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Abstract 

Aging is often associated with impaired cognition and a progressive loss of organ 

function over time accompanied by an increased susceptibility for many disorders, 

including Alzheimer’s disease (AD), Parkinson’s disease (PD), heart disease, osteoporosis, 

type II diabetes, and many forms of cancer.  With a rapidly aging population, the negative 

impacts of aging and age-related disorders is a major cause of increased human suffering 

both for affected individuals and for families and caregivers.  Metabolic changes are also 

apparent in normal aging, but may increase in magnitude or nature with accompanying 

disease states or with accelerated aging.  Thus, studying aging in a disease state, or in a 

disorder characterized by accelerated aging, will facilitate identification of these changes.  

Trisomy of chromosome 21 (HSA21), or Down syndrome (DS), is an intellectual disability 

characterized by premature aging. We hypothesize that trisomy causes disruption of the 

metabolome leading to an accelerated aging phenotype. In the Ts65Dn mouse model of 

DS, a premature aging phenotype is also observed along with other common comorbidities 

associated with human DS.  Here, we report changes in the both global and targeted 

metabolomics (the study of small molecules) in the brains of the Ts65Dn mouse.  We also 

report that long-term treatment with microencapsulated dietary rapamycin changes the 

metabolomic profiles in a manner consistent with increases in healthspan.   
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Purines are molecules essential for many cell processes, including RNA and DNA 

synthesis, regulation of enzyme activity, protein synthesis and function, energy metabolism 

and transfer, essential coenzyme function, and cell signaling.  Purines are produced via the 

de novo purine biosynthesis pathway.  Mutations in purine biosynthetic genes can lead to 

developmental anomalies in lower vertebrates.  Alterations in PAICS (phosphoribosyl- 

aminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide 

synthetase) expression in humans have been associated with various types of cancer.  

Mutations in adenylosuccinate lyase (ADSL, E.C. 4.3.2.2) or 5-aminoimidazole-4-

carboxamide ribonucleotide formyl-transferase/IMP cyclohydrolase (ATIC, E.C. 

2.1.2.3/E.C. 3.5.4.10) lead to inborn errors of metabolism with a range of clinical 

symptoms, including developmental delay, severe neurological symptoms, renal stones, 

combined immunodeficiency, and autistic features. The pathogenetic mechanism is 

unknown for any of these conditions, and no effective treatments exist. The study of cells 

carrying mutations in the various de novo purine biosynthesis pathway genes provides one 

approach to analysis of purine disorders.  Here we report the characterization of AdeD 

Chinese hamster ovary (CHO) cells, which carry genetic mutations encoding p.E177K and 

p.W363* variants of PAICS. Both mutations impact PAICS structure and completely 

abolish its biosynthesis. Additionally, we describe a sensitive and rapid analytical method 

for detection of purine de novo biosynthesis intermediates based on high performance 

liquid chromatography with electrochemical detection. Using this technique, we detected 

accumulation of 5-Aminoimidazole riboside (AIR) in AdeD cells. In AdeI cells, mutant for 

the ADSL gene, we detected accumulation of Succinylaminoimidazole carboxamide 

riboside (SAICAR) and adenylosuccinate (SAMP) and, somewhat unexpectedly, 
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accumulation of AIR. The use of HPLC coupled electrochemical detection in combination 

with cellular assay methods have great potential for metabolite profiling of de novo purine 

biosynthesis pathway mutants, identification of novel genetic defects of purine metabolism 

in humans, and elucidating the regulation of this critical metabolic pathway.  
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Chapter One: 

Introduction to Aging, Down syndrome and metabolomics 

 

1.1 What is Aging? 

Aging may arguably be the most intimate and familiar aspect of human biology.  

From a young age we witness the aging process in others and we experience the effects of 

aging first hand.  Chronologically, we experience aging, however, the rate at which we age 

is different for each organism.  Biologically, aging is defined as the progressive decline in 

functioning organ systems with a loss of fertility and an increase in mortality.  The 

progressive impairment in functioning organ systems makes us more susceptible to 

changes in environment, genetic disturbances, and other processes that lead to disease and 

eventually death. 

According to the United States Census Bureau, the population in the US is changing 

rapidly.  By 2050, the population of the US is estimated to be 400 million, a 27% increase 

from 2012 estimates of 314 million (Bureau 2014).  It is estimated that by 2050 the 

population over the age of 65 is projected to be 83.7 million, an increase of 94% from the 

estimated population of 43.1 million in 2012 (Bureau 2014).  The size and composition of 

the population over the age of 65 will be influenced by mortality rates and by survivorship, 

with regard to age-related disease.  The elderly tend to have a higher incidence of costly 
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chronic diseases; aging is the most common risk factor for age-related diseases and the risk 

increases in frequency and severity as the population ages.  Typically, the mechanisms and 

causes of these pathologies are researched and subsequently treated individually.  This 

focus on specific diseases has had a profound effect on human health and in many instances 

has led to an extension of lifespan.  However, we have been largely unsuccessful at 

eliminating, ameliorating, or postponing age-related disease.  This has led to a decrease in 

mortality; however, often elderly people are suffering from multiple diseases or age-related 

complications (Figure 1).  Understanding the basic biology of aging and treating aging as 

the common symptom of age-related disease, the consequences of advanced age can be 

hypothetically minimized or eliminated. 

 

1.1 Healthspan and Lifespan 

Much of the research on aging is attempting to understand mechanisms, pathways, 

or genes that prolong lifespan or longevity.  Lifespan is understood as the time an organism 

survives.  This does not describe the physiological or pathological state of the organism, 

rather whether or not it is surviving.  It is important to note that extension of lifespan 

without the extension of healthspan, which is the time an organism spends in a disease free 

state, may be considered cruel.  Through the extension of healthspan mortality will 

decrease, leading to an extension of lifespan, although a maximum lifespan more than 

likely exists (Figure 2). 
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Figure 1.  Relationship between healthspan and 
lifespan extension in age-related disease. 
 
A) Lifespans (bars) and onset of disease (pink) in two 
individuals is shown. Individual A succumbs to 
cardiovascular disease.  Individual 2 succumbs to 
cognitive disorders.  B) If cardiovascular disease is 
ablated, the lifespan of Individual 1 is extended, but 
the healthspan is not.  Individual 1 now suffers from 
metabolic disease that will end his life, while 
Individual 2 experiences no change in lifespan or 
healthspan by the amelioration of cardiovascular 
disease.  C)  Theoretically, by understanding the aging 
process we may be able to extend both lifespan and 
healthspan in individuals, by minimizing the risk of 
individual diseased.  Lifespan is represented as the 
length of the horizontal bars.  Disease onset and 
progression is shown in the transition to red color.   
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1.2 Theories of aging 

1.2.1 Discussion of ultimate theories of aging 

There is a tendency to regard the aging process as programmed, or pre-determined.  

This is a common misconception due to its convenience and ability to be easily 

comprehended.  It hypothesizes that aging as a program evolved because it benefits the 

species by preventing overcrowding and reducing competition for valuable resources.  This 

idea was brought to favor by Weismann (1889) who posited that old “worn out” individuals 

have no value and are actually harmful by taking the place (resources) for the young 

(Weismann 1889).  This ignores data that show individuals in the wild rarely reach 

senescent age, or the age when deterioration begins (Lack 1954; Finch et al. 1990; 

Figure 2. Relationship between healthspan, lifespan and mortality. 
The extension of lifespan does not describe the health status, or healthspan of an 

organism, nor does it describe the time spent in a healthy state.  A)  Shows the lifespan 
and the hypothetical time spent in a health state (healthspan) or in a state where the 

probability of mortality increases over time.  B) Shows the expansion of healthspan and 
the subsequent reduction in probability of mortality.  Healthspan does not generally 

assume an extension in lifespan. 
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Medawar 1952).  The most common contributors to mortality in wild populations are 

predation, disease, and accidents.  Old age is not a major component of mortality in wild 

populations; therefore, younger individuals primarily contribute to the next generation so 

“old” genes (genes that would promote an aging phenotype) should rarely evolve.  

Additionally, the idea of aging as a program, if true, should provide evidence such as a 

mechanisms or genes that when manipulated could bypass the aging program. 

 

1.2.2 Antagonistic pleiotropy and mutation accumulation  

It is well known that manipulation of certain genes, such as insulin and insulin-like 

growth factor signaling (IIS) genes, can extend or shorten lifespan in many different 

evolutionarily divergent species (Barzilai et al. 2012).  How did these genes evolve and 

what is the mechanism that they might be committing an organism to death by age, if they 

are able to avoid extrinsic mortality?  The theory proposed by Medawar (1952) understood 

that death by extrinsic (environmental) factors was strong evidence that an aging program 

would not evolve in a natural setting.  The theory proposes that late acting mutations in the 

germline of an organism could provide a slight detriment to an organism’s fitness, even if 

they hindered survival or reproduction.  However, over successive generations these 

mutations would accumulate in the genome.  If an organism with these mutated alleles was 

able to avoid extrinsic mortality, they would experience these late acting mutations as aging 

(Medawar 1952). 

An extension of Medawar’s mutation accumulation theory was proposed by George 

Williams (Williams 2001) postulating the occurrence of special genes that were beneficial 
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in development and early age, but antagonistic to health at later stages in life.  The theory, 

called “Antagonistic Pleiotropy”, attempts to explain the aging phenomenon as driven by 

genes that are critical to early life when the selective pressures on an organism are strong, 

but these genes become less beneficial, even harmful late in life when selective pressures 

are much weaker (Williams 2001). 

Together these theories have accounted for most of the thinking in evolutionary 

genetics of aging research.  Although they drive most of the current thinking, little evidence 

exists to support these theories, in particular the mutation accumulation theory (Shaw et al. 

1999).  A growing number of genes have been found that do affect aging when they are 

modulated late in life and have detrimental effects when mutated earlier in life (Jenkins et 

al. 2004)  Many of these genes fall into different categories of proximate aging that is 

discussed below. 

 

1.2.3 Disposable soma 

A different approach to understanding the mechanisms of aging arises from 

understanding “trade-offs” or allocation of resources of an organism (Kirkwood 1977).  

The Disposable Soma Theory proposes that energy is scarce and an organism allocates 

energy resources early in life to maintain good physiological status when it has a higher 

chance of survival (Kirkwood 1977).  This allocation of resources comes at the expense of 

repair and maintenance mechanisms that promote lifespan (antioxidant pathways, DNA 

repair).  The disposable soma theory makes a few predictions about the aging process:  1) 

aging is the result of unrepaired cellular and molecular damage through the loss or 



	 7	

dysfunction of mechanisms responsible for cellular maintenance, 2) genes that regulate the 

levels of repair and maintenance pathways can control the levels of damage through life 

and therefore longevity, 3) the mechanisms that drive aging are expected to be stochastic 

in nature and polygenic.  Some of these mechanisms that can be considered examples of 

the disposable soma theory will be discussed briefly below. 

 

1.3 Discussion of important proximate theories of aging 

Because aging is a progressive decline in the functioning of many different organ 

systems and can be modulated through different genes and genetic pathways (polygenic) it 

is natural for many theories explaining aging to take root.  There are many different theories 

of aging which explain changes that occur during the aging process, which are not  mutually 

exclusive.  Many of these explain the existence of an aged phenotype, but fall short of 

being solely responsible.  The overwhelming number of proximate theories of aging 

segregate into categories based on their origin; genomic instability, mitochondrial 

dysfunction, proteostasis dysfunction, nutrient sensing, senescence, among others. 

Recent advances in aging research have provided an opportunity to classify the 

molecular and cellular hallmarks of the aging process.  Much of the earlier research in 

aging identified many processes and many features of the aging phenotype.  The 

categorization of these proximate theories aims to unify them in a coherent manner based 

on 3 criteria proposed by Lopez-Otin et. al.: 1) should occur during normal aging, 2) 

disturbances should accelerate aging, 3) ablation should extend lifespan  (López-Otín et al. 

2013).  Here I will discuss the most popular proximate theories of aging. 
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1.3.1 Genomic Instability 

The accumulation of genomic damage throughout life is a critical component of 

aging.  Organisms have evolved many different DNA repair mechanisms that attempt to 

repair this damage.  As we age, these repair mechanisms can lose effectiveness and these 

disruptions can have serious effects on lifespan and healthspan.  Often, different aspects of 

aging, such as reactive oxygen species (ROS) can exacerbate DNA damage accumulation 

by being both a cause of DNA damage and a product of DNA damage.  This is particularly 

true of mitochondrial DNA.  It is also important to note that DNA damage is a hallmark of 

many cancers (Hoeijmakers 2009).  

Damage to DNA can come from both exogenous and endogenous sources and 

affect both nuclear and mitochondrial DNA (Park & Larsson 2011; Payne et al. 2011) 

Moskalev et al. 2013).  These insults to DNA and DNA repair mechanisms can cause 

disruptions to the transcriptional network and expression of essential genes causing loss of 

cellular homeostasis.  Loss of DNA repair mechanisms have shown to decrease lifespan in 

different models (Gregg et al. 2012; Hoeijmakers 2009).  Damage to mitochondrial DNA 

is often attributed to the high volume of reactive oxygen species (ROS) due to the energetic 

nature of mitochondria.  The DNA in mitochondria are more susceptible to these insults 

because their repair mechanisms are less efficient than nuclear DNA (Linnane et al. 1989). 

However, genome wide analysis of mitochondrial genes finds that most mutations are due 

to replication errors rather than ROS insults (Ameur et al. 2011).   
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1.3.2 Telomere Attrition 

Also considered a form of DNA damage, telomere erosion or shortening, is an 

unavoidable consequence of normal cell function.  Telomeres are the protective caps at the 

end of chromosomes.  Unfortunately, the replication machinery (DNA polymerases) 

cannot replicate to the terminal ends of the DNA resulting in a loss with each replication 

cycle.  A particular polymerase, telomerase, is responsible for the addition of repeating 

sequences to the chromosome ends compensating for the loss during replication (Blackburn 

et al. 2006).  Telomerase is not found in all cell types, or in equal measure between cells, 

and the action is limiting and is used to explain the loss of replicative capacity of cells 

(Hayflick & Moorhead 1961).  Lengthening the effectiveness of telomerase has been 

shown to extend lifespan and leads to immortality in cellular models (Bodnar et al. 1998). 

Telomere shortening is a function of normal aging (Blasco 2007), and therefore has 

been considered a biological clock for determining age.  Shortening of the telomeres or 

eliminating telomerase activity has shown to decrease lifespan and reduce healthspan, often 

leading to disease (Armanios et al. 2009; Herrera et al. 1999).  Conversely, increasing the 

length of telomeres or upregulating the telomerase activity has been shown to extend 

lifespan and healthspan in a variety of mouse models (Tomás-Loba et al. 2008; Bernardes 

de Jesus et al. 2012).  Telomere biology and aging has been recently reviewed by Blackburn 

et. al. (Blackburn et al. 2015).  Evidence that individuals with DS have shortened telomeres 

suggests that this may contribute to their premature aging phenotype (Gruszecka et al. 

2015). 
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1.3.3 Proteostasis 

In addition to repair and homeostatic mechanisms for preserving the genome, cells 

also contain mechansisms that help to maintain the stability of their proteome.  These can 

be critical mechanisms to maintaining the functionality of the proteome by mechanisms 

that help fold proteins (heat shock), and pathways involved in the clearance of misfolded 

proteins.  These processes are most important in non-dividing neuronal cells and some 

cardiac cells.  Many diseases, most age-related in nature (e.g. Alzheimer’s disease, 

Parkinson’s disease), have well-documented disruption in the proteome resulting in 

aggregated or misfolded proteins (reviewed in Powers et al. 2009).  The stability and 

function of the proteome has also been demonstrated to be altered with age, including heat 

shock proteins (Koga et al. 2011; Calderwood et al. 2009).  Different evolutionarily 

divergent species also show changes in the chaperone mediated protein folding and 

stability associated with aging (Morrow et al. 2004; Swindell et al. 2009).  Another 

important mechanism involved in proteomic stability is the autophagy system.  Autophagy 

is important for the removal of misfolded proteins, as well as normal protein turnover.  In 

non-dividing cells, autophagy plays an important role in the health of the cell through many 

different mechanisms.  For a comprehensive review on the importance of autophagy and 

aging please see (Rubinsztein et al. 2011). 

Interestingly, the inhibition of the mTOR pathway through treatment with 

rapamycin has been shown to extend lifespan in mice (Harrison et al. 2009; Wilkinson et 

al. 2012).  In yeast, C. elegans, and D. melanogaster the lifespan extending effects of 

rapamycin treatment appear to be primarily through autophagy ((Bjedov et al. 2010; 
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Rubinsztein et al. 2011).  Although it remains to be fully studied, autophagy will 

undoubtedly play a role in mammalian aging as well. 

 

1.3.4 Mitochondrial dysregulation (and reactive oxygen species) 

Mitochondria play an essential role in cellular energy production.  An unfortunate 

side effect of these energy producing reactions is the production of ROS.  Denham Harman 

proposed that the accumulation of ROS results in biological aging (Harman 1955; Harman 

1992; Harman 2001). Furthermore, manipulation of both ROS levels and ROS scavenging 

antioxidant proteins does not modulate lifespan (Pérez et al. 2009; Van Remmen et al. 

2003).  However, genetically impairing mitochondria function without increasing ROS 

diminish lifespan (Edgar et al. 2009) Trifunovic et al. 2004).  As an organism ages, levels 

of ROS increase, but not in a manner that is consistent with with dysfunction, but rather 

survival (Hekimi et al. 2011).  This may suggest a homeostatic mechanism of ROS, but 

after reaching a certain threshold  become detrimental to cellular function and damage may 

start to accumulate (Hekimi et al. 2011).  Independent of ROS, the mitochondria can 

influence aging.  Genomic instabilities of mitochondrial DNA may result in altered aging 

(discussed above).  Mouse studies have shown diminished lifespan when deficient for DNA 

polymerase-γ, the polymerase responsible for mtDNA replication (Edgar et al. 2009).  

Additional pathways involving defective mitochondria and disrupted apoptosis signaling 

may contribute to altered lifespan.   
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1.3.5 Nutrient signaling pathways 

The most evolutionarily conserved pathway that also happens to modulate aging is 

the insulin and the insulin-like growth factor 1 (IGF-1) signaling (IIS) pathway.  The IGF-

1 pathway involves activation by growth hormone and affects the same downstream 

pathways as those elicited by insulin.  These downstream pathways such as FOXO 

transcription factors and the mTOR pathway have been shown to extend lifespan as well 

when modulated (Barzilai et al. 2012; Fontana et al. 2010).  Additionally, these pathways 

are also affected during dietary restriction (DR), which is the most effective non-genetic 

intervention to increase lifespan in evolutionarily divergent species (Kaeberlein et al. 2005; 

Smith 2005; Anderson & Weindruch 2010; Colman et al. 2009).  

Genetic manipulation of different aspects of the IIS pathway show lifespan 

extension and also shows that these components of IIS signaling are affected by DR 

(Fontana et al. 2010).  Consistent with the disposable soma theory of aging, a reduction in 

IIS pathways, either by genetic manipulation or DR, will lead to reductions in cell growth 

and metabolism resulting in reduced cellular damage.   

In addition to the IIS pathway, there are other important pathways involved in 

cellular metabolism and growth, such as the mTOR (mechanistic target of rapamycin) and 

AMPK (AMP activated protein kinase) pathways.  These protein kinases act as nutrient 

sensing molecules that integrate many upstream signals such as amino acid levels (mTOR), 

and energy status (AMPK) and activate downstream regulators of cellular growth and 

metabolism.  The mTOR pathway integrates upstream signals of nutrient abundance and 

regulates most aspects of metabolism, in particular growth and proliferation.  Genetic 
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manipulations that downregulate the activity of the mTOR pathway extend lifespan in 

yeast, worms, flies, and mice (Johnson et al. 2013).  Additionally, downregulation of the 

mTOR pathway through rapamycin treatment extends lifespan in mouse models and is 

considered the most robust chemical intervention to extend lifespan (Harrison et al. 2009).  

The mTOR pathway is discussed in more detail in a later section. 

The AMPK pathway acts by sensing energy scarcity and catabolism, and 

upregulation in response to low energy sources initiates signaling that promotes longevity.  

AMPK has been shown to downregulate mTOR activity in response to low cellular nutrient 

or energy availability (Alers et al. 2012).  Chemical intervention with metformin, an 

AMPK upregulator, shows lifespan extension in both worms and mice (Anisimov et al. 

2011; Onken & Driscoll 2010). 

 

1.4 Down syndrome 

1.4.1 Down syndrome; a precocious aging disorder 

Down syndrome is the most common genetic form of intellectual disability and is 

caused by the triplication of human chromosome 21 (HSA21).  This triplication event 

occurs in roughly 1 in 700 live births and impacts human development in diverse ways 

across many different organ systems.  In addition to the developmental disruptions, 

individuals with DS experience an accelerated aging phenotype (Nakamura & Tanaka 

1998; Patterson & Cabelof 2012; Zigman & Lott 2007).  Along with the intellectual delay 

and accelerated aging, individuals with DS have an increased incidence of leukemia, 

diabetes, and autoimmune disorders, but a decreased risk of atherosclerosis and many solid 
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tumors that show increased incidence with age.  People with DS begin to show the 

neuroanatomical changes associated with AD (amyloid plagues and neurofibrillary 

tangles) typically by their fourth decade of life.  Many individuals with DS will develop 

AD by their 50s, and it is likely that all individuals with DS will develop AD as they age.  

The amyloid precursor protein (APP) gene is found on HSA21 and is trisomic in 

individuals with DS.  APP encodes a protein that when proteolytically cleaved, produces 

the Aβ peptide, the major component of amyloid plaques in AD. One hypothesis is that 

individuals with DS are at an increased risk of early onset AD not only because of increased 

APP gene dosage, but also because they age prematurely (Chicoine & McGuire 1997; Lott 

& Head 2005; Patterson & Cabelof 2012).  

Additionally, many biomarkers associated with aging, such as oxidative stress, 

accumulation of mutations, and altered DNA repair, are found in individuals with DS. 

Although marked improvements in life expectancy have been achieved, the life expectancy 

of individuals with DS remains significantly reduced, and risk of mortality is higher 

(Coppus et al. 2008).  One reason for the extension of lifespan is that individuals with DS 

are no longer institutionalized and they have better access to improved medical care.  

Hematopoietic and neural stem cells taken from individuals with DS show changes 

characteristic of premature aging such as increased expression of pro-apoptotic genes, and 

inflammatory genes, and a down regulation of DNA repair genes (Cairney et al. 2009). 

Increased accumulation of altered aspartate residues in proteins, a phenomenon associated 

with cellular aging, has also been observed in DS (Galletti et al. 2007). 
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1.4.2 Mouse models of Down syndrome 

Individuals with Down syndrome (DS) 

show a complicated and variable phenotype with 

a range of features, including intellectual 

disability, behavioral, psychiatric, and 

neurological problems.  Given this complexity it 

is imperative that a model of DS be able to 

address this complexity in phenotypes.  Models 

based on lower organisms and in vitro models 

have proven to be inadequate in representing the 

DS disease spectrum found in humans.  Mouse 

models are well characterized higher organisms 

that allow for the study of many different 

phenotypic features of DS in a single organism.  For example, intellectual, behavioral, 

cardiac, hematological, and skeletal disorders can all be expressed and studied in a mouse; 

this is not possible in C. elegans or D. melanogaster.  Additionally, mouse models are well 

characterized and are used to study a wide range of pathologies such as Alzheimer’s disease 

(AD), Parkinson’s disease (PD), and Multiple Sclerosis (MS) amongst many others.  

Mouse models are used in drug development and drug testing.  Mice have a relatively short 

lifespan and reproduce rapidly making them relatively inexpensive to house and maintain. 

Although, mouse models of human disorders will never fully represent the 

spectrum of pathology found in humans, they can serve as a surrogate for understanding 

Figure 3.  Trisomic Ts65Dn mouse (left) 
and Disomic littermate control (right).	
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relevant pathways and gene aberrations in vivo.  Currently, there are a number of mouse 

models of DS that carry a triplicated chromosomal region (mouse or human) that represent 

the triplicated genes in human DS (Vacano et al. 2012).  Mice that are trisomic for various 

regions of HSA21 or the mouse chromosomal region of Mmu16 that are syntenic to HSA21 

have been produced and represent human DS to different degrees (Figure 3) (Vacano et al. 

2012).  Mouse chromosomes 16, 17, and 10 carry all of the genes on HSA21, but they may 

not be completely analogous and may include copy number variations and regulatory 

sequences that affect the phenotype in a way that is not representative of DS (Sturgeon & 

Gardiner 2011). 

 

1.4.3 Ts65Dn mouse model of DS, aging, and early onset Alzheimer’s disease 

The Ts65Dn mouse model of Down syndrome produced by Muriel Davidson and 

colleagues was a breakthrough in DS research (Davisson et al. 1990; Reeves et al. 1995).  

These mice were produced by irradiating the testes of male mice, breeding them, and 

screening the offspring for chromosomal rearrangements of Mmu16, the chromosome most 

homologous to HSA21.  This mouse carries an extra chromosome that arose from 

translocation of part of Mmu16 to the centromeric region of Mmu17.  The Ts65Dn mouse 

is trisomic for 100 genes homologous to the genes found on Hsa21 (Gardiner 2010).  The 

mice are also trisomic for roughly 60 genes on Mmu17 (Duchon et al. 2011; Reinholdt et 

al. 2011).  It is the most widely studied and characterized mouse model of DS because they 

exhibit many features common in people with DS.  These include deficits in spatial learning 
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and memory beginning by 3 months of age.  These deficits are minimized by 8 months of 

age, but begin a rapid decline as the mice age.   

 By 12 months of age, these changes have become readily apparent (Hyde & Crnic 

2001). They exhibit a widespread impairment of cell proliferation in cerebellum, 

hippocampus, skin, and bone marrow (Contestabile, Fila, Bartesaghi, et al. 2009; 

Contestabile, Fila, Cappellini, et al. 2009; Jablonska et al. 2006).   

Consistent with features of individuals with DS, the mice experience changes in 

development and aging such as congenital heart defects, myeloproliferative disorders, a 

decrease in bone density, and an altered incidence of solid tumor cancers (A. D. Williams 

et al. 2008; Blazek et al. 2011; Baek et al. 2009; Kirsammer et al. 2008).  The Ts65Dn mice 

show signs of premature aging reminiscent of those associated with DS. They have an 

Figure 4.  Chromosomal segments of different mouse models of trisomy of HSA21 the cause 
of human Down syndrome (From Vacano 2012). 
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increased risk of mortality and show age related declines in mobility and motor function 

and other features of aging not observed in littermate control (LMC) mice (Sanders et al. 

2009).  People with DS show many molecular and anatomical changes in the brain, most 

notably in hippocampus and cerebellum (Lott 2012).  The mice lose functional basal 

forebrain cholinergic neurons, reminiscent of early onset AD (Granholm et al. 2000).  

Ts65Dn mice are trisomic for the APP gene and although they do not develop plaques and 

tangles, a recent study concluded that there is an age dependent dysregulation of APP 

metabolism in Ts65Dn mice (Choi et al. 2009).  No abnormalities could be found in APP 

gene expression or APP metabolite levels in brains of 4-month old Ts65Dn mice.  

However, at 10 and 12 months of age, Ts65Dn mice showed elevated levels of APP and 

soluble APP metabolites. MRI studies reveal in vivo cholinergic changes possibly relevant 

to early onset AD in the brains of Ts65Dn mice (Chen et al. 2009).  Trisomy of APP has 

been shown to be important for proper early endosome function in these mice (Salehi et al. 

2006).  Studies comparing cerebella from 3 and 10 month old Ts65Dn mice show that 

cerebellar abnormalities increase with age in these mice (Necchi et al. 2008).  These 

investigators also reported that 10-month old Ts65Dn mice develop sporadic tremors and 

stereotypic behavior, which may reflect cerebellar anomalies. Degeneration is even more 

significant at 12 months of age (Lomoio et al. 2009).  Some of the relevant changes 

observed in the Ts65Dn mice as they age are presented in Table 1. 
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1.5 De novo purine biosynthesis pathway 

Purines are essential building blocks for RNA and DNA synthesis, and regulate 

energy metabolism and transfer, and protein synthesis, function, and enzyme activity. 

Purines are also vital components of many essential coenzymes (NAD, NADH, FAD, 

Coenzyme A), and signaling molecules (cAMP, guanine nucleotides). The enzymatic steps 

of de novo purine biosynthesis convert PRPP (5-phospho-α-D-ribosyl-1-pyrophosphate) to 

IMP (inosine monophosphate), and an additional four steps convert IMP to AMP 

(adenosine monophosphate) or GMP (guanosine monophosphate) (Figure 5).  In addition 

to ADSL and ATIC, 30 enzyme defects of purine and pyrimidine metabolism have been 

identified and 17 of these are known to cause human disease (Jurecka 2009). The clinical 

presentation of genetic disorders of purine metabolism includes a wide variety of 

symptoms, such as severe combined immunodeficiency, severe neurological defects, 

developmental delay, and abnormal brain development (Jurecka 2009; Jurecka et al. 2008; 

Table 1.  Features  associated with aging in the Ts65Dn mouse model of DS 

Parameter 3 – 6 months  10 – 15 months References 
Cerebellar Purkinje cell 
degeneration 

No  Yes Lomoio et al., 2009; 
Necchi et al., 2008 

APP expression and metabolism Normal  Abnormal Choi et al., 2009 
Context discrimination Maximal  Deteriorated Hyde and Crnic, 2001 
Thrombocytosis Present  Profound Kirsammer et al., 2008 
Cell proliferation in dentate 
gyrus 

Normal  Decreased Rueda et al., 2005 

Response to physostigmine Yes  No Chang and Gold, 2008 
Hippocampal cholinergic 
degeneration 

No  Yes Seo and Isacson, 2005 

BFCN abnormalities No  Yes Granholm et al., 2000; 
Cooper et al., 2001 
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Sempere et al. 2010).  The consequences of inborn errors in purine metabolism are poorly 

understood, and misdiagnosis most likely results in underestimation of their incidence and 

prevalence (Jurecka 2009).  In addition to the developmental consequences of inborn errors 

of metabolism, disruptions in the production of purines may play an important role in 

understanding aging and disrupted aging leading to disease (Figure 5). Some aspects of 

metabolomics and metabolic regulation can be studied more suitably in a cell based system 

rather than in an animal model.  For example, examination of the cell autonomous effects 

of accumulation of particular metabolites can often be studied in cell culture model initially 

to gain insight into possible effects in an intact animal.  For example, two of the 

intermediates of de novo purine synthesis, aminoimidazole carboxamide ribotide (AICAR, 

or ZMP) and succinyl aminoimidazole carboxamide ribotide (SAICAR) are known 

regulators of metabolism, ZMP as an agonist of AMPK and SAICAR as a regulator of 

pyruvate kinase form M2 (PKM2).  Our lab has previously described isolation of mutant 

CHO-K1 cells that accumulate these intermediates, AdeI, which accumulates SAICAR, 

and AdeF, which accumulates ZMP.  As part of our study of metabolic regulation, we 

carried out a molecular analysis of the AdeI mutant and also the AdeD mutant.  These 

studies involved determination of the mutations in adenylosuccinate lyase (ADSL) in AdeI 

cells and in AdeD cells, deficient in SAICAR synthetase (Vliet et al. 2011; Duval et al. 

2013).  This work will be discussed further in Chapter Three. 
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1.6 Metabolomics of Aging 

1.6.1 Metabolomics 

Metabolomics is the identification and quantification of small molecule (<1500 Da) 

metabolites and low molecular weight intermediates in a biological sample (Wishart 2010).  

The set of metabolites makes up the metabolome and can vary depending on the 

physiological, pathological, and developmental state of the cell, tissue, organ, or organism.  

The metabolome is also intimately connected to change in the genome, transcriptome, and 

proteome as they are often end products or intermediates of all biological reactions (Figure 

Figure 5.  The de novo purine synthesis pathway showing relevant pathologies associated with 
disruption in the pathway and implications in development, and aging. 
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5).  According to the Human Metabolome 

Database (HMDB:  http://www.hmdb.ca), 

there may be 41,993 identifiable 

metabolites, but currently there are roughly 

3,033 identified and detected metabolites.  

There is a very limited database of brain 

metabolome studies, but if we assume that 

the closest surrogate is metabolites found 

in cerebrospinal fluid (CSF), the total 

number of metabolites detected is 440 

(HMDB statistics).  Global metabolomics 

attempts to identify and quantify all 

metabolites in a sample. Targeted metabolomics attempts to examine a particular subset of 

the metabolites in a sample.  Despite the difficulties and limitations of the approach, the 

goal of metabolomics is to understand the changes in the metabolome and use these to 

identify key biomarkers and signaling pathways that are relevant to a pathological state.  

Methods for metabolomic analysis must be quantitative, selective, and sensitive.  High 

sensitivity methods allow for the identification of low abundance metabolites; selectivity 

provides information to distinguish between two chemically similar metabolites; 

quantifiable results are critical for identifying relative changes in metabolite levels.  Many 

metabolomics studies use high performance liquid chromatography (HPLC) as an initial 

Figure 6. Systems biology levels and 
feedbacks.	
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separation method.  There are various methods for metabolite detection after HPLC 

separation, but no method detects all metabolites (Wolfender 2009). 

 

1.6.2 High pressure (performance) liquid chromatography (HPLC) 

High performance liquid chromatography has become one of the most ubiquitous 

analytical techniques for the separation of molecules.  Separation of nucleic acids (DNA, 

RNA), proteins, and different classes of metabolites are all possible by HPLC depending 

on the column and gradient methods employed.  HPLC has become the dominant 

separation method in the study of metabolomics due to its ease of use and flexibility in 

separating many different metabolites.  We employ reverse-phase chromatography, which 

separates molecules based on their hydrophobicity.  The columns are comprised of porous 

silica beads with 18-carbon acyl chains, this is considered the stationary phase.  The mobile 

phases consist of a primary aqueous phase to which a varying degree of solvents (ex: 

methanol, acetonitrile, isopropanol) are added to aid in the elution of hydrophobic 

molecules.  In principle, hydrophilic compounds elute more quickly than hydrophobic 

compounds in reverse-phase chromatography.  One strength of using a liquid 

chromatography based separation method is the ease at which the method can be modified 

in an experiment dependent manner.  Downstream of the separation column different 

detectors are employed, such as mass spectroscopy (MS), nuclear magnetic resonance 

(NMR), and electrochemical detection (ECD).  We have chosen to use electrochemical 

detection, specifically, a coulometric electrode array system (CEAS).  
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1.6.3 A brief history of electrochemical detection 

With advances in separation technologies in column and mobile phase application, 

the limiting factor of HPLC as an analytical technique is the method of detection.  The 

creation of the electrochemical detector helped usher in a new era of selectivity and 

sensitivity.  Electrochemical detectors (ECD) were originally developed as a method to 

detect metabolites that function in vivo as a result of the electron transfer process, so it was 

reasonable to assume that those compounds could be monitored using the electron transfer 

process (McClintock et al. 1985).  There have been many iterations of the ECD through 

the years including conductometric, potentiometric, oscillometric, and voltametric 

detectors.  The most common form of ECD by far are the three voltametric detectors 

(amperometric, coulometric, and polarographic).  I will not offer a discussion of the 

polarographic detector due to its difficulty of use (and rarity) due to poor peak shape and 

limits of detection, as well as the need to dispose of toxic “spent” mercury (Kemula 1952).   

Amperometric ECD became the detection method of choice due to its increased 

sensitivity.  It was used to measure neurotransmitters at the nanogram level in brain tissues 

(Riggin & Kissinger 1977; Kissinger 1989), as well as a method to detect other 

biochemical, environmental, and pharmaceutical metabolites (Jane et al. 1985; Musch et 

al. 1985; Radzik & Lunte 2006).  One of the difficulties with amperometric detectors, in 

particular the early single-channel “low-volume” detectors, is the oxidation efficiency 

limit.  Because the analytes must travel over a thin electrode, the efficiency is determined 
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by the amount of analyte that comes into contact with the electrode (Figure 4).  This 

sensitivity and efficiency of the amperometric detector is inversely correlated with 

electrode chamber volume and flow rate.  Advances have been made to amperometric 

sensitivity and efficiency.  However, the development of the flow-through coulometric 

array by Wayne Matson revolutionized electrochemical detection (Matson et al. 1984). 

The Flow-through Coulometric Electrode Array System (CEAS) was developed by 

Wayne Matson and features a graphite flow-through electrode that completely oxidizes an 

analyte as it passes through (Matson et al. 1984).  Using an array of flow-through detectors 

co-eluting compounds can be resolved based on their redox potentials.  Additionally, the 

flow-through design allows for >99% efficiency of detection due to its 3-dimensional 

design.  Regardless of the direction a compound travels through the detector, it will 

encounter the working electrode surface (Figure 4).  Another benefit of the flow-through 

CEAS is that response of the detector can be related to the quantity of the analyte 

undergoing reduction or oxidation, and Faraday’s law can be applied (Equation 1) (Kristal, 

Shurubor, Kaddurah-Daouk & Matson 2007a).   

Q = n ⋅ F ⋅ N 
 

Q = Charge transferred (Coulombs); n = number of electrons transferred (equivalents/mole); F = 
Faraday’s constant (Coulombs/equivalent); N = moles of reactant (mole) 
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The peak area is measured in charge (current over time), therefore, using Faraday’s 

equation, if the amount injected is known the peak area can be predicted.  Conversely, if 

the peak area is known, the amount added can be calculated.  Taken together, this 

Figure 7.  Illustration of a 4-channel flow-trhough coulometric electrode array system (CEAS) 
Top, and a typical amperometric detector.  CEAS provides 100% oxidation of samples as they 

pass through the electrode, amperometric detectors have a lower efficiency due to the flow-over 
set up. 
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demonstrates that the flow-through CEAS detection system offers the most sensitivity, 

selectivity, and is extremely quantitative when compared to other electrochemical 

detectors.  We have chosen HPLC coupled CEAS as our metabolomics platform due to the 

minimal signal to noise ratio, high sensitivity, and quantitative nature (Figure 5).  It has 

Figure 8.  Diagram of HPLC and flow-through coulometric electrode array system (CEAS).  
Notice that each cell contains four detector channels allowing for progressively higher potentials 

to be used, essentially giving the capability of 12 independent electrochemical detectors. 
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also been used as a platform to study aging and caloric restriction (Kristal, Shurubor, 

Kaddurah-Daouk & Matson 2007b). 

 

1.6.4 Disadvantages of electrochemical detection as a metabolomics platform 

There are distinct disadvantages when comparing ECD to MS and NMR when used 

as metabolomics detection platforms.  The first, and arguably the most significant is that 

ECD does not give any direct structural information about the individual metabolite.  This 

requires additional work to identify the detected metabolites.  Other groups are attempting 

to address this by coupling MS to ECD resulting in the combination of benefits from each 

platform (Bird et al. 2012).  This deficiency is easily overcome by the creation of a 

“database” of known metabolites that can be used to help identify metabolites of interest.  

This is an intensive procedure requiring standards be run on the method of choice and the  

 “spiking”, which is the addition of a known concentration of standard to a tissue sample, 

to correctly identify peaks.   

The second disadvantage is that ECD is limited in its sample throughput.  For 

example, our current system has a run time of roughly 3 hours per sample.  This presents a  

few problems regarding throughput, obviously the time to analyze a high number of 

samples rapidly, but also the possible degradation of sample metabolites over time in the 

samples waiting to be analyzed.  Unfortunately, we cannot the remedy the time to analyze 

individual samples.  The goal is to separate and detect with the best separation possible in 

a reproducible manner.  Therefore, modifying the gradient profile will diminish this in 

favor of rapid throughput.  This was adapted to be an exploratory method, therefore, we 
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are not concerned with how many samples can be processed in a short amount of time.  In 

the future, we could modify the method to focus on given metabolites of interest.  The other 

issue regarding the prolonged nature of our method and sample degradation is the volatile 

nature of some metabolites.  If we allow samples to wait to be analyzed, they may degrade 

giving us a false concentration.  We determined the length of time a sample can be viably 

stored at 4°C, and extract only the number of samples that will allow the final sample to sit 

for a safe period of time.   

Another disadvantage is the chromatographic drift occuring over time that 

complicates the analysis.  In particular, this can disrupt the pattern recognition we perform 

to explore global metabolite changes in the mice.  However, we take great care to make 

large batches of mobile phases and mix these so that there is a homogenous quality of 

mobile phases throughout the analysis.  We also use algorithms that mathematically stretch 

or compress the chromatograms. 

The final disadvantage may also be an advantage depending on your perspective.  

The ECD platform can only detect reduction-oxidation active compounds.  The method is 

based on electrochemical exchange of electrons, therefore if a metabolite is not redox 

active it will not be detected.  We can perform a derivatization of molecules before analysis 

if we are interested in redox inactive compounds.  We do not do any derivatization of any 

metabolites in the current study.  It has been hypothesized that there may be over 3500 

detected metabolites in the brain.  Many of these compounds are redox active as many 

signaling molecules and reactions are part of oxidation/reduction reactions.  By using ECD 

and detecting redox active compounds, we may increase the probability of finding a change 
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in a metabolite that is critical in signaling or brain function by reducing the detection 

burden of trying to identify a large number of metabolites. 

 

1.6.5 Advantages of electrochemical detection as a metabolomics platform 

There are also distinct advantages of the ECD platform that make it ideal for the 

analysis of brain metabolites.  The CoulArray ECD is a highly sensitive method of 

detection with a sub-nano level capability of detection.  Some labs have reported sub-pico 

level detection, however, as with most platforms, these are limited by signal to noise issues.  

Other platforms, specifically MS, have achieved progressively and rapidly lower detection 

limits that easily rival those of ECD.  Currently, our limit of detection is between 1-10 ng 

of metabolite.   

As discussed briefly above (in disadvantages), the ECD platform gives great 

specificity and selectivity for redox active metabolites.  Most metabolites of many major 

biochemical pathways are redox active.  It does not detect inert metabolites and allows us 

to focus on the reactive metabolites with a greater signal to noise with high quantitative 

precision.  The ECD coupled HPLC method allows us to separate molecules based on 

HPLC method, in our case by hydrophobicity (reversed-phase HPLC) as well as by 

electrochemical potential.  Each ECD array contains four electrochemical cells (we 

currently employ 3 cells giving us the power of 12 detectors) and each can be set at 

sequentially higher voltage potentials.  Redox active compounds are differentially active, 

that is they have a distinct “oxidation” potential. We set each of our detectors at a 

progressively higher voltage and this allows us to detect co-eluting metabolites based on 
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electrochemical potential.  The probability of metabolites having a similar retention time 

and electrochemical potential is low.  Therefore, as a tool for the discovery of metabolomic 

changes in brain tissue and as an exploratory method to analyze these changes in a highly 

quantitative manner, electrochemical detection is more than adequate. 

 

1.6.6 High Energy Focused Microwave 

To understand quantitative metabolic changes in the brain, it is imperative to 

harvest brains in such a way that the in vivo state is preserved.  An inherent difficulty in 

studying metabolomics, particularly in the aged brain, is the acquisition of quality and 

pathologically relevant tissue.  Many different methods of euthanasia have been proposed 

to be proficient at extracting tissue in a manner that preserves the in vivo status of 

metabolites.  Typically, these methods involve various protocols of euthanasia followed by 

decapitation and flash freezing the brain in liquid nitrogen to halt metabolic activity.  The 

limiting factor is the time between euthanasia and the submersion of the tissue in liquid 

nitrogen.  It has been shown that the method of euthanasia can influence the brain 

metabolome (Hunsucker et al. 2008).  The use of anesthetics before euthanasia is common 

and is used to prevent pain or distress in the animals.  However, the introduction of 

anesthetics can have important effects on the animal’s physiology causing alterations to 

the metabolomer.  Therefore, finding a method that will allow for rapid and humane 

euthanization of the mice, does not require the use of anesthetics, and preserves the 

metabolome of the brain tissue in a way that represents a live animal is important. 
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We employ high-energy focused microwave irradiation (HEFM) applied directly 

to the brain.  This results in immediate death and arrests brain metabolic and enzymatic 

processes essentially instantaneously.  This method does not use anesthetics or sedatives 

and requires very little handling of the mice.  Levels of lipids, neurotransmitters, peptides, 

and neurometabolites as well as post-translational modifications including phosphorylation 

state of proteins can all be preserved and detected.  The conservation of the metabolome 

and the protein state more accurately reflect the in vivo situation after HEFM irradiation 

when compared to other methods.  This instantaneous arrest of metabolic and enzymatic 

activity ensures that the metabolite state and the protein phosphorylation state are 

preserved.  Both are crucial since we will be studying the mTOR pathway (a multi-kinase 

pathway) and preservation of the state of protein phosphorylation is crucial as well as the 

brain metabolome. 

Previously, our lab has used this method to assess the significant changes in the 

brain proteome of mice euthanized by HEFM and decapitation; we showed preservation of 

the in vivo state when HEFM was used in lieu of cervical dislocation (Hunsucker et al. 

2008).  Protein phosphorylation was markedly different in HEFM samples, versus cervical 

dislocation samples.  Using difference gel electrophoresis (DIGE) to analyze the cerebellar 

and hippocampal proteome of the Ts65Dn mice compared to LMC at 6 and 12 months, we 

showed that there are more significant changes to the proteome in response to the age of 

the mice compared to changes we see due to trisomy (Vacano et. al., in preparation).  Our 

preliminary results show that there are significant changes to the proteome and strongly 

suggest that there will be changes in the brain metabolome associated with aging. 
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There is a concern that HEFM and the heat required to halt the enzymatic activity 

may be altering the metabolome through derivation of the molecules.  This is a valid 

concern and one that we do not dispute.  However, other detection methods (fluorescence 

detection) require that samples be derivatized with a fluorescent tag and this does not 

compromise the validity of the method.  Therefore, we do not feel this is an issue with our 

instrument.   

To determine if we were creating de novo metabolites or derivitized molecules from 

HEFM euthanization we compared metabolic profiles of mice euthanized by HEFM and 

cervical dislocation (CD) followed by decapitation.  We found that the profiles from mice 

euthanized by HEFM differed from those euthanized by CD and decapitation (Figure 8).  

These chromatographic profiles show that concentration levels of specific metabolites 

detected consistently change between euthanization method.  However, we do not see the 

creation of any new peaks or shifting of peaks found in the CD mice when compared to 

profiles of the HEFM mice.  This is strong evidence that HEFM euthanization does not 

derivitize any metabolites, at least not in a significant way.  Obviously, to be certain that 

the chemical nature of the metabolites was not being altered a comparison through a 

method allowing structural analysis would need to be done.  This also provides evidence 

that HEFM is preserving the metabolites in a way that represents the living state. 
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Figure 9.  HPLC-EC chromatogram of 2 mice comparing different euthanization methods.  
The top shows the profile of a mouse euthanized by high energy focused microwave, the 

bottom a mouse euthanized by cervical dislocation and decapitation. 
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The following chapters will describe metabolomics studies in a mammalian model 

of DS, aging, and Alzheimer’s disease using both targeted and global metabolomic 

profiling to elucidate changes associated with DS, and aging.  We also aimed to determine 

if prolonged treatment with rapamycin can ameliorate the changes we see in the mice due 

to a triplicated chromosome and aging.  Also discussed is the study of the DNPS in a CHO 

model system.  We analyze and characterize two genetic mutations in the pathway 

associated with phosphoribosylaminoimidazole carboxylase/phosphoribosyl amino- 

imidazole succinocarboxamide synthetase (PAICS). 

Both the mammalian and cellular model organisms can provide deep insight into 

metabolic pathways and the molecules that regulate the aging process as well as different 

disorders and pathologies.  We employ the HPLC coupled electrochemical detector 

extensively in both the study of the metabolomics changes in the Ts65Dn mouse model as 

well as in the study of the DNPS.  Much of the system validation was done using the CHO 

cell lines and led to several successful lines of study.  For example, the machine was used 

to create a sensitive kinetic assay to measure the bi-functional enzyme adenylosuccinate 

lyase (ADSL) and the conversion of both substrates (SAICAR and SAMP) simultaneously 

(Ray 2012).  This work, in addition to the previous work in our lab on the ADSL protein, 

led to collaborations with the Max Planck Institute for Evolutionary Anthropology.  This 

collaboration has found interesting results using an ancestral version of the ADSL protein.   

Taken together, the following work attempts to integrate metabolomics studies to 

understand metabolism in both a mammalian model and a cellular model.         
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Chapter Two 

Brain metabolomics of long-term rapamycin treatment in the Ts65Dn mouse model of 

Down syndrome, aging, and early onset Alzheimer’s disease  

 

 

Abstract 

Aging is often associated with impaired cognition and a progressive loss of organ 

function over time accompanied by an increased susceptibility for many disorders, 

including Alzheimer’s disease (AD), Parkinson’s disease (PD), heart disease, osteoporosis, 

type II diabetes, and many forms of cancer. Interventions that can increase the healthspan 

of an individual are of the utmost importance. With a rapidly aging population, the negative 

impacts of aging and age-related disorders is a major cause of increased human suffering 

both for affected individuals and for families and caregivers. Metabolic changes are also 

apparent in normal aging, but may increase in magnitude or nature with accompanying 

disease states or with accelerated aging. Thus, studying aging in a disease state, or in a 

disorder characterized by accelerated aging, will facilitate identification of these changes. 

Down syndrome (DS) is an intellectual disability characterized by premature aging. We 

hypothesize that trisomy of chromosome 21 (HSA21) causes disruption of the metabolome 

leading to an accelerated aging phenotype. In the Ts65Dn mouse model of DS, a premature 
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aging phenotype is also observed. We used the TS65Dn mouse model to study the 

metabolic changes associated with trisomy, and how these change with age. An initiative 

by the National Institute on Aging (NIA) Interventions Testing Program testing the efficacy 

of rapamycin treatment demonstrated that mice treated with rapamycin showed a 

significant increase in lifespan and healthspan. Therefore, we hypothesize that treatment 

of the Ts65Dn mouse model of premature aging and DS with rapamycin will ameliorate 

the accelerated aging phenotype in the Ts65Dn mouse model of DS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 38	

1.0 Introduction 

Aging is often associated with impaired cognition and a progressive loss of organ 

function over time. Though subtle in normal aging, this shift from fully-functional to 

failing-to-function is associated with an increased susceptibility for many disorders, 

including Alzheimer’s disease (AD), Parkinson’s disease (PD), heart disease, osteoporosis, 

type II diabetes, and many forms of cancer. Many theories of aging such as telomere 

shortening, oxidative stress, mitochondrial dysfunction, and inflammation have been 

investigated using a reductionist approach. All are likely contributors to the progressive 

decline in function associated with aging, and it is clear that they are not mutually 

exclusive. Hence, aging is not only complex, but is the single largest risk factor for many 

human diseases. Understanding the basic mechanisms involved in normal aging as well as 

aging associated with or accompanying disease states is critical for the design of novel and 

effective treatment strategies that not only prolong lifespan, but also increase healthspan.  

Caloric restriction (CR) and dietary restriction (DR) without starvation have been 

shown to significantly extend healthspan by decreasing the onset of age-associated 

pathologies including cancer, cardiovascular disease, diabetes, and cognitive decline 

(Weindruch et al. 1986; Masoro 2005; Kennedy et al. 2007). Interventions that can increase 

the healthspan of an individual are of the utmost importance. With a rapidly aging 

population, the negative impacts of aging and age-related disorders is a major cause of 

increased human suffering both for affected individuals and for their families and 

caregivers.  In addition, the costs associated with care and medicines for the elderly have 

increased substantially. Reducing the susceptibility to age-related disease would 
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significantly reduce human suffering and the cost burden on individuals as well as on the 

healthcare system. An initiative by the National Institute on Aging (NIA) Interventions 

Testing Program testing the efficacy of rapamycin treatment demonstrated that mice treated 

with rapamycin showed a significant increase in lifespan, even when treatment was 

administered late in life (Harrison et al. 2009; Miller et al. 2011). Later studies have now 

shown that treatment with rapamycin ameliorates many age-associated pathologies 

including heart disease, AD, PD, dysregulated immune function, and diabetes (reviewed in 

(Johnson et al. 2013)). Rapamycin is also being investigated as a treatment for a variety of 

cancers more common in older individuals. Most of these conditions are accompanied by 

metabolic changes, and how rapamycin brings about these changes is under intense study 

but not yet completely understood. 

 

1.1 DS and Ts65Dn mice as models of premature aging 

DS is the most common genetic cause of intellectual disability (1/700 live births) 

and includes an accelerated aging phenotype (Nakamura & Tanaka 1998; Patterson & 

Cabelof 2012; Zigman & Lott 2007). In addition to intellectual delay and accelerated aging, 

individuals with DS have an increased incidence of leukemia, and diabetes but a decreased 

risk of atherosclerosis and many solid tumors that show increased incidence with age (Yang 

and Reeves 2011, Yang 2016). These last two features strongly suggest that there are 

metabolic differences in people with DS. People with DS begin to show the 

neuroanatomical changes associated with AD (amyloid plagues and neurofibrillary 

tangles) typically by age 40. Many individuals with DS will develop AD by their 50s, and 
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it is likely that all individuals with DS will develop AD as they get older. The amyloid 

precursor protein (APP) gene is found on HSA21 and is trisomic in individuals with DS.  

APP encodes a protein that when proteolytically cleaved, produces the Aβ peptide, the 

major component of amyloid plaques in AD. One hypothesis is that individuals with DS 

are at an increased risk of early onset AD not only because of increased APP gene dosage, 

but because they age prematurely (Chicoine & McGuire 1997; Lott & Head 2005; Patterson 

& Cabelof 2012).  

Additionally, many biomarkers associated with aging, such as oxidative stress, 

accumulation of mutations, and altered DNA repair, are found in individuals with DS. 

Although marked improvements in life expectancy have been achieved, the life expectancy 

of individuals with DS remains significantly reduced, and risk of mortality is higher 

(Coppus et al. 2008). Hematopoietic and neural stem cells taken from individuals with DS 

show changes characteristic of premature aging such as increased expression of pro-

apoptotic genes, and inflammatory genes, and a down regulation of DNA repair genes 

(Cairney et al. 2009). Increased accumulation of altered aspartate residues in proteins, a 

phenomenon associated with cellular aging, has also been observed in DS (Galletti et al. 

2007). 

 The Ts65Dn mouse model of Down syndrome is trisomic for most of the region of 

mouse chromosome 16 (Mmu16) homologous to HSA21 (Davisson et al. 1990; Reeves et 

al. 1995). Ts65Dn mice show signs of premature aging reminiscent of those associated 

with DS. They have an increased risk of mortality and show age related declines in mobility 

and motor function and other features of aging not observed in littermate control (LMC) 
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mice (Sanders et al. 2009). They exhibit a widespread impairment of cell proliferation in 

cerebellum, hippocampus, skin, and bone marrow (Contestabile, Fila, Bartesaghi, et al. 

2009; Contestabile, Fila, Cappellini, et al. 2009; Jablonska et al. 2006).  They are also 

resistant to certain solid tumors as they age and may promote survival in models mouse 

models of cancer (Satgé & Vekemans 2011; Yang & Reeves 2011). 

 Ts65Dn mice have spatial learning and memory deficits that involve the 

hippocampus and have structural alterations in the hippocampus that are similar to those 

seen in DS, and that worsen with age (Holtzman et al. 1996; Rueda et al. 2005). Ts65Dn 

mice show learning and memory deficits at 3 months of age compared to LMC mice.  

 These are minimized by 8 months, and then rapidly worsen, becoming readily 

apparent by 12 months of age (Hyde & Crnic 2001). Along with loss of learning and 

memory, the mice lose functional basal forebrain cholinergic neurons, reminiscent of early 

onset AD (Granholm et al. 2000). Ts65Dn mice are trisomic for the APP gene and although 

they do not develop plaques and tangles, a recent study concluded that there is an age 

dependent dysregulation of APP metabolism in Ts65Dn mice (Choi et al. 2009). No 

abnormalities could be found in APP gene expression or APP metabolite levels in brains 

of 4-month old Ts65Dn mice. However, at 10 and 12 months of age, Ts65Dn mice showed 

elevated levels of APP and soluble APP metabolites. MRI studies reveal in vivo cholinergic 

changes possibly relevant to early onset AD in the brains of Ts65Dn mice (Yuanxin Chen 

et al. 2009). Trisomy of APP has been shown to be important for proper early endosome 

function in these mice (Salehi et al. 2006). Studies comparing cerebella from 3 and 10 

month old Ts65Dn mice show that cerebellar abnormalities increase with age in these mice 
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(Necchi et al. 2008). These investigators also reported that 10-month old Ts65Dn mice 

develop sporadic tremors and stereotypic behavior, which may reflect cerebellar 

anomalies. Degeneration is even more significant at 12 months of age (Lomoio et al. 2009). 

Some of the relevant changes observed in the Ts65Dn mice as they age are presented in 

Table 1.  

 

1.2 mTOR and aging 

Rapamycin is a macrocyclic lactone metabolite produced by the soil bacterium 

Streptomyces hygroscopicus on the island of Rapa Nui. Rapamycin forms an intracellular 

complex with its receptor FK506-binding protein, FKBP12, which binds to the c-terminus 

region of the mechanistic target of rapamycin (mTOR), effectively inhibiting mTOR 

enzyme activity. Mechanistic target of rapamycin (mTOR) is a protein kinase, which acts 

as a central regulator of eukaryotic growth and division in response to nutrient and growth 

factor signals. It is the primary component of two heteromeric complexes, mTORC1 and 

mTORC2. mTORC2 is rapamycin insensitive, and includes mTOR, rapamycin-insensitive 

companion of mTOR (Rictor), and mLST8. mTORC2 has been shown to be important for 

actin cytoskeleton regulation (Loewith et al. 2002; Jacinto et al. 2004). mTORC1 is a 

complex of three proteins: mTOR, regulatory associated protein of mTOR (Raptor) and 

mLST8. mTORC1 is rapamycin sensitive, and treatment with rapamycin causes down 

regulation of mTOR activities in cell growth and metabolism. Intra and extra-cellular 

signals are integrated through mTOR. Metabolic signaling integrated through mTOR is 

initiated by four major inputs; growth factors, nutrients, energy, and hypoxia. The initial 
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downstream effectors of mTOR are p70 ribosomal protein S6 kinase (S6K) and the 

eukaryotic translation initiation factor 4E-binding protein stimulating translation and 

recruitment of translational machinery (4EBP; (Fang et al. 2001).  These initiate a host of 

downstream effects that include mitochondrial metabolism, lipogenesis, RNA 

transcription, protein translation, and angiogenesis. 

Regulation of cell growth and division in response to cellular energy and nutrient 

availability through TOR has been proposed as a mechanism for increased longevity and 

extension of healthspan in invertebrate models (Kapahi et al. 2004; Kaeberlein et al. 2005; 

Hansen et al. 2007). The mTOR pathway may also hold clues to ameliorating the effects 

of aging and age-related diseases. Although inhibition of mTOR produces some negative 

effects, such as glucose intolerance and insulin resistance in mice, the benefits in models 

of aberrant aging are impressive. These include a delayed progression of disease in models 

of AD, protection against dopaminergic neuron loss in models of PD, and rescue of 

learning and memory in aged mice (Spilman et al. 2010; Majumder et al. 2011; Halloran 

et al. 2012; Majumder et al. 2012). Halloran et al. describes the measurement of brain 

metabolites using HPLC coupled Coulochem II detection, the precursor to the more robust 

CoulArray detection platform, which we employed. Rapamycin treatment in a mouse 

model of aortic constriction shows reduced hypertrophy (Shioi 2003), and reduces 

cardiomyopathy in a lamin A/C progeria model (Ramos et al. 2012). Additionally, mice 

fed rapamycin late in life showed improved cardiac contractile function, reduced 

inflammation, and increased anti-hypertrophic signaling versus controls (Flynn et al. 

2013). 
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1.3 Ts65Dn model system 

 We propose an unbiased, global metabolomic analysis of electrochemically active 

compounds in the cortex and cerebellum of the Ts65Dn mouse and LMC. While genome, 

transcriptome and proteome analyses are valuable, the metabolome may be more closely 

associated with phenotype. Metabolomic analysis, therefore, may provide the best 

characterization of age-related decline. Additionally, metabolomic analysis should 

facilitate characterization of interactions between complex genetic and proteomic factors 

and how changes in these interactions may lead to loss of homeostasis and disease. There 

may be conserved molecular targets, pathways, and interactions important to maintaining 

stability in homeostasis. Identification of these critical targets may lead to new treatment 

options. 

 We expect to see metabolic changes in both Ts65Dn and LMC mice as they age, 

and further expect metabolic differences due to Ts65Dn trisomy.  However, the Ts65Dn is 

not an inbred strain of mice, so these changes may not be limited to only our study and 

possibly represent the human population more robustly.  Changes in LMC mice would be 

associated with normal aging, while changes in Ts65Dn mice would include changes due 

to trisomy and premature aging, such as increased neurodegeneration, as well.  

 For the observed changes to be relevant to aging or to trisomy, treatments that 

ameliorate aging should be helpful to both the Ts65Dn and LMC, while treatments that 

ameliorate the effects of trisomy will be helpful to Ts65Dn mice.  These changes could 

extend lifespan or health span and possibly prevent or reverse the deleterious aspects of the 
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genotype of the Ts65Dn mice. We hypothesize that supplementation with rapamycin will 

alter the metabolome of Ts65Dn and LMC mice, and ameliorate the consequences of aging 

in both.  Previous studies with rapamycin on other mouse models, including models of 

aging, heart disease, PD, and neurodegeneration (including AD) have shown encouraging 

results (Tain et al. 2009; Spilman et al. 2010; Majumder et al. 2011; Wilkinson et al. 2012; 

Halloran et al. 2012). 

 

1.4 Method of euthanasia 

  To understand quantitative metabolic changes in the brain, it is imperative to 

harvest brains in such a way that the in vivo state is preserved.  We will employ high-

energy focused microwave irradiation (HEFM) applied directly to the brain. This results in 

immediate death and arrests brain metabolic and enzymatic processes essentially 

instantaneously. Levels of lipids, neurotransmitters, peptides, and neurometabolites as well 

as post-translational modification including phosphorylation state of proteins more 

accurately reflect the in vivo situation after HEFM irradiation versus other methods.  This 

instantaneous arrest of metabolic and enzymatic activity ensures that the metabolite state 

and the protein phosphorylation state are preserved. Both are crucial since we will be 

studying the mTOR pathway (essentially a multi-kinase pathway) and preservation of the 

state of protein phosphorylation is crucial.  Previously, our lab has used this method to 

assess the significant changes in the brain proteome of mice euthanized by HEFM and 

decapitation; we showed preservation of the in vivo state when HEFM was used in lieu of 

cervical dislocation (Hunsucker et al. 2008). Protein phosphorylation was markedly 
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different in HEFM samples, versus cervical dislocation samples. Using difference gel 

electrophoresis (DIGE) to analyze the cerebellar and hippocampal proteome of the Ts65Dn 

mice compared to LMC at 6 and 12 months, we showed that there are more significant 

changes to the proteome in response to the age of the mice compared to changes we see 

due to trisomy (in preparation). Our unpublished results (Vacano et. al., in preparation) 

show that there are significant changes to the proteome and strongly suggest that there will 

be changes in the brain metabolome associated with aging.  

 

1.5 Choice of metabolomic method 

 Metabolomics is the identification and quantification of all small molecule (<1500 

Da) metabolites in a biological sample (Wishart 2010).  Current estimates are that there 

may be about 3000 known endogenous metabolites in mammals, and likely more that have 

not yet been detected. Global metabolomics attempts to identify and quantify all 

metabolites in a sample.  Targeted metabolomics attempts to examine a particular subset 

of the metabolites in a sample.  Methods for metabolomic analysis must be quantitative, 

selective, and sensitive. High sensitivity methods allow for the identification of low 

abundance metabolites; selectivity provides information to distinguish between two 

chemically similar metabolites; quantifiable results are critical for identifying relative 

changes in metabolite levels. Many metabolomics studies use high performance liquid 

chromatography (HPLC) as an initial separation method. There are various methods for 

metabolite detection after HPLC separation, but no method detects all metabolites 

(Wolfender 2009). 
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 We analyzed the metabolic changes accompanying aging using HPLC coupled with 

electrochemical detection (HPLC-EC) using flow-through coulometric electrochemical 

cells. This method allows for the quantitative detection of several hundred metabolites in 

about two hours and has been used to study aging and DR in rodents (Shi et al. 2002) and 

neurodegenerative disorders in rodents and in humans (Stack et al. 2008; Rozen et al. 

2005). HPLC-EC is extremely sensitive, (some compounds can be detected in femtomole 

amounts), quantitative, and has a dynamic range of ~6 orders of magnitude. This allows 

for the detection of a wide range of metabolites including lipids, neurotransmitters, some 

amino acids, intermediates in glutathione synthesis and purine and pyrimidine synthesis, 

and many other compounds relevant to critical metabolic pathways. For a method to be 

clinically useful it must be high-throughput and relatively robust.  Sample collection should 

be minimally intrusive and rapid for accurate analysis.  We propose analysis of both brain 

and blood samples, but for clinical applications, analysis of blood biomarkers would be the 

most reasonable choice.  HPLC-EC has been employed in the search for blood biomarkers 

for PD; we would like to establish a similar approach (Bogdanov et al. 2008).  Sample 

preparation for analysis by HPLC-EC is quite simple, involving metabolite extraction with 

cold acetonitrile acidified with 0.4% acetic acid, which has been found to yield highly 

reproducible results with blood, serum, plasma, brain, and mitochondria (Kristal et al., 

2007).  

 An obvious strength of the method is the ability for a 2-dimensional separation 

based on retention time (HPLC) and electrochemical potential.  The detector consists of 3 

electrochemical cells with 4 coulometric channels each for a total of 12 autonomous 
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electrochemical detectors. Each can be set to a progressively higher electrochemical 

potential and will allow for separation and identification of metabolites with similar 

retention times based on their electrochemical properties (Figure 1).  These cells have an 

upper limit of about 900 mV but we have the capability to detect molecules with oxidation 

potentials of 1700 mV with a boron-doped diamond amperometric cell.  Figure 1 also 

demonstrates our ability to detect several hundred peaks using our current method. 

Unfortunately, the method of detection provides little structural information. However, this 

can be remedied by the use of known standards. Dr. Wayne Matson, the inventor of the 

flow-through coulometric cell, has kindly provided us with the set of standards they use in 

their brain metabolomics research.  

 

2.0 Methods 

2.1 Mouse Handling and Care 

The care of the animals and the procedures for their use follow the many 

recommendations for the use of mice in gerontological research (Miller & Nadon 2000).  

All experiments were approved by the University of Denver Animal Care and Use 

Committee.  We treated mice with rapamycin, an immunosuppressant previously shown to 

increase longevity and health in aged mice (Harrison et al. 2009; Miller et al. 2011). We 

chose three age groups (6, 12, and 18-month), see below for reasoning.  Each received a 

diet containing microencapsulated rapamycin, or control diet without rapamycin starting 

at 4 months of age.  For each age group we will have two cohorts, trisomic and disomic 

littermate controls (LMC).  
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• 6 – month 

The 6-month time point was chosen as this is the age when the mice have reached 

their cognitive peaks. 

• 12 – month 

By 12 months the Ts65Dn mice begin to experience delays in learning, and memory 

behavior. 

• 18 – month 

After 18-months the mice have deteriorated significantly and have severe declines 

in learning, and memory behavior as well as survival 

 

In the literature, the number of Ts65Dn mice used in similar analysis to those we 

chose are in the range of 10-15 mice, achieving statistical significance of p<0.05 (Reeves 

et al. 1995; Kirsammer et al. 2008; Lockrow et al. 2009).  Given the variability of the assays 

we are fully aware that there will be some attrition, particularly in the 18-month group. 

Trisomic males are sterile, therefore, we used males for analysis.  Trisomic females were 

required for breeding to maintain the colony and were not used in the analysis.  We 

expected 15 trisomic and 15 LMC per testing group to be sufficient to detect differences 

similar to those seen in the literature. Therefore, we determined we would need 180 male 

mice, 90 trisomic and 90 LMC. This was calculated as follows: 3 age groups x 15 mice = 

45 trisomic mice and the same number of LMC (45 mice x 2 = 90 mice). We treated both 

the trisomic and LMC with either rapamycin containing diet or control diet (90 mice x 2 = 

180 mice). Roughly 30% of each litter is trisomic and half are expected to be male. This 

required the production of 600 offspring to obtain 90 trisomic Ts65Dn males (600 x 0.5 x 
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0.3 = 90).  The average litter size is 5 mice and the typical Ts65Dn female will provide, on 

average, 4 litters. Therefore, we expected to need 35 trisomic Ts65Dn females and 35 

B6EiC3Sn C57BL/6JEi x C3H/HeSnJ F1 males.  All our breeder mice were purchased 

from Jackson Labs. Over a three year period, we used roughly 638 mice, 600 experimental, 

and 38 male breeders purchased from Jackson Labs.      

The University of Denver Natural Sciences and Mathematics Animal Facility is 

AAALAC accredited and is supervised by the University of Denver Institutional Animal 

Care and Use Committee (IACUC). The Facility is under the supervision of the University 

of Denver veterinarian, Dr. Ron Banks, who is available at all times. A full-time animal 

care technician performs routine cage cleaning, feeding, and watering, and daily health and 

welfare checks. If animals exhibit distress, injury, or infection the technician and 

veterinarian will recommend proper treatments (antibiotics, analgesics) to remedy the 

situation. If the welfare of the animal is at risk the veterinarian may intervene and terminate 

the study. We do not use any surgical procedures.  

Paired matings (one male and one female) were used to breed the mice. The male 

and female were continually housed together in order to generate multiple litters. Bedding 

squares were placed in cages with all breeding and pregnant mice so that females can nest 

throughout pregnancy and until weaning. Mice were weaned when they are able to reach 

food and water sources and feed themselves (typically 19 to 21 days of age). If one or more 

mice in a litter appeared smaller than normal at weaning (as determined by the researcher 

performing the weaning) a few pieces of moistened food were placed in the bottom of the 

new cage to ensure access to food and water during the first few days after weaning. 
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Weaned mice were housed in same-sex littermate groups. If weaned mice appeared to be 

fighting or barbering excessively, they were separated and individually housed. Any mouse 

with minor skin abrasions or cuts were treated with a small amount of topical antibiotic 

and were carefully monitored to insure that the cuts heal. Mice housed singly were given 

bedding squares to provide environmental enrichment in the absence of littermates. 

A maximum of five adult mice or a single breeding pair with pre-weaned young are 

maintained per polycarbonate cage (50 square inche floor area). Cages are washed once a 

week and filled with an appropriate amount of sterilized white pine shavings. Water bottles 

were replaced with clean bottles weekly and filled with acidified (pH 2.8-3.2) water. Cage 

lids are covered with a snap-on non-woven polyester flat filter. Food hoppers, which are 

attached to the cage lids, were filled weekly. On a daily basis (Monday through Sunday), 

animal care technicians check to determine the mice have sufficient food and water, 

bedding is not excessively wet or dirty, and mice appear in good condition. All mice are 

transferred into clean housing weekly. 

 

a. Blood sample collection. 

Blood was collected by maxillary venipuncture from unanesthetized mice. 

Anesthetics are not administered because 1) experienced researchers can perform 

this technique rapidly and effectively; 2) the risk associated with administration of 

anesthesia exceeds the temporary discomfort associated with the withdrawal of up 

to 400 µl of blood using a microhematocrit tube; and 3) published evidence suggests 

that anesthetics can alter blood chemistry. This will likely affect our metabolomic 
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analyses, which is extremely sensitive. All animals that were bled were checked 

during the next week for signs of infection or damage caused by the sampling  

procedure.   

b. Ear notching 

A small 1-2 mm punch was used to produce a small hole near or notch at the edge 

of the mouse’s ear.  A small notch was taken a notch taken from the left ear for 

genotyping, which is necessary to identify trisomic mice from LMC. Notches (1-3) 

will be taken to identify each mouse in a cage. We have found this method of 

identification to be less problematic than ear tags, which can be torn out. 

c. The Ts65Dn mouse model used for these experiments were maintained by crossing 

Ts65Dn females to C57BL/6JEi x C3H/HeSnJ (B6EiC3Sn) F1 males. The 

recessive retinal degeneration 1 mutation (Pdebrd1) is segregating in this model. 

The mutation causes retinal degeneration, which can be evaluated using an 

ophthalmoscope. The procedure involves restraining the mouse by hand (holding 

the scruff of the neck), and applying a drop of 1% atropine sulfate (which dilates 

the iris) to one eye. The mouse is then returned to its cage for five minutes, and is 

then restrained, again by hand. The ophthalmoscope evaluation involves shining a 

light into the eye, and looking into the dilated eye with a lens, to visually evaluate 

retinal degeneration. This procedure is necessary so that we can evaluate whether  

the blind mice have altered biomarkers when compared to sighted mice. We do not 

expect metabolomic profiles to be altered by the Pdrbrd1 gene, but can check this 

easily by examining the mice for retinal degeneration. 
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2.2 Microencapsulated rapamycin diet and control diet 

The National Institute of Aging (NIA) Interventions Testing Program (ITP) was 

created to find lifespan and healthspan extending treatments, in particular those that have 

received FDA approval for other treatments.  Rapamycin was determined to increase 

lifespan in mice when treated late in life (600 day old mice) (Harrison et al. 2009).  We 

obtained the same diet formulation that was used by the three independent locations of the 

original NIA-ITP study.  The rapamycin (from LC Labs, Woburn, MA) was 

microencapsulated by Southwest Research Institute (San Antonio, TX), using a spinning 

disk atomization coating process with the enteric coating material Eudragit S100 (Röhm 

Pharma, Germany). The coating increases the fraction of rapamycin that survives the food 

preparation process by 3- to 4-fold.  It also protected the agent from digestion in the 

stomach increasing adsorption (Nadon et al. 2008).  Rapamycin (14 ppm) is incorporated 

into 5LG5 mouse chow.  Control diet contains the Eudragit S100 entieric coating without 

rapamycin. 

 

Table 1.  Final rapamycin treatment groups and final number of subjects 

Diet Control Rapamycin 

Group 6 month 12 month 18 month 6 month 12 month 18 month 

Disomic 14 15 14 14 13 13 

Trisomic 14 14 7 15 12 10 
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2.3 High-Energy Focused Microwave 

We use high-energy focused microwave irradiation (HEFM) applied directly to the 

brain.  This results in immediate death and arrests brain metabolic and enzymatic processes 

essentially instantaneously.  This method does not use anesthetics or sedatives and requires 

very little handling of the mice.   

Once the mice have reached the appropriate age they are scheduled for 

euthanization.  To account for circadian changes in the metabolome every mouse was 

sacrificed between 1 pm and 4 pm.  The mice were removed from the mouse facility several 

hours before and kept in a dimly lit room with the cages covered.  A final weight for each 

mouse was measured and the mice were returned to their respective cages.  The mice were 

placed in a mouse holder to keep them properly aligned and motionless during the 

procedure.  Placing the mouse properly in the holder is crucial to ensuring accurate results 

with the microwave device.  The microwave beam must pass through the brain tissue to 

halt all metabolic activity.  Once the mouse has been euthanized, the mouse is removed 

from the holder and the temperature of the brain is taken using an electronic thermometer 

with a needle probe.  All the mice received a microwave dose that heated the brain to 

between 85 oC and 95 oC, which ensures the cessation of enzymatic activity.   

Once the mice have been euthanized the mouse is decapitated using a small animal 

guillotine (Kent Scientific).  An incision through the midline of the scalp is made from the 

caudal end of the head to the rostral using sharp dissecting scissors.  The scalp is pulled 

towards the ears and a similar incision is made through the midline of the brain.  The skull 

is peeled away and the cerebellum is removed, placed in a microcentrifuge tube and flash 
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frozen in liquid nitrogen.  The anterior portion of the brain is removed and placed in a 

separate microcentrifuge tube and flash frozen in liquid nitrogen.  The samples are stored 

in -80 oC until metabolites are purified from them.   

 

2.4 Metabolite extraction from brain samples 

 Sample preparation for analysis by HPLC-EC is quite simple, involving metabolite 

extraction with cold acetonitrile acidified with 0.4% acetic acid, which has been found to 

yield highly reproducible results with blood, serum, plasma, brain, and mitochondria 

(Kristal et al., 2007).   

 For metabolite extraction 16 mg of each brain were taken and homogenized in 1 

mL of acidified acetonitrile and finely chopped using dissecting scissors.  The samples 

were further homogenized using sonication (Branson Sonifier Cell Disrupter 185).  The 

homogenized samples were centrifuged at 14,000 x g for 5 minutes.  The supernatant was 

taken and frozen at -80°C for one hour.  The pellets were saved for protein analysis used 

to normalize the data against.  The frozen samples were placed into a speedvac concentrator 

and lyophilized for 2 hours (until all the acidified acetonitrile is removed).  The samples 

were resuspended in 200 µL of mobile phase A and centrifuged at 14,000 x g for 15 

minutes.  Cerebellar samples followed the same extraction protocol, however, the entire 

cerebellum was extracted with 750 µL due to varying and limited tissue availability. 
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2.5 HPLC coupled electrochemical detection of brain metabolites 

 We analyzed metabolic changes accompanying aging using HPLC coupled with 

electrochemical detection (HPLC-EC) using flow-through coulometric electrochemical 

cells. This method allows for the quantitative detection of several hundred metabolites in 

about two hours and has been used to study aging and DR in rodents (Shi et al. 2002) and 

neurodegenerative disorders in rodents and humans (Stack et al. 2008; Rozen et al. 2005). 

For the separation of metabolites from blood and brain samples, we employed 

reversed-phase HPLC with a gradient profile.  Mobile phase A was primarily aqueous and 

consisted of 10 g/L pentane sulfonic acid (PCA), 1% methanol (MeOH), 1 mg/L citric acid, 

pH 2.85.  Mobile phase B consisted of 50 mM lithium acetate (LiAc), 80% methanol, 10% 

acetonitrile, 10% isopropanol, pH 5.0.  Both mobile phase solutions were filtered through 

0.2 µm filters.   

Samples were kept at 

4o C until 30 µL are injected 

into the HPLC system using 

an ESA autosampler (model 

542) and separated through a 

Tosoh Bioscience TSKgel guard cartridge and two TSKgel ODS-80Tm C-18 columns (250 

mm x 4.6 mm ID, 5 µm) in series to maximize theoretical plates.  A column temperature 

of 30o C was maintained throughout the analysis.  The analytes were detected using a 

CoulArray HPLC system (model 5600A, ESA) with three coulometric detector modules.  

Each electrochemical cell contained four flow-through coulometric detectors in series.  

Table 2.  Gradient protocol of the HPLC – EC system used to 
separate and detect tissue metabolites 

Time (min) Flow rate (mL ⋅ 
min -1) 

Mobile phase B 
(%) 

0 0.750 0 

40 0.750 12 
47 0.750 20 
74 0.530 48 

120 0.740 100 
127 0.900 100 
133 0.900 100 
140 0.750 0 
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Cell one (channels 1-4) was set to a range of potentials from 0 – 300 mV in 100 mV 

increments.  Cell two - four (channels 5-12) were set to a range of potentials from 375 – 

900 mV in 75 mV increments.  The CoulArray software was used for baseline correction 

and analysis. 

 

2.6 Protein Sample Preparation 

The pellet from the metabolite extracted samples were resuspended in cell lysis 

buffer (10 mM Tris-HCl pH 8.3, 10 mM KCl, 2 mM EDTA, 1 mM DTT, 4% glycerol) 

with Inhibitor Protease Cocktail Tablets (Roche).  The homogenate was centrifuged at 

16,000 x g for 30 min.  The supernatant was removed and placed into a fresh 

microcentrifuge tube.  The protein concentration was determined by BSA protein 

concentration colorometric assay (Thermo Scientific) using standard procedures and 

measured on using Gen5 software. 

 

2.7 Analysis of chromatographic profiles 

 Once the samples have been separated and detected, the raw data files 

(chromatograms) were batch analyzed.  This involves the CoulArray software applying a 

proprietary algorithm to the chromatograms to flatten the baselines. As described in the 

Introduction, there was inherent drift in the channels, particularly when a gradient to 100% 

solvent mobile phase is involved.  The software also determined peaks based on preset 

parameters.  We set our peak parameters conservatively to ensure we stay above noise.  

The parameters we set are height threshold, a peak must reach a height of 0.005nA to be 
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considered a peak.  A peak width minimum of 0.05 seconds was set as well.  Once the 

peaks have been batch analyzed, they can be manually curated for known peaks, or be 

analyzed by the pattern recognition software. 

 

2.8 Data analysis 

2.8.1 Pattern recognition for global metabolomics analysis 

 Chromatographic peaks are input into the pattern recognition wizard, which is part 

of the CoulArray Software package.  Once the peaks were loaded, a pooled sample was 

used as a reference sample.  The pooled sample is sample comprised of 4 samples 

representing each group.  The software takes the mean of the 12 channels in the pooled 

reference sample and matches these with each subsequent individual sample.  The samples 

are manually curated and the alignment was checked for each sample.  Only once each 

sample has been aligned with the reference sample was the algorithm applied.  The final 

computed pattern recognition output gives data values that were deviation from the pooled 

reference sample over a given time, which was determined by the compression factor.  Our 

compression factor is 20x. These data were imported into excel and the mean of sample 

duplicates (or triplicate in some cases) is calculated.  These data were then normalized to 

protein concentration in mg to give a final value that can be considered the change in signal 

per mg of protein, this was considered a significant feature. 
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2.8.2 Significant feature 

  The pattern recognition software identifies significant features over a given 

segment of retention time.  This feature was not a peak, rather a change in the signal pattern 

during that time duration or segment of the chromatogram.  This will capture segments of 

peaks, but does not recognize peaks.  Therefore, when discussing significant features in 

pattern recognition analysis we are describing the pattern of the chromatogram at different 

time intervals, not specific metabolites or compounds that recognized as peaks.  

 

2.8.3 Targeted metabolite changes 

 We use targeted metabolite profiling to determine changes to disease or pathway 

relevant metabolites.  As stated previously, targeted metabolomics using electrochemical 

detection is difficult because we do not obtain any structural information.  To identify 

unknown peaks, we separate and detect standards using the same system.  Once a standard 

was identified we spike tissue samples with the known standards and measure the change 

in peak area.  In the CoulArray Software a peak table is created.  The peak table acts at the 

metabolite library or database.  This library was used by the software to identify peaks 

when each chromatogram was analyzed.  Many of our standards were graciously donated 

by Wayne and Samantha Matson. 
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2.8.4 Statistical analysis 

 We utilized MetaboAnalyst software to perform both univariate and multivariate 

analysis.  MetaboAnalyst is web-based pipeline for the analysis of large and complex 

metabolomics data sets and provides comprehensive interpretation and visualization of the 

data.  The analysis of the data includes two functional steps.  The first was the data 

processing step, which includes different options for data filtering, normalization, and 

transformation.  The second step was the actual data analysis, and visualization.   

 The normalized data are broken into relevant groupings to analyze the different 

experimental questions.  For example, to understand the changes associated with the 

karyotype of the mice, we compare the data from disomic and trisomic mice on control 

diet.  These data are then input into the software and a quality check was performed.  

During this step, missing values are replaced by null (N).  Next we mean-center transform 

the data.  This does not alter the variability of the data distribution; it just shifts the data to 

an arbitrary starting point. 
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Figure 1.  Representative chromatographic trace showing targeted metabolites. 
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2.8.5 Univariate analysis 

 Univariate methods are the most common methods of exploratory data analysis.  

For two group analysis we employed t-test, fold-change analysis, and volcano plots to show 

the relationship between features identified by the pattern recognition software and help 

identify patterns in those features.  For analysis of more than two groups, we used analysis 

of variance (ANOVA).   

 

2.8.6 Multivariate analysis 

 Two different multivariate analysis, principal component analysis (PCA) and 

partial least squares – discriminant analysis (PLS-DA), are used to identify sources of 

variance (PCA) in the data and the relatedness (PLS-DA). 

 

2.8.7 Clustering analysis 

 Hierarchical cluster 

analysis (HCA) was performed 

to search for patterns in the data.  

In HCA each sample begins as 

an individual cluster and the 

algorithm combines them until 

all samples are clustered into a 

single large cluster, this shows 
Figure 2.  Whole blood rapamycin concentrations in 

Ts65Dn mice fed microencapsulated rapamycin (DR, TR) 
or control diet (DC, TC). 
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similarity of samples based on their significant features.  Our HCA method uses the Ward 

clustering algorithm and Euclidean distance similarity measure.  

 

3.0 Results 

3.1 Global metabolomics – long-term rapamycin treatment 

 Mouse blood was collected into lavender capped EDTA tubes for analysis of 

rapamycin concentration in whole blood.  The analysis was performed by Dr. Martin Javors 

at the University of Texas Health Sciences Center San Antonio (UTHSCSA).  After 

consulting with Dr. Javors, four blood samples from each set (DC, DR, TC, TR) and at the 

two time points (6- and 18-month) were delivered for analysis.  The results show that the 

mice fed microencapsulated rapamycin diet had elevated levels of rapamycin (Figure 2).  

The control mice had rapamycin levels below the limit of detection (1.56ng/mL) (Figure 

2).  The 18-month trisomic mice fed rapamycin diet had a lower level of rapamycin 

compared to the other mice on the treatment, however, this is insignificant and could be 

due to the mice eating less food compared to the younger mice. 

 

3.2 Global metabolomics – general health of long-term rapamycin treatment 

 Weights of the mice were taken before they were euthanized to determine if there 

is an age-related loss in weight (Figure 3).  As expected, the trisomic mice are significantly 

smaller than the disomic mice (Figure 3).  The mice also show a reduction in weight as 

they age, this is part of typical aging in both humans and mice.  The disomic mice also 
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show a significant loss of weight on rapamycin diet compared to those on control diet, this 

was not seen in trisomic mice (Figure 3). 

 Routine blood samples were taken from the mice for comprehensive blood analysis, 

including complete blood 

count (CBC) and blood 

chemistry (Table 3).  Every 

four months starting at 6-

months of age blood was 

collected from the mice by 

maxillary venipuncture and 

collected into lavender 

capped EDTA tubes for 

CBC and yellow capped 

tube for blood chemistry 

analysis.  The blood was delivered to IDEXX Laboratories Inc. for analysis.  The 

comprehensive blood analysis showed that the mice were in generally good health and did 

not show any significant changes in the different components of the analysis.  This was 

true as the mice aged.  Rapamycin diet also did not alter the blood chemistry or CBC in a 

way that would indicate poor or failing health.  Additionally, we did not see a difference 

in the blood analysis between disomic and trisomic mice indicating poor or failing health.  

However, there are interesting changes in glucose and cholesterol levels in the mice.  

Glucose levels have been reported to increase in mice that receive short-term rapamycin 

Figure 3.  Age-related weight loss in the Ts65Dn mice. 
Weights of trisomic (red) and disomic (blue) mice on rapamycin 

(solid line) or control diet (dashed line). 
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treatment.  Our blood analysis showed a similar increase in blood glucose levels in the 

mice receiving the rapamycin diet when compared to those on control diet (Figure 4).  We 

do not see a difference between disomic and trisomic mice (fed control diet), indicating  

that this is due to the rapamycin diet, not karyotype of the mice (Figure 4).   

Table 3. Complete blood count (CBC) and blood chemistry analysis performed by IDEXX 
Laboratories Inc. 

 

Comprehensive Blood Chemistry Complete Blood Cell Count 
ALKALINE PHOSPHATASE GLUCOSE WBC MYELOCYTE 

SGPT (ALT) CALCIUM RBC PROMYELOCYTE 

SGOT (AST) PHOSPHORUS Hgb POIKILOCYTES 

CPK BICARBONATE MCV ANISOCYTES 

ALBUMIN CHLORIDE MCH METAMYELOCYTE 

TOTAL PROTEIN POTASSIUM MCHC MONOCYTE 
GLOBULIN SODIUM NRBC EOSINOPHIL 

TOTAL BILIRUBIN A/G RATIO NEUTROPHIL BASOPHIL 
DIRECT BILIRUBIN B/C RATIO LYMPHOCYTE  

BUN INDIRECT BILIRUBIN   

CREATININE NA/K RATIO   

CHOLESTEROL    
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 When we compared the disomic mice on control diet to the mice on rapamycin diet 

we notice an initial rapid increase in blood glucose, however, after prolonged treatment 

with rapamycin, we see a decrease in the glucose levels (Figure 4).  We also see a shift in 

the cholesterol levels of the mice, however, unlike the glucose levels, this appears to be 

caused by the karyotype of the mice rather than the diet (Figure 5).  When the cholesterol 

levels are broken out by treatment, there is no difference between rapamycin and control 

diet groups (Figure 5).  However, when the mice are isolated by karyotype, the trisomic 

Figure 4.  Blood glucose levels in mice receiving control diet or rapamycin diet 
A) Shows the blood glucose levels in disomic mice either on rapamycin diet or control diet, B) 

shows the same comparison in trisomic mice.  C) Compares the mice either receiving rapamycin 
diet or control diet and D) shows the comparison between karyotype of the mice, these indicate 

the increase in blood glucose is due to diet. 
	



	 66	

mice have lower levels of cholesterol compared to disomic mice (Figure 5).  Although the 

mice experience a higher glucose level, or changes in cholesterol levels, we do not believe 

this alters their survival.  

 Although, this was not a typical aging study in which the mice are allowed to age 

until time of death, we performed a Kaplan - Meier survival plot to determine the 

probability of survival through the duration of the study (Figure 6).  A higher rate of 

mortality occurred in the trisomic mice receiving the control diet, in particular as they aged.  

Observationally, the trisomic mice on control diet appeared more fragile than their disomic 

Figure 5.  Blood cholesterol levels in mice receiving control diet or rapamycin diet 
A) Shows the cholesterol levels in disomic mice either on rapamycin diet or control diet, B) 

shows the same comparison in trisomic mice.  C) Compares the mice either receiving 
rapamycin diet or control diet and D) shows the comparison between karyotype of the mice, 

these indicate the decrea	se in cholesterol is due to karyotype of the mice. 
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counterparts as well as the trisomic mice on rapamycin diet.  Trisomic mice on rapamycin 

diet appear to have a higher survival probability (Figure 6).  Interestingly, we also see 

reduction in the probability of survival in disomic mice receiving rapamycin diet (Figure 

6).   

 It has been reported that the Ts65Dn mice have reduced cerebellum size that 

corresponds to the precocious aging phenotype.  We measured the cerebellum protein 

content after extraction of metabolites.  Protein content was used as a surrogate for  

Figure 6.  Kaplan – Meier survival 
plots. 
 
Kaplan Meier survival plots showing 
the probability of survival for mice on 
control diet (A) and the mice on 
rapamycin diet (B).  The dotted line 
shows the end of the diet study when 
mice were sacrificed.  Although not a 
typical aging study the probability of 
survival deceases in the trisomic 
control diet mice. 
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cerebellar size, the higher protein content corresponds to a larger size of cerebellum.  The 

trisomic Ts65dn mice show a reduced cerebellum compared to the disomic mice (Figure 

7).  The comparison between disomic and trisomic mice may not be a fair comparison other 

than to illustrate that the disomic mice are larger, as shown by the mouse weights.  

However, comparing the intragroup cerebellar sizes between young (6-month) and old (18-

month) groups is relevant.  The trisomic mice show an age-related reduction in size of 

cerebellum determined by total protein content and rapamycin treatment appears to rescue 

this age-related decline (Figure 7).  The disomic mice do not show this age-related decline 

in cerebellar size, this may be because compared to the trisomic mice they are not aged.   

 Taken together these data show that the mice on the microencapsulated rapamycin 

diet and control diet are in general healthy.  There are some changes, such as increase in 

glucose in mice treated with rapamycin, and lowered cholesterol in mice that are trisomic 

Figure 7.  Changes in cerebellar size by age and treatment of 
Ts65Dn mice.  Total cerebellar protein as a surrogate for 
cerebellar size for 6 and 18 month mice.  Disomic control 
(DC)), Disomic rapamycin (DR), Trisomic	control	(TC),	

Trisomic	rapamycin	(TR). 



	 69	

for Mmu16.  These changes have been previously documented in other studies of 

rapamycin treatment (glucose increase) or with the use of the Ts65Dn mouse (cholesterol 

levels).  These data also demonstrate that there are age-related declines in the trisomic mice 

and that rapamycin in the diet is having an effect on the physiology. 

 

3.3 Targeted metabolomics analysis 

 To identify specific metabolite changes in the brains of the Ts65Dn mouse model 

of DS, aging, and early-onset Alzheimer’s disease we prepared a set of known standards 

that can be separated using HPLC and detected by electrochemical detection (Table 4) 

(Figure 1).  These metabolites represent a variety of disease relevant pathways, including 

catecholamine biosynthesis, purine biosynthesis, tryptophan and tyrosine metabolism, and 

glutathione metabolism in addition to others.  We also identify 150 peaks that are 

consistently changed but have not been identified using electrochemical detection.   

 

3.3.1 Targeted metabolomic changes due to trisomy of Mmu16  

 To determine if there are changes to specific metabolites relevant to trisomy of 

Mmu16 and human DS, we compared samples from mice fed control diet and identified 

changes between disomic and trisomic mice.  To determine if there are significant changes 

in detected peaks between disomic and trisomic mice we used a t-test analysis.  The 6- 

month mice show 8 compounds that are significantly changed between disomic and 

trisomic mice (Figure 8).  The increase in homovanillic acid (HVA) in trisomic mice 

compared to disomic mice is interesting, previous studies show individuals with DS have  
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elevated levels of HVA (Figure 8) (Kay et al. 1987; Schapiro et al. 1987).  We also see a 

decrease in 4-hydroxybenzoic acid (4-HBA) levels and guanosine levels in trisomic mice.  

4-HBA is often used as an indicator for ROS (hydroxyl) stress (Liu et al. 2002).  Guanosine 

is an important purine metabolite and plays an important role in information and energy 

transfer. 
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Table 4.  Library of metabolites detectable by HPLC-EC. 

Metabolite HMDB PubChem KEGG 
Ortho-Hydroxyphenylacetic acid HMDB00669 11970 C05852 
3,4-Dimethoxyphenylethylamine HMDB41806 8421  

3-Hydroxyanthranilic acid HMDB01476 86 C00632 
Hydroxykynurenine HMDB00732 89 C02794 
3-Methoxytyramine HMDB00022 1669 C05587 

Hydroxyphenyllactic acid HMDB00755 9378 C03672 
4-Hydroxybenzoic acid HMDB00500 135 C00156 

p-Hydroxyphenylacetic acid HMDB00020 127 C00642 
5-Methoxydimethyltryptamine HMDB02004 1832 C08309 

5-Methoxytryptophan HMDB02339 151018  
5-Hydroxy-L-tryptophan HMDB00472 144 C01017 

6-Hydroxydopamine HMDB01537 4624  
6-Hydroxymelatonin HMDB04081 1864 C05643 

7-Methylguanine HMDB00897 11361 C02242 
N-Acetylserotonin HMDB01238 903 C00978 

2-Aminobenzoic acid HMDB01123 227 C00108 
Ascorbic acid HMDB00044 54670067 C00072 

Cysteine METPA0075 NA C00736 
3,4-Dihydroxybenzeneacetic acid HMDB01336 547 C01161 

Dopamine HMDB00073 681 C03758 
Epinephrine HMDB00068 5816 C00788 

Oxidized glutathione HMDB03337 975 C00127 
Glutathione HMDB00125 124886 C00051 

Guanine HMDB00132 764 C00242 
Guanosine HMDB00133 6802 C00387 

4-Hydroxy-3-methoxybenzenemethanol HMDB32012 62348 C06317 
Homogentisic acid HMDB00130 780 C00544 
Homovanillic acid HMDB00118 1738 C05582 
Homoveratric acid HMDB00434 7139  

Hypoxanthine HMDB00157 790 C00262 
3-Indolepropionic acid HMDB02302 3744  

L-Kynurenine HMDB00684 161166 C00328 
Melatonin HMDB01389 896 C01598 

Metanephrine HMDB04063 21100 C05588 
N-Methylserotonin HMDB04369 150885 C06212 

Norepinephrine HMDB00216 439260 C00547 
Normetanephrine HMDB00819 1237 C05589 

Pyridoxal HMDB01545 1050 C00250 
Tryptophanol HMDB03447 10685 C00955 

Tyramine HMDB00306 5610 C00483 
Uric acid HMDB00289 1175 C00366 

Vanillic acid HMDB00484 8468 C06672 
Vanillylmandelic acid HMDB00291 736172 C05584 

Xanthine HMDB00292 1188 C00385 
Xanthosine HMDB00299 64959 C01762 
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The mice treated with microencapsulated rapamycin do not show this increase in 

HVA or the decrease in 4-HBA and guanosine.  There are several changes associated 

with rapamycin treatment, however these are not currently in our library of detectable 

metabolites and are labeled as unkX (unknown, X indicating the peak number) 

Figure	8.		Significantly	changed	compounds	detected	by	HPLC-EC.	
Metabolites	that	are	significantly	changed	in	mice	fed	control	diet.		Comparison	is	between	disomic	
and	trisomic	mice	illustrating	changes	that	are	possibly	associated	with	Mmu16.		Tables	show	the	
metabolites	that	are	detected	and	p-values	(>0.05).		Red	highlights	show	changed	metabolite	in	

both	6-	and	18-month	mice.		Blue	highlight	shows	AD	associated	metabolite	(REF).	
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(Appendix 1).  In the 18-month mice comparing the differences between disomic and 

trisomic mice fed control diet we see 11 significantly changed metabolites (p < 0.05), 

again HVA is changed and we find a significant change in levels of L-kynurenine among 

others (Figure 8).  These changes illustrate the dynamic nature of the brain as the mice 

age.  Changes in L-kynurenine and HVA have been associated with a host of 

neurodegenerative disorders, including AD, so it is important that we see an increase in 

these as the mice age possibly indicating early AD pathology (Figure 9).  

 

 

 

  

 To determine if these changes are associated with DS we performed a metabolite 

set enrichment analysis (MSEA), this is a technique similar to gene set enrichment analysis, 

to determine if the changes we see in our metabolites are pathologically relevant.  We 

compare our data to a database of known metabolite changes.  Unfortunately, a mouse 

brain specific database does not exist so we cross-referenced our metabolite changes 

Figure 9.  Changes in homovanillic acid levels in young and old disomic (red) and trisomic 
(green) mice.  Elevation of L-kynurenine in 18-month mouse brains.  L-kynurenine is not 

elevated in 6-month mice. 
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against human cerebrospinal fluid to determine if there were any pathologies relevant to 

our metabolites (Figure 10).  This is also used as a test of our model system, we would 

expect DS to be at, or near, the highest hits when we screen our metabolite changes in the 

T65Dn mouse model of DS, this is what we see (Figure 10). 

 

3.3.2 Targeted metabolomic profile changes due to rapamycin treatment. 

 Similar to the global metabolomic data analysis, we want to determine if there are 

changes in the metabolites due to prolonged rapamycin treatment.  The global metabolomic 

changes showed the appearance of a “sensitivity” to rapamycin treatment in the trisomic 

mice due to the high number of features that were significantly changed, in particular in 

the 6-month mice.  Our targeted analysis reveals some interesting changes.  6-month mice 

fed control diet compared to mice on diet containing microencapsulated rapamycin have 

elevated HVA and norepinephrine in trisomic mice (Figure 11).  The upregulation of HVA 

and norepinephrine is conserved in the 18-month mice and is expected considering the 

above analysis of changes associated with karyotype of the mice, in which HVA was 

elevated in the trisomic mice fed control diet (Figure 12).  We also see many changes 

associated with rapamycin treatment, most of which are in unidentified peaks.  It is 

important to note that rapamycin has been shown to rescue dopaminergic neurons which 

may increase dopamine levels and reduce HVA levels (Tain et al. 2009). 
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Figure 10.  Metabolite set enrichment analysis (MSEA) of metabolite changes between disomic and 
trisomic mice fed control diet.  Queried against human cerebrospinal fluid (CSF) database due to lack 

of brain metabolite database. 
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Figure 11.  Changes in targeted metabolites due to rapamycin diet. 
Both disomic and trisomic mice receive either control diet or diet containing 

rapamycin. Volcano plots and corresponding tables show significantly changed 
metabolites in 6-month disomic and trisomic mice comparing control diet and 

rapamycin diet. 

Figure 12.  Changes in targeted metabolites due to rapamycin diet. 
Both disomic and trisomic mice receive either control diet or diet containing rapamycin. 
Volcano plots and corresponding tables show significantly changed metabolites in 18-

month disomic and trisomic mice comparing control diet and rapamycin diet. 
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 When we analyze the differences between disomic and trisomic mice fed rapamycin 

diet we see that the increase in HVA and epinephrine is not significant (Figure 13).  

Importantly, we see that most of the changes are in unknown peaks, some of which are 

conserved between 6-month and 18-month mice (Figure 13).  It will be important in future 

work to identify these unknown peaks.   

 

 

 

 

Figure 13.  Volcano plots and associated tables representing changes between disomic and trisomic 
mice fed rapamycin diet.  Targeted metabolomic changes showing the comparison of disomic and 

trisomic mice on rapamycin diet.  Importantly, the increase in HVA and norepinephrine are no 
longer significant in rapamycin fed trisomic mice. 
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3.3.3 Targeted metaboomic profile changes due to age 

 To determine if there are age related differences between the groups we performed 

an ANOVA with a Tukey’s post-hoc analysis.  We already see that there are changes 

associated with age when the analysis was performed to search for changes associated with 

trisomy of Mmu16 (Figure 8) and again when analyzing changes due to rapamycin 

treatment (Figures 11 and 12).  However, we want to see how these changes are associated 

between all treatment groups within each age group.  In the 6-month ANOVA analysis 

there are 7 metabolites that are significantly changed (Figure 14).  Four of these changes 

are of interest, including norepinephrine and HVA, which have shown to be elevated in 

trisomic CSF.  Strikingly, both norepinephrine and HVA are reduced in mice treated with 

rapamycin, this is the first example of rapamycin treatment reducing HVA and 

norepinephrine.  Additionally, we see that rapamycin treatment appears to elevate the 

levels of dopamine in both the disomic and trisomic mice (Figure 14).    As previously, 

noted, rapamycin has been shown to rescue dopaminergic neurons increasing dopamine 

levels (Tain et al. 2009).  There is also an increase in L-kynurenine levels associated with 

rapamycin treatment (Figure 14).  In the 18-month mice we see more significantly changed 

metabolites when compared to the 6-month mice (Figure 15).  Many of these are implicated 

in changes in brain chemistry (kynurenine, HVA, 3-methoxytyramine, and norepinephrine) 

(Figure 15).   
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Figure 14.  ANOVA of all groups in the 6-month set showing significantly 
changed metabolites in red (Tukey’s post-hoc).  Box and whisker plots of 

metabolites of interest. 
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Figure 15.  ANOVA of all groups in the 18-month set showing significantly 
changed metabolites in red (Tukey’s post-hoc).  Box and whisker plots of 

metabolites of interest. 
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3.4 Metabolomic changes associated with the trisomy of Mmu16 

 To determine if there are changes in patterns between global metabolomic profiles 

due to karyotype of the mice, we performed pattern recognition analysis on the 

chromatographic profiles of disomic and trisomic mice on control diet.  We analyzed both 

cerebellar profiles and frontal brain profiles. 

 Initial fold change analysis showed that there were many significant feature 

changes of 10-fold or in trisomic mice when compared to disomic mice fed control diet 

(Appendix 1, section 1).  It is interesting to note that a comparison of trisomic mice to 

disomic mice on control diet indicates that most of the changes are up-regulated, especially 

in the 18 month mice, and may represent changes due to triplication of Mmu16 genes 

(Appendix 1, section 1).  A t-test was performed and features with a p-value > 0.01 (Log10 

(p) = 2) are deemed significantly changed between disomic compered to trisomic mice 

(Figure 16).  There are more features that are significantly changed in the 6-month groups 

when compared to the 18-month in both frontal brain and cerebellar groups (Figure 16).  

There also appears to be more features in the cerebellum that are significantly changed 

(Figure 16). 

 To further explore the relationship between karyotype of the mice, volcano plots 

displaying the fold-change (> 10-fold) and p-value (p > 0.05, Log10 (p) = 1) are created.  

These plots show the significantly changed features and the direction of the fold change in 

these features (Figure 17).  Again, there appear to be more changes in the cerebellum 

compared to the frontal brain, especially in the 18-month mice.  Also of note, the 18-month  
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Figure 16.  Features that are significantly changed between disomic and trisomic mice. 
Features that are significantly changed between disomic and trisomic mice at 6-months and 18-

months.  Comparison is between disomic and trisomic mice fed control diet. 



	 83	

cerebellum showed changes that resemble a down-regulation of trisomic signals (shown 

by the pink signals to the right of midline (Figure 17).   

 Using hierarchical cluster analysis (HCA) to search for patterns in the 6 month 

groups comparing disomic and trisomic mice fed control diet indicates a pattern in 

cerebellar samples.  The top 25 features based on t-test p-value show no pattern emerging 

from the frontal brain groups at 6- and 18-months of age fed control diet (Figure 18).  The 

cerebellum samples in both 6- and 18-month groups fed control diet begin to show a 

coordinated pattern that appears to become more striking at 18 months (Figure 18).  The 

Figure	17.		Volcano	plots	analyzing	changes	due	to	karyotype	of	the	mice	
Volcano	plots	showing	the	relationship	between	fold-change	and	t-test	p-value.		These	show	the	
relationship	between	disomic	and	trisomic	mice	on	control	diet	in	frontal	brain	and	cerebellum	at	

different	ages.	
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pattern shows many features being down-regulated in trisomic mice compared to disomic  

mice (Figure 18).  Tables of significant features found by t-test and volcano plot analysis 

along with other data analysis, including PCA and PLS-DA can be found in Appendix 1.    

 

 

 

Figure	18.		Hierarchical	cluster	analysis	heatmaps.	
HCA	heatmaps	are	used	to	search	for	the	emergence	of	patterns	in	the	data.		These	compare	
disomic	mice	to	trisomic	mice	on	either	control	diet	or	rapamycin	diet	and	at	6	months	and	18	

months	of	age.	
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 Taken together, these data show that there is little difference created by the 

karyotype of the mice that contribute to significant changes in the patterns of 

chromatographic data.  These data also suggest that the cerebellum may have a more 

coordinated effect of trisomy.  This may be caused by the heterogeneity of the frontal brain 

samples which include many different cells types from many distinct brain regions.  The 

cerebellum is a more homogenous sample, so these changes may be more clear due to the 

more uniform nature of the cerebellar samples.   

 
 

 

Figure	19.		Significant	changes	in	metabolomic	profiles	of	6-month	mice	due	to	rapamycin	
treatment.		Comparison	of	control	diet	and	rapamycin	diet	in	disomic	and	trisomic	mice	as	well	

as	brain	region	by	t-test	(p	>	0.01).	
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3.4.1 Global metabolomic changes due to rapamycin treatment 

 To understand if there are changes associated with rapamycin treatment we 

analyzed the chromatographic profiles of mice fed microencapsulated rapamycin.  We 

performed similar analysis to the mice fed control diet to try and determine if rapamycin 

treatment had an effect on the global metabolic patterns and if these patterns differ between 

disomic and trisomic mice.  There are many features that show a greater than 10-fold 

change when treated with rapamycin compared to control diet (Appendix 1, section 2). 

Interestingly, in 6-month mice the greatest number of significantly changed features seem 

Figure	20.		Significant	changes	in	metabolomics	profiles	of	18-month	mice	due	to	rapamycin	
treatment.		Comparison	of	control	diet	and	rapamycin	diet	in	disomic	and	trisomic	mice	as	well	as	

brain	region	by	t-test	(p	>	0.01).	
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to be in trisomic mice, with fewer significant changes in disomic mice when comparing 

rapamycin to control diet (Figure 19).  Unexpectedly, the number of significant features in 

18-month mice are diminished when compared to the 6-month samples, more striking is 

the trisomic mice have fewer significant features than the disomic mice (Figure 20).  

Volcano plots that represent the relationship between fold change (>10-fold) and p-value 

(p > 0.05, Log10 (p) = 1) identify the same trend as the t-test plots, there are more 

significantly changed peaks in the trisomic samples compared to the disomic samples, and 

these are changed by a greater amount (Figure 21).  Additionally, the appearance of a trend 

showing a down-regulation of rapamycin related metabolite features in the trisomic mice 

Figure	21.		Volcano	plots	of	6-month	mice	fed	rapamycin	diet.	
These	plots	illustrate	the	relationship	between	fold	change	and	p-value	in	6-month	

rapamycin	fed	mice.		The	comparison	in	each	is	between	control	and	rapamycin	significant	
features.	
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(greater density to the right of midline) and the opposite effect in the disomic samples 

(greater density of features to the left of midline) (Figure 21).  Volcano plot analysis of the  

 ( 18-month groups show fewer features that are significant (p > 0.05, Log10 (p) = 1) and 

the fold change of these is lower (Figure 22).  Taken together these data indicate that there 

are global metabolomics changes associated with rapamycin treatment, and this change 

appears to be stronger in samples from frontal brain and cerebellum of mice with trisomy 

Mmu16.  Tables of significant features found by volcano plot analysis can be found in 

Appendix 1.    

   

 
 
 

Figure	22.		Volcano	plots	of	18-month	mice	fed	rapamycin	diet.	
These	plots	illustrate	the	relationship	between	fold	change	and	p-value.		Comparison	is	

between	control	and	rapamycin	fed	mice	at	18-months.	
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4.0 Discussion 
 
4.1 Global metabolomics – long-term rapamycin treatment 

 We treated the Ts65Dn mouse model of DS, aging, and early onset Alzheimer’s 

disease with microencapsulated rapamycin.  To ensure that the mice were receiving 

adequate levels of rapamycin bloods collected on the day of euthanization were sent to the 

University of Texas Health Sciences Center San Antonio to the lab of Dr. Martin Javors 

for analysis.  Dr. Javors detects rapamycin using MS.  We sent four blood samples from 

four different mice in each group (6- and 18-month: trisomic control, disomic control, 

trisomic rapamycin, disomic rapamycin).  The results were more than conclusive that our 

mice fed microencapsulated rapamycin had adequate levels in their blood.  There is a slight 

reduction (not significant) in the 18-month rapamycin treated trisomic mice, this is possibly 

due to reduced food intake.  An additional factor to consider is that mice were housed 

together, often up to 4 mice in a single cage.  Ensuring that each mouse received the diet 

in sufficient amounts was not done, however, we did not have any mice perish from 

starvation, therefore we can confidently assume that all mice were consuming the diet and 

rapamycin. 

 

4.2 Global metabolomics – general health of long-term rapamycin treatment 

 We treated the Ts65Dn mouse model of DS, aging, and early onset Alzheimer’s 

disease with rapamycin, an immunosuppressant previously shown to increase longevity 

and healthspan in evolutionarily divergent species, including mice.  The mice were treated 

starting at 4 months of age and were sacrificed at 6 an 18 months.  To determine the health 
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of long-term rapamycin treatment we analyzed CBC and blood chemistry of the mice every 

four months.  We did not see any significant changes that would indicate a decrease in the 

health of the mice or illness.  Short-term rapamycin treatment in mice has previously been 

associated with an increase in glucose load.  Long-term treatment shows an initial increase 

in glucose levels, often to pre-diabetic levels followed by a decrease in glucose, possibly 

due to a homeostasis mechanism that compensates for this chronic increase in glucose 

(Fang & Bartke 2013).  We treated mice for up to 14 months with rapamycin.  Our data 

indicate elevated glucose levels in the first several months of rapamycin treatment followed 

by a decrease towards normal levels in disomic mice.  This response is slower in trisomic 

mice, perhaps this may be an interplay between rapamycin treatment and a slower or 

weaker homeostatic response due to trisomy Mmu16.  

 Our comprehensive blood analysis also revealed an increase in cholesterol levels in 

disomic mice.  The data indicate that this is due to karyotype of the mice and not due to 

rapamycin treatment.  The lower cholesterol levels in the trisomic mice is interesting that 

individuals with DS show a reduced incidence of heart attacks and cardiovascular disease, 

as well as reduced levels of hypertension (Murdoch et al. 1977; Brattström et al. 1987; Ylä-

Herttuala et al. 1989).  There is also evidence that rapamycin treatment reverses age related 

heart dysfunction (Flynn et al. 2013). 

 Body weights of the mice were taken the week they were sacrificed to determine if 

there were age-associated weight changes while on the diet.  As expected we see a typical 

decrease in body weight as the mice age, in particular the trisomic mice have a significant 

decrease in weight at 18 months.  The disomic mice do not show this significant decrease 
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in weight at 18 months, perhaps this is because the disomic mice have not reached advanced 

age.  The trisomic mice are a model of premature aging in addition to DS, therefore at 18 

months they have deteriorated significantly.  A typical mouse can survive up to 36 months, 

therefore the disomic mice may be middle aged and have not experienced an age related 

decline.  Interestingly, disomic mice fed rapamycin show a reduction in body weight at 18 

months on rapamycin diet when compared to those on control diet. We expected to see an 

aggressive age-associated loss of weight in the Ts65Dn mice at 18-months.  Rapamycin is 

considered a mimetic of caloric restriction, or dietary restriction, which results in weight 

loss in mammalian model systems, including non-human primates (Ross et al. 2015).  

Other mouse models have shown a variety of responses to rapamycin treatment to glucose 

tolerance and insulin sensitivity (Lamming et al. 2013; Krebs et al. 2007; Schindler et al. 

2014).  Laboratory mice are considered by some to be surrogates for a modern western 

lifestyle that is characterized by ample food supply and a mostly sedentary lifestyle and 

rapamycin treatment may act in a way to reduce weight, especially in individuals that 

cannot safely exercise or diet (Moore et al. 2011; Aoyagi et al. 2015).  Previous studies 

show a decrease in brain region size in the Ts65Dn mouse model  (Contestabile, Fila, 

Bartesaghi, et al. 2009; Usowicz & Garden 2012; Das et al. 2013).  We measured total 

cerebellum protein as a surrogate for cerebellum size to determine if there are age-related 

changes associated with karyotype of the mice, and if rapamycin treatment ameliorates this 

deterioration.  Previous studies show that individuals with DS have a decreased cerebellar 

volume in addition to changes in action potentials and excitability (Usowicz & Garden 

2012).  We did not perform any learning and behavior tests on our mice, but our 
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measurements of cerebellum size show a significant age-related decline in the control fed 

Ts65Dn mice.  Mice on rapamycin diet have a reduced cerebellum size, but do not show 

the age-related decline.  In other mouse models of neurodegenerative diseases rapamycin 

has been shown to be neuroprotective and in some cases has ameliorated some of the 

cognitive declines associated with the progression of disease (Santini et al. 2009; 

Malagelada et al. 2010; Spilman et al. 2010; Maiese 2015). 

 

4.3 Targeted metabolomic changes due to karyotype 

 To identify specific changes in metabolites that we can detect using electrochemical 

detection we created a library of known compounds detectable on our system (Table 4). 

Analysis of these changes revealed that in mice fed control diet have enrichment of 

metabolites that are consistent with metabolite changes in human DS as well as other DS 

relevant pathologies (Cognitive disorders, hypothyroidism).  We identify changes in 

metabolite levels of known metabolites from our library as well as several unknowns that 

change in trisomy as well (Appendix 1).  Two important changes we see in the comparison 

of karyotype are the elevation of homovanillic acid and the decrease of 4-hydroxybenzoic 

acid and guanosine.  The increase in homovanillic acid (HVA) in trisomic mice compared 

to disomic mice is interesting, individuals with DS have elevated levels of HVA (Figure 

14) (Kay et al. 1987; Schapiro et al. 1987). However, this increase in HVA doesn’t appear 

to be the cause of cognitive deficiencies, rather may be related to altered turnover of 

monoamines in the brain.  Homovanillic acid is a dopamine metabolite and is altered in 

neurodegenerative diseases such as Parkinson’s disease, and in schizophrenics 
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(Bacopoulos et al. 1979; LeWitt et al. 1992; Loeffler et al. 1995).  The hypothesis is that 

neurodegeneration and loss of dopaminergic neurons alter the dopamine metabolism in 

brains and CSF resulting in the accumulation or loss of abundant dopamine metabolites.  

In mice treated with microencapsulated rapamycin comparing disomic and trisomic mice 

we do not see the same elevation in HVA in the trisomic samples (Appendix 1).  We do 

see a change in several metabolites, however, none of these are currently in our library.  

Identifying these might produce novel biomarkers or therapy targets.  The fact that there is 

a reduction in the HVA levels in the rapamycin treatment is intereting and may be a 

significant finding.  Other studies of rapamycin have shown the neuroprotective effects, in 

particular in dopaminergic neurons (Tain et al. 2009). 

 We also detect the reduction in 4-hydroxybenzoic acid (4-HBA) and guanosine in 

trisomic mice when compared to disomic mice fed control diet.  4-HBA has been used as 

a marker for hydroxyl radicals (conversion of 4-HBA to 3,4-dihydroxybenzoic acid (3,4- 

DHBA)) (Liu et al. 2002).  This decrease in 4-HBA might indicate an increased oxidative 

environment in trisomic brains.  Guanosine is an important and abundant molecule in the 

brain, which can be phosphorylated to GMP, GDP, GTP.  Reductions could indicate 

disruptions in the de novo purine synthesis pathway and inborn errors of purine 

metabolism, which are often characterized by developmental delays (Wevers et al. 1999; 

Jurecka 2009).  Guanosine also plays a neuroprotective role in the brain, possibly through 

modulation of glutamatergic  neurotransmission (Dal-Cim et al. 2016).  The increase in 

metabolites associated with neurodegeneration (HVA) and an increased oxidative 
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environment (4-HBA) combined with the reduction of a neuroprotective agent (guanosine) 

may provide a signature for DS related neuroanatomical deficiencies.  

  

4.3.1 Targeted metabolomic changes due to rapamycin treatment 

 When we compared the disomic mice treated with control diet or rapamycin diet 

we see several changes, unfortunately, most of these are in metabolites that are currently 

not in our library of detectable compounds.  Considering the trends in the global 

metabolomcs analysis (fewer changes in disomic mice treated with rapaycin) we are not 

surprised that we find the disomic mice have fewer changes in specific metabolites.  The 

trisomic mice have far more changes in specific metabolites than the disomic mice.  The 

trisomic mice show increases in dopamine, L-kynurenine, and N-methyserotonin when 

treated with rapamycin.  As previously stated, rapamycin has been shown to be a 

neuroprotecant in mouse models of Parkinson’s disease (PD) and Alzheimer’s disease 

(AD) (Tain et al. 2009; Spilman et al. 2010).  This may be through the stabilization of 

dopamine metabolism or through the preservation of dopaminergic neurons.   

 L-kynurenine is a critical tryptophan metabolite and occurs in neurodegenerative 

disorders such as PD, AD, Huntington’s disease (HD), multiple sclerosis (MS), 

amyotrophic lateral sclerosis (ALS) (Maddison & Giorgini 2015).  It can act as a 

neuroprotective agent as kynurenic acid or as a neurotoxic agent when metabolized to 

quinolinic acid, 3-hydroxyanthranilic acid, or 3-hydroxykynurenine (Sundaram et al. 

2014).  In different concentrations, these metabolites can have effects on 

neurotransmission, particularly through NMDA and AMDA receptors (Bohár et al. 2015). 
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 Perhaps more interesting in the trisomic mice treated with rapamycin, we do not 

see the increase in HVA. We also do not see the reduction of 4-HBA and guanosine.  Taken 

together, the increase in potentially neuroprotective metabolites (L-kynurenine and 

guanosine) and the loss of an oxidative environment (4-HBA) may promote protective 

effects in the brain.  Obviously, these will have different effects in different neuronal cell 

types as well as in different neuronal cell population in specific regions of the brain, but 

they provide a potential target to explore mechanisms of the precocious aging phenotype 

of the DS brain.  

 As the mice age the appearance of more significantly changed metabolites 

associated with trisomy of Mmu16 appear (Appendix 1) in addition to the ones changed in 

6-month mice.  This may indicate that the effects of trisomy become compounded as the 

mice age.  The appearance of 3-hydroxykynurenine in addition to the L-kynuenine may 

indicate that the mice are experienced altered kynurenine metabolism towards the 

neurotoxic.  The activation of the kynurenine pathway (upregulation of L-kynurenine and 

related metabolites) may be the result of abberant tryptophan signaling that may be the 

result of inflammation (Yiquan Chen & Guillemin 2009; Zuo et al. 2016).  One of the most 

potent stimulators of the tryptophan and kynurenine pathway is interferon-γ (Yiquan Chen 

& Guillemin 2009).  Four of the six interferon receptors are located on HSA21 as well as 

Mmu16 (Maroun 1980).  The kynurenine pathway results in the production of nicotinamide 

adenine dinucleotide (NAD+).  NAD acts as an important regulator of transcription and is 

central in metabolism.  Modulation of NAD has been implicated in DR and may play a role 

in health and disease {Moroz:2014ih, Lin:2003et} These results in dysregulated and 
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hyperactive immune function through the interferon signaling pathway.  Hyperactive 

interferon signaling may result in a number of different morbidities experienced by 

individuals with DS, including cognitive deficits as well as the myeloproliferative 

disorders, and autoimmune disorders.    

 

4.4 Global changes due to karyotype 

 To elucidate changes in the global metabolomic profiles caused by triplication of 

Mmu16 we compared frontal brain and cerebellum samples from mice fed control diet so 

we could isolate changes in trisomic mice when compared to disomic mice.  There are 

changes in both frontal brain and cerebellum associated with trisomy of Mmu16.  These 

are diminished as the mice age and at 18 months, the mice have far fewer significantly 

changed features in frontal brain, however there are still a large number changed in 

cerebellum.  This may be due to the fact that we homogenize the entire frontal portion of 

the brain (everything forward of the cerebellum).  There are both age and karyotype related 

changes in specific brain regions such as the hippocampus (Mann 1988; Insausti et al. 1998; 

Costa & Grybko 2005; Mann et al. 1985).  We may be diluting these changes by not 

performing region specific metabolomics.  The cerebellar tissue is a more homogenous 

cellular population; therefore, we may not be diluting these signatures.    

 

4.4.1 Global changes due to rapamycin treatment 

 We examined the changes in global metabolomics profiles that may be caused by 

long-term treatment with microencapsulated rapamycin.  We analyzed samples from both 
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the frontal brain and the cerebellum to compare pattern recognition signatures in disomic 

and trisomic mice.  We see that there are significant changes in the younger mice that seem 

to be isolated primarily to the trisomic mice.  This may be due to the sensitivity of the 

trisomic mice to an immunosuppressant drug.  It has been shown in the past that both to 

individuals with DS and mouse models of DS have dysregulated immune signaling, 

possibly due to the triplication of interferon receptors in HSA21 and Mmu16 (Maroun 

1980).  Interestingly, the number of significant features are diminished in the 18-month 

samples.  There could be homeostasis response after prolonged treatment that normalizes 

the metabolomics profiles over time.  The mTOR signaling pathway appears to be 

upregulated in brains of individuals with DS with and without AD pathology and may lead 

to a decrease in autophagy and a hyper-phosphorylation of tau through RCAN1 and 

increase in oxidative stress (Perluigi et al. 2014; Tramutola et al. 2016). 
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Chapter Three 

Genetic and metabolomic analysis of AdeD and AdeI mutants of de novo purine 

biosynthesis: cellular models of de novo purine biosynthesis deficiency disorders 

 
*This work has been published:   
Genetic and metabolomic analysis of AdeD and AdeI mutants of de novo purine biosynthesis: cellular models 
of de novo purine biosynthesis deficiency disorders. 
Duval N, Luhrs K, Wilkinson TG 2nd, Baresova V, Skopova V, Kmoch S, Vacano GN, Zikanova M, 
Patterson D.  Mol Genet Metab. 2013 Mar;108(3):178-89. doi: 10.1016/j.ymgme.2013.01.002.  

 

Abstract 

Purines are molecules essential for many cell processes, including RNA and DNA 

synthesis, regulation of enzyme activity, protein synthesis and function, energy metabolism 

and transfer, essential coenzyme function, and cell signaling. Purines are produced via the 

de novo purine biosynthesis pathway. Mutations in purine biosynthetic genes, for example 

phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole 

succinocarboxamide synthetase (PAICS, E.C. 6.3.2.6/E.C. 4.1.1.21), can lead to 

developmental anomalies in lower vertebrates. Alterations in PAICS expression in humans 

have been associated with various types of cancer.  Mutations in adenylosuccinate lyase 

(ADSL, E.C. 4.3.2.2) or 5-aminoimidazole-4-carboxamide ribonucleotide 

formyltransferase/IMP cyclohydrolase (ATIC, E.C. 2.1.2.3/E.C. 3.5.4.10) lead to inborn 

errors of metabolism with a range of clinical symptoms, including developmental delay, 

severe neurological symptoms, renal stones, combined immunodeficiency, and autistic 
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features. The pathogenetic mechanism is unknown for any of these conditions, and no 

effective treatments exist. The study of cells carrying mutations in the various de novo 

purine biosynthesis pathway genes provides one approach to analysis of purine disorders.  

Here we report the characterization of AdeD Chinese hamster ovary (CHO) cells, which 

carry genetic mutations encoding p.E177K and p.W363* variants of PAICS. Both 

mutations impact PAICS structure and completely abolish its biosynthesis. Additionally, 

we describe a sensitive and rapid analytical method for detection of purine de novo 

biosynthesis intermediates based on high performance liquid chromatography with 

electrochemical detection. Using this technique, we detected accumulation of AIR in AdeD 

cells. In AdeI cells, mutant for the ADSL gene, we detected accumulation of SAICAR and 

SAMP and, somewhat unexpectedly, accumulation of AIR. This method has great potential 

for metabolite profiling of de novo purine biosynthesis pathway mutants, identification of 

novel genetic defects of purine metabolism in humans, and elucidating the regulation of 

this critical metabolic pathway.  
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1.0 Introduction 

 Purines are essential building blocks for RNA and DNA synthesis, and regulate 

energy metabolism and transfer, and protein synthesis, function, and enzyme activity. 

Purines are also vital components of many essential coenzymes (NAD, NADH, FAD, 

Coenzyme A), and signaling molecules (cAMP, guanine nucleotides). The enzymatic steps 

of de novo purine biosynthesis convert PRPP (5-phospho-α-D-ribosyl-1-pyrophosphate) to 

IMP (inosine monophosphate), and an additional four steps convert IMP to AMP 

(adenosine monophosphate) or GMP (guanosine monophosphate) (Figure 1). Recent 

evidence demonstrates that the proteins carrying out de novo purine biosynthesis form a 

multienzyme complex, the purinosome, which is induced by acute requirement for purines 

(An et al. 2008; Deng et al. 2012; Baresova et al. 2012).  Formation of the purinosome can 

be disrupted by mutations in ADSL (E.C. 4.3.2.2) and ATIC (E.C. 2.1.2.3/E.C.3.5.4.10), 

with severe developmental consequences in humans (Baresova et al. 2012).  In addition to 

ADSL and ATIC, 30 enzyme defects of purine and pyrimidine metabolism have been 

identified and 17 of these are known to cause human disease (Jurecka 2009).  
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The clinical presentation of genetic disorders of purine metabolism includes a wide variety 

of symptoms, such as severe combined immunodeficiency, severe neurological defects, 

developmental delay, and abnormal brain development (Jurecka 2009; Jurecka et al. 2008; 

Sempere et al. 2010).  The consequences of inborn errors in purine metabolism are poorly 

understood, and misdiagnosis most likely results in underestimation of their incidence and 

prevalence (Jurecka 2009). 

One approach utilized in the analysis of de novo purine biosynthesis and the role of 

the purinosome is the use of mammalian cells with mutations in the genes encoding 

enzymes of the pathway.  These can be cells isolated from individuals with inborn errors 

of purine metabolism as reported previously (Zikanova et al. 2010; Baresova et al. 2012), 

Figure 1. The de novo purine biosynthesis pathway. Ten enzymatic steps produce IMP, and four 
additional steps produce either AMP or GMP.  Orange boxes indicate pathway intermediates of 

interest.  Red italics indicate CHO cell mutations, and affected enzymatic steps. Enzymes are indicated 
in gray text, and enzymatic steps are indicated (blue lines). 
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or experimentally derived cells which carry mutations in de novo purine biosynthesis 

genes. We have previously reported the isolation and initial characterization of Chinese 

hamster ovary cell (CHO-K1) mutants presumably defective in each of the seven proteins 

required for de novo AMP synthesis (Tu & Patterson 1977; Patterson 1975).  Here we 

report the further characterization of two of these, AdeD and AdeI. AdeD is deficient in 

bifunctional phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole 

succinocarboxamide synthetase (PAICS, E.C. 6.3.2.6/E.C. 4.1.1.21) activity, responsible 

for conversion of AIR (5-aminoimidazole ribotide) to CAIR (5-amino-4-carboxyimidazole 

ribotide) and conversion of CAIR to SAICAR (5-amino-4-imidazole-N-

succinocarboxamide ribotide). AdeI is deficient in bifunctional adenylosuccinate lyase 

(ADSL) activity, responsible for conversion of SAICAR to AICAR (5-amino-4-

imidazolecarboxamide ribotide) and conversion of SAMP (adenylosuccinate) to AMP 

(adenosine monophosphate).  We previously characterized AdeI, and presented evidence 

that AdeI is a useful model for the cellular consequences of ADSL deficiency (Vliet et al. 

2011). 

The metabolic intermediates SAICAR (the product of PAICS and a substrate for 

ADSL) and AICAR (the product of ADSL) regulate the expression of purine pathway 

genes in yeast cells (Benoıt Pinson et al. 2009).  When purine levels are deficient, 

accumulated AICAR enhances binding of pho2p, pho4p, and bas1p transcription factors to 

purine and phosphate pathway gene promoters (Benoıt Pinson et al. 2009).  SAICAR 

enhances pho2p and bas1p binding, which specifically positively regulates purine regulon 

genes (Benoıt Pinson et al. 2009). Whether these intermediates have similar effects in 
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mammalian cells is not known. AICAr (the riboside form of AICAR) is a potential 

antitumor agent and promotes apoptosis in aneuploid cells (Tang et al. 2011; Rattan et al. 

2005).  Administration of AICAr to sedentary mice mimicked the effects of exercise, 

resulting in increased oxidative biomarkers in cultured skeletal muscle cells and enhanced 

running endurance (Narkar et al. 2008).  It has also been demonstrated that inhibition of 

adenylosuccinate lyase activity by SAICAR results in skeletal muscle dysfunction (Swain 

et al. 1984).  These findings show that altering the balance of SAICAR and AICAR disrupts 

cellular functions, including energy metabolism and the regulation of nucleotide synthesis 

and phosphate consumption. 

In addition to its role in supplying the substrate for ADSL, PAICS is of interest 

because mutations in PAICS cause errors in vertebrate embryonic development (Ng et al. 

2009), and because PAICS shows elevated expression in numerous cancers, and may be an 

important target for anticancer therapies (Zaza et al. 2004; Sun et al. 2004). PAICS 

overexpression is likely due to the increased proliferation of tumor cells and consequent 

increased demand for purine nucleotides. Since the two steps catalyzed by PAICS in 

vertebrates are catalyzed by three enzymes (PurK, PurE, and PurC) in bacteria, and the 

mechanism of catalysis is different, PAICS is a target for development of antimicrobial 

drugs (Firestine et al. 2009). If the PAICS deficiency observed in AdeD is due to mutation 

in the PAICS gene, it could serve as a mammalian cell culture model for analysis of the 

mechanism of mammalian PAICS catalysis, which should be informative in the 

development of antimicrobials or vaccines that target SAICAR synthesis (Jackson et al. 

1999), the role of PAICS mutations in abnormal development, and cancer metabolism. 
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Disruption of de novo purine biosynthesis can result in the accumulation of 

intermediary metabolites in cells and body fluids.  The detection of these intermediates is 

difficult, which is problematic for studying de novo purine biosynthesis and identifying 

inborn errors of purine metabolism. This may be why mutations in PAICS have not yet 

been found in humans. A previous study used high performance liquid chromatography 

(HPLC) coupled with pulsed amperometry detection to detect phosphoribosylglycinamide 

(GAR), the product of the second step of de novo purine biosynthesis. This suggests that 

electrochemical detection may be feasible for detection of de novo purine biosynthesis 

pathway intermediates (Taha & Deits 1993). Since the system described requires gradient 

elution and has limited dynamic range, we used HPLC coupled coulometric detection 

(HPLC-EC) to analyze intermediate accumulation in AdeD and AdeI cells.  Coulometric 

detection has a number of advantages over amperometric detection, including increased 

sensitivity, dynamic range, and simplicity of quantitation (Matson et al. 1984).   

Here we report the identification of the mutations in AdeD cells in the PAICS gene 

and their effect on PAICS mRNA and protein expression. Moreover, we report the 

comparative analysis of AdeD and AdeI intermediate accumulation using HPLC-EC.  This 

method readily detects accumulation of AIR in AdeD cells and SAICAR and SAMP in 

AdeI cells and, somewhat unexpectedly, accumulation of AIR in AdeI cells.  
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2.0 Materials and Methods 

2.1 Identification and analysis of PAICS mutations 

2.1.1 Identification of PAICS mutations in AdeD by RT-PCR  

Total RNA was isolated from CHO-K1 and AdeD cells using the RNAqueous4PCR 

kit (Ambion). AdeD and CHO-K1 cDNA was prepared from the isolated total RNA using 

the RETROscript kit (Ambion). The PAICS cDNA was amplified with appropriate PCR 

primers (Table 1) using the Expand Hi-Fidelity PCR kit (Roche) and thermocycler 

parameters: 95° C for 5 minutes, (95° C for 30 seconds, 60° C for 30 seconds, and 72° C 

for 30 seconds) for 35 cycles, and 72° C for 7 minutes.  PCR products were analyzed by 

TAE agarose gel electrophoresis. Single bands were excised from the gel and the PCR 

product was purified using the Zymoclean Gel DNA Recovery kit (Zymo Research). DNA 

concentration was estimated using TAE agarose gel electrophoresis by comparison with 

Low Mass DNA or High Mass DNA ladders (Invitrogen).  DNA samples containing ~60 

ng/kb fragment length were sequenced by the University of Colorado Cancer Center DNA 

Sequencing and Analysis Core.  
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Sequence alignment with BLAST (Becker et al. 2011; Altschul et al. 1990) using 

the Mus musculus PAICS cDNA sequence (NCBI NM_025939.2) identified a CHO 

PAICS cDNA sequence, JP049561.1. Primers for RT-PCR were designed using the 

JP049561.1 sequence, however, nucleotides +1 to +217 were missing from the 5′- end. A 

reference CHO PAICS cDNA sequence was constructed by adding 431 nt from a predicted 

sequence for CHO PAICS (NCBI XM_003513528.1, 2168 bp) onto the 5′-end of 

JP049561.1. All PAICS RT-PCR primers (Table 1) were numbered relative to the +1 

nucleotide in the XM_003513528.1 sequence. The PAICS amino acid sequence derived 

from JP049561.1 is identical to that from XM_003513528.1, except JP049561.1, like 

human, mouse, and rat PAICS sequence, has a K at p.418, while XM_003513528.1 has a 

Q at this position. The resulting CHO reference sequence was used to perform alignments 

Table 1.  Primers used in this study. 
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with sequencing data from CHO-K1 and AdeD cDNA. The Needle program at EBI was 

used for pairwise alignments with our CHO reference sequence. After identification of 

polymorphisms in the CHO-K1 and AdeD RT-PCR data, sequencing reads were translated 

in all reading frames to determine whether any SNP resulted in an amino acid change. 

 

2.1.2 Cloning of PAICS from CHO-K1 and AdeD cDNA. 

PAICS was amplified from CHO-K1 and AdeD cDNA using the same PCR 

protocol described above for RT-PCR. However, the Expand Hi-Fidelity Long Template 

PCR kit (Roche) was used instead of the Expand Hi-Fidelity Template PCR kit (Roche), 

following the manufacturer’s protocol. The In Fusion PCR primers for PAICS are 5U-IF-

PAICS-4F and 3U- IF-PAICS-4R (Table 1). The PCR reactions were cleaned using 

Nucleospin Plasmid (Clontech). 

The pTarget vector (Promega) was linearized overnight with Sma I restriction 

endonuclease and cleaned. The DNA concentration of linearized pTarget and PAICS AdeD 

PCR product was determined by gel electrophoresis as described earlier. The In Fusion HD 

Cloning Kit (Clontech) was used to ligate the PAICS AdeD In Fusion RT-PCR products 

into the pTarget vector.   

 

2.1.3 Mini-preps and DNA sequencing of PAICS-AdeD and PAICS-CHO-K1-pTarget 

Clones  

Mini-preps of plasmid DNA from ampicillin-resistant clones were performed using 

the Nucleospin Plasmid (Clontech) kit. TAE agarose gel electrophoresis was used to 
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estimate the size of plasmids recovered from PAICS-AdeD-pTarget and PAICS-K1-

pTarget clones, and to estimate DNA concentration. DNA sequencing was performed using 

the T7, pTarget seq, 807F, 1095R, and 1265R CHO PAICS primers (Table 1). Samples 

were sequenced by the University of Colorado Cancer Center DNA Sequencing and 

Analysis Core. 

 

2.1.4 Maxi-prep of PAICS-K1-pTarget, E177K-PAICS-pTarget, and W363Stop-PAICS-

pTarget plasmids 

DNA maxi preps were performed using the Nucleobond Xtra Midi Plasmid DNA 

Purification kit (Clontech) according to the manufacturer’s protocol, with some 

modifications. The kit comes with a filter to clarify cell lysates simultaneous with column 

purification. We clarified cell lysates by centrifugation at 12,000 × g (8,500 RPM) for 50 

minutes in a Sorvall RC-5B Superspeed Centrifuge, followed by filtration. The plasmid 

DNA was concentrated and desalinated using the NucleoBond Finalizer Plasmid DNA 

Concentration and Desalination kit (Clontech). The quality and quantity of plasmid DNA 

was quantified by UV spectroscopy at 260 and 280 nm. 

 

2.1.5 Transfection of cDNA expression plasmids PAICS-K1-pTarget, E177K-PAICS-

pTarget, and W363Stop-PAICS-pTarget into AdeD.  

  For each plate, 500 µl OptiMEM I reduced serum medium (Gibco), 20 µl 

Lipofectamine 2000 (Invitrogen), and 8 µg total DNA were combined according the 

manufacturer’s protocol (Invitrogen Lipofectamine 2000). The transfection mixture was 
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added to confluent 60mm plates of AdeD cells and incubated overnight at 37° C, 5% CO2. 

After 24 hr, the medium was replaced with F12 medium supplemented with 10% FCS, 

Normocin (100 µg/ml), and 3 × 10-5 M adenine. After an additional 24 hr, the medium was 

changed to F12 medium containing Geneticin (400 µg/ml) for selection of pTarget-

transfected cells and supplemented with 10% FCS, Normocin (100 µg/ml), and 3 × 10-5 M 

adenine. The purine requirement of AdeD cells stably transfected with wild type (WT) and 

mutant PAICS plasmid cDNAs was assessed by plating cells into α-MEMFCM10 with or 

without 1 × 10-4 M hypoxanthine. 

 

2.2 Analysis of PAICS protein from CHO-K1 and AdeD cells 

2.2.1 Protein Extraction 

CHO-K1, AdeD and AdeI mutant cells were grown in F12 supplemented with 10% 

fetal calf serum (FCS), Normocin, and 3 × 10-5 M adenine when necessary. Confluent 60 

mm plates of cells were rinsed with 1X PBS and the plates were scraped using cell scrapers. 

The total volume of extracted material was centrifuged for 10 minutes at 2,000 RPM at 4° 

C. The pelleted cells were resuspended in buffer (10 mM Tris-HCl pH 8.3, 10 mM KCl, 2 

mM EDTA, 1 mM DTT, 4% glycerol) with Inhibitor Protease Cocktail Tablets (Roche) 

and lysed by sonication twice for 15 seconds at 40 W. The homogenate was centrifuged 

for 20 minutes at 17,000 × g at 4° C and protein in supernatant was measured by Bradford 

assay (Sigma).  
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2.2.2 Western Blot Analysis for PAICS protein 

Total CHO-K1, AdeD, and AdeI protein (20 µg/lane) was separated by SDS-PAGE 

(10% gel) for 4 hours at 130 V. The gel was wet-blotted to PVDF membrane in blotting 

buffer (48 mM Tris, 39 mM glycine, 1.3 mM SDS, 20% methanol) at 100 mA constant 

current for 2 hours. The blot was blocked overnight at 4° C in block solution (5% BSA, 1X 

PBS, 0.05% Tween-20, pH 7.4) followed by a 3 hour incubation in anti-PAICS antibody 

(Sigma-Aldrich HPA035895) diluted 1:150 in block solution.  This was followed by five 

washes (1, 3, 5, 10 and 15 minutes) in wash solution (1X PBS/0.05% Tween-20). The blot 

was then incubated in goat anti-rabbit IgG-HRP conjugate (Pierce-Thermo Scientific 

31460) diluted 1:10,000 in block solution for 40 minutes followed by five washes in wash 

solution.  Blots were treated with chemiluminescent SuperSignal West Femto Maximum 

Sensitivity Substrate (Thermo Scientific) and visualized on a Syngene Genomic and 

Proteomic Gel Documentation System (Syngene, Cambridge, UK). The blot was rinsed in 

1X PBS and incubated in mouse monoclonal anti-GAPDH antibody (Sigma-Aldrich 

G8795) diluted 1:10,000 in block solution for 90 minutes, followed by five washes. The 

blot was then incubated in goat anti-mouse IgM-HRP conjugate (Pierce-Thermo Scientific 

31440) diluted at 1:20,000 in block solution for 40 minutes, followed by five washes and 

visualized as described above. 

  

2.2.3 Expression levels of PAICS transcript in CHO cells  

 PAICS expression levels in CHO cells (AdeD and CHO-K1) were determined by 

quantitative PCR (qPCR) and ΔΔCt analysis. Total RNA isolation and subsequent cDNA 
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synthesis was carried out as described above (methods 2.1). The cDNA was used as a 

template in 25 ul reactions using the iQ SYBER Green Supermix kit (BioRad) with 500 

nM CHO specific PAICS primers (Table 1). The qPCR cycling conditions were as follows:  

95° C for 5 min followed by 35 cycles of denaturation at 95° C for 10 seconds, annealing 

at 60° C for 30 seconds followed by SYBER Green data collection, and extension at 72° C 

for 30 seconds. CHO beta-actin was amplified as a reference control using specific primers 

(Table 1).    

  

2.3. HPLC-EC Analysis of CHO mutant intermediate accumulations 

2.3.1 Accumulation of intermediates  

CHO-K1 and the various adenine-requiring mutants were grown in 60 mm dishes 

in αMEM supplemented with 10% fetal calf serum (FCS), 3 × 10-5 M adenine, and 100 

µg/mL Normocin. Accumulation of intermediates was induced by growth in purine-free 

medium (purine starvation) as follows. Medium in confluent plates was replaced with 

either fresh αMEM containing 10% FCM (twice dialyzed FCS), Normocin, and 10-4 M 

adenine (which we have previously shown drastically reduces de novo purine biosynthesis 

in CHO cells) or with fresh αMEM containing FCM and Normocin but lacking adenine. 

The cells were then incubated for 4-6 hours. After incubation plates were washed twice 

with 1 ml cold 1X PBS then incubated for 30 minutes in 500 µl of 80% ethanol at 4° C. 

The plates were scraped using cell scraper and the ethanol/extract mixture was transferred 

to 1.5 ml microcentrifuge tube and centrifuged for 10 minutes at 14,000 × g at 4o C. The 

supernatant was transferred to a microcentrifuge tube and immediately frozen at -80o C. 
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The frozen extracts were dried under a vacuum in a SpeedVac. The concentrated samples 

were resuspended in 200 µl HPLC grade water [ultrapure (18.2 MΩ cm) water, which was 

filtered through 0.2 µm filter and polished through a C18 Sep-Pak column]. Resuspended 

samples were centrifuged for 15 minutes at 14,000 × g at 4o C to remove any remaining 

cellular debris prior to analysis. 

   

2.3.2 HPLC-EC Analysis 

Separation and measurement of CHO mutant intermediate accumulation was 

performed using reverse phase HPLC-EC with a TSKgel ODS-80Tm C-18 column (250 

mm x 4.6 mm ID, 5 µm) protected by Tosoh Bioscience TSKgel guard cartridge. A column 

temperature of 35° C was maintained throughout the analysis.  A mobile phase consisting 

of 50 mM lithium acetate, 2% acetonitrile, 5 mM tetrabutyl ammonium phosphate (TBAP), 

pH 4.8 was delivered isocratically at a flow rate of 0.7 ml/min. Sample extracts and 

standards were kept at 10° C until a 20 µl aliquot of each sample was injected using an 

ESA autosampler (model 542).  After injection and separation, analytes were detected 

using a CoulArray HPLC system (model 5600A, ESA) with three electrochemical detector 

modules. Each module contains four flow-through coulometric detectors in series set to a 

range of potentials from 0 – 900 mV in 100 mV increments.  Also in series with the 

coulometric detectors was a UV detector set at 240 nm.  ESA CoulArray software was used 

for baseline correction and analysis of all samples.  
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3.0 Results 

3.1 Identification of the PAICS mutations in AdeD cells 

We have shown previously that AdeD cells apparently accumulate AIR, due 

presumably to mutation of the PAICS gene (Patterson 1975).  The cDNA coding region 

for CHO-K1 and mouse PAICS is 1278 nucleotides long with 426 codons including the 

TAA stop codon. Sequencing of PAICS RT-PCR products from CHO-K1 and AdeD cells 

provided approximately 80% of the PAICS cDNA sequence. Comparison to our reference 

PAICS cDNA sequence revealed two sequence variants unique to AdeD, and one sequence 

variant common to both AdeD and CHO-K1 (Table 2). This latter variant is p.I237V 

(c.A709G), located in the loop between β14 and α5. A BLAST search reveals that most 

organisms (including mouse and human) have a V at this position, and we tentatively 

hypothesize that V is the correct residue in CHO cells. Interestingly, p.237 is missing in 

Table 2. Identification of polymorphisms in CHO-K1 and AdeD PAICS cDNA by RT-PCR. The 
polymorphisms are p.E177K (c.G529A), p.W363* (c.G1088A), and p.I237V (c.A709G). ND indicates 

no polymorphisms detected. 
	



	 114	

the structure of human PAICS (2H31.pdb); “Asp221-Thr238 were not visible in the 

electron density map and assumed being disordered in the crystal” (Li et al. 2007). This 

suggests that the region containing p.237 is quite flexible, and that replacement of valine 

with isoleucine (a conservative change) would have little effect on the monomer structure.  

The two variants found only in AdeD PAICS are p.E177K (c.G529A), located in 

α4, and p.W363* (c. G1088A), located in α9.  The AdeD and CHO-K1 cDNAs were ligated 

into pTarget and sequenced.  The sequences were compared to the PAICS reference 

sequence described earlier (431 nt from a predicted CHO-K1-PAICS sequence stitched to 

the 5′-end of JP049561.1).  Our CHO-K1 PAICS sequence is presented (see Figure 2) and 

differs from our reference sequence at c.G-5A (upstream of the coding region), c.A153G 

(a silent mutation), and c.A709G (p.I237V). In CHO-K1, it is possible that one PAICS 

allele has isoleucine at p.237 and the other has valine. The PAICS sequence in our pTarget 

clone has p.237V.  Both JP049561.1 and XM_003513528.1 have c.A709 (p.I237), however 

valine is evolutionarily conserved at p.237 (Li et al. 2007). 

 We hypothesized that the two PAICS variants in AdeD represent two different 

PAICS alleles. To test this, we ligated AdeD PAICS cDNA into pTarget and isolated 

subclones for sequencing. Some subclones contained the c.G529A (p.E177K) variant, and 

some contained the c.G1088A (p.W363*) variant. The c.A709G (p.I237V) variant was 

present only in c.G529A (p.E177K) subclones (Figure 3 A). None of the PAICS-AdeD-

pTarget clones had the wild type sequence.  The PAICS cDNA sequence of K1, and both 

AdeD alleles in our pTarget clones have been deposited in GenBank (NCBI accession 
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numbers KC176530, KC176531, and KC176532).  The AdeD p.E177K allele (KC176531) 

is referred to as “allele 1” and the p.W363* allele (KC176532) is referred to as “allele 2”. 

 

3.2 The mutations in AdeD lead to lack of detectable PAICS protein 

The p.W363* PAICS variant would be expected to be incapable of producing a 

full-length protein. However, to address the possibility that the p.E177K variant produces 

a full-length inactive protein, we carried out western blot analysis of protein extracts from 

CHO-K1 and AdeD.  The result demonstrates that CHO-K1 contains PAICS protein as 

expected. However, AdeD does not contain detectable levels of PAICS protein (Figure 4).  

We also assessed whether PAICS is present in AdeI, which has a mutation in ADSL, the 

next enzyme in the de novo purine biosynthetic pathway. PAICS is abundant in AdeI cells. 

Two bands of similar molecular weight were detected, possibly representing different 

PAICS isoforms. 
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Figure 2. DNA sequence of PAICS-K1 cloned into pTarget.  The adenine in the start 
(ATG) codon is designated +1.  Mutations identified in AdeD are underlined:  

c.G1088A (p.W363*) and c.G529A (p.E177K).  PAICS DNA sequence in capital 
letters represents the truncated cDNA sequence.  PAICS DNA sequence from the 

predicted sequence is in lowercase letters.  Our K1 PAICS sequence is presented and 
differs from our XM_003513528.1: JP049561.1 reference sequence at c.G-5A and 

c.A153G (a silent mutation). The valine (V) at position p.237 (c.A709G) differs from 
the published K1 PAICS, JP049561.1, which when translated has isoleucine (I) at this 

position. 
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Figure 3. COBALT alignment of PAICS protein sequences using Genbank IDs. The Genbank 
IDs for the amino acid sequences are Human (Isoform 2): 119220557, Human (Isoform 1): 

119220559, Mouse: 13385434, Rat: 18266726, Chinese Hamster: 354503014. CHO K1, 
CHO AdeD E177K, and CHO AdeD W363* are described in this report. The E177K, I237V, 
and W363* mutations are indicated by blue arrows. Secondary sequence is indicated above 
the aligned sequences. This representation of the aligned sequences was created using the 

Espript program (http://espript.ibcp.fr/ESPript/ESPript/). 
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3.3 AdeD produces abundant amounts of PAICS mRNA 

 We performed qPCR to determine the level of PAICS mRNA in AdeD and CHO-

K1 cells. Figure 5 shows the relative fold expression of PAICS mRNA in CHO-K1 and 

AdeD cells. There was no significant difference in PAICS transcript levels in AdeD cells 

compared to CHO-K1.  

 

3.4 Alleviation of the purine requirement of AdeD cells by transfection with CHO-

PAICS cDNA 

To confirm that the AdeD mutations inactivate PAICS, we constructed vectors with 

wild type (WT) and both mutant PAICS. We then transfected AdeD cells with each of the 

PAICS vectors. As expected, transfection with WT PAICS cDNA rescued the AdeD purine 

requirement, but transfection with either mutant clone did not. This demonstrates that the 

mutations in AdeD inactivate PAICS (Figure 6). 

 

 

Figure 4.  Protein and RNA 
expression patterns of CHO-K1 
and AdeI mutant. 
A) Western blot of CHO-K1, 
AdeD, and AdeI protein. 
 B) qPCR analysis of PAICS 
mRNA levels in CHO-K1 and 
AdeD cells.  	
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3.5 HPLC-EC analysis of AdeI and AdeD intermediate accumulation 

 We previously demonstrated that AdeD cells accumulate an intermediate presumed 

to be AIR (Patterson 1975). To confirm that this intermediate is indeed AIR, we devised a 

simple method for detecting AIR that does not depend on radioisotopic labeling. Using 

HPLC-EC, we found that AdeD accumulates two compounds upon incubation in purine-

free medium. To determine whether one of these is AIR, we performed HPLC-EC analyses 

employing standard AIR (validated by mass spectroscopic analysis, using a method 

devised in our laboratory to be described elsewhere) and demonstrated that AIR co-elutes, 

and co-oxidizes, with one of the two compounds. The purine deprived cells show 

accumulation of a major peak with a retention time of 5 minutes when compared with 

adenine supplemented cells (Figure 7 A, B). The addition of AIR to the AdeD sample from 

cells incubated in purine-free media does not yield a new peak, but instead increases the 

Figure 5.  Cell growth of AdeD cells stably transfected with WT and mutant PAICS (E177K and 
W363X) cDNA plasmids.  Purine requirement was assessed by plating cells into supplemented 

(+Hypoxanthine) or purine deficient (-Hypoxanthine) ɑMEMFCM10 medium. 
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intensity of an existing peak. AIR standard alone yields a significant peak with the same 

5-minute retention time and the same oxidation pattern.  

Figure 6.  Metabolomic analysis of AdeD (PAICS) mutant CHO cell starvation. The traces show 
the baseline profile of AdeD unstarved (A) and the accumulation of a peak at 5 minutes with a 

maximum peak height in the 400 mV EC channel in the starved sample (B).  This peak 
corresponds to the appearance of a peak at 5 minutes with the same peak profile in the Ade D 

sample spiked with AIR standard (isolated by Zikanova) (C). 
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Similarly, we examined the accumulation of purine intermediates in AdeI cells. 

When cultured in purine-free media, AdeI cells accumulate a compound identified as 

SAICAR (Figure 8 B, C). They also accumulate an additional compound that appears from 

retention time and oxidation characteristics to be the same compound accumulated by 

purine-depleted AdeD. Co-chromatography of AdeI extracts with standard AIR confirms 

that AdeI, like AdeD, accumulates AIR (Figure 8 D). There are no differences detected in 

the intermediate accumulation of starved versus unstarved CHO-K1 cells. 

 

4.0 Discussion 

Analysis of AdeD PAICS cDNA sequences revealed two sequence variants, 

p.E177K and p.W363* which map to separate alleles. AdeD was produced by treatment of 

CHO cells with EMS, which induces point mutations, consistent with our characterized 

(point) mutants. The CHO-K1 variants c.G-5A and c.A153G probably have no 

consequence for PAICS protein structure and function.  One is upstream of the start codon 

and the other is silent.  The c.G-5A and c.A153G variants differ from the predicted CHO 

PAICS sequence (NCBI XM_003513528.1, 2168 bp).  

Except for p.W363* (AdeD), p.E177K (AdeD), and p.I237V [AdeD (the p.I237V 

allele) and CHO-K1], no other differences were found comparing our AdeD and CHO-K1 

PAICS sequences to JP049561.1.  These three variants were identified both by RT-PCR 

and by sequencing the inserts of pTarget clones containing the PAICS cDNA from either 

CHO-K1 or AdeD cells. Transfection of AdeD cells with WT and mutant PAICS vectors 

demonstrates that WT PAICS cDNA rescues the AdeD purine requirement, but 
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transfection with either mutant cDNA does not. Western blot analysis demonstrated 

expression of PAICS protein in CHO-K1 and in AdeI, but not in AdeD. These results and 

the observed abundance of PAICS mRNA in AdeD cells strongly suggests that both the 

mutations observed in PAICS lead to production of truncated and/or unstable protein. 

The p.E177K substitution is located in the SAICARs domain of PAICS in an alpha 

helical (α4) region of the protein important for interaction of the SAICARs and AIRc 

domains as well as maintenance of SAICARs structure (Figure 3). It may also play a role 

in substrate channeling within PAICS (Li et al. 2007). The fly, frog, chicken, cattle, mouse, 

and human PAICS all have p.E177 in the α4 helix (Li et al. 2007).  At physiological pH, 

glutamate (E) is negatively charged. In the structure for human PAICS (2H31.pdb, Li et al. 

2007), p.E177 is extremely close to p.R102 (arginine), which is located next to β6, between 

β6 and α2. Arginine is positively charged, and it is possible that attraction between p.E177 

and p.R102 in the wild type protein may play a role in stabilizing PAICS monomer 

structure. If this is the case, p.K177 (lysine) would be disruptive; it is positively charged, 

so rather than attraction between it and p.R102, it would most likely repel p.R102. In 

addition, K has a longer side chain than E, so steric hindrance may also be a destabilizing 

factor. This is consistent with the possibility that the mutation affects the folding of AdeD 

PAICS, thus leading to an unstable protein. Indeed, analysis of this mutation using 

PoPMuSiC 2.1 calculates a ΔΔG of 0.41 and predicts that this is a destabilizing mutation 

for PAICS (Yves Dehouck et al. 2009; Dehouck et al. 2011). 
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Figure 7.  Metabolomic analysis of the 
AdeI (ADSL) CHO cell starvation. The 
traces show the baseline profile of AdeI 
unstarved (A) and the accumulation of 
a peak at 25 minutes in the starved 
sample (B).  This corresponds to a peak 
in the unstarved sample spiked with a 
SAICAR standard (C).  Additionally, a 
small peak at 5 minutes reminiscent of 
AIR accumulated in small 
concentrations in the AdeI starved 
samples. This suggests that 
accumulation of SAICAR may inhibit 
the function of PAICS resulting in AIR 
accumulation (D). This peak 
corresponds to AIR in starved AdeI 
cells spiked with AIR (E). 
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It is unlikely that the p.W363* mutant monomer could participate in the octameric 

form of the PAICS protein since structures beyond the carboxyl end of p.362, such as the 

α10 and α11 helices believed to form the dyad symmetry interface crucial for assembly of 

the octamer, and loop 4, which forms part of the AIRc active site (Li et al. 2007), would 

be absent. The seven-turn α11 helix interacts with the six-turn α4 helix in a coiled coil, so 

this interaction would be absent as well (Figure 3).  AIRc activity and assembly of an 

octamer would be highly unlikely (Li et al. 2007). 

Previously, we characterized mutations in AdeI (A291V in ADSL) and AdeC and 

AdeG (both deficient in trifunctional GART activity) (Vliet et al. 2011; Knox et al. 2008). 

Here we report characterization of two sequence variants, p.E177K and p.W363*, in two 

PAICS alleles that are responsible for the purine auxotrophy observed in AdeD.  Thus, 

defined mutants exist in 3 of the 6 proteins required for de novo purine biosynthesis in 

mammalian cells.  We are currently characterizing the mutations in the other mutant CHO 

cell lines (Figure 1). 

We have reported previously that isolates of AdeC and AdeG produce markedly 

reduced or undetectable levels of trifunctional GART (triGART) protein and also of 

monofunctional GARS (Brodsky et al. 1997).  In addition we have published evidence that 

CHO-K1 AdeB mutants produce undetectable levels of FGAMS 

(phosphoribosylformylglycinamidine) (Barnes et al. 2001; Patterson et al. 1999).  We have 

also reported a mutant CHO-K1 cell that overproduces FGAMS (Barnes et al. 2001).  Deng 

et al. (Deng et al. 2012) recently presented evidence supporting the hypothesis that 

triGART and FGAMS are core components of the purinosome and that PPAT and FGAMS 
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interact intracellularly, a hypothesis we proposed previously on the basis of somatic cell 

genetic evidence (Oates et al. 1980).  These mutations, resulting in altered levels of de novo 

purine biosynthesis proteins, serve as important model systems for analysis of purinosome 

formation and function.  We show here that AdeD cells produce undetectable levels of 

PAICS protein.  This collection of mutants should be helpful in analyzing the formation 

and functioning of the purinosome.  For example, Deng et al. (Deng et al. 2012) 

hypothesize that PAICS, ADSL, and ATIC interact individually with the core purinosome 

but may also interact with each other.  Clearly, interactions between ADSL and PAICS 

cannot take place in AdeD cells since there is no detectable PAICS protein.  It would be 

important to know what the consequences are for other protein-protein interactions relevant 

to the purinosome.    

One difficulty in analysis of de novo purine biosynthesis is that robust methods that 

are not reliant on the use of radioisotopes to detect and quantify pathway intermediates 

from small samples of cells are not readily available. Our analysis of AdeD and AdeI 

demonstrates the utility of HPLC-EC for these studies. The method has provided 

convincing evidence that AdeD cells incubated in purine-free conditions accumulate AIR, 

the initial substrate of the bifunctional enzyme PAICS (Figure 7 B, C). Similarly, HPLC-

EC readily detects accumulation of SAICAR in AdeI cells (Figure 8 B, C). 

HPLC-EC has provided new insights into intermediate accumulation under 

conditions of purine depletion. For example, AdeI cells incubated in purine-free media 

accumulate AIR in addition to SAICAR. AdeI cells have virtually undetectable levels of 

ADSL activity. It is not clear whether cells from ADSL deficiency patients accumulate 
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AIR or not, since these cells all have significant residual ADSL activity. If AIR does 

accumulate in these cells, it may potentially play a role in pathogenetic mechanisms of 

ADSL deficiency. 

HPLC-EC analysis demonstrates that AdeD and AdeI cells accumulate a second 

compound that was not identified. The de novo pathway suggests that this compound may 

be carboxy-AIR (CAIR), the substrate of the second sequential step catalyzed by PAICS. 

However, the lack of detectable PAICS protein argues against this interpretation. Other 

possibilities are that the compound may be aminoimidazole riboside, or aminoimidazole, 

or an earlier intermediate in the pathway.     

HPLC-EC offers many advantages for these analyses.  Samples undergo redox 

reactions with 100% efficiency, and the series of incremental voltages allows for high 

specificity and resolution of co-eluting compounds.  HPLC-EC is also extremely sensitive, 

capable of detecting 1-10 pg of a given compound. Detection of SAICAR is about 200 

times more sensitive by EC than by UV. Detection of AIR by UV is possible, but absorption 

is relatively low. The molar extinction coefficient for AIR (250 nm, pH 6) is 4170 M-1 cm-

1 (Meyer et al. 1992).  Our results demonstrate the utility of HPLC-EC as a detection 

method for investigating the de novo purine biosynthesis pathway and detecting its 

intermediates. We are currently investigating detection of other de novo purine 

biosynthesis intermediates using HPLC-EC. 

Current clinical methods used to test for purine intermediate accumulation 

generally detect dephosphorylated compounds in bodily fluids. HPLC-EC is sufficiently 

sensitive that it can likely be used to detect the true pathway intermediates in clinically 
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relevant samples such as skin biopsies, fibroblast cultures, or small blood samples. 

Additionally, HPLC-EC methods could be devised to detect dephosphorylated compounds.  

These possibilities are currently under study. 

 

 

 

 

 

Acknowledgments 

This work was supported by grants from the Bonfils-Stanton Foundation and the 

Ludlow-Griffith Foundation to DP, and Partners in Scholarship and Summer Research 

Grants to KL. VB, VS, SK and MZ were supported by the by Charles University 

institutional programs PRVOUK-P24/LF1/3, UNCE 204011 and SVV2012/ 2645, and by 

grants LH11031 from The Ministry of Education of Czech Republic and P305/12/P419 

from the Czech Science Foundation. The University of Colorado Cancer Center DNA 

Sequencing and Analysis Core is supported by NIH-NCI grant P30 CA 046934. 

 

 

 

 

 

 



	 128	

 

 

 

Future Directions 

 

We performed a metabolomic analysis of the Ts65Dn mouse model of DS, aging, 

and early onset Alzheimer’s disease.  The goal was to search for age-associated changes in 

the mice that are related to the triplication of the Mmu16 chromosome.  Additionally, we 

treated the mice with rapamycin, an FDA approved immunosuppressant drug with pro-

longevity properties, and tried to elucidate the changes in the metabolome due to treatment.  

We find that there are changes to the metabolome of the Ts65Dn mice caused by the 

triplication of Mmu16.  These changes may promote the developmental delays that 

individuals with DS experience as well as the changes they encounter as they progress to 

old age.  Considering metabolomics as a fingerprint of phenotype, these changes may 

reflect the end product of the developmental delays and could be used as a biomarker for 

discovering therapeutics.  With this in mind, it will be important to discover if these 

metabolome changes reflect by-products of disrupted development and aging, or if they 

actively contribute to the phenotype by creating a neurotoxic environment.   

Our study also revealed that long-term treatment with rapamycin ameliorates the 

changes seen in the mice that may be promoting the disruption in development and aging.  

When trisomic mice are treated with rapamycin, the metabolites we see increased are no 

longer in abundant levels, this indicates that rapamycin may be having a beneficial effect.  
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Both individuals with DS and the Ts65Dn mice have dysregulated immune function, 

possibly due to the triplication of four of six interferon receptors causing hyperactivity.  

Chronic treatment with an immunosuppressant such as rapamycin may help to ameliorate 

this disrupted immune function.  We identify changes that implicate a change in tryptophan 

metabolism, which is regulated by interferon gamma signaling.  Interferon gamma is 

triplicated in DS.  Future studies could focus on the changes that occur through interferon 

gamma signaling and determining if these cause a change in the metabolites we see 

upregulated.   

Most importantly, in the future, attempting to identify the unknown metabolites we 

find changed in the different groups will be of importance.  Of these, the most valuable 

may be Unk76, which appears to be coupled to rapamycin treatment.  Perhaps using MS to 

determine what this metabolite is may help give more insight to the pathways disrupted in 

the Ts65Dn mice as well as in individuals with DS.  It may also prove to be a novel 

metabolite that can be used as a target for therapeutics. 

In addition to this work, determining if these changes occur in the cerebellum and 

blood samples we collected.  This may help to identify possible blood biomarkers for DS 

and aging.   

We also performed a metabolomic and biochemical characterization of the PAICS 

enzyme of the DNPS.  This enzyme has been implicated as a possible anti-cancer drug 

target.  Further analysis of the PAICS enzyme using human cells or mouse models with a 

similar approach to the Ts65Dn rapamycin study may help to further this line of research.  

 



	 130	

 

 
 
 

Appendix 1 
Supplement to Chapter 2 

 

Section 1 – 6-month frontal brain pattern recognition analysis 

The following are supplemental data plots for 6-month frontal brain samples. 

Comparison of disomic and trisomic mice fed control diet. 
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Comparison of disomic and trisomic mice fed microencapsulated  rapamycin diet 
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Comparison of control diet and microencapsulated rapamycin diet in disomic mice 
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Comparison of control diet and microencapsulated rapamycin diet in trisomic mice 
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Section 2 – 18-month frontal brain pattern recognition analysis 

The following are supplemental data plots for 18-month frontal brain samples. 

Comparison of disomic and trisomic mice fed control diet. 
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Comparison of disomic and trisomic mice fed microencapsulated rapamycin diet. 
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Comparison of control diet and microencapsulated rapamycin diet in disomic mice 
 

 
 



	 143	

	

	
	
	
	
	
	
	
	
	



	 144	

	
	
Comparison of control diet and microencapsulated rapamycin diet in trisomic mice 
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Section 3 – 6-month cerebellum pattern recognition analysis 

The following are supplemental data plots for 6-month cerebellum brain samples. 

Comparison of disomic and trisomic mice fed control diet. 
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Comparison of disomic and trisomic mice fed microencapsulated rapamycin diet. 
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Comparison of control diet and microencapsulated rapamycin diet in disomic mice 
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Comparison of control diet and microencapsulated rapamycin diet in trisomic mice 
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Section 4 – 18-month cerebellum pattern recognition analysis 

The following are supplemental data plots for 18-month cerebellum brain samples. 

Comparison of disomic and trisomic mice fed control diet. 
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Comparison of disomic and trisomic mice fed microencapsulated rapamycin diet. 
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Comparison of control diet and microencapsulated rapamycin diet in disomic mice 
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Comparison of control diet and microencapsulated rapamycin diet in trisomic mice 
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Section 5 – 6-month frontal brain targeted metabolomics analysis 

The following are supplemental data plots for 6-month frontal brain samples 

Comparison of disomic and trisomic mice fed control diet. 
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Comparison of disomic and trisomic mice fed microencapsulated rapamycin diet. 
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Comparison of control diet and microencapsulated rapamycin diet fed to disomic mice. 
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Comparison of control diet and microencapsulated rapamycin diet fed to trisomic mice. 
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Section 6 – 18-month frontal brain targeted metabolomics analysis 

The following are supplemental data plots for 18-month frontal brain samples 

Comparison of disomic and trisomic mice fed control diet. 
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Comparison of disomic and trisomic mice fed microencapsulated rapamycin diet. 
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Comparison of control diet and microencapsulated rapamycin diet fed to disomic mice. 
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Comparison of control diet and microencapsulated rapamycin diet fed to trisomic mice. 
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