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ABSTRACT 

 By applying common financial risk assessment models to the network economy 

formalized in Delli Gatti et al. (2006), and by contextualizing both in the broader 

literature on complexity in economic systems, the question of convergence in economic 

models is addressed. Critically, a formal state condition is identified which can contribute 

to the emergence of periods of extreme divergence from expected conditions even in a 

model characterized by restrictive assumptions regarding agent choice and market 

structure. The strength of the impact of this state condition, here the topology of a credit 

network, on the dynamics of the economic system is furthermore shown to be highly 

dependent upon the structure of the market. The existence of such state conditions has 

fundamental implications for the evaluation of risk and institutional design in economic 

systems 
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I Complexity 

 Reductive Theories and Complexity 

 In our attempts to understand the world we live in we are often forced to reduce 

extreme complexity to a tractable form. This is the pursuit of the many theorists across all 

disciplines who have built the great abstract constructions of science and philosophy: to 

render a complex world understandable. In doing so it is unavoidable that we exchange 

some degree of precision in subjective observation for the creation of abstract 

frameworks. It must granted that such reduction is necessary, for without imposing order 

on our observations we have no way of assessing the effect of any hypothetical action, or 

attempting to predict future states upon which to base our decisions. Without a structured 

understanding of reality we are left rudderless; we cannot choose. The critical question, 

then, is to understand to what degree our impositions on reality blind us to the very 

realities we are attempting to capture. When, in reducing observed phenomena to an 

understandable form, do we fool ourselves into dismissing the possibility that our 

framework may be wrong? Are we prepared to speak accurately to how severe the 

deviation may be? How do we evaluate whether the framework serves as an aid to 

decision making and not an obstruction? The possible questions about any such 

framework are numerous, but resolve themselves into three general forms. The first is a 
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question of optimality: does the model approach reality as closely as possible given its 

limitations? The second is one of complexity: how can we understand the possible 

magnitude of the deviations from the predictions of the model, given that the true system 

it attempts to summarize is in reality much more complex? One might be tempted to say 

that this second question is really subsumed into the usual formulation of a confidence 

interval. In reality, it is not. A confidence interval speaks to the level of error that is 

possible given the stability of the system, we might say it is the inherent instability given 

that the model obtains. Since the reality is much more complex, we must be concerned 

about whether the dynamics possible in the higher order system are significant enough to 

confound our lower order model, whether there is a more fundamental uncertainty in 

parameter choice than can be captured in a model of lower-order complexity. Finally, as 

our capabilities in modeling complexity have increased, we must ascertain whether or not 

opportunities exist to lower the degree to which we have abstracted ourselves from reality 

and in so doing begin to understand in some way the fundamental uncertainty that 

plagues our models. While I do not propose to have complete answers to these questions, 

in some sense their application to our understanding of financial risk is the aim of this 

work. In order to do so it will be necessary to rest upon a particularly important 

abstraction, one which attempts to categorize complexity. 

 In the introduction to Barriers and bounds to Rationality, Peter Albin presents just 

such an abstraction. The system is designed to mirror Chomsky’s presentation of formal 

language and presents a useful framework by which to understand the somewhat 

nebulous term, “complex dynamics”, through the dynamics of the emergent behavior a 
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given system is capable of producing. In Albin’s framework, which for want of a better 

term I will refer to as our “complexity scale”, the lowest category describes what we 

might call trivial systems. Such systems lack dynamics entirely and can be defined as 

equilibrium states, in such a framework prediction is meaningless since current 

conditions will persist for all time. The second state, which might be named “Convergent 

Dynamics”, define the family of systems producing dynamics which can be modeled 

perfectly by well-behaved systems, their behavior exhibits no discontinuity and collapses 

into a linear combination of the variables in parameter space. Within these models 

prediction is possible indefinitely: the dynamics support only systems with constant or 

absent variability. The third level is familiarly referred to as “Chaos”; systems exhibiting 

third-order complexity produce dynamics that are imperfectly predictable over the short 

term, and which can be understood as exhibiting the qualities of chaotic attractors. The 

dynamics may be attracted to fixed points, but their rate of convergence might be 

arbitrarily large or small given the position of the endowment point in parameter space. 

Furthermore, within systems of third-order complexity, the relationships governing the 

emergent dynamics of the system are variable over periods of time. The resulting shifting 

patterns of attraction can lead to the appearance and disappearance of predictable system 

behaviors, prediction is severely impeded in third-order systems, but possible within 

certain bounds. Finally, fourth-order complex systems produce dynamics perhaps best 

formalized as white noise with infinite variance. No objective model can be overlaid 

upon observations to produce prediction; each observation exists in its own subjective 

reality (Albin 1998). 
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 It’s important to note that Albin does not assert that a system sufficiently complex 

to produce fourth-order dynamics necessarily does so, merely that once a certain level of 

complexity in the relationship between agents and their respective choice matrices is 

achieved, such dynamics are possible. Whether or not dynamics of varying degrees 

obtain at any given time is dependent on several state conditions, and these dependencies 

may be more or less apparent in any given system. If these conditions vary over time, the 

dynamics presented may bifurcate from one level of complex behavior to another. An 

example: today we may all agree that the value of Apple stock is fairly well priced at 

$636, which will cause us to interact in the market in a fairly benign way with minor 

adjustments around that value-pricing due to our various beliefs about the long term 

validity of that price. However, if some major event called that price into question, for 

example if the patents that form the basis of Apple’s revolutionary tablet and smartphone 

platforms were invalidated, a great many of us may begin to disagree fundamentally with 

that price. Worse, we all may begin to disagree with one another over the new price as 

well, greatly increasing volatility and reducing the convergence of the time-evolution of 

price to any given function of known parameters. The value of the stock begins to behave 

unpredictably.  

 In analyzing the exhibited dynamics of the above example we might note that the 

state condition supporting convergence was the set of factors supporting the level of 

certainty of the agents interacting in the market, when opinions became much less 

certain, a model predicting the price of the stock would have “diverged” with very wide 

implied variance. State conditions are then the conditions which support the foundational 
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relationships required for a given model to obtain, the environmental factors which 

support dynamics pointing to a given assumption. In the context of the financial crisis, for 

example, the growth of fraud, affirmation bias, leverage, and the mispricing of risk served 

as evidences of the collapse of the state conditions supporting the orderly valuation of 

mortgages. The collapse of these conditions themselves did not immediately lead to the 

severe uncertainty and chaotic price movements characteristic of the worst days of the 

crisis, instead, it rendered such a scenario possible. One could assert that the bifurcation 

from orderly market interactions to disorderly ones was made possible via these changes. 

Any given model is characterized by a set of such conditions, and failures to understand 

how those conditions might change over time constitute an assumption that a given 

model, which is by definition reductive, expresses a perfect reflection of reality. 

 The vast majority of economic models are predicated upon a theoretical 

framework constructed within a system capable only of producing at most second-order 

complexity. These are the familiar equilibrium models introduced in freshman economics 

courses, in which systems of supply and demand schedules interact such that any point in 

endowment space collapses quickly to equilibrium (the framework in general lacks even 

the dynamics to describe this collapse, it is assumed to take place in an arbitrarily small 

period of time in relation to the period of concern of the model). The ultimate expansion 

of these models merely extends the concept into arbitrary numbers of interacting markets. 

Event those economic systems concerned with dynamics are in general fairly limited in 

their use of the available family of dynamics systems. Neoclassical models of capital 

formulation generate either linear growth, or variations of cyclical behavior. Even the 
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most extreme examples deal with the interaction of multiple equillibria; and the dynamics 

of movement between these equilibria is often quite thoroughly underdefined. In fact, in 

applying fairly simple stochastic elements derived from the field of thermodynamics to 

explain the dynamics of agent interaction in the familiar 2x2x2 Edgeworth box model, 

Duncan Foley effectively destroys a common neoclassical conclusion: that agents 

beginning with the same endowments arrive at the same final allocations (Smith and 

Foley 2008). Such a result is the consequence of applying a model which exists in static 

time to a world which exists in complex space. 

 In every case, as soon as inter-temporal considerations are allowed, second order 

systems begin to impose strange restrictions on the behavior they model. We are often 

forced to imagine the ability of economic agents to solve optimization in infinite time (as 

in game theory) or to assume that the full trajectory of future allocations of consumption 

and capital can be correctly assessed by agents (as in General Equilibrium with 

investment). Such paradoxes have been touted as evidences of the strength of the 

deductive reasoning behind them: “economist Robert Lucas has boasted that the axioms 

underlying classical economics are ‘artificial, abstract, patently unreal’. […]Lucas insists 

that such unreal assumptions are ‘the only scientific method of doing economics’” 

(Davidson 2009, p.5). In actuality, for a discipline occasionally accused of suffering due 

to its love affair with science, in terms of complexity, economics has been left behind by 

the physical sciences. While I am not personally familiar with much in the way of 

theoretical physics, the postulation of steady state systems appears positively Newtonian. 

As was mentioned before, the application of statistical dynamics can invalidate 
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neoclassical conclusions, and there likely exists a wealth of additional value to be gained 

from the further study of complexity in economics. Similarly, meteorology has advanced 

beyond economics by leaps and bounds (with great results too, once our partners in 

fruitless prognostication, meteorologists are now able to predict the occurrence of 

tornadoes by several minutes in most cases, a critical improvement. We economists find it 

difficult even to agree that certain economic phenomena have obtained in the past, let 

alone that they will obtain in the future). 

 We are forced to conclude that a vast sample of economic models by their nature 

ignore, or treat in only the most perfunctory or arcane manner, the question of agent 

behavior in a world with a time dimension. In the realm of risk management this is highly 

problematic, as all risk is by nature inter-temporal, and worse, intertemporally uncertain. 

To the extent that economic systems do in fact exhibit third-order and fourth-order 

complexity, the possibility exists that we are severely mispricing risk. Such an assertion 

would seem to be fairly obvious in the context of the financial turmoil of the past few 

years. However, it might be fair to wonder what statistical artifacts would enable us to 

assess whether recent mispricings may have been due to the inherent complexity of 

financial systems (in effect whether pricing predictions were too tight and implied more 

foresight than may have been possible), or whether the mispricing was due to market 

failures that drove market pricings away from  long run equilibrium (in effect, that there 

was no problem with the implied precision of the estimate, but rather only that significant 

biases existed). The answer lies in the fundamental assertion of financial economics of 

the validity of mean field approximation. 
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 Challenges for Classical Convergence 

 As has been previously alluded, the degree of precision in prediction falls 

precipitously as the degree of complexity of a given system increases. Unfortunately, this 

lack of precision has been criticized as a weakness of complex models when assessed 

against the cohesive structure which serves as the foundation of mainstream economics. 

As a consequence the models of the mainstream often fail to implement the lessons of 

complexity, and practitioners are repeatedly surprised when the “impossible” obtains, 

when in actuality they should expect a landscape in which the state conditions supporting 

their models are prone to bifurcation. In finance, the efficient market hypothesis 

postulates a marketplace in which deviations from “true” pricing, or that implied by the 

correct assessment of the probability of future returns, are allowed only to obtain in the 

short run (see the definition of EMH given by Malkiel 1992). Long run pricing 

assumptions common to such equilibrium models have served to reinforce  the sorts of 

affirmation bias that have crippled the ability of the financial system and regulatory 

agencies to correctly asses the likelihood and impact of systemic failure. Such paradigms 

do not allow for the existence of the bifurcations possible in the real world. 

 This mainstream framework of fundamental coherence has been challenged by 

significant bodies of economic inquiry. Notably, Kahneman and Traversky have 

submitted a theory of decision making which poses very difficult questions for the 

rational agent hypothesis, leading to the emergence of studies into Behavioral Economics, 

in which agents cannot be expected to exhibit classically rational behavior (Kahneman 
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2011). But, we need not even go as far as the behavioral economists have in order to find 

crippling breakdowns of the system’s conclusions; without even relaxing the assumption 

that agents behave rationally, it can be shown that the conclusions of the neoclassical 

system fail to obtain when agents are faced with a limited subset of the available 

knowledge (Greenwald and Stiglitz 1988). 

 Such assertions, that economic actors are not omniscient, or that economic agents 

fail to exhibit perfectly rational behavior, are in most cases granted. In fact, most 

economists would likely agree that the behavioralists have discovered interesting artifacts 

of human behavior. What is contended, however, is that while such disturbances can 

cause short term instabilities, the long run systemic dynamics can be defined within the 

bounds of the rational model, that instabilities are cancelled in the mean. This is of course 

a direct rejection of third and fourth-order complexity, under which such mean field 

approximations can fail as useful descriptions of systemic behaviors since state 

conditions are subject to change. Such losses of convergence, and to a resulting extent 

therefore a loss of numerical precision in the definition of the dynamics, are artifacts of 

real world market behavior. The qualitative story told becomes deeply cautionary: the 

value of precise modeling is bounded by the fluctuating state of the system.  

 Interestingly, while increases in the power of modern computing and the 

sophistication of statistical methods have made it possible to estimate the predictions of 

increasingly complex models, the result seems to have been ever stronger assertions of 

certainty and coherence rather than a understanding of the implications of divergence in 

higher-order complex systems. Commentary during the years leading up to the most 
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recent financial crises has been characterized by a common theme. “Innovations” in the 

financial services sector have purported to leverage these advances to increase the 

efficiency of economic allocation (Ang and Cheng 2005, Wiel and Yves 2010). In 

particular, the refrain has been that the increased pace of innovation in the financial 

markets has likewise increased the efficiency of the allocation of financial risk, those 

actors most willing (and possibly most able, depending on the model examined) to 

assume the risk do so and are accurately compensated for it (These largely flow from 

Arrow 1964). In the aggregate the risk is “shared” with complex interconnections 

between financial agents ensuring that the effects of risks when realized are diversified 

and that their impact is dispersed in such a way that the ability of the financial sector to 

facilitate real production is not unduly impacted.  

  

 Approach 

 It is unfortunate that this ideal diversification has not obtained in actual markets. 

Purely or primarily financial crises have caused massive damage to economic systems, 

arising in markets characterized by differing degrees of regulation and government 

intervention. The narratives proposed as backdrops to each of these financial crises have 

certainly varied, and it is not the aim of this work to support or refute any particular 

narrative of any particular crisis. Instead, by studying the nature of financial prediction 

(and by extension, the entirety of the general equilibrium framework under Arrow-

Debreu) in light of the rich complexities possible in agent based models, it is hoped that 

something constructive can be expressed in the direction of answering an ontological 
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question: What are our abilities in the face of a financial system that is characterized by a 

highly variable structure? 

 Agent Based Modeling (ABM) is a simulation approach which models micro-

level behavior (agent level) to produce systemic results. Similar to the neoclassical micro 

foundations of macro behavior, in ABM agents are granted endowments in the form of 

initial conditions, and rules defining their reactions to external stimuli (the role played by 

profit and utility-maximization in the neoclassical framework). However, the similarities 

end there. The neoclassical approach goes on to formulate assumptions about agent 

choice in a very specific way, with continuously defined and differentiable utility and 

production functions, with the express aim of arriving at an analytical solution to the 

problem of agents’ choices in a system with many agents. Indeed, the Arrow-Debreu 

framework was in a sense constructed to solve exactly that problem and arrive at the 

General Equilibrium condition as an analytical solution to economic systems. Of course, 

complex systems often have no such convenient analytical solutions. In agent based 

modeling agent choice is not so constrained, the decision rules granted agents can allow 

for discontinuity and context sensitivity, allowing for the creation of systems of the 

highest levels of complexity. Agents arrive at choices in an algorithmic way, indeed, 

analytical solutions may not obtain. The interaction of these agents when placed in an 

economic context proceeds via a market or a set of conditions contextualizing their 

choices, and the resulting emergent behavior makes up the macroeconomic results of 

differing micro-economic decision matrices. Importantly, causation can go both ways, 

from agents onto macroeconomic effects, and from institutional structure onto agents. 
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The definition of agent choice must proceed with caution, however, due to the possibility 

of arriving at fourth order dynamics (infinite variance). It is therefore perhaps most useful 

to employ agent based modeling towards a better understanding of the conditions that 

drive bifurcation and uncertainty in economic systems. The extent to which such 

conditions exist may define the limits of economic forecasting. In this work ABM is 

employed in informing the extent of our ignorance, rather than purporting to improve our 

ability to precisely forecast future events. 

 Several agent based models have been proposed to explore the possible 

determinants of real world behavior; in particular the literature has focused on the 

restriction of agent’s ability to garner complete information about their world, building 

perhaps on the introduction of heterogeneous reactions on the part of agents to observed 

phenomena. The problem of choice, then, becomes the complex attempt on the part of the 

agent to assess the best reaction to real world phenomena, given what they observe. 

Results garnered are centered on the problem of framing behavioral choices to lead to 

optimal outcomes (from the realm of behavioral economics), or upon the best policy 

anticipation for the results of uninformed choices (Alan 2011, Chakrabati et al. 2011). 

Another body of inquiry, and that studied in the few models touched upon below, centers 

around the effects of the structure of an economy upon the outcomes of the actions of 

agents with tightly defined choice sets. In a given “network” economy, the choices 

available to the agent are defined by the topology of the network. An agent may only be 

able to enter into a credit or purchase relationship with a defined set of partners within the 

model or it may have a set of choices regarding which partners it wishes to do business 
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with. Agent relationships, behavior, and economic outcomes, are consequently dependent 

on network which is in turn defined by behavior. The resulting feedback loops prove to 

lead to the sorts of chaotic returns and divergent expectations common in the real world, 

and certainly provides an avenue for exploring the complexity of the time path of such 

second order metrics as covariance/correlation.  

 Most importantly, when leveraging such agent based models, it becomes possible 

to speak in a very concrete way about the structural foundations of the emergent behavior 

of the system. The main thrust of this work will center on a well-known agent based 

model, presented in Delli Gatti et al. (2006), which constructs a framework for assessing 

the effects of credit topologies (the weights and layout of the various credit arrangements 

in the productive process) on firm profits and bankruptcy cascades. By leveraging an 

existing risk evaluation technique, a diversification coefficient based upon value-at-risk 

and defined in Perignon and Smith (2010), the model can be shown to create dynamics 

which “break” the foundational assumptions of a variety of risk-management techniques. 

Furthermore, it will be shown that the severity of this violation is dependent in a 

fundamental way on the degree of concentration of credit connections. This narrow 

assertion (focusing on the limitations of certain families of risk management techniques) 

sits solidly in the context of a broader ongoing argument over the fundamental limits of 

prediction in economic systems, as such, it will be beneficial to contextualize the work 

via a discussion of the question of quantifiable vs. fundamental uncertainty as it obtains 

in the frameworks posited by Keynes (writing on fundamental uncertainty) and Arrow 

and Debreu (assuming quantifiable uncertainty). Once placed in this broader context, a 
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description of the model and techniques used in the work will be followed by an 

exploration of the mechanisms that drive the complex results discovered. Finally, a 

presentation of the results obtained will illustrate clearly the conclusions of the work, 

namely that the simple model produced in Delli Gatti et al. (2006), and to some extent the 

2010 reformulation, produces a bifurcating realization of variable state-conditions (in this 

case the structure of the correlation between bank profits). In short the fundamental 

question of prediction ceases to be framed in the context of correctly calibrating signal 

weights, and must be predicated upon the realization that real-world economies are 

shaped by a system capable of producing the highest of complexities, in which not all 

state-conditions lead to predictive models that converge. 

 

 

 

 

 

 

 

 



15 
 

 

 

II. Lit Review 

 Keynes, Minsky, Albin, and Fundamental Uncertainty 

 In a 2009 article Paul Davidson asserts that there exist two distinct modeling 

approaches which attempt to define the nature of the operation of a capital economy. He 

names these two approaches “Classical Economy Theory”, and the “Keynesian Theory of 

Liquidity in an Entrepreneurial Economy” (Davidson 2009). As Davidson explains, the 

primary difference between the two theoretical frameworks lies in their treatment of 

economic agents’ decision making in the context of unknown future events. In the 

Classical theory, agents’ current period decisions are contingent upon their understanding 

of the likelihood of future events, which is in turn defined by their assessment of the 

statistical occurrence of like events in the past. In all cases, for the operating of the 

general equilibrium assumptions underpinning classical ideas of equilibrium (and thus the 

entire basis for the theoretical conclusion of efficiency), this understanding of the 

likelihood of future events must be complete, in that to every future possibility a 

probability must be defined. Davidson goes on to explain that not only must these 

probability distributions be defined, but that additionally “these subjective distributions 

must be equal to the objective probability distributions that will govern outcomes at any 
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particular future date” (Davidson 2009), a requirement known as the ergodic axiom (more 

on this later).  

 By contrast, Keynes asserts in the General Theory that when making investment 

decisions in the current period, agents are faced with a set of future conditions that while 

conditional on current actions, are fundamentally uncertain. Thus, when attempting to 

make these decisions, agents must rely on their “subjective degree of belief regarding 

future events” (Davidson 2009) (in effect the assertion is that agents can be wrong). It is 

interesting to note as well that Keynes’ understanding of economic agents as 

fundamentally uncertain, as opposed to fundamentally certain, lends support to and quite 

obviously predates the observations of “herd” behavior and other exhibitions of human 

response to extreme uncertainty commented upon by the behavioralists (Davidson 2010). 

In such a context equilibrium conditions cannot be expected to obtain, and the 

conclusions of the Efficient Market Hypothesis (as derived from the equilibrium results 

of Arrow 1964) are called into serious question. If agents cannot be relied upon to make 

decisions to invest based upon the optimal coordination of all future states, and if that 

failure is not due to the usual descriptions of market failure, whether they obtain in the 

form of “government shocks” forcing the system from a long run equilibrium, or from 

sub-optimal equilibria due to incentive structures such as “excessive discounting” or any 

other relaxation of the strict neoclassical theory, but rather is due to failure of equilibrium 

conditions to obtain even in a free market, then the conclusions of the neoclassical 

synthesis are severely challenged. 
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 From an empirical standpoint, the ergodic axiom does not have a good track 

record. Most immediate to the mind of the reader, perhaps, is the utter economic chaos 

resulting from house price projections which ignored the stability of the assumptions 

necessary to sustain growing prices. It’s not even as though the necessary assumptions 

were few; in order to support the value proposition of the credits backed by the houses, 

sufficient (or in this case infinite) market depth and perfect information were among the 

conditions required to obtain. Of course, this severe empirical refutation of the Efficient 

Market Hypothesis has largely failed to lead to a rejection of the theory. It is still taught, 

and the neoclassical models are still the basis of a majority of economic thought. In 

general, such major empirical evidences of a non-ergodic world lead to qualifications of 

the EMH; economists create multiple equilibrium models in which various factors 

conspire to cause long run deviations from equilibrium. If the “failures” behind these 

deviations could be corrected, it is argued, the unfettered economy would gravitate 

toward efficiency (Stiglitz 1989). What is desperately needed is a discussion of whether 

the ergodic axiom can itself obtain in any conditions. 

 It shouldn’t be assumed that a rejection of neoclassical modeling techniques leads 

necessarily to the transformation of economics from a “scientific” and quantitative 

pursuit to a qualitative one (although really, what use is an incorrect quantitative 

“science” to anyone?). With advances in the realm of complexity theory and increased 

understanding of human decision making, which is the real contribution of the 

behavioralists, it is becoming increasingly possible to speak to uncertainty in a technical 
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sense. Or rather, it has been possible to do so for a while, but the ground is ripe for 

further advance. 

 In the realm of investment – to narrow our scope a bit – the application of 

Keynes’ theory of liquidity paints a fundamentally different picture than that of the 

classical theories. In that pursuit, Hyman Minsky’s financial instability hypothesis builds 

upon Chp. 12 of the General Theory to produce a comprehensive discussion of the 

progression of financial markets from stability to fragility. In financial markets, Minsky 

asserts that realized profits in one period provide the rationalization for increased 

leverage in the next. Creditors are willing to extend credit based on past profits, but the 

injection of fresh capital in the form of these credits enables the sector to further increase 

profits, and new investment floods the profitable sector. Over time the dynamic is 

unsustainable. As new sources of financing are exhausted, prices cannot continue their 

previous meteoric rises. This has two immediate effects, first, the flow of credit is further 

restricted as profits fall, second, if the cycle has progressed far enough, firms will have 

become dependent on the flow of new financing to facilitate the servicing of past period 

debts. Minsky calls this state “Speculative Finance” or “Ponzi Finance” depending on the 

severity of the phenomenon (Minsky 2008).  We might imagine the degree of leverage in 

the sector as a state condition determining the possible degree of correction which would 

result from a restriction of new finance. Early in the cycle the correction might be small, 

as firms are able to finance based on carried profits. As the degree of leverage in the 

system increases, the size of possible corrections increases, thus decreasing the degree of 

convergence for any predictive model which correctly assesses the loss of new financing 
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as a real possibility; the range of possible next period outcomes grows. It might be 

possible to extend this line of reasoning to assert that under sufficiently extreme 

conditions, prediction becomes computationally impossible, as the severity of the chaos 

of a possible market meltdown grows. 

 In Barriers and Bounds to Rationality, Peter Albin raises just such a question in 

the context of computational systems. Albin suggests the modeling of economic 

dynamics at the level of interacting agents (which he names, somewhat cumbersomely, 

“Cellular Automata”). As we have seen, leveraging the ideas of Gödel, Albin asserts that 

under certain conditions it can be shown that systems of interacting agents can produce 

dynamics for which any fully specified predictive model would be “unknowable”, in that 

in a computational sense no agent could ascertain how long a set of methods built to 

assess the models future time path would take to converge. Indeed, the agent would be 

unable to know whether the methods would converge to a conclusion in any finite period 

of time. The assertion is supported by a proof which rests on the work of Kurt Gödel, an 

Austrian/American mathematician made famous by his development of incompleteness 

theorems obtaining within Whitehead and Russell’s Principia Mathematica, a supposedly 

complete formalization of all mathematical truth from basic axioms. In showing that 

paradoxes (the reason for the name incompleteness: completeness implies all statements 

can be proved either true or false; it is a lack of undecidability) existed within Whitehead 

and Russell’s work, Gödel essentially proved paradox fundamental to mathematical logic. 

In order to do so, Gödel relied on a clever formalization of self-reference to create the 

statement “this statement is false” in formal logic. (For a complete discussion of Godel 
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incompleteness including its connections  to economic prediction and a proof of the 

inconstructibility of a predictor in systems with self-reference see Barriers and Bounds to 

Rationality Chapter 2). 

  For Albin, the existence of formal undecidability is supported in economic 

models of Cellular Automata through the formalization of increasingly complex decision 

rules for automata. If an agent in endowed with the ability to formulate its own decision 

on that of its neighbor, and its neighbor likewise chooses at least partially based on the 

original agent’s own observed choice, it can clearly be seen that both agents’ choice 

matrices are to some extent self-referential (Albin 1998). Simple formulations of game 

theory often solve the problem of circular reference in formal games through the 

conceptualization of infinite time horizons, but such solutions are difficult to believe (an 

agent solves an infinite set?) and have been shown problematic in real world experiments 

(Eichberger and Kelsey 2011). Albin shows that fairly simple choice sets can lead to 

completely unpredictable emergent behavior at the aggregate level, and suggests that the 

existence of such dynamics in simple models should all but prove its existence in real 

markets, where agents are allowed much more complex and variable choice sets. In the 

context of broader economic thought, dynamics matter. It’s entirely possible that 

equilibrium may fail to obtain, and even that any static picture could completely fail to 

characterize the system. 
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Arrow-Debreau, Copula Pricing, and Value at Risk 

 Traditionally, the treatment of the quantification of uncertainty (and I use the 

word purposefully, the majority of efforts to quantify prediction have ignored the 

possibility of fundamental uncertainty) has progressed according to two interconnected 

paradigms. The first involves the evaluation of statistical models upon historical data, 

complicated trend parameterizations such as GARCH/ARCH and ARIMA fall into this 

category. Such models necessarily require that at least on some level current conditions 

obtain over the time horizon of the forecast (ie. second or third-order complexity, for a 

survey of time-series forecasting methods applied to financial markets, see Taylor 2008). 

Should whatever statistical artifacts a given model is built upon be violated during the 

period forecast, the forecast will, for obvious reasons, be rendered incorrect. In the 

context of this first paradigm, prediction is facilitated by the correct estimation of the 

patterns underlying economic data, possible failures explored by the practitioner might 

include model misspecifications around the memory of the system, the periodicity of 

cyclical behavior, or bias in estimator values. The second paradigm has to do with the 

choice of specific statistical artifact and implies the application of a structural framework 

to empirical data in the form of an economic model. In the context of the earlier noted 

ergodic paradigm, equilibrium models require that when the correct economic 

frameworks are applied to statistical estimations of past conditions, the resulting 

conclusions must obtain over every future period (Davidson 2009) so that agents are able 

to correctly decide upon current period behavior such that all possible future utility is 

maximized. 
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 The work of Arrow and Debreu codified the idea of general equilibrium into a 

comprehensive mathematical model. By assuming economic agents to possess preference 

sets that were both complete (all possible bundles of goods are associated with 

preferences), and convex (implying a decreasing marginal rate of substitution) the Arrow-

Debreu model proves the existence of a unique equilibrium point at which preferences 

are optimally balanced with constraints. The restricted model is then expanded to show 

the existence of general equilibrium under an expanded set of conditions for the economy 

as a whole (Varian 1992). 

 Such a concentration on equilibrium has led to a massive foundation of 

mainstream thought on the concept of comparative statics. The earliest foundations of 

economic teaching are in general pictures of supply and demand graphs depicting nicely 

drawn smooth curves intersecting at ubiquitous black dots. Students are then taught the 

factors which move the supply and demand curves, and are told to reproduce the 

movements and descriptions of the format “quantity increases and price increases when 

demand increases” on tests and draw nice arrows describing the movements. In more 

complicated frameworks many economic models still often rest upon these 

parameterizations of equilibrium conditions. The quantification of the effects of a given 

policy on the welfare of the poor takes current conditions as current equilibrium, and 

assesses the effects on the various determinants of the welfare function and assess the 

cost to one group, benefit to another, and pronounce the new intersection (in this case a 

hyperplane separating convex sets) the result of the proposed policy. At this point it 

should be noted that a “dynamic” neoclassical model expressing convergence to a 
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constant rate of change, for example in capital accumulation (even those with multiple 

equilibria, see Böhm and Vachadze 2007), is qualitatively no different from a static 

equilibrium, the constant state merely exists in the derivative; this is not accounting for 

“dynamics” as such, and does not constitute an understanding of how equilibrium is met, 

it is simply integrated comparative statics. If equilibria fail to obtain as often as not, it is 

very problematic for such predictive modeling.  

 The vast majority of financial pricing models rely directly on the existence of 

Arrow-Debreu equilibrium. Indeed the A-D framework itself attempts to solve the 

problem of the intertemporal allocation of capital; in order to arrive at a general 

equilibrium the framework arrives at a specification of allocations which solve the system 

of equations for resource allocation across time (Davidson 2009). The application of this 

equilibrium model to financial markets is then a logical extension, which Arrow takes up 

in his 1964 article The Role of Securities in the Optimal Allocation of Risk-Bearing. An 

examination of Arrow’s discovery of an optimal risk allocation across all future states is 

contingent upon the assessment in the current period of the likelihood that any given 

future state should occur, otherwise his utility function: 𝑉𝑖 =  ∑ 𝜋𝑠𝑈𝑖
𝑠
𝑖=1  describing the 

expected utility conditional on the likelihood that state s occurs in some future period, 

wouldn’t exist since πs would not exist (Arrow 1964, p94). If it is further the case that the 

optimal distribution in some future state, s, is itself contingent on the conditional 

probability of state t obtaining at some point after s, we can support Davidson’s claim that 

Arrow-Debreu requires the assessment of the optimal distribution of goods be conditional 

upon not only the likelihood of any future state, (the s in Arrow’s utility), obtaining in an 
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immediate future, but also upon the distributions of all possible future states across all 

time. This makes a certain kind of sense if we realize that current investment decisions 

are predicated upon opinions of the future, and that future investment decisions will 

likely continue to be defined by similar considerations. What is odd is the assertion that 

agents can account for this infinite set of possibilities in infinite time. While Arrow’s 

approach to the solution for optimal risk-sharing is mathematically coherent, it would 

appear to pose critical problems of computability. How is it possible for an economic 

agent to ascertain the likelihood of any given state with perfect accuracy, let alone the 

likelihood of any state at any arbitrary point in the future? Critically, the conclusion that 

market pricings are generally correct in an equilibrium sense is necessary for the current 

body of theory supporting models of financial risk. From Aroujo et al. (2010): 

 “Since the Arrow’s Role of Securities seminal paper, the financial general 

equilibrium models assume that the price of assets satisfies equilibrium conditions 

in a competitive setting where many agents demand assets profiles in accordance 

with their preferences and their endowments, providing the foundations for the 

study of financial markets by a celebrated fundamental result asserting that 

financial markets must not offer arbitrage opportunities” (Aroujo et al. 2010, p.2). 

 

In particular, the pricing of complex derivative products has often required the utilization 

of such assumptions, since if financial general equilibrium fails to obtain, we have 

fundamental mispricicing in the market. The evaluation of the risk profiles of complex 

derivative instruments relies heavily on the assumption of perfect market pricing. In Li 

(2000), three separate approaches are described to estimate the present value of such a 

portfolio of credits (specifically he is referring to the now infamous mortgage backed 

securities and other CDOs). The first is the estimation of asset and default correlation 

based on a body of historical knowledge which we might name the statistical/historical 
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approach, the second uses the Merton option-theoretical approach, and the third operates 

via asset swap spreads (Li 2000). The second and third approaches are expressions of the 

Arrow-Debreu framework applied to financial markets (and the first is a tautological 

representation of the ergodic axiom). In all cases, convergence conditions can only be 

met via the assumption of equilibrium pricing under perfect competition. The swap 

spread approach infers default probabilities through the spread between treasuries (or 

securities for which the default probability is zero) and the credits in question. Such 

“pricing” requires an accurate assessment by the market of the default probability of the 

credits, and such a correct assessment could only be fully supported by a perfect market. 

Given the degree of fraud prevalent in the mortgage market at the time these pricing 

models found widespread use, such a claim is farcical (A quick look at bank litigation 

losses since the crisis would give a rough valuation). 

 All of the above approaches utilize a copula function to generate a multivariate 

probability distribution for the assessment of future price at the derivative level. In 

multivariate statistics, a copula function is any function of the form 𝐶 = Φ(𝜙−1(𝐴𝑖)∀𝑖 ∈

Ζ, Σ) which generates a multivariate distribution function from a set of observed marginal 

distributions. In the case of the CDO, the marginal distributions are the observed survival 

times of the assets that make up the instrument. Once the multivariate distribution is 

evaluated, expectations of future price, and more importantly expressions of aggregate 

risk at the portfolio level can be quantified. The correlation matrix Σ is given through 

analysis of survival time or asset value correlation and can have a critical effect on the 

evaluated copula (Li 2000). Thus these copula pricing models required accurate 
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calibration of the correlation matrix, Li’s three methods attempt to do just that via either 

straight expressions of historical correlations or inferred relationships between 

constituent credits as expressed by market pricing. In the context of fundamental 

uncertainty, this calibration presents great difficulty. Both observed historical correlations 

and market assessments of risk are subject to state conditions that are prone to variability 

over time. At best, predictions might be expected to obtain over short time horizons 

(under third-order dynamics). Once again, CDO structures don’t lend themselves to an 

optimistic assessment in this regard; their underlying credits were in many cases 30 year 

mortgages. 

 A second family of better known risk evaluation models, known under the 

common name Value-at-Risk (VaR), rest upon the assessment of the downside tail of 

returns. In general trading firms and major financial institutions will forecast the expected 

1% or 5% one day ahead upper bound for losses across their portfolios. This Value-at-

Risk effectively quantifies the short term risks facing the firm and is used in the 

specification of various aspects of firms’ required capital cushions. It should be noted that 

the technical inference of VaR is often implicitly mischaracterized as the maximum value 

a firm can expect to lose with a 95 or 99% confidence interval. In reality, the previous 

statement severely understates the implied possible risk facing the firm, a correctly 

calibrated one-day-ahead 1% Value-at-Risk should be expected to generate VaR “Breaks” 

(days on which losses at least exceed the VaR) between three to four times a year. So, a 

correct statement of the interpretation of VaR would be that the firm should expect to lose 

at least the VaR three to four times a year. Additionally, in the context of such 
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leptokurtosis in returns as obtains in the stock market, the actual loss during a VaR break 

could be orders of magnitude larger than the VaR itself (one only needs to visit the list of 

trading losses on Wikipedia to understand how true this statement is). A multitude of 

methods have been proposed to calculate value at risk, both in the context of normal 

(Linsmeier and Pearson 2000) or non-normal returns, and in dealing with complex 

correlation structures within a portfolio. The technical construction can be built off of 

historical values or Monte Carlo simulations given current distribution structures 

(Linsmeier and Pearson 2000). Value-at-Risk models have even been proposed building 

upon copula-based multivariate distributions (Miller and Liu 2006), and Monte Carlo 

simulations built off of ARCH/GARCH models (Mancini and Trojani 2011) to 

parameterize possible conditional variance among the credits of a portfolio. Whatever the 

technical aspects of their construction, at their core VaRs are simply the value of the 

cumulative distribution function at either 5 or 1%, or by extension the area in the 1% or 

5% tail of the distribution of loss. 

 Perignon and Smith (2010) provides a convenient method by which to assess the 

degree of covariance within a portfolio via Value-at-Risk by assessing the percent 

deviation between the observed VaR of the portfolio and the VaR of a theoretical 

portfolio with identical dollar weights but perfect correlation across assets. Leveraging 

this “diversification coefficient” will allow us to assess the time evolution of such 

correlations, and in so doing begin to study the possible uncertainty inherent in the state 

conditions necessary to support the large family of derivative Copula pricing models: 

extreme variance and kurtosis in the time-evolution of diversification would seriously 
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cripple the degree of convergence. The ultimate goal is much deeper than merely 

specifying an expectation of variation in parameter values, through the application of an 

Agent Based Model in concert with Albin’s discussions of unpredictability a conclusion 

of periodic fundamental uncertainty in these risk-pricing models is strongly supported. 

 

 Agent Based Modeling (ABM) 

 While there exists a sizable body of literature, the use of non-linear dynamics in 

economic models is a developing work. In many important areas they remain on the 

periphery, secondary in importance to the more common applications of comparative 

statics (Zhang 2005). Less work has been done, however, in the examination of agent 

based models, which enable the simulation of the highest levels of complexity. Even 

more than non-linear dynamics, agent based modeling allows for the study of the 

functional determinants of convergence and divergence in dynamics. Depressingly, the 

application of Monte Carlo simulations to the estimation of portfolio risk is likely the 

most widely applied instance of simulation today. It is important to note that there exists 

significant difference between the simulation of a statistical expression of emergent 

behavior (Monte Carlo simulations of correlated returns for example) and the simulation 

of the dynamics which produce these emergent behaviors. Indeed, the very advantage of 

ABM is that it allows us to specify choice matrices for economic agents that do not 

necessarily lead to convergent models, but which instead allow us to study possible 

determinants of the conditions which are necessary for modeling convergence. As was 

touched upon above, if we cannot support the stability of these conditions, it is possible 



29 
 

that the emergent behavior of the system could be computationally “unknowable” and 

prediction models would diverge. The realization that such states could exist is critical, 

especially if the conditions driving convergence/divergence can be better understood. 

There is certainly a growing body of literature on ABM (agent based models), and 

network models in particular, however, the critical question of convergence vs. 

divergence has not generally been addressed. 

 In Delli Gatti et al. (2006 and later expanded in Delli Gatti et al. 2010), the 

authors present an economy characterized by three types of agents, downstream firms, 

upstream firms, and banks. The three groups interact through a series of credit 

relationships, both to finance the purchase of intermediate goods, and to fund their wage-

bills. The firm network acts as a semi-closed system: all production is consumed, 

providing the energy input to the system, while bankruptcies and the wage bill extract 

wealth from the system. Within the model a number of factors lead to outcomes that 

mimic observed reality in important ways. Due to the nature of the connections between 

firms and banks, the normally distributed stochastic energy input (the revenue of 

downstream firms) results in several non-normal outcomes. Sufficient loss in a single 

downstream firm can spread as a cascading bankruptcy through the rest of the network, 

the extent of which is only constrained by the margins on which agents are operating and 

the depth of the connections in the network. Furthermore, the interest rate mechanism is 

biased towards larger firms, as growing net worth implies stability to banks, supporting 

lower borrowing costs. The results highlighted are kurtosis in the aggregate value of bad 

debt due to cascading failure, and fat tails in firm size distribution. These results arise not 
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solely due to the interest rate mechanism but also due credit constraints which allow 

growing nodes to continue to grow but in the case of loss constrain others, reinforcing the 

growth tendency through a variety of factors (Delli Gatti et al. 2006). 

 Since the publication in 2006 of the initial model, the group has updated the 

model to be more refined. By introducing an endogenous choice to the formation and 

dissolution of credit connections, the updated model has adopted a possible explanation 

of the method by which the network can evolve. The change has two advantages. First, 

endogenous agent choice allows for a closer approximation of reality. Firms are not 

completely restricted in their choice of credit and real connections (although, as Stiglitz 

himself has pointed out, choice can be severely constrained in credit possibilities for 

small and medium enterprises. Often, a single bank advances credit in the light of a long 

term relationship with the borrower, finding a replacement can often be difficult for the 

SME, see Greenwald and Stiglitz 2003). Instead they have choice in respect to with 

whom they chose to do business. Second, the observation is made that the results of the 

initial model are reinforced through the introduction of an endogenous and variable 

network topology. Since incentives exist to encourage firms seeking new credit partners 

and thereby to gravitate towards established network nodes (again, size implies stability), 

leptokurtosis in firm size distribution is reinforced, and the excess kurtosis in the time 

evolution of bad debt is similarly strengthened (Delli Gatti et al. 2010). 

 The results of the model were already well established at the time of its 

publication; Axtell (2001) finds robust results detailing a zipf distribution of firms, and 

kurtosis in returns to investment are highlighted in a massive number of studies on 
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various stock markets (Mandlebrot 1963, presenting perhaps an iconic example) and is a 

well-recognized result. However, there is an additional result which was not highlighted 

in the 2006 or the 2010 formulation of the credit-network economy, but which is 

supported by work in Mizgier, Wagner, and Holyst (2012) and Battison et al. (2007), 

which is that the concentration of a network economy has drastic implications on the 

generation of global and local risk. Wagner et al. (2009), studied supplier default 

dependencies via a copula approach, and this work will leverage the Delli Gatti et al. 

model to connect the body of supplier default correlation/cascade models and literature 

on portfolio pricing in an attempt to understand the implications of fundamental 

uncertainty on risk assessment. The results are similar, the default correlation structure of 

the financial markets are dependent upon network topologies. In contrast to their work, 

the focus of this piece is to highlight the factors complicating the prediction of future 

value based on current state conditions and thus the assumption of convergence to 

equilibrium. The ability of such network models to produce dynamics which either 

experience sustained and volatile deviations from equilibrium conditions, or to fail to 

approximate any recognizable notion of equilibrium, introduce in a very real way the 

possibility of divergence in expectations of price. 

 In E. Nier et al. (2006), the network economy is formalized as an Erdös-Rení 

random graph, wherein the nodes of the network economy are connected and summarized 

given a few broad statements about the distribution of credit connections. The model is 

defined by a number of nodes, 𝑁, a probability expression 𝑝𝑖𝑗 defining the likelihood that 

any given bank has lent to another bank in the system, the average mix of eternal to 
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internal assets (within the system, the proportion of interbank to external lending), a 

parameter defining the net worth as a function of total assets, and a residual deposit 

variable (E. Nier et al. 2006). In generating the simulations, the authors choose to shock 

single banks and study the propagation of default chains through the system. Their 

isolated formal approach has the advantage of studying the propagation of default risk in 

networks absent the muddying influence of the dynamic systems studied in this paper. 

There could be a lot to be gained from applying a similar approach to the propagation of 

risk in the Delli Gatti network over time. Indeed, if any network could be modeled as a 

series of fluctuating Erdös-Rení random graphs, the conclusions of E. Neir et al. could be 

used to describe the time evolution of risk uncertainty, especially if the time-evolution of 

the parameters of the Erdös-Rení map could be modeled. Such an exercise would, in 

essence, be a return to Albin’s discussion of the predictability of a system; since not all 

state conditions can be expected to produce predictive models which converge, it is 

important to study, to whatever extent possible, the determinants of these conditions. 
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III. The Model 

 A credit network model for production with an intermediate good 

 A version of the original model defined in Delli Gatti et al. (2006) in which three 

layers of agents interact with one another in reaction to a stochastic final price is adopted 

for analysis. A downstream industry produces goods for consumption at the final price, an 

upstream industry produces inputs which are consumed by downstream firms and 

financed by short term credit by the upstream firms. Both upstream and downstream 

firms turn to the banking industry to finance their wage bills. The resulting network of 

credit and productive relationships constitute the topology of the network model. By 

assessing the experience of the correlation matrix of bank profits, this work will assess 

the variability of observed risk under a varying topology. 

 The model produces a simulation of a credit market, with a stochastic final price 

defining the profits of downstream firms, which must enter into relationships with 

upstream producers and banks to secure capital goods and financing to cover the costs of 

financing. In each timestep all downstream firms are presented with a new stochastic 

price, and the experience of the network is defined over time by resulting experience of 

these firms. Firms and banks are replaced after bankruptcy such that the topology of the 



34 
 

network is unaffected. This work studies profits in the banking sector over time by 

iterating this simulation through several thousand timesteps.  

 

 Downstream firms produce based on their current net worth via the following 

relationship, along with linear labor and capital requirement functions: 

 

1) 𝑌𝑖𝑡 = 𝜙𝐴𝑖𝑡
𝛽

; 𝑁𝑖𝑡 = 𝛿𝑑𝑌𝑖𝑡, 𝐾𝑖𝑡 = 𝛾𝑌𝑖𝑡 

 

Where the firm’s output at time t 𝑌𝑖𝑡 is a function of its net worth A and the parameters 𝜙 

and 𝛽. The requirement functions define the necessary labor and capital to produce 𝑌𝑖𝑡 by 

the coefficients 𝛿𝑑 and 𝛾. Furthermore, labor unit-costs are defined as w and capital unit-

costs p, such that the cost function (when all production is financed via carried profits) 

can be given as: 

 

2) 𝐶𝑖𝑡 = 𝑤𝑁𝑖𝑡 + 𝑝𝐾𝑖𝑡 

 

All downstream production is consumed at the stochastic final price 𝑢𝑖𝑡~𝑈[0,2]. 

Figure 1: Credit Network 
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 Upstream firms produce capital inputs as intermediate goods in the downstream 

production process. Upstream firms produce to fulfill downstream demand with an 

analogous requirement function with only labor as an input:  

 

3) 𝑌𝑗𝑡 = 𝐷𝑗𝑡; 𝑁𝑗𝑡 = 𝛿𝑢𝑌𝑗𝑡. 

 

 Upstream firms supply ½ of the demand for each of their proximate downstream 

partners, such that the demand for the upstream firm’s production is:  

 

4) 𝐷𝑢𝑡 = 1/2[𝛾𝑌𝑖𝑡 + 𝛾𝑌(𝑖+1)𝑡].  

 

(given the capital requirement function from (1)). Throughout the model the defining 

characteristic is the topology of credit connections. All firms finance their production 

through a combination of carried profits and credit relationships for the employment of 

resources. Once production is realized, firms will have either netted sufficient revenue to 

pay their creditors, or they will default. All firms rely on bank credit to finance their labor 

inputs, such that the labor cost of production for the firm is given by: 

 

5) 𝐶𝑛 = 𝛿𝑛𝑌𝑛𝑡𝑤(1 + 𝑟𝑛
𝑏). 

 

where 𝑛 = 𝑢 for upstream firms and d for downstream firms, 𝑟𝑛
𝑏 is the interest rate 

charged to the firm by the bank, 𝛿𝑛 is the labor requirement coefficient from (1) and (3), 
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and w is the labor unit-cost, constant across all firms and all time steps. Additionally, 

downstream firms enter into a credit agreement with upstream firms for the delivery of 

capital inputs into the production process, such that the capital cost of the downstream 

firm is given by: 

 

6) 𝐶𝑑 = 𝛾𝑌𝑑𝑡𝑝(1 + 𝑟𝑑
𝑢).  

 

where 𝑟𝑑
𝑢 is the interest rate charged to downstream firms by upstream firms, p is the 

price of capital goods, constant across firms and time, and 𝛾 is the capital requirement 

coefficient from (1). Defaults, when they occur, are characterized by total loss on the part 

of the creditor. Finally, the bankrupt agent is removed from the model and replaced in the 

next time step with an agent with given starting net worth. 

 Banks supply credit based on a leverage limit: 

 

7)  𝐿𝑧𝑡
𝑠 = 𝐴𝑧𝑡/𝛼   

 

where 𝛼 is a regulatory target set by authorities which is invariant over the course of the 

scenario and 𝐴𝑧𝑡 is the net worth of bank z at time t (while not addressed in this work, the 

introduction of a government agent to set this limit based on various behavioral regimes 

might provide insight into unintended policy effects). In the base model each bank is 

connected via credit arrangements with one downstream and one upstream firm, and the 
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number of these connections will increase as we restrict the size of the set of banks. The 

assessed interest rate is given by the relationship 

 

8)  𝑟𝑛𝑡
𝑏𝑢 = 𝑘/(

𝐴𝑛𝑡

𝐴𝑡̃
)^𝑘  

 

where A is the net worth of the nth firm, and 𝐴̃ is the median wealth of firms, calculated 

separately among upstream and downstream banks (𝑛 = 𝑢 for upstream and 𝑛 = 𝑑 for 

downstream). Finally, it is assumed that deposits, 𝐷𝑧𝑡, are residual on banks’ balance 

sheets, such that the sum of the credit supplied by the bank is covered by the value of the 

bank’s carried profits and the value of the deposits: 𝐿𝑠 = 𝐷 + 𝐶 where C is carried profits 

and D deposits. This yields the relationship: 𝐿𝑠 − 𝐷 = 𝑁𝑒𝑡 𝑊𝑜𝑟𝑡ℎ when all carried profit 

is fully deployed in lending. A constant interest rate (𝑟𝑑) is assessed against deposits over 

the duration of the simulation. Banks react to the aggregate demand of their partner firms 

and, in the case in which they have insufficient credit available to meet the demand, turn 

to the interbank market to raise funds. The interbank rate is constant over the duration of 

the scenario, and default among banks leads to total loss on their creditors’ interbank 

portfolios. 

The scenario progresses according to the observed beginning asset values of the 

downstream firms. Aggregate downstream production is calculated, and orders filter 

upward to upstream firms for capital inputs and on to banks to finance the payment of 

wages. Banks asses the incoming demand for credit against their credit supplies, attempt 

to resolve credit constraints through the interbank market and transmit the available credit 
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and derived interest rates to firms. Firms then adjust their production based on any 

applicable credit constraints, and place their orders. 

All downstream production is consumed at the stochastic price, 𝑢𝑖𝑡. If a 

downstream firm fails to receive a sufficient price to prevent bankruptcy it defaults 

completely on its credit agreements. Thus, a downstream firm’s bankruptcy increases the 

bankruptcy risk for both its supplier and bank. Additionally, the increased likelihood of 

bank default can serve to “infect” the broader banking system via borrowing on the 

interbank market. 

Since all production is contingent upon the network of credit connections within 

the economy, the distribution of returns is highly dependent on the time-evolution of the 

interbank market. Credit constraints can pose a real restriction on the pace of growth, and 

since the interest rates are assessed against firms based upon their performance against 

the median in their industry, banks servicing “successful” firms operate on thinner 

margins and can garner lower profit, whereas those banks servicing frail firms might 

realize greater potential profits, but at a higher risk. Realized returns in the banks’ 

portfolios up to and including default have real effects on the likelihood of any given 

bank leveraging the interbank market. A default on a given bank’s balance sheet can 

depress its capital cushion and necessitate a deepening of its credit relationship with its 

neighbor banks. Additionally, those banks replacing bankrupt banks can require outside 

investment (read “borrowing on the interbank market”) to service their partner firms. 

When default occurs, the potential for contagion runs only as deep as the credit 

connections that exist between banks, thus, a comprehensive characterization of the 
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correlation among banks will serve as a useful expression of the effects of changing 

network topologies. 

It is interesting to note that the model essentially operates within the restrictive 

bounds of utility maximizing behavior. Due to the static nature of the credit network and 

the stochastic price element, all firms are price takers in their respective markets. The 

addition of competition or differentiation in agent’s choice algorithms could only be 

expected to increase the degree of observed complexity. Interesting extensions are likely 

possible into the question of market power and further heterogeneity among agents. 

 

Perignon and Smith’s Diversification Coefficient 

In Delli Gatti et al. (2006 and 2010) the model above (although with drastic 

alterations in the later paper) was run to various specifications. However, the basic 

identity, 𝑁𝑢 = 𝑁𝑑 = 𝑁𝑏 where 𝑁𝑥 is the size of the set of each industry, is held constant 

across simulations. The following results, then, will be assessed against a series of 

simulations of the above model with a varying number of banks. Once the scenarios are 

run, the results are analyzed according to Perignon and Smith (2010), in which a Value at 

Risk (a measure of the boundary, usually 1 or 5% upper tail of the 1-day ahead 

expectation for loss) approach is leveraged to study diversification in various portfolios 

of bank credits. In this analysis the net worth of banks are formalized as a portfolio with 

returns given by bank profit in each period and Perignon and Smith’s diversification 

coefficient is used to assess the time evolution of the level of correlation across sections 

of the economy. In the context of the Copula approach to derivative pricing we are quite 
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literally examining the state conditions of the credit market (and how difficult prediction 

based on such models may become). Since copula functions are quite sensitive to changes 

in the correlation matrix, severe variation will imply that state changes in the topology of 

the credit network fundamentally affect the ability of such predictive models to obtain. 

From Perignon and Smith (2010): 

 

1) 𝛿 =
∑ 𝑉𝑎𝑅𝑖−𝐷𝑉𝐴𝑅𝑛

𝑖=1

∑ 𝑉𝑎𝑅𝑖
𝑛
𝑖=1

 

 

In the above context ∑ 𝑉𝑎𝑅𝑖
𝑛
𝑖=1 , the sum of the individual VaRs of credits in the 

portfolio, is given through the identity:  

 

2) 𝑉𝑎𝑅𝑖 = 𝑘𝜎𝑖𝑥𝑖 

 

where k is a scale parameter varying with the shape of the distribution (here 

assumed normal for ease of derivation: k=2.33), and 𝑥𝑖 is the dollar position in the asset, 

in this case the standard deviation of returns is assessed against changes in net worth. 

Since net worth is itself taken to be the dollar position, 𝑥𝑖 can be omitted. The sum of the 

individual VaRs of credits across a portfolio is equal to the VaR of the total portfolio only 

if the asset correlation of the portfolio’s constituent credits is perfect. In all cases some 

imperfect level of correlation will obtain between credits, and the extent to which credits 

are uncorrelated will depress the Value at Risk of the portfolio as a whole. The 
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calculation of DVaR (or diversified value at risk, see Perignon and Smith 2010 for a 

complete derivation) is given by: 

 

3) 𝐷𝑉𝑎𝑅 =  √𝑉′𝑅𝑉 

 

where V is a column vector of the individual VaRs within the portfolio and R is 

the asset correlation matrix. The diversification coefficient 𝛿 in (1) ranges from 0 to 1 

measuring the percentage deviation from a perfectly correlated portfolio due to the 

structure of the correlation matrix of a portfolio’s constituent credits, a higher value for 

the diversification coefficient will imply a weaker correlation structure and lower vise-

versa. Note that in all cases this analysis will be conducted against the profits of the 

various banks. Should deep credit relationships develop between banks, they will serve as 

unrealized avenues of correlation until default occurs. Without fully quantifying the 

nature and depth of the various credit relationships in the network (something we could 

not expect the various participants to be capable of due to informational constraints) 

statistical estimation of risk will be “surprised” by the strength of correlation during 

downside shocks. Characterization of the resulting mispricing requires a deeper 

discussion of both the development over time of the credit relationships among firms and 

banks and the determinants and effects of default. 
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IV. The determinants of the correlation matrix: 

What follows is a technical examination of the determinants and nature of default 

probabilities at each level of the network, and the methods by which bankruptcy risk 

propagates. It will be especially necessary to study the development of two conditions, 

bankruptcy and credit constraints, the first being the only mechanism by which second 

and higher order effects (default cascades) can be felt through the model, and the second 

being the determining factor of the strength of those higher order effects. 

 

Notice that the expression of the profit of the 𝑖𝑡ℎ downstream firm at time t is 

given by: 

 

1) 𝜋𝑖𝑡 = 𝑢𝑖𝑡(𝑌𝑖𝑡) − (1 + 𝑟𝑑
𝑢)𝑝𝛾𝑌𝑖𝑡 − (1 + 𝑟𝑑

𝑏)𝑤𝛿𝑑𝑌𝑖𝑡 

 

(from 1,2,5, and 6 in section 3.1) It is immediately apparent that the distribution of profit 

for an individual downstream firm is largely independent of the profit of an adjacent 

downstream firm (for initial analysis the effect of 𝑟𝑑
𝑏, which is partially determined by the 

median worth of the downstream sector, is assumed to be negligible). Thus, the likelihood 

of default of a downstream firm, 𝑃[𝜋𝑖𝑡 < −𝐴𝑖𝑡], is iid ∀ i aside interest rate effects. 
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Likewise we can see that the profit of the 𝑗𝑡ℎ upstream firm is given by: 

 

2)  𝜋𝑗𝑡 = (1 + 𝑟𝑑
𝑢)𝑝𝛾𝑌𝑖𝑡 − (1 + 𝑟𝑢

𝑏)𝑤𝛿𝑢(
1

2
𝛾𝑌𝑖𝑡 +

1

2
𝛾𝑌(𝑖+1)𝑡) − 𝐵𝐷  

 

(from 3,4, and 5 in 3.1) where BD is the aggregate value of credit supplied to 

downstream firms which defaulted in time t. By extension it can be seen that: 

 

3) 𝑃[𝜋𝑗𝑖 < −𝐴𝑗𝑡] ∝ 𝑃[𝜋𝑖𝑡 < −𝐴𝑖𝑡]∀𝑖 ∈ Ζ, 𝑤𝛿𝑢, 𝑟𝑢
𝑏  

 

Where 𝑃[𝜋𝑗𝑡 < −𝐴𝑗𝑡] is the likelihood of collapse for the upstream firm j at time t, Ζ is 

the set of debtors of j, wδu is the implied cost multiplier for the labor cost of the upstream 

firm, and 𝑟𝑢
𝑏 is the interest rate charged by the bank to the upstream firm. It is apparent 

that the distribution of returns to the upstream firm’s investment will approximate the 

copula function 𝐶 = Φ(𝜙−1(𝐴𝑖)∀𝑖 ∈ Ζ, Σ) where sigma is the identity matrix, since the 

asset values of all of its downstream partners are independent absent interest rate effects. 

Considering that the implication is that the observation of bankruptcy for any element of 

Ζ has no effect on the likelihood of default for any other element, it can be deduced that: 

 

4) 𝑃[𝜋𝑗𝑡 < −𝐴𝑗𝑡] ∝ ∏ 𝑃[𝜋𝑖𝑡 < −𝐴𝑖𝑡]𝑥
𝑖=1  

 

Where x is the number of bankruptcies in Ζ necessary to induce bankruptcy in u. Since 

the expected value of each downstream firm i at time t is identical save for credit 
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constraints and interest rate disparities driven by banks’ perception of solvency in firms, 

the expected weight of each downstream firm is identical. Thus, the likelihood that a 

sufficient number of firms default to force default in j is: 

 

5) 𝑃[𝜋𝑗𝑡 < −𝐴𝑗𝑡] ≈ ∏ 𝑃[𝜋𝑖𝑡 < −𝐴𝑖𝑡]𝑥
𝑖=1  

 

and falls exponentially with N, the number of firms in Ζ, ceteris paribus. Concentration at 

the level of the upstream firm is the perfect example of diversification absent interest 

rates, since the defaults of i firms are iid. 

It is not the case, however, that the survival times of the j and j+1 upstream firms 

are uncorrelated. In the initial case first described by Delli Gatti et al. (2006), the i
th

 

downstream firm receives half of its required capital input from upstream firms j and j+1, 

and thus the incidence of default in the ith downstream firm appreciably increases the 

likelihood of default for both upstream firms. That, however, is as far as the shock can be 

transmitted, absent the interest rate mechanism noted above. The conditional probability 

of default in the 𝑗𝑡ℎupstream firm is contingent upon only the observation of default in 

the j+1 and j-1 upstream firms. A shock cannot be transferred further until it is significant 

enough to affect the median net worth in the industry or should the supplying bank face 

difficulty repaying its obligations on the interbank market. 

Additionally, given that time evolution of profit for the upstream firm is given by: 
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6) 𝜋𝑗𝑡 =  ∑ [(1 + 𝑟𝑗𝑡
𝑖 ) − (1 + 𝑟𝑧𝑡

𝑗
)𝑤𝛿𝑢]𝛾𝜙𝐴𝑖𝑡

𝛽
+ (1 + 𝑟𝑧𝑡

𝑗
)𝐴𝑗𝑡𝑖∈Ζ ; (𝐴𝑗𝑡 being 

 the value of carried profits financing production) 

 

If we maintain that the upstream firm shares the demand of the ultimate 

downstream firms (such that Ζj ∩ 𝑍𝑗+1contains only one downstream firm). The strength 

of the correlation between two adjacent upstream firms would fall if the size of Ζ were to 

increase. 

When we consider the effect of the bank’s interest rate decisions upon the default 

and asset value correlations of the up and downstream firms we notice that the interest 

rate decision is given by:  

 

7) 𝑟𝑦𝑡
𝑏𝑥 = 𝑘/(

𝐴𝑦𝑡

𝐴𝑥𝑡̃
)^𝑘 

 

Where 𝐴𝑦𝑡 is the net worth of a given upstream or downstream firm at time t (y=i, x=d 

for downstream and y=j, x=u for upstream) 𝐴̃ is the median net worth of firms at time t, 

computed separately for upstream and downstream firms. The interest rate decision 

includes a dual force component. First, it acts on the individual firm by reinforcing its 

divergence from the median. Weaker firms will face more stringent borrowing costs and 

stronger firms vice versa. Secondly, interest rates rise as the industry’s median falls 

further increasing systemic weaknesses after negative shocks. Within any given industry, 

however, the effects of the interest rate mechanism on pairwise correlations are minimal. 

To the extent that it does have an effect, the mechanism reinforces comovement in the 
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previous period, and provides minor resistance to correlation between firms whose profits 

did not exhibit comovement in the period prior. The division of the sectors into banks that 

serve as nodes of credit provision and their constituent firms likely interacts with these 

factors to produce long range dependence and the observed variability of the correlation 

matrix. 

Leaving aside concentration in the upstream markets for the moment, we can see 

that for the bank, then, a shift in network topology towards increased concentration 

doesn’t necessarily decrease the likelihood of default. Each upstream credit in the bank’s 

portfolio has a positive default correlation with the credits of adjacent firms, and the 

downstream firms associated with them. Furthermore, banks will readily employ idle 

balances on the interbank market, both to fill unmatched demand for credit, and to supply 

short term liquidity to their neighbors in the case of liquidity crises. As the depth of these 

interbank credits increase, possible correlation among banks becomes increasingly 

variable. Through the interbank market, then, there exists an unbounded transmission 

mechanism. In essence a seemingly stable “equilibrium” may bifurcate from a strong 

attractor in the dynamic sense (the sector quickly recovers from a single bank’s default) 

to a weak one (a single bank’s default leads to systemic problems). Thus, the observation 

of default of a single downstream firm can increase the likelihood of the observation of 

default for the entire banking sector (with a decreasing effect further out along the 

network). Furthermore, negative shocks increase the fragility of the system in two ways. 

First, negative shocks decrease the net worth of firms and banks. Second, to the extent 

that the banks which experienced negative shocks turn to the interbank market to either 
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match demand for credit or to cover liability crises, negative shocks deepen the liability 

structure. As is seen from the time evolution of profits in the zth bank: 

 

8) 𝜋𝑧𝑡 = ∑ 𝑟𝑑
𝑏𝑤𝛿𝑑𝐴𝑖𝑡𝑖∈Ζ𝑗

+   ∑ 𝑟𝑢
𝑏𝑤𝛿𝑢𝐴𝑗𝑡𝑗∈Λz

+ 𝑟𝑏𝑏𝐼𝐵 − 𝐵𝐷 − 𝑟𝑑𝐷𝐷  

 

where IB is the position of bank z on the interbank market, BD the value of bad debt on 

the bank’s balance sheet, Λz is the set of upstream firms with credit connections to the zth 

bank, and Ζj is the set of downstream firms with credit connections to the jth upstream 

firm. It can be noted that the risk profile of the bank is determined by the size of the 

positions the bank has taken in the various markets. When the bank’s balance sheet is 

weighed towards the up and downstream markets, the bank’s expected value is 

characterized by the correlations among its own credits. By contrast, when the bank’s 

balance sheet is weighed toward interbank lending, default can occur even in the presence 

of strong performance in the rest of its portfolio. The experience of the concentrated 

network is not trivially an expression of the aggregated experience of the banks in the 

diffuse network, much larger portions of the banking sector can be effected negatively 

following an identical downstream experience. When such negative impacts occur, the 

fragility of the entire system is increased, raising the likelihood of a departure from a 

convergent expression of the network’s expected “equilibrium”. 

 

 



48 
 

 

 

V. Results 

The model was run first against a network with 100 members of each set of firms: 

upstream, downstream and banks. The simulations covered periods of 2500 timesteps, 

and results are examined against time steps beyond 500. Subsequent model specifications 

decrease the number of banks first to 50, and then 25, such that in the base model each 

bank has credit connections with a single upstream and downstream firm, in the second 

case each bank has credit connections with four downstream-upstream firm pairs and 

finally eight in the concentrated case.  

  

 

A theoretical portfolio is then constructed from the resulting net worth of the banks 

given by the iterations of the model. By examining the exhibited evolution of the correlation 

matrix among these banks via Perignon and Smith’s diversification coefficient, the 

4𝑁𝑏
= 𝑁𝑢
= 𝑁𝑑

Figure 2: Increasing concentration at the bank level 
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predictability of the theoretical portfolio can be formalized. It is shown that the variable 

depth of credit connections imposes an increasing degree of uncertainty on this portfolio as 

the banking sector is constricted, as the effect of unrealized avenues of correlation on the 

interbank market are generalized to ever larger portions of the portfolio. The structure of the 

correlation matrix can exhibit strong bifurcation. The following three specific statistical 

artifacts support this conclusion. 

 

 Kurtosis in single period returns: 

  

  

 

A marked increase in the kurtosis on single period profits to the banking sector is 

observed to correlate with increasing concentration among banks. Visual inspection 
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shows a nearly Brownian time evolution of profit degrading into a signal that bifurcates 

between periods of more or less normal returns and periods of abnormal profit, 

punctuated by a large loss before returning to normal profits. Importantly, the somewhat 

noisy emergent profit in the 50 bank case collapses to a stable signal punctuated by large 

breaks in the 25 bank case. Complex interactions between the ability of increasingly large 

nodes to “cover” occasional failures in the productive sectors and the effect of systemic 

risk due to increasingly deep credit connections can, to some extent, explain the 

qualitative change. As the credit network becomes concentrated, the true level of risk in 

downstream and upstream firms is masked by greater bank assets. As these lower level 

failures remain unobserved, the likelihood of failures large enough to be transmitted 

along the interbank market diverges from observed frequency of normal failure. 

Furthermore, the effect of “hidden” avenues of correlation realized under default 

increases in the aggregate as larger portions of total assets are tied up in close proximity 

to any bank default. (Remember that the likely effect of cascades on the interbank market 

dissipates with distance. A concentrated interbank market provides much less space for 

dissipation and a much less varied experience.) 

  

Kurtosis in diversification over time: 

 Of course, multiple factors could conspire to lead to kurtosis in bank profits. Delli 

Gatti et al (2006 and 2010) show the development of kurtosis in firms’ experiences due to 

the nature of credit constraints and supplier connections in the productive sectors. In 

order to study the development of asset correlation among banks in particular, Perignon 
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and Smith’s diversification coefficient is assessed against a rolling window of 200 

observations. Over time the dynamics of this diversification coefficient should accurately 

present the nature of the diversification of the correlation matrix, and by extension model 

the variability of the credit-network topology and thus the viability of predictive 

modeling. More precisely, the diversification coefficient captures the dynamics of the 

correlation matrix as current risk evaluation methods would, observed kurtosis and 

variability in the experience of the diversification coefficient will imply the sudden 

realization of potential correlation (via credit-network topology) which would result in 

severe mispricing of risk: 

  

 

By visual inspection δ exhibits an increasing degree of variability with the 

concentration of the network. In the context of this credit network, the variability of the 

correlation matrix speaks to the strength of the realized connections among the banks 
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constituting this “portfolio” and the resulting correlations in profits over time. There are 

two avenues by which comovement in profits can arise in the model. First, if firms grow 

more quickly than their partner banks, the demand for credit can outpace the supply 

available from their supplying bank, in which case other banks either view the bank as a 

profit opportunity and invest their excess profits in it (through the extension of credits as 

described above) or growth is constrained. Such dependencies can persist over multiple 

periods, leading to possible long run dependence in the time evolution of the 

diversification coefficient. Additionally, such dependencies effectively generate elevated 

downside risk, as any bankruptcy in a single bank is more likely to cause a bankruptcy 

cascade that “infects” other parts of the network. Second, single period losses can lead to 

increased fragility in the system by causing the redistribution of excess profits to cover 

the troubled bank. In either case a statistical assessment would be blind to the magnitude 

of the resulting increase in risk. Should a node with “deep” network connections 

experience failure, the resulting bankruptcy cascade could be severe, cascading to 

multiple nodes along the chain. The two interact in a complex manner and the emergent 

behavior exhibited in the panel above gives evidence to the increasing importance of 

these inter-node effects in the concentrated model.   

 The above results show that the diversification coefficient, as an expression of the 

correlation matrix, exhibits qualitatively different time evolution dependent on the level 

of concentration in the model. However, a statistical expression of this variability is 

complicated by difficulties in accurately assessing long run dependence, see CITATION 

for a discussion. Examining the first difference of the diversification coefficient yields 
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convincing concrete results in support of the hypothesis that increasing concentration 

(and the resulting “masking” of effective risk) yields divergence in risk assessment: 

  

  

 

Visual inspection again shows a strong increase in the variability of the implied 

correlation structure of the banking sector; critically, kurtosis in the above first 

differences of the evaluated Value-at-Risk increases in the restricted models. This 

observed increase in kurtosis is due to the unobserved risk inherent to the concentrated 

case; the concentration of constituent credits into ever larger “portfolios” (ie. the banks’ 

balance sheets) induces imperfect diversification within the bank’s balance sheets, and 

masks the development of risky structures until they are “realized” through loss. The 

occurrence of a multi-period loss in any given bank remains constant or declines as 

-0.1

-0.05

0

0.05

0.1

First difference of δ: 

 25 Banks (kurtosis = 36.7) 

-0.1

-0.05

0

0.05

0.1

First difference of δ: 
50 Banks (kurtosis = 38.0) 

-0.1

-0.05

0

0.05

0.1

First difference of δ:  
100 Banks (kurtosis = 8.7) 

0

20

40

60

100 50 25

Banks 

Kurtosis in the first difference of 
δ 

Mean

UCL95

LCL95

Figure 5: Increasing concentration at the bank level 



54 
 

concentration increases. However, the resulting effect on the magnitude of loss is 

drastically increased as larger portions of the banking sector are “tied up” in the fortunes 

of a single bank. The results were additionally found to be robust as an expression of the 

mean experience of a test of 50 iterations of the simulation under each model 

specification. 

 

Net Worth  

 Finally, the number of banks operating in the market appears to have an effect on 

the time evolution of net worth in the economy. In the following three scenarios the 

aggregate net worth of the banking sector in initial conditions remains unchanged. As in 

the previous exploration, the number of banks is restricted: 
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As the number of banks declines growth in the economy collapses. Stationarity 

forms the lower bound due to the construction of the model, as firms are not allowed to 

hold negative net worth and furthermore all bankruptcies are replaced by a firm with a set 

“initial” net worth.  

Remember that the supply of credit is determined by the prudential lending target, 

𝐿𝑧𝑡 = 𝐴𝑧𝑡/𝛼, where 𝐴𝑧𝑡 is the net worth of bank z at time t, 𝛼 is a statutory capital ratio, 

and 𝐿𝑧𝑡 is the supply of credit from bank z at time t. If defaults occur too frequently, or 

are too severe, banks remain unable to grow net worth to support the growing economy 

and the economy becomes credit constrained. In fact, from the results above, it would 

appear that the trade off created by concentrated financial markets – less frequent but 

more sever failures – does not lead to a long run increase in the total welfare of the 

economy. The severity of the downside risk during cascades is sufficient to more than 

overcome the improved performance during normal periods. 

In the progression from a disperse network with 𝑁𝑑 = 𝑁𝑢 = 𝑁𝑏 to the 

concentrated case 𝑁𝑑 = 𝑁𝑢 = 4𝑁𝑏, we can see that the magnitude of downside risk in the 

economy grows substantially. This supports the earlier observation that dependencies in 

the correlation matrix on the level of connection and concentration in the model could 

cause severe mispricing in models based on the assumption of convergence. In the 

unconcentrated case, the law of large numbers pushes correlations in asset values to 

cancel, and the structure approaches perfect independence in losses. Although, it should 

be noted that even in the unconcentrated case profits still exhibit some kurtosis due to the 

connections on the interbank and product markets. Furthermore, it can be seen that the 
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bifurcation of the network into periods of variable correlation is dependent on the depth 

of interbank connections, which intensify with weaknesses in the banking sector. 

Intuitively, the destruction of these avenues of correlation would yield actual perfect 

independence in the case of a non-connected network (ie. If there were no interbank 

market and if the credit connections between firms interacted in isolation and the assets 

of no two banks were in any way structurally connected). It would be perhaps a valuable 

contribution to extend the framework used to model an Erdös-Rení map of a network 

economy (Nier et al. 2009) to the limit case of absolute connection and absolute 

fragmentation to arrive at these same results. Intuitively, failure in the “absolute” 

connection case would treat the banking industry as a single bank, which would obscure 

all failures save those extensive enough to overcome profits from elsewhere, yielding 

either complete catastrophe or the appearance of stability. The case of absolute 

fragmentation may, by contrast, yield a perfectly Brownian structure. Critically, both the 

increase of long run dependence and kurtosis evidence the variability of the state 

conditions upon which an assessment of risk in the sector would necessarily be based. 
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VI. Conclusions 

Minsky’s Financial Instability in the emergent behavior of the model 

Having discussed the nature of default and asset correlations in the Delli Gatti et 

al. (2006) network economy it is now possible to address the fundamental determinants 

of the shape of the correlation matrix and their possible applications in a broader family 

of interconnected systems. The genesis of extreme moments of correlation among 

significant proportions of the network is an act of the strength of interfirm connections. 

“Grouping” these connection points into larger elements then has the effect of tying 

together the effects of failure in portions of the market. The greater share of assets 

dedicated to providing a form of collateral for failure indeed lessens the likelihood of low 

level failure. However, it should be noted that credit constraints enter the picture as a 

constraint on growth, when failure effects large sectors of the banking industry, the other 

industries’ growth can be constrained in the long term. There is a dual effect here. First, 

the concentrated financial system produces increased stability punctuated by periods of 

extreme asset correlation merely through the variable depth of credit connections. These 

extreme periods of correlation exacerbate downside risk and lead to a disorderly 

breakdown of the usual “equilibrium” dynamics, fundamentally frustrating risk valuation. 

The variance in the depth of those corrections is dependent on the experience of the 
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network, reinforcing the strength of correlation as banks increase their credit connections 

due to difficulty or opportunity. Second, when failure occurs, recovery is rendered more 

difficult even when real conditions support robust recovery due to credit constraints. (Is 

the crux of this argument the effect of a reactive reinforcement of credit connections as 

occurred in the CDS arrangements in 2007?)  

Both the time evolution of banking sector profits and the variation over time of 

the correlation matrix of bank returns evidence the dynamic development of 

interdependencies in the banking sector. As differences in growth rates between firms and 

banks are aggravated by the interest rate mechanism, conditions can develop allowing 

portions of the banking sector to deploy their excess balances elsewhere in the sector, 

possibly developing subsidizing dependencies that can last over multiple periods. Since 

the potential downside risk is not realized until bankruptcy occurs, an unrealized risk can 

develop through avenues of credit dependency. If a bank with a higher risk profile 

requires credit through the interbank (or any other) market, creditors in the Delli Gatti 

model view the requirement as an investment opportunity, and not as risk. Indeed, if 

information about credit connections is proprietary, it becomes impossible for a lender to 

ascertain the true risk profile of another bank until bankruptcy actually occurs.  

To the extent that these dependency structures exist, they can be understood as 

emergent behavior loosely modeling Minsky’s Financial Instability Hypothesis. Minsky 

asserts that two separate but interconnected phenomena drive the development of 

financial structures which rely increasingly upon external financing. In Minsky’s model 

three types of financing schema exist, Hedge, Speculation and Ponzi. In hedge finance 
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units are able to operate completely on their income account, all investment is financed 

via carried profits, and debts coming due are paid entirely out of profit. Speculative 

finance requires that debts coming due be paid at least partially by new debts, the balance 

sheet is rolled forward. Finally, Ponzi finance requires that debts be financed entirely by 

new debt, and represents an increase without bound of the indebtedness of the agent. 

Since all debts are liquid at the end of every timestep, this exact progression is rendered 

impossible by the structure of the model. However, the development and collapse over 

time of external finance dependent structures serves as an analogy for Minsky’s 

hypothesis. Banks bifurcate between self-sufficient and dependent states (essentially, 

although not precisely, between hedge and speculative finance), as in the Financial 

Instability hypothesis, a dependent bank serves to increase systemic risk. Indeed it should 

be striking that we observe the extreme effects we do even in such a restricted model. It 

could easily be expected that an accurate agent based reproduction allowing for the 

development of Ponzi finance would exhibit more extreme behavior. Moreover, a 

government agent is not included in the above model, as in Minsky’s formulation, and the 

introduction of such an agent could as easily reinforce the effects highlighted throughout 

this paper as mitigate them. The exact nature of Government policy, and its implications 

for the financial accelerator in Delli Gatti et al. (2010) could be the subject of future 

research. 

At this stage, the strength of the connection between Minsky and the literature on 

Network effects in financial markets is nascent. The endogenous instability of the 

financial markets tie the two together and it could be asserted that Minsky described 
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qualitatively the quantitative expressions of network effects. The increasing depth of 

financial connections across a financial system serves as a potential conductor of 

financial risk. In general, these channels of possible contagion go unrecognized until their 

potential is realized, at which point, of course, it is too late. Indeed, it should be 

recognized that even in the above model, in which we know the exact credit topology of 

the network, we would be hard pressed to predict the behavior accurately. The reality is 

likely much more complex. In such a context, Minsky describes the mechanisms by 

which both the number of these channels is augmented, and the likelihood that failure 

occurs at any given point. As an economy progresses toward Ponzi finance, the relative 

value (indebtedness) and number (interconnectedness) of credit relationships augments, 

increasing the likelihood of failures with systemic effects. The types of parameters 

defined in an Erdos-Reni map, then, could serve as work in the direction of defining a 

measure of Systemic Risk, a concept which has received much attention in the years since 

the financial crisis but for which there is very little definite understanding. 

The difficulties of defining systemic risk are real, due to the fundamental nature 

of interconnected systems, there exist patterns of reactive behavior that defy prediction. 

Additionally, even under such restrictive assumptions of agent choice as defined above 

(in fact, in Delli Gatti et al. 2006 agents are not imbued with choice, however, in the 

subsequent 2010 paper an agent choice matrix is presented which fails to mitigate the 

effects and in fact reinforces them), unpredictable patterns of behavior arise fairly rapidly. 

While it is true that prediction may be possible over some finite time horizon, or under 

some assumed conditions (such as those assumed in the formulation of copula and matrix 
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decomposition methods of portfolio risk evaluation), it should by now be apparent that to 

the extent that knowledge about network topology is unavailable to agents, the set of 

conditions under which future behavior is predictable is finite and smaller than the set of 

possible future conditions. Should potential systemic risk as characterized by potential 

avenues of contagion be realized, predictable behavior can rapidly degenerate into a 

future time path of behavior that is unknowable. 

To what extent, exactly, is future behavior unknowable? It may be, again echoing 

the sentiments of Minsky and Albin, that the formulation of the research project 

approached by financial economists is in some way incomplete. While there is likely 

value in predicting more precisely the time evolution of profits within the economy under 

those state conditions which allow prediction, the pursuit of this research project in 

isolation or without the simultaneous pursuit of a body of study attempting to define 

those state conditions which might render such predictions invalid and the likelihood that 

these state conditions might obtain, can lead to the extremely damaging development of 

irrational exuberance (which, in the context of this paper could be seen as further 

reinforcing the likelihood of just such a state condition bifurcation). A careful 

examination of the financial crisis quickly shows that unrealistic expectations obtained 

across large portions of the financial sector, with the complex CDO and CDS instruments 

at their core. A large body of writing exists on this subject, see Crotty, Wolfe or any 

number of others for further review (Crotty 2009). An area that is greatly lacking at this 

moment, then, is a program of study attempting to define the probable causes of systemic 

bifurcations.  
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Real World applications 

One could consider the financial accelerator to be one element of a superset of 

network effects. Any risk sharing scheme, should there be the possibility of network 

effects affecting default and asset correlations, will develop into Ponzi finance, as the 

structure exhibits concentration about the mean punctuated by extreme departure. If 

timescales fail to extend to compensate for structural changes, the increase in kurtosis 

will remain unobserved by actors in the economy. Worse, the structure will appear to the 

endogenous actor to be in a progression towards a state of greater stability. The effects of 

the model are agnostic to the method by which concentrations are introduced into the 

model, in Delli Gatti et al. (2010) the concentration is the result of an endogenous choice 

mechanism, other structures emphasize confidence effects, effects of moral hazards, 

government policy, or any number of incentive schemes. It’s likely that all of the above 

have obtained in the past 40 years; the exhibited path over the decades leading up to the 

financial crisis has been a determinant of multiple factors, including Federal Reserve 

strategy in the case of bank failure, deregulation in financial markets, and “innovation” 

leading to the creation and pricing of new financial instruments. All of these 

developments have resulted in a more concentrated financial system, and there is ample 

evidence that the incentive structure of financial markets have tended to reinforce the 

effects. 

The result, as illustrated by the agent based approach taken in the model studied 

here (among others) is that any reliance on mean field approximations to support 
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predictions of future behavior made from aggregate expressions of system position is 

fundamentally flawed, especially as the network connections become increasingly dense. 

“Network Effects” dominate in the limit. Past and current expressions of systemic risk 

have tended to rely casually on the net position of a financial market: observers noted in 

the early days of the credit crisis that the net exposure of the financial industry to 

subprime securities was something on the order of 200 billion, not a large figure in the 

context of the size of the market. However, through largely unobserved liability structures 

such as the now infamous (although ubiquitous) CDS, the effects of the small net 

aggregate exposure ballooned into likely greater than $2 trillion in destroyed wealth. A 

variety of factors, of course, were present in the expressed patterns of loss in the financial 

crisis, including liquidity problems deriving from a lack of confidence in institutions, 

sometimes in cases in which the institution had very little exposure. However, it was the 

complex nature of the credit topology of the financial network that led to risk becoming 

unknowable (which is quite obviously connected to the crisis of confidence that 

occurred). A single firm, or small subset of firms, which fail to cover their liabilities can 

lead to large effects in the emergent behavior of the system, aggregate effects are not 

expressed by the aggregation of individual effects. In short, Network effects matter.  

The existing literature on ABM has focused largely on the explanation of results 

considered anomalous in the context of the neoclassical synthesis. In their recognition of 

the destabilizing effects of the complex interactions possible in networks characterized by 

heterogeneous interacting agents, agent based models have a clear advantage over models 

expressing the trajectories of economic systems in terms of aggregate statistics. A good 
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application of the results of such models to the development of economic forecasting is 

yet to be produced. It is my hope that this work will help to inform that body of study. 

Perhaps the clearest conclusion of the above is that the question of forecasting must be 

necessarily broadened, especially in the context of the estimation of uncertainty. 

Following from the work of Albin, it is recognized that not all state conditions produce 

models whose future trajectories are predictable in a computational sense. If state 

conditions are variable, and studies in financial psychology should lead us to believe that 

they are in fact subject to bifurcation, more research is needed to study the conditions for 

this bifurcation. This study has technically proceeded entirely outside of the framework 

of choice and yet such state condition bifurcations are shown to be possible, future work 

would benefit from an increased understanding of just such conditions. If possible, 

descriptions of expectation for state conditions are critical, including as well increased 

effort in discovering how non-salient conditions might come to dominate system 

dynamics. The question of the degree to which any of the above is possible is of critical 

importance, and requires more attention than has been paid to it in current works. 
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