state (DC) using the behavioral

test case TCD1: w0,n0,VC,VC,ne,np3,DC,DC,np3,ne,n0,w0. The mitigation of f1 is to

keep the system running even when there is no connectivity by going to the Fail Safe

state sg. This is an error page describing the defect and asking to contact system

administration. The mitigation model is MM1 as shown in Table 6.20. The failure

mitigation test path (fmt) is given by: w0,n0,VC,VC,ne,np3,DC,sg. Similarly, the

107

Table 6.25: FMT for last generation

(p,e) Failure Node MM used FMT BT used

1 (33,3) f3 SI MM3 TCD3 TCD3

2 (60,3) f3 DC MM3 w0,n0,SP,SP,AS,SR,ne,np3,DC,DC,DC,np3,ne,n0,w0 TCD5

3 (75,4) f4 DC MM4 w0,n0,SP,AS,SP,AS, SR,ne,np3,DC,DC,DC,np3,ne,n0,w0 TCD6

4 (165,4) f4 CI MM4 TCD12 TCD12

5 (89,5) f5 CI MM5 w0,n0,SP,SR,EE,SR,ne,np3,CI,np3 TCD7

6 (133,5) f5 ne MM5 TCD10 TCD10

7 (56,6) f6 AS MM6 TCD5 TCD5

8 (135,6) f6 CI MM6 TCD10 TCD10

9 (7,6) f6 DC MM6 TCD1 TCD1

10 (105,6) f6 SI MM6 TCD8 TCD8

11 (46,7) f7 DC MM7 w0,n0,SP,SR,EE,SR,ne,np3,DC,mti,DC,np3,ne,n0,w0 TCD4

12 (90,7) f7 SI MM7 TCD7 TCD7

13 (120,8) f8 CI MM8 w0,n0,SP,AS,SP,AS, SR,ne,np3,CI,CI,SI,CI,np3,ne,n0,w0 TCD9

14 (19,9) f9 CI MM9 w0,n0,VC,VC,ne,np3,CI,np3 TCD2

15 (129,9) f9 SP MM9 TCD10 TCD10

16 (148,9) f9 np3 MM9 TCD11 TCD11

17 (81,10) f10 w0 MM10 TCD7 TCD7

18 (32,10) f10 SI MM10 w0,n0,VC,VC,ne,np3,CI,SI,n1, n2,CI,np3,ne,n0,w0 TCD3

19 (32,10) f10 SI MM10 w0,n0,VC,VC,ne,np3,CI,SI,n1, n3,CI,np3,ne,n0,w0 TCD3

20 (159,1) f1 SP MM1 w0,n0,SP,AS,SP,sg TCD12

21 (47,1) f1 DC MM1 w0,n0,SP,SR,EE,SR,ne,np3,DC,DC,sg TCD4

22 (56,1) f1 AS MM1 w0,n0,SP,SP,AS,sg TCD5

23 (107,1) f1 np3 MM1 w0,n0,SP,SP,AS,SR,ne,np3,CI,SI,CI,np3,sg TCD8

24 (15,1) f1 VC MM1 w0,n0,VC,sg TCD2

25 (7,1) f1 DC MM1 w0,n0,VC,VC,ne,np3,DC,sg TCD1

26 (5,1) f1 ne MM1 w0,n0,VC,VC,ne,sg TCD1

27 (38,1) f1 w0 MM1 w0,sg TCD4

28 (85,1) f1 EE MM1 w0,n0,SP,SR,EE,sg TCD7

29 (130,1) f1 SR MM1 w0,n0,SP,SR,sg TCD10

30 (119,1) f1 np3 MM1 w0,n0,SP,AS,SP,AS,SR,ne,np3,sg TCD9

31 (153,1) f1 n0 MM1 w0,n0,SP,SP,AS,SR,ne,np3,CI,CI,np3,ne,n0,sg TCD11

32 (136,2) f1 CI MM2 w0,n0,SP,SR,EE,SR,ne,np3,CI,CI,sg TCD10

33 (158,2) f1 AS MM2 w0,n0,SP,AS,sg TCD12

34 (6,2) f1 np3 MM2 w0,n0,VC,VC,ne,np3,sg TCD1

35 (7,2) f2 DC MM2 w0,n0,VC,VC,ne,np3,DC,w0,n0,VC,VC,ne,np3,DC,DC,np3, TCD1

ne,n0,w0

36 (32,2) f2 SI MM2 w0,n0,VC,VC,ne,np3,CI,SI,w0,n0,VC,VC,ne,np3,CI,SI,CI,np3, TCD3

ne,n0,w0

37 (157,2) f2 SP MM2 w0,n0,SP,w0,n0,SP,AS,SP,AS,SR,ne,np3,CI,CI,np3,ne,n0,w0 TCD12

38 (101,2) f2 SR MM2 w0,n0,SP,SP,AS,SR,w0,n0,SP,SP,AS,SR,ne,np3,CI,SI,CI,np3, TCD8

ne,n0,w0

39 (131,2) f2 EE MM2 w0,n0,SP,SR,EE,w0,n0,SP,SR,EE,SR,ne,np3,CI,CI,np3,ne, TCD10

n0,w0

40 (152,2) f2 ne MM2 w0,n0,SP,SP,AS,SR,ne,np3,CI,CI,np3,ne,w0,n0,SP,SP,AS,SR, TCD11

ne,np3,CI,CI,np3,ne,n0,w0

41 (94,2) f2 n0 MM2 w0,n0,SP,SR,EE,SR,ne,np3,CI,SI,CI,np3,ne,n0,w0,n0,SP,SR, TCD7

EE,SR,ne,np3,CI,SI,CI,np3,ne,n0,w0

108

mitigation defect for f2 is found by using pair (32,2) (state SI in test path TCD3) and

constructing the fmt using the weaving rule "End All" and starting over. Lastly,

the mitigation defect for f3 is found using pair (60,3) (state DC in test path TCD5).

The mitigation is constructed by repeating the edge that showed the failure and

then proceeding. In our case, it is the edge (DC,np3).

Table 6.26: fmti that found defects

FMT Failure State BT used GA pairs MM used Explanation

fmt1 f1 DC TCD1 (7,1) MM1 w0,n0,VC,VC,ne,np3,DC, sg

fmt2 f2 SI TCD3 (32,2) MM2 w0,n0,VC,VC,ne,np3,CI,SI,w0,n0,VC,VC,ne,np3,CI,SI,

CI,np3,ne,n0,w0

fmt3 f3 DC TCD5 (60,3) MM3 w0,n0,SP,SP,AS,SR, ne ,np3,DC,DC, DC,np3,ne,n0,w0

This study applied our test generation method to the CD sub system, a subset

of the full mortgage handling system. We apply the GA to the whole system. We

seed the same percentage of defects. This results in 25 defects. Table 6.27 shows the

total number of generations needed and the cumulative number of pairs generated

to expose all mitigation defects. The GA needs 42 generations to �nd all defects.

There are 485 pairs resulting in 504 failure mitigation tests (FMTs) for the whole

system. As it did for the Closing Documents (DC) subsystem, the GA �nds all

mitigation defects.

109

Table 6.27: The results of run GA on the whole system

of Generation # of pairs Defect Found %

initial population 170 0%

2 174 0%

3 175 0%

4 181 0%

5 184 4%

6 184 4%

7 186 4%

8 192 4%

9 195 4%

10 198 4%

11 201 4%

12 210 8%

13 216 8%

14 237 8%

15 238 8%

16 240 8%

17 269 16%

18 314 16%

19 324 27%

20 325 33%

21 361 33%

22 370 33%

23 373 42%

24 378 42%

25 391 46%

26 407 53%

27 410 53%

28 418 58%

29 430 67%

30 442 72%

31 453 72%

32 457 75%

33 457 77%

34 463 77%

35 465 77%

36 469 80%

37 472 85%

38 476 93%

39 479 93%

40 482 93%

41 484 95%

42 485 100%

110

6.5 Comparison of E�ort GA vs. Exhaustive Search

At several points, we claimed that exhaustive search, i.e converting all feasible

pairs to executable tests, executing, and validating them is prohibitive. To investi-

gate this claim, we measured the time it took to translate a set of test requirements

into executable tests, executing and validating the results. We then computed av-

erage e�ort per node in the test path. We computed length of failure mitigation

test suite for exhaustive search for both the CD subsystem and the whole system

and multiplied with the average e�ort per node to a arrive at an e�ort estimate for

exhaustive search.

Table 6.28 shows the results. For the CD subsystem, the test requirements

using GA requires 352 pairs, the total length of all failure mitigation test 3565.

Estimated average test e�ort is about 6 work days (note work day=8 hours) while

using exhaustive search requires more than 11 work days of testing. However, for

the whole system, the di�erences are much more drastic: more than 155 work days

for GA vs. about 525 work days for exhaustive search more than three times as long

given that both �nd all mitigation defects, the choice is obvious.

Table 6.28: Time Budget Comparison between GA vs. Exhaustive search

The Sub system (CD)

Approach Test Require-
ments (# of
pairs)

length(FMT) Time Es-
timation
(min)

Total
Hours

Work
Days

GA 352 3565 2674 45 5.6

Exhaustive search 638 7195 5396 90 11.25

The Whole system

GA 8276 99312 74484 1241 155.23

Exhaustive search 27986 335920 251940 4199 524.88

111

Table 6.29 shows the number of nodes, transitions, the total number of behavioral

test paths BT , and the the total length of concatenated I. Note that the e�ort

estimates reported in Table 6.28 refer to mitigation testing only and do not include

testing primary functionality.

Table 6.29: The size of BT for CD vs. Mortgage system

of nodes # of transitions size of BT Length (I)

CD subsystem 12 9 12 169

Mortgage System 127 224 266 3998

112

Chapter 7

Regression Testing Process

Based on the changes to the artifact used in the test generation approach in

chapter 3, we classify tests as retestable, reusable, or obsolete. Changes to our

various models (behavioral model BM , mitigation modelsMM , weaving rulesWR,

type of failures F , or state-event matrix SE) having varying impact on which tests

in the failure mitigation test suite FMT are retestable, reusable or obsolete. To

make generating a regression test suite more e�cient, we provide an approach for

partial regeneration of obsolete test cases that takes advantage of the fact that our

test generation approach has phases. We determine at which point in the generation

process a test path becomes obsolete. Only the steps from that point on need to be

repeated. Figure 7.1 shows the regression testing process and references the sections

that describe the changes. Table 7.1 lists the variables and a short explanation how

they are used in the regression testing process.

113

Figure 7.1: Regression Testing Process

Table 7.1: Variables description used in regression testing process

Variable Explanation

BM behavioral model

BM ′ modi�ed behavioral model

BT behavioral test suite

Continued on next page

114

Table 7.1 � Continued from previous page

Variable Explanation

BTo obsolete behavioral tests

BTr retestable behavioral tests

BTu reusable behavioral tests

BTse behavioral tests that visits states in Sse

BT ′ additional behavioral tests needed to satisfy coverage requirements

for BM ′

BT ′′ behavioral test suite for BM ′ where BT ′′ = BTr ∪BT ′

BTa behavioral tests where BTa = BT ′ ∪BTr ∪BTu

Sse the subset of states whose applicability changed due to the changes

to SE

N set of behavioral nodes

E set of behavioral edges

No set of deleted or modi�ed nodes

ON set of obsolete test paths due to node changes

Continued on next page

115

Table 7.1 � Continued from previous page

Variable Explanation

Eo set of deleted or modi�ed edges

OE set of obsolete test paths due to edge changes

Nr set of retestable nodes

SE state-event matrix before change

SE ′ modi�ed state-event matrix due to changes to BM,F

SEa the new state-event matrix due to added failure types Fa

I concatenation of behavioral tests BT

I ′ concatenation of behavioral tests BT ′′

Ise concatenation of of impacted behavioral tests due to the changes

to SE

Length(I ′) is the length of the concatenation of new behavioral tests BT ′.

Length(Ise) is the length of the concatenation of impacted tests due to changes

to SE.

SP search space before change

Continued on next page

116

Table 7.1 � Continued from previous page

Variable Explanation

SP ′ modi�ed search space

SPa the new search space due to added failure types Fa

F set of Failure types

p Position of Failure

e Failure Type

(p, e) where (1≤ p ≤ |I|) and (1 ≤ e ≤ |F |)

PE set of selected (p, e) pairs before change

PE ′ new set of selected (p, e) pairs

Fd set of deleted failures Fd = {fd1, · · · , fdm} when m is the number

of deleted failure types

Fa set of added failures Fa = {fa1, · · · , fan} when n is the number of

new failure types

Finf set of failure types that become infeasible due to changes to SE

F ′ the set of impacted failures due to deleted failures

Continued on next page

117

Table 7.1 � Continued from previous page

Variable Explanation

Fse the set of failures whose applicability changed due to the changes

to SE

MMj mitigation model before change where 1 ≤ j ≤ k and k = |F | is

the number of failure types

MM ′
j modi�ed mitigation model for failure type j

MMaj added mitigation model for added failures Fa

MMd the set of mitigation model for deleted failures Fd

MTj mitigation test cases before change

MT ′j new mitigation tests for MM ′
j

MTjo obsolete mitigation tests of failure type j

MTjr retestable mitigation tests of failure type j

MTju reusable mitigation tests of failure type j

MTaj mitigation tests for MMaj

MT ′′j full mitigation test suite for MM ′
j where MT ′′j = MTjr ∪MT ′j

Continued on next page

118

Table 7.1 � Continued from previous page

Variable Explanation

modMM is the changed mitigation model where j ∈ mod = {j|1 ≤ j ≤

|F | ∧MM ′
j 6= MMj}

PEMM ′ set of selected (p, e) pairs where e ∈ modMM

FMT failure mitigation tests before change

FMTr failure mitigation tests based on the retestable test cases BTr

FMT ′ failure mitigation test derived from BT ′

FMTFd
the removable failure mitigation tests of deleted failure types Fd

FMTFa the failure mitigation tests based on added new failure types Fa

FMT ′′ the full new failure mitigation test suite

FMT ′MM the new failure mitigation tests derived from the changes to MM ′
j.

FMTrt the failure mitigation tests that are derived from MTjr.

FMTMMu the failure mitigation tests that are derived from MTju.

FMTo the failure mitigation tests that are derived from MTjo.

EI the set of failure types that are impacted by MM ′
j.

Continued on next page

119

Table 7.1 � Continued from previous page

Variable Explanation

PEI the set of pairs that are impacted by MM ′
j.

FMTI the set of failure mitigation tests that are impacted by MM ′
j.

FMTc the failure mitigation tests impacted due to added failure types Fa.

FMTo the obsolete failure mitigation tests due to the changes to SE.

WR weaving rules for MMj where j = 1, .., |F |

WR′ modi�ed weaving rules for MMj where j = 1, · · · , |F |

WRa the new weaving rules for new mitigation model MMaj

WRd the set of weaving rules for deleted failures Fd

modWR are the failure types for which weaving rules changed

PEWR the set of pairs that are impacted by WR′.

The process steps to build a regression test suite outlined in Figure 7.1 is based

on the types of changes to various artifacts:

1. Changes in the behavioral model (BM):

We classify the behavioral tests (BT) as obsolete (BTo), retestable (BTr), or

reusable (BTu). We determine if any parts of the new behavioral model (BM ′)

have not been tested and generate new tests (BT ′) for them. We construct

120

the new behavioral test suite (BT ′′) resulting from (BTr), and (BT ′). If there

are no changes to F , we build a new state-event matrix (SE ′) and a modi�ed

search space (SP ′), then select (p, e) pairs (PE ′)1. In case of added failure

types, we add the new failure types to the new state-event matrix (SE ′) and

to the new search space (SP ′). If mitigation models are not changed, we use

the mitigation tests (MT) from the existing mitigation models (MM) that

are built for each failure type. Then we generate the new failure mitigation

tests (FMT ′′) by weaving mitigation tests (MT) into (BT) using weaving

rules (WR). In case the mitigation models are changed (MM ′), we classify

the mitigation tests (MT) as obsolete, retestable, or reusable. We generate

new mitigation tests (MT ′) if there are any parts of new mitigation models

(MM ′) that have not been tested. Next, we weave the new mitigation test

suite (MT ′′) to generate new failure mitigation tests (FMT ′′). In case of the

changes to the weaving rules (WR), we apply the new weaving rules to the

mitigation tests (MT) if there are no changes to mitigation models (MM);

otherwise, we use the new rules (WR′) with the new mitigation test suite

(MT ′′) to generate new failure mitigation tests (FMT ′′).

2. Changes in the state-event matrix (SE):

If there are no changes to BM or F , the changes to SE requires building a new

search space (SP ′) as the changes in the SE matrix a�ect the applicability of

the node-failure relation. We select (p, e) pairs. If mitigation models are not

changed, we then weave the mitigation tests (MT) to create the new failure

mitigation tests (FMT ′′) using weaving rules (WR).

If there are changes to BM as well we follow the same steps that are described

1If the new search space is su�ciently large, we use GA [5] to construct PE, otherwise coverage
criterion (CC)[6] are the best choice to construct PE.

121

in step one for classifying (BT), and generate the new behavioral test suite

(BT ′′). We add the new nodes if they exist as new columns in the new state-

event matrix (SE ′). We build the new search space (SP ′) based on the changes

to SE and BM .

If there are added failure types, we simply extend the SE to include the new

failure types and build the new search space (SP ′) based on all changes. Next,

we apply GA to select (p, e) pairs and weave them to generate new failure

mitigation tests (FMT ′′). If there are any changes to the mitigation models

(MM) or weaving rules (WR), we also apply step 4 and 5 below.

3. Changes in failure types (F):

Adding new failures requires building a new state-event matrix (SE ′) by

adding a new row to the matrix for each new failure type. Then, we con-

struct a new search space (SP ′) and select (p, e) pairs for the new failure

types only. We build new mitigation models (MM ′) for the new failure types,

and create new mitigation tests (MTa).

If there are no changes to BM andWR, we generate the new failure mitigation

tests (FMT ′′) by weaving the new mitigation tests (MTa) into behavioral tests

(BT). Otherwise, we use the new behavioral test suite BT ′′ resulting from the

new behavioral model BM ′. Next, we weave BT ′′ using both the new mit-

igation tests (MTa) for the new failure types and the existing (MT) for the

old failure types to generate new failure mitigation tests (FMT ′′). In case of

changes to the mitigation models (MM) or weaving rules (WR), we follow

steps 4 and 5 below. If failure types are deleted, we simply delete all the as-

sociated mitigation models, weaving rules and failure mitigation tests for the

deleted failure types.

122

4. Changes in mitigation models (MM):

We only need to consider changes to individual mitigation models since all

other changes to various artifacts such as changes to BM , SE, or F are

already covered. Assume changes are to mitigation model MMj resulting

in MM ′
j. Similar to the changes in BM , we classify the mitigation tests MTj

for the mitigation model MMj into obsolete (MTjo), retestable (MTjr), or

reusable (MTju). We generate new mitigation tests (MT ′j) for edges that are

not covered in the modi�ed mitigation model (MM ′
j), so the new mitigation

test suite is MT ′′j = MTjr ∪ MT ′j . This process applies to each mitigation

model that has changed. Next, we weave MT ′′e into position (p, e) to build

the new failure mitigation tests (FMT ′′). If there are added failure types,

we include the new mitigation tests (MTa) derived from the new mitigation

models (MMa) that have been built for the new failure types. As a result, the

new mitigation test suite is MT ′′ = MTjr ∪MT ′j ∪MT ′a. In case of changes

to (WR), we apply the new weaving rules to the new mitigation test suite

(MT ′′) to generate new failure mitigation tests (FMT ′′).

5. Changes in weaving rules (WR):

Since all other changes to BM , SE, or F are already dealt with, we need

only consider changes to WR. Let WR′e be the modi�ed weaving rule for

failure type fe. We reweave all mitigation tests (MTe) for failure type (e) at

all positions p (1 ≤ p ≤ |I|, (p, e) ∈ PE) using the new weaving rule (WR′e)

for failure type e to generate the new failure mitigation tests (FMT ′′). As

before, if there are any changes to (BM) and (MM), they have been dealt

with in priors steps.

6. We execute FMT ′′.

123

We use a simple example to illustrate the process in each step of our regression

testing framework. It is introduced in subsection 7.1. The remaining subsections

explain this process of building a regression test suite in more detail and use the

example to illustrate each step.

7.1 Example

To illustrate our approach, we extend the example from section 3.2.1. Figure 7.2

shows three FSMs and two levels of hierarchy. This is our behavioral model BM .

It also shows FSM1 and FSM2 before and after changes resulting in FSM1′ and

FSM2′. Table 3.3 and Table 3.4 in section 3.2.1 shows paths through each FSM

that achieve edge coverage, including derivation rules and the test path lengths.

Figure 7.2: Behavioral Models BM , BM ′

124

In section 3.3, The SE is de�ned as shown in Table 3.5. In section 3.5.1, Table

3.7 shows the potential search space of length(I) × F . In section 3.6, Table 3.6

shows the corresponding mitigation models and associated weaving rules for each

failure type and Table 3.9 shows the selected pairs PE and resulting FMT .

The next section describes the regression test generation in detail. We de�ne

changes to the models in the example as we formalize the algorithms in each step

to illustrate how they work.

7.2 Changes to the Behavioral Model (BM)

The types of changes in the FSMWeb behavioral model are as follows [7]:

1. node change: delete, modify (i. e. change the node type from LWP to cluster

or vice versa). Node addition is covered by edge changes.

2. edge change: modify in/out edge (i. e. modify the edge's input-action con-

straint)2, delete in/out edge, add in/out edge with or without new node

Based on existing work by Andrews et al. [7], The behavioral test suite (BT) will

be classi�ed as obsolete (BTo), retestable (BTr), or reusable (BTu)

where BT = BTo ∪ BTu ∪ BTr

Figure 7.2 showed the changes to the behavioral model. They are:

• For FSM1: we delete edge (n4, n3), add node n8 and edges (n3, n8),(n8, n4).

• For FSM2: we delete edge (n6, n7), add node n9 and edges (n6, n9),(n9, n7).

The following subsections describe the steps based on changes to BM .

2Modifying the source or target node of an edge, that is, redirecting the edge, is covered by
edge deletion and subsequent edge addition

125

7.2.1 Classify BT into obsolete, reusable and retestable be-

havioral tests

The test classi�cation rules are as follows:

• Obsolete Tests Paths (BTo)

Andrews et al. [7] de�ne a set of rules for de�ning obsolete test paths based on

type of change: Node deletion a�ects all paths that include the deleted node,

rendering it obsolete. Node modi�cations change the type of node from LWP

to a cluster node or vice versa. This type of modi�cation a�ects the paths as

the node needs to be replaced by another node or a sequence of nodes. Thus,

both node deletions and node modi�cations render test paths obsolete that

tour these nodes: let the set of behavioral test paths be BT = {bt1, . . . , btl}.

Let No ={n| n ∈ N; n is deleted or modi�ed } where N is the set of behavioral

nodes, then the set of obsolete test paths due to node changes is given by

ON ={bti| ∃ n ∈ No : bti visits n}, where bti is a behavioral test path. For our

example, No = φ, and ON = φ.

Edge deletion makes any test paths that tour the edge obsolete. Any edge

modi�cation that requires changes in the inputs, guards, actions, outputs,

and messages associated with it, will also make test paths obsolete that visit

the modi�ed edge.

Let Eo ={e| e ∈ E; e is deleted or modi�ed} where E is the set of behavioral

edges, then the set of obsolete test paths due to edge changes is given by

OE ={bti | ta tours e ∈ Eo }. For our example, Eo = {(n4, n3), (n6, n7)}, and

OE = {bt2, bt3}. Thus, the set of obsolete behavioral test paths is given by:

BTO = ON ∪ OE. Hence BTo = φ ∪OE = {bt2, bt3}.

126

• Retestable Test Paths (BTr)

In [7], retestable tests are de�ned as those that are still valid and test portions

of the application and visit part of the FSMWeb model that are a�ected by the

changes. This can be determined in di�erent ways. For example, [7] considers

any node n that is one edge away from a modi�ed or deleted node as impacted

by the change, except for the source and sink nodes of the AFSM. Using this

de�nition:

Nrnode
={n| ∃ e : (n, n̂) or (n̂, n); n̂ ∈ No;n 6= nsource; n 6= nsink }. Since in

our example No = φ, Nrnode
= φ as well. When edges are changed, the set of

retestable edges depends on the type of change. When edges are deleted or

modi�ed, we assume that the starting and ending nodes of the changed edges

are potentially impacted and hence nonobsolete tests that visit these nodes

are retestable (except for the source and sink nodes of the model):

Nredm = {n|ê ∈ Eo; ê = (ni, n) or ê = (n, ni);n 6= nsource;n 6= nsink}. In the

example Nredm = {n3, n4, n6, n7}.

Similarly, when we add new edges, existing nodes at which these new edges

start or end are considered potentially a�ected by the modi�cation and hence

non-obsolete tests that visit these nodes are retestable (Except for the source

and sink nodes of the model):

Let E be the set of edges in BM . Let E ′ is the set of added edges in BM ′

Then E ′ \ E is the set of added edges.

Nrea = {n|n ∈ Nj : ê = (n, ni) or ê = (ni, n); ê ∈ E ′ \ E, ni ∈ N ′;n 6=

nsource;n 6= nsink}

In the example, E ′ \ E = {(n3, n8), (n8, n4), (n6, n9), (n9, n7)}

=⇒ Nrea = {n3, n4, n6, n7}. This happens to be the same as Nredm .

The set of retestable nodes is then given by Nr = Nrnode
∪ Nredm ∪ Nrea and

127

the set of retestable abstract test paths is

BTr = {bti | bti visits n ∈ Nr, bti ∈ BT} \ BTO

In the example, Nr = {n3, n4, n6, n7}

=⇒ BTr = {bt1, bt2, bt3} \ {bt2, bt3} = {bt1} In our example, the only non-

obsolete test path bt1 is also retestable.

• Reusable Test Paths (BTu)

Those tests are neither obsolete nor retestable. BTu = BT \ (BTo∪BTr). The

example has no reusable test paths BTu = φ.

• New Test Paths (BT ′)

New test cases need to be designed whenever current test cases do not meet

coverage requirements for BM ′. This happens when edges or nodes are added.

Obsolete test cases can also cause gaps in coverage that need to be addressed

with new tests. In the example, the following edges in the modi�ed model

BM ′: {(n3, n8), (n8, n4), (n6, n9), (n9, n7)} are not covered. Thus, new test

paths are generated: bt′1 = {n1, n3, n4, n2}, bt′2 = {n1, n3, n8, n4, n2}, and bt′3 =

{n1, n5, n6, n9, n7, n2}. As a result, the new test paths BT ′ = {bt′1, bt′2, bt′3}.

The new test suite will be as follows: BT ′′ = BTr ∪BT ′. In the example, Table 7.2

shows the classi�cation of behavioral test paths BT and the new test path BT ′ for

the modi�ed model. So, the new test suite will be as follows:

BT ′′ = BTr ∪BT ′ = {bt1, bt′1, bt′2, bt′3}.

7.2.2 Build New SE' matrix

Any change in the BM such as adding, modifying, or deleting node requires to

rebuild the state event(SE) matrix. When adding a new node, we add a new column

to SE, and similarly when deleting a state, we delete a column from SE. We also

128

Table 7.2: Classi�cation of BT after the changes

BT Path Classi�cation

bt1 n1, n5, n7, n2 Retestable

bt2 n1, n5, n6, n7, n2 Obsolete

bt3 n1, n3, n4, n3, n2 Obsolete

BT ′ Path Classi�cation

bt′1 n1, n3, n4, n2 New

bt′2 n1, n3, n8, n4, n2 New

bt′3 n1, n5, n6, n9, n7, n2 New

need to recalculate dpe and dps.

The new state-event matrix SE ′ is shown in Table 7.3. It is the same as the original

SE except for the added column for the new states n8, and n9.

Table 7.3: New State-Event Matrix SE′

Behavioral States/
Failure Type (f)

n1 n2 n3 n4 n5 n6 n7 n8 n9 dpe

1 1 0 0 1 1 0 1 0 0 0.44

2 0 0 1 0 1 1 0 0 1 0.44

3 0 1 0 1 1 1 1 1 0 0.67

4 0 1 0 0 0 0 1 0 0 0.22

dps 0.25 0.50 0.25 0.50 0.75 0.50 0.75 0.25 0.25

7.2.3 Build New Search Space SP' and FMT�

The new search space used only consider the new tests BT ′. This is because the

failure mitigation tests derived from retestable behavioral tests BTr are still valid

129

and can be reused. Let FMTr be the failure mitigation tests that were built from

tests in BTr. Thus, FMTr ⊆ FMT .

Additionally, we need to determine failure mitigation test for the new testsBT ′. This

requires constructing a new search space SP ′ for BT ′. Let BT ′ = {bt′1, bt′2, ..., bt′z}

where z is number new of test cases. Concatenating the new test suite such that:

I ′ = (bt′1 ◦ bt′2 ◦ ... ◦ bt′z)

The second dimension in the search space is given by the number of failure types

E = |F |. The new search space SP ′ is de�ned as:

SP ′ = {(p, e)|1 ≤ p ≤ length(I ′), 1 ≤ e ≤ E, se′(node(p),e) = 1}

We use SP' to select new pairs PE ′ where PE ′={(p, e)|(p, e) ∈ SP ′∧ GA or CC

selected (p, e)}. We assume that any changes in mitigation models have been dealt

with and the new mitigation test suite MT ′ has been built or that MT ′ = MT if

no changes occurred. We generate failure mitigation tests FMT ′ with PE ′. As a

result, the failure mitigation regression test suite consists of the failure mitigation

tests FMTr based on the retestable tests BTr plus the tests generated via PE ′ (i.e

FMT ′). The failure mitigation regression test suite is:

FMT ′′ = FMTr ∪ FMT ′

In the example, only bt1 is retestable, and according to Table 3.9, only number

fmt1 and fmt9 are constructed based on bt1, thus FMTr = {fmt1, fmt9}. Table

7.2 shows the new test paths BT ′ = {bt′1, bt′2, bt′3}.

We concatenate the tests in BT ′: I ′ = (bt′1 ◦ bt′2 ◦ bt′3)

Then, I ′ = n1, n3, n5, n2, n1, n3, n6, n5, n2, n1, n5, n6, n8, n7, n2 where length(I ′) = 15.

The new search space: SP ′={(p, e)|1 ≤ p ≤ 15, 1 ≤ e ≤ 4, se′(node(p),e) = 1} (see table

7.4).

130

Table 7.4: New Search Space SP ′

bt′1 bt′2 bt′3

I ′/F n1 n3 n4 n2 n1 n3 n8 n4 n2 n1 n5 n6 n9 n7 n2

f1 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0

f2 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0

f3 0 0 1 1 0 0 1 1 1 0 1 1 0 1 1

f4 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1

We use SP' to select new pairs PE ′. Next, we generate new failure mitigation

tests FMT ′′ using the existing weaving rules that are de�ned in Table 3.6. Table 7.5

shows the selected (p, e) pairs and resulting FMT ′′ for the modi�ed model BM ′. The

�rst column in Table 7.5 numbers each failure mitigation test (fmt1− fmt12). The

second column lists each (p, e) pair in PE ′. The third column refers to the failure

type whose mitigation is tested. The fourth column states the node at position

p. The �fth column identi�es the new behavioral test used in constructing fmti

(i = 1, · · · , 12). The sixth column identi�es which mitigation model is used as

described in Table 3.6. The seventh column lists which mtij is used as described in

Table 3.6. The last column shows the failure mitigation tests. Table 7.5 shows the

new failure mitigation regression tests FMT ′′ that includes FMTr pulse FMT ′. The

�rst two rows for tests number 1 and 2 are behavioral retestable ones and the tests

number 3 to 12 are the new ones. The number of mitigation tests is incremented as

a result of building a new failure regression test suite.

131

Table 7.5: FMT ′′ for modi�ed model BM ′.

pairs PE ′ Failure Node BT� used MM used mtij used FMT�

1 (2,1) f1 n5 bt1 MM1 mt11 n1, n5, sg

2 (4,3) f3 n2 bt1 MM3 mt31 n1, n5, n7, n2, n2

3 (6,2) f2 n3 bt′2 MM2 mt21 n1, n3, n1, n3, n8, n4, n2

4 (7,3) f3 n8 bt′2 MM3 mt31 n1, n3, n8, n8, n4, n2

5 (14,4) f4 n7 bt′3 MM4 mt41 n1, n5, n6, n9, n7, s1, s2, n2

6 (14,4) f4 n7 bt′3 MM4 mt42 n1, n5, n6, n9, n7, s1, s3, n2

7 (3,1) f1 n4 bt′1 MM1 mt11 n1, n3, n4, sg

8 (4,4) f4 n2 bt′1 MM4 mt41 n1, n3, n4, n2, s1, s2, n2

9 (4,4) f4 n2 bt′1 MM4 mt42 n1, n3, n4, n2, s1, s3, n2

10 (12,2) f2 n6 bt′3 MM2 mt21 n1, n5, n6, n1, n5, n6, n9, n7, n2

11 (8,1) f1 n4 bt′2 MM1 mt11 n1, n3, n8, n4, sg

12 (11,3) f3 n5 bt′3 MM3 mt31 n1, n5, n5, n6, n9, n7, n2

7.3 Changes to State-Event Matrix (SE)

Two types of changes can occur in SE ′: (1) some failures become applicable

in some states (changes from 0 to 1) or (2) not applicable (changes from 1 to 0).

In many cases, the system requirements are changed for some states that impact

some failure types to be feasible or infeasible for those states. For example, when

typed input (which can be incorrect) is replaced with button selection, an incorrectly

typed input no longer occurs. Similarly, if power backup is provided, loss of power

no longer is applicable. On the other hand, when new requirements are added that

require mitigations where none were required before, this changes entries in the SE

matrix from 0 to 1.

• Case A: Feasible to infeasible (changes from 1 to 0)

Let Finf be the failure types that have became infeasible. Then Einf =

{e|fe ∈ Finf}. Any failure mitigation tests that were derived from a pair

132

(p, e) where the node in position p is a node for which the failure e is no

longer applicable is now obsolete. These obsolete tests are given by FMTo =

{fmt|fmt ∈ FMT ∧ fmt based on pair (p, e) : se(node(p),e) = 1, se′(node(p),e) = 0

and 1 ≤ e ≤ |F |, node(p) ∈ S}. Note that failure mitigation test suite

FMT \ FMTo is reusable, not retestable, since we have run these tests al-

ready and they are not a�ected by the change.

Back to our example in section 7.1, assume failure type f3 is no longer appli-

cable in state n6. From Table 3.7 and Table 3.9, we have three tests associated

with f3 but only one position using n6. The node in position 7 is n6. Hence,

only the pair (7,3) is obsolete. It was used to create fmt3 which is now obso-

lete, and position 7 is the only position using n6. Thus, FMTo = {fmt3}.

Note that we do not have to rerun the remaining tests in Table 3.9, since they

have already been executed.

• Case B: Infeasible to feasible (changes from 0 to 1)

This requires building a new search space for failures that have became ap-

plicable. Let Fse be the subset of failure types that become now feasible such

that Fse ⊂ F . Let Sse be the subset of states that become applicable for any

failure fj where fj ∈ Fse and Sse ⊂ S.

Using our example, let failure type f1 become applicable in state n6 and f4

become applicable in state n5. Thus, Fse = {f1, f4}, and Sse = {n5, n6}. The

new SE ′ is de�ned in Table 7.6. It includes both making f3 inapplicable in

state n6. as well as making failures f1 and f4 applicable in states n5 and n6

respectively.

The new search space SP ′ and new selected pairs are based on the follow-

ing:

133

Table 7.6: New State-Event Matrix SE'

Behavioral States/
Failure Type (f)

n1 n2 n3 n4 n5 n6 n7 dpe

1 1 0 0 1 1 1 1 0.71

2 1 0 1 0 1 1 0 0.43

3 0 1 0 1 1 0 1 0.58

4 0 1 0 0 1 0 1 0.43

dps 0.25 0.50 0.25 0.50 1.00 0.50 1

� Remove tests from BT that do not visit states in Sse (states for which

certain failure types have become applicable). The remaining behavioral

tests BTse will be: BTse = {bti|∃si ∈ Sse : bti visits si}.

Next, we concatenate BTse. Let Ise be the concatenation of BTse.

In the example, the a�ected node n5 exists only in bt1 and bt2, and n6

exists only in bt2. Thus, BTse = {bt1, bt2}, and the concatenation Ise =

{bt1 ◦ bt2}.

� Remove all failures that are not in Fse. In our example, we exclude f2

and f3.

� Rebuild the new search space such as SP ′ = {(p, e)|1 ≤ p ≤ length(Ise), 1 ≤

e ≤ |Fse|, se′(node(p),e) = 1}. Table 7.7 shows the new search space SP ′

marking each feasible entry as a "1". The new search space is: SP ′ =

{(p, e)|1 ≤ p ≤ 9, 1 ≤ e ≤ 2, se′(node(p),e) = 1 ∧ node(p) ∈ Sse}.

134

Table 7.7: The New Search Space SP ′

I bt1 bt2

Position (p) 1 2 3 4 5 6 7 8 9

F/N n1 n5 n7 n2 n1 n5 n6 n7 n2

f1 1 1 1 0 1 1 1 1 0

f4 0 1 0 1 0 1 0 1 1

� Select a new set of pairs PE ′ where PE ′={(p, e)|(p, e) ∈ SP ′}. Table

7.7 marks where the two nodes in Sse = {n5, n6} occur, resulting in PE ′.

PE ′ = {(7, 1), (2, 4), (6, 4)}.

Note, that the de�nition of PE ′ requires to select as test requirements all

occurrences of nodes s ∈ Sse. If such nodes occur many times, it may be

useful to restrict the number of times that position p are selected where

node(p) ∈ Sse. We can use coverage criteria C2 or C3 for this. We usually

expect that the search space is not large enough to use the GA.

� Generate new failure mitigation tests FMT ′′ as in chapter 3. Table 7.8

shows the selected pairs and new failure mitigation regression tests.

Section 7.5 describes the case when there are multiple changes to the

artifacts (BM,SE, F).

Table 7.8: Selected pairs and constructing FMT ′′ for Fse.

Selected pairs (PE ′) Failure Node BT used MM used mtij used FMT ′′

9 (7,1) f1 n6 bt2 MM1 mt11 n1, n5, n6, sg

10 (2,4) f4 n5 bt1 MM4 mt41 n1, n5, s1, s2, n7, n2

11 (2,4) f4 n5 bt1 MM4 mt42 n1, n5, s1, s3, n7, n2

135

7.4 Changes to Failure Types (F)

First, we assume that the changes to failure types are the only changes. Later,

we will discuss the situation when changes to multiple artifacts occur. We describe

the change in failure type as follows:

• Delete failure types Fd = {fd1, · · · , fdm} where m is the number of deleted

failure types: F ′ = F \ Fd

An example of deleting a failure type: a faulty network can no longer cause

a network connection error by using a backup router to quickly swap out the

faulty network. Suppose, we delete the failure types (f2 and f3) from our

example. Thus, Fd = {f2, f3}.

Next, we remove the mitigation models {MMd1 , · · ·MMdm} and weaving rules

{WRd1 , · · ·WRdm}. Any failure mitigation tests that test proper mitigation

for a failure f ∈ Fd is removed as well. Let FMTFd
⊆ FMT such that

each t ∈ FMTFd
was constructed to test a failure type f ∈ Fd. FMTFd

=

{fmt|fmt ∈ FMT ∧ fmt based on pair (p, e′) ∈ PE where fe′ ∈ Fd and

1 ≤ p ≤ Length(I)}. Note that FMT \ FMTFd
is reusable, not retestable,

since we have executed these tests already.

Back to our example, we remove the mitigation modelsMMFd
= {MM2,MM3}

and weaving rules WRFd
= {WR2,WR3}. From Table 3.9, the deleted fail-

ure mitigation tests are FMTFd
= {fmt2, fmt3, fmt6, fmt8, fmt9}. Table 7.9

shows the reusable tests after deleting failures f2 and f3.

136

Table 7.9: Reusable tests after deleting failures f2 and f3

Selected pairs (PE) Failure Node BT used MM used mtij used FMT

1 (2,1) f1 n5 bt1 MM1 mt11 n1, n5, sg

2 (8,4) f4 n7 bt2 MM4 mt41 n1, n5, n6, n7, s1, s2, n7, n2

3 (8,4) f4 n7 bt2 MM4 mt42 n1, n5, n6, n7, s1, s3, n2

4 (8,1) f1 n7 bt2 MM1 mt11 n1, n5, n6, n7, sg

• Add new failure type Fa = {fa1, · · · , fan} where n is the number of new failure

types:

In this case, we need to build a state-event matrix for the new failure, con-

struct a search space for the concatenated test suite and the new failures, and

generate (p,e) pairs. We also must de�ne mitigation models and weaving rules

for the new failures and create failure mitigation tests based on the (p,e) pairs

selected. Note that we do not need to rerun FMT , nor include existing failure

types in the construction of the search space. Thus, a new state-event matrix

SEa is an n× |S| matrix where

SEa(i, j) =

1 if failure type j applies in node ni ∈ S

0 otherwise

Note that number of states i = 1, · · · , |S| and number of failures types j =

1, · · · , n. Using our example, we add two new failure types (f5 and f6), so

Fa = {f5, f6}. Next, we have to build a new state-event matrix (SEa) that

includes the new failure types Fa as shown in Table 7.10.

Next, we create new mitigation models MMa = {MMa1, · · · ,MMan} for

each failure type in Fa. Let WRa = {WRa1 · · ·WRan} be the weaving rules

for the new mitigation models. Next, we generate the new mitigation test

137

Table 7.10: New State-Event Matrix SEa

Behavioral States/
Failure Type (f)

n1 n2 n3 n4 n5 n6 n7 dpe

5 0 0 0 0 0 1 0 0.14

6 0 1 0 0 0 0 1 0.29

dps 0.00 0.50 0.00 0.00 0.00 0.50 0.50

suites MTa = {MTa1, · · ·MTan}. In the example, we add new mitigation

models MMa = {MM5,MM6} and new weaving rules (WR5 and WR6) for

the new failure types. They are shown in Table 7.11. The �rst mitigation

model returns to state n6 after a database error, the second returns to the

start node n1 and ends the test.

Next, we create new mitigation test paths MTsa using the new mitigation

models. In our case there are no paths required, since the only task is speci�ed

by the weaving rule.

Table 7.11: New Mitigation Requirements

MM Explanation Model WR#

MM5 Retry: database
server error

MT5 = φ where
node(p)r is the state in
which we are trying to
save data node(p) =
n6 and r = 1 (retry
once)

2

MM6 End Activity: mis-
understood behaviour
such as try to access
node without having
speci�c user role

MT6 = φ where sf =
n1,and sf is the start
node and stop

4

Then, we build the new search space. The new search space is de�ned

with the concatenated behavioral test suite BT and the new failure types as

138

follows: SPa = {(p, e)|1 ≤ p ≤ length(I), 1 ≤ e ≤ n, sea(node(p),e)
= 1}. We

select a new set of pairs (p, e) ∈ PEa where PEa={(p, e)|(p, e) ∈ SPa (p,e)

selected}. How we select the (p, e) pairs depends on the size of the new search

space. If it is large enough, we use the GA, otherwise coverage criteria are

more appropriate.

In the example, the new search space SPa = {(p, e)|1 ≤ p ≤ 14, 1 ≤ e ≤

2, sea(node(p),e)
= 1} is shown in Table 7.12. Because the search space is too

small for using GA, we use coverage criteria (C2) for selecting pairs (i.e all

unique nodes, all applicable failures). Using coverage certeria C2 results in

selecting three pairs as shown in Table 7.13.

Table 7.12: New Search Space SPa due to the added failure Fa

bt1 bt2 bt3

n1 n5 n7 n2 n1 n5 n6 n7 n2 n1 n3 n4 n3 n2

f5 0 0 0 0 0 0 1 0 0 0 0 0 0 0

f6 0 0 1 1 0 0 0 1 1 0 0 0 0 1

Finally, new failure mitigation tests FMTFa are generated from pairs in

PEa. Hence, FMT ′′ = FMTFa

In the example, new failure mitigation test FMTFa are generated based on

new weaving rules WR5 and WR6 for the new failure types in Fa = {f5, f6}.

Table 7.13 shows the selected pairs and FMT ′′.

Table 7.13: Selected pairs and constructing FMTFa from them.

Selected pairs (PE) Failure Node BT used MM used mtij used FMTFa = FMT ′′

1 (7,5) f5 n6 bt2 MM5 mt51 n1, n5, n6, n6, n7, n2

2 (3,6) f6 n7 bt1 MM6 mt61 n1, n5, n7, n1

3 (4,6) f6 n2 bt1 MM6 mt61 n1, n5, n7, n2, n1

139

Note, we assume that the addition of new failures does not impact existing

failure mitigations. Otherwise, we would need to include mitigation tests

for failures that have been a�ected by mitigation of new failures. This can

happen when the mitigations for two di�erent failure types share some of the

mitigation code. Let impacted failures types Fc = {f1, · · · , fq} be the failures

impacted by new mitigation requirements, where q is the number of a�ected

failures. Let the impacted failure mitigation tests FMTc = {fmt|fmtj built

from pair (p, e) ∈ PE where fe ∈ Fc}. The new failure mitigation tests derived

from Fc will be as follows: FMT ′′ = FMTFa ∪ FMTc.

Note: FMT does not have to be rerun and FMTc is a selection not a creation

of new tests.

In our example, suppose that mitigation of new failures impacts existing failure

mitigation. Let failure type f1 be impacted by new mitigation requirements. As a

result, Fc = {f1}, and from Table 7.9 (after deleting failure mitigation tests based

on deleted failures FMTFd
), the impacted failure mitigation tests are FMTc =

{fmt1, fmt4}. The new failure mitigation tests FMT ′′ are shown in Table 7.14.

The �rst two test requirements address impacted failure f1, the others are identical

to those in Table 7.13.

Table 7.14: Selected pairs and FMT ′′

Selected pairs (PE) Failure Node BT used MM used mtij used FMT ′′

1 (2,1) f1 n5 bt1 MM1 mt11 n1, n5, sg

2 (8,1) f1 n7 bt2 MM1 mt11 n1, n5, n6, n7, sg

3 (7,5) f5 n6 bt2 MM5 mt51 n1, n5, n6, n6, n7, n2

4 (3,6) f6 n7 bt1 MM6 mt61 n1, n5, n7, n1

5 (4,6) f6 n2 bt1 MM6 mt61 n1, n5, n7, n2, n1

140

7.5 Changes to BM , Failure Types (F) and State-

Event Matrix (SE)

When BM, F and SE have been changed at the same time, we need to perform

the following steps:

• Classify BT into BTr, BTu, and BTo as in section 7.2.1.

• Generate new behavioral test cases BT ′ due to the changes to BM .

• Create new mitigation models MMaj; add the weaving rules for the new fail-

ures Fa, and generate new mitigation tests MTaj for new failure types Fa.

• Delete the mitigation models and weaving rules, and failure mitigation tests

FMTFd
for all deleted failure in Fd.

• Remove any obsolete mitigation tests FMTo due to the changes to SE for any

inapplicable failure types.

• De�ne the subset of failure types Fse and subset of states Sse that are a�ected

and become now feasible due to the changes to SE.

• Build a new state-event matrix SE ′ that includes any new states due to the

changes to BM and the added failure types due to the changes to F . Also,

because of the changes to SE, the new state-event matrix SE ′ includes any

failure types in Fse.

• Construct three new search spaces as follows (see Figure 7.3):

� The �rst search space (SP ′1) is for existing failure types F and new test

paths BT ′.

� The second search space (SP ′2) is for new failure types Fa and for all tests

141

(new and non-obsolete tests) such that BTa = BT ′ ∪ BTr ∪ BTu. Since

new failure types could be applicable for nodes that exist in BTu, we need

to test the mitigation requirements for Fa among reusable behavioral tests

that visit these nodes.

� The third search space (SP ′3) is due to the changes to SE for newly

feasible failure types in Fse and a�ected behavioral tests BTse. Note that

if Fse ' F and BTse ' BTa then it means basically to regenerate tests

from scratch for the modi�ed model.

Figure 7.3: The new search space SP' due to the Changes to BM, SE, and F

The new state-event matrix SE ′ will be constructed as in section 7.2.2 based on

the changes to BM , section 7.3 based on the changes to SE, and section 7.4 based

on the changes to F . Using the example, we will use the same changes to BM as in

section 7.2, and the changes to the SE are the same in section 7.3. Finally, deleted

and added failure types will be similar as in section 7.4.

The search space SP ′ will be three di�erent matrices. One matrix SP ′1 represents

the length of BT ′ concatenation times the number of old failure types F . Note

that we remove deleted failure Fd such as F \ Fd. The second matrix SP ′2 is the

142

concatenation of BTa = BT ′ ∪ BTr ∪ BTu in one dimension and the added failure

types Fa. The third matrix SP ′3 represents the length of concatenation of a�ected

tests BTse due to the changes to SE times the feasible failure types in Fse. Let IBT ′

be the concatenation of BT ′, and IBTa be the concatenation of BTa. Let Ise be the

concatenation of BTse. Thus, new search space will be as follows:

SP ′1 = {(p, e)|1 ≤ p ≤ length(IBT ′), 1 ≤ e ≤ |F |, se′(node(p),e) = 1}

SP ′2 = {(p, e)|1 ≤ p ≤ length(IBTa), 1 ≤ e ≤ |Fa|, se′(node(p),e) = 1}

SP ′3 = {(p, e)|1 ≤ p ≤ length(Ise), 1 ≤ e ≤ |Fse|, se′(node(p),e) = 1}

From our example and based on the changes to BM (see Figure 7.2), we delete

edge (n4, n3), and add n8 and edges (n3, n8), (n8, n4) to FSM1. Also, we delete

edge (n6, n7), and add n9 and edges (n6, n9), (n9, n7) to FSM2. The changes to

BM result into classifying BT as follows: BTo = {bt2, bt3} , BTr = {bt1}, BTu = φ,

and new test paths BT ′ = {bt′1, bt′2, bt′3}.

Because of the changes to SE, f1 becomes applicable in state n6 and f4 becomes

applicable in state n5. Thus, Fse = {f1, f4}, and Sse = {n5, n6}. We exclude any

test that does not visit n5 or n6. Since bt2 and bt3 become obsolete and only bt1 is

reusable and visits n5, BTse = {bt1, bt′3}. Note that f3 is already deleted due to the

changes to F regardless of the changes to SE.

In the example, we delete the failure types (f2 and f3), and add new failure types

(f5 and f6). Thus, Fd = {f2, f3}, and Fa = {f5, f6}.

Next, we build the new (SE ′) as shown in Table 7.15.

Tables 7.16-7.18 show the three search spaces. Note that each one has di�erent

dimensions. Because each search space is small, we use coverage criteria C2 for

SP ′1, SP
′
2, and SP

′
3.

143

Table 7.15: New State-Event Matrix SE′

Behavioral States/
Failure Type (f)

n1 n2 n3 n4 n5 n6 n7 n8 n9 dpe

1 1 0 0 1 1 1 1 0 0 0.56

4 0 1 0 0 1 0 1 0 0 0.33

5 0 0 0 0 0 1 0 1 0 0.22

6 0 1 0 0 0 0 1 0 1 0.33

dps 0.25 0.50 0.00 0.50 0.25 0.50 0.75 0.25 0.25

Table 7.16: New Search Space SP ′1 (BM change and f2, f3 deleted)

bt′1 bt′2 bt′3

IBT ′/F n1 n3 n4 n2 n1 n3 n8 n4 n2 n1 n5 n6 n9 n7 n2

f1 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0

f4 0 0 0 1 0 0 0 0 1 0 1 0 0 1 1

The next step is to select a new set of pairs from each search space. Based on

the size of the search space, we use GA if it is large enough, otherwise a coverage

criterion. Because there are three di�erent search spaces, we have to select three

di�erent set of pairs. Tables 7.16-7.18 mark the pairs selected by C2. Finally ,

new failure mitigation tests are generated using PE ′1, PE
′
2, and PE

′
3 respectively.

Table 7.19, Table 7.20, and Table 7.21 show the selected pairs and failure mitigation

regression tests for FMT ′1 using PE ′1, FMT ′2 using PE ′2, and FMT ′3 using PE ′3.

Note that failure f4 has multiple mitigation paths, hence |FMT ′1| > |PE ′1| and

Table 7.17: New Search Space SP ′2 (new failures)

bt1 bt′1 bt′2 bt′3

IBTa/Fa n1 n5 n7 n2 n1 n3 n4 n2 n1 n3 n8 n4 n2 n1 n5 n6 n9 n7 n2

f5 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

f6 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1

144

Table 7.18: New Search Space SP ′3 (applicability change)

bt1 bt′3

Ise/Fse n1 n5 n7 n2 n1 n5 n6 n9 n7 n2

f1 1 1 1 0 1 1 1 0 1 0

f4 0 1 1 1 0 1 0 0 1 1

|FMT ′3| > |PE ′3|.

Table 7.19: Constructing FMT ′1 with PE′1.

pairs PE ′1 Failure Node BT' used MM used mtij used FMT ′1

1 (1,1) f1 n1 bt′1 MM1 mt11 n1, sg

2 (3,1) f1 n4 bt′1 MM1 mt11 n1, n3, n4, sg

3 (11,1) f1 n5 bt′3 MM1 mt11 n1, n5, sg

4 (12,1) f1 n6 bt′3 MM1 mt11 n1, n5, n6, sg

5 (14,1) f1 n7 bt′3 MM1 mt11 n1, n5, n6, n9, n7, sg

6 (4,4) f4 n2 bt′1 MM4 mt41 n1, n3, n4, n2, s1, s2, n2

7 (4,4) f4 n2 bt′1 MM4 mt42 n1, n3, n4, n2, s1, s3, n2

8 (11,4) f4 n5 bt′3 MM4 mt41 n1, n5, s1, s2, n5, n6, n9, n7, n2

9 (11,4) f4 n5 bt′3 MM4 mt42 n1, n5, s1, s3, n5, n6, n9, n7, n2

10 (14,4) f4 n7 bt′3 MM4 mt41 n1, n5, n6, n9, n7, s1, s2, n7, n2

11 (14,4) f4 n7 bt′3 MM4 mt42 n1, n5, n6, n9, n7, s1, s3, n7, n2

145

Table 7.20: Constructing FMT ′2 with PE′2

Selected pairs (PE ′2) Failure Node BTa used MM used mtij used FMT ′2

1 (11,5) f5 n8 bt′2 MM5 mt51 n1, n3, n8, n8, n4, n2

2 (16,5) f5 n6 bt′3 MM5 mt51 n1, n5, n6, n6, n9, n7, n2

3 (3,6) f6 n7 bt1 MM6 mt61 n1, n5, n7, n1

4 (4,6) f6 n2 bt1 MM6 mt61 n1, n5, n7, n2, n1

5 (17,6) f6 n9 bt′3 MM6 mt61 n1, n5, n6, n9, n1

6 (18,6) f6 n7 bt′3 MM6 mt61 n1, n5, n6, n9, n7, n1

Table 7.21: Constructing FMT ′3 with PE′3.

Selected pairs (PE ′3) Failure Node BTse used MM used mtij used FMT ′3

1 (1,1) f1 n1 bt1 MM1 mt11 n1, sg

2 (2,1) f1 n5 bt1 MM1 mt11 n1, n5, sg

3 (3,1) f1 n7 bt1 MM1 mt11 n1, n5, n7, sg

4 (7,1) f1 n6 bt′3 MM1 mt11 n1, n5, n6, sg

5 (2,4) f4 n5 bt1 MM4 mt41 n1, n5, s1, s2, n5, n7, n2

6 (2,4) f4 n5 bt1 MM4 mt42 n1, n5, s1, s3, n5, n7, n2

7 (3,4) f4 n7 bt1 MM4 mt41 n1, n5, n7, s1, s2, n7, n2

8 (3,4) f4 n7 bt1 MM4 mt42 n1, n5, n7, s1, s3, n7, n2

9 (3,4) f4 n2 bt1 MM4 mt41 n1, n5, n7, n2, s1, s2, n2

10 (3,4) f4 n2 bt1 MM4 mt42 n1, n5, n7, n2, s1, s3, n2

146

7.6 Changes to Mitigation Models (MM)

We assume that BT ′, F ′, SE ′, and PE ′ have been constructed based on changes

to corresponding artifacts and algorithms in sections 7.2,7.3,7.4, and 7.5. We also

assume that MT ′j have been constructed for any changed model: j ∈ modMM =

{j|1 ≤ j ≤ |F | ∧MM ′
j 6= MMj}. When changes to mitigation models occur, we

need to follow:

• determine a mitigation test paths for the changed mitigation model(s).

• determine retestable FMT and pairs upon which they are based that use

mitigation tests from the changed model(s).

Note that we do not have to consider PE ′2 or PE ′3 since they are based on new

mitigation models, not changed ones, or failure types that used to be inapplicable,

hence no retestable failure mitigation tests exist. Note that SE ′3 only speci�es

feasible pairs that did not exist in the prior version. Note also that PE ′1 describes

new test requirements from which new failure mitigation tests are created (regardless

of changes to the mitigation models).

Hence we only need to consider two cases:

• failure mitigation tests that are based on retestable mitigation tests. These

need to be rerun.

• failure mitigation tests that were built based on failure types for the modi�ed

mitigation model. These need to be rebuilt with the new mitigation tests set.

Note that we need to exclude any obsolete failure mitigation tests FMTo.

147

7.6.1 Determine Mitigation Test Paths for Changed Mitiga-

tion Models

Since the mitigation model is similar to the behavioral model (FSMWeb), the

same concept is applied to the mitigation test paths using [7]. The same classi�ca-

tion will be used in terms of obsolete, reusable, or retestable test paths. We classify

mitigation tests (MTj) of failure type fj as obsolete (MTjo), retestable (MTjr),

and reusable (MTju). We determine new mitigation test cases (MT ′j) for uncovered

edges in the mitigation model of failure type fj.

Back to our example, the mitigation model MM4 for failure type f4 is modi�ed as

shown in Figure 7.4. We modify the model from export to Excel to be exported

to Word format. We delete edges: (s1, s2), (s2, sf). The deleted edges make mit-

igation test mt41 obsolete. Thus, MT4o = {mt41}. We also add node (s4) and

edges: (s1, s4), (s4, sf). As a result, a new mitigation test path is needed: mt′41 =

{si, s1, s4, sf}. Thus, MT ′4 = {mt′41}. Since mitigation test mt42 = {si, s1, s3, sf}

visits si, this makes mt42 retestable. Consequently, MT4r = {mt42}. Since only one

mitigation model has been changed, modMM = {4}. The new mitigation test for

MM ′
4 is MT ′′4 = MT4r ∪MT ′4 = {mt42,mt′41}.

7.6.2 Failure Mitigation Tests Based Retestable Mitigation

Tests

As stated before these tests need to be rerun. They constitute the retestable

failure mitigation tests FMTrt. They are de�ned as follows: FMTrt = {fmt|fmt ∈

FMT based on: (p, j) ∈ PE, j ∈ modMM ,mtj ∈MTjr}. We need to rerun FMTrt.

148

Figure 7.4: Modi�ed Mitigation Model MM4.

From Table 3.9, the only failure mitigation tests used for f4 are fmt4 and fmt5.

However, fmt4 is obsolete because of using mt41, and fmt5 becomes retestable be-

cause of using mt42. Hence FMTrt = {fmt5}.

7.6.3 Build New Failure Mitigation Tests

Here we need to make sure that all mtj ∈ MT ′j (j ∈ modMM) are used to

build new failure mitigation tests. This requires identifying all pairs: PEMM ′ =

{(p, j)|j ∈ modMM} and then using mtj ∈ MT ′j to build the new failure mitigation

tests FMT ′MM . FMT ′MM = {fmt′| based on (p, e) ∈ PEMM ′ using mtj ∈MT ′j , j ∈

modMM}. These new tests need to be run.

In the example and from Table 3.9, PEMM ′ = {(8, 4)} and MT ′4 = {mt′41}. We

generate new failure mitigation test usingmt′41. Thus, fmt
′
4 = {n1, n5, n6, n7, s1, s4, n7, n2}.

149

7.6.4 Potential Impact on Other Failure Mitigations

Changes to failure mitigations can impact mitigations of other failures whose

models have not changed. This can happen when they share portions of the mitiga-

tion code, for example. In such a case, the failure mitigation tests for these failures

need to be rerun. Let EI be the failure types impacted. Then all failure mitigation

tests based on PEI = {(p, e)|e ∈ EI} need to be rerun. The failure mitigation tests

FMTI = {fmt|fmt ∈ FMT , based on (p, e) ∈ PEI} are the impacted set of tests.

From the example, we assume the changes toMM ′
4 has a�ected the failure mitigation

associated with failure type f1. Using Table 3.9, EI = {1}, PEI = {(2, 1), (8, 1)}

and FMTI = {fmt1, fmt7}. These need to be rerun.

In summary, the regression test suite FMT ′′ to execute consists of retestable tests

FMTrt, new failure mitigation tests FMT ′MM and tests for failures that are im-

pacted by mitigation model changes in other failures FMTI . Hence FMT ′′ =

FMTrt ∪FMT ′MM ∪FMTI . Table 7.22 shows the new failure mitigation regression

tests as follows:

FMT ′′ = {fmt5} ∪ {fmt′4} ∪ {fmt1, fmt7} = {fmt1, fmt′4, fmt5, fmt7}

Table 7.22: PE and resulting FMT ′′.

pairs (PE) Failure Node BT used MM used mtij used FMT�

1 (2,1) f1 n5 bt1 MM1 mt11 n1, n5, sg

2 (8,4) f4 n7 bt2 MM4 mt′41 n1, n5, n6, n7, s1, s4, n7, n2

3 (8,4) f4 n7 bt2 MM4 mt42 n1, n5, n6, n7, s1, s3, n2

4 (8,1) f1 n7 bt2 MM1 mt11 n1, n5, n6, n7, sg

150

7.7 Changes to Weaving Rules (WR)

When a weaving rule is modi�ed, we need to identify which (p, e) pairs are

a�ected and we need to regenerate tests that were created using the old weaving

rule, as these failure mitigation tests are now obsolete. Let modWR = {failure

types for which weaving rule changed}. Let PEWR = {(p, e)|(p, e) ∈ PE ∧ e ∈

modWR}. We generate new failure mitigation tests for these (p, e) pairs. Then

FMT ′ = {fmt′|(p, e) ∈ PEWR used to construct fmt′}. We simply regenerate

failure mitigation tests using appropriate coverage criteria and rerun these tests.

In the example, we update the weaving rule "End All" for failure f2 to be "Fix and

proceed". Hence PEWR = {(11, 2), (6, 2)} (cf Table 3.9). Tests fmt2 and fmt8 are

obsolete and need to be regenerated. Table 7.23 shows the result.Using Table 3.9,

we use the new weaving rule wr′f2 and generate new failure mitigation tests FMT ′′

for them using the new weaving rule for pairs in PEWR. New failure mitigation test

for f2 need to be constructed for pairs (11,2) and (6,2). The new failure mitigation

tests are shown in Table 7.23.

In case of multiple changes to artifacts, we do not have to consider PE ′1 or PE ′3,

since they are based on new mitigation models (and weaving rules), not changed ones

or failures that used to be inapplicable, hence no retestable failure mitigation tests

exist. Since PE ′1 describes new test requirements, we would have already constructed

failure mitigation tests with the new weaving rules as described in section 7.5. FMT ′

refers to reconstruction of existing tests.

Table 7.23: PEWR and resulting FMT ′′.

pairs (PE) Failure Node BT used MM used mtij used FMT�

2 (11,2) f2 n3 bt3 MM2 mt21 n1, n3, n3, n4, n3, n2

8 (6,2) f2 n5 bt2 MM2 mt21 n1, n5, n5, n6, n7, n2

151

7.8 Discussion

We build the framework for selective regression testing of fail-safe testing. We

provide a systematic method by showing the formalization steps for each type of

change to the various models (BM,MM,WR,F, SE) and build a regression test

suite based on each type of change, allowing for multiple changes to artifacts. If the

new search space is su�ciently large, we use GA [5] to construct the new test re-

quirements, otherwise coverage criterion (CC)[6] are the best choice. In case changes

to the behavioral model are the only change and the changes did not add many new

states/edges or delete many states/edges, there will be few new mitigation tests.

When failure types no longer apply or when some failure types become not applica-

ble in some nodes (entries in SE matrix change from 1 to 0), the number of failure

mitigation tests becomes smaller. However, when new failure types are required to

be mitigated, or some failure types become applicable in states where they were

not applicable before, the number of failure mitigation tests increases. Therefore,

the changes to behavioral models BM , the changes to SE, or adding new failure

types have higher impact as more work is involved such as building a SE ′, search

space SP1 − SP3, and generating more failure mitigation tests. On the other hand,

changes to mitigation models or weaving rules have less impact because they are

local changes. Multiple changes to the artifacts can become very expensive and may

require to create a full new test suite. Also in this case, we are also more likely to

use a GA.3

3This is a trade-o� situation, that is beyond the scope of this dissertation and will be considered
in future work research.

152

7.9 Case Study

We use the behavioral model of the Closing Documents (CD) sub system in

section 6.1 to illustrate our regression testing framework. The next subsections

describe the changes to artifacts(BM ,F ,SE,MM ,WR) and how we build the search

space and generate the regression failure mitigation tests for all the changes.

7.9.1 Changes to BM

Figure 7.5 shows the changes to the behavioral model of the CD subsystem. We

have added a new node (FF), and edges p3_n1, p3_n2, and deleted a node (SI)

and the edges related to it.

153

Figure 7.5: Changes to BM of CD sub-system.

7.9.1.1 Classify BT and Build BT ′

The following steps describe the changes to BM :

• Classify BT int BTo, BTr, and BTu:

� The set of deleted nodes No = {SI}, then the set of obsolete test paths

due to node changes ON = {TCD3, TCD7, TCD8, TCD9}. The set of deleted

edges Eo = {(CI, SI), (SI, CI)}, then the set of obsolete test paths due

to edge changes OE = {TCD3, TCD7, TCD8, TCD9}. Thus, obsolete tests

BTo = ON ∪OE = {TCD3, TCD7, TCD8, TCD9}.

154

� The set of added edges E ′ \ E = {(np3, FF), (FF, np3)}, and the set of

retestable nodes Nr = {np3, CI}.

Thus, retestable tests BTr = {TCD2, TCD10, TCD11, TCD12}.

� Reusable tests BTu = BT \ (BTo ∪BTr) = {TCD1, TCD4, TCD5, TCD6}.

• The following edges in the BM ′:{(np3, FF), (FF, np3)} are not covered. Thus,

the new tests BT ′ = {Tnew1, Tnew2, Tnew3, Tnew4} as shown in Table 7.24.

Table 7.24 shows the classi�cation of behavioral tests BT and the new tests BT ′.

The �rst column shows the clusters of aggregation sequence for CD subsystem. The

second column shows the test number, third column the test path and the last col-

umn the classi�cation of test path based on the changes to BM .

Table 7.24: Classi�cation of BT

Clusters Test No. Test Path Classi�cation

Home-LPD-CD TCD1 w0,n0,VC,VC,ne,np3,DC,DC,np3,ne,n0,w0 Reusable

Home-LPD-CD TCD2 w0,n0,VC,VC,ne,np3,CI,CI,np3,ne,n0,w0 Retestable

Home-LPD-CD TCD3 w0,n0,VC,VC,ne,np3,CI,SI,CI,np3,ne,n0,w0 Obsolete

SE-LPD-CD TCD4 w0,n0,SP,SR,EE,SR,ne,np3,DC,DC,np3,ne,n0,w0 Reusable

SE-LPD-CD TCD5 w0,n0,SP,SP,AS,SR,ne,np3,DC,DC,np3,ne,n0,w0 Reusable

SE-LPD-CD TCD6 w0,n0,SP,AS,SP,AS,SR,ne,np3,DC,DC,np3,ne,n0,w0 Reusable

SE-LPD-CD TCD7 w0,n0,SP,SR,EE,SR,ne,np3,CI,SI,CI,np3,ne,n0,w0 Obsolete

SE-LPD-CD TCD8 w0,n0,SP,SP,AS,SR,ne,np3,CI,SI,CI,np3,ne,n0,w0 Obsolete

SE-LPD-CD TCD9 w0,n0,SP,AS,SP,AS,SR,ne,np3,CI,SI,CI,np3,ne,n0,w0 Obsolete

SE-LPD-CD TCD10 w0,n0,SP,SR,EE,SR,ne,np3,CI,CI,np3,ne,n0,w0 Retestable

SE-LPD-CD TCD11 w0,n0,SP,SP,AS,SR,ne,np3,CI,CI,np3,ne,n0,w0 Retestable

SE-LPD-CD TCD12 w0,n0,SP,AS,SP,AS,SR,ne,np3,CI,CI,np3,ne,n0,w0 Retestable

Home-LPD-CD Tnew1 w0,n0,VC,VC,ne,np3,FF,np3,ne,n0,w0 New

SE-LPD-CD Tnew2 w0,n0,SP,SR,EE,SR,ne,np3,FF,np3,ne,n0,w0 New

SE-LPD-CD Tnew3 w0,n0,SP,SP,AS,SR,ne,np3,FF,np3,ne,n0,w0 New

SE-LPD-CD Tnew4 w0,n0,SP,AS,SP,AS,SR,ne,np3,FF,np3,ne,n0,w0 New

155

7.9.1.2 Build SE' matrix

The new state-event matrix SE ′ is shown in Table 7.25. It is the same as the

original SE in Table 6.21 except for the added column for the new state FF .

Table 7.25: New State-Event Matrix SE′ based on the changes to BM

Behavioral
States/ Fail-
ure Type
(f)

w0 n0 VC ne np3 SP SR AS EE DC CI FF dpe

1 1 1 1 1 1 1 1 1 1 1 1 1 1.0

2 0 1 1 1 1 1 1 1 1 1 1 1 0.9

3 1 0 0 0 0 1 0 0 0 1 0 1 0.3

4 0 0 0 0 0 1 0 1 0 1 0 1 0.3

5 0 0 0 0 0 0 0 0 0 1 1 1 0.3

6 0 1 1 1 1 1 1 1 1 1 1 1 0.9

7 0 0 0 0 0 0 0 0 0 1 0 1 0.1

8 0 0 0 0 0 0 0 0 0 1 1 0 0.2

9 0 0 0 0 0 0 0 0 0 1 1 0 0.2

10 0 0 0 0 0 0 1 0 0 0 1 0 0.2

dps 0.2 0.3 0.3 0.3 0.3 0.5 0.4 0.4 0.3 0.9 0.7 0.7

7.9.1.3 Build new search space SP'and FMT�

We consider only the new BT ′ in building SP ′. Concatenating BT ′ such as:

I ′ = (Tnew1 ◦Tnew2 ◦Tnew3 ◦Tnew4). The length of I ′ is 51, and the number of failure

types is E = |F | = 10. Thus, the new search space SP ′ = {(p, e)|1 ≤ p ≤ 51, 1 ≤

e ≤ 10, se′(node(p),e) = 1}. We select new pairs PE ′ using SP ′. Since the search space

size is reasonable to use GA, we apply GA for selecting new pairs PE ′. Next, we

generate new failure mitigation tests FMT ′′ using the existing weaving rules that

are de�ned in Table 6.20.

156

Table 7.26 shows the selected (p, e) pairs and resulting FMT ′′ for the modi�ed

model BM ′. The �rst column in Table 7.26 numbers each failure mitigation test

(fmt1− fmt29). The second column lists each (p, e) pair in PE ′. The third column

refers to the failure type whose mitigation is tested. The fourth column states the

node at position p. The �fth column identi�es the new behavioral test used in

constructing fmti (i = 1, · · · , 29). The sixth column identi�es which mitigation

model is used as described in Table 3.6. The seventh column lists which mtij is

used as described in Table 3.6. The last column shows the failure mitigation tests.

Table 7.26 shows the new failure mitigation regression tests FMT ′′ that includes

FMTr pulse FMT ′. The (fmt1−fmt15) are behavioral retestable ones and the tests

number 9 to 20 are the new ones. The number of mitigation tests is incremented as

a result of building a new failure regression test suite.

157

Table 7.26: Constructing FMT ′′ for modi�ed model BM ′

(p,e) Failure Node MM used FMT' BT used

1 (165,4) f4 CI MM4 TCD12 TCD12

2 (133,5) f5 ne MM5 TCD10 TCD10

3 (135,6) f6 CI MM6 TCD10 TCD10

4 (19,6) f6 CI MM6 TCD2 TCD2

5 (19,9) f9 CI MM9 w0,n0,VC,VC,ne,np3,CI,np3 TCD2

6 (129,9) f9 SP MM9 TCD10 TCD10

7 (148,9) f9 np3 MM9 TCD11 TCD11

8 (15,1) f1 VC MM1 w0,n0,VC,sg TCD2

9 (130,1) f1 SR MM1 w0,n0,SP,SR,sg TCD10

10 (136,2) f1 CI MM2 w0,n0,SP,SR,EE,SR,ne,np3,CI,CI,sg TCD10

11 (158,2) f1 AS MM2 w0,n0,SP,AS,sg TCD12

12 (157,2) f2 SP MM2 w0,n0,SP,w0,n0,SP,AS,SP,AS,SR,ne,np3,CI,CI,np3,ne,n0,w0 TCD12

13 (131,2) f2 EE MM2 w0,n0,SP,SR,EE,w0,n0,SP,SR,EE,SR,ne,np3,CI,CI,np3,ne, TCD10

n0,w0

14 (152,2) f2 ne MM2 w0,n0,SP,SP,AS,SR,ne,np3,CI,CI,np3,ne,w0,n0,SP,SP,AS,SR, TCD11

ne,np3,CI,CI,np3,ne,n0,w0

15 (19,3) f3 CI MM3 TCD2 TCD2

16 (47,3) f3 FF MM3 w0,n0,SP,AS,SP,AS,SR,ne,np3,FF,FF, np3,ne,n0,w0 Tnew4

17 (30,1) f1 SR MM1 w0,n0,SP,SP,AS,SR,sg Tnew3

18 (4,2) f2 VC MM2 w0,n0,VC,VC,w0,n0,VC,VC,ne,np3,FF,np3,ne,n0,w0 Tnew1

19 (7,5) f5 FF MM5 w0,n0,VC,VC,ne,np3,FF,np3,ne,n0,w0 Tnew1

20 (40,3) f3 SP MM3 w0,n0,SP,AS,SP,SP,AS,SR,ne,np3,FF,np3,ne,n0,w0 Tnew4

21 (22,6) f6 ne MM6 Tnew2 Tnew2

22 (16,1) f1 EE MM1 w0,n0,SP,SR,EE,sg Tnew2

23 (32,2) f2 np3 MM2 w0,n0,SP,SP,AS,SR,ne,np3,w0,n0,SP,SP,AS,SR,ne,np3,FF,np3,
ne,n0,w0

Tnew3

24 (12,10) f10 n0 MM10 Tnew2 Tnew2

25 (28,4) f4 SP MM4 w0,n0,SP,SP,SP,AS,SR,ne,np3,FF,np3,ne,n0,w0 Tnew3

26 (43,6) f6 AS MM10 Tnew4 Tnew4

27 (35,1) f1 ne MM1 w0,n0,SP,SP,AS,SR,ne,np3,FF,np3,ne,sg Tnew3

28 (1,3) f3 w0 MM3 w0,w0,n0,VC,VC,ne,np3,FF,np3,ne,n0,w0 Tnew1

29 (39,6) f6 n0 MM2 w0,n0,w0,n0,SP,AS,SP,AS,SR,ne,np3,FF,np3,ne,n0,w0 Tnew4

158

7.9.2 Changes to SE

We assume failure f7 becomes inapplicable in state DC and f7 becomes applica-

ble in state AS. From Table 6.25, we have one two tests associated with f7 but only

one position using DC. The node in position 46 is DC. Only the pair (46,7) is ob-

solete. It was used to create fmt16 which is now obsolete hence FMTo = {fmt16}.

Hence Fse = {f7}, and Sse = {AS}. The new SE ′ is de�ned in Table (7.27). It

includes both making f7 inapplicable in state DC as well as making f7 applicable

in state AS respectively. From Table 7.24, behavioral tests that visits states in Sse

are BTse = {TCD5, TCD6, TCD8, TCD9TCD11, TCD12}.

Table 7.27: New State-Event Matrix SE′ based on the changes to SE

Behavioral
States/ Fail-
ure Type
(f)

w0 n0 VC ne np3 SP SR AS EE DC CI SI dpe

1 1 1 1 1 1 1 1 1 1 1 1 1 1.0

2 0 1 1 1 1 1 1 1 1 1 1 1 0.9

3 1 0 0 0 0 1 0 0 0 1 0 0 0.3

4 0 0 0 0 0 1 0 1 0 1 0 0 0.3

5 0 0 0 0 0 0 0 0 0 1 1 1 0.3

6 0 1 1 1 1 1 1 1 1 1 1 1 0.9

7 0 0 0 0 0 0 0 1 0 0 0 0 0.1

8 0 0 0 0 0 0 0 0 0 1 1 0 0.2

9 0 0 0 0 0 0 0 0 0 1 1 0 0.2

10 0 0 0 0 0 0 1 0 0 0 1 1 0.3

dps 0.2 0.3 0.3 0.3 0.3 0.5 0.4 0.4 0.3 0.9 0.7 0.5

We rebuild the new search space SP ′ = {(p, e)|1 ≤ p ≤ 116, 1 ≤ e ≤ 1, se′(node(p),e) =

1 ∧ node(p) ∈ Sse}. We select a new pairs PE ′ using coverage criteria C2. Table

7.28 shows the selected pairs and new failure mitigation tests.

159

Table 7.28: Selected pairs and Constructing FMT ′′ for Fse

(p,e) Failure Node MM used FMT' BT used

26 (78,7) f7 AS MM7 w0,n0,SP,AS,AS,SP,AS,SR,ne,np3,CI,CI,np3,ne,n0,w0 TCD12

7.9.3 Changes to F

7.9.3.1 Delete Failure types

We delete f1 as a faulty network can no longer cause a network connection error

by using a backup router to quickly swap out the faulty network, and f2 as session ex-

piration failure is no longer valid. Hence the deleted failure types are Fd = {f1, f2},

we remove the mitigation models {MM1,MM2} and weaving rules {WR1,WR2}

for the failures f ∈ Fd. From Table 6.25, the deleted failure mitigation tests are

FMTFd
= {fmt25, fmt26, fmt27, fmt28, fmt29, fmt30, fmt31, fmt32, fmt33, fmt34, fmt35,

fmt36, fmt37, fmt38, fmt39, fmt40, fmt41, fmt42, fmt43, fmt44, fmt45, fmt46}.

Table 7.29 shows reusable failure mitigation tests after deleting f1 and f2.

7.9.3.2 Add Failure types

We add a mitigation requirement for power outage as explained (failure f11).

Hence Fa = {f11}. We have to build a new state-event matrix (SEa) that includes

the new failure types Fa as shown in Table 7.30. Then, we create a new mitigation

model MMa = {MM11} and weaving rule WR11 for the new mitigation model (see

Table 7.31).

The new search space is de�ned with the concatenated behavioral test suite

BT and the new failure types as follows: SPa = {(p, e)|1 ≤ p ≤ 169, 1 ≤ e ≤

1, sea(node(p),e)
= 1}. Because the search space is too small for using GA, we use

coverage criteria (C2) for selecting pairs as shown in Table 7.32.

160

Table 7.29: Reusable tests after deleting failures f1 and f2

(p,e) Failure Node MM used FMT BT used

1 (33,3) f3 SI MM3 TCD3 TCD3

2 (2,3) f3 n0 MM3 TCD1 TCD1

3 (60,3) f3 DC MM3 w0,n0,SP,SP,AS,SR,ne,np3,DC,DC,DC,np3,ne,n0,w0 TCD5

4 (75,4) f4 DC MM4 w0,n0,SP,AS,SP,AS, SR,ne,np3,DC,DC,DC,np3,ne,n0,w0 TCD6

5 (165,4) f4 CI MM4 TCD12 TCD12

6 (5,5) f5 VC MM5 TCD1 TCD1

7 (89,5) f5 CI MM5 w0,n0,SP,SR,EE,SR,ne,np3,CI,np3 TCD7

8 (133,5) f5 ne MM5 TCD10 TCD10

9 (41,6) f6 SR MM6 TCD4 TCD4

10 (42,6) f6 EE MM6 TCD4 TCD4

11 (56,6) f6 AS MM6 TCD5 TCD5

12 (135,6) f6 CI MM6 TCD10 TCD10

13 (7,6) f6 DC MM6 TCD1 TCD1

14 (19,6) f6 CI MM6 TCD2 TCD2

15 (105,6) f6 SI MM6 TCD8 TCD8

16 (46,7) f7 DC MM7 w0,n0,SP,SR,EE,SR,ne,np3,DC,mti,DC,np3,ne,n0,w0 TCD4

17 (90,7) f7 SI MM7 TCD7 TCD7

18 (93,8) f8 ne MM8 TCD7 TCD7

19 (120,8) f8 CI MM8 w0,n0,SP,AS,SP,AS, SR,ne,np3,CI,CI,SI,CI,np3,ne,n0,w0 TCD9

20 (19,9) f9 CI MM9 w0,n0,VC,VC,ne,np3,CI,np3 TCD2

21 (129,9) f9 SP MM9 TCD10 TCD10

22 (148,9) f9 np3 MM9 TCD11 TCD11

23 (81,10) f10 w0 MM10 TCD7 TCD7

24 (32,10) f10 CI MM10 w0,n0,VC,VC,ne,np3,CI,n1, n2,SI,CI,np3,ne,n0,w0 TCD3

25 (32,10) f10 CI MM10 w0,n0,VC,VC,ne,np3,CI,n1, n3,SI,CI,np3,ne,n0,w0 TCD3

26 (19,3) f3 CI MM3 TCD2 TCD2

Table 7.30: New state-event matrix SEa

Behavioral
States/ Fail-
ure Type
(f)

w0 n0 VC ne np3 SP SR AS EE DC CI FF

11 1 1 1 1 1 1 1 1 1 1 1 1

161

Table 7.31: New Mitigation Requirements of f11

MM Explanation Model WR#

MM11 End Activity: power
outage

MT11 = φ where sf =
w0,and sf is the start
node and stop

4

Table 7.32: Selected pairs and Constructing FMTFa

(p,e) Failure Node MM used FMT' BT used

14 (1,11) f11 w0 MM11 w0,w0 TCD1

15 (2,11) f11 n0 MM11 w0,n0,w0 TCD1

16 (3,11) f11 VC MM11 w0,n0,VC,w0 TCD1

17 (5,11) f11 ne MM11 w0,n0,VC,VC, ne, w0 TCD1

18 (6,11) f11 np3 MM11 w0,n0,VC,VC, ne,np3, w0 TCD1

19 (7,11) f11 DC MM11 w0,n0,VC,VC, ne,np3,DC, w0 TCD1

20 (19,11) f11 CI MM11 w0,n0,VC,VC,ne,np3,CI,w0 TCD2

21 (32,11) f11 SI MM11 w0,n0,VC,VC,ne,np3,CI,SI,w0 TCD3

22 (40,11) f11 SP MM11 w0,n0,SP,w0 TCD4

23 (41,11) f11 SR MM11 w0,n0,SP,SR,w0 TCD4

24 (42,11) f11 EE MM11 w0,n0,SP,SR,EE,w0 TCD4

25 (56,11) f11 AS MM11 w0,n0,SP,SP,AS,w0 TCD5

162

7.9.4 Changes to BM, F, and SE

We apply the same changes as described in previous subsections at the same time.

The new SE ′ is de�ned in Table (7.33). It includes both making f7 inapplicable in

state DC as well as making f7 applicable in state AS respectively. Also, it includes

the changes to BM by showing new state FF .

Table 7.33: State-Event Matrix for CD Cluster

Behavioral
States/ Fail-
ure Type
(f)

w0 n0 VC ne np3 SP SR AS EE DC CI FF dpe

3 1 0 0 0 0 1 0 0 0 1 0 1 0.33

4 0 0 0 0 0 1 0 1 0 1 0 1 0.33

5 0 0 0 0 0 0 0 0 0 1 1 1 0.25

6 0 1 1 1 1 1 1 1 1 1 1 1 0.92

7 0 0 0 0 0 0 0 1 0 0 0 1 0.17

8 0 0 0 0 0 0 0 0 0 1 1 0 0.17

9 0 0 0 0 0 0 0 0 0 1 1 0 0.17

10 0 0 0 0 0 0 1 0 0 0 0 0 0.08

11 1 1 1 1 1 1 1 1 1 1 1 1 1.0

dps 0.22 0.22 0.22 0.22 0.22 0.44 0.33 0.44 0.22 0.78 0.56 0.67

We build the search space is based on all the changes to BM , F , and SE. Since

we already classify BT into BTr, BTu, BTo and generate new behavioral test paths

BT ′ as described in subsection 7.9.1, we build the �rst search space SP ′1 for existing

failure type F and new test paths BT ′. Based on the changes to F as describe in

subsection 7.9.3, we remove Fd from F such as F \Fd. As a result of concatenating

the new tests I ′ = (Tnew1 ◦ Tnew2 ◦ Tnew3 ◦ Tnew4), the length(IBT ′) = 51. Thus,

SP ′1 = {(p, e)|1 ≤ p ≤ 51, 1 ≤ e ≤ 9, se′(node(p),e) = 1}.

From subsection 7.9.3, we de�ne the new mitigation model, weaving rules and mit-

igation tests for the new failure Fa. Also, we delete the mitigation models, weaving

rules and failure mitigation tests FMTfd for all deleted failure in Fd. Then we build

163

the second search space SP ′2 for new failure types Fa and for all tests (new and

non-obsolete tests) BTa. Thus, BTa = BTr ∪BTu ∪BT ′ =

{TCD2, TCD10, TCD11, TCD12, TCD1, TCD4, TCD5, TCD6, Tnew1, Tnew2, Tnew3, Tnew4}. The

length of |BTa| = 110. SP ′2 = {(p, e)|1 ≤ p ≤ 110, 1 ≤ e ≤ 1, se′(node(p),e) = 1}.

Based on the changes to SE as described in subsection 7.9.2, we remove any obsolete

tests FMTo for any inapplicable failure types, and we de�ne the subset of failure

types Fse and subset of states Sse that are a�ected and become feasible. We build

the third search space SP ′3 due to the changes to SE for feasible failure types in

Fse and a�ected behavioral tests BTse. From Table 7.24, behavioral tests that visits

states in Sse are BTse = {TCD5, TCD6, TCD11, TCD12, Tnew3, Tnew4}. Note we exclude

obsolete tests due to the BM changes. Thus, SP ′3 = {(p, e)|1 ≤ p ≤ 85, 1 ≤ e ≤

1, se′(node(p),e) = 1}.

We remove all failure mitigation tests for any failure f ∈ Fd. From Table

6.25, the deleted failure mitigation tests FMTFd
= {fmt25, fmt26, ...to..., fmt46}

and retestable failure mitigation tests:

FMTr = {fmt5, fmt8, fmt12, fmt14, fmt20, fmt22, fmt47}.

We need to determine failure mitigation test based on:

• Selected pairs PE ′1 using SP
′
1 which is the new tests BT ′ and F \ Fd.

• Selected pairs PE ′2 using SP
′
2 which is BTa and new failure types Fa.

• Selected pairs PE ′3 using SP
′
3 which is BTse and Fse.

Table 7.34 shows the regression failure mitigation tests for FMT ′1 using PE ′1.

Note that failure mitigation tests (fmt1− fmt8) are derived from retestable behav-

ioral tests BTr and the rest from new tests BT ′. The �rst column in Table 7.34

numbers each failure mitigation test. The second column lists each (p, e) pair in

PE ′. The third column refers to the failure type whose mitigation is tested. The

164

forth column states the node at position p. The �fth column identi�es the miti-

gation model used. The sixth column shows the construction of failure mitigation

test. The last column refers to the behavioral test used.

Since SP ′2 and SP
′
3 have a small search space, we use coverage criteria C2. Table

7.35 and Table 7.36 shows the regression failure mitigation tests for FMT ′3 using

PE ′3 and for FMT ′3 using PE
′
3.

Table 7.34: Constructing FMT ′1 with PE′1

(p,e) Failure Node MM used FMT' BT used

1 (165,4) f4 CI MM4 TCD12 TCD12

2 (133,5) f5 ne MM5 TCD10 TCD10

3 (135,6) f6 CI MM6 TCD10 TCD10

4 (19,6) f6 CI MM6 TCD2 TCD2

5 (19,9) f9 CI MM9 w0,n0,VC,VC,ne,np3,CI,np3 TCD2

6 (129,9) f9 SP MM9 TCD10 TCD10

7 (148,9) f9 np3 MM9 TCD11 TCD11

8 (19,3) f3 CI MM3 TCD2 TCD2

9 (47,3) f3 FF MM3 w0,n0,SP,AS,SP,AS,SR,ne,np3,FF,FF, np3,ne,n0,w0 Tnew4

10 (7,5) f5 FF MM5 w0,n0,VC,VC,ne,np3,FF,np3,ne,n0,w0 Tnew1

11 (40,3) f3 SP MM3 w0,n0,SP,AS,SP,SP,AS,SR,ne,np3,FF,np3,ne,n0,w0 Tnew4

12 (22,6) f6 ne MM6 Tnew2 Tnew2

13 (12,10) f10 n0 MM10 Tnew2 Tnew2

14 (28,4) f4 SP MM4 w0,n0,SP,SP,SP,AS,SR,ne,np3,FF,np3,ne,n0,w0 Tnew3

15 (43,6) f6 AS MM10 Tnew4 Tnew4

16 (1,3) f3 w0 MM3 w0,w0,n0,VC,VC,ne,np3,FF,np3,ne,n0,w0 Tnew1

17 (39,6) f6 n0 MM2 w0,n0,w0,n0,SP,AS,SP,AS,SR,ne,np3,FF,np3,ne,n0,w0 Tnew4

7.9.5 Changes to MM

The mitigation model MM10 for failure type f10 has been modi�ed as shown

in Figure 7.6. We modify the model from export to Excel to be exported to

Word format. We delete edges: (n1, n2), (n2, sf). The deleted edges make miti-

gation test mt101 obsolete. Thus, MT4o = {mt101}. We also add node (n4) and

edges: (n1, n4), (n4, sf). As a result, a new mitigation test path is needed: mt′101 =

165

Table 7.35: Constructing FMT ′2 with PE′2

(p,e) Failure Node MM used FMT' BT used

14 (1,11) f11 w0 MM11 w0,w0 TCD1

15 (2,11) f11 n0 MM11 w0,n0,w0 TCD1

16 (3,11) f11 VC MM11 w0,n0,VC,w0 TCD1

17 (5,11) f11 ne MM11 w0,n0,VC,VC, ne, w0 TCD1

18 (6,11) f11 np3 MM11 w0,n0,VC,VC, ne,np3, w0 TCD1

19 (7,11) f11 DC MM11 w0,n0,VC,VC, ne,np3,DC, w0 TCD1

20 (19,11) f11 CI MM11 w0,n0,VC,VC,ne,np3,CI,w0 TCD2

21 (27,11) f11 SP MM11 w0,n0,SP,w0 TCD4

22 (28,11) f11 SR MM11 w0,n0,SP,SR,w0 TCD4

23 (29,11) f11 EE MM11 w0,n0,SP,SR,EE,w0 TCD4

24 (43,11) f11 AS MM11 w0,n0,SP,SP,AS,w0 TCD5

25 (117,11) f11 FF MM11 w0,n0,VC,VC,ne,np3,FF,w0 Tnew1

Table 7.36: Constructing FMT ′3 with PE′3

(p,e) Failure Node MM used FMT' BT used

26 (47,7) f7 AS MM7 w0,n0,SP,AS,AS,SP,AS,SR,ne,np3,CI,CI,np3,ne,n0,w0 TCD12

{si, n1, n4, sf}. Thus,MT ′10 = {mt′101}. Since mitigation testmt102 = {si, n1, n3, sf}

visits si, this makes mt102 retestable. Consequently, MT10r = {mt102}. Since only

one mitigation model has been changed, mod = {10}. The new mitigation test for

MM ′
10 is MT ′′10 = MT10r ∪MT ′10 = {mt102 ,mt′101}. From table 6.25, we identify

all a�ected pairs PEMM ′ = {(32, 10)} then using MT ′10 to build the new failure

mitigation test FMT ′. Table 7.37 shows the new failure mitigation test; however,

if we consider the changes to BM , this failure mitigation tests becomes obsolete as

it was built based on obsolete behavioral test TCD3.

Table 7.37: FMT ′ for modi�ed mitigation model MM10

(p,e) Failure Node MM used FMT BT used

24 (32,10) f10 SI MM10 w0,n0,VC,VC,ne,np3,CI,SI,n1, n4,CI,np3,ne,n0,w0 TCD3

166

Figure 7.6: Modi�ed Mitigation Model MM10.

7.9.6 Changes to WR

We update the weaving rule "End Activity" for failure type f5 to be "Fix and

proceed". Next from Table 6.25, we identify a�ected pairs PEWR = {(89, 5)} then

using new weaving rule to build the new failure mitigation test FMT ′. Table 7.38

shows the new failure mitigation test; however, if we consider the changes to BM ,

this failure mitigation tests becomes obsolete as it was built based on obsolete be-

havioral test TCD7.

Table 7.38: FMT ′ for modi�ed weaving rule WR

(p,e) Failure Node MM used FMT BT used

7 (89,5) f5 CI MM5 w0,n0,SP,SR,EE,SR,ne,np3,CI,CI,SI,CI,np3,ne,n0,w0 TCD7

167

Chapter 8

Future Work

In future work, the dissertation could be extended in many ways:

• New system domains:

This dissertation is focused on the web applications domain. We plan to

apply the technique in di�erent system domains such as medical systems,

robotic devices, �ight control systems or other safety critical systems, so we

could apply and compare the mitigation patterns of safety critical systems

versus the mitigation patterns of web applications. By involving new system

domains, we investigate di�erent failure types and how they might occur in

di�erent system domains. This would also require using behavioral models

other than FSMWeb.

• New Behavioral models:

We will use di�erent behavior models for our approach such as UML activity

and sequence diagrams, Petri Nets, EFSMs or CEFSMs. These models have

been used in di�erent application domains. We will show the generalizability

of our approach by investigating other behavioral models that have the ability

to describe communicating processes.

168

• More Simulation Experiments:

We will investigate robustness of our current results experimenting with a

wider range of values for simulation parameters such as applicability level,

defect density, and duplication factor. We noticed during our experiments

that a low defect density with a low applicability level in a large search space

has been a very tough problem since the feasible region is not big enough and

this a�ects the GA's performance. For example, some of the safety critical

systems have a very large number of failure types but they are only applicable

in particular phases which means a sparse (SE) matrix. Also, the duplication

factor has an enormous e�ect on defect detection. Thus, exploring high and

low values for di�erent combinations of simulation parameters could increase

understanding of our approach. Hence, future work will take us into two

di�erent directions:

� investigate the compound impact of varying more individual parameters.

� investigate further the types of parameter values occurring in case studies.

• Improve Fitness Function:

We plan to add cost of failure as an additional dimension to the approach

when selecting test requirements. Failure Mode and E�ect Criticality Analysis

(FMECA) is one analysis method that is used to calculate the anticipated risk

and criticality of failures in a system. We incorporate the ideas of cost and

FMECA into black-box testing using GA that would enhance system reliability

and performance. We could add failure criticality as a third dimension to the

�tness function, or we can incorporate FMECA into the Applicability Matrix.

169

• Regression Testing Case study:

We need to apply our frame work for selective regression testing with case

studies, so we can show applicability and generalizability of our technique.

Also, by using di�erent case studies, we show how our formalization steps

for each type of change to the various models (BM,MM,WR,F, SE) are

applicable. Moreover, we could illustrate how our regression testing framework

in generating a regression test suite is e�cient.

• Trade-O� Analysis: Full Retest vs. Selective Regression Testing:

In regression testing, multiple changes to the artifacts can become very ex-

pensive and may require to create a full new test suite; however, this is a

trade-o� situation. We plan to build a test cost model that identi�es the con-

ditions under which our selective regression testing is less expensive than the

retest-all strategy. Trade-o� analysis could help to assess the cost-bene�ts of

our technique. For example, comparing various regression testing approaches

could help in selecting a regression testing approach that achieves a favorable

reduced cost.

• Trade-O� Analysis: Cost of Testing vs. Cost of Failure

One of the motivations for testing proper failure mitigation was that defective

mitigations can be costly. On the other hand, testing also carries its own cost.

This is another trade-o� situation that can be investigated.

• Building Tools:

We will build tools to generate executable tests. This would decrease the

cost of testing. At the moment only a tool for de�ning FSMWeb models and

generating test paths exists.

170

Chapter 9

Conclusion

Testing proper mitigation of failures in web applications is important since de-

fects in mitigation code can cause expensive outages, such as compromising proper

debiting of credit cards and other �nancial harm. We presented a systematic MBT

approach to derive fail-safe tests for web applications. It leverages an existing func-

tional test suite. A fault model and mitigation model are used to de�ne mitigation

tests in a rigorous manner. Weaving rules specify how to weave mitigations into

the functional tests at selected points of failure in the functional test suite. This

requires determining which type of failure is to be injected at which position in the

test suite ((p,e)pairs). A genetic algorithm is used to determine points of failure

and type of failure that needs to be tested.

First, we build a simulation that helps in investigating and understating our

approach. We address the threats that are related to the choice of simulation pa-

rameters used in the GA as follows:

• The weights wr and ws are based on tuning experiments performed in our work

[5]. We select the values based on the simulation results. The tuning relies

on the use of published mitigation defect rates (around 20%) (i.e Sawaelpong

171

et al. [67]). We also experiment with a much lower defect rate (5%). This

supports our use of a common defect rate of 20%, contrasting it with a low

one (5%) as well. While it may be possible to tune these weights for higher

e�ciency, this would expose to potential over�tting. We are hence willing to

accept that the GA is not always optimally tuned.

• As for the choice of mutation rate and crossover, we use values that have

been suggested in the literature, as pointed out in section 5.2.1. Similarly, the

number of runs the GA makes is commonly used as well [2].

• We next turn to the choice of parameter values for each experiment. Test suite

size length(I) ranges from 5-1000 while |F | ranges from 2-10. This falls within

the range described for the case studies in Table 5.15, except for the large

Mortgage system (length(I)=3998). That means that if the trends observed

in our simulation experiments do not hold for larger search spaces, validity

is limited to the sizes we experimented with. Similarly, our choice of failure

types spans the ranges reported for the case studies, hence is realistic.

• The applicability level was set close to the highest found in the case studies.

Higher applicability levels increases the search space and make the problem

more di�cult, i.e. our results are conservative. To the degree future case

studies follow the same pattern, the simulation results should carry over. If

a future application has very di�erent characteristics, careful consideration of

the di�erences and their impact becomes important, as generalizability is not

assured.

• As for the duplication factor values, we derived them from the case studies

presented in section 5.3. The low DF=2 is used for the small search space

while DF=20 is used for the large ones. To be conservative (i.e. de�ning a

172

more di�cult search problem), we used the smallest DF found in the case

studies (DF=2) and a smaller DF=20 than the one found in the largest case

study (DF=31). In the case studies, DF ranges from 2-31.

Clearly, when applications deviate by a large amount from this, the experimen-

tation results are a�ected. Speci�cally, a higher duplication factor results in fewer

pairs needed to �nd mitigation defects as the probability of selecting a position

with a node that is associated with a mitigation defect increases (it occurs more fre-

quently in I). In summary, we selected simulation parameter values guided by either

literature or case studies. If a future case study has very di�erent characteristics,

our results may not hold.

Second, we compare GA versus Random in generating fail-safe scenarios. We

showed how to tune the �tness function and compared the performance of the GA

to random selection of fail-safe test mitigation requirements. We showed how to tune

the �tness function and compared the performance of the GA to random selection

of fail-safe scenarios. We show that the GA performance was better than random

selection and that the approach was robust when the search space increased.

Third, we compare e�ciency and e�ectiveness of using a GA vs. coverage cri-

teria when testing proper mitigation of failures in safety-critical systems and web

applications. The goal was to evaluate and compare the use of GA [5] versus the

use of coverage criteria (C1-C4) advocated in [6], neither of which provided such a

comparison.

We designed and implemented a simulator so as to be able to vary problem

size (search space) mitigation defect density, and type of approach used (GA versus

C1-C4). The simulator also assumes that history (i.e. position of a state si in I)

makes no di�erence. If it does, C2 and C3 will show di�erences in detecting defects.

173

Next, we consider choice of measures for the dependent variables. E�ectiveness is

measured by the proportion of mitigation defects found. This is common for many

experiments as a measure of e�ectiveness, see for example [76]. Notice that both GA

and coverage criteria generate test requirements rather than executable test cases.

If a human tester were to take these requirements, they would have to turn them

into tests, execute them, and validate them. There is potential for error in each of

these steps that could a�ect e�ectiveness results. Hence our simulation results need

to be interpreted (like many other GA simulation, e.g. [29]) as a best case scenario.

E�ciency is measured in terms of (p,e) pairs (i.e. number of test requirements).

Some test requirements may take more e�ort to turn into test cases than others,

hence one can argue that it might not always re�ect testing e�ort spent. On the

other hand, test requirements have been used in the past to predict test e�ort [17].

Our comparisons show that for large search spaces the GA is more e�cient (more

so when compared to C1 than to C2/C3) while GA, and C1-C3 are equally e�ective.

C4 was rather ine�ective and cannot be recommended.

We also showed that dropping the defect rate from a more common 20% as

reported in [67] to a much lower 5% did not result in a large increase in test require-

ments, i.e. the GA is relatively robust in this range (although an extremely low

mitigation defect rate might change that. However, empirical data does not support

such a low mitigation defect rate occurring in practice).

The simulation results are more in favor of C1-C3 when search spaces are small.

Additionally, dropping the mitigation defect rate had an e�ect on how big the search

space had to be for the GA to be e�ective.

We also presented results of case studies where we investigated and compared per-

formance of GA and C1-C4 for several reasons:

174

1. They provided guidance on what ranges of parameter values to use in the

simulation study.

2. They showed applicability of results to a number of behavioral models, appli-

cation domains and model sizes.

3. While the actual number of test requirements that GA vs. C1-C4 produce

may vary from the simulation results, the nature of the recommendation stays

the same. We thus were able to investigate on a snapshot basis duplication

factors between 4 and 31 and applicability levels between 40%-81%, failure

types ranging between 2-14, and length(I) ranging from 24-3998.

Fourth, we explored the use of GA to test proper mitigation of failures in an

actual web application. We reported summary results for a large web application,

a mortgage system, as well as detailed results of its Closing Documents subsystem.

We showed that the GA found seeded mitigation defects. We also showed scalability

of our approach to a large commercial web application. Since a GA is able to deal

with large search spaces, it was a good choice for the case study presented.

We also used the case study to evaluate how good the initial population is by

comparing the initial population selected via defect potential (Algorithm 3) against

multiple runs of randomly selected initial populations (10 runs). The results clearly

show that using defect potential to generate test requirements outperforms random

selection.

Multiple runs are possible when the use of a GA is explored with a simulator as

in [58][13]. However, when actual test cases need to be generated, executed, and

validated to determine a test requirements �tness, this GA evaluation cost becomes

prohibitive for multiple runs. We accept a local rather than global optimum as

175

long as the mitigation defects are found, For quantitative results on evaluation

cost see section 6.5 in our case study. Note also the global minimum in terms

of number of test requirements is equal to the number of mitigation defects that

exist. Additionally, Cantú-Paz [19] explore whether multiple runs of GA can reach

solutions of higher quality or reach acceptable solutions faster. Their results suggest

that with a �xed evaluation budget a single run reaches a better solution than

multiple independent runs.

Finally, we built a framework for selective regression testing of fail-safe testing.

We provide a systematic method by showing the formalization steps for each type

of change to the various models (BM,MM,WR,F, SE) and build a regression test

suite based on each type of change, allowing for multiple changes to artifacts. If

the new search space is su�ciently large, we use GA [5] to construct the new test

requirements, otherwise coverage criterion (CC)[6] are the best choice. We show full

formalization based on type of changes to the behavioral model (BM), failure types

(F), state-event matrix (SE), and mitigation model (MM). We show how to build

a new search space (I') and how to build the new failure mitigation tests (FMT').

The changes to behavioral models BM , changes to SE, or adding new failure types

have higher impact as more work is involved.

176

References

[1] Enrique Alba and Francisco Chicano. Observations in using parallel and se-

quential evolutionary algorithms for automatic software testing. Comput. Oper.

Res., 35:3161�3183, October 2008.

[2] S. Ali, L.C. Briand, H. Hemmati, and R.K. Panesar-Walawege. A systematic

review of the application and empirical investigation of search-based test case

generation. IEEE Transactions on Software Engineering, 36(6):742 �762, nov.-

dec. 2010.

[3] Paul Ammann and Je� O�utt. Introduction to software testing. Cambridge

University Press, 32 Avenue of the Americas, New York, NY 10013, USA, �rst

edition, 2008.

[4] A. Andrews and Hyunsook Do. Trade-o� analysis for selective versus brute-

force regression testing in FSMWeb. In High-Assurance Systems Engineering

(HASE), 2014 IEEE 15th International Symposium on, pages 184�192, Jan

2014.

[5] Anneliese Andrews, Salah Boukhris, and Salwa Elakeili. Fail-safe testing of

web applications. In Software Engineering Conference (ASWEC), 2014 23rd

Australian, pages 200�209, April 2014.

[6] Anneliese Andrews, Salwa Elakeili, and Salah Boukhris. Fail safe test generation

in safety critical systems. In 2014 IEEE 15th International Symposium on High-

Assurance Systems Engineering (HASE), pages 49�56, 2014.

[7] Anneliese A. Andrews, S. Azghandi, and O. Pilskalns. Regression testing of

web applications using FSMWeb. pages 8�10, CA, 725-033, November 2010.

Marina del Rey.

[8] Anneliese A. Andrews, Je� O�utt, Curtis Dyreson, Christopher J. Mallery,

177

Kshamta Jerath, and Roger Alexander. Scalability issues with using FSMWeb

to test web applications. Inf. Softw. Technol., 52(1):52�66, January 2010.

[9] Anneliese Amschler Andrews, Je� O�utt, and Roger T. Alexander. Testing web

applications by modeling with FSMs. Software and System Modeling, pages

326�345, 2005.

[10] D. Ardagna, C. Cappiello, M.G. Fugini, E. Mussi, B. Pernici, and P. Plebani.

Faults and recovery actions for self-healing web services. 15th international

World Wide Web conference, 2006.

[11] Thomas Bäck. The interaction of mutation rate, selection, and self-adaptation

within a genetic algorithm. In Parallel Problem Solving from Nature 2, PPSN-

II, Brussels, Belgium, September 28-30, 1992, pages 87�96, 1992.

[12] D. Berndt, J. Fisher, L. Johnson, J. Pinglikar, and A. Watkins. Breeding

software test cases with genetic algorithms. In Proceedings of the 36th Annual

Hawaii International Conference on System Sciences (HICSS'03) - Track 9

- Volume 9, HICSS '03, pages 338.1�, Washington, DC, USA, 2003. IEEE

Computer Society.

[13] D. J. Berndt and A. Watkins. High volume software testing using genetic

algorithms. In Proceedings of the 38th Annual Hawaii International Conference

on System Sciences - Volume 09, pages 318�326, Washington, DC, USA, 2005.

IEEE Computer Society.

[14] P. Bourque and R. Dupuis. Guide to the software engineering body of knowledge

2004 version. Guide to the Software Engineering Body of Knowledge, 2004.

SWEBOK, pages �, 2004.

[15] Marco Brambilla, Stefano Ceri, Sara Comai, and Christina Tziviskou. Excep-

tion handling in work�ow-driven web applications. In Proceedings of the 14th

international conference on World Wide Web, WWW '05, pages 170�179, New

178

York, NY, USA, 2005. ACM.

[16] Lionel C. Briand, Jie Feng, and Yvan Labiche. Using genetic algorithms and

coupling measures to devise optimal integration test orders. In Proceedings

of the 14th International Conference on Software Engineering and Knowledge

Engineering, SEKE '02, pages 43�50, New York, NY, USA, 2002. ACM.

[17] Ilene Burnstein. Practical software testing: a process-oriented approach.

Springer Science & Business Media, 2003.

[18] Bruno Cabral and Paulo Marques. Exception handling: a �eld study in Java

and .NET. In Proceedings of the 21st European conference on Object-Oriented

Programming, ECOOP'07, pages 151�175, Berlin, Heidelberg, 2007. Springer-

Verlag.

[19] Erick Cantú-Paz and DavidE. Goldberg. Are multiple runs of genetic algo-

rithms better than one? In Erick Cantú-Paz, JamesA. Foster, Kalyanmoy Deb,

LawrenceDavid Davis, Rajkumar Roy, Una-May O'Reilly, Hans-Georg Beyer,

Russell Standish, Graham Kendall, Stewart Wilson, Mark Harman, Joachim

Wegener, Dipankar Dasgupta, MitchA. Potter, AlanC. Schultz, KathrynA.

Dowsland, Natasha Jonoska, and Julian Miller, editors, Genetic and Evolution-

ary Computation � GECCO 2003, volume 2723 of Lecture Notes in Computer

Science, pages 801�812. Springer Berlin Heidelberg, 2003.

[20] K.S.May Chan, Judith Bishop, Johan Steyn, Luciano Baresi, and Sam Guinea.

A fault taxonomy for web service composition. In Elisabetta Nitto and Matei

Ripeanu, editors, Service-Oriented Computing - ICSOC 2007 Workshops, vol-

ume 4907 of Lecture Notes in Computer Science, pages 363�375. Springer Berlin

Heidelberg, 2009.

[21] T. Chow. Testing software designs modeled by �nite state machines. IEEE

Transactions on Software Engineering, SE-4(3):178�187, 1978.

179

[22] Kenneth Alan De Jong. An analysis of the behavior of a class of genetic adaptive

systems. PhD thesis, Ann Arbor, MI, USA, 1975.

[23] Karnig Derderian, Robert M. Hierons, Mark Harman, and Qiang Guo. Gen-

erating feasible input sequences for extended �nite state machines (EFSMs)

using genetic algorithms. In Proceedings of the 2005 conference on Genetic and

evolutionary computation, GECCO '05, pages 1081�1082, New York, NY, USA,

2005. ACM.

[24] Kinga Dobolyi and Westley Weimer. Modeling consumer-perceived web ap-

plication fault severities for testing. In Proceedings of the 19th international

symposium on Software testing and analysis, ISSTA '10, pages 97�106, New

York, NY, USA, 2010. ACM.

[25] Agoston E. Eiben and J. E. Smith. Introduction to Evolutionary Computing.

SpringerVerlag, 2003.

[26] Salwa Elakeili. Fail safe test generation of safety critical systems. PhD disser-

tation, Computer Science Department, University of Denver, November 2014.

[27] Joseph G. D'Ambrosio Christopher L. Denlinger Deron Littlejohn Eldon

G. Leaphart, Barbara J. Czerny. Survey of software failsafe techniques for

safety-critical automotive applications. Technical report, SAE, 2005.

[28] Marisa A. Sánchez Andmiguela. Felder, Bahía Blanca, Pragma Consultores,

and Buenos Aires. A systematic approach to generate test cases based on

faults. In In ASSE2003, ISSN 1666 1087, Buenos Aires, 2003.

[29] Erik M Fredericks, Byron DeVries, and Betty HC Cheng. Towards run-time

adaptation of test cases for self-adaptive systems in the face of uncertainty. In

Proceedings of the 9th International Symposium on Software Engineering for

Adaptive and Self-Managing Systems, pages 17�26. ACM, 2014.

[30] Xiaocheng Ge, R.F. Paige, and J.A. McDermid. An iterative approach for de-

180

velopment of safety-critical software and safety arguments. In Agile Conference

(AGILE), 2010, pages 35�43, Aug.

[31] Mati Golani and Avigdor Gal. Flexible business process management using

forward stepping and alternative paths. In WilM.P. Aalst, Boualem Benatal-

lah, Fabio Casati, and Francisco Curbera, editors, Business Process Manage-

ment, volume 3649 of Lecture Notes in Computer Science, pages 48�63. Springer

Berlin Heidelberg, 2005.

[32] Anatoliy Gorbenko, Iraj Elyasi-Komari, Vyacheslav S. Kharchenko, and Alexey

Mikhaylichenko. Exception analysis in service-oriented architecture. In Hein-

rich C. Mayr and Dimitris Karagiannis, editors, ISTA, volume 107 of LNI, pages

228�233. GI, 2007.

[33] Joesph Gradecki and Nicholas Lesiecki. Mastering AspectJ. Wiley, 2003.

[34] Yuepu Guo and Sreedevi Sampath. Web application fault classi�cation - an

exploratory study. In Proceedings of the Second ACM-IEEE international sym-

posium on Empirical software engineering and measurement, ESEM '08, pages

303�305, New York, NY, USA, 2008. ACM.

[35] C. Hagen and G. Alonso. Exception handling in work�ow management systems.

Software Engineering, IEEE Transactions on, 26(10):943�958, Oct.

[36] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. Search based soft-

ware engineering: a comprehensive analysis and review of trends techniques and

applications. Department of Computer Science, King's College London, King's

College London, 2009. Department of Computer Science-Technical Report.

[37] W. Howden. A methodology for generating program test data. IEEE Transac-

tions on Computers, 24(5):554�560, 1975.

[38] J. Huang. An approach to program testing. ACM Computing Surveys, 7(3):113�

128, 1975.

181

[39] Shujuan Jiang and Yuanpeng Jiang. An analysis approach for testing exception

handling programs. SIGPLAN Not., 42(4):3�8, April 2007.

[40] AbdulSalam Kalaji, Robert M. Hierons, and Stephen Swift. Automatic genera-

tion of test sequences form EFSM models using evolutionary algorithms. Brunel

University, UK, 2008. Brunel University-School of Information Systems, Com-

puting and Mathematics.

[41] HyeonJeong Kim, W. Eric Wong, Vidroha Debroy, and DooHwan Bae. Bridg-

ing the gap between fault trees and UML state machine diagrams for safety

snalysis. In Proceedings of the 2010 Asia Paci�c Software Engineering Confer-

ence, APSEC '10, pages 196�205, Washington, DC, USA, 2010. IEEE Computer

Society.

[42] D.C. Kung, Chien-Hung Liu, and P. Hsia. An object-oriented web test model for

testing web applications. In Computer Software and Applications Conference,

2000. COMPSAC 2000. The 24th Annual International, pages 537�542.

[43] Mark Last, Shay Eyal, and Abraham Kandel. E�ective black-box testing with

genetic algorithms. In Proceedings Haifa veri�cation Conference, pages 134�

148, 2005.

[44] D. Lee and M. Yamakakis. Principles and methods of testing �nite state ma-

chines. Proceedings of the IEEE, 84(4):1090�1123, August 1996.

[45] D. Lee and M. Yannakakis. Principles and methods of testing �nite state

machines- a survey. Proceedings of the IEEE, 84(8):1090�1123, 1996.

[46] B.S. Lerner, S. Christov, L.J. Osterweil, R. Bendraou, U. Kannengiesser, and

A. Wise. Exception handling patterns for process modeling. IEEE Transactions

on Software Engineering, 36(2):162 �183, March-April 2010.

[47] H.K.N. Leung and L. White. A cost model to compare regression test strategies.

In Conference on Software Maintenance, 1991., Proceedings. , pages 201�208,

182

Oct 1991.

[48] C. Liu, D.C. Kung, P. Hsia, and C. Hsu. Structural testing of web applica-

tions. In Proceedings of the 11th IEEE International Symposium on Software

Reliability Engineering, pages 84�96, October 2000.

[49] Qin Lu, Weishi Zhang, Bo Su, and Xiuguo Zhang. Exception handling policies

for composite web services and their formal description. In Network and Parallel

Computing Workshops, 2007. NPC Workshops. IFIP International Conference

on, pages 793�798, Sept.

[50] Giuseppe A. Di Lucca and Anna Rita Fasolino. Testing web-based applications:

the state of the art and future trends. Information and Software Technology,

48(12):1172 � 1186, 2006. Quality Assurance and Testing of Web-Based Appli-

cations.

[51] Li Ma and Je� Tian. Analyzing errors and referral pairs to characterize common

problems and improve web reliability. In JuanManuelCueva Lovelle, Bernardo-

MartínGonzález Rodríguez, JoseEmilioLabra Gayo, María Puerto Paule Ruiz,

and LuisJoyanes Aguilar, editors, Web Engineering, volume 2722 of Lecture

Notes in Computer Science, pages 314�323. Springer Berlin Heidelberg, 2003.

[52] A.D. Shaligram Maha Alzabidi, Ajay Kumar. In Automatic software structural

testing by using evolutionary algorithms for test data generations, volume 9,

pages 390�395. IJCSNS International Journal of Computer Science and Network

Security, April 2009.

[53] Samir W Mahfoud. Niching methods for genetic algorithms. PhD thesis, De-

partment of Computer Science, University of Illinois at Urbana-Champaign,

Urbana, Illinois, USA, 1995.

[54] James McCart, Donald Berndt, and Alison Watkins. Using genetic

algorithms for software testing: Performance improvement techniques.

183

In Proceedings Americas Conference on Information Systems (AMCIS),

http://aisel.aisnet.org/amcis2007/222, 2007.

[55] W. van der Aalst N. Russell and A. ter Hofstede. Exception handling patterns

in process-aware information systems. PM Center Report BPM-06-04, 2006.

[56] Radu Oprisa. Error handling in software systems: modeling and testing with

�nite state machines. ROMAI J., 2(1):175��180, 2006.

[57] Roy P. Pargas, Mary Jean Harrold, and Robert R. Peck. Test-data generation

using genetic algorithms. Software Testing, Veri�cation And Reliability, 9:263�

282, 1999.

[58] Robert M. Patton, Annie S. Wu, and Gwendolyn H. Walton. A genetic algo-

rithm approach to focused software usage testing. Annals of Software Engi-

neering, 2003.

[59] Soila Pertet and Priya Narasimhan. Causes of failure in web applications. Tech-

nical report, Carnegie Mellon University Parallel Data Lab Technical Report

CMU-PDL-05-109, December 2005.

[60] S. Pimont and J. C. Rault. A software reliabiity assessment based on a struc-

tural and behavioral analysis of programs. In Proceedings of the 2nd Interna-

tional Conference on Software Engineering, pages 486�491, San Francisco, CA,

October 1976.

[61] Lihua Ran, Curtis Dyreson, Anneliese Andrews, Renée Bryce, and Christopher

Mallery. Building test cases and oracles to automate the testing of web database

applications. Inf. Softw. Technol., 51(2):460�477, February 2009.

[62] N. M. Razali and J. Geraghty. Genetic algorithm performance with di�erent

selection strategies in solving TSP. Proceedings of the World Congress on En-

gineering, II, July 2011.

[63] Leo Rela. Evolutionary computing in searchbased software engineering. Mas-

184

ter's thesis, Lappeenranta University of Technology, Department of Information

Technology, Kaohsiung, Finland, 2004.

[64] F. Ricca and P. Tonella. Analysis and testing of web applications. In Software

Engineering, 2001. ICSE 2001. Proceedings of the 23rd International Confer-

ence on, pages 25�34, May.

[65] Gregg Rothermel and Mary Jean Harrold. A safe, e�cient regression test selec-

tion technique. ACM Trans. Softw. Eng. Methodol., 6(2):173�210, April 1997.

[66] S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, and A.S. Greenwald. Applying

concept analysis to user-session-based testing of web applications. Software

Engineering, IEEE Transactions on, 33(10):643�658, 2007.

[67] E. Sawadpong, P. Allen and B. Williams. Exception handling defects: an

empirical study. In 2012 IEEE International Symposium on High-Assurance

Systems Engineering, pages 90�97, 2012.

[68] A. C. Schultz, J. J. Grefenstette, and K. A. De Jong. Adaptive testing of

controllers for autonomous vehicles. In Proceedings of the 1992 Symposium on

autonomous underwater vehicle technology, pages 158�164, 1992.

[69] S. Sinha and M.J. Harrold. Analysis of programs with exception-handling con-

structs. In In Proceedings of the International Conference on Software Mainte-

nance, pages 348�357, Nov. 1998.

[70] Marisa A. Sánchez, Juan Carlos Augusto, and Miguel Felder. Fault-based test-

ing of e-commerce applications. Proceedings of 2nd Workshop on Veri�cation

and Validation of Enterprise Information Systems, pages 66�71, 2004.

[71] Rafael Tolosana-Calasanz, José A. Bañares, Pedro Álvarez, Joaquín Ezpeleta,

and Omer F. Rana. Exception handling patterns for hierarchical scienti�c

work�ows. In Proceedings of the 6th international workshop on Middleware for

grid computing, MGC '08, pages 10:1�10:6, New York, NY, USA, 2008. ACM.

185

[72] A.C. Tribble and S.P. Miller. Software intensive systems safety analysis.

Aerospace and Electronic Systems Magazine, IEEE, 19(10):21 � 26, Oct. 2004.

[73] Anneliese von Mayrhauser and Ning Zhang. Automated regression testing using

DBT and Sleuth. Journal of Software Maintenance, 11(2):93�116, March 1999.

[74] A. Watkins, E. M. Hufnagel, D. Berndt, and L. Johnson. Using genetic algo-

rithms and decision tree induction to classify software failures. International

Journal of Software Engineering & Knowledge Engineering, 16(2):269 � 291,

2006.

[75] Joachim Wegener, Andre Baresel, and Harmen Sthamer. Evolutionary test

environment for automatic structural testing. Information and Software Tech-

nology, 43(14):841 � 854, 2001.

[76] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell,

and Anders Wesslén. Experimentation in software engineering. Springer Science

& Business Media, 2012.

[77] Liangzhao Zeng, Hui Lei, Jun-Jang Jeng, J. Y Chung, and B. Benatal-

lah. Policy-driven exception-management for composite web services. In E-

Commerce Technology, 2005. CEC 2005. Seventh IEEE International Confer-

ence on, pages 355�363, July.

186

	Fail-Safe Testing of Web Applications
	Recommended Citation

	tmp.1448318886.pdf.saxrH

