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© Copyright by Jenya Kirshtein 2012

All Rights Reserved



Author: Jenya Kirshtein
Title: Cayley-Dickson Loops
Advisor: Petr Vojtěchovský
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Abstract

In this dissertation we study the Cayley–Dickson loops, multiplicative struc-

tures arising from the standard Cayley–Dickson doubling process. More precisely,

the Cayley–Dickson loop Qn is the multiplicative closure of basic elements of the

algebra constructed by n applications of the doubling process (the first few exam-

ples of such algebras are real numbers, complex numbers, quaternions, octonions,

sedenions). Starting at the octonions, Cayley–Dickson algebras and loops become

nonassociative, which presents a significant challenge in their study.

We begin by describing basic properties of the Cayley–Dickson loops Qn. We

establish or recall elementary facts about Qn, e.g., inverses, conjugates, orders of

elements, and diassociativity. We then discuss some important subloops of Qn, for

instance, associator subloop, derived subloop, nuclei, center, and show that Qn are

Hamiltonian.

We study the structure of the automorphism groups of Qn. We show that all

subloops of Qn of order 16 fall into two isomorphism classes, in particular, any such

subloop is either isomorphic to the octonion loop O16, or the quasioctonion loop

Õ16. This helps to establish that starting at the sedenion loop, the group Aut (Qn)

is isomorphic to Aut (O16) � (Z2)n−3.
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Next we study two notions that are of interest in loop theory, the inner mapping

group Inn(Qn) and the multiplication group Mlt(Qn). We prove that Inn(Qn) is

an elementary abelian 2-group of order 22n
−2, moreover, every f > Inn(Q) is a prod-

uct of disjoint transpositions of the form (x,−x). This implies that nonassociative

Cayley–Dickson loops are not automorphic. The elements of Mlt(Qn) are even per-

mutations and have order 1,2 or 4. We show that Mlt(Qn) is a semidirect product

of Inn(Qn) � Z2 and an elementary abelian 2-group K, and construct an isomor-

phic copy of Mlt(Qn) as an external semidirect product of two abstract elementary

abelian 2-groups. The groups Innl(Qn) and Innr(Qn) are proved to be equal, el-

ementary abelian 2-groups of order 22n−1
−1. We also establish that Mltl(Qn) is a

semidirect product of Innl(Qn)�Z2 and K, and that Mltl(Qn) and Mltr(Qn) are

isomorphic.

Finally, we describe the progress made on the study of the subloop structure of

the Cayley–Dickson loops. We calculate the number of subloops of a certain size,

and provide the subloop lattice for O16. Then we describe numerical experiments

performed to determine the isomorphism types of maximal (index 2) subloops of the

Cayley–Dickson loops, and explain the obstacles on the way to finding an invariant

that distinguishes such subloops. We provide incidence tetrahedra for the sedenion

loop and other subloops of order 32, generalizing the idea of the octonion multipli-

cation Fano plane. A number of conjectures concerning the subloops of Qn is posed

in the last part of the dissertation.
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Chapter 1

Introduction

The study of loops originated from algebra, combinatorics, geometry, and topol-

ogy, and developed into an independent discipline during the last eighty years. The

story of the Cayley–Dickson loops, however, began earlier, when William R. Hamil-

ton invented the quaternions. Hamilton discovered in 1835 that complex numbers

can be treated as pairs of real numbers, and spent years trying to find a big-

ger, 3-dimensional normed division algebra. The problem was that there is no

3-dimensional normed division algebra, and he needed a 4-dimensional one. A so-

lution came to Hamilton in 1843, while he was walking along the Royal Canal in

Dublin, and he carved

i2 = j2 = k2
= ijk = −1

on the side of the Brougham Bridge. Quaternions are usually denoted by H in honor

of Hamilton. Several months later, John T. Graves extended Hamilton’s idea and

suggested the 8-dimensional normed division octonion algebra, calling it “the oc-

taves”. Hamilton pointed out that the octonions were not associative, suggesting

the term “associative” around the same time (in fact, the octonions were the first

example of an abstract nonassociative system [35]). Graves postponed publishing

his results until Arthur Cayley independently discovered the octonions and pub-
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lished his findings in 1845 [8]. As a result, the octonions became widely known as

“Cayley numbers” [2]. Adolf Hurwitz established in 1898 [17] that real numbers,

complex numbers, quaternions and octonions were the only normed division alge-

bras. Leonard E. Dickson generalized the construction beyond the dimension 8 in

1919 [11], suggesting what became known as the Cayley–Dickson doubling process.

Dickson and his former student A. Adrian Albert formed a research group at the

University of Chicago, and introduced the term “loop” around 1942, named after

the Chicago Loop business district. R. D. Schafer finally mentioned the Cayley–

Dickson loops in 1954 [38] as the elements of the normalized basis of the generalized

Cayley–Dickson algebras with multiplication.

In this work we study the Cayley–Dickson loops from the algebraic perspective.

In particular, we describe basic properties of the Cayley–Dickson loops, their auto-

morphism groups, multiplication groups, inner mapping groups, and make progress

in the study of the subloop structure. We often use GAP system for computational

discrete algebra [15], specifically the LOOPS package [32], to perform numerical ex-

periments and verify conjectures. Many of the results presented in this dissertation

can also be found in [24], [25], [26].

The concepts we touch upon in this work have connections to various fields

of mathematics, physics, and computer science, for instance, coding theory ([41]),

computer graphics ([40]), combinatorial designs and cryptography (difference sets in

loops [19], [20], [21]), spectral graph theory (expander graphs [28]), functional anal-

ysis (analysis over Cayley–Dickson numbers [29], [30]), polyhedral geometry (latin

square polytopes [13], [1], [14]). In his paper [2] John Baez describes connections of

the octonions to Clifford algebras and spinors, projective geometry, Jordan algebras,

exceptional Lie groups, quantum logic, special relativity and supersymmetry, etc.,

providing an extensive list of references.
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1.1 Summary of Results

The dissertation is organized as follows. In Chapter 2 we study basic properties of

the Cayley–Dickson loops Qn. We establish or recall elementary facts about Qn,

e.g., inverses, conjugates, orders of elements, and diassociativity. We then study

some important subloops of Qn, for instance, associator subloop, derived subloop,

nuclei, center, and show that Qn are Hamiltonian. The chapter also includes a

section on calculus for commutators and associators.

Chapter 3 is devoted to the automorphism groups of Qn. We show that all

subloops of Qn of order 16 fall into two isomorphism classes, in particular, any such

subloop is either isomorphic to the octonion loop O16, or the quasioctonion loop Õ16.

This fact helps to establish that starting at the sedenion loop, the group Aut (Qn)
is isomorphic to Aut (O16) � (Z2)n−3.

In Chapter 4 we study two notions that are of interest in loop theory, the in-

ner mapping group Inn(Qn) and the multiplication group Mlt(Qn). We prove

that Inn(Qn) is an elementary abelian 2-group of order 22n
−2, moreover, every

f > Inn(Qn) is a product of disjoint transpositions of the form (x,−x). This implies

that nonassociative Cayley–Dickson loops are not automorphic. The elements of

Mlt(Qn) are even permutations and have order 1,2 or 4. We show that Mlt(Qn)
is a semidirect product of Inn(Qn) � Z2 and an elementary abelian 2-group K,

and construct an isomorphic copy of Mlt(Qn) as an external semidirect product of

two abstract elementary abelian 2-groups. The groups Innl(Qn) and Innr(Qn) are

proved to be equal, elementary abelian 2-groups of order 22n−1
−1. We conclude the

chapter by establishing that Mltl(Qn) is a semidirect product of Innl(Qn)�Z2 and

K, and Mltl(Qn) and Mltr(Qn) are isomorphic.

Chapter 5 describes the progress made in the study of the subloop structure of

the Cayley–Dickson loops. We calculate the number of subloops of a certain size,

and provide the subloop lattice for O16. Then we describe numerical experiments

3



performed to determine the isomorphism types of maximal (index 2) subloops of

the Cayley–Dickson loops, and explain the obstacles on the way to finding an in-

variant that distinguishes such subloops. We provide incidence tetrahedrons for the

sedenion loop and other subloops of order 32, generalizing the idea of the octonion

multiplication Fano plane. A number of conjectures concerning the subloops of Qn

is posed throughout the chapter.

1.2 Preliminaries

In this section we introduce basic concepts of abstract algebra and loop theory that

are used in this work. For more information on these topics a reader can be referred

to [34], [4], [3].

A groupoid (or magma) (Q, ċ) is a nonempty set Q with a binary operation ċ on

Q. A groupoid (Q, ċ) is a quasigroup if for any x, z > Q there is a unique y such

that x ċ y = z, and for any y, z > Q there is a unique x such that x ċ y = z. The

multiplication table of a finite quasigroup is a Latin square, i.e., an n�n table filled

with n distinct symbols so that each symbol occurs once in every row and once in

every column. A quasigroup (Q, ċ) is a loop if there is a neutral element 1 > Q such

that 1 ċ x = x ċ 1 = x for all x > Q. A subset S of a loop Q is a subloop if (S, ċ) is a

loop. For convenience and to avoid excessive bracketing, we often write xy instead

of x ċ y, x ċ yz instead of x ċ (y ċ z), and Q instead of (Q, ċ).
We agree to write mappings on the left of an argument, e.g., f(x), and compose

them from right to left. Let Q,Q2 be quasigroups. A mapping φ � Q � Q2 is

an injection if φ(x) = φ(y) implies x = y for all x, y > Q, a surjection if for every

y > Q2 there is x > Q such that y = φ(x), a bijection if it is both an injection

and a surjection, and a homomorphism if φ(x)φ(y) = φ(xy) for all x, y > Q. A

homomorphism φ � Q� Q2 is an isomorphism if it is a bijection. If Q is isomorphic

to Q2, we write Q � Q2. An isomorphism φ � Q � Q is called an automorphism.
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The set of all automorphisms of a quasigroup Q forms a group under composition,

called the automorphism group, denoted by Aut(Q).
Study of arbitrary loops presents a significant challenge, and it is natural to

consider loops where some weakened form of the associative law holds.

A quasigroup Q is said to have the left inverse property if there exists a bijection

λ � x ( xλ on Q such that xλ(xy) = y for every y > Q. Similarly, a quasigroup Q

is said to have the right inverse property if there exists a bijection ρ � x ( xρ on Q

such that (yx)xρ
= y for every y > Q. A quasigroup which has both left and right

inverse properties is called an inverse property quasigroup.

If Q is a loop with identity 1, every element x of Q has a unique left inverse xλ

and a unique right inverse xρ such that xλx = xxρ
= 1. However, the existence of xλ

and xρ does not necessarily imply xλ(xy) = y and (yx)xρ
= y. Therefore not every

loop is an inverse property loop.

A simple argument can be used to show that in a left (or right) inverse property

loop one-sided inverses coincide, i.e., xλ
= xρ

= x−1, where x−1x = xx−1 = 1. Note

that in this case Q is not necessarily an inverse property loop.

A loop with two-sided inverses has an anti-automorphic inverse property if

(xy)−1 = y−1x−1. Inverse property loops satisfy the anti-automorphic inverse prop-

erty.

A loop Q is alternative if it satisfies the left and right alternative properties

x(xy) = x2y,

(yx)x = yx2.

A loop Q is power-associative if every element of Q generates a group in Q, and

diassociative if every pair of elements of Q generates a group in Q. One can see that

diassociativity implies the inverse property.

5



A loop Q is a Moufang loop if it satisfies any of the following Moufang identities:

((xz)y)z = x(z(yz)), (1.2.1)

(zx)(yz) = z((xy)z), (1.2.2)

z(x(zy)) = (z(xz))y. (1.2.3)

Note that any one of these identities implies the other two. Ruth Moufang studied

these loops first under the name “quasigroup”.

For a loop Q and x, a > Q, mappings Lx(a) = xa and Rx(a) = ax are called left

and right translations. These mappings are permutations on Q. Define the following

subgroups of Sym(Q),

multiplication group of Q, Mlt(Q) = `Lx,Rx S x > Qe ,

inner mapping group of Q, Inn(Q) =Mlt(Q)1 = �f >Mlt(Q) S f(1) = 1�,

left multiplication group of Q, Mltl(Q) = `Lx S x > Qe ,

left inner mapping group of Q, Innl(Q) =Mltl(Q)1 = �f >Mltl(Q) S f(1) = 1�,

right multiplication group of Q, Mltr(Q) = `Rx S x > Qe ,

right inner mapping group of Q, Innr(Q) =Mltr(Q)1 = �f >Mltr(Q) S f(1) = 1�.

Let RQ = �Rx S x > Q�. Then RQ is a left transversal to Inn(Q) in Mlt(Q), and

also a right transversal to Inn(Q) in Mlt(Q). That is, for every f >Mlt(Q) there

is a unique x > Q and a unique y > Q such that f > RxInn(Q), f > Inn(Q)Ry. An

analogous statement is true for LQ = �Lx S x > Q�. Define middle, left and right

inner mappings on Q by

Tx = L−1x Rx,

Lx,y = L−1yxLyLx,

Rx,y = R−1xyRyRx.

6



Note that the inner mapping Tx plays the role of conjugation. The mappings Lx,y,

Rx,y measure deviations from associativity, just as Tx measures deviations from

commutativity.

Theorem 1.2.1. [34] Let Q be a loop. Then

Inn(Q) = `Lx,y,Rx,y, Tx S x, y > Qe ,

Innl(Q) = `Lx,y S x, y > Qe ,

Innr(Q) = `Rx,y S x, y > Qe .

Lemma 1.2.2. Let Q be a finite loop. Then

SMlt(Q)S = SQ SS Inn(Q)S ,

SMltl(Q)S = SQ SS Innl(Q)S ,

SMltr(Q)S = SQ SS Innr(Q)S .

Remark 1.2.3. Let G be a group. If G is abelian, then Mlt(G) � G, and Inn(G) �
�1�. If G is not abelian, then

Mlt(G) � (G �G)~�(g, g) S g > Z(G)�,

Inn(G) � G~Z(G).

In an inverse property loop we have R−1x = Rx−1 and L−1x = Lx−1 .

The commutant of a loop Q, denoted by C(Q), is the set of elements that

commute with every element of Q. More precisely, C(Q) ={a > Q S ax = xa, ∀x > Q}.

7



Let Q be a loop. Define

the left nucleus of Q, Nl(Q) = �a > Q S a ċ xy = ax ċ y, ∀x, y > Q�,

the middle nucleus of Q, Nm(Q) = �a > Q S xa ċ y = x ċ ay, ∀x, y > Q�,

the right nucleus of Q, Nr(Q) = �a > Q S xy ċ a = x ċ ya, ∀x, y > Q�.

The nucleus of Q, denoted by N(Q), is the set of elements that associate with all

elements of Q. More precisely,

N(Q) = Nl(Q) 9Nm(Q) 9Nr(Q)

= �a > Q S a ċ xy = ax ċ y, xa ċ y = x ċ ay, xy ċ a = x ċ ya, ∀x, y > Q�.

The nuclei N(Q),Nl(Q),Nm(Q),Nr(Q) are subloops of Q.

A subloop S of a loop Q is normal (denoted by S V Q) if xS = Sx, (xS)y = x(Sy),
x(yS) = (xy)S for all x, y > Q.

Remark 1.2.4. [12] The following are equivalent for a subloop S of a loop Q

(i) S V Q,

(ii) φ(S) = S for all φ > Inn(Q),

(iii) S is the kernel of some loop homomorphism ψ � Q� Q2.

A Hamiltonian loop is a loop in which every subloop is normal.

The center of a loop Q, denoted by Z(Q), is the set of elements that commute

and associate with every element of Q. More precisely, Z(Q) = C(Q)9N(Q). Note

that Z(Q) is a normal subloop of Q. For any x, y, z > Q define the commutator

8



[x, y] and the associator [x, y, z] by

xy = (yx)[x, y],

xy ċ z = (x ċ yz)[x, y, z].

Remark 1.2.5. Commutators and associators in a loop Q are well-defined mod-

ulo the center. That is, if s1, s2, s3 > Z(Q), then [x, y] = [s1x, s2y], [x, y, z] =
[s1x, s2y, s3z].

Let Z1(Q) = Z(Q), define Zi+1(Q) by Z(Q~Zi(Q)) = Q~Zi+1(Q). Then Q is

(centrally) nilpotent if Zm(Q) = 1 for some m, and the nilpotency class cl(Q) of Q

is the smallest integer m for which Zm(Q) = 1.

The associator subloop of a loop Q, denoted by A(Q), is the smallest normal

subloop of Q such that Q~A(Q) is a group. Note that A(Q) is the smallest normal

subloop of Q containing all associators [x, y, z], where x, y, z > Q.

The derived subloop of a loop Q, denoted by Q′, is the smallest normal subloop of

Q such that Q~Q′ is an abelian group. Note that Q′ is the smallest normal subloop

of Q containing all commutators [x, y] and associators [x, y, z], where x, y, z > Q.

A cyclic group of order n, denoted Zn, is a group of order n generated by an

element a of Zn, i.e., Zn = `ae = �a0, . . . , an−1� � Z~nZ.

An elementary abelian p-group is a finite abelian group, where every non-identity

element has prime order p.

A direct product of groups (N,�) and (K, ċ) is a group G = �(h, k) S h > N,k >K�
with operation X defined by (h1, k1) X (h2, k2) = (h1 �h2, k1 ċ k2). The direct product

is denoted by G = N �K. A semidirect product of groups (N,�) and (K, ċ) is a

group G = �(h, k) S h > N,k > K� with operation X defined by (h1, k1) X (h2, k2) =
(h1 � φk1(h2), k1 ċ k2), where φ � K � Aut(N) is a homomorphism. The semidirect

product is denoted by G = N #K.
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Finally, recall the Correspondence Theorem for loops; for the proof see [12]. The

set of all subloops of a loop Q forms a bounded lattice Sub(Q) under the operations

A,B = A9B and A-B = `A 8Be, with largest element Q and smallest element �1�.
The set of all normal subloops of Q also forms a bounded lattice SubV(Q) with the

same extreme elements and operations as in Sub(Q), and SubV(Q) is a sublattice

of Sub(Q).

Correspondence Theorem 1.2.6. Let Q be a loop, A V Q and L = �B > Sub(Q) S A B

B�. Then the projection πA � Q � Q~A,a ( aA induces an isomorphism of lattices

φ � L � Sub(Q~A),B ( B~A and an isomorphism of lattices ψ � L 9 SubV(Q) �
SubV(Q~A). Moreover, if B,C > L then B V C if and only if B~A V C~A, and in

such a case C~B � φ(C)~φ(B).

1.3 Cayley–Dickson Doubling Process

We begin this section by introducing a notion of a composition algebra, and continue

with the description of the Cayley–Dickson doubling process for construction of such

algebras. We follow presentation of T. A. Springer and F. D. Veldkamp, and refer

the reader to [39] for further details.

A quadratic form on a vector space V over a field F is a mapping N � V � F

such that

(i) N(λx) = λ2N(x), λ > F,x > V ;

(ii) The mapping ` , e � V � V � F defined by

`x, ye = N(x + y) −N(x) −N(y)

is bilinear, i.e., linear in each of x and y separately.
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A mapping ` , e is called the bilinear form associated with N . The form ` , e
is said to be nondegenerate if

`x, ye = 0 for all y > V � x = 0.

An algebra over a field F is a vector space over F with a bilinear (not necessarily

associative) vector multiplication. A composition algebra C over a field F is a not

necessarily associative algebra over F with identity element 1 such that there exists

a nondegenerate quadratic form N on C which permits composition, i.e., such that

N(xy) = N(x)N(y), x, y > C.

The quadratic form N is often referred to as the norm on C, and the associated

bilinear form ` , e is called the inner product. Every composition algebra satisfies

the Moufang identities (1.2.1)–(1.2.3).

Theorem 1.3.1. Every composition algebra is obtained by repeated doubling (see

below), starting from F in characteristic x 2 and from a 2-dimensional composition

algebra in characteristic 2. The possible dimensions of a composition algebra are

1 (in characteristic x 2), 2, 4, and 8. Composition algebras of dimension 1 and

2 are commutative and associative, those of dimension 4 are associative but not

commutative, and those of dimension 8 are neither commutative nor associative.

A composition algebra of dimension 2n can be constructed from a composition

algebra of dimension n using the Cayley–Dickson doubling process. This construction

can be carried out ad infinitum, producing a sequence of power-associative algebras

of dimension 2,4,8,16,32, and so on, that are not composition algebras after dimen-

sion 8. If a composition algebra C contains a nonzero vector x with N(x) = 0, it is

called a split composition algebra. Otherwise, C is a division composition algebra.
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A well-known instance of the Cayley–Dickson process constructs complex num-

bers C from real numbers R, quaternions H from complex numbers, octonions O

from quaternions. A. Hurwitz showed in [17] that these are the only normed division

algebras.

The Cayley–Dickson construction over a field F is done as follows:

A0 = F, with conjugation a� = a for all a > F,

An+1 = �(a, b) S a, b > An� for n > N,

with multiplication, addition, and conjugation

(a, b)(c, d) = (ac + λd�b, da + bc�) (where 0 x λ > F ),

(a, b) + (c, d) = (a + c, b + d),

(a, b)� = (a�,−b).

Conjugation defines a norm YaY = (aa�)1~2 and the multiplicative inverse for

nonzero elements a−1 = a�~ YaY2. Note that (a, b)(a, b)� = (YaY2+YbY2 ,0) and (a�)� =
a. The dimension of An over F is 2n.

When λ = −1, the construction is called the standard Cayley–Dickson process,

which produces complex, quaternion, and octonion division composition algebras

over F [9]. The standard construction is the main focus of this work, and we further

refer to it as simply the Cayley–Dickson process.

1.4 Cayley–Dickson Loops

We study multiplicative structures that arise from the Cayley–Dickson doubling

process. Let F be a field of characteristic other than two. Define Cayley–Dickson
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loops (Qn, ċ) over F inductively as follows:

Q0 = �1,−1�, Qn = �(x,0), (x,1) S x > Qn−1�, (1.4.1)

with multiplication

(x,0)(y,0) = (xy,0), (1.4.2)

(x,0)(y,1) = (yx,1), (1.4.3)

(x,1)(y,0) = (xy�,1), (1.4.4)

(x,1)(y,1) = (−y�x,0), (1.4.5)

and conjugation

(x,0)� = (x�,0),

(x,1)� = (−x,1).

Proposition 1.4.1. Cayley–Dickson loops are independent of the underlying field F

of characteristic not two.

Proof. By induction on n. Let F , E be fields of characteristic not two, and let

(QF
n , X), (QE

n ,¢) be Cayley–Dickson loops over these fields. When n = 0 we have

QF
0 = �1F ,−1F �, where

1F X 1F = −1F X (−1F ) = 1F , 1F X (−1F ) = −1F X 1F = −1F ,

1�F = 1F , (−1F )� = −1F ,
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and QE
0 = �1E ,−1E�, where

1E¢1E = −1E¢(−1E) = 1E , 1E¢(−1E) = −1E¢1E = −1E ,

1�E = 1E , (−1E)� = −1E .

Suppose that (Qn−1, ċ) is independent of the underlying field. Then in QF
n we have

(x,0F ) X (y,0F ) = (x ċ y,0F ),

(x,0F ) X (y,1F ) = (y ċ x,1F ),

(x,1F ) X (y,0F ) = (x ċ y�,1F ),

(x,1F ) X (y,1F ) = (−y� ċ x,0F ),

(x,0F )� = (x�,0F ),

(x,1F )� = (−x,1F ), where x, y > Qn−1,

and in QE
n we have

(x,0E)¢(y,0E) = (x ċ y,0E),

(x,0E)¢(y,1E) = (y ċ x,1E),

(x,1E)¢(y,0E) = (x ċ y�,1E),

(x,1E)¢(y,1E) = (−y� ċ x,0E),

(x,0E)� = (x�,0E),

(x,1E)� = (−x,1E), where x, y > Qn−1.

The reader can assume F = R without loss of generality from now on.

The order of Qn is 2n+1. The loop Qn embeds into Qn+1 by x ( (x,0), so that
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Qn � �(x,0) S (x,0) > Qn+1�. All elements of Qn have norm one due to the fact that

Y(x,xn+1)Y2 = (x,xn+1)(x,xn+1)� = (YxY2 ,0) = YxY2 = Y(x1, . . . , xn)Y2 = . . . = Yx1Y = 1,

however, not all the elements of An of norm one are in Qn.

As will become apparent soon, we can think of the Cayley–Dickson loop as the

multiplicative closure of basic units in the corresponding Cayley–Dickson algebra,

with one unit added in each step of the doubling construction. The first few examples

of the Cayley–Dickson loops are the group of real units R2 (abelian); the group of

complex integral units C4 (abelian); the group of quaternion integral units H8 (not

abelian); the octonion loop O16 (Moufang); the sedenion loop S32 (not Moufang);

the trigintaduonion loop T64 (the name suggested by J.D.H. Smith comes from the

Latin word “trigintaduo”, meaning 32).

Denote the opposite of an element (x1, x2, x3, . . . , xn+1) by

−(x1, x2, x3, . . . , xn+1) = (−x1, x2, x3, . . . , xn+1).

The elements 1Qn ,−1Qn > Qn are

1Qn = (1,0, . . . ,0
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

n

),

−1Qn = (−1,0, . . . ,0
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

n

).

We call 1Qn by 1, and −1Qn by −1. One can see that 1 and −1 commute and associate

with every element of Qn.

We denote the loop generated by elements x1, . . . , xn of a loop L by `x1, . . . , xne.
Denote by in the element (1Qn−1 ,1) = (1,0, . . . ,0´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

n−1

,1) of Qn. Such element in satisfies

Qn = Qn−1 8 (Qn−1in) = `Qn−1, ine. Thus Qn = `i1, i2, . . . , ine. We call i1, i2, . . . , in
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the canonical generators of Qn. Any x > Qn can be written as

x = �
n

M
j=1

i
εj

j , εj > �0,1�.

For example,

Q0 = R2 = �1,−1�,

Q1 = C4 = ��(1,0), (1,1)� = `i1e = �1,−1, i1,−i1�,

Q2 = H8 = ��(1,0,0), (1,1,0), (1,0,1), (1,1,1)� = `i1, i2e = ��1, i1, i2, i1i2�,

Q3 = O16 = `i1, i2, i3e = ��1, i1, i2, i1i2, i3, i1i3, i2i3, i1i2i3�,

Q4 = S32 = `i1, i2, i3, i4e .

We use

e = in

for the unit added in the last step of the process. Figure 1.1 illustrates the construc-

tion of Qn from Qn−1 by doubling.

Figure 1.1: Construction of Qn from Qn−1 by doubling
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Chapter 2

Basic Properties

In this chapter we study fundamental properties of the Cayley–Dickson loops, for

instance, subloops, Hamiltonian property, and calculus for commutators and asso-

ciators.

2.1 Orders, Inverses, Conjugates of Elements

Proposition 2.1.1. Let Qn be a Cayley–Dickson loop, let x, y > Qn. The following

hold:

1. 1Qn = (1,0, . . . ,0´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
n

) is the identity of Qn;

2. the conjugates of the elements of Qn are x� = −x for x > Qn� �1,−1�, 1� = 1,

(−1)� = −1;

3. the orders of the elements of Qn are SxS = 4 for x > Qn� �1,−1�, S1S = 1, S−1S = 2;

4. the inverses of the elements of Qn are x−1 = x�;

5. xy = −yx when x, y x �1, x x �y, and xy = yx otherwise;

6. (xy)−1 = y−1x−1 (anti-automorphic inverse property).
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Proof. 1. By induction on n. In R2 we have 1 ċ 1 = 1, 1 ċ (−1) = (−1) ċ 1 = −1, so 1

is the identity of R2. Suppose 1Qn−1 is the identity of Qn−1. Then in Qn we

have

(1Qn−1 ,0)(x,0) = (1Qn−1x,0) = (x,0) = (x1Qn−1 ,0) = (x,0)(1Qn−1 ,0),

(1Qn−1 ,0)(x,1) = (x1Qn−1 ,1) = (x,1) = (1Qn−1x,1) = (x,1)(1Qn−1 ,0),

hence 1Qn = (1Qn−1 ,0) is the identity of Qn.

2. By induction on n. In R2, 1 ċ 1 = −1 ċ (−1) = 1. Suppose x� = −x holds for all

x > Qn� ��1�, then in Qn+1 by definition (x,0)� = (x�,0) = (−x,0) = −(x,0)
and (x,1)� = (−x,1) = −(x,1).

3. By induction on n. In C4, (1,0)(1,0) = (1,0) and (1,1)(1,1) = −(1,0).
Suppose x2

= −1 holds for all x > Qn� ��1�, then in Qn+1 (x,0)(x,0) =
(xx,0) = (−1Qn ,0) = −(1Qn ,0) = −1Qn+1 and (x,1)(x,1) = (−x�x,0) = (xx,0) =
(−1Qn ,0) = −(1Qn ,0) = −1Qn+1 .

4. Follows from 2. and 3. We have x�x = (−x)x = −(xx) = 1 = −(xx) = x(−x) =
xx� when x x �1 and (�1)2 = 1.

5. The property holds for H8. Suppose it also holds for Qn. In Qn+1, if x, y x �1,

x x �y, then

(x,0)(y,0) = (xy,0) = (−yx,0) = −(y,0)(x,0),

(x,0)(y,1) = (yx,1) = (−yx�,1) = −(y,1)(x,0),

(x,1)(y,1) = (−y�x,0) = (yx,0) = (−xy,0) = −(−x�y,0) = −(y,1)(x,1).

The cases when either x, y x �1 and x = �y, or x = �1, y x �1, or x = �y = �1

can be treated similarly.
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6. We show that (xy)� = y�x� for all x, y > Qn, by induction on n. The property

holds for R2. Suppose (xy)� = y�x� for all x, y > Qn, then in Qn+1

((x,0)(y,0))� = (xy,0)� = ((xy)�,0) = (y�x�,0) = (y�,0)(x�,0)

= (y,0)�(x,0)�,

((x,0)(y,1))� = (yx,1)� = (−yx,1) = ((−y)(x�)�,1)

= (−y,1)(x�,0) = (y,1)�(x,0)�,

((x,1)(y,0))� = (xy�,1)� = (−xy�,1) = (y�,0)(−x,1) = (y,0)�(x,1)�,

((x,1)(y,1))� = (−y�x,0)� = ((−y�x)�,0) = (−x�(y�)�,0)

= (−x�y,0) = (−y,1)(−x,1) = (y,1)�(x,1)�.

Schafer showed in [38, Lemma 4] that the Cayley–Dickson loops satisfy the

alternative properties.

Lemma 2.1.2. Every Cayley–Dickson loop is alternative.

Proof. By induction on n. The complex group C4 is associative, and hence alterna-

tive. Suppose

x(xy) = x2y,

(yx)x = yx2

holds for all x, y > Qn, then in Qn+1 we have

(x,0) ċ (x,0)(y,0) = (x,0) ċ (xy,0) = (x(xy),0) = (x2y,0) = (x2,0)(y,0)

= (x,0)(x,0) ċ (y,0),

(x,0) ċ (x,0)(y,1) = (x,0) ċ (yx,1) = ((yx)x,1) = (yx2,1) = (x2,0) ċ (y,1) =

= (x,0)(x,0) ċ (y,1),
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(x,1) ċ (x,1)(y,0) = (x,1) ċ (xy�,1) = (−(xy�)�x,0) = (−(yx�)x,0) = (−y(x�x),0)

= (−(x�x)y,0) = (−x�x,0)(y,0) = (x,1)(x,1) ċ (y,0),

(x,1) ċ (x,1)(y,1) = (x,1) ċ (−y�x,0) = (x(−y�x)�,1) = (−x(x�y),1) = (−(xx�)y,1)

= (−y(xx�),1) = (−x�x,0)(y,1) = (x,1)(x,1) ċ (y,1).

The right alternative property can be proved similarly.

Proposition 2.1.3. Cayley–Dickson loops are indeed loops.

Proof. Let Qn be a Cayley–Dickson loop. By Proposition 2.1.1-(1),

1Qn = (1,0, . . . ,0´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
n

)

is the identity of Qn. By Proposition 2.1.1-(2) we have x� = −x for x > Qn� �1,−1�,
1� = 1, (−1)� = −1. Note that −1 commutes and associates with every element of

Qn. Using Lemma 2.1.2, for all x, z > Qn there is a unique y = x�z > Qn such that

xy = x(x�z) = (xx�)z = z, and for all y, z > Qn there is a unique x = zy� > Qn such

that xy = (zy�)y = z(y�y) = z.

2.2 Diassociativity

Culbert established in [10] that Cayley–Dickson loops are diassociative.

Theorem 2.2.1. Any pair of elements of a Cayley–Dickson loop generates a sub-

group of the quaternion group. In particular, a pair x, y generates a real group when

x = �1 and y = �1; a complex group when either x = �1, or y = �1 (but not both), or

x = �y x �1; a quaternion group otherwise.

Proof. Let x, y be elements of a Cayley–Dickson loop. If x, y x �1 and x ¶ `ye, then

by Proposition 2.1.1 we have xy = −yx and x2
= y2

= −1, and by Lemma 2.1.2 we
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have x(xy) = x2y and (yx)x = yx2, thus

x(xy) = x2y = −y,

y(xy) = −y(yx) = −y2x = x,

(xy)x = −(yx)x = −yx2
= y,

(xy)y = xy2
= −x.

These calculations allow to construct the multiplication table of a loop `x, ye.

1 −1 x −x y −y xy −xy

−1 1 −x x −y y −xy xy

x −x −1 1 xy −xy −y y

−x x 1 −1 −xy xy y −y

y −y −xy xy −1 1 x −x

−y y xy −xy 1 −1 −x x

xy −xy y −y −x x −1 1

−xy xy −y y x −x 1 −1

Table 2.1: Multiplication table of `x, ye

One can check that `x, ye is a quaternion group.

If either x = �1, or y = �1 (but not both), we have

1 −1 x −x

−1 1 −x x

x −x −1 1

−x x 1 −1

Table 2.2: Multiplication table of `xe

One can see that `xe is a complex group.
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If x = �1 and y = �1, clearly

`x, ye = �1,−1� � R2.

Lemma 3.2.1 in Section 3.2 generalizes Theorem 2.2.1 and shows that any three

elements of a Cayley–Dickson loop generate a subloop of either the octonion loop,

or the quasioctonion loop.

Corollary 2.2.2. Every Cayley–Dickson loop is diassociative.

Proof. The quaternion group H8 is associative and the rest follows from Theo-

rem 2.2.1.

In particular, Cayley–Dickson loops are inverse property loops. An inverse prop-

erty loop Q is a RIF loop (“respects inverses, flexible”, see [22]) if for any x, y, z > Q

(xy)(z ċ xy) = ((x ċ yz)x)y. (2.2.1)

Lemma 2.2.3. Every Cayley–Dickson loop is a RIF loop.

Proof. Let Qn be a Cayley–Dickson loop. Let us show that all x, y, z > Qn sat-

isfy (2.2.1)

(xy)(z ċ xy) = ((x ċ yz)x)y.

If S`x, y, zeS B 8 then `x, y, ze is a group by Theorem 2.2.1, and the statement holds.

Let S`x, y, zeS = 16. By Theorem 2.2.1, z ¶ `x, ye � H8. We have z ¶ `xye, x ¶ `yze,
y ¶ `ze, thus [z, xy] = [x, yz] = [y, z] = −1. Also, x, y, xy x �1, therefore x2

= y2
=

(xy)2 = −1. Using diassociativity, we have

(xy)(z ċ xy) = [z, xy](xy)(xy ċ z) = [z, xy](xy)2z = z,

22



((x ċ yz)x)y = [x, yz]((yz ċ x)x)y = [x, yz](yz ċ x2)y = [x, yz]x2(yz ċ y)

= [x, yz][y, z]x2(zy ċ y) = [x, yz][y, z]x2(z ċ y2)

= [x, yz][y, z]x2y2z = z.

2.3 Associator Subloop, Derived Subloop, Nuclei,

Center

Theorem 2.3.1. If Qn is a Cayley–Dickson loop, then Qn~�1,−1� � (Z2)n.

Proof. The loop �1,−1� is a unique minimal subloop of Qn. Let us show that

Qn~�1,−1� has exponent 2 and hence is an elementary abelian 2-group. Pro-

ceed by induction on n. Consider the construction (1.4.1). In C4~�1,−1�, we

have (1,0)(1,0) = (1,0) and (1,1)(1,1) = (1,0). Suppose x2
= 1 holds for all

1 x x > Qn~�1,−1�, then in Qn+1~�1,−1� we have (x,0)(x,0) = (xx,0) = (1,0) = 1

and (x,1)(x,1) = (xx,0) = (1,0) = 1. The order of Qn~�1,−1� is SQnS
2 = 2n.

It follows immediately from Theorem 2.3.1 that cl(Qn) = 2 when n C 2, and

cl(Qn) = 1 otherwise.

Lemma 2.3.2. Let S be a subloop of Qn. The following hold:

1. the center of S, Z(S) = �1,−1� when SSS A 4 and Z (S) = S otherwise;

2. the nuclei of S coincide, i.e., N(S) = Nl(S) = Nm(S) = Nr(S), moreover,

N(S) = �1,−1� when SSS A 8 and N (S) = S otherwise;

3. the group S~Z(S) is an elementary abelian 2-group;

4. the associator subloop of S, A(S) = Z(S) when SSS A 8 and A(S) = 1 otherwise;

5. the derived subloop of S, S′ = Z(S) when SSS A 4 and S′ = 1 otherwise.
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Proof. 1. Let S be a subloop of Qn. By Theorem 2.2.1, S B C4 when SSS B 4; C4 is

an abelian group, hence Z (S) = S. Let SSS A 4. By Theorem 2.2.1, `1, xe B C4

and `−1, xe B C4, C4 is abelian and therefore �1,−1� > C(S). Let x > S���1�,
choose an element y ¶ ��1,�x�. Then `x, ye � H8 by Theorem 2.2.1, and

[x, y] = −1. It follows that C(S) = �1,−1�. Also, `1, x, ye B H8 and `−1, x, ye B
H8, therefore [1, x, y] = 1 and [−1, x, y] = 1 for any x, y > S, and

�1,−1� > N(S). (2.3.1)

It follows that Z (S) = �1,−1�.

2. Let S be a subloop of Qn. In any inverse property loop, the four nuclei coincide

(see [34, p.21]). If SSS B 8, then S is a group by Theorem 2.2.1, and N(S) = S.

Let SSS A 8. From (2.3.1) we have �1,−1� B N(S). For any (x,xn+1) > S��1,−1�
(where x x �1, xn+1 > �0,1�), the size of S allows to choose y ¶ `xe in S, such

that either (y,0) or (y,1) is in S, and

(x,0)(y,0) ċ (1,1) = (xy,0)(1,1) = (xy,1) = (−yx,1) = (−x,0)(y,1)

= −(x,0) ċ (y,0)(1,1),

(x,0)(y,1) ċ (1,1) = (yx,1)(1,1) = (−yx,0) = (xy,0) = (−x,0)(−y,0)

= −(x,0) ċ (y,1)(1,1),

(x,1)(y,0) ċ (1,1) = (xy�,1)(1,1) = (−xy�,0) = (y�x,0) = (−x,1)(y,1)

= −(x,1) ċ (y,0)(1,1),

(x,1)(y,1) ċ (1,1) = (−y�x,0)(1,1) = (−y�x,1) = (xy�,1) = (−x,1)(−y,0)

= −(x,1) ċ (y,1)(1,1),

thus (x,xn+1) ¶ N(S). It also follows from the above equations that (1,1) ¶
N(S).
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3. Follows from Theorem 2.3.1.

4. Let SSS A 8. The group S~Z(S) is abelian, hence A(S) B Z(S). Also, A(S) x 1

since S is not a group, so A(S) = Z(S). Let SSS B 8, then S B H8 and H8 is a

group, so A(S) = 1.

5. Let SSS A 4. The group S~Z(S) is abelian, hence S′ B Z(S). Also, S′ x 1 since

S is not an abelian group, so S′ = Z(S). Let SSS B 4, then S B C4 and C4 is an

abelian group, so S′ = 1.

2.4 Commutator-Associator Calculus

For a Cayley–Dickson loop Qn we study commutators and associators in Qn. Some

of the results of this section are not used for further proofs, but are presented for

completeness.

Moufang’s Theorem 2.4.1. [31] Let Q be a Moufang loop and x, y, z > Q. If

[x, y, z] = 1 then `x, y, ze is a group and, in particular, the associator of x, y, z is

trivial for any ordering of the three elements.

Lemma 2.4.2. Let x, y, z be elements of Qn. The following hold:

1. the commutator [x, y] = −1 when `x, ye � H8 and [x, y] = 1 when `x, ye < H8;

2. the associator [x, y, z] = 1 or [x, y, z] = −1, in particular, [x, y, z] = 1 when

`x, y, ze B H8 and [x, y, z] = −1 when `x, y, ze � O16.

Proof. 1. Follows from Proposition 2.1.1-(5).

2. The loop H8 is associative, therefore [x, y, z] = 1 when `x, y, ze B H8. If

H8 < `x, y, ze, we have A(Qn) > �1,−1� by Lemma 2.3.2-(4), and A(Qn) is

the smallest normal subloop of Qn containing all associators [x, y, z], where
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x, y, z > Qn. The loop O16 is Moufang and not a group, therefore by Moufang’s

Theorem [x, y, z] = −1 when `x, y, ze � O16.

Remark 2.4.3. It can happen that `x, y, ze � R2,C4,H8,O16 (see Lemma 3.2.1).

If `x, y, ze B H8, then `x, y, ze is a group and [y, x, z] = [z, x, y] = 1. If S`x, y, zeS =
16, then

`x, y, ze = ��1, x, y, xy, z, xz, yz, (xy)z�,

where all elements are distinct. This implies that x ¶ ��1, y, z�, zx ¶ ��1, y�, yx ¶
��1, z�, and by Lemma 2.4.2,

[x, z] = [y, zx] = [x, y] = [yx, z] = [x, yz] = [z, xy] = −1, (2.4.1)

Lemma 2.4.4. Let Q be a loop. Suppose that cl(Q) B 2 and Z(Q) has exponent

2. Then [xy, z][x, y][x, zy][y, z][x, y, z][z, y, x] = 1. Thus in a Cayley–Dickson loop

we have

[x, y, z] = [z, y, x].

Proof. We have

xy ċ z = [xy, z]z ċ xy = [xy, z][x, y]z ċ yx = [xy, z][x, y][z, y, x]zy ċ x

= [xy, z][x, y][z, y, x][x, zy]x ċ zy = [xy, z][x, y][z, y, x][x, zy][y, z]x ċ yz

= [xy, z][x, y][z, y, x][x, zy][y, z][x, y, z]xy ċ z,

and the first identity follows. In a Cayley–Dickson loop, if `x, y, ze is a group then we

are done, else [xy, z] = [x, y] = [x, zy] = [y, z] = −1 by (2.4.1) and we are done.

Lemma 2.4.5. Let Q be a loop. Suppose that cl(Q) B 2 and Z(Q) has expo-

nent 2. Then [x, yz][y, zx][z, xy][x, y, z][y, z, x][z, x, y] = 1. Thus in a Cayley–
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Dickson loop, if `x, y, ze is not a group then

[x, y, z][y, z, x][z, x, y] = −1.

Proof. We have

xy ċ z = [x, y, z]x ċ yz = [x, y, z][x, yz]yz ċ x

= [x, y, z][x, yz][y, z, x]y ċ zx = [x, y, z][x, yz][y, z, x][y, zx]zx ċ y

= [x, y, z][x, yz][y, z, x][y, zx][z, x, y]z ċ xy

= [x, y, z][x, yz][y, z, x][y, zx][z, x, y][z, xy]xy ċ z,

and the first identity follows. If we are in a Cayley–Dickson loop and `x, y, ze is not

a group, the three commutators in the formula are all equal to −1 by (2.4.1).

Lemma 2.4.6. Let Q be a loop. Suppose that cl(Q) B 2 and Z(Q) has exponent 2.

Then for every x, y, z, w > Q we have [xy, z,w][x, yz,w][x, y, zw] = [x, y, z][y, z,w].

Proof. We have xy ċ zw = [x, y, zw]x(y ċ zw) = [x, y, zw][y, z,w]x(yz ċ w). On the

other hand, we also have xy ċ zw = [xy, z,w](xy ċ z)w = [xy, z,w][x, y, z](x ċ yz)w =
[xy, z,w][x, y, z][x, yz,w]x(yz ċw).

Lemma 2.4.7. In a Cayley–Dickson loop we have [x,xy, z] = [x, y, z].

Proof. We have [x,xy, z]x2
ċ yz = [x,xy, z]x2y ċ z = [x,xy, z](x ċ xy)z = x(xy ċ z) =

[x, y, z]x ċ x(yz) = [x, y, z]x2
ċ yz.

Lemma 2.4.8. In a Cayley–Dickson loop we have [xy, y, xz] = [y, x, z].

Proof. Note that (xy)2 = xyxy = [x, y]x2y2. Then
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y2x2
ċ z = y2

ċ x(xz) = xy2
ċ xz = (xy ċ y) ċ xz = [xy, y, xz]xy ċ y(xz)

= [xy, y, xz][y, x, z]xy ċ (yx)z = [xy, y, xz][y, x, z][x, y]xy ċ (xy)z

= [xy, y, xz][y, x, z][x, y](xy)2z = [xy, y, xz][y, x, z]x2y2
ċ z.

Lemma 2.4.9. In a Cayley–Dickson loop, the value of [xy, x, z] is invariant under

any permutation of x, y, z. In particular, [xy, x, z] = [xy, y, z].

Proof. We have [yx, y, z] = [xy, y, z] = [xy, xy ċ x, z] since x2 is central. By Lemma

2.4.7 (with x replaced with xy, and y replaced with x), [xy, xy ċ x, z] = [xy, x, z].
Thus [xy, x, z] = [yx, y, z], and [xy, x, z] is invariant under the transposition (x, y).
Now, [yx, y, z] = [xy, y, z] = [xy, y, x ċ xz], and by Lemma 2.4.8 (with z replaced

with xz), [xy, y, x ċxz] = [y, x, xz], which equals to [xz, x, y] by Lemma 2.4.4. Hence

[xy, x, z] = [xz, x, y], and [xy, x, z] is invariant under the transposition (y, z).

The next lemma is used to prove Lemmas 3.2.2 and 3.2.4.

Lemma 2.4.10. If x, y, z > Qn−1, then in Qn we have

(a) [(x,0), (y,0), (z,1)] = [x, y][z, y, x],

(b) [(x,0), (y,1), (z,0)] = [x, z][y, x, z][y, z, x],

(c) [(x,0), (y,1), (z,1)] = [x, y][x, z][z, x, y][x, z, y],

(d) [(x,1), (y,0), (z,0)] = [y, z][x, y, z],

(e) [(x,1), (y,0), (z,1)] = [y, x][y, z][z, y, x],

(f) [(x,1), (y,1), (z,0)] = [z, x][z, y][y, x, z][y, z, x],

(g) [(x,1), (y,1), (z,1)] = [x, y][x, z][y, z][z, x, y][x, z, y].
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Proof. (a) (x,0)(y,0) ċ (z,1) = (xy,0)(z,1) = (z ċ xy,1) = [x, y](z ċ yx,1)
= [x, y][z, y, x](zy ċ x,1) = [x, y][z, y, x]((x,0)(zy,1))
= [x, y][z, y, x]((x,0) ċ (y,0)(z,1)).

(b) (x,0)(y,1) ċ (z,0) = (yx,1)(z,0) = (yx ċ z�,1) = [y, x, z](y ċ xz�,1)
= [x, z][y, x, z](y ċ z�x,1) = [x, z][y, x, z][y, z, x](yz� ċ x,1)
= [x, z][y, x, z][y, z, x]((x,0)(yz�,1)) = [x, z][y, x, z][y, z, x]((x,0) ċ(y,1)(z,0)).

(c) (x,0)(y,1) ċ (z,1) = (yx,1)(z,1) = (−z� ċ yx,0) = [x, y](−z� ċ xy,0)
= [x, y][z, x, y](−z�x ċ y,0) = [x, y][x, z][z, x, y](x(−z�) ċ y,0)
= [x, y][x, z][z, x, y][x, z, y](x ċ (−z�)y,0)
= [x, y][x, z][z, x, y][x, z, y]((x,0) ċ (−z�y,0))
= [x, y][x, z][z, x, y][x, z, y]((x,0) ċ (y,1)(z,1)).

(d) (x,1)(y,0) ċ (z,0) = (xy�,1)(z,0) = (xy� ċ z�,1) = [x, y, z](x ċ y�z�,1)
= [x, y, z]((x,1)((y�z�)�,0)) = [x, y, z]((x,1)(zy,0))
= [y, z][x, y, z]((x,1)(yz,0)) = [y, z][x, y, z]((x,1) ċ (y,0)(z,0)).

(e) (x,1)(y,0) ċ (z,1) = (xy�,1)(z,1) = (−z� ċ xy�,0) = [y, x](−z� ċ y�x,0)
= [y, x][z, y, x](−z�y� ċ x,0) = [y, x][z, y, x]((x,1)(−(−z�y�)�,1))
= [y, x][z, y, x]((x,1)(yz,1)) = [y, x][y, z][z, y, x]((x,1)(zy,1))
= [y, x][y, z][z, y, x]((x,1) ċ (y,0)(z,1)).

(f) (x,1)(y,1) ċ (z,0) = (−y�x,0)(z,0) = (−y�x ċ z,0) = [y, x, z](−y� ċ xz,0)
= [z, x][y, x, z](−y� ċ zx,0) = [z, x][y, x, z][y, z, x](−y�z ċ x,0)
= [z, x][y, x, z][y, z, x]((x,1)(−(−y�z)�,1)) = [z, x][y, x, z][y, z, x]((x,1)(z�y,1))
= [z, x][z, y][y, x, z][y, z, x]((x,1)(yz�,1)) = [z, x][z, y][y, x, z][y, z, x]((x,1) ċ
(y,1)(z,0)).

(g) (x,1)(y,1) ċ (z,1) = (−y�x,0)(z,1) = (z ċ (−y�)x,1) = [x, y](z ċ x(−y�),1)
= [x, y][z, x, y](zx ċ (−y�),1) = [x, y][x, z][z, x, y](xz ċ (−y�),1)
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= [x, y][x, z][z, x, y][x, z, y](x ċ z(−y�),1)
= [x, y][x, z][z, x, y][x, z, y]((x,1)((z(−y�))�,0))
= [x, y][x, z][z, x, y][x, z, y]((x,1)(−yz�,0))
= [x, y][x, z][y, z][z, x, y][x, z, y]((x,1)(−z�y,0))
= [x, y][x, z][y, z][z, x, y][x, z, y]((x,1) ċ (y,1)(z,1)).

2.5 Subloops

Lemma 2.5.1. Let B be a subloop of Qn. The following hold:

1. the center Z(Qn) B B for any B B Qn,B x 1, n C 2;

2. if B x 1 and x > Qn�B, then S`B,xeS = 2 SBS;

3. if B = 1 and x > Qn�B, then `B,xe = �1,−1, x,−x�;

4. any n elements of a Cayley–Dickson loop generate a subloop of order 2k, k B

n + 1;

5. the order of B is 2m for some m B n.

Proof. 1. When n C 2, we have Z(Qn) = �1,−1� by Lemma 2.3.2, and �1,−1� B B
for B x 1.

2. Let 1 x B B Qn and x > Qn�B. By Lemma 2.3.2, Z(Qn) B B and Z(Qn) B
`B,xe, then B~Z(Qn) and `B,xe ~Z(Qn) are subgroups of

Qn~Z(Qn) � (Z2)n.

It follows that S`B,xe ~Z(Qn)S = 2 SB~Z(Qn)S because we work in the vector

space (Z2)n and we added another vector.

3. Let B = 1. If x x −1 then x2
= −1 by Proposition 2.1.1 and `B,xe = `xe =

�1,−1, x,−x�. Also, `B,−1e = �1,−1�.
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4. By induction on n. The order of `xe is 1,2 or 4. Suppose n elements of a

Cayley–Dickson loop generate a subloop B of order 2k for some k B n+1. Add

an element x to B. If x > B, then S`B,xeS = SBS = 2k, k B n+ 1 B n+ 2. If x ¶ B,

then S`B,xeS = 2 SBS = 2k+1, k + 1 B n + 2, by 2.

5. Follows from 4.

2.6 Cayley–Dickson Loops are Hamiltonian

We show that the Cayley–Dickson loops are Hamiltonian. Norton [33] formulated

a number of theorems characterizing diassociative Hamiltonian loops and showed

that the octonion loop is Hamiltonian; however, at that time he did not study the

generalized Cayley–Dickson loops. It is shown computationally in [7] that T64 is

Hamiltonian.

Theorem 2.6.1. Every Cayley–Dickson loop Qn is Hamiltonian.

Proof. By Theorem 2.3.1, the group Qn~Z(Qn) is abelian, thus all its subgroups are

normal. Then Qn is Hamiltonian by the Correspondence Theorem 1.2.6.

For an elementary proof of Theorem 2.6.1, let S be a subloop of Qn, s > S,

x, y > Qn. If S is nontrivial, then either S = �1,−1�, or there is x x �1, such that

x > S, and x2
= −1 > S. Thus −1 > S. Using Lemma 2.4.2 and Lemma 2.3.2,

xs = [x, s]sx > �sx,−sx� b Sx,

(xs)y = [x, s, y]x(sy) > �x(sy),−x(sy)� b x(Sy),

x(ys) = [x, y, s](xy)s > �(xy)s,−(xy)s� b (xy)S.

Theorem 2.6.2 (Norton [33]). A Hamiltonian diassociative loop L is either an

abelian group, or the direct product of an abelian group with elements of odd order

and a loop H with the following properties.
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1. The commutant of H consists of the elements of order 1 or 2.

2. If x, y, z, . . . are elements not in the commutant, then x2
= y2

= z2
= . . . x 1,

x4
= y4
= z4
= . . . = 1.

3. If x, y do not commute, then `x, ye is a quaternion group (since H is assumed

not abelian, there exists at least one such pair of elements). If x, y commute,

then x = c1y where c1 is an element of the commutant.

4. If x, y do not commute and if c2 is an element of H which commutes with

every element of `x, ye, then c2 is an element of the commutant.

Theorem 2.6.3 (Norton [33]). If A is an abelian group with elements of odd order,

T is an abelian group with exponent 2, and K is a diassociative loop such that

1. elements of K have order 1, 2 or 4,

2. there exist elements x, y in K such that `x, ye � H8,

3. every element of K of order 2 is in the center,

4. if x, y, z >K are of order 4, then x2
= y2
= z2,

xy = d ċ yx where d = 1 or d = x2,

and xy ċ z = h(x ċ yz) where h = 1 or h = x2,

then their direct product A � T �K is a diassociative Hamiltonian loop.

Theorem 2.6.3 with A = T = 1 can alternatively be used to establish Theo-

rem 2.6.1 for all Cayley–Dickson loops.
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Chapter 3

Automorphism Groups

In this section we study the automorphism groups of the Cayley–Dickson loops.

3.1 Motivation

Define the orbit of a setX under the action of a groupG by OG(X) = �gx S g > G, x >X�.

Define the (pointwise) stabilizer of a set X in G by GX = �g > G S gx = x, x >X�.

Orbit-Stabilizer Theorem 3.1.1. [37, p.67] If G is a finite group acting on a

finite set X, then SOG(X)S = [G � GX] = SGS
SGX S .

We use Theorem 3.1.1 to find an upper bound on the size of Aut(C4) and

Aut(H8). Let us first consider G = Aut(C4). Any automorphism of C4 fixes 1 and −1

(1 is the only element of order 1, and −1 is the only element of order 2), therefore

it is only possible for an automorphism to map i1 ( i1 (e.g., the identity mapping),

and i1 ( −i1 (e.g., conjugation). The size of the orbit OG(i1) is therefore 2. Note

that G�i1� = GC4 , since C4 is generated by i1. It follows that

SGS = SOG(i1)S ċ TG�i1�T = SOG(i1)S = 2.

Next, let G = Aut(H8). Again, 1 and −1 are fixed by any automorphism and are
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not in OG(i1), therefore the size of SOG(i1)S can be at most SH8S − 2 = 6. When i1

is stabilized, TG�i1�T = UOG�i1�
(i2)U ċ TG�i1,i2�T, moreover, G�i1,i2� = GH8 , since H8 is

generated by �i1, i2�. The orbit OG�i1�
(i2) can have the size at most SH8S − 4 = 4,

because the set �1,−1, i1,−i1� is fixed. We have

SGS = SOG(i1)S ċ TG�i1�T = SOG(i1)S ċ UOG�i1�
(i2)U ċ TG�i1,i2�T (3.1.1)

= SOG(i1)S ċ UOG�i1�
(i2)U B 6 ċ 4 = 24.

It has been shown, in fact, (see, e.g., [43]), that Aut(H8) is isomorphic to the sym-

metric group S4 of order 24.

Recall that the special linear group SL2(7) is the group of invertible 2 � 2 matri-

ces over the finite field with 7 elements having a unit determinant. Let I be the

identity matrix of SL2(7). Then the projective special linear group PSL2(7) is a

quotient group SL2(7)~�I,−I�; it is a nonabelian simple group of order 168. The

group PSL2(7) is the group of symmetries of the Fano plane, and has important

applications in algebra and geometry. It has been established in [27] that Aut(O16)
has order 1344 and is an extension of the elementary abelian group (Z2)3 of order 8

by PSL2(7). One can use an approach similar to (3.1.1) to see what Aut(O16) looks

like.

To get an idea about the general case, we calculated the automorphism groups of

S32 and T64 using LOOPS package for GAP. This information is summarized in Ta-

ble 3.1. One may notice that the automorphism groups of C4, H8 and O16 are as big

as they possibly can be, subject to the obvious structural restrictions in C4,H8,O16.

On the contrary, the automorphism groups of S32 and T64 are only double the size

of the preceding ones. Theorem 3.1.2 below explains such behavior.
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Qn Size of Aut(Qn) Structure of Aut(Qn)

C4 2 Z2

H8 24 S4

O16 1344 = 8 ċ 168 Extension of (Z2)3 by PSL2(7)
S32 2688 = 1344 ċ 2 Aut(O16) �Z2

T64 5376 = 2688 ċ 2 Aut(S32) �Z2

Table 3.1: Automorphism groups of Qn, n B 5

Recall that we use

e = in

to denote the unit added in the n − th step of the doubling construction.

Theorem 3.1.2. Let n C 4. If φ � Qn � Qn is an automorphism and ψ = φ IQn−1,

then

1. φ (1) = 1, φ (−1) = −1,

2. φ (e) = e or φ (e) = −e,

3. ψ > Aut(Qn−1),

4. φ((x,1)) = ψ(x)φ(e),∀x > Qn−1.

See Figure 3.1.

Figure 3.1: Automorphism group of Qn, n C 4

35



3.2 Octonion and Quasioctonion Loops

We establish several auxiliary results and use them to prove Theorem 3.1.2 at the

end of the chapter. The following lemma shows that all subloops of Qn of or-

der 16 fall into two isomorphism classes. In particular, any such subloop is either

isomorphic to O16, the octonion loop, or Õ16, the quasioctonion loop, described

in [6, 10]. The octonion loop is Moufang; however, the quasioctonion loop is not.

We take `i1, i2, i3e = ��1, i1, i2, i1i2, i3, i1i3, i2i3, i1i2i3� as a canonical octonion loop,

and `i1, i2, i3i4e = ��1, i1, i2, i1i2, i3i4, i1i3i4, i2i3i4, i1i2i3i4� as a canonical quasiocto-

nion loop in S32. We use LOOPS package for GAP [32] in Lemma 3.2.1 and further

in the text to establish the isomorphisms between the subloops we construct, and

either O16 or Õ16. Suppose S is a subloop of order 2n in a Cayley–Dickson loop.

We want to extend it to a subloop T of order 2n+1 by adjoining an element z. Then

T = S 8 Sz. The multiplication in T is given by

x ċ y = xy,

x ċ yz = [x, y, z](xy)z,

xz ċ y = [y, xz]y ċ xz = [y, xz][y, x, z]yx ċ z,

xz ċ yz = [y, z]xz ċ zy = [y, z][x, z, zy]x(z ċ zy) = −[y, z][x, z, zy]xy,

where x, y > S. Because the commutators [x, y] = −1 when y ¶ `xe, all we need

in order to specify the multiplication in T are the associators [x, y, z], [x, z, zy] for

x, y > S. By Lemmas 2.4.4 and 2.4.9, [x, z, zy] = [zy, z, x] = [xy, x, z], so we only

need to know the associators [x, y, z] for x, y > S. Recall that S`x, y, zeS B 16 for

x, y, z > Qn.

Lemma 3.2.1. If x, y, z are elements of Qn such that S`x, y, zeS = 16, then either

`x, y, ze � O16 or `x, y, ze � Õ16.
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Proof. Suppose that S is a subloop of Qn of order 8, S = ��1, x, y, xy�. We need to

know the following associators to determine a loop T = `S, ze:

[x, y, z],

[x,xy, z] = [x, y, z], (Lemma 2.4.7)

[y, x, z],

[y, xy, z] = [y, yx, z] = [y, x, z], (Lemma 2.4.7)

[xy, x, z],

[xy, y, z] = [xy, x, z]. (Lemma 2.4.7)

Thus all we need to describe T are the 3 associators [x, y, z], [y, x, z], [xy, y, z], this

can be seen in Table 3.2. For example,

(xy)(xz) = −[xy, x, z](x(xy))z = [xy, x, z]yz,

(xy)(yz) = [xy, y, z]((xy)y)z = −[xy, y, z]xz = −[xy, x, z]xz,

x((xy)z) = [x,xy, z](x(xy))z = −[x, y, z]yz,

y((xy)z) = −[y, xy, z]((xy)y)z = [y, x, z]xz,

(xz)((xy)z) = [x(xy), x, z]x(xy) = −[y, x, z]y,

(yz)((xy)z) = [y(xy), y, z]y(xy) = [x, y, z]x,

(xz)(yz) = [xy, x, z]xy.

If [x, y, z] = [y, x, z] = [xy, x, z] = −1, then `x, y, ze � O16 by �x, y, z�( �i1, i2, i3�.
If [x, y, z] = [y, x, z] = −1, [xy, x, z] = 1, then `x, y, ze � Õ16 by �xy, xz, x� (
�i1, i2, i3i4�.
If [x, y, z] = [xy, x, z] = −1, [y, x, z] = 1, then `x, y, ze � Õ16 by �y, xz, x� (
�i1, i2, i3i4�.
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If [x, y, z] = −1, [y, x, z] = [xy, x, z] = 1, then `x, y, ze � Õ16 by �x, z, y�( �i1, i2, i3i4�.
If [x, y, z] = 1, [y, x, z] = [xy, x, z] = −1, then `x, y, ze � Õ16 by �x, yz, y� (
�i1, i2, i3i4�.
If [x, y, z] = [xy, x, z] = 1, [y, x, z] = −1, then `x, y, ze � Õ16 by �y, z, x�( �i1, i2, i3i4�.
If [x, y, z] = [y, x, z] = 1, [xy, x, z] = −1, then `x, y, ze � Õ16 by �xy, z, x� (
�i1, i2, i3i4�.
If [x, y, z] = [y, x, z] = [xy, x, z] = 1, then `x, y, ze � Õ16 by �x, y, z�( �i1, i2, i3i4�.

1 x y xy z xz yz (xy)z

x −1 xy −y xz −z [x, y, z](xy)z −[x, y, z]yz

y −xy −1 x yz −[y, x, z](xy)z −z [y, x, z]xz

xy y −x −1 (xy)z [xy, x, z]yz −[xy, x, z]xz −z

z −xz −yz −(xy)z −1 x y xy

xz z [y, x, z](xy)z −[xy, x, z]yz −x −1 [xy, x, z]xy −[y, x, z]y
yz −[x, y, z](xy)z z [xy, x, z]xz −y −[xy, x, z]xy −1 [x, y, z]x
(xy)z [x, y, z]yz −[y, x, z]xz z −xy [y, x, z]y −[x, y, z]x −1

Table 3.2: Multiplication table of `x, y, ze of order 16

The well-known multiplication Fano plane mnemonic for the octonion loop is

shown in Figure 3.2. The plane contains 7 vertices (representing non-identity octo-

nion units) and 7 lines (representing multiplication of these units). Exactly three

lines go through every vertex, and there are exactly three vertices on every line. The

arrows point in the direction of multiplication. To memorize the triples of adjacent

vertices, one needs to remember that 1 ċ 2 = 4, the anticommutativity

j ċ k =m� k ċ j = −m,

and the index cycling identity

j ċ k =m� (j + 1) ċ (k + 1) = (m + 1) mod 7, j, k,m > �1, . . .7�

The mnemonic together with the facts that 1 is the multiplicative identity, and that
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�1, . . .7� are square roots of −1, completely determines the multiplication table of

the octonion loop.

The Fano plane mnemonic for the quasioctonion loop is shown in Figure 3.3. All

arrows except (1,2,4) are reversed compared to the octonion plane.

Figure 3.2: Octonion loop multiplication Fano plane

Figure 3.3: Quasioctonion loop multiplication Fano plane
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Lemma 3.2.2 shows that e > Qn is special; if we consider a subloop `x, y, ee of

Qn such that S`x, y, eeS = 16, then `x, y, ee is always a copy of the octonion loop O16.

Lemma 3.3.5 shows that this, however, is not the case for any element of Qn���e�.
Therefore, an automorphism on Qn cannot map e to an element x > Qn���e�. Also,

we use Lemma 3.3.4 to show that an automorphism on Qn cannot map an element

x to ye for any x, y > Qn−1.

Lemma 3.2.2. `x, y, ee � O16 for any x, y > Qn such that e ¶ `x, ye � H8.

Proof. Let x, y be elements of Qn such that e ¶ `x, ye � H8. As follows from the

proof of Lemma 3.2.1, in order to prove that `x, y, ee � O16, it is sufficient to show

that

[x, y, e] = [x, e, y] = [x, y, xe] = −1.

Let x, y be elements of Qn−1. We use Lemma 2.4.10, and consider the following

cases:

If x = (x,0), y = (y,0), then xe = (x,0)(1,1) = (x,1), and

[x, y, e] = [(x,0), (y,0), (1,1)] = [x, y][1, y, x] = −1,

[x, e, y] = [(x,0), (1,1), (y,0)] = [x, y][1, x, y][1, y, x] = −1,

[x, y, xe] = [(x,0), (y,0), (x,1)] = [x, y][x, y, x] = −1.

If x = (x,0), y = (y,1), then xe = (x,0)(1,1) = (x,1), and

[x, y, e] = [(x,0), (y,1), (1,1)] = [x, y][x,1][1, x, y][x,1, y] = −1,

[x, e, y] = [(x,0), (1,1), (y,1)] = [x,1][x, y][y, x,1][x, y,1] = −1,

[x, y, xe] = [(x,0), (y,1), (x,1)] = [x, y][x,x][x,x, y][x,x, y] = −1.
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If x = (x,1), y = (y,0), then xe = (x,1)(1,1) = (−x,0), and

[x, y, e] = [(x,1), (y,0), (1,1)] = [y, x][y,1][1, y, x] = −1,

[x, e, y] = [(x,1), (1,1), (y,0)] = [y, x][y,1][1, x, y][1, y, x] = −1,

[x, y, xe] = [(x,1), (y,0), (−x,0)] = [y,−x][x, y,−x] = −1.

If x = (x,1), y = (y,1), then xe = (x,1)(1,1) = (−x,0), and

[x, y, e] = [(x,1), (y,1), (1,1)] = [x, y][x,1][y,1][1, x, y][x,1, y] = −1,

[x, e, y] = [(x,1), (1,1), (y,1)] = [x,1][x, y][1, y][y, x,1][x, y,1] = −1,

[x, y, xe] = [(x,1), (y,1), (−x,0)] = [−x,x][−x, y][y, x,−x][y,−x,x] = −1.

We conclude that [x, y, e] = [x, e, y] = [x, y, xe] = −1 for any x, y > Qn such that

e ¶ `x, ye � H8. By Lemma 3.2.1, `x, y, ee � O16 by �x, y, e�( �i1, i2, i3�.

The immediate consequence of Lemma 3.2.2 is that any three distinct canonical

generators produce the octonion loop. We do not use this fact, but it might give

some information about isomorphism classes of subloops of Qn in future.

Corollary 3.2.3. Let Qn be a Cayley–Dickson loop, n C 3, and let ij , ik, im be its

distinct canonical generators. Then `ij , ik, ime � O16.

Proof. Without loss of generality, let m A k, j. Then Qn I`i1,i2,...,ime� Qm. Also,

ij , ik > Qm, and im ¶ `ij , ike � H8. By Lemma 3.2.2, `ij , ik, ee � O16, where e = im =

(1Qm−1 ,1) > Qm.

The following lemma helps to distinguish between some copies of O16 and Õ16,

and is used to prove Lemmas 3.3.4 and 3.3.5.
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Lemma 3.2.4. Let x, y, z > Qn−1, n C 4 be such that `x, y, ze � O16. Then in Qn

`(x,0), (y,0), (z,0)e � `(x,1), (y,1), (z,1)e � O16,

`(x,0), (y,0), (z,1)e � `(x,0), (y,1), (z,1)e � Õ16.

Proof. Let x, y, z > Qn−1 be such that `x, y, ze � O16. By Lemma 2.4.2, [x, y, z] =
[x, z, y] = [y, x, z] = −1, and [x, y] = [y, z] = [x, z] = −1. Using Lemma 2.4.10,

[(x,0), (z,1), (y,0)] = [x, y][z, x, y][z, y, x] = −1 (3.2.1)

shows that `(x,0), (y,0), (z,1)e A H8 and hence S`(x,0), (y,0), (z,1)eS = 16, while

[(x,0), (y,0), (z,1)] = [x, y][z, y, x] = 1 (3.2.2)

shows that `(x,0), (y,0), (z,1)e is not Moufang and therefore `(x,0), (y,0), (z,1)e �
Õ16. Similarly, using Lemma 2.4.10,

[(y,1), (x,0), (z,1)] = [x, y][x, z][z, x, y] = −1, (3.2.3)

[(x,0), (y,1), (z,1)] = [x, y][x, z][z, x, y][x, z, y] = 1 (3.2.4)

shows that `(x,0), (y,1), (z,1)e � Õ16.

A loop `(x,0), (y,0), (z,0)e � O16 is a copy of `x, y, ze in Qn.

A loop `(x,1), (y,1), (z,1)e � O16 by �(x,1), (y,1), (z,1)�( �i1, i2, i3�.

3.3 Subloops of Index 2

Let B be a subloop of Qn of index 2 and D be a subloop of Qn−1 of index 2. One

calls B a subloop of the first type when B = Qn−1, a subloop of the second type when

B =D 8De, a subloop of the third type when B =D 8 (Qn−1�D) e (see Figure 3.4).
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Figure 3.4: Three types of subloops of Qn

Figure 3.5 illustrates all subloops of index 2 of the sedenion loop S32. Rows in

the figure correspond to the subloops, columns show the elements these subloops

contain. One may notice that each of the subloops is of one of three types. The

following lemma shows that this is the case for all Cayley–Dickson loops.

Figure 3.5: Subloops of S32 of index 2

Lemma 3.3.1. Let H be an elementary abelian 2-group, let Q =H�Z2, and let S be

a subgroup of Q of index 2. Then either S =H � 0 or SS 9 (H � 0)S = SS 9 (H � 1)S =
SSS
2 .

Proof. If S =H�0, we are done. Else let x = (h,1) > S, A = S9(H�0), B = S9(H�1).
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Note that xA b B, xB b A. Since the left translation Lx is injective, it follows that

SAS B SBS and SBS B SAS, i.e., SAS = SBS = SSS2 .

Lemma 3.3.2. Let S be a subloop of Qn of index 2, then either S is a subloop of

Qn−1 or SS 9Qn−1S = SS 9Qn−1eS = SSS2 .

Proof. Barring trivialities, Z(Qn) B S. The statement holds in Qn~Z(Qn) by

Lemma 3.3.1, hence also in Qn by the Correspondence Theorem 1.2.6.

Lemma 3.3.3. If B is a subloop of Qn of index 2, then B is a subloop of either the

first, or the second, or the third type.

Proof. If B = Qn−1, it is of the first type. Suppose B x Qn−1. Let C = B 9Qn−1. By

Lemma 3.3.2, SC S = SBS2 . If e > B then B = C 8Ce, a subloop of the second type. Else

C 9Ce = g, so B = C 8 (Qn−1�C)e, a subloop of the third type.

Next, we show that, starting at S32, any subloop of Qn of the third type is not

a Cayley–Dickson loop.

Lemma 3.3.4. Let B x Qn−1 be a subloop of Qn of index 2 and D be a subloop of

Qn−1 of index 2, n C 4.

1. For any x > Qn−1, x x �1 there exist y, z > Qn−1 such that `x, y, ze � O16,

�x, y, z� 9D x g and �x, y, z� 9 (Qn−1�D) x g.

2. If e ¶ B then for any x > B, x x �1 there exist y, z > B such that `x, y, ze � Õ16.

3. If e ¶ B then B � Qn−1. In particular, any subloop of the third type is not a

Cayley–Dickson loop.

Proof. 1. The order of D is SQn−1S
2 C 8. Let in−1 > Qn−1. If x > D, choose y ¶

D8`in−1, xe, then `in−1, x, ye � O16 by Lemma 3.2.2. Similarly, if x ¶D, choose

y > D, y ¶ `in−1, xe, then `in−1, x, ye � O16 by Lemma 3.2.2. If x = in−1, choose

y ¶D 8 `in−1e and z >D� `in−1, ye, then `in−1, x, ye � O16 by Lemma 3.2.2.
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2. By Lemma 3.3.3, B =D 8 (Qn−1�D) e for some subloop D of Qn−1 of index 2.

Let x > B, x x �1, then either x = (x̄,0) or x = (x̄,1) for some �1 x x̄ > Qn−1.

By 1 there exist y, z > Qn−1 such that `x̄, y, ze � O16, �x̄, y, z� 9 D x g and

�x̄, y, z� 9 (Qn−1�D) x g. Without loss of generality, suppose y > D and

z > Qn−1�D, then either (x̄,0) , (y,0) , (z,1) > B or (x̄,1) , (y,0) , (z,1) > B.

Using (3.2.1), (3.2.2), (3.2.3), (3.2.4) we have either

`(x̄,0) , (y,0) , (z,1)e � Õ16 or

`(x̄,1) , (y,0) , (z,1)e � Õ16.

3. By Lemma 3.2.2, there is an element in−1 > Qn−1 such that for any x, y > Qn−1,

S`in−1, x, yeS = 16 implies that `in−1, x, ye � O16. However, by 2, B does not

contain such an element.

Lemma 3.3.5. Let x > Qn� ��1,�e�, n C 4. There exist y, z > Qn such that `x, y, ze �
Õ16.

Proof. Without loss of generality, suppose x > Qn−1. By Lemma 3.3.4 part 1,

there exist y, z > Qn−1 such that `x, y, ze � O16. Using (3.2.1), (3.2.2), we have

`(x,0) , (y,0) , (z,1)e � Õ16.

3.4 Automorphism Groups

Define the following mappings on Qn:

(id,−id) � (x,xn+1)( ((−1)xn+1x,xn+1),

(id, id) � (x,xn+1)( (x,xn+1),
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where x > Qn−1 and xn+1 > �0,1�. The mapping (id, id) is an identity; the mapping

(id,−id) is an automorphism, as can be seen in Lemma 3.4.1.

Lemma 3.4.1. Let Qn be a Cayley–Dickson loop, let x > Qn−1, xn+1 > �0,1�. Then

the mapping φ = (id,−id) � (x,xn+1)( ((−1)xn+1x,xn+1) is an automorphism on Qn.

Proof. We need to consider the following cases:

φ((x,0)(y,0)) = φ((xy,0)) = (xy,0) = (x,0)(y,0) = φ((x,0))φ((y,0)),

φ((x,0)(y,1)) = φ((yx,1)) = (−yx,1) = (x,0)(−y,1) = φ((x,0))φ((y,1)),

φ((x,1)(y,0)) = φ((xy�,1)) = (−xy�,1) = (−x,1)(y,0) = φ((x,1))φ((y,0)),

φ((x,1)(y,1)) = φ((−y�x,0)) = (−y�x,0) = (−x,1)(−y,1) = φ((x,1))φ((y,1)).

Proof. (of Theorem 3.1.2) Let φ � Qn � Qn, n C 4, be an automorphism.

1. By Proposition 2.1.1, φ (1) = 1, φ (−1) = −1.

2. Let x > Qn� ��1,�e�. By Lemma 3.3.5, there exist y, z > Qn such that `x, y, ze �
Õ16, however, by Lemma 3.2.2, `e, y, ze � O16 for any y, z > Qn. Therefore it

is only possible that φ (e) = e, which holds when φ is an identity mapping, or

φ (e) = −e, which holds when φ = (id,−id).

3. Consider the subloops of Qn of index 2. For x > Qn, let χ(x) denote the

number of such subloops isomorphic to Qn−1 containing x. By Lemma 3.3.4,

any subloop of the third type is not isomorphic to Qn−1. The subloop of the

first type (there is only one such subloop) is a copy of Qn−1 in Qn of the form

�x S x > Qn−1�. If B is a subloop of the second type, then for any x > Qn−1 we

have x > B if and only if xe > B. Thus for x > Qn−1 we have χ(xe) = χ(x) − 1.

Let us show that if x > Qn−1 and φ > Aut(Qn), then φ(x) > Qn−1. Suppose
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that φ(x) = ye for some y > Qn−1. Then

χ(x) = χ(φ(x)) = χ(ye) = χ(y) − 1, (3.4.1)

but we also have

φ(xe) = φ(x)φ(e) = �(ye)e = �y,

χ(y) = χ(φ(xe)) = χ(xe) = χ(x) − 1, (3.4.2)

thus (3.4.1) and (3.4.2) lead to contradiction.

4. Let x > Qn−1. Using the multiplication formula (1.4.3), xe = (x,0)(1,1) =
(x,1). If φ is an automorphism on Qn, then

φ((x,1)) = φ((x,0)(1,1)) = φ((x,0))φ((1,1)) = ψ(x)φ(e).

Recall the following proposition.

Proposition 3.4.2 ([16]). A group G is a direct product of groups N and K iff

1. N and K are normal subgroups of G,

2. G = NK,

3. N 9K = id, the trivial subgroup of G.

Finally, we show that, starting at S32, Aut(Qn) is a direct product of Aut(Qn−1)
and a cyclic group of order 2.

Theorem 3.4.3. Let Qn be a Cayley–Dickson loop and let n C 4. Then Aut (Qn) �
Aut (Qn−1)�Z2 � Aut(O16)�(Z2)n−3. The order of Aut(Qn) is therefore 1344 ċ2n−3.

Proof. Let G = Aut (Qn), K = Aut (Qn−1), N = �(id, id) , (id,−id)� � Z2, n C 4.
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1. The group K is normal in G because [G �K] = 2.

2. Next, let us show that N is normal in G. Let g > G, h > N . Note that

g−1hg > N iff g−1hg IQn−1= idQn−1 . Let x > Qn−1, g = kh0, where k >K, h0 > N .

Then

g−1hg (x) = h−10 k−1hk h0 (x)´¹¹¹¹¸¹¹¹¹¹¶
x

= h−10 k−1 hk (x)
´¹¹¹¹¹¸¹¹¹¹¹¹¶

k(x)>Qn−1

= h−10 k−1k (x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x

= h−10 (x) = x,

therefore g−1hg > N .

3. Since N is not a subset of K, we have SKN S A SK S = SGS2 , so KN = G.

4. Obviously, (id,−id) ¶K and N 9K = �id�.
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Chapter 4

Inner Mapping Groups And

Multiplication Groups

In this chapter we study multiplication groups and inner mapping groups of the

Cayley–Dickson loops Qn. When n B 2, the loop Qn is a group, and the structure

of Mlt(Qn) and Inn(Qn) is known (see Remark 1.2.3). We therefore focus on

nonassociative Cayley–Dickson loops Qn, n C 3.

4.1 Inner Mapping Groups

Lemma 4.1.1. Let Qn be a Cayley–Dickson loop. Elements of Mlt(Qn) are even

permutations.

Proof. Consider Lx. If SxS = 1 then Lx = id. If SxS = 2 then LxLx(y) = xxy = y for

every y, so Lx is a product of SQnS ~2 = 2n transpositions (of the form (y, xy)), and

since 2n is even, Lx is even. If SxS = 4 then Lx is a product of 2n−1 4-cycles (of

the form (y, xy, xxy, xxxy)), and since 2n−1 is even, Lx is even. Similarly for right

translations. Hence Mlt(Qn) is generated by even permutations, and it therefore

consists of even permutations.
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Lemma 4.1.2. Let Qn be a Cayley–Dickson loop, and let x, y x �1, x x �y be

elements of Qn. Then

Tx = M
1,xxz>Qn~��1�

(z,−z),

TyTx = (x,−x)(y,−y). (4.1.1)

Lx,e = M
1,x,e,xexz>Qn~��1�

(z,−z),

Ly,eLx,e = (x,−x)(y,−y)(xe,−xe)(ye,−ye), for x, y x �e. (4.1.2)

Proof. Consider Tx,Rx,y, Lx,y acting on z > Qn. Using diassociativity,

Tx(z) = x−1(zx) = [x, z]x−1(xz) = [x, z](x−1x)z = [x, z]z, (4.1.3)

Lx,y(z) = (yx)−1(y(xz)) = [y, x, z](yx)−1((yx)z) (4.1.4)

= [y, x, z]((yx)−1(yx))z = [y, x, z]z,

Rx,y(z) = ((zx)y)(xy)−1 = [z, x, y](z(xy))(xy)−1 (4.1.5)

= [z, x, y]z((xy)(xy)−1) = [z, x, y]z.

Let x, y x �1, x x �y. If z > ��1, x�, then `x, ze � `xe � C4, and [x, z] = 1. Otherwise,

`x, ze � H8, and [x, z] = −1. Using (4.1.3),

Tx(z) = [x, z]z =
¢̈̈
¨̈̈
¦̈̈
¨̈̈¤

z, if z > ��1, x�,

−z otherwise.

Similarly, if z > ��x, y�, then [y, z][x, z] = −1. Otherwise, if z x �1, then `x, ze �
`y, ze � H8, and [y, z] = [x, z] = −1, if z = �1, then `x, ze � `y, ze � C4, and [y, z] =
[x, z] = 1. We get
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TyTx(z) = [y, z][x, z]z =
¢̈̈
¨̈̈
¦̈̈
¨̈̈¤

−z, if z > ��x, y�,

z otherwise.

Let x, y x �e. If z > ��1, x, e, xe�, then `e, x, ze � `e, xe � H8, and [e, x, z] = 1.

Otherwise, `e, x, ze � O16 by Lemma 3.2.2, and [e, x, z] = −1. Using (4.1.4),

Lx,e(z) = [e, x, z]z =
¢̈̈
¨̈̈
¦̈̈
¨̈̈¤

z, if z > ��1, x, e, xe�,

−z otherwise.

Similarly,

Ly,eLx,e(z) = [e, y, z][e, x, z]z =
¢̈̈
¨̈̈
¦̈̈
¨̈̈¤

−z, if z > ��x, y, xe, ye�,

z otherwise.

Corollary 4.1.3. Let Qn be a Cayley–Dickson loop. Then

Lx,y = Rx,y for all x, y > Qn.

Proof. Let x, y, z > Qn. By Lemma 2.4.4,

[y, x, z] = [z, x, y],

Lx,y = Rx,y follows from (4.1.4), (4.1.5) in Lemma 4.1.2.

Theorem 4.1.4. Let Qn be a Cayley–Dickson loop, n C 1. Then Inn(Qn) is an

elementary abelian 2-group of order 22n
−2. Moreover, every f > Inn(Qn) is a product

of disjoint transpositions of the form (x,−x).
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Proof. Recall that Z(Qn) = �1,−1�. Inner mappings fix Z(Qn) pointwise, therefore

f(1) = 1, f(−1) = −1.

Let x > Qn, x x �1. Then SxS = 4 and S = `xe = �1, x,−1,−x�. We know that Qn is

Hamiltonian, therefore S V Qn. Inner mappings fix normal subloops, thus f(S) = S,

and it follows that either f(x) = x, f(−x) = −x, or f(x) = −x, f(−x) = x. Hence

every f has the desired form. In particular, Sf S = 2. A group of exponent 2 is an

elementary abelian 2-group.

Let e = in be a canonical generator of Qn, let x > Qn, x ¶ ��1, e�. Then TxTe =

(x,−x)(e,−e) by Lemma 4.1.2. For every f > Inn(Qn), there is f̃ = TxTef > Inn(Qn)
such that

f̃(z) =
¢̈̈
¨̈̈
¦̈̈
¨̈̈¤

−f(z), when z > ��x, e�,

f(z), otherwise.

Also, the values of f(e), f(−e) are uniquely determined by the values of f(z), z x �e,
since f should remain an even permutation by Lemma 4.1.1 (see Figure 4.1).

Figure 4.1: Inner mapping group of Qn

It follows that SInn(Qn)S = 2SQnS~2−2
= 22n

−2.

Lemma 4.1.5. Let f > Mlt(Qn), then Sf S > �1,2,4�. In particular, f is a product

of disjoint 2-cycles and 4-cycles.
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Proof. Denote by −1 the translation L−1 = R−1 > Mlt(Qn). Let f > Mlt(Qn). Let

x > Qn be such that f(1) = x. Then there is h > Inn(Qn) such that f = Lxh. If x = 1

then f > Inn(Qn), and we are done. If x = −1 then f = −h, f2
= (−h)(−h) = h2

= 1,

and we are also done. Assume that x x �1. We know that f > LxInn(Qn). There

is y > Qn such that f > Inn(Qn)Ly, we want to determine y. Let f = Lxh = kLy

for some h, k > Inn(Qn). Since x x �1, we have y x �1. Then f(−y) = kLy(−y) =
k(1) = 1 and f(−y) = Lxh(−y) = x(�y) (since h(−y) is either y or −y), so we

conclude y = x or y = −x. In the former case, we have f = Lxh = kLx, and so

f2
= kLxLxh = k(−1)h = −kh, which has order at most two, so f4

= 1. In the latter

case, we have f = Lxh = kL−x, and so f2
= kL−xLxh = kh, which has order at most

two, so f4
= 1.

A loop Q is automorphic if Inn(Q) B Aut(Q). Automorphic loops were in-

troduced by Bruck and Paige [5] and received attention in the recent years, with

foundational papers [18], [23].

Corollary 4.1.6. Nonassociative Cayley–Dickson loops are not automorphic.

Proof. Let Qn be a Cayley–Dickson loop. For n B 2, Qn is a group and hence

is automorphic. Note that SInn(Qn)S = 22n
−2
A 1344 ċ 2n−3

= SAut(Qn)S for n A 3

(see Theorem 3.4.3). Let n = 3, and let i1, i2, i3 be canonical generators of Qn. If

Inn(Qn) 9Aut(Qn) = id, we are done. Otherwise, let f > Inn(Qn) 9Aut(Qn) be a

nontrivial mapping defined by

f(ik) = fk, k > �1,2,3�.

For every x > Qn, x ¶ ��i1, i2, i3�, we know that x =L3
j=1 i

εj

j (where εj > �0,1�), and

since f is an automorphism, f(x) is uniquely defined by

f(x) = f(
3

M
j=1

i
εj

j ) =
3

M
j=1

f(iεj

j ) =
3

M
j=1

f
εj

j .
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Let y ¶ ��i1, i2, i3, x�. Then by (4.1.1), f̃ = TyTxf satisfies

f̃ I
��i1,i2,i3� = f,

f̃(x) = −f(x),

so f̃ > Inn(Qn) but f̃ ¶ Aut(Qn).

4.2 Multiplication Groups

We establish the auxiliary Lemmas 4.2.1, 4.2.2, 4.2.3, 4.2.4 and use them in the

construction of Lemma 4.2.6 and the proof of Theorem 4.2.7.

Lemma 4.2.1. Let G be a finite group, and let g1, g2, . . . , gn be elements of G of

order 2 such that G = `g1, g2, . . . , gne. Then

SgjgkS = 2 iff gjgk = gkgj , j, k > �1, . . . , n�, j x k,

and if either holds for all j, k, then G is an elementary abelian 2-group.

Proof. Suppose SgjgkS = 2, then (gjgk)(gkgj) = gjg
2
kgj = g

2
j = 1 = (gjgk)(gjgk), and

hence gkgj = gjgk. If gkgj = gjgk, then (gjgk)2 = (gjgk)(gjgk) = (gjgk)(gkgj) =
gjg

2
kgj = g

2
j = 1, and SgjgkS = 2. If gkgj = gjgk for all j, k > �1, . . . , n�, j x k, it is

straightforward to check that G is an elementary abelian 2-group.

Lemma 4.2.2. Let Qn be a Cayley–Dickson loop, ij , ik among its canonical gener-

ators, and x > Qn. Let

pj,k(x) = Lij I��x,ijx,ikx,ij(ikx)�

= (x, ijx,−x,−ijx)(ikx, ij(ikx),−ikx,−ij(ikx)),

qj,k(x) = TikxTxpj,k(x),
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Mj,k,x,1 = �TijxTx, Tij(ikx)Tikx�,

Mj,k,x,−1 = �Tij(ikx)Tx, TikxTijx�.

Then Tqj,k(x)T = Ttpk,j(x)T = Tqj,k(x)(tpk,j(x))T = 2, where t >Mj,k,x,s, and s > Z(Qn)
satisfies ij(ikx) = s(ik(ijx)).

Proof. We write down the corresponding permutations and check that they only

contain involutions. Using Lemma 4.1.2,

qj,k(x) = TikxTxpj,k = (x, ijx)(−x,−ijx)(ikx, ij(ikx))(−ikx,−ij(ikx)),

hence Tqj,k(x)T = 2.

Let s be an element of Qn such that ij(ikx) = s(ik(ijx)). Note that s > Z(Qn) as a

product of commutators and associators, therefore s > �1,−1�.
If s = 1 and ij(ikx) = ik(ijx), then

pk,j(x) = (x, ikx,−x,−ikx)(ijx, ij(ikx),−ijx,−ij(ikx)),

TijxTxpk,j(x) = (x, ikx)(−x,−ikx)(ijx, ij(ikx))(−ijx,−ij(ikx)),

Tij(ikx)Tikxpk,j(x) = (x,−ikx)(−x, ikx)(ijx,−ij(ikx))(−ijx, ij(ikx)).

In this case,

qj,k(x) ċ (TijxTxpk,j(x)) = (x, ij(ikx))(−x,−ij(ikx))(ijx, ikx)(−ijx,−ikx),

qj,k(x) ċ (Tij(ikx)Tikxpk,j(x)) = (x,−ij(ikx))(−x, ij(ikx))(ijx,−ikx)(−ijx, ikx).

One can see that Ttpk,j(x)T = Tqj,k(x)(tpk,j(x))T = 2, where t > �TijxTx, Tij(ikx)Tikx�.
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Similarly, if s = −1 and ij(ikx) = −ik(ijx), then

pk,j(x) = (x, ikx,−x,−ikx)(ijx,−ij(ikx),−ijx, ij(ikx)),

Tij(ikx)Txpk,j(x) = (x, ikx)(−x,−ikx)(ijx, ij(ikx))(−ijx,−ij(ikx)),

TikxTijxpk,j(x) = (x,−ikx)(−x, ikx)(ijx,−ij(ikx))(−ijx, ij(ikx)).

In this case,

qj,k(x) ċ (Tij(ikx)Txpk,j(x)) = (x, ij(ikx))(−x,−ij(ikx))(ijx, ikx)(ijx, ikx),

qj,k(x) ċ (TikxTijxpk,j(x)) = (x,−ij(ikx))(−x, ij(ikx))(ijx,−ikx)(−ijx, ikx).

Again, Ttpk,j(x)T = Tqj,k(x)(tpk,j(x))T = 2, where t > �Tij(ikx)Tx, TikxTijx�.

We use the following property to prove Lemmas 4.2.3 and 4.2.4.

Lemma 4.2.3. Let Qn be a Cayley–Dickson loop, and let i1, i2, . . . , in be its canon-

ical generators. Then ik(inx) = −in(ikx) for any x > `i1, i2, . . . , in−1e, k < n.

Proof. Let x > `i1, i2, . . . , in−1e. Then

ik(inx) = [ik, in, x](ikin)x = [ik, in][ik, in, x](inik)x

= [ik, in][ik, in, x][in, ik, x]in(ikx).

Recall that `x, y, ine B O16 for any x, y > Qn, by Lemma 3.2.2, and `x, y, ine � O16

implies that [x, y, in] = −1. Also, [ik, in] = −1 as `ik, ine � H8. This leads to

[ik, in][ik, in, x][in, ik, x] =
¢̈̈
¨̈̈
¦̈̈
¨̈̈¤

−1 ċ 1 ċ 1 = −1, if x > `ik, ine ,

−1 ċ (−1) ċ (−1) = −1, otherwise.

We conclude that ik(inx) = −in(ikx).
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Lemma 4.2.4. Let Qn be a Cayley–Dickson loop, and let i1, i2, . . . , in be its canon-

ical generators. For any x > `i1, i2, . . . , in−1e, j < n, k < n, j x k, if ij(ikx) =
s(ik(ijx)), then ij(ik(xin)) = s(ik(ij(xin))) (where s > Z(Qn)).

Proof. Let x > `i1, i2, . . . , in−1e, and let s > Z(Qn) be such that ij(ikx) = s(ik(ijx)).
Then

ij(ik(xin)) = [ik, x, in]ij((ikx)in) = [ik, x, in][ij , ikx, in](ij(ikx))in
= [ik, x, in][ij , ikx, in]s((ik(ijx))in)

= [ik, x, in][ij , ikx, in][ik, ijx, in]sik((ijx)in)

= [ik, x, in][ij , ikx, in][ik, ijx, in][ij , x, in]sik(ij(xin)).

Recall that `x, y, ine B O16 for any x, y > Qn, by Lemma 3.2.2, and `x, y, ine � O16

implies that [x, y, in] = −1, which leads to

[ik, x, in][ij , ikx, in][ik, ijx, in][ij , x, in] =

¢̈̈
¨̈̈̈
¨̈̈̈
¨̈̈̈
¨̈̈̈
¨̈¦̈̈
¨̈̈̈
¨̈̈̈
¨̈̈̈
¨̈̈̈
¨̈¤

1 ċ (−1) ċ (−1) ċ 1 = 1, if x = �1,

−1 ċ (−1) ċ 1 ċ 1 = 1, if x = �ij ,

1 ċ 1 ċ (−1) ċ (−1) = 1, if x = �ik,

−1 ċ 1 ċ 1 ċ (−1) = 1, if x = �ijik,

−1 ċ (−1) ċ (−1) ċ (−1) = 1 otherwise.

We conclude that ij(ik(xin)) = s(ik(ij(xin))).

Proposition 4.2.5. A group G is a semidirect product of groups N and K iff

1. N is a normal subgroup of G, K is a subgroup of G,

2. G = NK,

3. N 9K = id, the trivial subgroup of G.
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In Lemma 4.2.6 we present a construction of the subgroup K of Mlt(Qn) which

is used in Theorem 4.2.7 to establish that Mlt(Qn) � (Inn(Qn) �Z(Qn)) #K. For

every x > Qn~�1,−1�, we want K to contain the element kx such that kx(1) > x.
This holds when K is generated by �Lik S ik a canonical generator of Qn�. We also

want K to be sufficiently small to allow (Inn(Qn) � Z(Qn)) 9K = id. To achieve

this, we should adjust the left translations Lik so that they generate a group as

small as needed. This is done by multiplying Lik by ψk > Inn(Qn) such that

SψkLik S = TψjLij T = T(ψkLik) ċ (ψjLij)T = 2 for all j, k B n, j x k. Consider the group

H8, where left translations by canonical generators are

Li1 = (1, i1,−1,−i1)(i2, i1i2,−i2,−i1i2),

Li2 = (1, i2,−1,−i2)(i1, i2i1,−i1,−i2i1) = (1, i2,−1,−i2)(i1,−i1i2,−i1, i1i2).

For an inner mapping ψ1 > Inn(H8) such that Sψ1Li1 S = 2 we can either take Ti2 , or

Ti1i2 (one can check that STi1Li1 S = 4),

Ti2Li1 = (1,−i1)(−1, i1)(i2,−i1i2)(−i2, i1i2),

Ti1i2Li1 = (1,−i1)(−1, i1)(i2, i1i2)(−i2,−i1i2).

Similarly, for an inner mapping ψ2 > Inn(H8) such that Sψ2Li2 S = 2 we can either

take Ti1 , or Ti1i2 ,

Ti1Li2 = (1,−i2)(−1, i2)(i1, i1i2)(−i1,−i1i2),

Ti1i2Li2 = (1,−i2)(−1, i2)(i1,−i1i2)(−i1, i1i2).

For a pair of mappings ψ1, ψ2 such that S(ψ1Li1) ċ (ψ2Li2)S = 2 we can either take

ψ1 = Ti2 , ψ2 = Ti1i2 , or ψ1 = Ti1i2 , ψ2 = Ti1 ,
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(Ti2Li1) ċ (Ti1i2Li2) = (1, i1i2)(−1,−i1i2)(i1, i2)(−i1,−i2),

(Ti1i2Li1) ċ (Ti1Li2) = (1,−i1i2)(−1, i1i2)(i1, i2)(−i1,−i2).

Without loss of generality, we choose ψ1 = Ti2 , ψ2 = Ti1i2 , and K2 = `g1,2, g2,2e =
`Ti2Li1 , Ti1i2Li2e. The group K2 is not unique, and this particular choice allows

to generalize the construction for higher dimensions. The group we present in

Lemma 4.2.6 is based on this choice and suffices to establish the structure ofMlt(Qn).
Note that the structure of Mlt(H8) is known (see Remark 1.2.3), so the construction

of K for H8 is only used as an initial step of the inductive construction for Qn.

Next, consider O16. We want to construct K3 based on K2 by extending the

generators of K2 to form the elements of K3, and including one more generator

based on Li3 . By Lemma 2.4.2, we have

i1(i2i3) = −(i1i2)i3,

i2(i1i3) = −(i2i1)i3 = (i1i2)i3,

i3(i1i2) = −(i1i2)i3,

hence

Li1 = (1, i1,−1,−i1)(i2, i1i2,−i2,−i1i2)(i3, i1i3,−i3,−i1i3)(i2i3,−(i1i2)i3,−i2i3, (i1i2)i3),

Li2 = (1, i2,−1,−i2)(i1,−i1i2,−i1, i1i2)(i3, i2i3,−i3,−i2i3)(i1i3, (i1i2)i3,−i1i3,−(i1i2)i3),

Li3 = (1, i3,−1,−i3)(i1,−i1i3,−i1, i1i3)(i2,−i2i3,−i2, i2i3)(i1i2,−(i1i2)i3,−i1i2, (i1i2)i3).

For every cycle (x, ikx,−x,−ikx) we want ψk to include either Tx, or Tikx (but not

both), so that the cycle becomes a product of two 2-cycles, either (x, ikx)(−x,−ikx),
or (x,−ikx)(−x, ikx). Note that a product of an odd number of mappings Tx1Tx2Tx3
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(where x1, x2, x3 > O16) fixes ��1, x1, x2, x3� and moves all other elements (see

Lemma 4.1.2). Taking ψ1 = Ti2Ti3Ti2i3 , ψ2 = Ti1i2Ti3Ti1i2i3 , we get

g1,3 = Ti2Ti3Ti2i3Li1

= (1,−i1)(−1, i1)(i2,−i1i2)(−i2, i1i2)

(i3,−i1i3)(−i3, i1i3)(i2i3, (i1i2)i3)(−i2i3,−(i1i2)i3),

g2,3 = Ti1i2Ti3Ti1i2i3Li2

= (1,−i2)(−1, i2)(i1,−i1i2)(−i1, i1i2)

(i3,−i2i3)(−i3, i2i3)(i1i3, (i1i2)i3)(−i1i3,−(i1i2)i3),

g1,3g2,3 = (1, i1i2)(−1,−i1i2)(i1, i2)(−i1,−i2)

(i3,−(i1i2)i3)(−i3, (i1i2)i3)(i1i3, i2i3)(−i1i3,−i2i3).

Again, this is one of several possible choices of g1,3, g2,3. Finally, we need to add a

generator g3,3 such that Sg3,3S = Sg1,3g3,3S = Sg2,3g3,3S = 2, one can choose, for example,

g3,3 = Ti1i2Ti1i3Ti2i3Li3

= (1,−i3)(−1, i3)(i1,−i1i3)(−i1, i1i3)

(i2,−i2i3)(−i2, i2i3)(i1i2, (i1i2)i3)(−i1i2,−(i1i2)i3),

which results in

g1,3g3,3 = (1, i1i3)(−1,−i1i3)(i1, i3)(−i1,−i3)

(i2,−(i1i2)i3)(−i2, (i1i2)i3)(i1i2, i2i3)(−i1i2,−i2i3),

g2,3g3,3 = (1, i2i3)(−1,−i2i3)(i2, i3)(−i2,−i3)

(i1,−(i1i2)i3)(−i1, (i1i2)i3)(i1i2, i1i3)(−i1i2,−i1i3).

Below is the description of the construction for Qn.
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Lemma 4.2.6. Let i1, i2, . . . , in be canonical generators of a Cayley–Dickson loop

Qn, and let K be the group constructed inductively as follows

s1,2 = �1, i2�, s2,2 = �1, i1i2�,

g1,2 = ( M
x>s1,2

Tx)Li1 ,

g2,2 = ( M
x>s2,2

Tx)Li2 ,

K2 = `g1,2, g2,2e ,

sk,n = �x, inx S x > sk,n−1�, k > �1, . . . , n − 1�,

sn,n =

¢̈̈
¦̈̈
¤

n

M
j=1

i
pj

j S pj > �0,1�,
n

Q
j=1

pj > 2Z
£̈̈
§̈̈
¥
,

gk,n = ( M
x>sk,n

Tx)Lik = ( M
x¶sk,n

(x,−x))Lik , k > �1, . . . , n�,

K = Kn = `g1,n, g2,n, . . . , gn,ne .

Then K is an elementary abelian 2-group of order 2n.

Proof. We show by induction on n that generators of K have order 2. If n = 2, then

g1,2 = Ti2T1Li1 = (1,−i1)(−1, i1)(i2,−i1i2)(−i2, i1i2),

g2,2 = Ti1i2T1Li2 = (1,−i2)(−1, i2)(i1,−i1i2)(−i1, i1i2)

are of order 2. Suppose that generators g1,n−1, g2,n−1, . . . , gn−1,n−1 of Kn−1 have

order 2. Note that a product of an odd number of mappings Tx1 . . . Tx2n−1−1
(where

x1, . . . , x2n−1
−1 > Qn) fixes ��1, x1, . . . , x2n−1

−1� and moves all other elements (see

Lemma 4.1.2). Left translation Lik consists of 4-cycles of the form

(x, ikx,−x,−ikx).

In order to transform such cycle into two 2-cycles, Lik is multiplied by either Tx, or
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Tikx. Then the cycle

(inx, ik(inx),−inx,−ik(inx))

that appears in the next step of the inductive construction, is multiplied by either

Tinx or Tin(ikx), leading to either

(inx,−ik(inx))(−inx, ik(inx)), or

(inx, ik(inx))(−inx,−ik(inx)),

respectively.

If x = 1, the 4-cycle that corresponds to (1, ik,−1,−ik) in the next step of the in-

ductive construction is (in, ikin,−in,−ikin), which is multiplied by Tin and becomes

(in,−ikin)(−in, ikin). It follows that gk,n consists of 2-cycles and therefore Tgk,nT = 2.

Consider a generator gn,n added at the n-th step of the inductive construction. Left

translation Lin consists of cycles of the form

(x, inx,−x,−inx)

where either x, or inx (but not both) is a product of even number of units ik, for

some k B n. In the former case, if x x �1, then multiplication of Lin by Tx transforms

a cycle (x, inx,−x,−inx) into

(x,−inx)(−x, inx),

otherwise, multiplication of Lin by Tinx transforms it into

(x, inx)(−x,−inx).

Also, Lin is multiplied by Txk
, xk x �in, an odd number of times, mapping in to −in,
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and a cycle (1, in,−1,−in) becomes

(1,−in)(−1, in).

Generator gn,n consists of 2-cycles and therefore SgnS = 2.

Next, use induction on n to show that

Tgj,ngk,nT = 2, for all j, k > �1, . . . , n�, j x k.

If n = 2, then

g1,2g2,2 = (1, i1i2)(−1,−i1i2)(i1, i2)(−i1,−i2)

and Sg1,2g2,2S = 2. Suppose that Tgj,n−1gk,n−1T = 2 for any pair of generators gj,n−1, gk,n−1

of Kn−1. Without loss of generality, let j < k. Up to renaming x and ijx, the cycles

pj,k(x) = Lij I��x,ijx,ikx,ij(ikx)�= (x, ijx,−x,−ijx)(ikx, ij(ikx),−ikx,−ij(ikx))

are acted upon by TikxTx to construct gj,n. Then, by Lemma 4.2.2, the cycles

pk,j(x) = Lik I��x,ijx,ikx,ij(ikx)�= (x, ikx,−x,−ikx)(ijx, ik(ijx),−ijx,−ik(ijx))

are acted upon by t >Mj,k,x,s, where t = TyTz for some y, z > Qn. The cycles

pj,k(xin) = (xin, ij(xin),−xin,−ij(xin))(ik(xin), ij(ik(xin)),−ik(xin),−ij(ik(xin)))

added at the next step of the inductive construction are multiplied by Tin(ikx)Tinx.

The cycles

pk,j(xin) = Lik I��xin,ij(xin),ik(xin),ij(ik(xin))�

= (xin, ik(xin),−xin,−ik(xin))(ij(xin), ik(ij(xin)),−ij(xin),−ik(ij(xin)))
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are multiplied by TyinTzin >Mj,k,xin,s. By Lemma 4.2.4, ij(ik(xin)) = s(ik(ij(xin))),
and therefore by Lemma 4.2.2,

T(T(ikx)inTxinpj,k(xin)) ċ (tpk,j(xin))T = 2 for t >Mj,k,xin,s.

It is left to show that Sgj,ngn,nS = 2, where j < n. Up to renaming x and ijx, the

cycles

pj,k(x) = Lij I��x,ijx,inx,ij(inx)�= (x, ijx,−x,−ijx)(inx, ij(inx),−inx,−ij(inx))

are acted upon by TinxTx. By Lemma 4.2.3, ij(inx) = −in(ijx), therefore by

Lemma 4.2.2,

T(TinxTxpj,k(x)) ċ (tpn,j(x))T = 2 where t > �TxTij(inx), TijxTinx�.

If x is a product of even number of units ik, for some k B n, then ij(inx) is also a

product of even number of units, so x, ij(inx) are in sn,n, and TxTij(inx) is a part of

the construction of gn,n. If x is a product of odd number of units, then ijx, inx are

products of even number of units, and are included in sn,n, so TijxTinx is a part of

the construction of gn,n. In both cases this leads to Sgj,ngn,nS = 2.

Summarizing, K satisfies the assumptions of Lemma 4.2.1 and is therefore an ele-

mentary abelian 2-group.

To determine the order of K, define a mapping φ � Qn~�1,−1��K by

φ(�ik,−ik�) = gk,n, k > �1, . . . , n�.
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Note that for any

x = ��
n

M
j=1

i
εj

j � > Qn~�1,−1� ( where εj > �0,1�), there is

g =

n

M
j=1

φ(iεj

j ) =
n

M
j=1

g
εj

j,n, (4.2.1)

such that g(1) > x. We conclude that

SK S C SQn~�1,−1�S = SQnS
2
= 2n.

Also, K is an elementary abelian 2-group with n generators, so

SK S B 2n. (4.2.2)

We conclude that the order of K is 2n.

For any loop Q, Albert showed Z(Mlt(Q)) = �Lx S x > Z(Q)� � Z(Q). To

improve legibility, we will identify Z(Mlt(Q)) with Z(Q) in what follows.

In Theorem 4.2.7 we use the group N = `Inn(Qn), Z(Qn)e = Inn(Qn)Z(Qn)
to establish the structure of Mlt(Qn). Recall that elements of Inn(Qn) are all

even products of 2-cycles (x,−x) (where 1 x x > Qn~�1,−1�). A group Inn(Qn)
stabilizes 1, therefore Inn(Qn)9Z(Qn) = 1. The index [N � Inn(Qn)] = 2, therefore

Inn(Qn) V N , and Z(Qn) V Mlt(Qn) implies Z(Qn) V N . It follows that N =

Inn(Qn) �Z(Qn), and N = Inn(Qn) 8 (−Inn(Qn)).
A basis for Inn(Qn) can be taken to be

�TxTe = (x,−x)(e,−e) S1, e x x > Qn~�1,−1�� .

Elements of N are all even products of 2-cycles (x,−x), for x > Qn~�1,−1�. A map-
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ping L−1Te = (1,−1)(e,−e) can be used to construct a basis for N (see Figure 4.2),

N� = �L−1Te, TxTe S1, e x x > Qn~�1,−1�� .

Figure 4.2: Group N = Inn(Qn) �Z(Qn)

Theorem 4.2.7. Let Qn be a Cayley–Dickson loop, n C 2. Then Mlt(Qn) �
(Inn(Qn) � Z(Qn)) # K, where K is the group constructed in Lemma 4.2.6. In

particular, Mlt(Qn) � ((Z2)2n
−2
�Z2) # (Z2)n.

Proof. Let G =Mlt(Qn), N = Inn(Qn) � Z(Qn), and K be the group constructed

in Lemma 4.2.6. We want to show that G = N #K.

1. Let α > N,g > G. There exist x > Qn, β > Inn(Qn) such that g = βLx. Consider

gαg−1 acting on 1,

gαg−1(1) = βLxα(βLx)−1(1) = βLxαL
−1
x β−1(1)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

1

= β LxαL
−1
x (1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
�1

= �β(1) = �1.

This shows that gαg−1 > Inn(Qn) 8 (−Inn(Qn)) = N , so N is normal in G.

2. By (4.2.1), (4.2.2), K contains a unique element g such that g(1) > �1,−1�.
Since K is a group, g = id, thus N 9K = id.

3. We established that N V G,K B G, and N 9K = id. We have N #K B G.
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Recall that

[Mlt(Qn) � Inn(Qn)] = SQnS , thus

[Mlt(Qn) � (Inn(Qn) �Z(Qn))] = [Mlt(Qn) � Inn(Qn)] ~2 = 2n
= SK S ,

and (Inn(Qn) �Z(Qn)) #K �Mlt(Qn) follows.

4.3 Group Action for Inn(Qn) �Z(Qn) VMlt(Qn)

We have shown that Mlt(Qn) is a semidirect product of two permutation groups N ,

K, both elementary abelian 2-groups. In this section we construct an isomorphic

copy of Mlt(Qn) as an external semidirect product of two abstract elementary

abelian 2-groups.

Recall that if N , K are groups and φ � K � Aut(N) is a homomorphism, then

the external semidirect product is defined on N �K by

(h1, k1) X (h2, k2) = (h1 � φk1(h2), k1 ċ k2), h1, h2 > N,k1, k2 >K.

In an internal semidirect product G = N #φ K, the action φ � K � Aut(N) is

natural, that is, by conjugation φk1(h2) = k1h2k
−1
1 .

Lemma 4.3.1. [36, p.170] Let G,N,K be finite groups such that N V G and G =

N #φ K. Then K acts on N by conjugation.

Let Qn be a Cayley–Dickson loop, let N = Inn(Qn)8 (−Inn(Qn)), with a basis

N� = �L−1Te, TxTe S1, e x x > Qn~�1,−1�� ,
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and let K be the group constructed in Lemma 4.2.6, with a basis

K� = �ψmLim S im a canonical generator of Qn, ψm > Inn(Qn)� .

Groups N and K can be viewed as vector spaces over GF (2), with dim(N) = SN�S =
UQn

2 U − 1 = 2n
− 1, dim(K) = SK�S = n. Let nj > N

�, km > K
�, φkm(nj) = k−1m njkm.

Note that N RMlt(Qn), therefore φkm(nj) > N . Every φkm is an automorphism of

N , and can be identified with a (2n
− 1) � (2n

− 1) matrix

Am = (a(m)jl ), where

φkm(nj) =
2n
−1

Q
l=1

a
(m)
jl nl,

a
(m)
jl > �0,1�.

We want to determine matrices Am, 1 B m B n. We have either nj = TxTe =

(x,−x)(e,−e), or nj = L−1Te = (1,−1)(e,−e). Let km(x) = y > ��imx�. By con-

struction, km = ψmLim has order 2 and only contains 2-cycles, thus (km)I
��x,y� =

(x, y)(−x,−y) and k−1m njkm = kmnjkm. We need to consider the following cases

1. If nj moves both x and y, then

(kmnjkm)I
��x,y� = (x, y)(−x,−y) ċ ((x,−x)(y,−y) ċ (x, y)(−x,−y))

= (x, y)(−x,−y) ċ (x,−y)(−x, y) = (x,−x)(y,−y) = (nj)I
��x,y� .

2. If nj fixes both x and y, then

(kmnjkm)I
��x,y� = (x, y)(−x,−y) ċ ((x)(−x)(y)(−y) ċ (x, y)(−x,−y))

= (x, y)(−x,−y) ċ (x, y)(−x,−y) = (x)(−x)(y)(−y) = (nj)I
��x,y� .
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3. If nj moves x and fixes y, then

(kmnjkm)I
��x,y� = (x, y)(−x,−y) ċ ((x,−x)(y)(−y) ċ (x, y)(−x,−y))

= (x, y)(−x,−y) ċ (x, y,−x,−y) = (x)(−x)(y,−y) = (−nj)I
��x,y� .

4. If nj fixes x and moves y, then

(kmnjkm)I
��x,y� = (x, y)(−x,−y) ċ ((x)(−x)(y,−y) ċ (x, y)(−x,−y))

= (x, y)(−x,−y) ċ (x,−y,−x, y) = (x,−x)(y)(−y) = (−nj)I
��x,y� .

Consider km = ψmLim acting on elements of N�, TxTe = (x,−x)(e,−e) (where 1 x

x > Qn~�1,−1�) and L−1Te = (1,−1)(e,−e).

1. Let m < n, i.e., im x e, then

(a) If x = im, then km(x) > ��i2m� = ��1�, and km(e) > ��ime�. It follows

that (φkm)I��x,1,e,ime� = −id and (φkm) = id otherwise.

(b) If x = ime, then km(x) > ��i2me� = ��e�, and km(e) > ��ime� = ��x�. It

follows that (φkm) = id.

(c) If km is acting on L−1Te, then km(−1) > ��im�, and km(e) > ��ime�. It

follows that (φkm)I��1,e,im,ime� = −id and (φkm) = id otherwise.

(d) In all other cases, km(x) > ��imx�, and km(e) > ��ime�. It follows that

(φkm)I��x,imx,e,ime� = −id and (φkm) = id otherwise.

2. If im = e, then

(a) If kn is acting on L−1Te, then kn(−1) > ��e�, and kn(e) > ��e2� = ��1�.
It follows that (φkn) = −id and φkn = id.

(b) In all other cases, kn(x) > ��inx�, and kn(e) > ��1�. It follows that

(φkn)I��x,inx,e,1� = −id and (φkn) = id otherwise.
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Summarizing,

φkm(L−1Te) = φkm(TikTe) = L−1Te ċ TikTe ċ TikeTe,

φkm(TikeTe) = id,

φkm(TxTe) = TxTe ċ TikxTe ċ TikeTe, where x ¶ ��ik, ike�,m < n,

φkn(TxTe) = L−1Te ċ TxTe ċ TxeTe,

φkn(L−1Te) = id.

This information allows us to construct Tables 4.1, 4.2.

φkm (N�) =

=

�
����������������������������������������
�

1 0 0 0. . . 0 1 0 0 0. . . 0 1 0. . . 0 0 0. . . 0 0

0 1 0 0. . . 0 0 1 0 0. . . 0 1 0. . . 0 0 0. . . 0 0

0 0 1 0. . . 0 0 0 1 0. . . 0 1 0. . . 0 0 0. . . 0 0

. . .

1 0 0 0. . . 0 1 0 0 0. . . 0 1 0. . . 0 0 0. . . 0 0

0 1 0 0. . . 0 0 1 0 0. . . 0 1 0. . . 0 0 0. . . 0 0

0 0 1 0. . . 0 0 0 1 0. . . 0 1 0. . . 0 0 0. . . 0 0

. . .

0 0 0 0. . . 0 0 0 0 0. . . 0 0 0. . . 0 0 0. . . 0 0

. . .

0 0 0 0. . . 0 0 0 0 0. . . 0 1 0. . . 0 1 0. . . 0 1

. . .

0 0 0 0. . . 0 0 0 0 0. . . 0 1 0. . . 0 1 0. . . 0 1

�
����������������������������������������
�

�
����������������������������������������
�

L−1Te

Ti1Te

Ti2Te

. . .

Tim Te

Ti1im Te

Ti2im Te

. . .

TimeTe

. . .

Ti1...im−1im+1...eTe

. . .

Ti1i2...eTe

�
����������������������������������������
�

Table 4.1: Action of km on N�, m < n

φkn (N�) =

�
���������������������������
�

0 0 0 0. . . 0 0 0 0 0. . . 0 0

1 1 0 0. . . 0 0 1 0 0. . . 0 0

1 0 1 0. . . 0 0 0 1 0. . . 0 0

. . .

1 0 0 0. . . 0 1 0 0 0. . . 0 1

1 1 0 0. . . 0 0 1 0 0. . . 0 0

1 0 1 0. . . 0 0 0 1 0. . . 0 0

. . .

1 0 0 0. . . 0 1 0 0 0. . . 0 1

�
���������������������������
�

�
���������������������������
�

L−1Te

Ti1Te

Ti2Te

. . .

Ti1i2...in−1Te

Ti1eTe

Ti2eTe

. . .

Ti1i2...eTe

�
���������������������������
�

Table 4.2: Action of kn on N�
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Consider, for example, Q3 = O16, the octonion loop. The group Inn(O16) �
Z(O16) is generated by

�n1, . . . , n7� = �L−1Ti3 , Ti1Ti3 , Ti2Ti3 , Ti1i2Ti3 , Ti1i3Ti3 , Ti2i3Ti3 , Ti1i2i3Ti3�.

The group K is generated by

�k1, k2, k3� = �Ti2Ti3Ti2i3Li1 , Ti1i2Ti3Ti1i2i3Li2 , Ti1i3Ti2i3Ti1i2Li3�.

Tables 4.3, 4.4, and 4.5 show the linear transformations induced by the actions of

k1, k2, and k3 on the basis of Inn(O16) �Z(O16).

(k1)−1

�
��������������������
�

L−1Ti3

Ti1Ti3

Ti2Ti3

Ti1i2Ti3

Ti1i3Ti3

Ti2i3Ti3

Ti1i2i3Ti3

�
��������������������
�

k1 =

�
��������������������
�

1 1 0 0 1 0 0

1 1 0 0 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

0 0 0 0 1 1 1

0 0 0 0 1 1 1

�
��������������������
�

�
��������������������
�

L−1Ti3

Ti1Ti3

Ti2Ti3

Ti1i2Ti3

Ti1i3Ti3

Ti2i3Ti3

Ti1i2i3Ti3

�
��������������������
�

Table 4.3: Action of k1 on the basis of Inn(O16) �Z(O16)

(k2)−1

�
��������������������
�

L−1Ti3

Ti1Ti3

Ti2Ti3

Ti1i2Ti3

Ti1i3Ti3

Ti2i3Ti3

Ti1i2i3Ti3

�
��������������������
�

k2 =

�
��������������������
�

1 0 1 0 0 1 0

0 1 0 1 0 1 0

1 0 1 0 0 1 0

0 1 0 1 0 1 0

0 0 0 0 1 1 1

0 0 0 0 0 0 0

0 0 0 0 1 1 1

�
��������������������
�

�
��������������������
�

L−1Ti3

Ti1Ti3

Ti2Ti3

Ti1i2Ti3

Ti1i3Ti3

Ti2i3Ti3

Ti1i2i3Ti3

�
��������������������
�

Table 4.4: Action of k2 on the basis of Inn(O16) �Z(O16)
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(k3)−1

�
��������������������
�

L−1Ti3

Ti1Ti3

Ti2Ti3

Ti1i2Ti3

Ti1i3Ti3

Ti2i3Ti3

Ti1i2i3Ti3

�
��������������������
�

k3 =

�
��������������������
�

0 0 0 0 0 0 0

1 1 0 0 1 0 0

1 0 1 0 0 1 0

1 0 0 1 0 0 1

1 1 0 0 1 0 0

1 0 1 0 0 1 0

1 0 0 1 0 0 1

�
��������������������
�

�
��������������������
�

L−1Ti3

Ti1Ti3

Ti2Ti3

Ti1i2Ti3

Ti1i3Ti3

Ti2i3Ti3

Ti1i2i3Ti3

�
��������������������
�

Table 4.5: Action of k3 on the basis of Inn(O16) �Z(O16)

4.4 Left and Right Inner Mapping Groups

It is well known that Mltl(Q) � Mltr(Q) and Innl(Q) � Innr(Q) in any inverse

property loop Q. We give the proofs in Theorem 4.4.1 and Corollary 4.4.3 for

completeness.

Theorem 4.4.1. Let Q be an inverse property loop. Then Mltl(Q) �Mltr(Q).

Proof. Define a partial mapping f �Mltl(Q) �Mltr(Q) by f(La) = R−1a . We want

to extend this mapping to a homomorphism. Let S >Mltl(Q), then

S =
n

M
i=1

Lεi
ai
, ai > Q, εi > �0,1�.

To verify that a mapping

f(S) = f(
n

M
i=1

Lεi
ai
) =

n

M
i=1

R−εi
ai

is well-defined, we show that if

S =
n

M
i=1

Lεi
ai
=

m

M
j=1

L
φj

bj
,

then

f(S) =
n

M
i=1

R−εi
ai
=

m

M
j=1

R
−φj

bj
.
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Let x > Q, then

aεn
n (. . . aε2

2 (aε1
1 x)) = bφm

m (. . . bφ2

2 (bφ1

1 x)), and

(aεn
n (. . . aε2

2 (aε1
1 x)))−1 = (bφm

m (. . . bφ2

2 (bφ1

1 x)))−1.

Inverse property implies that (xy)−1 = y−1x−1, thus

(aεn
n (. . . aε2

2 (aε1
1 x)))−1 = ((x−1a−ε11 )a−ε22 ) . . . a−εn

n =

n

M
i=1

R−εi
ai
(x),

and

(bφm
m (. . . bφ2

2 (bφ1

1 x)))−1 = ((x−1b−φ1

1 )b−φ2

2 ) . . . b−φm
m =

m

M
j=1

R
−φj

bj
(x).

We conclude that
n

M
i=1

R−εi
ai
=

m

M
j=1

R
−φj

bj

and the mapping f is well-defined. The mapping f is a homomorphism since it has

an inverse g �Mltr(Q)�Mltl(Q) defined by g(Ra) = L−1a .

Corollary 4.4.2. Let Qn be a Cayley–Dickson loop. Then Mltl(Qn) �Mltr(Qn).

Corollary 4.4.3. Let Q be an inverse property loop. Then Innl(Q) � Innr(Q).

Proof. Note that f IInnl(Q) is an isomorphism from Innl(Q) to Innr(Q). If

S =

n

M
i=1

Lεi
ai
> Innl(Q), then

S(1) = aεn
n (. . . aε2

2 (aε1
1 1)) = 1.

Taking the inverse, we have

(aεn
n (. . . aε2

2 (aε1
1 1)))−1 = (((1a−ε11 )a−ε22 ) . . . a−εn

n ) = 1,
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thus

f(Innl(Q)) =
n

M
i=1

R−εi
ai
> Innr(Q).

In fact, a stronger statement holds for the Cayley–Dickson loops. As can be seen

in the following Lemma, when Qn is a Cayley–Dickson loop, the left inner mapping

groups Innl(Qn) are equal to the right inner mapping groups Innr(Qn).

Lemma 4.4.4. Let Qn be a Cayley–Dickson loop. Then Innl(Qn) = Innr(Qn), and

Inn(Qn) = `Tx, Lx,y S x, y > Qne.

Proof. For all x, y > Qn, we have Lx,y = Rx,y by Corollary 4.1.3.

Lemma 4.4.5 serves a purpose similar to that of Lemma 3.2.2, providing informa-

tion about associators. Lemmas 4.4.5, 4.4.7 are used in the proof of Theorem 4.4.8.

Lemma 4.4.5. Let Qn be a Cayley–Dickson loop, ik its canonical generator, x > Qk,

y > Qke, n C 4, and k < n. Then

[ik, x, y] = [x, ik, y] =
¢̈̈
¨̈̈
¦̈̈
¨̈̈¤

1, when y > Qke� � �e, ike, xe, xike�,

−1, otherwise.

Moreover, if x ¶ ��1, ik�, then

`ik, x, ye �
¢̈̈
¨̈̈
¦̈̈
¨̈̈¤

Õ16, when y > Qke� � �e, ike, xe, xike�,

O16, otherwise.

Proof. Since x > Qk and y > Qke, we get y ¶ `ik, xe. Consider the loop `ik, x, ye. If

x > ��1, ik�, then `ik, x, ye � H8 and [ik, x, y] = [x, ik, y] = 1. If x ¶ ��1, ik�, then

`ik, xe � H8 and S`ik, x, yeS = 16 by Lemma 2.5.1. In this case, if y > ��e, ike, xe, xike�,
then `ik, x, ye = ��1, x, ik, xik, e, xe, ike, xike� � O16 and [ik, x, y] = [x, ik, y] = −1
by Lemmas 3.2.2 and 2.4.2. It remains to consider x > Qk� � �1, ik�, y > Qke� �
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�e, ike, xe, xike�. We can write y = ze for some z > Qk, then

(ikx)(ze) = [ikx, z, e]((ikx)z)e = [ikx, z, e][ik, x, z](ik(xz))e

= [ikx, z, e][ik, x, z][ik, xz, e]ik((xz)e)

= [ikx, z, e][ik, x, z][ik, xz, e][x, z, e]ik(x(ze))

= ik(x(ze)),

(xik)(ze) = [xik, z, e]((xik)z)e = [xik, z, e][x, ik, z](x(ikz))e

= [xik, z, e][x, ik, z][x, ikz, e]x((ikz)e)

= [xik, z, e][x, ik, z][x, ikz, e][ik, z, e]x(ik(ze)) = x(ik(ze)),

since x, z > Qk, and

[ikx, z, e] = [ik, x, z] = [ik, xz, e] = [x, z, e] = −1,

[xik, z, e] = [x, ik, z] = [x, ikz, e] = [ik, z, e] = −1

by Lemmas 3.2.2 and 2.4.2. Thus

[ik, x, ze] = [ik, x, y] = 1,

[x, ik, ze] = [x, ik, y] = 1.

If S`ik, x, yeS = 16 and [ik, x, y] = 1, then `ik, x, ye � Õ16 by Lemmas 3.2.2 and 3.2.1.

Lemma 4.4.6. Let Qn be a Cayley–Dickson loop, and let x, y > Qn such that x =

(x̄, xn), y = (ȳ, yn), x̄, ȳ > Qn−1, xn, yn > �0,1�. Then

Lx,y(z) = [x̄, ȳ]Lx,y(ze), (4.4.1)

Lx,e = Lxe,e.
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Proof. Let z = (z̄, zn), z̄ > Qn−1, zn > �0,1�. By Lemma 2.4.4, [x̄, ȳ, z̄] = [z̄, ȳ, x̄] for

any x̄, ȳ, z̄ > Qn−1. Using Lemma 2.4.10,

[(ȳ,0), (x̄,0), (z̄,0)] = [ȳ, x̄, z̄],

[(ȳ,0), (x̄,0), (z̄,0)] = [ȳ, x̄][z̄, x̄, ȳ] = [x̄, ȳ][ȳ, x̄, z̄],

[(ȳ,0), (x̄,1), (z̄,0)] = [ȳ, z̄][x̄, ȳ, z̄][x̄, z̄, ȳ],

[(ȳ,0), (x̄,1), (z̄,1)] = [x̄, ȳ][ȳ, z̄][z̄, ȳ, x̄][ȳ, z̄, x̄] = [x̄, ȳ][ȳ, z̄][x̄, ȳ, z̄][x̄, z̄, ȳ],

[(ȳ,1), (x̄,0), (z̄,0)] = [x̄, z̄][ȳ, x̄, z̄],

[(ȳ,1), (x̄,0), (z̄,1)] = [x̄, ȳ][x̄, z̄][z̄, x̄, ȳ] = [x̄, ȳ][x̄, z̄][ȳ, x̄, z̄],

[(ȳ,1), (x̄,1), (z̄,0)] = [z̄, ȳ][z̄, x̄][x̄, ȳ, z̄][x̄, z̄, ȳ],

[(ȳ,1), (x̄,1), (z̄,1)] = [ȳ, x̄][ȳ, z̄][x̄, z̄][z̄, ȳ, x̄][ȳ, z̄, x̄]

= [x̄, ȳ][z̄, ȳ][z̄, x̄][x̄, ȳ, z̄][x̄, z̄, ȳ],

and (4.4.1) follows.

If x > ��1, e�, then Lx,e = Lxe,e = id. Otherwise,

Lx,e(z) = [e, x, z]z =
¢̈̈
¨̈̈
¦̈̈
¨̈̈¤

z, if z > ��1, x, e, xe�,

−z otherwise,

and

Lxe,e(z) = [e, xe, z]z =
¢̈̈
¨̈̈
¦̈̈
¨̈̈¤

z, if z > ��1, x, e, xe�,

−z otherwise,

thus Lx,e = Lxe,e.

Lemma 4.4.7. Let Qn be a Cayley–Dickson loop, n C 4. Then an inner mapping

on Qn

h = M
x>Qn−2~�1,−1�

Lx,in−1
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can be written as the following permutation

h = M
z>(Qn~�1,−1�)�(Qn−1~�1,−1�)

(z,−z).

Proof. Let x > Qn−2~�1,−1�. By (4.1.5),

Lx,in−1(z) = [in−1, x, z]z.

If z > `x, in−1e = ��1, x, in−1, xin−1�, then [in−1, x, z] = 1. If z > Qn−1���1, x, in−1, xin−1�,
then [in−1, x, z] = −1 by Lemmas 3.2.2, 2.4.2. If z > �e, xe, in−1e, xin−1e�, then

`in−1, x, ze = �1, x, in−1, xin−1, e, xe, in−1e, xin−1e� � O16

and [in−1, x, z] = −1 by Lemmas 3.2.2, 2.4.2. If z > Qn−1e��e, xe, in−1e, xin−1e�, then

[in−1, x, z] = 1 by Lemma 4.4.5. Summarizing, we have

Lx,in−1(z) =
¢̈̈
¨̈̈
¦̈̈
¨̈̈¤

z, when z > ��1, x, in−1, xin−1� 8 (Qn−1e��e, xe, in−1e, xin−1e�),

−z, otherwise.

Next, consider a mapping

h = M
x>Qn−2~�1,−1�

Lx,in−1 .

If z > ��1, in−1�, then clearly h(z) = z. If z > Qn−2� � �1�, then Lx,in−1(z) = −z
for all x x �z, there is an even number (in fact, 2n−2

− 2) of such mappings, and

therefore h(z) = z. If z > Qn−2in−1� � �in−1�, then z = yin−1 for some y > Qn−2,

and Lx,in−1(z) = −z for all x x �y, there is 2n−2
− 2 such mappings, and therefore

h(z) = z. We get h(z) = z for z > Qn−1. Consider z > Qn−1e. If z > ��e, in−1e�, then

Lx,in−1(z) = −z for all x x 1, there is 2n−2
− 1 such mappings, and thus h(z) = −z.
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Finally, if z > Qn−1e��e, in−1e�, then either z = ye, or z = yin−1e for some y > Qn−2,

and Lx,in−1(z) = −z only when x = �y, again, h(z) = −z. We get h(z) = −z for

z > Qn−1e.

Theorem 4.4.8. Let Qn be a Cayley–Dickson loop. Then Innl(Qn) is an elemen-

tary abelian 2-group of order 22n−1
−1.

Proof. Let x > Qn−1~�1,−1�, x x 1. Then by Lemma 4.1.2

Lx,eLin−1,e = (x,−x)(in−1,−in−1)(xe,−xe)(in−1e,−in−1e).

For every f > Innl(Qn), there is f̃ = Lx,eLin−1,ef > Innl(Qn) such that

f̃(z) =
¢̈̈
¨̈̈
¦̈̈
¨̈̈¤

−f(z), when z > �x, in−1, xe, in−1e�,

f(z), otherwise.

There are 2n−1
− 2 distinct inner mappings Lx,eLin−1,e, x > Qn−1~�1,−1�, x x 1,

they generate a group of order 22n−1
−2. Let

h = M
y>Qn−2~�1,−1�

Ly,in−1 = M
z>(Qn~�1,−1�)�(Qn−1~�1,−1�)

(z,−z).

be the mapping constructed in Lemma 4.4.7. For every f > Innl(Qn), a mapping

f̃ = hf satisfies

f̃(z) =
¢̈̈
¨̈̈
¦̈̈
¨̈̈¤

f(z), when z > Qn−1,

−f(z), otherwise.

The group

G = `Lx,eLin−1,e, h S 1 x x > Qn−1~�1,−1�e

therefore has order 22n−1
−1 and is a subgroup of Innl(Qn).

To show that Innl(Qn) = G, recall that Lx,y(z) = [x̄, ȳ]Lx,y(ze) for x̄, ȳ > Qn−1,
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by (4.4.1). The value of Lx,y(ze) is therefore uniquely determined by that of Lx,y(z),
moreover, Lx,y(1) = 1, thus Innl(Qn) has order at most 2

TQn−1 T
2
−1
= 22n−1

−1.

4.5 Left and Right Multiplication Groups

Let Qn be a Cayley–Dickson loop. A group Mltl(Qn) is a proper subgroup of

Mlt(Qn) by Theorems 4.1.4, 4.4.8, we have Mltl(Qn)1 = Innl(Qn) < Inn(Qn) =
Mlt(Qn)1. We showed in Corollary 4.4.2 that Mltl(Qn) �Mltr(Qn).

Theorem 4.5.1. Let Qn be a Cayley–Dickson loop, n C 2. Then Mltl(Qn) �
(Innl(Qn) � Z(Qn)) #K, where K is the group constructed in Lemma 4.2.6. In

particular, Mltl(Qn) � ((Z2)2n−1
−1
�Z2) # (Z2)n.

Proof. Since Z(Qn) B Mltl(Qn), let N = `Innl(Qn), Z(Qn)e = Innl(Qn)Z(Qn).
A group Innl(Qn) stabilizes 1, therefore Innl(Qn) 9 Z(Qn) = 1. The index [N �
Innl(Qn)] = 2, therefore Innl(Qn) V N , and Z(Qn) VMltl(Qn) implies Z(Qn) V N .

It follows that N = Innl(Qn) � Z(Qn). Let G = Mltl(Qn) and K be the group

constructed in Lemma 4.2.6. We want to show that G = N #K.

1. Let α > N,g > G. There exist x > Qn, β > Innl(Qn) such that g = βLx. Consider

gαg−1 acting on 1,

gαg−1(1) = βLxα(βLx)−1(1) = βLxαL
−1
x β−1(1)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

1

= β LxαL
−1
x (1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
�1

= �β(1) = �1.

This shows that gαg−1 > Innl(Qn) 8 (−Innl(Qn)) = N , so N is normal in G.

Recall a mapping h constructed in Lemma 4.4.7,

h = M
z>(Qn~�1,−1�)�(Qn−1~�1,−1�)

(z,−z).
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Note that by Lemma 4.1.2

TxTxeTe = M
1,e,x,xexz>Qn~�1,−1�

(z,−z) = Lx,e,

which allows to rewrite the construction in Lemma 4.2.6 as follows:

s1,2 = �1, i2�, s2,2 = �1, i1i2�,

sk,n = �x, inx S x > sk,n−1�, k > �1, . . . , n − 1�,

sn,n =

¢̈̈
¦̈̈
¤

n

M
j=1

i
pj

j S pj > �0,1�,
n

Q
j=1

pj > 2Z
£̈̈
§̈̈
¥
,

s̄n,n =

¢̈̈
¦̈̈
¤

n

M
j=1

i
pj

j S pj > �0,1�,
n

Q
j=1

pj ¶ 2Z
£̈̈
§̈̈
¥
,

gk,n = ( M
x>sk,n

Tx)Lik = ( M
x>sk,n−1

TxTxe)TeLik

= ( M
x>sk,n−1

TxTxe)( M
x>�1,...,2n−2

−1�
Te)Lik

= ( M
x>sk,n−1

TxTxeTe)Lik

= ( M
x>sk,n−1

Lx,e)Lik , k > �1, . . . , n − 1�,

gn,n = ( M
x>sn,n

Tx)Lik = ( M
x>sn−1,n−1

Tx M
x>s̄n−1,n−1

Txe)Lik

= ( M
x>s̄n,n

(x,−x))Lik

= ( M
x>s̄n−1,n−1

(x,−x))( M
x>sn−1,n−1

(xe,−xe))Lik

= ( M
x>s̄n−1,n−1

(x,−x)(xe,−xe))( M
x>Qn−1e

(x,−x))Lik

= ( M
x>sn−1,n−1

Lx,e)hLik ,

K = Kn = `g1,n, g2,n, . . . , gn,ne .

Thus K BMltl(Qn).

2. By (4.2.1), (4.2.2), K contains a unique element g such that g(1) > �1,−1�.
Since K is a group, g = id, thus N 9K = id.
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3. We established that N V G,K B G, and N 9K = id, therefore N #K B G.

Recall that

[Mltl(Qn) � Innl(Qn)] = SQnS , thus

[Mltl(Qn) � (Innl(Qn) �Z(Qn))] = [Mltl(Qn) � Innl(Qn)] ~2 = 2n
= SK S ,

and (Innl(Qn) �Z(Qn)) #K �Mltl(Qn) follows.
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Chapter 5

Subloops

In this chapter we describe the progress on the study of the subloop structure of the

Cayley–Dickson loops, and state several open problems along the way.

5.1 Number of Subloops

We count the number of subloops of a given size of a Cayley–Dickson loop Qn using

the vector space structure of Qn~Z(Qn).

Theorem 5.1.1. Cayley–Dickson loop Qn contains one subloop of orders 1 and 2,

and

η(k) =
k−1

M
j=1

(2n−j+1
− 1)

(2k−j
− 1) (5.1.1)

subloops of order 2k, 2 B k B n. Moreover, Qn contains the same number of subloops

of order 2k and 2n−k+2, whenever 1 B k B n.

Proof. The only subloop of Qn of order 1 is `1e, the subloop of order 2 is `−1e.
Each element x > Qn� � �1� has order 4 and thus generates a subloop `xe = ��1, x�.
There are 2n

− 1 such subloops. Let n C 3, 3 B k B n. By Lemma 2.3.2, the center of

Qn is Z(Qn) = �1,−1�. By Theorem 2.3.1, the group Qn~Z(Qn) is a vector space
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over Z2. The order of Qn is 2n+1, and every minimal generating set is of size n by

Lemma 2.5.1-(4). These generating sets are in one-to-one correspondence with bases

in the vector space Qn~Z(Qn). Hence to find the number of subloops of order 2k

(such subloops are (k−1)-generated by Lemma 2.5.1-(4)) we need to find the number

of possibilities to choose k−1 linearly independent vectors in Qn~Z(Qn). There are

η(k) = (2n
− 1)(2n

− 2) . . . (2n
− 2k−2)

(2k−1
− 1)(2k−1

− 2) . . . (2k−1
− 2k−2) =

Lk−1
j=1 (2n

− 2j−1)
Lk−1

j=1 (2k−1
− 2j−1)

=

k−1

M
j=1

(2n
− 2j−1)

(2k−1
− 2j−1) =

k−1

M
j=1

(2n−j+1
− 1)

(2k−j
− 1)

such possibilities. Moreover,

η(k) =
k−1

M
j=1

(2n−j+1
− 1)

(2k−j
− 1) =

k−1

M
j=1

(2n−j+1
− 1)

(2k−j
− 1) ċ

(2n−k+1
− 1)(2n−k

− 1) . . . (2k
− 1)

(2n−k+1
− 1)(2n−k

− 1) . . . (2k
− 1)

=
(2n
− 1)(2n−1

− 1) . . . (2n−k+2
− 1)(2n−k+1

− 1)(2n−k
− 1) . . . (2k

− 1)
(2n−k+1

− 1)(2n−k
− 1) . . . (2k

− 1)(2k−1
− 1)(2k−2

− 1) . . . (2 − 1)

=

n−k+1

M
j=1

(2n−j+1
− 1)

(2n−k+2−j
− 1) = η(n − k + 2).

A loop Q is subdirectly irreducible if there is a nontrivial M V Q such that for

all nontrivial N V Q we have M B N . Cayley–Dickson loops Qn are Hamiltonian

and subdirectly irreducible (with M = �1,−1� by Lemma 2.3.2). The subspaces of

a vector space form a modular lattice, thus Qn has a modular subloop lattice. The

Hasse diagram of the subloop lattice of the octonion loop O16 and, in fact, of any

subloop `x, y, ze of order 16 of Qn is shown in Figure 5.1 (figure is similar to the

diagrams of Tilman Piesk). In the figure, each of 16 cells of a table corresponds to

an element of `x, y, ze, see the legend in the bottom right corner.
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Figure 5.1: Subloop lattice of `x, y, ze of order 16

5.2 Subloops of Order 32

The loop T64 contains maximal subloops of four isomorphism types: the sedenion

loop S32 and the quasisedenion loops S̃1
32, S̃2

32, S̃3
32 (see [7]). As a step toward the

understanding of the subloop structure of the Cayley–Dickson loops, we would like

to extend the results of Theorem 2.2.1 and Lemma 3.2.1 and answer the following

question, confirmed by GAP calculations with the Cayley–Dickson loops of order

up to 128.
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Question 5.2.1. Let Qn be a Cayley–Dickson loop. Is every subloop of order 32 of

Qn isomorphic to a maximal subloop of T64 (the sedenion loop S32, or one of the

quasisedenion loops S̃1
32, S̃2

32, S̃3
32)?

We would like to prove this statement by extending the approach described in

Section 3.2. Let S = `a, b, ce such that SSS = 16, let u ¶ S and T = S8Su. To specify T

it suffices to know the associators [x, y, u], where x, y > S = ��1, a, b, ab, c, ac, bc, (ab)c�.
Using lemmas from Section 2.4, we systematically consider all associators:

[a, b, u], [ab, ac, u],
[a, c, u], [ab, bc, u] = [ab, ac, u],
[a, ab, u] = [a, b, u], [ab, abc, u] = [ab, c, u],
[a, ac, u] = [a, c, u], [ac, a, u],
[a, bc, u], [ac, b, u],
[a, abc, u] = [a, bc, u], [ac, c, u] = [ac, a, u],
[b, a, u], [ac, ab, u],
[b, c, u], [ac, bc, u] = [ac, ab, u],
[b, ab, u] = [b, a, u], [ac, abc, u] = [ac, b, u],
[b, ac, u], [bc, a, u],
[b, bc, u] = [b, c, u], [bc, b, u],
[b, abc, u] = [b, ac, u], [bc, c, u] = [bc, b, u],
[c, a, u], [bc, ab, u],
[c, b, u], [bc, ac, u] = [bc, ab, u],
[c, ab, u], [bc, abc, u] = [bc, a, u],
[c, ac, u] = [c, a, u], [abc, a, u],
[c, bc, u] = [c, b, u], [abc, b, u],
[c, abc, u] = [c, ab, u], [abc, c, u],
[ab, a, u], [abc, ab, u] = [abc, c, u],
[ab, b, u] = [ab, a, u], [abc, ac, u] = [abc, b, u],
[ab, c, u], [abc, bc, u] = [abc, a, u].

Table 5.1 summarizes these calculations and shows the associators [x, y, u].
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@
@

@
@

x

y
a b ab c ac bc (ab)c

a 1 [a, b, u] [a, b, u] [a, c, u] [a, c, u] [a, bc, u] [a, bc, u]
b [b, a, u] 1 [b, a, u] [b, c, u] [b, ac, u] [b, c, u] [b, ac, u]
ab [ab, a, u] [ab, a, u] 1 [ab, c, u] [ab, ac, u] [ab, ac, u] [ab, c, u]
c [c, a, u] [c, b, u] [c, ab, u] 1 [c, a, u] [c, b, u] [c, ab, u]
ac [ac, a, u] [ac, b, u] [ac, ab, u] [ac, a, u] 1 [ac, ab, u] [ac, b, u]
bc [bc, a, u] [bc, b, u] [bc, ab, u] [bc, b, u] [bc, ab, u] 1 [bc, a, u]
(ab)c [abc, a, u] [abc, b, u] [abc, c, u] [abc, c, u] [abc, b, u] [abc, a, u] 1

Table 5.1: Associators [x, y, u] of `a, b, c, ue of order 32

Thus we need 21 associators to determine T . Experiments in GAP show that

some of the combinations of these associators indeed result in loops isomorphic to

one of the maximal subloops of T64. However, there exist combinations such that

T is not of one of the 4 types. This could either be an indication that there are

additional relations between the 21 associators, or, less likely, it could mean that

not every subloop of order 32 in a Cayley–Dickson loop is a subloop of T64.

5.3 Incidence Tetrahedra for Sedenion and

Quasisedenion Loops

In Figure 5.2 we provide the incidence tetrahedron for the sedenion loop, generaliz-

ing the idea of the octonion multiplication Fano plane. The tetrahedron contains 15

points (representing non-identity sedenion units) and 35 lines (representing multipli-

cation of these units), with exactly 7 lines through every point and exactly 3 points

on every line. The arrows point in the direction of multiplication. Tetrahedron

contains

� 4 Fano plane faces and 1 additional internal point
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� 4 lines from a vertex to the middle of the opposite face

� 3 lines from an edge middle to the opposite edge middle

� 6 lines from a face middle to a face middle

The Fano plane faces are the copies of the octonion loop multiplication plane. The

vertex 8 represents a generator used to construct S32 from O16. It is connected to

the points 1, . . . ,7 of the O16 plane by

8 ċ (8 + j) = j, j > �1, . . . ,7�.

The anti-commutativity law holds

j ċ k =m� k ċ j = −m.

Together with the multiplicative identity and the fact that �1, . . .7� are square

roots of −1, the tetrahedron is sufficient to construct the multiplication table of the

sedenion loop.

Incidence tetrahedra for the quasisedenion loops S̃1
32, S̃2

32, S̃3
32 are provided in

Figures 5.3, 5.4, and 5.5.
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Figure 5.2: Sedenion loop multiplication tetrahedron
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Figure 5.3: Quasisedenion loop S̃1
32 multiplication tetrahedron
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Figure 5.4: Quasisedenion loop S̃2
32 multiplication tetrahedron
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Figure 5.5: Quasisedenion loop S̃3
32 multiplication tetrahedron
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5.4 Isomorphism Types of Maximal Subloops

We would like to find an invariant that distinguishes the isomorphism types of max-

imal (index 2) subloops of the Cayley–Dickson loops. The quaternion and octonion

loops contain one type of such subloop: complex and quaternion groups, respectively

(see Theorem 2.2.1). Subloops of index 2 of the sedenion loop S32 are either isomor-

phic to the octonion loop O16, or the quasioctonion loop Õ16 (see Lemma 3.2.1). The

loop T64 contains the sedenion loop S32 and three pairwise nonisomorphic quasisede-

nion loops S̃1
32, S̃2

32, S̃3
32. GAP calculations show that the loops Q6 (of order 128)

and Q7 (of order 256) contain 8 and 16 pairwise nonisomorphic maximal subloops,

respectively.

In Lemma 3.3.4 we establish that starting at S32 every Cayley–Dickson loop

contains at least two isomorphism types of maximal subloops. In particular, any

subloop of Qn of the third type is not a Cayley–Dickson loop. However, we did not

prove the following statement, which is confirmed in GAP for n B 7.

Conjecture 5.4.1. Maximal subloops of the second type of a Cayley–Dickson loop

Qn are isomorphic to Qn−1.

We use the LOOPS package for GAP to computationally distinguish isomor-

phism types of maximal subloops. The space of possible isomorphisms between two

loops of order n contains n! bijections, hence finding an isomorphism can be com-

putationally hard. This problem is partially overcome in the package by using the

discriminator function (described in [42, p.13]). The function employs the idea that

an isomorphism should preserve certain invariants, and precalculates some inexpen-

sive invariants that can reduce the number of possible images of an element. In

92



particular, for x > Q, let I(x) = (SxS , s, t, p, f, (c1, c2, . . . , cn)), where

s = T�y > Q S x = y2�T ,

t = T�y > Q S x = y3�T ,

f = T�y > Q S x = y4�T ,

p = 1 if x > Z(Q), else 0,

ci = S�y > Q S SyS = i, xy = yx�S .

For a loop Q and an invariant I, let

dI = S�x > Q S I(x) = I�S ,

D(Q) = �(I(x), dI(x)) S x > Q�.

None of the above invariants, however, simplify computations for a Cayley–Dickson

loop (all its subloops of size bigger than 4 share the same center, every noncentral

element x has order 4 and only commutes with elements of `xe). We modified the

discriminator function and added an invariant counting the number of associating

triples for an element x > Qn:

r = S�(y, z) S y, z > Q,x(yz) = (xy)z�S .

This invariant is very powerful and significantly improves computation time. For

example, in the loop Q6 of order 128 it distinguishes 6 out of 8 isomorphism types of

maximal subloops (the subloops of 5 distinct isomorphism types have distinct dis-

criminators, and subloops of 3 extremely similar isomorphism types share the same

discriminator). Table 5.2 summarizes these observations. Note that the number of

maximal subloops is given by (5.1.1).
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Qn Max. subloops Isom. classes Representatives Discr. types Nonisom. w/same discr.

Q1 = C4 1 1 R2 1 none

Q2 = H8 3 1 C4 1 none

Q3 = O16 7 1 H8 1 none

Q4 = S32 15 2 O16 and Õ16 2 none

Q5 = T64 31 4 S32, S̃1
32, S̃2

32, S̃3
32 4 none

Q6 63 8 T64, T̃1
64,. . . , T̃7

64 6 3

Q7 127 16 8 7 and 3

Table 5.2: Subloops of index 2 of Qn, n B 7

We arrive at the following conjecture:

Conjecture 5.4.2. There are 2n−3 isomorphism classes of maximal subloops of a

Cayley–Dickson loop Qn.

Note that Corollary 3.2.3 might help to reflect the associating triples invariant.

Observations described in Section 5.2 result in the following conjecture.

Conjecture 5.4.3. If S is a subloop of a Cayley–Dickson loop Qn, then there exists

m B n + 1 such that S is a maximal subloop of Qm.

Conjecture 5.4.3 can be reduced to a slightly simpler Conjecture 5.4.4, as can be

seen in Lemma 5.4.5.

Conjecture 5.4.4. If S is a subloop of a Cayley–Dickson loop Qn of index 4, then

S is a maximal subloop of Qn−1.

Lemma 5.4.5. Let Qn be a Cayley–Dickson loop. If every subloop of index 4 of Qn

is maximal in Qn−1, then every subloop of Qn is maximal in Qm, for some m B n+1.

Proof. Let S B Qn. If S = Qn, then S is maximal in Qn+1. If S is maximal in Qn,

we are done. Otherwise, S is maximal in some proper subloop K of Qn. Proceed

by induction on index of S in Qn. If index of S is 4, then S is maximal in Qn−1.

Suppose that every subloop of index 2m is maximal in Qn−m+1. If the index of S
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is 2m+1, then K has index 2m and is maximal in Qn−m+1, thus S has index 4 in

Qn−m+1 and is maximal in Qn−m.

We showed in Theorem 2.6.1 that every Cayley–Dickson loop is Hamiltonian.

The answer to the following question would be of interest.

Question 5.4.6. Is every nonassociative, diassociative Hamiltonian loop of order 2k

a subloop of some Cayley–Dickson loop?

Note that due to Theorem 2.6.3 the requirement that the order of a loop is 2k

cannot be omitted.
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Appendix A

Multiplication Tables

Below we provide multiplication tables of the Cayley–Dickson loops Qn, n B 5, and

for the quasioctonion and quasisedenion loops.

1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7
3 4 2 1 7 8 6 5
4 3 1 2 8 7 5 6
5 6 8 7 2 1 3 4
6 5 7 8 1 2 4 3
7 8 5 6 4 3 2 1
8 7 6 5 3 4 1 2

Table A.1: Quaternion group multiplication table

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15
3 4 2 1 7 8 6 5 11 12 10 9 16 15 13 14
4 3 1 2 8 7 5 6 12 11 9 10 15 16 14 13
5 6 8 7 2 1 3 4 13 14 15 16 10 9 12 11
6 5 7 8 1 2 4 3 14 13 16 15 9 10 11 12
7 8 5 6 4 3 2 1 15 16 14 13 11 12 10 9
8 7 6 5 3 4 1 2 16 15 13 14 12 11 9 10
9 10 12 11 14 13 16 15 2 1 3 4 5 6 7 8
10 9 11 12 13 14 15 16 1 2 4 3 6 5 8 7
11 12 9 10 16 15 13 14 4 3 2 1 8 7 5 6
12 11 10 9 15 16 14 13 3 4 1 2 7 8 6 5
13 14 15 16 9 10 12 11 6 5 7 8 2 1 4 3
14 13 16 15 10 9 11 12 5 6 8 7 1 2 3 4
15 16 14 13 11 12 9 10 8 7 6 5 3 4 2 1
16 15 13 14 12 11 10 9 7 8 5 6 4 3 1 2

Table A.2: Octonion loop multiplication table
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15
3 4 2 1 7 8 6 5 12 11 9 10 15 16 14 13
4 3 1 2 8 7 5 6 11 12 10 9 16 15 13 14
5 6 8 7 2 1 3 4 14 13 16 15 9 10 11 12
6 5 7 8 1 2 4 3 13 14 15 16 10 9 12 11
7 8 5 6 4 3 2 1 16 15 13 14 12 11 9 10
8 7 6 5 3 4 1 2 15 16 14 13 11 12 10 9
9 10 11 12 13 14 15 16 2 1 4 3 6 5 8 7
10 9 12 11 14 13 16 15 1 2 3 4 5 6 7 8
11 12 10 9 15 16 14 13 3 4 2 1 7 8 6 5
12 11 9 10 16 15 13 14 4 3 1 2 8 7 5 6
13 14 16 15 10 9 11 12 5 6 8 7 2 1 3 4
14 13 15 16 9 10 12 11 6 5 7 8 1 2 4 3
15 16 13 14 12 11 10 9 7 8 5 6 4 3 2 1
16 15 14 13 11 12 9 10 8 7 6 5 3 4 1 2

Table A.3: Quasioctonion loop multiplication table

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31
3 4 2 1 7 8 6 5 11 12 10 9 16 15 13 14 19 20 18 17 24 23 21 22 28 27 25 26 31 32 30 29
4 3 1 2 8 7 5 6 12 11 9 10 15 16 14 13 20 19 17 18 23 24 22 21 27 28 26 25 32 31 29 30
5 6 8 7 2 1 3 4 13 14 15 16 10 9 12 11 21 22 23 24 18 17 20 19 30 29 32 31 25 26 27 28
6 5 7 8 1 2 4 3 14 13 16 15 9 10 11 12 22 21 24 23 17 18 19 20 29 30 31 32 26 25 28 27
7 8 5 6 4 3 2 1 15 16 14 13 11 12 10 9 23 24 22 21 19 20 18 17 32 31 29 30 28 27 25 26
8 7 6 5 3 4 1 2 16 15 13 14 12 11 9 10 24 23 21 22 20 19 17 18 31 32 30 29 27 28 26 25
9 10 12 11 14 13 16 15 2 1 3 4 5 6 7 8 25 26 27 28 29 30 31 32 18 17 20 19 22 21 24 23
10 9 11 12 13 14 15 16 1 2 4 3 6 5 8 7 26 25 28 27 30 29 32 31 17 18 19 20 21 22 23 24
11 12 9 10 16 15 13 14 4 3 2 1 8 7 5 6 27 28 26 25 31 32 30 29 19 20 18 17 23 24 22 21
12 11 10 9 15 16 14 13 3 4 1 2 7 8 6 5 28 27 25 26 32 31 29 30 20 19 17 18 24 23 21 22
13 14 15 16 9 10 12 11 6 5 7 8 2 1 4 3 29 30 32 31 26 25 27 28 21 22 24 23 18 17 19 20
14 13 16 15 10 9 11 12 5 6 8 7 1 2 3 4 30 29 31 32 25 26 28 27 22 21 23 24 17 18 20 19
15 16 14 13 11 12 9 10 8 7 6 5 3 4 2 1 31 32 29 30 28 27 26 25 23 24 21 22 20 19 18 17
16 15 13 14 12 11 10 9 7 8 5 6 4 3 1 2 32 31 30 29 27 28 25 26 24 23 22 21 19 20 17 18
17 18 20 19 22 21 24 23 26 25 28 27 30 29 32 31 2 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16
18 17 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1 2 4 3 6 5 8 7 10 9 12 11 14 13 16 15
19 20 17 18 24 23 21 22 28 27 25 26 31 32 30 29 4 3 2 1 8 7 5 6 12 11 9 10 15 16 14 13
20 19 18 17 23 24 22 21 27 28 26 25 32 31 29 30 3 4 1 2 7 8 6 5 11 12 10 9 16 15 13 14
21 22 23 24 17 18 20 19 30 29 32 31 25 26 27 28 6 5 7 8 2 1 4 3 14 13 16 15 9 10 11 12
22 21 24 23 18 17 19 20 29 30 31 32 26 25 28 27 5 6 8 7 1 2 3 4 13 14 15 16 10 9 12 11
23 24 22 21 19 20 17 18 32 31 29 30 28 27 25 26 8 7 6 5 3 4 2 1 16 15 13 14 12 11 9 10
24 23 21 22 20 19 18 17 31 32 30 29 27 28 26 25 7 8 5 6 4 3 1 2 15 16 14 13 11 12 10 9
25 26 27 28 29 30 31 32 17 18 20 19 22 21 24 23 10 9 11 12 13 14 15 16 2 1 4 3 6 5 8 7
26 25 28 27 30 29 32 31 18 17 19 20 21 22 23 24 9 10 12 11 14 13 16 15 1 2 3 4 5 6 7 8
27 28 26 25 31 32 30 29 19 20 17 18 23 24 22 21 12 11 10 9 15 16 14 13 3 4 2 1 7 8 6 5
28 27 25 26 32 31 29 30 20 19 18 17 24 23 21 22 11 12 9 10 16 15 13 14 4 3 1 2 8 7 5 6
29 30 32 31 26 25 27 28 21 22 24 23 17 18 19 20 14 13 16 15 10 9 11 12 5 6 8 7 2 1 3 4
30 29 31 32 25 26 28 27 22 21 23 24 18 17 20 19 13 14 15 16 9 10 12 11 6 5 7 8 1 2 4 3
31 32 29 30 28 27 26 25 23 24 21 22 20 19 17 18 16 15 13 14 12 11 10 9 7 8 5 6 4 3 2 1
32 31 30 29 27 28 25 26 24 23 22 21 19 20 18 17 15 16 14 13 11 12 9 10 8 7 6 5 3 4 1 2

Table A.4: Sedenion loop multiplication table
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31
3 4 2 1 7 8 6 5 11 12 10 9 16 15 13 14 20 19 17 18 23 24 22 21 27 28 26 25 32 31 29 30
4 3 1 2 8 7 5 6 12 11 9 10 15 16 14 13 19 20 18 17 24 23 21 22 28 27 25 26 31 32 30 29
5 6 8 7 2 1 3 4 13 14 15 16 10 9 12 11 22 21 24 23 17 18 19 20 29 30 31 32 26 25 28 27
6 5 7 8 1 2 4 3 14 13 16 15 9 10 11 12 21 22 23 24 18 17 20 19 30 29 32 31 25 26 27 28
7 8 5 6 4 3 2 1 15 16 14 13 11 12 10 9 24 23 21 22 20 19 17 18 31 32 30 29 27 28 26 25
8 7 6 5 3 4 1 2 16 15 13 14 12 11 9 10 23 24 22 21 19 20 18 17 32 31 29 30 28 27 25 26
9 10 12 11 14 13 16 15 2 1 3 4 5 6 7 8 26 25 28 27 30 29 32 31 17 18 19 20 21 22 23 24
10 9 11 12 13 14 15 16 1 2 4 3 6 5 8 7 25 26 27 28 29 30 31 32 18 17 20 19 22 21 24 23
11 12 9 10 16 15 13 14 4 3 2 1 8 7 5 6 28 27 25 26 32 31 29 30 20 19 17 18 24 23 21 22
12 11 10 9 15 16 14 13 3 4 1 2 7 8 6 5 27 28 26 25 31 32 30 29 19 20 18 17 23 24 22 21
13 14 15 16 9 10 12 11 6 5 7 8 2 1 4 3 30 29 31 32 25 26 28 27 22 21 23 24 17 18 20 19
14 13 16 15 10 9 11 12 5 6 8 7 1 2 3 4 29 30 32 31 26 25 27 28 21 22 24 23 18 17 19 20
15 16 14 13 11 12 9 10 8 7 6 5 3 4 2 1 32 31 30 29 27 28 25 26 24 23 22 21 19 20 17 18
16 15 13 14 12 11 10 9 7 8 5 6 4 3 1 2 31 32 29 30 28 27 26 25 23 24 21 22 20 19 18 17
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15
18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
19 20 18 17 23 24 22 21 27 28 26 25 32 31 29 30 3 4 2 1 7 8 6 5 11 12 10 9 16 15 13 14
20 19 17 18 24 23 21 22 28 27 25 26 31 32 30 29 4 3 1 2 8 7 5 6 12 11 9 10 15 16 14 13
21 22 24 23 18 17 19 20 29 30 31 32 26 25 28 27 5 6 8 7 2 1 3 4 13 14 15 16 10 9 12 11
22 21 23 24 17 18 20 19 30 29 32 31 25 26 27 28 6 5 7 8 1 2 4 3 14 13 16 15 9 10 11 12
23 24 21 22 20 19 18 17 31 32 30 29 27 28 26 25 7 8 5 6 4 3 2 1 15 16 14 13 11 12 10 9
24 23 22 21 19 20 17 18 32 31 29 30 28 27 25 26 8 7 6 5 3 4 1 2 16 15 13 14 12 11 9 10
25 26 28 27 30 29 32 31 18 17 19 20 21 22 23 24 9 10 12 11 14 13 16 15 2 1 3 4 5 6 7 8
26 25 27 28 29 30 31 32 17 18 20 19 22 21 24 23 10 9 11 12 13 14 15 16 1 2 4 3 6 5 8 7
27 28 25 26 32 31 29 30 20 19 18 17 24 23 21 22 11 12 9 10 16 15 13 14 4 3 2 1 8 7 5 6
28 27 26 25 31 32 30 29 19 20 17 18 23 24 22 21 12 11 10 9 15 16 14 13 3 4 1 2 7 8 6 5
29 30 31 32 25 26 28 27 22 21 23 24 18 17 20 19 13 14 15 16 9 10 12 11 6 5 7 8 2 1 4 3
30 29 32 31 26 25 27 28 21 22 24 23 17 18 19 20 14 13 16 15 10 9 11 12 5 6 8 7 1 2 3 4
31 32 30 29 27 28 25 26 24 23 22 21 19 20 18 17 15 16 14 13 11 12 9 10 8 7 6 5 3 4 2 1
32 31 29 30 28 27 26 25 23 24 21 22 20 19 17 18 16 15 13 14 12 11 10 9 7 8 5 6 4 3 1 2

Table A.5: Quasisedenion loop S̃1
32 multiplication table
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31
3 4 2 1 7 8 6 5 11 12 10 9 16 15 13 14 20 19 17 18 23 24 22 21 27 28 26 25 32 31 29 30
4 3 1 2 8 7 5 6 12 11 9 10 15 16 14 13 19 20 18 17 24 23 21 22 28 27 25 26 31 32 30 29
5 6 8 7 2 1 3 4 13 14 15 16 10 9 12 11 22 21 24 23 17 18 19 20 29 30 31 32 26 25 28 27
6 5 7 8 1 2 4 3 14 13 16 15 9 10 11 12 21 22 23 24 18 17 20 19 30 29 32 31 25 26 27 28
7 8 5 6 4 3 2 1 15 16 14 13 11 12 10 9 24 23 21 22 20 19 17 18 31 32 30 29 27 28 26 25
8 7 6 5 3 4 1 2 16 15 13 14 12 11 9 10 23 24 22 21 19 20 18 17 32 31 29 30 28 27 25 26
9 10 12 11 14 13 16 15 2 1 3 4 5 6 7 8 25 26 27 28 29 30 31 32 18 17 20 19 22 21 24 23
10 9 11 12 13 14 15 16 1 2 4 3 6 5 8 7 26 25 28 27 30 29 32 31 17 18 19 20 21 22 23 24
11 12 9 10 16 15 13 14 4 3 2 1 8 7 5 6 27 28 26 25 32 31 29 30 19 20 18 17 24 23 21 22
12 11 10 9 15 16 14 13 3 4 1 2 7 8 6 5 28 27 25 26 31 32 30 29 20 19 17 18 23 24 22 21
13 14 15 16 9 10 12 11 6 5 7 8 2 1 4 3 29 30 31 32 26 25 28 27 21 22 23 24 18 17 20 19
14 13 16 15 10 9 11 12 5 6 8 7 1 2 3 4 30 29 32 31 25 26 27 28 22 21 24 23 17 18 19 20
15 16 14 13 11 12 9 10 8 7 6 5 3 4 2 1 31 32 30 29 27 28 26 25 23 24 22 21 19 20 18 17
16 15 13 14 12 11 10 9 7 8 5 6 4 3 1 2 32 31 29 30 28 27 25 26 24 23 21 22 20 19 17 18
17 18 19 20 21 22 23 24 26 25 28 27 30 29 32 31 2 1 4 3 6 5 8 7 9 10 11 12 13 14 15 16
18 17 20 19 22 21 24 23 25 26 27 28 29 30 31 32 1 2 3 4 5 6 7 8 10 9 12 11 14 13 16 15
19 20 18 17 23 24 22 21 28 27 25 26 32 31 29 30 3 4 2 1 7 8 6 5 12 11 9 10 16 15 13 14
20 19 17 18 24 23 21 22 27 28 26 25 31 32 30 29 4 3 1 2 8 7 5 6 11 12 10 9 15 16 14 13
21 22 24 23 18 17 19 20 30 29 31 32 25 26 28 27 5 6 8 7 2 1 3 4 14 13 15 16 9 10 12 11
22 21 23 24 17 18 20 19 29 30 32 31 26 25 27 28 6 5 7 8 1 2 4 3 13 14 16 15 10 9 11 12
23 24 21 22 20 19 18 17 32 31 30 29 27 28 25 26 7 8 5 6 4 3 2 1 16 15 14 13 11 12 9 10
24 23 22 21 19 20 17 18 31 32 29 30 28 27 26 25 8 7 6 5 3 4 1 2 15 16 13 14 12 11 10 9
25 26 28 27 30 29 32 31 17 18 20 19 22 21 24 23 10 9 11 12 13 14 15 16 2 1 3 4 5 6 7 8
26 25 27 28 29 30 31 32 18 17 19 20 21 22 23 24 9 10 12 11 14 13 16 15 1 2 4 3 6 5 8 7
27 28 25 26 32 31 29 30 19 20 17 18 24 23 21 22 12 11 10 9 16 15 13 14 4 3 2 1 8 7 5 6
28 27 26 25 31 32 30 29 20 19 18 17 23 24 22 21 11 12 9 10 15 16 14 13 3 4 1 2 7 8 6 5
29 30 31 32 25 26 28 27 21 22 23 24 17 18 20 19 14 13 15 16 10 9 12 11 6 5 7 8 2 1 4 3
30 29 32 31 26 25 27 28 22 21 24 23 18 17 19 20 13 14 16 15 9 10 11 12 5 6 8 7 1 2 3 4
31 32 30 29 27 28 25 26 23 24 22 21 19 20 17 18 16 15 14 13 11 12 10 9 8 7 6 5 3 4 2 1
32 31 29 30 28 27 26 25 24 23 21 22 20 19 18 17 15 16 13 14 12 11 9 10 7 8 5 6 4 3 1 2

Table A.6: Quasisedenion loop S̃2
32 multiplication table
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31
3 4 2 1 7 8 6 5 12 11 9 10 15 16 14 13 20 19 17 18 23 24 22 21 28 27 25 26 31 32 30 29
4 3 1 2 8 7 5 6 11 12 10 9 16 15 13 14 19 20 18 17 24 23 21 22 27 28 26 25 32 31 29 30
5 6 8 7 2 1 3 4 14 13 16 15 9 10 11 12 22 21 24 23 17 18 19 20 30 29 32 31 25 26 27 28
6 5 7 8 1 2 4 3 13 14 15 16 10 9 12 11 21 22 23 24 18 17 20 19 29 30 31 32 26 25 28 27
7 8 5 6 4 3 2 1 16 15 13 14 12 11 9 10 24 23 21 22 20 19 17 18 32 31 29 30 28 27 25 26
8 7 6 5 3 4 1 2 15 16 14 13 11 12 10 9 23 24 22 21 19 20 18 17 31 32 30 29 27 28 26 25
9 10 11 12 13 14 15 16 2 1 4 3 6 5 8 7 26 25 27 28 29 30 31 32 17 18 20 19 22 21 24 23
10 9 12 11 14 13 16 15 1 2 3 4 5 6 7 8 25 26 28 27 30 29 32 31 18 17 19 20 21 22 23 24
11 12 10 9 15 16 14 13 3 4 2 1 7 8 6 5 28 27 26 25 32 31 29 30 19 20 17 18 24 23 21 22
12 11 9 10 16 15 13 14 4 3 1 2 8 7 5 6 27 28 25 26 31 32 30 29 20 19 18 17 23 24 22 21
13 14 16 15 10 9 11 12 5 6 8 7 2 1 3 4 30 29 31 32 26 25 28 27 21 22 23 24 17 18 20 19
14 13 15 16 9 10 12 11 6 5 7 8 1 2 4 3 29 30 32 31 25 26 27 28 22 21 24 23 18 17 19 20
15 16 13 14 12 11 10 9 7 8 5 6 4 3 2 1 32 31 30 29 27 28 26 25 23 24 22 21 19 20 17 18
16 15 14 13 11 12 9 10 8 7 6 5 3 4 1 2 31 32 29 30 28 27 25 26 24 23 21 22 20 19 18 17
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15
18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
19 20 18 17 23 24 22 21 28 27 25 26 32 31 29 30 3 4 2 1 7 8 6 5 12 11 9 10 16 15 13 14
20 19 17 18 24 23 21 22 27 28 26 25 31 32 30 29 4 3 1 2 8 7 5 6 11 12 10 9 15 16 14 13
21 22 24 23 18 17 19 20 30 29 31 32 25 26 28 27 5 6 8 7 2 1 3 4 14 13 15 16 9 10 12 11
22 21 23 24 17 18 20 19 29 30 32 31 26 25 27 28 6 5 7 8 1 2 4 3 13 14 16 15 10 9 11 12
23 24 21 22 20 19 18 17 32 31 30 29 27 28 25 26 7 8 5 6 4 3 2 1 16 15 14 13 11 12 9 10
24 23 22 21 19 20 17 18 31 32 29 30 28 27 26 25 8 7 6 5 3 4 1 2 15 16 13 14 12 11 10 9
25 26 27 28 29 30 31 32 18 17 20 19 22 21 24 23 9 10 11 12 13 14 15 16 2 1 4 3 6 5 8 7
26 25 28 27 30 29 32 31 17 18 19 20 21 22 23 24 10 9 12 11 14 13 16 15 1 2 3 4 5 6 7 8
27 28 26 25 31 32 30 29 19 20 18 17 24 23 21 22 11 12 10 9 16 15 13 14 3 4 2 1 7 8 6 5
28 27 25 26 32 31 29 30 20 19 17 18 23 24 22 21 12 11 9 10 15 16 14 13 4 3 1 2 8 7 5 6
29 30 32 31 26 25 27 28 21 22 23 24 18 17 20 19 13 14 15 16 10 9 12 11 5 6 8 7 2 1 3 4
30 29 31 32 25 26 28 27 22 21 24 23 17 18 19 20 14 13 16 15 9 10 11 12 6 5 7 8 1 2 4 3
31 32 29 30 28 27 26 25 23 24 22 21 19 20 18 17 15 16 14 13 11 12 10 9 7 8 5 6 4 3 2 1
32 31 30 29 27 28 25 26 24 23 21 22 20 19 17 18 16 15 13 14 12 11 9 10 8 7 6 5 3 4 1 2

Table A.7: Quasisedenion loop S̃3
32 multiplication table
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
2 -1 4 -3 6 -5 -8 7 10 -9 -12 11 -14 13 16 -15 18 -17-20 19 -22 21 24 -23-26 25 28 -27 30 -29-32 31
3 -4 -1 2 7 8 -5 -6 11 12 -9 -10-15-16 13 14 19 20 -17-18-23-24 21 22 -27-28 25 26 31 32 -29-30
4 3 -2 -1 8 -7 6 -5 12 -11 10 -9 -16 15 -14 13 20 -19 18 -17-24 23 -22 21 -28 27 -26 25 32 -31 30 -29
5 -6 -7 -8 -1 2 3 4 13 14 15 16 -9 -10-11-12 21 22 23 24 -17-18-19-20-29-30-31-32 25 26 27 28
6 5 -8 7 -2 -1 -4 3 14 -13 16 -15 10 -9 12 -11 22 -21 24 -23 18 -17 20 -19-30 29 -32 31 -26 25 -28 27
7 8 5 -6 -3 4 -1 -2 15 -16-13 14 11 -12 -9 10 23 -24-21 22 19 -20-17 18 -31 32 29 -30-27 28 25 -26
8 -7 6 5 -4 -3 2 -1 16 15 -14-13 12 11 -10 -9 24 23 -22-21 20 19 -18-17-32-31 30 29 -28-27 26 25
9 -10-11-12-13-14-15-16 -1 2 3 4 5 6 7 8 25 26 27 28 29 30 31 32 -17-18-19-20-21-22-23-24
10 9 -12 11 -14 13 16 -15 -2 -1 -4 3 -6 5 8 -7 26 -25 28 -27 30 -29-32 31 18 -17 20 -19 22 -21-24 23
11 12 9 -10-15-16 13 14 -3 4 -1 -2 -7 -8 5 6 27 -28-25 26 31 32 -29-30 19 -20-17 18 23 24 -21-22
12-11 10 9 -16 15 -14 13 -4 -3 2 -1 -8 7 -6 5 28 27 -26-25 32 -31 30 -29 20 19 -18-17 24 -23 22 -21
13 14 15 16 9 -10-11-12 -5 6 7 8 -1 -2 -3 -4 29 -30-31-32-25 26 27 28 21 -22-23-24-17 18 19 20
14-13 16 -15 10 9 12 -11 -6 -5 8 -7 2 -1 4 -3 30 29 -32 31 -26-25-28 27 22 21 -24 23 -18-17-20 19
15-16-13 14 11 -12 9 10 -7 -8 -5 6 3 -4 -1 2 31 32 29 -30-27 28 -25-26 23 24 21 -22-19 20 -17-18
16 15 -14-13 12 11 -10 9 -8 7 -6 -5 4 3 -2 -1 32 -31 30 29 -28-27 26 -25 24 -23 22 21 -20-19 18 -17
17-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32 -1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
18 17 -20 19 -22 21 24 -23-26 25 28 -27 30 -29-32 31 -2 -1 -4 3 -6 5 8 -7 -10 9 12 -11 14 -13-16 15
19 20 17 -18-23-24 21 22 -27-28 25 26 31 32 -29-30 -3 4 -1 -2 -7 -8 5 6 -11-12 9 10 15 16 -13-14
20-19 18 17 -24 23 -22 21 -28 27 -26 25 32 -31 30 -29 -4 -3 2 -1 -8 7 -6 5 -12 11 -10 9 16 -15 14 -13
21 22 23 24 17 -18-19-20-29-30-31-32 25 26 27 28 -5 6 7 8 -1 -2 -3 -4 -13-14-15-16 9 10 11 12
22-21 24 -23 18 17 20 -19-30 29 -32 31 -26 25 -28 27 -6 -5 8 -7 2 -1 4 -3 -14 13 -16 15 -10 9 -12 11
23-24-21 22 19 -20 17 18 -31 32 29 -30-27 28 25 -26 -7 -8 -5 6 3 -4 -1 2 -15 16 13 -14-11 12 9 -10
24 23 -22-21 20 19 -18 17 -32-31 30 29 -28-27 26 25 -8 7 -6 -5 4 3 -2 -1 -16-15 14 13 -12-11 10 9
25 26 27 28 29 30 31 32 17 -18-19-20-21-22-23-24 -9 10 11 12 13 14 15 16 -1 -2 -3 -4 -5 -6 -7 -8
26-25 28 -27 30 -29-32 31 18 17 20 -19 22 -21-24 23 -10 -9 12 -11 14 -13-16 15 2 -1 4 -3 6 -5 -8 7
27-28-25 26 31 32 -29-30 19 -20 17 18 23 24 -21-22-11-12 -9 10 15 16 -13-14 3 -4 -1 2 7 8 -5 -6
28 27 -26-25 32 -31 30 -29 20 19 -18 17 24 -23 22 -21-12 11 -10 -9 16 -15 14 -13 4 3 -2 -1 8 -7 6 -5
29-30-31-32-25 26 27 28 21 -22-23-24 17 18 19 20 -13-14-15-16 -9 10 11 12 5 -6 -7 -8 -1 2 3 4
30 29 -32 31 -26-25-28 27 22 21 -24 23 -18 17 -20 19 -14 13 -16 15 -10 -9 -12 11 6 5 -8 7 -2 -1 -4 3
31 32 29 -30-27 28 -25-26 23 24 21 -22-19 20 17 -18-15 16 13 -14-11 12 -9 -10 7 8 5 -6 -3 4 -1 -2
32-31 30 29 -28-27 26 -25 24 -23 22 21 -20-19 18 17 -16-15 14 13 -12-11 10 -9 8 -7 6 5 -4 -3 2 -1

Table A.8: Multiplication table of positive elements of T64
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Appendix B

GAP Programs

Function CayleyDicksonLoop(n) outputs a Cayley–Dickson loop of order n.

#===============================================

# n=1 complex numbers

# n=2 quaternions

# n=3 octonions

# n=4 sedenions

# etc.

#===============================================

# We represent the element i_k as a vector [sign,0,0,...,1,...0],

# where sign=0 if the element is positive, sign=1 if the element is negative;

# we put 1 on (k+1)-st position.

# Then we encode this element by

# code(sign,i_k)=2*k-1+sign;

# Note that code is even for negative elements and odd for positive ones;

# code(1)=1 and code(-1)=2.

#===============================================

# For example, the units of complex numbers are encoded as follows:

# 1 -1 i -i

# [0,1,0] [1,1,0] [0,0,1] [1,0,1]

# 2*1-1+0 2*1-1+1 2*2-1+0 2*2-1+1

# 1 2 3 4

#===============================================

# For example, element with code=8 corresponds to -i_(8/2) = -i_4,

# element with code=17 corresponds to i_((17+1)/2) = i_9

#===============================================

CDMultiply := function ( a, b, MT )

# multiplies two elements of a Cayley-Dickson loop,

# receives a multiplication table as input parameter;

# accepts input in encoded format

local i, pos_a, pos_b;

if (IsMatrix(MT)=false) then return "bad input"; fi;

pos_a:=0;
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pos_b:=0;

if a=0 or b=0 then return 0; fi;

for i in [1..Length(MT)] do

if MT[i][1] = a then pos_a:=i; fi;

if MT[1][i] = b then pos_b:=i; fi;

od;

if ((pos_a=0) or (pos_b=0)) then return "bad input"; fi;

return MT[pos_a][pos_b];

end;

#===============================================

CDConjugate := function ( a )

# finds a conjugate of an element;

# accepts input in the encoded format

if (a<0 or IsInt(a)=false ) then return "a should be a natural number"; fi;

if a<3 then return a; fi; # do nothing with real units and zero

#(zero is not a unit, it is needed for consistensy in the multiplication formula)

if (a mod 2)=0 then a:=a-1; else a:=a+1; fi;

# if the element is negative (even), we conjugate it by subtracting 1;

# if the element is positive (odd), we conjugate it by adding 1;

return a;

end;

#===============================================

CDMultiplicationTableCreate := function ( n, MT_prev )

# internal routine that creates multiplication table of elements

of a Cayley-Dickson loop of order n

# MT_prev is a multiplication table of a Cayley-Dickson loop of order (n-1)

local units, i, j, MT, neg, units_prev, code;

units:=[];

neg:=0;

units_prev:=MT_prev[1];

for j in units_prev do

Append(units,[[j,0]]);

od;

for j in units_prev do

Append(units,[[0,j]]);

od;

code:=0;

MT:=NullMat(2^(n+1),2^(n+1));

for i in [1..2^(n+1)] do

MT[i][1]:=units[i];

MT[1][i]:=units[i];

od;

for i in [2..2^(n+1)] do

for j in [2..2^(n+1)] do

MT[i][j]:=[CDMultiply(MT[i][1][1],MT[1][j][1],MT_prev)

-CDMultiply(CDConjugate(MT[1][j][2]),MT[i][1][2],MT_prev),

CDMultiply(MT[1][j][2],MT[i][1][1],MT_prev)

+CDMultiply(MT[i][1][2],CDConjugate(MT[1][j][1]),MT_prev)];

od;

od;

for i in [1..2^(n+1)] do
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for j in [1..2^(n+1)] do

if MT[i][j][1]<0 then

neg:=1;

MT[i][j][1]:=AbsInt(MT[i][j][1]);

else neg:=0;

fi;

if MT[i][j][1]<>0

then code:=MT[i][j][1];

else code:=MT[i][j][2]+2^(n);

fi;

if neg=1 then

if (code mod 2)=0 then code:=code-1; else code:=code+1; fi;

fi;

MT[i][j]:=code;

od;

od;

return MT;

end;

#===============================================

CayleyDicksonLoop:= function ( n )

# returns a Cayley-Dickson loop of order n

local i, CDMultiplicationTableList, RealMT;

if ((IsInt(n)=false) or (n<1)) then return "n should be a natural number"; fi;

CDMultiplicationTableList:=NullMat(1,n);

RealMT:=[[1,2],[2,1]]; # multiplication table of reals

CDMultiplicationTableList[1]:=CDMultiplicationTableCreate(1,RealMT );

if (n>1) then

for i in [2..n] do

CDMultiplicationTableList[i]:=

CDMultiplicationTableCreate(i,CDMultiplicationTableList[i-1]);

od;

fi;

return LoopByCayleyTable(CDMultiplicationTableList[n]);

end;

#===============================================

Modified function Discriminator(L) calculates the associating triples invariant
for a loop L in addition to the invariants computed in the original function of the
LOOPS package for GAP.

#===============================================

# Discriminator( L )

#

# Returns the dicriminator of a loop <L>.

# Discriminator must be cheap to calculate, yet it is supposed to

# provide such invariants that result in a fine partition of <L>

# preserved under isomorphisms.

InstallMethod( Discriminator, "for loop",

[ IsLoop ],

function( L )

local n, T, I, i, j, k, ebo, c, J, counter, A, P, B, FrequencySet;
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# making sure loop table is canonical

if L = Parent( L ) then T := CayleyTable( L );

else T := CanonicalCayleyTable( CayleyTable( L ) ); fi;

n := Size( L );

# Calculating invariants.

if not IsPowerAssociative( L ) then

...

else

#power associative loop, hence refined discriminator

# Element x asks: What is my order?

I := List( L, x -> [Order(x), 0, 0, 0, 0, false, 0] );

# Element x asks: How many times am I a square, third power, fourth power?

for i in [1..n] do

j := T[ i ][ i ];

I[ j ][ 2 ] := I[ j ][ 2 ] + 1;

j := T[ i ][ j ];

I[ j ][ 3 ] := I[ j ][ 3 ] + 1;

j := T[ i ][ j ];

I[ j ][ 4 ] := I[ j ][ 4 ] + 1;

od;

# Element x asks: With how many elements of given order do I commute?

ebo := List( [1..n], i -> []); # elements by order

for i in [1..n] do Add( ebo[ I[ i ][ 1 ] ], i ); od;

ebo := Filtered( ebo, i -> not IsEmpty( i ) );

for i in [1..n] do

c := [];

for J in ebo do

counter := 0;

for j in J do if T[ i ][ j ] = T[ j ][ i ] then

counter := counter + 1;

fi; od;

Add( c, counter );

od;

I[i][5] := c;

od;

# Element x asks: Am I central?

for i in [1..n] do

I[ i ][ 6 ] := Elements( L )[ i ] in Center( L );

od;

# Not in the LOOPS package

# Element x asks: with how many elements do I associate

# in the first position (x*(y*z) = (x*y)*z ?)

for i in [1..n] do

for j in [1..n] do for k in [1..n] do

if T[ i ][ T[ j ][ k ] ] = T[ T[ i ][ j ] ][ k ] then

I[ i ][ 7 ] := I[ i ][ 7 ] + 1;

fi;

od; od;

od;

# end of Not in the LOOPS package

fi; # All invariants have been calculated at this point.

FrequencySet := function (L)
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# Auxiliary function.

# Given a list L, returns [ S, F ], where S = Set( L ),

# and where F[ i ] is the number of occurences of Elements( S )[ i ] in L

local S, F, x, i;

S := Set( L );

F := 0*[ 1..Size( S ) ];

for x in L do

i := Position( S, x );

F[ i ] := F[ i ] + 1;

od;

return [S, F];

end;

# Setting up the first part of discriminator (invariants).

A := FrequencySet( I );

P := Sortex( A[ 2 ] ); #small invariant sets will be listed first

A[ 1 ] := Permuted( A[ 1 ], P );

# Setting up the second part of discriminator

# (blocks of elements invariant under isomorphisms).

B := List( A[ 1 ], i -> [] ); #for every invariant get a list of elements

for i in [1..n] do

Add( B[ Position( A[ 1 ], I[ i ] ) ], Elements( L )[ i ] );

od;

# Returning the discriminator.

return [ A, B ];

end);

#===============================================
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