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Abstract

A latin square of order n is an n × n array whose entries are drawn from an

n-set of symbols such that each symbol appears precisely once in each row and

column. A transversal of a latin square is a subset of cells that meets each

row, column, and symbol precisely once.

There are many open and difficult questions about the existence and preva-

lence of transversals. We undertake a systematic study of collections of cells

that exhibit regularity properties similar to those of transversals and prove

numerous theorems about their existence and structure. We hope that our

results and methods will suggest new strategies for the study of transversals.

The main topics we investigate are partial and weak transversals, weak or-

thogonal mates, integral weight functions on the cells of a latin square, appli-

cations of Alon’s Combinatorial Nullstellensatz to latin squares, and complete

mappings of finite loops.
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Chapter 1

Introduction

This dissertation is about transversals of latin squares. More precisely, it is

about collections of cells that are, in some sense, close to forming transversals.

We refer to such collections as approximate transversals and prove theorems

about their existence and structure.

A latin square of order n is an n × n array whose entries are drawn from

an n-set of symbols such that no row or column contains a repeated entry. As

the particular set of symbols used is not important, we will typically use the

symbol set [n] := {1, . . . , n}. Figure 1.1 depicts a latin square of order 9.

8 4 5 9 2 1 7 3 6
5 8 3 2 4 7 6 1 9
2 1 7 8 3 4 9 6 5
4 6 1 5 7 9 8 2 3
7 9 6 1 5 8 3 4 2
1 3 2 6 9 5 4 8 7
6 7 4 3 1 2 5 9 8
9 5 8 4 6 3 2 7 1
3 2 9 7 8 6 1 5 4

Figure 1.1: A latin square of order 9
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We are primarily interested in collections of cells that have certain regu-

larity properties. In particular, a transversal of a latin square is a subset of

cells that meets each row, column, and symbol precisely once. While experi-

mental evidence suggests that almost all latin squares have transversals, Euler

showed that, for every even order n, there is a latin square of order n that

has no transversal, namely, the Cayley table of (Z2n,+) [21]. It is not known

whether all latin squares of odd order have transversals, though the following

conjecture has been attributed to Ryser [39].

Conjecture 1.0.1. Every latin square of odd order has a transversal.

Despite a diversity of attributions found in the literature, we will follow

the convention of referring to Conjecture 1.0.1 as Ryser’s conjecture.

There are many open and difficult questions about the existence and preva-

lence of transversals. We undertake a systematic study of collections of cells

that exhibit regularity properties similar to those of transversals and prove

numerous theorems about their existence and structure. We hope that our

results and methods will suggest new strategies for the study of transversals.

In §1.1, we present the main concepts and definitions used throughout this

document. In §1.2, we provide a brief summary of our main results.

1.1 Main Concepts and Definitions

We work with 2-dimensional arrays, each of whose cells contains either a single

symbol or is empty. A row or column of an array is said to be latin if it does

not contain any symbol twice. A latin row or column may contain more than

one empty cell. A partial latin square of order n is an n × n array with latin
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rows and columns and containing at most n distinct symbols. A partial latin

square that contains no empty cells is called a latin square. The variable n

will be used extensively and exclusively to refer to the order of a square array

or latin square. The standard references for latin squares include the two

texts of Dénes and Keedwell [13, 14] and the more recent text of Laywine and

Mullen [30].

We will refer to the cell in row r and column c of an array either by writing

(r, c) or (r, c, s), if it happens that cell (r, c) contains symbol s. In this way,

we may also think of an array as a set of triples corresponding to its collection

of non-empty cells. We will refer to the contents of the cell (r, c) of an array L

by writing L(r, c). For a set of cells C, we denote by L(C) the set of symbols

that appear in some cell in C.

Because we are interested in the combinatorial properties of latin squares,

we will work with the coarsest of equivalences. For our purposes, two latin

squares are equivalent if they agree up to some exchange of symbol sets, permu-

tations of rows and columns, and permutations of the roles of rows, columns,

and symbols. For latin squares, each such equivalence class is called a main

class. With the exception of Chapter 7, in which we take a more algebraic

perspective, we will deal almost exclusively with properties of latin squares

that are main class invariant. The one other exception is in our study of weak

transversals and weak orthogonal mates. In these cases, symbols are treated

somewhat differently than rows and columns and thus it is no longer natural

to permute the roles of rows, columns, and symbols.

A diagonal of an n×n array is a collection of n cells from distinct rows and

columns. There is a natural bijection between diagonals and permutations in
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Sym(n) by associating a permutation θ with the diagonal {(r, rθ) : 1 ≤ r ≤ n}.

In this way, when there is no risk of confusion, we will at times treat θ as if it

were a diagonal. We may, for example, say that θ contains the symbol s when

there is a cell in the diagonal associated to θ that contains the symbol s. We

will also say that a diagonal θ contains the cell (r, rθ). The unique diagonal

containing every occurrence of a fixed symbol s in a latin square is called

the symbol pattern of s. The main diagonal is the diagonal associated to the

identity permutation. The deficit of a diagonal refers to the difference between

n and the number of distinct symbols contained in it. A weak transversal is a

diagonal in which no symbol appears three times.

A partial transversal of a latin square of order n is a subset of cells incident

with no row, column, or symbol more than once. The length or size of a partial

transversal is its cardinality while its deficit is the number of rows (or columns

or symbols) that it misses, i.e., the difference between n and its length. We

refer to the minimum deficit among all partial transversals of a latin square

as the minimum deficit of the square itself. Partial transversals are arguably

the most natural candidate for an approximate transversal.

A k-plex of a latin square of order n is a collection of kn cells that meets

each row, column, and symbol precisely k times. The terms transversal and

duplex refer to k-plexes for k = 1 and k = 2, respectively. The first systematic

study of k-plexes for k ≥ 2 is due to Wanless [46], but numerous other works

have since appeared [9, 17, 18, 19]. The most comprehensive and up-to-date

reference on transversals of latin squares is due to Wanless [47].
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1.2 Summary of Main Results

In Chapter 2, we focus on partial transversals of square arrays with latin rows

and columns and on partial transversals of latin squares of small order. In

Proposition 2.2.1, we show that every n×n array with latin rows and columns

and no more than k empty cells in each row and column contains a partial

transversal of length n−
√
n− k + 1. The importance of allowing empty cells

is that the result can be applied iteratively to show the existence of mutually

disjoint partial transversals. In §2.4, we describe an algorithm we developed

to confirm that all latin squares of order 10 and 12 have partial transversals

of lengths 9 and 10, respectively. The previous best known results were 8 and

9, respectively.

In Chapter 3, we study weak transversals. It is conjectured that every latin

square can be partitioned into weak transversals. Our main result in this di-

rection is Proposition 3.2.3: every latin square of order n contains about 1
11
n

mutually disjoint weak transversals. This result represents a major improve-

ment given that it was previously only known that every latin square contains

at least one weak transversal. In Proposition 3.4.1, we prove the surprising

result that any cell of a latin square contained in a partial transversal of deficit

d is contained in a weak transversal of deficit at most d. It follows that every

latin square is covered by weak transversals and that the minimum deficit of

any latin square is realized by some weak transversal.

In Chapter 4, we introduce the concept of weak orthogonality between

pairs of latin squares. We generalize the famous result that a set of mutually

orthogonal latin squares of order n can have size no larger than n − 1 and

5



construct complete sets of mutually weakly orthogonal latin squares for several

non-prime power orders. For example, in contrast to the classic result that

there are no pairs of orthogonal latin squares of order 6, we present a collection

of 20 mutually weakly orthogonal latin squares of order 6.

In Chapter 5, we study integral weight functions on the cells of a latin

square that have constant row, column, and symbol sums. We call such a

function a k-weight when the constant row, column, and symbol sum is k. In

Proposition 5.4.1, we show that every latin square contains a 2-weight and

that all latin squares of odd order contain 1-weights. In Proposition 5.4.2, we

show that many latin squares have no k-weights for any odd k.

In Chapter 6, we investigate applications of Alon’s Combinatorial Nullstel-

lensatz to the study of latin squares. In Proposition 6.3.2, for example, we

show that every latin square of order n ≡ 1 mod p has a proper subset of

cells that meets each row, column, and symbol 1 modulo p times.

In Chapter 7, we take a more algebraic perspective by studying complete

mappings of finite loops. Here we develop and partially prove a non-associative

analogue of the famous Hall-Paige conjecture for finite groups. We also prove

a generalization of the Dénes-Hermann theorem and a weak form of the Hall-

Paige conjecture.

Many of the results in Chapters 2, 3, 4, and 6 represent joint work with Ian

Wanless of Monash University. Our collaboration was generously supported

by the National Science Foundation’s East Asia and Pacific Summer Institutes

Program and the Australian-American Fulbright Commission. The remaining

content, Chapters 5 and 7, has been published in peer-reviewed, international

scholarly journals as [36] and [37], respectively.
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Chapter 2

Partial Transversals

2.1 Background

The most important and natural questions one might ask about partial transver-

sals are when and whether large ones exist. The following well-known conjec-

ture proposes a simple answer. We follow the convention of referring to it

as Brualdi’s conjecture, though the literature records a variety of attributions

including Brualdi [13, p.103], Ryser [20], and Stein [42].

Conjecture 2.1.1. Every latin square of order n contains a partial transversal

of length n− 1.

The conjecture is currently known to hold for n ≤ 9 through the use of a

brute force check of each main class [32]. In §2.4, we discuss computational

methods we have employed to confirm the conjecture for n = 10 as well.

The best general results concerning Brualdi’s conjecture give lower bounds

on the maximum length among all partial transversals of latin squares of order

n. The two most notable of such results are the following.
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Proposition 2.1.2 (Brouwer et al. [5], Woolbright [50]). Every latin square

of order n contains a partial transversal of length at least n−
√
n.

Proposition 2.1.3 (Shor [40], Hatami and Shor [28]). Every latin square of

order n contains a partial transversal of length at least n− 11.053(log n)2.

While the latter of these bounds beats the former asymptotically, this

fact is not realized until n ≥ 52,962,006. In particular, to the extent we are

interested in partial transversals of relatively small latin squares, the latter

result is of little use. (The computation of the above value of n uses a slightly

stronger though less compact form of Proposition 2.1.2.)

In this chapter, we present two extensions of the methods used to prove

the above propositions. In §2.2, we extend the proof-method of Proposition

2.1.2 to establish an analogous result for square matrices with latin rows and

columns and a bounded number of empty cells in each row and column. Our

extension becomes particularly useful in Chapter 3, where we use it repeatedly

to show the existence of sets of mutually disjoint weak transversals and weak

k-plexes.

In §2.4, we use the central idea in Shor’s proof of Proposition 2.1.3 to

develop an algorithm we have used to confirm Brualdi’s conjecture for n = 10.

2.2 Partial Transversals and Empty Cells

Recall that a row or column of a 2-dimensional array is said to be latin if it

does not contain any repeated symbols. In our usage, a latin row or column

may have multiple empty cells.

8



Proposition 2.2.1. Suppose that L is an n×n array whose rows and columns

are all latin and none contain more than k empty cells. Then L has a partial

transversal of length t for some t satisfying (n− t)(n− t− k) ≤ t. For k ≥ 1,

it follows that

n−
√
n− k + 1 ≤ t.

Proof. Let t be the maximum length among all partial transversals of L. With-

out loss of generality, we may assume that L(i, i) = i for i ∈ [t]. We think of

L as being partitioned into blocks A,B,C, and D as in Figure 2.1.

1 t t+1 n
1

A B
t

t+1
C D

n

Figure 2.1: General layout of L used in Proposition 2.2.1.

We call the symbols [t] = {1, . . . , t} small and [n]\ [t] = {t+1, . . . , n} large

and denote the latter set by M . Since t is maximal, block D contains only

small symbols and empty cells.

We define a sequence of sets from whose sizes we may deduce some infor-

mation about t. Let S0 be the empty set. Set Si = {j : L(j, t+ i) ∈M ∪Si−1}

for 1 ≤ i ≤ n− t. If L(j, t+ i) is empty, then j 6∈ Si.

We claim that each Si consists entirely of small symbols. The claim is

vacuously true for S0. For S1, the claim follows from the fact that block D

cannot contain any large symbols. Working toward a contradiction, let Si is

the first of our sets to violate the claim by containing a large symbol j ∈ Si.

9



By definition, L(j, t + i) ∈ M ∪ Si−1. Since D contains no large symbols,

it follows that L(j, t + i) ∈ Si−1. Set m0 := L(j, t + i) ∈ Si−1 and ml =

L(ml−1, t + i − l) for 1 ≤ l ≤ p where p is the first index such that s :=

L(mp, t + i − p − 1) ∈ M . Note that such a p must exist since the first non-

empty set Sε has the property that L(Sε × {t + ε}) ⊆ M . The reader should

have a picture such as Figure 2.2 in mind.

m1 mp m0 t+ i

m1 m1 m2

. . .

mp mp s
m0 m0 m1

j m0

Figure 2.2: An illustration of the (m0, . . . ,mp) sequence constructed in Propo-
sition 2.2.1.

We will use the sequence (m0, . . . ,mp) to construct a partial transversal of

length t + 1. First suppose that the elements in our sequence are all distinct

and consider Figure 2.3. Under this assumption, the cells in the left-hand

column are distinct cells in the original partial transversal and the cells in the

right-hand column are distinct cells not in the original transversal. Further-

more, swapping the left-hand cells for the right-hand cells produces a partial

transversal of length t+ 1, a contradiction.

Now suppose that ma = mb for some 0 ≤ a < b ≤ p. In this case, the swap

described above is no longer valid as we would need to remove cell (ma,ma)

twice. We may, however, simply discard the portion of the swap corresponding

10



Old Cells Symbol New Cells
(m0,m0) m0 (j, t+ i)
(m1,m1) m1 (m0, t+ i− 1)
(m2,m2) m2 (m1, t+ i− 2)

...
(mp−2,mp−2) mp−2 (mp−3, t+ i− p+ 2)
(mp−1,mp−1) mp−1 (mp−2, t+ i− p+ 1)

(mp,mp) mp (mp−1, t+ i− p)
– s (mp, t+ i− p− 1)

Figure 2.3: Old and new cells paired according to their common symbol. The
final row contains only a new cell since its corresponding symbol does not
occur in the original partial transversal.

to the subsequence (ma+1, . . . ,mb). Figure 2.4 depicts this portion of the table.

Old Cells Symbol New Cells
(ma,ma) ma (ma−1, t+ i− a)

(ma+1,ma+1) ma+1 (ma, t+ i− a− 1)
...

(mb−1,mb−1) mb−1 (mb−2, t+ i− b+ 1)
(ma,ma) ma (mb−1, t+ i− b)

(mb+1,mb+1) mb+1 (ma, t+ i− b− 1)

Figure 2.4: In the case that ma = mb for some a < b, we will discard the rows
corresponding to the subsequence (ma+1, . . . ,mb) and keep only the first and
last rows in the above table.

In this way, we pass to a subsequence with fewer repetitions. Iterating this

reduction we arrive at a non-empty subsequence with no repetitions. With this

final subsequence, we may apply the swap to construct a partial transversal

of length t+ 1, a contradiction. Therefore, Si contains only small symbols for

0 ≤ i ≤ n− t.

We now show that |Si| ≥ i(n− t− k). The claim holds trivially for i = 0.

Suppose that |Si| ≥ i(n− t− k) holds and consider |Si+1|. Among the cells in

column t + i + 1, each cell containing either a large symbol or a symbol from

11



Si will contribute 1 to |Si+1|. Of the n cells in column t + i + 1, there are at

most t+ k−|Si| cells that are neither large nor from Si (since Si ⊆ [t]). Thus,

we have that

|Si+1| ≥ n− t− k + |Si|

≥ n− t− k + i(n− t− k)

= (i+ 1)(n− t− k).

We have thus established that |Sn−t| ≥ (n − t)(n − t − k) but also that

|Sn−t| ≤ t since Sn−t ⊆ [t]. Therefore, (n− t)(n− t− k) ≤ t. Solving for t, we

find that

t ≥ n− 1

2
k − 1

2

√
(k − 1)2 + 4n+

1

2

t ≥ n− 1

2
k − 1

2
|k − 1| −

√
n+

1

2

= n−
√
n− k + 1.

In this final calculation we have used the assumption that k ≥ 1. If k = 0, we

recover the original result of [5, 50] that t ≥ n−
√
n.

2.3 Using Only Prescribed Symbols

It is at times desirable to have a partial transversal that consists precisely of a

set of prescribed symbols. In particular, we will use the following proposition

in §3.3 to establish the existence of weak k-plexes.

12



Proposition 2.3.1. Suppose that L is an n × n latin array and that D is a

d-subset of symbols that each appear at least k times in L. Then L contains

a partial transversal consisting precisely of the symbols from D so long as

d < 1
2
k + 1.

Proof. Let D = {s1, . . . , sd}. Fix any cell (r1, c1) such that L(r1, c1) = s1.

Notice that each symbol in D can occur at most twice among row r1 and

column c1. Therefore each symbol in D occurs at least k − 2 times outside of

row r1 and column c1. Continuing in this way, once we have selected a partial

transversal

{(ri, ci) : L(ri, ci) = si and 1 ≤ i ≤ t},

each symbol in D appears at least k − 2t times outside of the previously

selected rows and columns. Therefore, to achieve t = d, we require only that

k − 2(d− 1) > 0.

We comment that Ryser’s conjecture implies that the above result is much

weaker than the truth for n odd since any D subset of symbols could be

realized as a partial transversal simply by discarding the appropriate cells

from a transversal. The result is likely far from the truth for the even case as

well.

2.4 Partial Transversals of Small Latin Squares

Neither Proposition 2.1.2 nor Proposition 2.1.3 tell us much about the max-

imum length of partial transversals of small latin squares. For orders n ≤ 9,

the number of latin squares of order n is small enough that it is computation-
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ally feasible to naively check that all such squares have partial transversals

of length at least n − 1. For larger orders, we must rely either upon theo-

retical lower bounds or more advanced computational methods. Figure 2.5

presents the known lower bounds for partial transversals of small latin squares

based on several general results. As discussed above, we have omitted the

n−11.053(log n)2 result because it is only useful for very large n. The bounds

presented in the first five rows are from [29], [16], [45], [5, 50], and [32], re-

spectively.

n 7 8 9 10 11 12 13 14 15 16 17

(2n+ 1)/3 5 6 7 7 8 9 9 10 11 11 12

min(3n/4, n− 2) 5 6 7 8 9 9 10 11 12 12 13

(9n− 15)/11 5 6 6 7 8 9 10 11 11 12 13

n−
√
n 5 6 7 8 9 9 10 11 12 13 14

Brute force 7 7 9 Computationally Infeasible

Our Algorithm 6 7 8 9 9 10

n−
√
n (k = 1) 5 6 6 7 8 9 10 11 12 12 13

(k = 2) 4 5 6 7 8 8 9 10 11 12 13

(k = 3) 4 4 5 6 7 8 9 10 10 11 12

(k = 4) 3 4 5 5 6 7 8 9 10 11 12

(k = 5) 2 3 4 5 6 6 7 8 9 10 11

Figure 2.5: Known lower bounds for maximum lengths of partial transversals
among latin squares of order n. Our data for the n−

√
n row comes from the

slightly stronger bound of n + 1/2−
√
n+ 1/4. The bottom five rows record

the lower bounds arising from Proposition 2.2.1 for latin squares with no more
than k empty cells in each row and column.

We now describe an algorithm inspired by the method employed in [40] and

report our success in using this method to improve the known lower bounds
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for orders n = 10 and 12. In particular, we found that all such squares have

partial transversals of lengths 9 and 10, respectively. The first of these results

confirms Brualdi’s conjecture for n = 10.

2.4.1 Shor’s # Operation

The proof of Proposition 2.1.3 is based on two clever and well executed ideas:

(1) a simple operation, called #, to move between two diagonals of a latin

square that contain the same underlying symbol set and (2) a counting ar-

gument showing that this operation, when applied in all possible ways, must

reach a large number of cells. It follows that the fixed underlying symbol set

must be capable of filling a large number of cells and thus must contain a

large number of symbols. Proposition 2.1.3 makes this argument precise and

thereby shows that a partial transversal of maximum length must have length

at least n− 11.053(log n)2.

We now describe the # operation used in [28] and [40]. Given L, a latin

square of order n, and a diagonal π, set S(π) := {L(i, iπ) : 1 ≤ i ≤ n}. If

|S(π)| ≤ n − 2, then there are at least 3 pairs of cells in π with the property

that the pair could be removed without lowering the total number of distinct

symbols among the remaining n − 2 cells. If such a pair falls in rows r1 and

r2, then consider the diagonal π′ := π(r1r2). The diagonals π and π′ agree on

the n− 2 rows other than r1 and r2 and S(π) ⊆ S(π′). We will follow [40] in

referring to the operation that sends π to π′ as the # operation. Of course,

the operation is a function not only of π but also of r1 and r2.

At first glance, the operation # seems arbitrarily restrictive in that it only

allows the swapping of two rows at a time where one might hope to exploit a
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more ambitious swap. For a diagonal π ∈ Sym(n), let I be a k-subset of [n]

such that

S(π) = {L(i, iπ) : i ∈ [n]} = {L(i, iπ) : i ∈ [n] \ I}.

That is, we may remove all the cells in π from rows indexed by I without

losing any symbols. For any ρ ∈ Sym(I), we call the operation that sends π

to πρ a k-swap.

Lemma 2.4.1. Suppose that π has minimal deficit. Any k-swap on π can be

decomposed into a sequence of 2-swaps, i.e. # operations.

Proof. Consider a k-swap corresponding to I = {1, . . . , k} and ρ ∈ Sym(I).

We may assume that π is the identity map, i.e. the main diagonal of L. Note

that the symbols {si : 1 ≤ i ≤ k} each occur at least once in {si : k+1 ≤ i ≤ n}

and that this fact remains true if we apply any 2-swap to π that involves

only the first k rows. Otherwise, we would have introduced a new symbol,

contradicting the minimality of the deficit of π.

We are, therefore, free to apply any sequence of 2-swaps we like among

rows {1, . . . , k}. In particular, if ρ = ρ1 · · · ρm where each ρi is a 2-cycle on I,

then πρ = πρ1 · · · ρm and each operation of the right is a valid 2-swap.

2.4.2 Our # Algorithm

From Lemma 2.4.1, we know that it suffices to focus on the # operation rather

than more general k-swaps, at least among minimally deficient diagonals. With

this fact in mind, we designed an algorithm based on the # operation to test

Conjecture 2.1.1 for small values of n.
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For 2 ≤ k ≤ n, our algorithm attempts to determine whether there exists

a latin square of order n with minimal deficit k. The algorithm follows a

basic branching structure that, informally speaking, mimics the way one might

iteratively apply the # operation to an “empty latin square.” The branching

occurs when the algorithm must choose which symbol is placed in a particular

cell.

The algorithm begins with an n × n array whose main diagonal contains

the symbols [n− k] and has no empty cells as in the top-left square in Figure

2.6. All off-diagonal cells begin empty. The variable CurrentDiagonal is

initialized to be the main diagonal. The algorithm first identifies all possible

# operations that can be applied to CurrentDiagonal. It then records a list

of the corresponding diagonals that would be achieved by these # operations.

Each off-diagonal cell contained in one of these diagonals is marked as visited.

Figure 2.6 depicts visited cells using the “◦” symbol. The key observation is

that all cells marked as visited must contain a symbol in [n−k]. The algorithm

then selects one of the # operations (or, equivalently, one of the diagonals it

recorded) to be the new value of CurrentDiagonal.

The algorithm should now explore # operations from CurrentDiagonal.

Since CurrentDiagonal contains two empty cells, a choice must be made as

to which symbols they will contain. It is this choice that forces the branching

of our algorithm. The algorithm computes all possible choices for this pair of

symbols (excluding symbols that have already appeared in the given row or

column) and branches to explore each of these cases.

Since CurrentDiagonal now contains no empty cells, the algorithm can

identify all possible # operations from this diagonal. The algorithm adds to its
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1 ◦ ◦
◦ 2 ◦
◦ 1 ◦

◦ ◦ 2
3

4
5

6

1 3 ◦ ◦
3 2 ◦ ◦
◦ 1 ◦

◦ ◦ 2
◦ ◦ 3

4
5

6

1 3 4 ◦ ◦
3 2 ◦ ◦
◦ 1 ◦

4 ◦ 2 ◦
◦ ◦ 3
◦ ◦ 4

5
6

1 3 ◦ 4 2 ◦ ∗ ∗
3 2 ◦ ◦
◦ 1 ◦ ◦

4 ◦ ◦ 2 ◦
◦ 1 ◦ 3
◦ ◦ 4

5
6

1 3 5 4 2 ◦ ∗ ∗
3 2 ◦ ◦
◦ 1 ◦ 4 ◦

4 ◦ ◦ 2 ◦
◦ 1 ◦ 3
◦ ◦ ◦ 4 ◦

◦ ◦ 5
6

1 3 5 4 2 6 ∗ ∗
3 2 ◦ ∗ ◦ ◦
∗ ◦ 1 ◦ 4 ◦
4 ◦ ◦ 2 ∗ ◦ ∗ ◦
◦ 1 ∗ ◦ 3 ◦
◦ ∗ 2 ◦ ∗ 4 ◦ ◦
◦ ◦ ∗ ∗ ◦ ◦ 5 ◦
∗ ∗ ◦ ◦ ◦ ◦ ◦ 6

Figure 2.6: To determine whether there can exist a latin square of order 8
with minimum deficit of 2, our algorithm starts with an n×n array containing
a single diagonal of deficit 2, as in the top-left square. Starting from the
underlined diagonal, the # operation could potentially visit any of the ◦-cells
by swapping pairs of cells containing bold symbols.

list of diagonals any of these new diagonals that contain an empty cell. It again

marks all such cells as visited. The top-middle square in Figure 2.6 depicts

this step in the algorithm. The underlined diagonal corresponds to the value of

CurrentDiagonal. The algorithm now selects a new CurrentDiagonal from

its list. If CurrentDiagonal no longer contains an empty cell, it is discarded

and a new CurrentDiagonal is selected.

Iterating in this way, with each new value of CurrentDiagonal, we will be

placing symbols in one or two previously empty cells. Such a process must

terminate within n(n− k − 1) iterations since by that time the square would

contain at least n(n− k) symbols from [n− k]. We either reach a point where

there are no viable symbols to be placed in an empty cell contained in one of

our diagonals or we have no diagonals containing an empty cell.
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In the first case, we have uncovered a contradiction in either an earlier

symbol choice or in our original hypothesis that k was the minimal deficit.

The algorithm now backtracks to explore a different branch of the search until

all branches have been explored.

In the case that none of the our diagonals contains an empty cell, we have

constructed a partial latin square of order n on a set of n− k symbols whose

main diagonal has deficit k. In the most interesting case, this square would

be closed under any sequence of # operations applied to the main diagonal,

though our algorithm does not guarantee this to be the case. We add this

partial latin square to a list of problem cases and backtrack to explore the

next branch in our search.

Let #(n, k) be the list of problem cases generated by the algorithm. If

#(n, k) = ∅, it follows that there is no latin square of order n with minimal

deficit k. This is the expected output of the algorithm, and it so happens that

in our tests the algorithm has never generated any other outcome.

We do need to address two points of ambiguity in the algorithm as described

above. Firstly, there are several inequivalent options for how to construct the

original main diagonal. It must contain the symbols [n− k] but, in principle,

one should run the algorithm against all of the possible multiplicities that

could occur for each symbol. Put another way, there should be a separate case

for each unordered partition of k corresponding to how the “extra” symbols

are distributed. However, a result from Chapter 3 reduces this problem to a

single case. By Proposition 3.4.1, we know that if L has a minimal deficit of

k, then it contains a weak transversal of deficit k. We may, therefore, run the

algorithm assuming that the main diagonal is a weak transversal.
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A second point of ambiguity concerns the way in which we select the next

CurrentDiagonal as this choice may alter #(n, k). We experimented with

several criterion to choose the next diagonal. The heuristic we found most

effective was that it is better to fill up rows with symbols rather than distribute

the same number of symbols throughout the square. Therefore, we chose to

select diagonals containing empty cells from the highest rows available. Figure

2.6 depicts this choice as the number of symbols in the first row of each square

grows with each step of the algorithm.

As an illustration, we demonstrate part of this routine in Figure 2.6 using

n = 8 and k = 2. In this example, visited cells are marked with the ◦ symbol

and cells that are known to contain a symbol from [n]\ [n−k] are marked with

the ∗ symbol. Such cells are identified by the algorithm as soon as n− k cells

have been either filled or at least marked as visited in a given row or column.

The underlined diagonal corresponds to the value of CurrentDiagonal.

We have used our algorithm to confirm that every latin square of order 10

and 12 has a partial transversal of length 9 and 10, respectively. In particu-

lar, working in conjunction with the theoretical bounds from Figure 2.5, we

found that #(10, 8) = ∅ and #(12, 9) = ∅. We conducted these calculations

mostly as a proof of concept, without much concern for the efficiency of our

implementation or on the computational power of the machine employed. Our

data was collected using an implementation of the algorithm in the computer

algebra system GAP [25]. We expect that an optimized implementation would

generate even stronger results.
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Chapter 3

Weak Transversals

3.1 Background

In this chapter, we consider sets of cells that result from weakening the defini-

tion of transversal from requiring that every symbol be represented precisely

once to requiring that no symbol be represented more than twice. In particu-

lar, a weak transversal is a diagonal of a latin square that contains no symbol

more than twice.

We first became interested in weak transversals because of their connec-

tion to the following conjecture, due independently to Rodney [11, p.105] and

Wanless [46].

Conjecture 3.1.1. Every latin square can be partitioned into a set of transver-

sals and duplexes.

Recall that a duplex is another term for 2-plex, a collection of 2n cells that

meets each row, column, and symbol twice. This conjecture appears to be

quite strong since it implies both that every latin square of odd order has a
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transversal (Ryser’s conjecture) and that every latin square has a duplex (often

referred to as Rodney’s conjecture). We were, therefore, led to introduce and

consider the following weaker conjecture.

Conjecture 3.1.2. Every latin square can be partitioned into a set of weak

transversals.

It is not difficult to see how Conjecture 3.1.1 implies Conjecture 3.1.2.

Any duplex belonging to such a partition can always be divided into two weak

transversals. Conjecture 3.1.2 also has a natural interpretation in the area of

mutually orthogonal latin squares. From that perspective, it purports that

every latin square has a weak orthogonal mate, which we define and discuss

in greater detail in Chapter 4.

Little was previously known about the existence and structure of weak

transversals. In fact, the only two references of which we are aware are due

to Brualdi and Ryser [6] and Cameron and Wanless [10]. Both works contain

the following proposition.

Proposition 3.1.3. Every latin square contains a weak transversal.

While [6] predates [10] by 14 years, it was unknown to the latter authors and

contains an incomplete proof. In §3.4, we extend the proof-method employed in

[10] to give the stronger result that if a cell is contained in a partial transversal

of deficit d, then it is contained in a weak transversal of deficit at most d.

Two interesting facts follow immediately. Every cell is contained in a weak

transversal, and there is a weak transversal with as many symbols as any

partial transversal, i.e., the minimum deficit of any latin square can always be

realized by one of its weak transversals.
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3.2 Disjoint Weak Transversals

First, we make some initial progress towards a solution to Conjecture 3.1.2

by showing that every latin square of order n contains a collection of Ω(n)

mutually disjoint weak transversals. Informally speaking, our result shows

that all latin squares of order n have a collection of mutually disjoint weak

transversals of size about 1
11
n when n is sufficiently large.

Proposition 3.2.1. Suppose that L is an n × n latin array with at most k

empty cells in each row and column and that L contains a partial transversal

of length t. Then L contains a weak transversal with deficit no larger than

max{4, 2n− 2t} so long as

t ≥ max

{
7

8
n+

3

8
k +

3

8
,

6

7
n+

5

14
k − 18

7

}

The first of these expressions is greater than the second if and only if n+k ≥ 73.

Proof. We assume that the first t cells along the main diagonal of L form

a partial transversal in the natural order, i.e. L(i, i) = i for 1 ≤ i ≤ t. If

t = n, then we are done. If t = n − 1 and L(n, n) is not empty, then we

may add this cell to our partial transversal to form a weak transversal of

deficit 1. If L(n, n) is empty, then we discard any cell from our original partial

transversal to place ourselves in the case t = n − 2, which is handled below.

Having effectively altered the value of t, we must accept an upper-bound on

our deficit of max{4, 2n − 2t}. Had we been able to avoid altering the value

of t, we would have a deficit no larger than 2n− 2t.
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We will swap m := n − t cells from the given partial transversal with 2m

cells from rows and columns t + 1, . . . , n to form a weak transversal. Figure

3.1 provides a schematic for our setup. The cells along the main diagonal

containing symbols a1, . . . , am will be swapped for m cells from each of blocks

A and B. To ensure that the resulting n cells form a weak transversal, we will

select cells in blocks A and B that together contain 2m distinct symbols and

occupy distinct rows and columns. Since we will lose at most m symbols, the

result holds.

1 a1 am t t+ 1 n

a1 a1
. . . B

am am

t
t+ 1

A
n

Figure 3.1: Schematic for Proposition 3.2.1

We now describe an inductive method for selecting {a1, . . . , am} and the

corresponding cells in blocksA andB. Suppose that we have selected {a1, . . . , aj}

and that, for 1 ≤ i ≤ j, cell (ai, ai, ai) will be swapped with cells (ri, ai, s
r
i )

and (ai, ci, s
c
i). To ensure that we eventually obtain a weak transversal, these
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selections will be made so that each of the following sets contains no repetitions

R = {ri ∈ [n] \ [t] : 1 ≤ i ≤ j}

C = {ci ∈ [n] \ [t] : 1 ≤ i ≤ j}

S = {sri , sci : 1 ≤ i ≤ j}

Note that, given these constraints on R, C, and S, swapping cells

{(ai, ai, ai) : 1 ≤ i ≤ j}

with cells

{(ri, ai, sri ), (ai, ci, sci) : 1 ≤ i ≤ j}

will produce a collection of t+j cells from distinct rows and columns that con-

tains no symbol three times. Furthermore, the only symbols that can appear

twice are those that fall both in S and in [t]\{a1, . . . , aj}. The unoccupied rows

and columns will be R′ := [n] \ ([t] ∪R) and C ′ := [n] \ ([t] ∪C), respectively.

First, assume that 0 ≤ j ≤ m− 3. For i ∈ [t] \ {a1, . . . , aj}, we define the

following sets

A(i) = {r ∈ R′ : L(r, i) is not empty and L(r, i) 6∈ S}

B(i) = {c ∈ C ′ : L(i, c) is not empty and L(i, c) 6∈ S}.

Notice that if we can locate i such that |A(i)| ≥ 2 and |B(i)| ≥ 1 (or |A(i)| ≥ 1

and |B(i)| ≥ 2) then i will be a suitable choice for aj+1 since we would have

sufficient flexibility to choose rj+1 and cj+1 appropriately.
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There are at most (k + 2j)(m− j) cells in the R′ × [t] portion of block A

that are either empty or contain a symbol from the set S. Thus, there are at

most b(k+2j)(m− j)/(m− j−1)c ≤ 3
2
(k+2j) values of i such that |A(i)| ≤ 1

and at most k + 2j values of i such that |A(i)| = 0. Likewise for B(i). It

follows that there are at least t− j − 5
2
(k + 2j) = t− 6j − 5

2
k values of i such

that both |A(i)| ≥ 2 and |B(i)| ≥ 1. Since j ≤ m − 3, we can find a suitable

choice of i so long as the following inequality holds

t− 6m+ 18− 5

2
k > 0.

Equivalently,

t >
6

7
n+

5

14
k − 18

7
. (3.2.1)

Now suppose that j = m − 2 so that only am−1 and am remain to be

selected. The above argument will work for am−1 but not for am since neither

|A(i)| nor |B(i)| can ever be greater than 1 in that case. We therefore choose

am−1 and am simultaneously. Define the following set

I = {i ∈ [t] \ {a1, . . . , am−2} : |A(i)|, |B(i)| ≥ 2}.

We will show that if |I| ≥ 17, then there are suitable choices for am−1 and am.

Let R′ = {r, r′} and C ′ = {c, c′} be the rows and columns that have not yet

been utilized in blocks A and B, respectively. We define two disjoint subsets
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of I as follows

Irc = {i ∈ I : L(r, i) = L(i, c)}

I0 = {i ∈ I : L(R′ × i) ∩ L(i× C ′) = ∅}

Suppose that Irc 6= ∅ and |I0 ∪ Irc| ≥ 5. Fix i1 ∈ Irc. It follows that

L(r, i1) 6= L(i1, c
′). Let these distinct symbols be a and b, respectively. Then

there are at most three values i ∈ (I0 ∪ Irc) \ i1 such that L(r′, i) ∈ {a, b} or

L(i, c) ∈ {a, b}. Since |I0 ∪ Irc| ≥ 5, we may select i2 ∈ (I0 ∪ Irc) \ i1 such that

L(r′, i2) and L(i2, c) are distinct from a and b. Furthermore, L(r′, i2) 6= L(i2, c)

since i2 ∈ I0 ∪ Irc. The pair {i1, i2} thus makes for a suitable choice of am−1

and am. The same argument would apply for the analogous sets Irc′ , Ir′c, and

Ir′c′ . Now suppose instead that I0 = I. The exact same argument follows

here except we require that |I0| ≥ 6 since now there are at most four values

i ∈ I0 \ i1 such that L(r′, i) ∈ {a, b} or L(i, c) ∈ {a, b}.

Thus, so long as |I| = |I0| + |Irc ∪ Irc′ ∪ Ir′c ∪ Irc| ≥ 17, there must be a

suitable choice of am−1 and am.

As there are at most 3
2
k + 3m − 6 values of i such that |A(i)| ≤ 1, there

are at least

t− (m− 2)− (
3

2
k + 3m− 6) = 5t− 4n− 3

2
k + 8

many values of i such that |A(i)| ≥ 2. Thus the value of |I| is at least

2(5t− 4n− 3

2
k + 8)− (t− (m− 2)) = 8t− 7n− 3k + 14
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If we want |I| ≥ 17, then we require t such that

t ≥7

8
n+

3

8
k +

3

8
(3.2.2)

The construction can thus be completed so long as inequalities 3.2.1 and

3.2.2 both hold. It is easy to check that 3.2.2 is stronger that 3.2.1 if and only

if n+ k ≥ 73.

In light of Proposition 2.2.1, we have the following corollaries.

Corollary 3.2.2. Suppose that L is an n × n latin array with at most k

empty cells in each row and column and n+ k ≥ 73. Then L contains a weak

transversal with deficit no larger than 2
√
n+2k so long as k ≤ 1

11
n− 8

11

√
n− 3

11
.

Proof. By Proposition 3.2.1, to guarantee the existence of a weak transversal

we need a partial transversal of length t such that t ≥ 7
8
n + 3

8
k + 3

8
. By

Proposition 2.2.1, L contains a partial transversal of length

t ≥ n−
√
n− k

Here we have used n −
√
n − k rather than n −

√
n − k + 1 since the latter

result does not apply for k = 0. Thus we would like to ensure that

n−
√
n− k ≥ 7

8
n+

3

8
k +

3

8
.

It is a straightforward calculation to confirm that this inequality holds at least

for 0 ≤ k ≤ 1
11
n − 8

11

√
n − 3

11
. By Proposition 3.2.1, the resulting weak

transversal will have deficit no larger than 2
√
n+ 2k.
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Proposition 3.2.3. Every latin square of order n ≥ 73 has a collection of at

least 1
11
n− 8

11

√
n− 3

11
mutually disjoint weak transversals.

Proof. Suppose that L is a latin square of order n ≥ 73. By Corollary 3.2.2,

we may iteratively remove disjoint weak transversals from L until we have

reached k disjoint weak transversals where k = b 1
11
n − 8

11

√
n − 3

11
c. At that

point, we may remove at least one more additional weak transversal.

3.3 Weak k-Plexes

We define a weak k-plex to be a collection of kn cells that meets each row and

column k times and each symbol k − 1, k, or k + 1 times. As in the case of

k-plexes, the complement of a weak k-plex is a weak (n− k)-plex.

Proposition 3.3.1. All sufficiently large latin squares contain weak 2-plexes.

Proof. Let L be a latin square of order n. By Corollary 3.2.2, L contains a

weak transversal, W1, of deficit d1 ≤ 2
√
n. Let D1, S1 ⊆ [n] be the d1-sets of

symbols appearing 0 and 2 times in W1, respectively.

By Proposition 2.3.1, we may locate a partial transversal of L \W1 con-

sisting precisely of the symbols D1 since d1 ≤ 2
√
n ≤ 1

2
n+ 1 and every symbol

in D1 appears n times in L \W1. We would now like to extend this partial

transversal to a weak transversal of L \W1 that does not contain any symbol

from S1.

Consider the square latin array of order n− d1 corresponding to the rows

and columns not occupied by our partial transversal. Remove from this square

any cells from W1 and any cells containing symbols from S1. The resulting
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square has at most 1 + d1 empty cells in each row and column. By Corollary

3.2.2, this square has a weak transversal so long as

1 + d1 ≤
1

11
(n− d1)−

8

11

√
n− d1 −

3

11
.

Since d1 ≤ 2
√
n, this inequality will hold for large n. Let W2 be the

resulting weak transversal. Notice that W1 ∪W2 is a weak 2-plex.

The same method can be used to show that weak k-plexes exist for larger

values of k as well.

3.4 Weak Transversals of Minimum Deficit

The following method is due to Cameron and Wanless from their proof that

every latin square contains a weak transversal [10]. We repurpose the method

here to establish the following stronger result.

Proposition 3.4.1. Any cell of a latin square contained in a partial transver-

sal of deficit d is contained in a weak transversal of deficit no larger than d.

It follows from this result that the minimum deficit of any latin square

is actually realized by a weak transversal. Notice that this application would

follow rather trivially from Brualdi’s conjecture (Conjecture 2.1.1). If the min-

imum deficit among all diagonals of a latin square is 0 or 1, then such diagonals

are themselves weak transversals. While this application is interesting in its

own right, as discussed in §2.4.2, we also exploit it in our computations on

partial transversals to confirm Brualdi’s conjecture for n = 10.
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Proof. Let L be a latin square of order n. Fix a cell (r, rθ, s) ∈ L in a diagonal

θ of deficit d. Select a row r1 6= r such that L(r1, r
θ
1) appears three or more

times in θ. We will identify a row r2 6= r, r1 such that L(r1, r
θ
2) does not appear

in θ and L(r2, r
θ
1) appears at most once in θ.

Let xi be the number of symbols appearing exactly i times in θ. It follows

that
n∑
i=0

xi =
n∑
i=0

ixi = n

and thus

x0 = x2 + 2x3 + · · ·+ (n− 1)xn > x2 + x3 + · · ·+ xn.

Row r1 contains x0 cells whose symbols do not appear in θ and column rθ1

contains
∑n

i=2 xi − 1 cells whose symbols appear more than once in θ, besides

cell (r1, r
θ
1). Thus, there are at least two rows r2 such that L(r2, r

θ
1) does not

appear more than once in θ and L(r1, r
θ
2) does not appear in θ. Select r2 6= r.

Observe that the diagonal θ(r1r2) has fewer cells than θ that contain symbols

that appear more than twice in the diagonal, and (r, rθ) still belongs to θ(r1r2).

Furthermore, θ(r1r2) contains at least as many distinct symbols as θ. Iterating

the construction will therefore produce a weak transversal of deficit no larger

than d that contains cell (r, rθ).

It also follows from the above argument that there is a weak transversal

of minimum deficit that does not duplicate any chosen symbol, for we could

always apply the above swap to a cell containing the chosen duplicated symbol

in a weak transversal.
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Corollary 3.4.2. Every latin square is covered by weak transversals. That is,

each cell is contained in some weak transversal.

This corollary is best understood in contrast to the case of transversals of

latin squares. The contemporaneous but independent works of Evans [23] and

Wanless and Webb [48] both established the result that for every order n 6= 1, 3

there exists a latin square of order n that has no orthogonal mate. This result

brought to a close a century old program to establish the existence of so-called

bachelor squares. The method used in the latter of these works was driven by

a construction for latin squares that have no transversals passing through a

prescribed cell. The present corollary indicates that no such proof can exist

to contradict Conjecture 3.1.2.

While there are weak transversals with small deficit, the following obser-

vation shows that even relatively small partial transversals cannot always be

embedded in a weak transversal.

Observation 3.4.3. For each n ≡ 0 mod 4 and n > 4, there exists a latin

square of order n with a partial transversal of length 1
2
n that is not contained

in any weak transversal.

Proof. Consider any latin square of the form

Zn/2 ∗

∗ Zn/4 × Z2

The top-left and bottom-right blocks will contain the same symbols but

will be equivalent to the Cayley tables of Zn/2 and Zn/4 × Z2, respectively.

As we will see in Chapter 7, the top-left block has no transversal while the
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bottom-right block does. Fix any transversal of the bottom-right block and

note that to embed this partial transversal in a weak transversal, one must

locate a transversal of the top-left block.
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Chapter 4

Weak Orthogonal Mates

4.1 Background

A main result of the previous chapter was that every latin square of order n

contains a collection of Ω(n) mutually disjoint weak transversals. The mo-

tivation for this result was Conjecture 3.1.2 that every latin square can be

partitioned into weak transversals. Here we examine this conjecture from the

perspective of orthogonal latin squares.

Recall that two latin squares are orthogonal or orthogonal mates if and only

if the symbol patterns of the first square form transversals of the second square.

It is straightforward to check that orthogonality is a symmetric relationship.

We introduce the following notions. A k-weak transversal is a diagonal of

a latin square that contains no symbol more than k times. Two latin squares

are k-weakly orthogonal if the symbol patterns of the first square form k-weak

transversals of the second square.
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Lemma 4.1.1. The relationship of being k-weakly orthogonal is symmetric.

Proof. Suppose that latin squares A and B are k-weakly orthogonal. That

is, the symbol patterns of A form k-weak transversals of B. Let α and β

be arbitrary symbol patterns from A and B, respectively. We would like to

conclude that β forms a k-weak transversal of A. Notice that if α intersects

β in more than k cells, then α fails to form a k-weak transversal of B, a

contradiction.

4.2 Mutually k-Weakly Orthogonal Squares

We now investigate the possible sizes of sets of mutually k-weakly orthogonal

latin squares. We denote by N(n, k) the maximum size of a set of mutually

weakly orthogonal latin squares of order n. The following proposition gener-

alizes the classical result that N(n, 1) ≤ n− 1 [30].

Proposition 4.2.1. For 1 ≤ k < n,

N(n, k) ≤
k∏
i=1

(n− i)

Proof. Suppose that we have a collection of k-weakly orthogonal latin squares.

If we permute the symbols of any single square, it remains k-weakly orthog-

onal to the others. We may thus assume that the first row of each square is

(1, 2, . . . , n). Note that for any of the squares there are Πk
i=1(n − i) possible

arrangements for symbol 1 in rows 2 through k + 1. For two squares to be

k-weakly orthogonal, they must realize distinct arrangements for symbol 1 in

these k rows.
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While Proposition 4.2.1 provides an upper-bound for N(n, k), the real fas-

cinating question is when and whether this bound is attained. This innocent

sounding question brings us immediately to one of the most important open

problems in combinatorics, the Prime Power Conjecture.

Conjecture 4.2.2 ([30]). N(n, 1) = n− 1 if and only if n is a prime power.

Before describing our computational data for N(n, k), we present the fol-

lowing generalization of the Prime Power Conjecture as an open problem.

Conjecture 4.2.3. The bound from Proposition 4.2.1 is attained if and only

if n− k + 1 is a prime power.

We have developed a small amount of computational data for N(n, k). Fig-

ure 4.1 summarizes our findings. Here we explain our methods for computing

this data. We anticipate that these rather rudimentary tools will lead to a

general construction achieving the bound for infinitely many values of n and

k > 1.

k\n 2 3 4 5 6 7 8 9 10

1 – – – – 1
5

– – – 2
9

2 – – – – 11
30

– · ·

3 – – 26
60

20
120

· · ·

4 – – – · · ·

5 – – · · ·

6 – · · ·

Figure 4.1: Cell (k, n) contains symbol “–” if the bound from Proposition 4.2.1
is attained and is blank if either the parameters are out of range or only trivial
information is known. If the cell contains a ratio, then the numerator is a
lower-bound for N(n, k) and the denominator is the known upper-bound.
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Recall the classical construction used to achieve the value N(n, 1) = n− 1

for n a prime power. For each a ∈ GF (n)∗, let fa = ax + y ∈ GF (n)[x, y].

Form a latin square La of order n such that La(x, y) = fa(x, y). It follows that

La and Lb are orthogonal if and only if a 6= b [30].

Notice that this construction begins with a single latin square, the addi-

tion table of GF (n), and generates mutually orthogonal latin squares simply

by permuting the non-zero rows of the original square. As a first pass at con-

structing k-weakly orthogonal latin squares, we began by generating the (n−1)!

latin squares resulting from permutations of the non-zero rows of (Zn,+) and

then searching for cliques of mutually k-weakly orthogonal latin squares within

these sets. Since the resulting squares are determined by their first columns,

we may present such cliques by rectangular arrays whose columns are the first

columns of the corresponding square.

0 1 2 3 4 5 6 7 8 9 A
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 2 2 3 3 4 4 5 5 6
2 2 3 4 6 4 6 1 2 1 3 5
3 3 5 1 3 6 2 6 5 2 1 4
4 4 2 5 1 1 5 2 6 4 6 3
5 5 6 3 4 5 1 3 1 6 4 2
6 6 4 6 5 2 4 5 3 3 2 1

Figure 4.2: Each column corresponds to the first column of a latin square
of order 7 formed by a permutation of the rows of (Z7,+). This example
confirms that N(7, 2) ≥ 11. Column and row dividing lines have been added
to emphasize some apparent patterns and natural groupings.
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0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5
2 2 3 4 5 1 4 3 5 1 5 2 4 1 3 5 2 1 2 4 3
3 3 2 5 4 4 1 5 3 5 1 4 2 3 1 2 5 2 1 3 4
4 4 5 3 2 3 5 4 1 2 4 5 1 5 2 3 1 4 3 2 1
5 5 4 2 3 5 3 1 4 4 2 1 5 2 5 1 3 3 4 1 2

0 1 2 3
0 0 0 0 0
1 1 1 1 1
2 2 3 4 5 (12)(34)
3 3 2 5 4 (13542)
4 4 5 3 2 (1452)
5 5 4 2 3 (1532)

Figure 4.3: Each column in the first table corresponds to the first column of
a latin square formed by a permutation of the rows of (Z6,+). This example
confirms that N(6, 2) = 20. The second table represents this data in a more
compact format. Columns 4 – J can be computed simply by applying one of
the four permutations to all of the symbols in the first block.

0 1 2 3 4 5
0 0 0 0 0 0 0
1 1 1 1 1 1 1
2 2 3 4 5 6 7 (12)(35)(47)
3 3 2 6 7 4 5 (1376452)
4 4 6 5 3 7 2 (142)(567)
5 5 7 3 6 2 4 (157362)
6 6 4 7 2 5 3 (165432)
7 7 5 2 4 3 6 (172)(346)

Figure 4.4: Each column corresponds to the first column of a latin square
formed by a permutation of the rows of (Z8,+). An additional 36 columns
can be generated by applying the listed permutations to the existing columns.
Together these squares confirm that N(8, 2) = 42.
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Chapter 5

Integral Weight Functions

5.1 Background

Any subset of cells A drawn from a latin square L may be viewed as a map

f : L→ {0, 1} such that f−1(1) = A. From this perspective, A is a transversal

of L if and only if the sum of the image of f over each row, column, and symbol

pattern of L is 1, where these sums are conducted in (Z,+). In this chapter,

we investigate the maps that arise when we allow for a larger codomain, e.g. we

replace {0, 1} with Z, yet still require that the above sum condition holds. In

Chapter 6, we examine these maps from a different perspective by investigating

the sets that arise from conducting these sums in a different group, such as

(Zp,+).

We call an integral weight function on the cells of a latin square a k-weight

if the sum over each row, column, and symbol is k. We will show that several

important non-existence results and existence conjectures about k-plexes hold

in the much weaker setting of k-weights. It is our hope for this study, therefore,
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that k-weights may prove to be a useful generalization to better understand

k-plexes.

In §5.3 we establish a simple lemma that is employed in several of our

arguments. In §5.4 we generalize a non-existence result of Wanless for odd-

plexes to show that certain latin squares have no odd-weights. We also give

a construction to show that analogues of Conjectures 1.0.1 and 3.1.1 hold for

k-weights. In §5.5 we generalize recent results of Stein and Szabó concerning

near transversals in Abelian groups to analogous objects related to k-weights.

We close this chapter with §5.6 in which we mention several open questions.

5.2 Definitions

Suppose θ : L→ Z is an integral weight function on the cells of L. For k ∈ Z,

we call θ a k-weight of L if its sum over each row, column, and symbol is k.

That is, for each index i, we have

∑
(r,c,i)∈L

θ(r, c, i) =
∑

(r,i,s)∈L

θ(r, i, s) =
∑

(i,c,s)∈L

θ(i, c, s) = k.

We call θ a partial k-weight of L with length t if precisely t row, t column, and

t symbol sums are k with each remaining sum being 0. We say that θ misses

those rows, columns, and symbols whose sums are 0. When t is one less than

the order of L, we call θ a near k-weight of L. A partial k-weight is said to be

maximal if, as a vector in Zn2
, it is not dominated by another partial k-weight.

For latin squares L and L′, we say that L has the block pattern of L′ if L

can be represented by a block matrix [Ai,j]1≤i,j≤n where each Ai,j is itself a
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latin square and blocks Ai,j and Ai′,j′ contain the same symbols if and only

if L′(i, j) = L′(i′, j′). In such a case, it follows that each block has the same

size, say q, and we say that L has the q-block pattern of L′. When we are

concerned only with the parity of q, we also refer to the odd-block or even-

block pattern. In more classical terminology, a latin square with the q-block

pattern of (Zm,+) is said to be of q-step type and order qm.

5.3 The Delta Lemma

We now establish a lemma that has proven exceptionally useful in the study

of transversals and k-plexes. Here we show that the analogous result holds

in the more general context of k-weights. First recall the following result of

Paige.

Lemma 5.3.1 (Paige [33]). Suppose (G,+) is a finite Abelian group. If G has

a unique involution, then it is equal to
∑

g∈G g. Otherwise,
∑

g∈G g = 0.

The following lemma plays a central role in several of our arguments. It is

essentially another version of an argument used by Egan and Wanless to show,

among many other things, that certain latin squares do not contain odd-plexes

[19, 46]. Our contribution has been to show that the argument applies more

generally to partial k-weights. The result is often referred to as the Delta

Lemma because of the closely related map ∆(r, c, s) = s−r−c, which in some

sense measures the extent to which a particular square differs from the cyclic

square of that order.

Lemma 5.3.2. Suppose L is the Cayley table of an Abelian group (G,+) and

θ is a partial k-weight whose missing rows R sum to r, missing columns C
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sum to c, and missing symbols S sum to s. Then

k(s− r − c) =


∑

g∈G g if k is odd and G has a unique involution

0 otherwise.

Note that when θ is a k-weight (rather than just a partial k-weight), r = c =

s = 0 and thus the left-hand side is always 0.

Proof. Set u :=
∑

g∈G g. First we consider the sum

∑
(x,y,z)∈L

θ(x, y, z)(z − x− y) =
∑

(x,y,z)∈L

θ(x, y, z)z

−
∑

(x,y,z)∈L

θ(x, y, z)x

−
∑

(x,y,z)∈L

θ(x, y, z)y.

We will evaluate the left-hand sum by examining each right-hand sum indi-

vidually but first note that the result must be 0 since z − x− y = 0 for every

triple (x, y, z) ∈ L. Grouping the first of the three sums by the z coordinate,

we have

∑
(x,y,z)∈L

θ(x, y, z)z =
∑
z∈G

 ∑
(x,y,z)∈L

θ(x, y, z)

 z

=
∑
z∈G\S

kz

=
∑
z∈G

kz −
∑
z∈S

kz

= ku− ks
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Likewise, we have

∑
(x,y,z)∈L

θ(x, y, z)x = ku− kr and

∑
(x,y,z)∈L

θ(x, y, z)y = ku− kc.

Recalling that the original sum must be 0, we now have

0 = (ku− ks)− (ku− kr)− (ku− kc)

= −ku+ k(s− r − c).

Thus k(s − r − c) = ku. By Lemma 5.3.1, if k is even or G does not have a

unique involution, then ku = 0. Otherwise, k is odd and u is an involution.

Therefore ku = u.

5.4 When do k-weights Exist?

Our first result shows that the natural analogues of Ryser’s and Rodney’s

conjectures hold for k-weights.

Proposition 5.4.1. Every latin square has a 2-weight and those of odd order

have 1-weights.
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Proof. Fix any cell (r, c, s) ∈ L and define θ : L→ Z as follows:

θ(x, y, z) =


3− n if (x, y, z) = (r, c, s)

1 if (x, y, z) and (r, c, s) agree in precisely one position

0 otherwise.

We claim that θ is a 2-weight of L. First consider the sum of θ over row x 6= r.

All cells in row x have been assigned 0 except for the cell in column c and the

cell containing symbol s. These exceptions must be distinct cells since L is a

latin square. Since these two cells both carry a weight of 1, the sum over row

x is 2. Now consider the sum over row r. Every cell in row r carries weight 1

except for cell (r, c, s), which carries weight 3−n. Thus the sum over row r is

(n− 1) + (3− n) = 2.

Since our construction treats rows, columns, and symbols symmetrically,

it follows that all column and symbol sums are also 2.

Now suppose n = 2m+ 1 is odd. Note that every latin square has at least

one n-weight since we may assign 1 to every cell. Let θ and γ be a 2-weight

and n-weight of L, respectively. Then ψ := γ −mθ is a 1-weight of L.

In light of Proposition 5.4.1, the existence question for k-weights is rather

crude. Each latin square has a k-weight either for all integers k or for every

even k. This fact contrasts sharply with the situation in k-plexes where the

spectrum of existence can be much more subtle. Egan and Wanless, for exam-

ple, have shown that for every even n > 2 there exists a latin square of order

n that has no k-plex for any odd k < bn/4c but has a k-plex for every other

k ≤ n/2 [19]. For further results of this sort consult [18, 9, 17].

44



Our next result has a long history. Euler showed that (Z2m,+) has no

transversals [21], a century later Maillet showed the same result for any latin

square with the odd-block pattern of (Z2m,+) [31], and another century passed

before Wanless extended the result to odd-plexes [46]. We show that the claim

holds on the more general level of odd-weights.

Proposition 5.4.2. Let L and L′ be latin squares.

1. The Cayley table of a finite Abelian group with a unique involution has

no odd-weights.

2. If L has no odd-weights and L′ has the odd-block pattern of L, then L′

has no odd-weights.

The primary contribution of Proposition 5.4.2 is to show that the above

sequence of results of Euler, Maillet, and Wanless follows from the more general

setting of k-weights. However, we do show a bit more in that if there exists

a latin square L that has no odd-weights but does not have the odd-block

pattern of (Z2m,+), then by part (ii) of the proposition this property persists

to all squares with the odd-block pattern of L. It remains an open question

whether such squares exist.

Proof. (i) Suppose θ is a k-weight of M , the Cayley table of a finite Abelian

group with unique involution u. By Lemma 5.3.2, k is even since, otherwise,

we immediately have the contradiction that 0 = u.

(ii) Suppose L′ has the q-block pattern of L and that L has no odd-weights.

Let L′ be represented by the block matrix [Ai,j]1≤i,j≤m where squares Ai,j and

Ai′,j′ use the same symbols if and only if L(i, j) = L(i′, j′). Let θ be a k-weight
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of L′. Define the map ψ : L→ Z by

ψ(i, j, k) :=
∑

(x,y,z)∈Ai,j

θ(x, y, z).

We now verify that ψ is a qk-weight of L. Observe that the sum over row

r of L equals the sum over q different rows of L′. Since each row of L′ sums

to k, the sum over row r in L equals qk. Similarly for columns and symbols.

Thus ψ is a qk-weight of L but since L has no odd-weight, either q or k must

be even.

5.5 Near k-weights of Abelian Groups

In this section we generalize a recent result of Stein and Szabó to the context

of k-weights.

Lemma 5.5.1 (Hall [27]). The Cayley table of any finite Abelian group has a

near transversal.

Proposition 5.5.2 (Stein and Szabó [43]). Suppose L is the Cayley table of

an Abelian group of order n.

1. Then L has a transversal or a maximal near transversal but not both.

2. If n is prime, then there is no way to select a single cell from each row

and column such that precisely two distinct symbols have been selected.

As stated, Proposition 5.5.2 is somewhat stronger than what [43] actually

contains but our form follows easily from theirs and Lemma 5.5.1, which Stein
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and Szabó use and discuss in their paper. We show that this result is again a

more general fact about partial k-weights.

Proposition 5.5.3. Suppose L is the Cayley table of an Abelian group of

order n.

1. Then L has a 1-weight or a maximal near 1-weight but not both.

2. If θ : L→ Z whose row and column sums are all 1, then it cannot happen

that n − 2 symbol sums are 0 while the remaining sums are n − i and i

with gcd(n, i) = 1. In particular, if n is prime, then it cannot happen

that precisely n− 2 symbol sums are 0.

Proof. (i) Let θ be a near 1-weight that misses row r, column c, and symbol

s. We know such a partial weight exists by Lemma 5.5.1. It suffices for our

purposes to show that whether θ is maximal depends only on G and not the

particular partial weight. Let u :=
∑

g∈G g. By Lemma 5.3.2,

s− r − c =


u if G has a unique involution (which then must be u)

0 otherwise.

If s−r−c = 0, then r+c = s, i.e. (r, c, s) is a cell in the Cayley table of G and

we may thus extend θ to a 1-weight. If s− r− c = u, then r+ c 6= s and thus

θ is maximal. In the case that θ is maximal, i.e. G has a unique involution,

we should also note that G could not also have a 1-weight since reducing the

weight on any single cell would produce a near 1-weight that by the preceding

argument must be maximal, a contradiction.
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(ii) Suppose that θ : L→ Z has the property described in the statement of

the proposition. In particular, all row and column sums are 1 and all symbol

sums are 0 with the exception of symbols g and h whose sums are i and n− i,

respectively. As in the proof of Lemma 5.3.2, we evaluate the following trivial

expression as three separate sums. Again, set u :=
∑

g∈G g.

0 =
∑

(x,y,z)∈L

θ(x, y, z)(z − x− y) =

 ∑
(x,y,z)∈L

θ(x, y, z)z

− 2u

=
∑

(x,y,z)∈L

θ(x, y, z)z

=
∑
z∈G

( ∑
(x,y,z)∈L

θ(x, y, z)

)
z

= ig + (n− i)h

= i(g − h).

Thus either g = h or the order of the nontrivial group element g − h divides

both i and n. In the latter case, gcd(n, i) > 1.

5.6 Open Questions about k-weights

We introduced the concept of a k-weight of a latin square as a potentially useful

generalization of a k-plex. We showed that several results about transversals

and k-plexes can be seen as facts about these more general structures and that

analogues of well-known conjectures about transversals and duplexes hold at

least in the context of k-weights.
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We have yet to resolve at least two basic questions regarding k-weights.

We have seen that latin squares with the odd-block pattern of Z2m have no

odd-weights. Does the converse hold? That is, does the lack of odd-weights

characterize latin squares of the odd-block pattern of Z2m? We suspect the

answer is no but are not aware of any counter-example. The analogous question

for plexes is also open: do there exist latin squares without odd-plexes besides

those of odd-step type with an even number of blocks?

As we have seen, it was fairly straightforward to settle k-weight analogues

of Ryser’s and Rodney’s conjectures by constructing 2-weights for all latin

squares and 1-weights for the those of odd order. One might hope to find

similar constructions for near 1-weights in every latin square and thereby settle

the k-weight analogue of Brualdi’s conjecture that every latin square has a near

transversal. It is interesting that this construction, should it exist, seems to

be more difficult than the 1-weight and 2-weight constructions.
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Chapter 6

Combinatorial Nullstellensatz

In this chapter, we explore applications of a method called the Combinatorial

Nullstellensatz to the study of latin squares.

6.1 Background

The term Combinatorial Nullstellensatz (CN) refers to the following proposi-

tion.

Proposition 6.1.1 (Alon [2]). Let F be a field and f ∈ F [x1, . . . , xn]. Suppose

that deg(f) =
∑n

i=1 ti where each ti is a nonnegative integer and the coefficient

of
∏n

i=1 x
ti
i in f is nonzero. Then for any subsets of F , S1, . . . , Sn with |Si| >

ti, there are s1 ∈ S1, . . . , sn ∈ Sn such that

f(s1, . . . , sn) 6= 0.

For the duration of this chapter, let L be a latin square of order n with

symbol patterns coded by πi, i.e. cell (j, jπi) contains symbol i. Let x = (xi,j :
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1 ≤ i, j ≤ n) be a set of indeterminates, where xi,j corresponds to the (i, j)

cell of L. Let Ri, Ci, Si be the sets of indeterminates corresponding to row i,

column i, and symbol i, respectively.

To this date, the most notable application of Proposition 6.1.1 to latin

squares is Alon’s result that every square sub-block of the multiplication table

of (Zp,+) contains a transversal [3]. This result was the first confirmation

of a special case of a conjecture of Snevily that every square sub-block of an

Abelian group of odd order contains a transversal [41]. The full conjecture has

recently been established in the affirmative by Arsovski using a linear algebraic

method [4].

6.2 Latin Square Related Polynomials

Applications of Proposition 6.1.1 typically involve two steps: (1) identify a

polynomial whose support corresponds to some type of combinatorial structure

of interest and (2) use algebraic techniques to determine, or at least bound, the

polynomial’s degree. It is then fairly straightforward to apply Proposition 6.1.1

to show that there is a point in the support having some desired combinatorial

properties.

While it is arguably the second of these steps that tends to be the most

difficult, in the present section, we focus on this first step as we survey various

polynomials that are interesting in the context of transversals of latin squares.

As we will deal mostly with polynomials in GF (2)[x], it is helpful to under-

stand when particular terms will appear in a given polynomial. For a collection

of indeterminates A ⊆ x and f ∈ GF (2)[x], we write f(A) for the value of f
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under the valuation xi = 1 if and only if xi ∈ A. We write t(A) for the term∏
xi∈A xi.

Lemma 6.2.1. Let A ⊆ x and f ∈ GF (2)[x]. Then t(A) is a term in f if and

only if there are an odd number of subsets A′ ⊆ A such that f(A′) = 1.

Proof. Consider
∑

A′⊆A f(A′) and note that the only terms in f that contribute

to this sum are those whose indeterminates form a subset of A. All other terms

will evaluate to 0. Those terms whose indeterminates form an (|A|−k)-subset

of A, say B, contribute 1 to the sum for each of the 2k subsets of A that

contain B. Therefore

∑
A′⊆A

f(A′) =


1 if t(A) is a term in f

0 otherwise

We are now done since the sum also counts the number of solutions to

f(x) = 1 contained in A.

To each f ∈ GF (2)[x], we associate a new polynomial f ∗ whose terms

correspond to the support of f . That is, f ∗ :=
∑

f(A)=1 t(A) where the sum

runs over all subsets A ⊆ x.

Lemma 6.2.2. f = (f ∗)∗

Proof. The following conditions are equivalent.

1. f(A) = 1

2. t(A) is a term of f ∗ (by definition)
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3. There exists an odd number of A′ ⊆ A such that f ∗(A′) = 1 (Lemma

6.2.1)

4. There exists an odd number of A′ ⊆ A such that t(A′) is a term of (f ∗)∗.

(by definition)

5. (f ∗)∗(A) = 1.

Therefore, f(A) = (f ∗)∗(A).

6.2.1 Polynomials for k-plexes

We first develop polynomials whose support corresponds to the collection of

k-plexes of a latin square. For the duration of this chapter, we let ei be the

ith elementary symmetric polynomial, i.e., ei(x1, . . . , xn) is the sum of the
(
n
i

)
terms of the form xa1xa2 · · ·xai where 1 ≤ a1 < · · · < ai ≤ n. For k ≥ 0, we

define fk by

fk = ek +
∑
i>k

ciei

where ci =
(
i
k

)
+
∑i−1

j=k+1 cj
(
i
j

)
mod 2. Figure 6.1 presents the initial terms of

fk for small k.
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f0 = 1 + e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8 + · · ·

f1 = e1 + e3 + e5 + e7 + e9 + e11 + e13 + e15 + e17 · · ·

f2 = (e2 + e3) + (e6 + e7) + (e10 + e11) + (e14 + e15) + (e18 + e19) + · · ·

f3 = e3 + e7 + e11 + e15 + e19 + e23 + e27 + e31 + e35 + e39 + e43 + e47 + · · ·

f4 = (e4 + e5 + e6 + e7) + (e12 + e13 + e14 + e15) + (e20 + e21 + e22 + e23) + · · ·

f5 = (e5 + e7) + (e13 + e15) + (e21 + e23) + (e29 + e31) + · · ·

Figure 6.1: Initial terms of polynomials fk for small k. Some parenthesis have
been introduced as a visual emphasis of the periodic structure of the terms for
the given polynomial.

Lemma 6.2.3. For any binary vector z with finite support, fk(z) ≡ 1 mod 2

if and only if z has exactly k nonzero entries.

Proof. Suppose z has support of size m and note that the claim holds for

m ≤ k. For m > k,

fk(z) =

(
m

k

)
+

m∑
i>k

ci

(
m

i

)

=

(
m

k

)
+

m−1∑
i>k

ci

(
m

i

)
+ cm

(
m

m

)

=

(
m

k

)
+

m−1∑
i>k

ci

(
m

i

)
+ cm

=

(
m

k

)
+

m−1∑
i>k

ci

(
m

i

)
+

(
m

k

)
+

m−1∑
i>k

ci

(
m

i

)
= 0 mod 2
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Recall that Ri, Ci, Si are the sets of indeterminates corresponding to row

i, column i, and symbol i, respectively, of L, a fixed latin square of order n.

For k > 0, we define the polynomial gk ∈ GF (2)[x] by

gk =
n∏
i=1

fk(Ri)fk(Ci)fk(Si).

Proposition 6.2.4. The support of gk is in bijection with the k-plexes of L.

Proof. By Lemma 6.2.3, the term fk(Ri) will be non-zero if and only if precisely

k of the indeterminates in Ri have been assigned 1 while the others have been

assigned 0. That is, in terms of subsets of cells, this assignment selects precisely

k cells from row i. Likewise for columns and symbols.

Before moving on, we point out that, as presented above, the naive bound

on the degree of gk is 3n2, which is of course a very poor bound given that the

degree can be no larger than n2, the number of indeterminates.

6.2.2 Polynomials for partial and weak transversals

We now turn our attention to polynomials related to partial and weak transver-

sals. Let δ be the polynomial in GF (2)[x] whose terms correspond to the {0, 1}

matrices of order n with odd permanent. Equivalently, the terms of δ corre-

spond to the invertible matrixes of order n over GF (2).
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Lemma 6.2.5.

1. The support of δ is the collection of diagonals.

2. dim(δ) = n2 − n+ 1.

3. δ has precisely 2(n
2)
∏n

i=1(2
i − 1) terms.

Proof. For (i), note that the terms of δ are precisely the n × n {0, 1} matri-

ces with odd permanent. We now apply Lemma 6.2.2 several times. Since

δ = (δ∗)∗, the support of δ∗ must be the odd permanent matrices. Such a

polynomial could easily be constructed as the sum of all terms corresponding

to diagonals. Thus, the terms of δ∗ correspond to all diagonals. It follows that

the support of δ is precisely the diagonals.

For (ii), note that Per(En) is odd for

En =



1 1 · · · 1

1 0 1 1

... 1
. . .

...

1 1 · · · 0


since we may add the top row to all of the lower rows and then add each of

the lower rows to the top row to attain the identity matrix. Therefore, En

corresponds to a term of degree n2 − n + 1 in δ. However, any matrix with

n2−n+2 non-zero coordinates must have two all 1 rows and cannot, therefore,

be invertible.

For (iii), observe that we are counting the number of invertible matrices of

order n over GF (2). See, for example, sequence A002884 in [1].
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For 0 ≤ k ≤ n, define the following polynomial in GF (2)[x]

tk = δ

n−k∏
i=1

e1(Si).

Lemma 6.2.6. The support of tk corresponds to diagonals of L in which sym-

bols 1, . . . , n − k appear an odd number of times. Furthermore, deg(tk) ≤

n2 − k + 1.

Note that t0 = t1 = g1, where g1 was defined in §6.2.1. It may be useful that

with t1 we now have a way to write the polynomial whose support corresponds

to the collection of transversals with degree bounded by n2. Of course, our

other representations will always reduce to something less than or equal to n2

but the naive bound for deg(g1) was 3n2.

Lastly, we define the following polynomial in GF (2)[x] by

w = δ
n∏
i=1

(f0 + f1 + f2)(Si).

Lemma 6.2.7. The support of w corresponds to the weak transversals of L.

Proof. Observe that w(z) = 1 if and only if the support of z is a diagonal that

meets each symbol either 0, 1, or 2 times.

6.3 Applying Combinatorial Nullstellensatz

We now apply Proposition 6.1.1 using several polynomials similar to those

discussed above to show that certain classes of latin squares possess structured

subsets of prescribed sorts.
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Proposition 6.3.1. Every latin square of order 11 has a proper subset of cells

meeting each row, column, and symbol 3, 7, or 11 times.

Proof. Consider the following polynomial in GF (2)[x]

f =
11∏
i=1

e3(Ri)e3(Ci)e3(Si).

Note that e3(z) =
(
k
3

)
mod 2 where z has support of size k. Since

(
k
3

)
≡ 1

mod 2 implies k = 3, 7, 11 whenever k ≤ 11, the support of f corresponds to

selections meeting each row, column, and symbol 3, 7, or 11 times. Given that

f(L) = 1 and deg(f) ≤ 99, the result follows by Proposition 6.1.1.

6.3.1 Polynomials in GF (p)[x]

Thus far we have only considered polynomials in GF (2)[x]. In these cases,

there was always a natural correspondence between valuations of the indeter-

minates and subsets of L. In this section, when working in GF (p)[x], we think

of the binary valuations as corresponding to subsets of L and simply ignore

all other valuations. The following trick will help us focus only on the binary

valuations.

Suppose f ∈ GF (p)[x]. Let
∏
x
βi,j
i,j be a term in f with

∑
βi,j = deg(f).

Proposition 6.1.1 allows us to conclude that for any Si,j ⊆ GF (p) with |Si,j| >

βi,j, there are si,j ∈ Si,j such that f(si,j : 1 ≤ i, j ≤ n) = 1. Unfortunately,

if some βi,j ≥ 2, we cannot set Si,j = {0, 1} and cannot, therefore, guarantee

that si,j ∈ {0, 1}.

To fix this problem, let g be the polynomial resulting from f by replacing

each occurrence of xdi,j with xi,j for 1 ≤ i, j ≤ n and d ≥ 2. Polynomials g and
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f will typically have dramatically different supports but notice that they will

always agree on binary valuations. Furthermore, note that deg(g) ≤ deg(f).

Let
∏

i,j x
βi,j
i,j be a term in g with

∑
βi,j = deg(g). Since βi,j ∈ {0, 1}, we may

set Si,j = {0, 1} for βi,j = 1 and Si,j = {0} for βi,j = 0.

Proposition 6.3.2. Let p be prime and n = kp + 1 for k ≥ 3. Every latin

square of order n has a subset of cells no larger than 3(p−1)n < n2 that meets

each row, column, and symbol 1 mod p times.

Proof. Consider the polynomial f ∈ GF (p)[x] defined by

f =
n∏
i=1

p∏
j=2

(e1(Ri)− j)(e1(Ci)− j)(e1(Si)− j).

Observe that e1(Ri) − j = 0 if and only if j mod p cells have been selected

in row i. Thus f(z) = 0 if and only if z meets some row, column, or symbol

a number of times not congruent to 1 mod p. Since f(L) = 1 and deg(f) ≤

3(p− 1)n, we may employ the trick outlined above to reduce to a polynomial

g with the same binary support as f . The claim now follows from Proposition

6.1.1.
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Chapter 7

Complete Mappings

7.1 Background

In this chapter, we take a much more algebraic perspective on the study of

transversals of latin squares. Every latin square may be viewed as the mul-

tiplication table of a quasigroup, and conversely. Here we study the topic of

transversals of a latin square from the perspective of quasigroups. In partic-

ular, for a quasigroup (Q, ·) a complete mapping is a permutation θ : Q → Q

such that the map x 7→ x · θ(Q) is also a permutation. Notice that θ is a com-

plete mapping of (Q, ·) if and only if the entries {(x, θ(x), x · θ(x)) : x ∈ Q}

form a transversal of the multiplication table of Q.

We say that a quasigroup has a transversal if it has a complete mapping.

The most important result in the study of complete mappings is the following

proposition.
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Proposition 7.1.1. Suppose that G is a finite group. The following are equiv-

alent:

(1) G has a complete mapping,

(2) the Sylow 2-subgroups of G are trivial or non-cyclic, and

(3) there is an ordering of the elements of G such that g1 · · · gn = 1.

Hall and Paige [26] first proposed the general conjecture and established it

for the solvable, symmetric, and alternating cases in 1955. Over the following

30 years little headway was made until the late 1980s when transversals were

shown to exist for large classes of finite groups (consult Evans [22] for an

excellent survey of progress up to 1992). In 2001, Dalla Volta and Gavioli

[12] proved that a minimal-counterexample to the conjecture must either be

almost simple or posses a list of restrictive technical properties.

Wilcox [49] built upon this result to show that a minimal-counterexample

must be a sporadic simple group or the Tits group. Many of these groups

were already known to possess transversals, thus reducing the conjecture to

identifying transversals in just 22 groups. Building upon this progress, Evans

[24] constructed transversals in all remaining cases other than the Janko group

J4. John Bray has reportedly resolved this final case, thereby establishing the

Hall-Paige conjecture.

It is the goal of the present chapter to initiate the study of the Hall-Paige

conjecture in more general varieties of loops. We begin with the modest task

of making sense of the above conditions in non-associative settings. While (1)

translates directly, (2) and (3) present difficulties since it is not clear what a
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Sylow 2-subloop should be and any product in a non-associative loop requires

the specification of some association.

We propose natural generalizations of these conditions and establish several

universal implications between them. As described in §7.2, we prove a number

of related results including a generalization of the Dénes-Hermann theorem

and provide an elementary proof of a weak form of the Hall-Paige conjecture.

7.1.1 Definitions

We call a subset C = {(xi, yi, zi) : 1 ≤ i ≤ m} ⊆ L column-entry regular, or

just regular for short, if for each symbol s we have |{i : yi = s}| = |{i : zi = s}|.

That is, s appears as an entry the same number of times it appears as a column.

We denote by Cr the multiset of symbols appearing as rows in C. For example,

if C is a k-plex, then Cr contains precisely k copies of each symbol. We will

be primarily interested in regular row transversals, i.e. selections of a single

cell from each row so that each symbol appears as a column the same number

of times as an entry (Figure 7.1 depicts such a selection in the multiplication

table of a loop).

A set with a binary operation, say (Q, ·), is a quasigroup if for each x, z ∈ Q,

the equations x · y1 = z and y2 · x = z have unique solutions y1, y2 ∈ Q. A

quasigroup with a neutral element is called a loop. We will always denote the

neutral element by 1. A group is an associative loop. We assume in all cases

that Q is finite and typically write Q rather than (Q, ·). We write A(Q) for the

associator subloop of Q, the smallest normal subloop of Q such that Q/A(Q)

is a group. Likewise, we write Q′ for the derived subloop of Q, the smallest

normal subloop of Q such that Q/Q′ is an Abelian group. Note that A(Q)EQ′
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and thus cosets of Q′ are partitioned by cosets of A(Q). When Q is a group,

A(Q) = {1}.

The multiplication table of a loop Q is the set of triples {(x, y, xy) : x, y ∈

Q}. Multiplication tables of loops are latin squares and, up to the reordering

of rows and columns, every latin square is the multiplication table of some

loop. It thus makes sense to say that a loop has a k-plex or more generally a

regular row k-plex whenever its multiplication table does.

Most literature on the Hall-Paige conjecture focuses on the concept of a

complete mapping of a group rather than a transversal of its multiplication

table, though the two are completely equivalent [14, p. 7]. In the general loop

setting, we prefer the latter concept as it emphasizes the combinatorial nature

of the problem and generalizes more naturally to the concepts of k-plexes and

regular k-plexes.

For H ⊆ Q and k ≥ 1, let P k(H) be the set of elements in Q that admit

factorizations containing every element of H precisely k times. We call these

elements full k-products of H. When k = 1, we write just P (H) and refer

to its elements as full products of H. We work primarily in the case H = Q

and simply refer to these elements as full k-products. While in the group case,

the set P (G) has been well-studied (see the commentary preceding Theorem

7.2.4 for some background), to the best of our knowledge, the present chapter

contains the first investigation of the general loop case.

Although we assume a basic familiarity with both loops and latin squares,

we provide references for any non-trivial results that we employ. For standard

references for loops, consult Bruck [7] and Pflugfelder [35].
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7.2 Summary of Results

Conjecture 7.2.1 (Hall-Paige conjecture 1955 [26]). In every group G, the

following are equivalent:

(1) G has a transversal,

(2) Sylow 2-subgroups of G are trivial or non-cyclic, and

(3) 1 ∈ P (G).

We propose the following condition as a fruitful interpretation of the Hall-

Paige conjecture in varieties of loops in which associativity need not hold.

Definition 7.2.2 (HP-condition). A class of loops Q satisfies the HP-condition

if for each Q ∈ Q the following are equivalent:

(A) Q has a transversal,

(B) there does not exist N E Q such that |N | is odd and Q/N ∼= Z2m for

m ≥ 1, and

(C) A(Q) intersects P (Q) nontrivially.

When Q is the variety of groups, satisfaction of the HP-condition reduces

to the Hall-Paige conjecture. The equivalence of (1) and (A) is clear; as is

that of (3) and (C), given that when Q is a group, A(Q) = {1}. We take

an indirect approach to showing (2) ⇐⇒ (B) by showing (B) ⇐⇒ (C), a

corollary of Propositions 7.2.5 and 7.2.6. In 2003, Vaughan-Lee and Wanless

[44] provided the first elementary proof of (2) ⇐⇒ (3). Their paper also
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provides some background on this result (whose initial proof invoked the Feit-

Thompson theorem).

As corollaries of our main results, we show that in all loops (B) ⇐⇒ (C)

and (A) =⇒ (B) ∧ (C).

The following easy observation sets the context for our main results. It is

well-known in the group case and follows in the loop case for the same simple

reasons. We include it in Lemma 7.3.1 for completeness.

Observation 7.2.3. P k(Q) is contained in a single coset of Q′.

At least as far back as 1951, authors have asked whether, in the group

case, this observation can be extended to show that P k(Q) in fact coincides

with this coset. For a history of this line of investigation, see [13, p. 35] and

[14, p. 40]. This result now bears the names of Dénes and Hermann who first

established the claim for all groups.

Proposition 7.2.4 (Dénes, Hermann [15] 1982). If G is a group, then P (G)

is a coset of G′. It follows that P k(G) is also a coset of G′.

A more general way to read this statement is that P (G) intersects every

coset of A(G) that is contained in the relevant coset of G′. Since A(G) = {1}

and these cosets partition cosets of G′, this overly technical phrasing reduces

to the proposition as stated. We extend the Dénes-Hermann theorem to show

that this more general phrasing holds in all loops. Although the result is more

general, our proof of Proposition 7.2.5 does rely upon the Dénes-Hermann

theorem. In §7.7, we discuss the possibility of generalizing the theorem com-

pletely.
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Proposition 7.2.5. If P (Q) ⊆ xQ′, then P (Q) ∩ yA(Q) 6= ∅ for all y ∈

xQ′. That is, P (Q) intersects every coset of A(Q) contained in xQ′ and, in

particular, if P (Q) ⊆ Q′, then P (Q) intersects A(Q). It follows that P k(Q)

also intersects every coset of A(Q) in the corresponding coset of Q′.

Coupled with Proposition 7.2.5, our next result establishes (B) ⇐⇒ (C).

Proposition 7.2.6. P (Q) ⊆ Q′ if and only if (B) holds.

In 1951, Paige [34] showed that if a group G has a transversal, then 1 ∈

P (G). We extend this result to a much wider class of structures.

Proposition 7.2.7. If C is a regular subset of the multiplication table of Q,

then P (Cr) intersects A(Q). In particular, if Q has a k-plex (or just a regular

row k-plex), then P k(Q) intersects A(Q).

Applying these results, we establish that for all loops:

• (A) =⇒ (C) by Proposition 7.2.7 and

• (B) ⇐⇒ (C) by Propositions 7.2.5 and 7.2.6.

By 1779, Euler had shown that a cyclic group of even order has no transver-

sal and in 1894 Maillet extended his argument to show that all loops for which

condition (B) fails lack transversals [13, p. 445]. In 2002, Wanless [46] showed

that such loops lack not just transversals, i.e. 1-plexes, but contain no odd-

plexes at all. While their arguments are quite nice, our proof of (A) =⇒ (B)

provides an alternative, more algebraic proof of these results.

Corollary 7.2.8. If a loop fails to satisfy (B), then it has no regular row

odd-plexes.
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It is not true in general that (B) ∧ (C) =⇒ (A) (for a smallest possible

counter-example, see Figure 7.1). We are however interested in identifying

nonassociative classes of loops in which the equivalence holds. In a separate

paper still in preparation [38], we show that the HP-condition is satisfied

by several technical varieties of loops that include non-assoicative members

and provide both computational and theoretical evidence suggesting that the

variety of Moufang loops also satisfies the HP-condition.

Q 1 2 3 4 5 6
1 [1] 2 3 4 5 6
2 2 1 4 [3] 6 5
3 3 5 [1] 6 2 4
4 [4] 6 2 5 1 3
5 5 3 6 2 4 [1]
6 [6] 4 5 1 3 2

Figure 7.1: Loop Q with no transversal and yet P (Q) = Q′ = Q. Q contains
168 regular row transversals, one of which has been bracketed.

The Hall-Paige conjecture is typically stated with the additional claim

that G can be partitioned into n mutually disjoint transversals, i.e. G has

an orthogonal mate. In the group case, it is easy to show that having an

orthogonal mate is equivalent to having at least one transversal. While this

equivalence may extend to other varieties of loops (for example, we believe it

holds in at least Moufang loops), the argument seems unrelated to the difficult

part of the conjecture, which the HP-condition seeks to capture.

We do however introduce a weakening of the orthogonal mate condition in

the following proposition. While this result follows directly from a combination

of the Hall-Paige conjecture and Proposition 7.2.7, we provide an elementary

proof.
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Proposition 7.2.9. If G is a group of order n, then the following are equiv-

alent:

1. G has a regular row transversal,

2. G can be partitioned into n mutually disjoint regular row transversals,

3. Sylow 2-subgroups of G are trivial or non-cyclic, and

4. 1 ∈ P (G).

Corollary 7.2.10. The Hall-Paige conjecture is equivalent to the claim that

a group has a transversal if and only if it has a regular row transversal.

We make the following two observations not to suggest that our methods

may be useful in tackling these important problems but rather to indicate their

theoretical context.

Observation 7.2.11. When Q is the class of odd ordered loops, condition (B)

always holds and thus satisfaction of the HP-condition is equivalent to Ryser’s

conjecture [46, p. 11], that every latin square of odd order has a transversal.

One natural extension of the HP-condition might be that Q has a 2-plex if

and only if A(Q) intersects P 2(Q). Since this latter condition is satisfied in

all loops, this formulation is equivalent to Rodney’s conjecture [11, p. 105],

that every latin square has a 2-plex.
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7.3 Properties of the sets P k(Q)

We begin with a sequence of easy observations about the sets P k(Q).

Lemma 7.3.1. For i, j, k ≥ 1,

1. 1 ∈ P 2(Q),

2. P i(Q)P j(Q) ⊆ P i+j(Q) and |P k(Q)| ≤ |P k+1(Q)|,

3. P k(Q) is contained in a coset of Q′,

4. P k(Q) ⊆ P k+2(Q),

5. P 2(Q) ⊆ Q′, and

6. P (Q) ⊆ aQ′ where a2 ∈ Q′.

Proof. 1 Let qρ be the right inverse of q. Then 1 =
∏

q∈Q qq
ρ ∈ P 2(Q).

2 Observe that P i(Q)P j(Q) = {ab : a ∈ P i(Q), b ∈ P j(Q)}. Thus ab

is a full (i + j)-product. It then follows that |P k(Q)| ≤ |P k+1(Q)| since for

q ∈ P (Q), qP k(Q) ⊆ P k+1(Q) and |P k(Q)| = |qP k(Q)|.

3 Any two elements of P k(Q) have factors that differ only in their order

and association. In other words, if x, y ∈ P k(Q), then xQ′ = yQ′.

4 By 1, we have 1 ∈ P 2(Q); thus P k(Q) = P k(Q) · 1 ⊆ P k(Q)P 2(Q). By 2

we have P k(Q)P 2(Q) ⊆ P k+2(Q). Thus P k(Q) ⊆ P k+2(Q).

5 The claim follows immediately from 1 and 3.

6 By 3, P (Q) ⊆ aQ′ for some a ∈ Q and thus P (Q)2 ⊆ a2Q′. By 2,

P (Q)2 ⊆ P 2(Q) and by 5 P 2(Q) ⊆ Q′. It follows that a2Q′ = Q′ and thus

a ∈ Q′.
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Our next lemma uses the idea that Q/N is a set of cosets of N and thus

P (Q/N) is a subset of these cosets.

Lemma 7.3.2. If NEQ, |N | = k, and a1N, . . . , akN ∈ P (Q/N), then P (Q)∩

(a1N · · · akN) 6= ∅. That is, P (Q) intersects every member of P (Q/N)k.

Proof. Let |Q| = mk. For any aN ∈ P (Q/N), we may select a system of coset

representatives of N in Q, say {x1, . . . , xm}, and some association of the left

hand side such that

x1N · · ·xmN = aN (7.3.1)

and thus using the same association pattern x1 · · ·xm ∈ aN . Furthermore,

since (7.3.1) depends only on the order and association of the cosets of N

(rather than the specific representatives chosen), we may select k disjoint sets

of coset representatives of N in Q, say {x(i,1), . . . , x(i,m) : 1 ≤ i ≤ k}, and

corresponding association patterns such that

(x(1,1) · · ·x(1,m)) · · · (x(k,1) · · ·x(k,m)) ∈ a1N · · · akN ∈ P (Q/N)k

for any selection of aiN ∈ P (Q/N) for 1 ≤ i ≤ k. Having selected each

element of Q as a coset representative precisely once, the left-hand side falls

in P (Q) and we are done.
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7.4 When does P k(Q) intersect A(Q)?

For x ∈ Q, we write Lx (Rx) for the left (right) translation of Q by x. Our

notation for the left translation is not to be confused with the convention of

using L for a latin square.

The multiplication group of Q, written Mlt(Q), is the subgroup of SQ gen-

erated by all left and right translations, i.e. 〈Lx, Rx : x ∈ Q〉, while the left

multiplication group of Q, written LMlt(Q), is generated by all left transla-

tions. If H E Q and ρ ∈ Mlt(Q), we may define the map ρH(xH) := ρ(x)H,

which is said to be induced by ρ. It is straightforward to verify that the map

is well-defined and that ρH ∈ Mlt(Q/H).

To prove Proposition 7.2.7 in the group case one would like to use the fact

that from an identity of the form a1(a2(· · · (akx) · · · ) = x we may conclude

that a1(a2(· · · (ak) · · · ) = 1, which is trivial in the presence of associativity but

typically false otherwise. In the general loop case, the following lemma shows

we can at least conclude that a1(a2(· · · (ak) · · · ) ∈ A(Q).

Lemma 7.4.1.

1. If ρ ∈ LMlt(Q), then ρA(Q) = Lρ(1)A(Q).

2. If ρ ∈ Mlt(Q), then ρQ′ = Lρ(1)Q′.

3. If a1(a2(· · · (akx) · · · ) = x, then a1(a2(· · · (ak) · · · ) ∈ A(Q).

Proof. Set A := A(Q).

(i) Let ρ = La1 · · ·Lak . Then ρA(qA) = a1(a2 · · · (akq) · · · )A. Since Q/A

is a group, we may reassociate to get ρA(qA) = a1(a2 · · · (ak) · · · )A · qA =

ρ(1)A · qA. Thus ρA = Lρ(1)A.
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(ii) Let ρ = T ε1a1 · · ·T
εk
ak

where T εi ∈ {L,R}. SinceQ/Q′ is an Abelian group,

we may reassociate and commute to get ρQ′(qQ′) = a1(a2 · · · (ak) · · · )Q′ ·qQ′ =

ρ(1)Q′ · qQ′. Thus ρQ′ = Lρ(1)Q′ .

(iii) Let ρ(z) := a1(a2(· · · (akz) · · · ). Since ρA(xA) = ρ(x)A = xA, the

map ρA has a fixed point. As it is a left translation, it must be constant. Thus

ρA(A) = A and in particular ρ(1) = a1(a2(· · · (ak) · · · ) ∈ A.

Lemma 7.4.1 is stated somewhat more generally then we actually need. If

the translation notation feels cumbersome, the idea is very basic. Given the

product a1(a2(· · · (akx) · · · ) = x, we may reduce both sides mod A to get

a1Aa2A · · · akAxA = xA

a1Aa2A · · · akA = 1A

a1a2 · · · ak ∈ A

.

Lemma 7.4.2. If C 6= ∅ is regular, then there exists C ′ such that

1. ∅ 6= C ′ ⊆ C,

2. P (C ′r) intersects A(Q), and

3. C \ C ′ is regular.

It follows that P (Cr) intersects A(Q).

Proof. Let [k] := {1, . . . , k}. Suppose C = {(xi, yi, zi) : i ∈ [k]} is regular.

Select i1 ∈ [k] at random. Having selected i1, · · · , im ∈ [k], pick im+1 ∈ [k]
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such that yim = zim+1 . Since C is regular, such a selection can always be made.

If im+1 6∈ {i1, . . . , im}, continue.

Otherwise, stop and consider the set {ij, . . . , im} where ij = im+1. Reindex

C such that 〈ij, . . . , im〉 = 〈1, · · · , s〉 and set C ′ := {(xi, yi, zi) : 1 ≤ i ≤ s}.

Note that ys = z1. By construction, C ′ has the following form:

C ′ = {(x1, y1, ys),

(x2, y2, y1),

(x3, y3, y2),

· · ·

(xs−1, ys−1, ys−2),

(xs, ys, ys−1)}.

C ′ is clearly regular and thus so too is C\C ′. Furthermore, by construction

we have x1(x2(· · · (xsz1) · · · )) = z1.

By Lemma 7.4.1, x1(x2(· · · (xs) · · · )) ∈ A(Q). Since this product is in

P (C ′r) as well, P (C ′r) ∩ A(Q) 6= ∅. Iterating this construction we have P (Cr)

intersects A(Q).

Proof of Proposition 7.2.7. If C is a k-plex, then Cr consists of k copies of each

element of Q and thus P (Cr) = P k(Q). By Lemma 7.4.2, P k(Q) intersects

A(Q).
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7.5 A Weaker Hall-Paige Theorem

Lemma 7.5.1. If G is a group and g1, . . . , gk ∈ G such that g1 · · · gk = 1 and

no proper contiguous subsequence evaluates to 1, then G admits a regular set

C such that Cr = {g1, . . . , gk} and no column (and thus no entry) is selected

more than once.

Proof. Set hi := gi+1 · · · gk for 1 ≤ i ≤ k − 1 and h0 = hk := 1. Note that

we have gihi = hi−1 for 1 ≤ i ≤ k. We claim that C := {(gi, hi, hi−1) :

1 ≤ i ≤ k} is the desired regular set. It is clear that C is regular and that

Cr = {g1, . . . , gk}. To see that no column is selected more than once, suppose

that hi = hi+j for j ≥ 1. That is, gi+1 · · · gk = gi+j+1 · · · gk. Canceling on the

right, we have gi+1 · · · gi+j = 1, a contradiction.

Proof of Proposition 7.2.9.

(i) =⇒ (ii) In this case we may use the standard argument from the group

case showing that a single transversal extends to n disjoint transversals. Let

T = {(xi, yi, zi) : 1 ≤ i ≤ n} be a regular row transversal of G. For each

g ∈ G, form Tg := {(x, yg, zg) : (x, y, z) ∈ T}. It is easy to check that the

family {Tg : g ∈ G} partitions the multiplication table of G into regular row

transversals.

(i) ⇐= (ii) If G admits a partition into regular row transversals, then it

certainly has a regular row transversal.

(i) =⇒ (iv) Let T be a regular row transversal. By Proposition 7.2.7,

P (G) ∩ A(G) 6= ∅ and thus 1 ∈ P (G).
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(i) ⇐= (iv) Let g1 · · · gn = 1. We partition G as follows:

• If no proper contiguous subsequence of g1 · · · gn evaluates to 1, stop.

• Otherwise, extract the offending subsequence gi · · · gj = 1 and note that

g1 · · · gi−1gj+1 · · · gn = 1.

• Iterate this process with these shortened products.

Suppose we have thus partitionedG into k disjoint sequences {g(i,1), . . . , g(i,ni):1≤i≤k}

such that g(i,1) · · · g(i,ni) = 1 for 1 ≤ i ≤ k and no proper contiguous subse-

quence of g(i,1), . . . , g(i,ni) evaluates to 1. Now we apply Lemma 7.5.1 to each

subsequence to get regular sets Ci for 1 ≤ i ≤ k. Then
⋃k
i=1Ci is a regular

row transversal of G.

(iii) ⇐⇒ (iv) As noted earlier, this is an established equivalence in the

Hall-Paige conjecture.

7.6 An equivalence for P (Q) ⊆ Q′

Lemma 7.6.1. (2) ⇐⇒ (3) holds for Abelian groups.

Proof. As mentioned above Vaughan-Lee and Wanless [44] give a direct, el-

ementary proof of this result for all groups. For an earlier though indirect

proof, Paige [33] showed that (1) ⇐⇒ (2) holds in Abelian groups and Hall

and Paige [26] showed that (1) ⇐⇒ (3) in solvable groups.

Lemma 7.6.2. If a group G has a cyclic Sylow 2-subgroup S, then there exists

N EG such that G/N ∼= S.
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Proof. This is a direct application of Burnside’s Normal Complement theorem

that can be found in most graduate level group theory texts (see [52] for

example).

Proof of Proposition 7.2.6. (⇐=) We show the contrapositive. Suppose P (Q) ⊆

aQ′ 6= Q′. Since G := Q/Q′ is an Abelian group, P (G) = {bQ′} such that b2 ∈

Q′. By Lemma 7.3.2, P (Q) intersects every element of P (G)|Q
′| = {b|Q′|Q′}

and thus aQ′ = b|Q
′|Q′. Since aQ′ 6= Q′ and b2 ∈ Q′, it follows that aQ′ = bQ′

and |Q′| is odd.

Since P (G) 6= {1Q′}, by Lemmas 7.6.1 and 7.6.2 there is N EG such that

|N | is odd and G/N ∼= Z2m . N is a collection of coset of Q′. Letting H be

their union, we have Q/H ∼= G/N ∼= Z2m and |H| = |N ||Q′| is odd.

(=⇒) Again we argue the contrapositive. Suppose NEQ such that |N | = q

is odd and Q/N ∼= Z2m for m ≥ 1. Since Q/N ∼= Z2m , P (Q/N) = {aN} 6=

{N} such that a2 ∈ N . By Lemma 7.3.2, P (Q) intersects every element of

P (Q/N)|N | = {aN}|N | = {aN}.

Given that Q/N is an Abelian group, Q′ ⊆ N but since P (Q) intersects

aN 6= N , it is therefore disjoint from Q′.

7.7 A Generalization of the Dénes-Hermann

Theorem

The left, right, and middle inner mappings are defined as L(x, y) = L−1yxLyLx,

R(x, y) = R−1xyRyRx, and T (x) = R−1x Lx, respectively. A subloop S of a loop Q

is said to be normal, written S EQ, if S is invariant under all inner mappings
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of Q. A loop Q is simple if it has no normal subloops except for {1} and

Q. An A-loop is a loop in which all inner mappings are automorphisms. The

variety of A-loops is larger than that of groups but is certainly not all loops.

Bruck and Paige [8] conducted the earliest extensive study of A-loops.

Before proving Proposition 7.2.5, we make several additional observations

about the sets P k(Q). While none of these results will be used directly in

our proof, we hope they are of some interest in that they may suggest an

alternative proof of the Dénes-Hermann theorem.

Lemma 7.7.1. Set P ω :=
⋃∞
i=1 P

i(Q).

1. P ω ≤ Q,

2. P ω = P k(Q) ∪ P k+1(Q) for sufficiently large k,

3. If P ω EQ, then P ω = Q′ or P ω = Q′ ∪ aQ′ where a2 ∈ Q′, and

4. P ω is fixed by all automorphisms of Q. Thus, if Q is an A-loop, then

P ω EQ.

Proof. (i) Since Q is finite, we need only verify that P ω is closed under multi-

plication. If x, y ∈ P ω, then x ∈ P i(Q) and y ∈ P j(Q) for some i, j ≥ 1. Thus

xy ∈ P i+j(Q) ⊆ P ω.

(ii) Again, since Q is finite, the nested sequence (P 2i(Q) : 1 ≤ i < ∞)

must terminate at some step, say P k1(Q). Likewise (P 2i+1(Q) : 1 ≤ i < ∞)

must terminate at some step, say P k2(Q). Thus letting k = max{k1, k2}, we

have P ω = P k(Q)∪P k+1(Q). (In fact, by Lemma 7.3.1 part (ii), the sequences

terminate at the same time.)
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(iii) Suppose P ω E Q. We show that Q/P ω is an Abelian group and thus

Q′ ⊆ P ω. To see that Q/P ω is a group, note that aP ωbP ω · cP ω = (ab · c)P ω.

We would like to show that (ab · c)P ω = (a · bc)P ω.

To that end, let a′ ∈ P (Q \ {a}) and likewise for b′ and c′. We translate

both (ab · c)P ω and (a · bc)P ω by (a′b′ · c′)P ω on the left to get

(a · bc)P ω · (a′b′ · c′)P ω = [(a · bc) · (a′b′ · c′)]P ω

(ab · c)P ω · (a′b′ · c′)P ω = [(ab · c) · (a′b′ · c′)]P ω

Note that both (a · bc) · (a′b′ · c′) and (ab · c) · (a′b′ · c′) are elements of P (Q) and

thus both right-hand sides reduce to P ω. Thus both (ab·c)P ω and (a·bc)P ω are

left inverses of (a′b′ · c′)P ω. Since left inverses are unique, we have (ab · c)P ω =

(a · bc)P ω and Q/P ω is a group.

To see that Q/P ω is Abelian, consider aP ωbP ω and bP ωaP ω. Again let

a′ ∈ P (Q \ {a}) and b′ ∈ P (Q \ {b}). We then have

abP ω · a′b′P ω = (ab · a′b′)P ω

baP ω · a′b′P ω = (ba · a′b′)P ω

Since (ab · a′b′) and (ba · a′b′) are both members of P (Q), the right-hand sides

reduce to P ω. As above, it follows that aP ωbP ω = bP ωaP ω. Since Q′ is the

smallest normal subloop of Q such that Q/Q′ is an Abelian group, Q′ ⊆ P ω.

(iv) First note that for i ≥ 1, P i(Q) is always fixed by automorphisms

of Q and thus so is P ω. If Q is an A-loop, then P ω is fixed by every inner-

mapping.
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In the spirit of the observations made in Lemma 7.7.1, Yff [51, p. 269]

showed that when G is a group, P 3(G) coincides with a coset of G′. Although

this fact is an easy application of the Dénes-Hermann theorem, his proof ap-

plies directly to all finite groups and avoids the use of the Feit-Thompson

theorem.

To our knowledge, Proposition 7.2.5 is the first extension beyond groups of

the Dénes-Hermann theorem. Although our generalization is rather modest,

we suspect the result extends completely.

Problem 7.7.2. For larege |Q|, is P (Q) always a coset of Q′?

The Dénes-Hermann theorem is equivalent to the claim that for any finite

group G we have that |{g1 · · · gn : ranging over all orderings }| = |G′|.

To establish Conjecture 7.7.2, it would suffice to show the perhaps stronger

claim that given any fixed ordering of the elements of Q, we have

|{q1 · · · qn : ranging over all associations }| = |A(Q)|.

Observation 7.7.3. Proposition 7.7.4 is motivated by the following question:

if G is a group and a ∈ P (G), does it follow that a ∈ P (G2) where G2 is the

set of involutions in G? That is, does P (G) = P (G2)?

Proposition 7.7.4. Let Q2 be the set of involutions in Q. If Q has two-sided

inverses, then P k(Q2) ⊆ P k(Q).

Proof. Note that −1 is an involution in SQ whose fixed points are precisely the

elements of Q2 and the identity element. We thus have that 1 ∈ P (Q \Q2) ⊆

Q′. Since P (Q2)P (Q \Q2) ⊆ P (Q), we are done.
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We recall the following special case of the correspondence and isomorphism

theorems, proofs of which can be found in most standard universal algebra

texts.

Lemma 7.7.5. If N EQ and N ≤ H ≤ Q, then

1. H EQ if and only if H/N EQ/N and

2. when H EQ, Q/H ∼= (Q/N)/(H/N).

We employ the following lemma in our proof of Proposition 7.2.5.

Lemma 7.7.6. (Q/A(Q))′ = Q′/A(Q).

Proof. Set A := A(Q). By definition, (Q/A)′ is the smallest normal subloop of

Q/A such that the factor loop is an Abelian group. Since A ≤ Q′ EQ, by the

correspondence theorem we have (Q′/A)E (Q/A) and (Q/A)/(Q′/A) ∼= Q/Q′,

an Abelian group. Thus (Q/A)′ ≤ (Q′/A).

We now show (Q′/A) ≤ (Q/A)′. Fix N/AEQ/A such that (Q/A)/(N/A) is

an Abelian group. Again by the correspondence theorem, N EQ and Q/N ∼=

(Q/A)/(N/A). SinceQ/N is an Abelian group, Q′ ≤ N and thus Q′/A ≤ N/A.

It follows that (Q′/A) ≤ (Q/A)′

Proof of Proposition 7.2.5. Let A := A(Q) and k := |A|. Since P (Q) is con-

tained in a single coset of Q′, it suffices to show that P (Q) intersects at least

[Q′ : A] cosets of A (the maximum possible).

By Theorem 7.2.4, P (Q/A) = {xA(Q/A)′} such that x2A ∈ (Q/A)′. By

Lemma 7.7.6, xA(Q/A)′ = xA(Q′/A) = (xQ′)A. Thus we have P (Q/A) =
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{(xQ′)A}. By Lemma 7.3.2, P (Q) intersects each of the [Q′ : A] elements of

P (Q/A)k = {(xkQ′)A} = {qA : q ∈ xkQ′}.

7.8 Concluding Remarks

We have proposed the HP-condition as a fruitful extension of the Hall-Paige

conjecture from groups into the larger world of non-associative loops. Having

shown several universal implications between the points of the HP-condition,

we leave open the difficult problem of identifying interesting varieties of loops

in which conditions (B) and (C) imply the existence of a transversal.

It would also be of interest to identify classes of loops in which the existence

of a regular row transversal implies the existence of a transversal. As noted

above, this implication in groups is equivalent to Proposition 7.2.1, the Hall-

Paige conjecture.
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[13] J. Dénes and A. D. Keedwell. Latin squares and their applications. Aca-

demic Press, New York, 1974.
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