
University of Denver University of Denver

Digital Commons @ DU Digital Commons @ DU

Electronic Theses and Dissertations Graduate Studies

1-1-2016

GreenC5: An Adaptive, Energy-Aware Collection for Green GreenC5: An Adaptive, Energy-Aware Collection for Green

Software Development Software Development

Junya Michanan
University of Denver

Follow this and additional works at: https://digitalcommons.du.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Michanan, Junya, "GreenC5: An Adaptive, Energy-Aware Collection for Green Software Development"
(2016). Electronic Theses and Dissertations. 1122.
https://digitalcommons.du.edu/etd/1122

This Dissertation is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It
has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital
Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu.

https://digitalcommons.du.edu/
https://digitalcommons.du.edu/etd
https://digitalcommons.du.edu/graduate
https://digitalcommons.du.edu/etd?utm_source=digitalcommons.du.edu%2Fetd%2F1122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.du.edu%2Fetd%2F1122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.du.edu/etd/1122?utm_source=digitalcommons.du.edu%2Fetd%2F1122&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jennifer.cox@du.edu,dig-commons@du.edu

GREENC5: AN ADAPTIVE, ENERGY-AWARE COLLECTION FOR GREEN

SOFTWARE DEVELOPMENT

A Dissertation

Presented to

the Faculty of the Daniel Felix Ritchie School of Engineering and Computer Science

University of Denver

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

Junya Michanan

June 2016

Advisors: Matthew J. Rutherford and Rinku Dewri

©Copyright by Junya Michanan 2016

All Rights Reserved

 ii

Author: Junya Michanan

Title: GREENC5: AN ADAPTIVE, ENERGY-AWARE COLLECTION FOR GREEN

SOFTWARE DEVELOPMENT

Advisors: Matthew J. Rutherford and Rinku Dewri

Degree Date: June 2016

ABSTRACT

Dynamic data structures in software applications have been shown to have a large

impact on system performance. In this paper, we explore energy saving opportunities of

interface-based dynamic data structures. Our results suggest that savings opportunities

exist in the C5 Collection between 16.95% and 97.50%. We propose a prototype and

architecture for creating adaptive green data structures by applying machine learning tools

to build a model for predicting energy efficient data structures based on the dynamic

workload. Our neural network model can classify energy efficient data structures based on

features such as the number of elements, frequency of operations, interface and set/bag

semantics. The 10-fold cross validation result show 95.80% average accuracy of these

predictions. Our n-gram model can accurately predict the most energy efficient data

structure sequence in 19 simulated and real-world programs—on average, with more than

50% accuracy and up to 98% using a bigram predictor. Our GreenC5 prototype

demonstrates how a green data structure can be implemented. With a simple decision

making technique, the data structure can efficiently adapt for energy efficiency with low

overhead. The median of GreenC5’s potential energy savings is more than 60% and ranges

from 18% to 95%.

 iii

ACKNOWLEDGEMENTS

I would like to thank the government of Thailand and the Royal Thai Army for

providing me the full scholarship and the unimaginable opportunity to complete my study

here at the University of Denver. Especially, I am very grateful to my advisors, Dr.

Matthew J. Rutherford and Dr. Rinku Dewri, whose expertise, understanding, generous

guidance and relentless support made it possible for me to archive the final goal. It was a

pleasure working with two of them.

I would also like to thank all of my colleagues and friends in Denver and other

cities and states that help motivate and provide me any support while I am away from

home. I would like to thank my mom, dad, brother, sisters and relatives at home for their

love, motivation and moral support. Finally, and most importantly, I owe an enormous debt

of gratitude to my wife, Niruemon, and my two children, Lita and Tim, who have been a

part of my journey. Through the struggles and trials of this dissertation, they have been a

constant source of love, joy and motivation. Thank you.

 iv

TABLE OF CONTENTS

Chapter 1: Introduction ... 1
1.1 Green Data Structure Introduction .. 3
1.2 Programming Problems .. 4

1.3 Research Questions and Key Contributions ... 6
1.4 Dissertation Outline .. 8

Chapter 2: Green Computing Background ... 10
2.1 Green Computing Research .. 10

2.1.1 Improvement Opportunities ... 13

2.1.2 Green Computing Benefits .. 14
2.2 Energy-Efficient Software Research... 21

2.2.1 Presentation Layer ... 21
2.2.2 Business Logic Layer ... 24
2.2.3 Data Layer .. 26
2.2.4 Energy-Efficient Programming Practices .. 28

2.3 Power Measuring and Profiling .. 31
2.3.1 Energy Metrics and Benchmarks ... 32

2.3.2 Software Power Measurement ... 36
2.4 Performance, Power and Energy Optimization of Software Applications 47

Chapter 3: Green Software Development ... 50

3.1 Sustainability in Software Engineering .. 50
3.1.1 Framing Sustainability as a Property of Software Quality 51

3.1.2 Sustainable and Green Software Engineering.................................. 54

3.2 Green Software Development Life Cycle ... 57

3.2.1 GREENSOFT .. 57
3.2.2 A 2-Level Green Model for Sustainable Software Engineering 61

3.3 Software Adaptation and Energy-Aware Applications 65
3.4 Machine Learning for Energy-Efficient Computing....................................... 70

Chapter 4: A Power-Performance Tradeoff Study .. 75
4.1 Introduction ... 75
4.2 Background ... 78

4.2.1 The FPGA Cache System .. 79
4.2.2 Pareto Optimality for a Typical Power-Performance Tradeoff 80

4.3 Related Work .. 82

4.4 Experiment .. 83

4.4.1 Experimental Setup .. 83
4.4.2 Experimental Method... 85

4.5 Results and Discussion ... 87
4.5.1 Power-Performance Tradeoff Result ... 87
4.5.2 Optimal Cache Configuration Result ... 88

4.5.3 Insight Summary .. 90
4.5.4 Threats to Validity ... 98

 v

4.6 Conclusion .. 100

Chapter 5: Green Data Structure Design .. 101
5.1 Interface-Based Data Structure ... 101
5.2 Data Structure Features ... 102

5.3 Green Data Structure Architecture.. 105
5.4 Energy Profiling .. 110
5.5 Energy Saving Opportunity .. 114
5.6 Related Work .. 116

Chapter 6: Predicting Data Structures for Energy Efficient Computing 119

6.1 Classifier ... 119
6.2 Predictor .. 121

6.3 Evaluation Results .. 123
6.3.1 Classification Results ... 123
6.3.2 Prediction Result .. 123

Chapter 7: Green Data Structure Implementation .. 127

7.1 GreenC5 Architecture ... 127
7.2 Main Features.. 127

7.3 Class Diagrams ... 128
7.4 Data Structure Transformation and Adaptation .. 132
7.5 Decision Maker ... 132

7.6 Usage of the GreenC5 Data Structure ... 137
7.7 Code Release ... 138

Chapter 8: Green Data Structure Evaluations ... 140
8.1 Experimental Setup ... 140

8.2 GreenC5 Evaluation Results ... 142
8.2.1 Overhead Testing Results .. 142

8.2.2 Potential Energy Saving Results .. 144
8.3 Threats to Validity .. 148

8.4 Additional Analysis and GreenC5 Simulator Implementation 150
8.4.1 Additional Analysis #1: Alternative Power Profiling Tool and

GreenC5 Simulator Implementation ... 151
8.4.2 Additional Analysis #2: A Performance Evaluation of Multiple

Instances in Multiple Programs .. 156

8.4.3 Additional Analysis #3: An Initial Exploration of Decision Making

Criteria .. 163

Chapter 9: Conclusion and Future Work .. 175
9.1 Conclusion .. 175
9.2 Future Work .. 176

Bibliography ... 178

 vi

Appendices .. 191

Appendix A: CRUD-Based C5 Collection Class Diagram 191
Appendix B: GreenC5 Class Diagram .. 192
Appendix C: Learning Algorithms ... 193

 vii

LIST OF TABLES

Table 1. Number of Pareto Optimal Solutions and Negligible Ones by Benchmark

Program ... 84

Table 2. Counts of First Iteration Pareto Points by Cache Property and Cluster 95

Table 3. The Selected Data Structure Features ... 103

Table 4. List of Test Computers with Specifications and Based Power Consumption .. 141

Table 5. The Energy Efficiency Improvement of Parallel Executions vs. Sequential

Executions of GreenC5 by Number of Instances .. 161

Table 6. Average Potential Energy Savings of Parallel and Sequential Executions of

GreenC5 for All Numbers of Instances by Data Structure Group 162

Table 7. Recommended Optimal Decision Making Criteria by Data Structure Group .. 173

 viii

LIST OF FIGURES

Figure 1. (a) Code Example of Traditional Data Structures; and (b) Code Example of

Our Green Data Structure ... 6

Figure 2. ICT Carbon Footprint Outlook (million tones CO2e) (from [92]) 16

Figure 3. An Example of Power/Runtime Profile Collected by an FPGA Atlys Board

Executing an ADPCM Benchmark Program .. 37

Figure 4. PowerScope Architecture (from [78]) ... 43

Figure 5. AppScope’s Component-Specific Power Models (from [140]) 46

Figure 6. GPS-UP Software Energy Efficiency Quadrant Graph (from [102]) 48

Figure 7. A Framework for Sustainability Software-Quality Requirements (from [26]) . 52

Figure 8. Green Software, Green Hardware and Green IT (from [107]) 56

Figure 9. GREENSOFT Reference Model (from [24]) .. 58

Figure 10. An Overview of Green Software Engineering Process Model (from [24])..... 60

Figure 11. Level-1 Green Software Engineering Process (from [25]) 61

Figure 12. Level-2 Software Model that Promotes Green ICT (from [25]) 63

Figure 13. Idealized Infrastructure for Dynamic System Adaptation (from [116]) 68

Figure 14. A Pareto Optimal Curve and Clusters for Typical Power-Performance

Tradeoffs ... 81

Figure 15. Examples of Pareto Optimal Cache Configurations and Clusters of Four

Programs in the CHStone Benchmark .. 89

Figure 16. A Power-Performance Tradeoff Profile of the Pareto Analysis Result (CT =

performance cluster, CB = balance cluster and CP = power cluster; bold, italic and

underlined numbers indicate the minimum normalized distance to ideal point of a

benchmark) ... 93

Figure 17. The C5 Collection Classes and Interfaces (from [9]). Solid Lines Indicate a

Sub-Interface Relation, and Dashed Lines Indicate an Implementation Relation. 104

Figure 18. C5 Data Structure Groups by Interface and Set/Bag Semantics 105

Figure 19. A Component Architecture of the GreenC5 Data Structure 106

 ix

Figure 20. Adaptive GreenC5 Data Structure Process... 108

Figure 21. Energy Profiling Algorithm ... 111

Figure 22. Distribution of Most Energy-Efficient C5 Data Structures in the Training

Dataset... 114

Figure 23. Distribution and Ranking Table of Most Energy-Efficient C5 Data Structures

by Data Structure Group ... 115

Figure 24. Potential Energy Savings of C5 Data Structures by Data Structure Group . 116

Figure 25. Our Hand-Tuned Artificial Neural Network Classifier 120

Figure 26. Incremental Online Learning and Prediction Process of a Trigram-Based

Predictor .. 122

Figure 27. Prediction Accuracy Results: (a) Accuracy Results by Program using a

Trigram Predictor and (b) Averaged Accuracy Results of All 19 Programs using Bigram

and Trigram Predictors ... 125

Figure 28. Flow Chart Diagram of the GreenC5 .. 134

Figure 29. GreenC5 Evaluation Process ... 140

Figure 30. GreenC5’s Potential Energy Savings by Data Structure Group by Program 145

Figure 31. Average Potential Energy Savings of GreenC5 by Data Structure Group ... 147

Figure 32. A Screenshot of the GreenC5 Simulator Application 153

Figure 33. Intel Power Gadget Evaluation Process .. 155

Figure 34. The Evaluation Process of GreenC5 in Different Use-Case Scenarios (Multiple

Instances and Multiple Threads) ... 158

Figure 35. Energy Consumptions of Sequential and Parallel Executions of GreenC5 and

C5 Data Structures, (a) All Data Structure Groups and (b) ICollection, ICollectionSet and

IListBag Groups. ... 160

Figure 36. Decision Making Criteria Exploration Process ... 164

Figure 37. GreenC5's Internal Dynamic Transformation Example 169

Figure 38. Overall Potential Energy Savings by Decision Making Criteria 170

Figure 39. Potential Energy Savings by Decision Making Criteria and Data Structure

Group .. 172

file:///C:/Users/mich/Google%20Drive/Research/Desertation/Dissertation/Junya%20Michanan%20-%20GreenC5%20Dissertation%20-%20Full%20Dissertation%20StandardISO.docx%23_Toc451113354

1

CHAPTER 1: INTRODUCTION

In modern computing systems, energy consumption has becoming increasingly

important among systems that rely on battery power. Moreover, the proliferation of global

computing devices has pushed IT energy consumption higher and higher, raising concerns

among many environmentalists. As reported in an article by Digital Power Group [1],

information and communication technology ecosystems have approached 10% of the

world’s electricity generation. The number has been estimated to range from 1,100 to 1,800

TWh annually. As worries about global warming issue are increasing, this trend inspires

depression among environmentalists. The need for reducing IT energy consumption and

research efforts in every sector is now necessary, not just for energy saving and extending

battery life, but also for the environment.

There are many areas in the layers of computer systems that can be optimized for

energy efficiency—from hardware [3, 4], operating systems [5] to application layers [12,

13]. At the software application layer, green or “unpolluted” design of software

applications can also help minimize the system energy consumption [2]. However, there

are also many areas in the software that affect the system performance and can be optimized

for energy efficiency—from user behaviors/application workloads [29, 30, 31], coding

styles and algorithms [6, 29, 32], to design patterns [33]. Like hardware engineers, software

developers too can now join the rest of the communities in the fight against climate change.

2

One way to improve the energy efficiency of software applications is by optimizing

the program code or modifying some of their properties so that the overall energy

consumption is reduced—either by making the software run faster, consume less power or

both. The main goal is that the overall energy consumption of the optimized program is

less than that of the non-optimized one. Energy consumption is a product of execution time

and power consumption. Power and performance (execution time) are considered

conflicting attributes and are often traded off in order to achieve energy efficiency

improvement [41]. One may argue that energy consumption can be reduced by just making

the software applications run faster. However, this is not always the case. Abdulsalam et

al. conduct a thorough study to show that faster code does not always lead to more energy

efficiency code [102]. From their study, the energy efficiency codes can lead to either faster

and lower power code, faster and higher power code, slower and higher power code or

slower and lower power code. The authors are able to find program examples for all eight

of their red (waste energy) and green (save energy) program categories. The authors also

suggest that “judging software energy efficiency by time analysis or power usage alone is

a deficient vision, which will bring in uncertainties and sometimes cause confusion.”

However, in our main study, we look at only the energy dimension. Our study aims to

improve the energy efficiency of software applications by building a software tool that can

help software application to consume less energy.

Today, sustainability has been gaining importance among software engineering

communities. There have been many studies that include greenness, carbon footprint and

sustainability in the existing green software engineering life cycles, to promote green and

sustainable software development. For example, Naumann et al. propose GREENSOFT, a

3

conceptual reference model for sustainable software [24]; Mahmoud and colleagues

propose a new two-level green software model that covers the sustainable life cycle of a

software product and the software tools promoting green and environmentally sustainable

software [25]; Lago et al. develop a sustainability analysis framework that enables

software developers to specifically consider environmental and social dimensions in their

green software projects [26].

Most research is concentrated more on the conceptual and higher level but not much

is focused at the lower level, in particular the coding and implementation phases. There is

still a lack of easy-to-use tools that can help programmers develop green software. These

tools could help promote the green software development and are an important factor for

software engineers and developers to consider the role of software engineering in the

environmental impact of our computing technologies. In this study, we focus on the

application layer, primarily object-oriented software with “interface-based”

implementation [6], where there are multiple choices of classes that implement the same

interface. Our goal is to explore how the choice of these classes impacts the energy

consumption of software applications and to find ways to intelligently and dynamically

switch between implementations for energy efficiency.

1.1 Green Data Structure Introduction

Our vision is to see a new generation of software applications composed of

smart/green objects and components. We envision that these adaptive objects and

components have the ability to intelligently adapt themselves to the workloads and

environments for energy efficiency, and become the main building blocks in developing

green software applications. The green objects are smart because they can learn, classify

4

and predict their workload, and can decide when and how to dynamically adapt for energy

efficiency.

As a case study, we investigate dynamic data structures because they have been

shown to have a large impact on performance and are considered key components of many

object-oriented software applications [7, 8]; many applications are implemented using

interface-based design [6]. By using a “select the right data structure for the right

workload” approach, we apply machine learning tools and enhance these classes to be

adaptive green data structures that can dynamically adapt for energy efficiency without

creating more work for developers.

We propose a working prototype of adaptive green data structures called GreenC5,

demonstrating how a green data structure can be implemented and how the models for

predicting energy efficient data structures are integrated and used. Together with simple

decision making and transformation techniques, we demonstrate that GreenC5 can

accurately and efficiently adapt to the workload helping the software applications to

perform better and the base system to consume less energy than necessary. The evaluation

results also show that our models for predicting energy efficient data structure are accurate

and the a priori knowledge is potentially be universal because it can be used in multiple

platforms with similar performance results.

1.2 Programming Problems

Dynamic data structures have been around since the beginning of computer

programming. They are major components of many programs and widely used in many

software algorithms. They are also considered the key performance and energy

consumption factors of software applications and computing devices. In programming, the

5

selection of a data structure implementation is normally done at the development phase.

Once a program is completed, the data structure choice is fixed. Dynamic data structure

selection and switching are not normally done at runtime. Moreover, programmers tend to

choose their favorite data structures [8] for their programs, often without taking

performance and/or energy consumption into consideration, or knowing whether there are

better choices. As a result, the energy consumption of computer systems when running the

application can be higher than necessary. The process of selecting the most energy efficient

data structure should be automatic and switching to a different implementation should be

dynamic, without creating more work for programmers. Our long-term goal is to develop

an architecture for adaptive green data structures that allows programmers to replace their

existing data structure with a universal “green” data structure, and expect the programs to

function the same, with minimal overhead and configuration. It is the same as a drop-in

replacement of existing collections.

Dynamic selection of the right data structure for the right workload, algorithm and

program is sometimes not an easy task and many times difficult at the program level done

by programmers. It would be much more convenient if the selection is left to the program.

As shown in Figure 1(a), traditionally, programmers have to select data structures during

the implementation phase. Once a data structure is selected, it is normally not changed at

runtime. Our ultimate goal is to have a green data structure to be used as shown in Figure

1(b)—only one green data structure is declared; and the automatic switching of internal

data structure implementations is done by the data structure itself. There is no need for

programmers to select an energy-efficient data structure for their programs. The GreenC5

changes its internal data structures automatically and dynamically at runtime, for energy

6

efficiency. The idealized green data structure should also preserve all capabilities of the

original data structures and the usage should be similar to the original ones so that the

learning curve for programmers is at the minimum level.

(a)

 (b)

Figure 1. (a) Code Example of Traditional Data Structures; and (b) Code Example of Our

Green Data Structure

1.3 Research Questions and Key Contributions

Our main research questions are related to interface-based dynamic data structures

in object-oriented programming. In particular, the main topic in this dissertation focuses

on the development of a smart and adaptive energy-aware dynamic data structure for green

software development, called GreenC5. The key challenges and main research questions

reside throughout the research and development phases of the GreenC5—from finding

solutions for the problems of dynamic data structures, to developing software energy

measurement tools and energy profiling process, to creating the predictive models and

ArrayList<string> ds = new ArrayList<string>();
ds.Add("Hello");
ds.Update("Hello");
ds.Find("Hello");
ds.Remove("Hello");

GreenC5<string> ds = new GreenC5<string>();
ds.Create("Hello");
ds.Update("Hello");
ds.Retrieve("Hello");
ds.Delete("Hello");

7

training datasets, and to implementing and validating the green data structure. The

following are the key data structure research questions to be answered in this dissertation:

1) Does the choice of data structures impact a system’s energy consumption?

2) Can we create models for classifying and predicting energy efficient data

structures for use in object-oriented programs?

3) Can we intelligently switch between different data structure implementations

to improve energy efficiency?

4) Can a green data structure be implemented?

To answer the questions, we implement a working prototype of an adaptive green

data structure for green software development, the GreenC5. Along with the

implementation process, we also identify key performance/energy features of dynamic data

structures and develop a predictive model for dynamic selection and switching of energy-

efficient data structures. The study also provides some in-depth concept, interesting

research insights and the design, architecture and actual implementation of our adaptive

green data structure. Along with the software-layer study, we also include one of our initial

explorations in green computing research at the hardware layer, in particular the energy

impact from the cache system and the power-performance tradeoffs using live power data.

The key contributions of this dissertation are fivefold:

1) Empirical evidence that energy saving opportunities exist in interface-based,

object-oriented dynamic data structures.

2) Development of a predictive model based on artificial neural networks and n-

gram inference to predict energy efficient data structures for use in object-

oriented programs.

8

3) An architecture for building an adaptive green data structure.

4) A working prototype of GreenC5 that is lightweight, smart, adaptive and easy-

to-use.

5) Understanding of power-performance tradeoff of live power data using the

Pareto optimality principle.

1.4 Dissertation Outline

This dissertation contains two main studies in green computing research area. In

particular, our interest areas are at the two main computer system layers—hardware and

software layers. Our first study concentrates on the cache system, a key component of

computer systems at hardware layer. The second study aims at the application layer, in

particular the data structures. The two components are selected mainly because they both

have shown to have large impact on the performance of computer systems. In these studies,

we want to further explore their energy impacts and find ways to optimize and minimize

the energy consumption. Our first study (Chapter 4) is presented as an initial and additional

work to the second study (Chapter 5, 6, 7 and 8). The green data structure in the second

study is the main topic and contains answers to our key research questions in this

dissertation.

 The remainder of this dissertation is organized as follows: Chapter 2 and 3 present

a literature review and background materials. They include some introduction and

discussions about green computing research, power measuring and profiling, green

software development and machine learning for energy efficient computing. Chapter 4

presents our first study about the energy impact from the cache system. The goal is to

understand the power-performance tradeoffs on computer systems using Pareto

9

optimization method. The remaining chapters present our second study of the green data

structure. Chapter 5 describes the background and our design of the adaptive green data

structure. Chapter 6 describes in-depth details of our methods for predicting data structures

for energy efficiency and the evaluation results. Chapter 7 and 8 discuss the

implementation, evaluation results and additional analysis of our green data structure

prototype, respectively. In this chapter, we also present some examples found in the

experiment to demonstrate how the GreenC5 performs dynamic transformations for energy

efficiency. The last chapter summarizes our conclusions and describes the future work.

10

CHAPTER 2: GREEN COMPUTING BACKGROUND

As the obligation to reduce environmental impact is becoming crucial in the fight

against climate change and global warming issue, the energy efficiency of computer

systems are increasingly becoming one of the most important research topics for

researchers, system designers, architects and software developers. This chapter explains

the background and related work in green computing research and our green data structure

for green software development.

2.1 Green Computing Research

The research in this dissertation is in the area of Sustainable/Green Computing or

Green IT. As stated in a paper by Murugesan [86], Green Computing is defined as:

“the study and practice of designing, manufacturing, using, and

disposing of computers, servers, and associated subsystems such as

monitors, printers, storage devices, and networking and communications

systems efficiently and effectively with minimal or no impact on the

environment.”

The paper also states that “Green IT benefits the environment by improving energy

efficiency, lowering greenhouse gas emissions, using less harmful material, and

encouraging reuse and recycling”. The “Green Computing” or “Green IT” concept was

introduced in 1992 when Energy Star was launched by US Environmental Protection

Agency (EPA). The main purpose of the Energy Star labeling is to give a recognition to

electronic equipment that meets the EPA’s energy-efficiency standard [53]. Green

11

computing normally takes all product life cycles that can directly or indirectly impact the

environment into consideration, from manufacturing to usage to disposing and recycling

[54]. Nonetheless, the main focus of the Energy Star program and Green Computing

initiatives are primarily on energy efficiency of computer hardware devices, servers and

data centers, not on software applications which run and operate the hardware components.

However, recently the green initiatives start to also include developing green software

applications as part of the main focus to minimize carbon footprint of computing

technology.

Based on Zomaya and Lee [87], Green IT can be made up of three parts: (1)

“designing product that are less polluting, less energy consuming and easier to recycle”;

(2) “building more efficient data centers”; and (3) “working on innovative projects that will

enable, via IT contributions, in building of a more sustainable world”. In more detail,

Murugesan [86] also explains that the main research topics in Green IT include:

1) Design for environmental sustainability—making business operations,

buildings and other systems energy efficient by balancing energy and resource

savings by Information and Communication Technology (ICT) infrastructures.

2) Energy-efficient computing—the efficient use of computing resources such as

energy-aware algorithms, green compliers, parallel programming and energy

efficient software development.

3) Power management—the use of hardware/software power management

systems that help optimize the performance, energy consumption and manage

the power resources in computer systems.

12

4) Data center design—environmental-friendly designs that improve energy

efficiency and energy conservation of data centers.

5) Virtualization—the recreation of an entire system in software, which provides

a virtual version of a machine to all software application to run on.

6) Disposal and recycling management—managing e-waste and developing

plans for disposing, upgrading and replacing devices in a more sustainable and

environmental friendly manner.

7) Regulatory compliance— legislative actions and regulatory requirements that

can force acceptance of a technology or practice.

8) Green metrics, tools and methodology assessments—software tools for

collecting, reporting and analyzing energy consumptions of computer systems

and platforms for managing the environmental risks, environmental impact

and greenhouse gas emissions, emission trading and ethical investing, etc.

Many organizations, such as the UN, WEF, GATT, G8 and G20 and governments

of many countries, are now realizing the importance of environmental impact and climate

protection and support the idea of three Rs: Rethink, Redesign and Rebuild [87] for

mitigating the environmental impact. It has been estimated that by the year 2030, if the

current trends continue, worldwide electricity consumption by ICT infrastructures will

grow by a factor of 30 [88]. The trends are demonstrated by a fast growing number of

worldwide Internet users and connected devices, the advancement of broadband Internet,

as well as the usage and exchange of online information and rich media such as high

definition video streaming among the users and devices. According to a recent report on

13

data center energy efficiency from the Natural Resources Defense Council (NRDC) [89],

an environmental action organization, nationwide data centers in total used 91 billion

kilowatt-hours of electrical energy in 2013. They estimate that the number will reach 139

billion kilowatt-hours by 2020, a 53% increase.

2.1.1 Improvement Opportunities

There are many energy efficiency improvement opportunities in all layers of

computer products—from hardware, middleware to software application layers. At

hardware layer, the semiconductor industry is well aware of energy issues and the

environmental impacts. Several energy saving solutions for the hardware or chip level have

already been developed such as voltage and frequency scaling, hardware accelerators, on-

chip power domains, biometric components, efficient standby modes, etc. [90]. At the

software level, however, there is much more room for improvement. One main problem is

that software and middleware layers are normally not energy-aware. Software is not

originally designed to support and not yet ready for the new energy-efficient hardware

features. There is a need for standard and well-defined interfaces between hardware and

software that allow the systems to better manage power domains in hardware that could

provide significant improvements in energy efficiency [90].

One possible solution at the functional level that has potential to improve energy

efficiency of computing devices is by using “good-enough” computing or by relaxing the

strict accurate requirements. Some classes of applications, such as user interfaces, analytics

and media processing do not require high precision results. These type of applications are

well suited for the “good-enough” or adequate precision computing, where inaccurate

14

result or errors could be accepted and managed and approximate results are sufficient for

performing the tasks. For example, to improve performance and energy efficiency, some

frames in a video application can be dropped just enough that the quality degradation

cannot be detected by human eyes. This is known as Approximate Computing [32]. For

traditional energy-efficient computing, it is about the tradeoff between performance and

energy consumption. However, for general-purpose approximate computing, it explores a

third optimization objective—accuracy or error. The tri-objective optimization process is

the tradeoffs of the accuracy of computation for gains in both energy and performance. In

addition, there are several promising approaches to use adequate precision computing, such

as EnerJ, the language of good-enough [32] and Quora, an energy efficient, quality

programmable vector processor for approximate computing [92]. However, at the time of

writing this dissertation, none of them is mature enough for use in actual software

implementations. This is just one of the improvement opportunities. There are also many

other aspects of software applications that can be improved for energy efficiency and are

also open for future research.

2.1.2 Green Computing Benefits

We categorize three major areas and groups of people who might obtain benefits

from energy-aware computing practices—the environment, the organizations and

businesses, and the individuals. The details are discussed in this section.

2.1.2.1 Environmental Benefits

Information and Communication Technology (ICT) sector contributes about 3% of

worldwide electricity usage and the same percentage of greenhouse gases [53]. In a recent

15

study in 2014, the study estimates that 2% of carbon emissions is from the ICT equipment

and services and household electronic sector. The ICT total electricity consumption is

forecast to reach 1,100 million tons by 2020. Its share of the global carbon footprint is

estimated to increase from 1.3% in 2007 to about 2% in 2020. For fixed ICT networks, it

is estimated that the share of greenhouse gas (GHG) emissions will be 1.4% in 2020, as

shown in Figure 2, due to the increasing number of devices as well as due to network

expansion [92]. Even though, these percentage numbers seem to be small, it is expected to

get higher since the sector is getting larger and larger as technology is doubling every

couple of years according to Moore’s laws. A Smart 2020 report [53] states that the number

of PCs (desktops and laptops) globally is expected to increase from 592 million in 2002 to

more than 4 billion in 2020. Also in a recent study by Juniper Research, it has revealed that

the number of IoT (Internet of Things) connected devices will reach 38.5 billion in 2020,

up from 13.4 billion in 2015: a 285% jump [128]. When not include other computing

devices in the parameters, if each PC is running 10 software applications, there will be 40

billion software applications running on the planet; imagine how much energy can be saved

if all the software is green and energy efficient. According to a Climate Group report,

despite of making the ICT more energy efficient, applications of those systems to

electricity grids, logistic chains, intelligent transportation and building infrastructure could

reduce greenhouse gases (GHG) emissions by as much as 15% by year 2020.

According to the NRDC report [89], if companies adopted data center best

practices, the reduction in energy use could reach 40% and that the economic benefits

would also be substantial. The 40% reduction in energy use would equal to $3.8 billion in

16

savings for businesses. In 2014, this number represents a savings of 39 billion kilowatt-

hours annually—equivalent to the annual electricity consumption of nearly all the

households in the state of Michigan. The report also states that the number is only half of

the technically possible reduction. The need for solving climate change and global warming

problems has led to a growing realization that climate impact must inform everyone

including software engineers and programmers to be aware of the threats and try to use all

resources to help solve the problems.

Figure 2. ICT Carbon Footprint Outlook (million tones CO2e) (from [92])

17

According to a paper by Smarr [55], the emissions are divided into three component

parts—emissions resulting from fixed and mobile telecommunications/internet

infrastructures, data centers and the edge of the network. Even though, much attention in

Green IT focuses on data centers, but in 2020, the amount of carbon emissions for data

centers will account less than 20% of the total ICT emissions. The majority (57%) will

come from the edge of the network—such as, phones, tablets, notebooks, PCs, peripherals,

printers and IoTs. Even though, the edge devices refer to both hardware and software

components. Our main study, however, focuses more on the applications that execute on

those devices. The focus on green software can also contribute much impact on reducing

the greenhouse emissions since software applications run on and operate all the network

edges and the computing devices, which will be on every part of every person’s life. Green

Computing, Green IT and Green Software Development research must be driven at a faster

pace to help the rest of the sectors solve the environment threats before it is too late.

2.1.2.2 Business and Organization Benefits

Going green can directly benefit companies and organizations in many ways. First,

it can influence the consumers, the shareholders, and the company perception in the market.

Based on an actual study performed jointly by University of San Diego and CB Richard

Ellis Group and printed in a Business Week magazine on December 2009, the result from

2,000 business participants shows that businesses with green initiatives had 5% average

increase in business net worth and 74% increase in business image and name branding [56].

The “greenness” of computing and software products can also be used as a part of

18

marketing campaigns and can help build better image and name of their brands and drive

profits.

As part of the technological advancement, businesses and organizations like

governments play major roles in driving the future technology. The green computing and

energy-aware software development initiatives cannot be successful without the

participation of businesses and organizations since the majority of software applications

are developed by them. In addition to the better business perception and brand image,

companies and organizations going green might also gain benefits from the IRS tax breaks

[58]. For example, a tax credit for 30 percent of the cost of a residential fuel cell and

microturbine system, up to $500 per 0.5 kilowatt of power capacity, is available through

December 31, 2016. And, tax credits for all-electric cars range from $2,500 to $7,500,

based on the vehicle’s battery capacity, etc.

Currently, there is no tax credits available for building green software. However, in

the future it is possible that similar tax breaks could be issued to promote green software

development if governments realize the importance of the green practices in software

application development. Not only just commercial benefits, businesses and organizations,

in particular their IT departments, might have to be forced to follow and be compliance

with International Standardization Organization (ISO) because green quality is being

considered as a standard quality metric for software applications. One evidence can be

found in a paper by Lago et al. [26]. The paper mentions that a working group on software

architecture (WG42, working on ISO/IEC 42030) is considering to include Kern et al. [24]

who developed a quality model for green software that refers to quality factors from

19

ISO/IEC 25000 based on direct and indirect software-related criteria. Also, Calero et al.

[94], who considered sustainability in 2013 as a new factor affecting software quality,

presented a quality model based on ISO/25010.

Today, consumers are becoming more educated and environmentally conscious.

According to a Nielson’s marketing research [58], “66% of global consumers say they’re

willing to pay more for sustainable brands—up 55% from 2014. 73% of global millennials

are willing to pay extra for sustainable offerings—up from 50% in 2014”. A new emerging

trend of consumers is increasingly asking for products and services from businesses that

are green and care about the environment. As a result, software companies with green

software in their product lines could drive more green oriented customers leading to more

sales, increased revenue, higher gross margin and higher profit.

2.1.2.3 Our Benefits

For individuals installing green software applications or having computing devices

with an energy management component, some direct benefits are the energy savings and

longer battery life. Many studies show that power-aware or green software applications

and a good energy management component can help reduce the energy consumption of

computer systems and lengthen battery life of mobile devices. This is the main reason why

big companies such as Apple, Google and Windows have battery management as one of

the key functionality in their operating systems and hardware platforms. As the result, there

are also many research studies focusing on this area. For example, applications built using

energy-efficient GUI (E2GUI) technique for its graphical interface can significantly

lengthen battery life [59]. The design technique involves reducing system energy through

20

optimization of human-computer interaction. The researchers demonstrate that the

techniques can improve the average system energy of three benchmarks (text-viewer,

personal viewer, and calculator applications) by 26.9%, 45.2% and 16.4% respectively.

Moreover, the use of parallel programming such as MapReduce [60] and the code

transformation techniques in [61] can be applied and used in green software construction

phase when a code transformation tool can help reduce the system’s energy consumption.

The authors of the research paper claim that the merging process of code transformations

in parallel using MapReduce can contribute nearly 29.6% in energy saving. The energy

reduction corresponding to the final optimized source code after transformation is 37.9%

when compared to the un-optimized ones.

Even though, the amount of energy saving from running green software

applications in a device seems to be small for individual, many people seem to be fine

buying green products for a higher price. According to a Green Buying research survey

[62], “82 percent of consumers buy green products.” The main reason from buying green

products is that it is good for the environment. This clearly indicates that people now are

more and more environmental conscious. In the future, there will be billions of PCs,

laptops, tablet PCs, mobile phones, digital photo frames, printers, gamming consoles, TVs,

set top boxes, refrigerators, and other future computing devices driven and controlled by

software applications and interconnected to the world network exchanging richer and more

interactive data like 3D movies, high definition images and voices, and large data files. If

each individual installs green software applications in their devices, there will be an

21

immense amount of energy saving combined. This small energy saving for each individual

can have a tremendous contribution in the fight against climate change at a global scale.

2.2 Energy-Efficient Software Research

Software applications can have a large impact on the system energy consumption.

Accordingly, many research studies focus on different areas in the software application

layer. Software applications have different architectural designs depending on application

type and hardware platform. For one example, many modern software applications can

have multiple layers such as a 3-teir architecture design [63]. The 3-tier software

application architecture consists of Tier 1—Presentation layer, Tier 2—Business Logic

layer, and Tier 3—Data layer. For simplicity, this section presents energy-efficient

software research in the 3-tier architecture.

2.2.1 Presentation Layer

The presentation layer of software applications normally refers to the graphical user

interface (GUI), located at the top part of the multi-tier layers. This layer interacts directly

with the users. If software components at presentation layer are designed poorly, they give

the users poor view of the system and sometimes can cause the computer systems to

consume energy higher than necessary. In addition, by designing the user interface

properly, we can reduce power consumption of the whole system at a great level. For

example, in an early study by Qu and Potkonjak [64], the study presents techniques for

minimizing energy of a software application with guaranteed quality of service (QoS), one

of the key features for new Internet-based multimedia and other applications. The paper

presents how to satisfy QoS requirements and minimize the system’s energy consumption.

22

The key contributions in their paper include formulation of the energy minimization with

QoS guarantee and development of the dynamic programming (DP) procedure for solving

the general energy minimization (EM) problem. Their simulations show an average of

38.7% energy saving over the system shut-down technique. At the presentation layer,

image, voice and movie rendering can be optimized using their techniques to minimize the

power/energy consumption of a software application.

Moreover, energy-efficient GUI (E2GUI) design techniques [59] are proposed to

improve system energy efficiency without sacrificing application performance, ease of use

of aesthetics. The optimization techniques of E2GUI include power reduction techniques

(low-energy-color scheme and reduced screen changes), performance enhancement

techniques (hot keys, user input caches and content placement) and facilitators (paged

display and quick buttons). For the first technique, the researchers show that low-energy

color schemes of GUI can help reduce display energy. The second power reduction

technique, reducing screen changes, can also minimize the energy by reducing the

switching activity and computation required for screen generation. The authors also give

some examples; user-perceived responsiveness is different from real responsiveness. By

using a progress bar, it makes a user to feel that the computer is more responsive. But, it

actually slows down the system and increases energy consumption. Animations give users

a natural feeling for screen changes. However, these animations waste energy and add little

or no functionality, but increase the power consumption. To enhance performance, the

focus is on improving user productivity by eliminating the time and energy waiting for user

responses. For example, hot keys instead of menus styles can reduce the amount of energy

23

consumption. Also, user input caches which store the most recent use, most frequent use

or most common use inputs by users can also reduce amount of computation and screen

generation and help save system energy. Content placement techniques focus on reducing

the user interaction time for frequent inputs by strategically laying out the GUI content by

using perception capacity, motor speed and cognitive speed as the main consideration for

the layouts. Lastly, the facilitators are a pair of techniques that enable or enhance the effects

of the other techniques. The paper demonstrates that paged display and quick buttons can

reduce energy consumption. Paged display enables increased user interface functionality

by increasing the effective display size. Page navigation buttons are designed to enhance

the user interaction speed. Quick buttons use the available hardware buttons to increase

user interaction capabilities. Holding down a hardware button can act as a <SHIFT> or

<Control> key, which can facilitate the use of key combinations that are traditional

impractical for GUI design. Similarly, the same authors in [65] also conduct energy

efficiency improvements of handheld computer interfaces and study the human

sensory/speed limits and characterization and proposed some practices to low energy

consumption at the GUI level.

There are also many other studies about color scheme impacting the display power

consumption. For example, in an article by Whitman [66], use of different colors, color

patterns and color sequences in LCDs, OLED-based displays and AMOLED displays of

flagship phones, consumes different amount of power and can be exploited for energy

efficiency. Thin film transistor (TFT) LCDs consume more power when white than when

black. OLED-based displays consume the power proportional to the number of on pixels

24

and their luminance. The article also states that a black screen does indeed consume 41%

lower overall power when using the predominantly black interface in Reddit Sync. By

using AMOLED-friendly apps most of the time, users can actual gain an extra of 15 or

20% screen time. Also, according to Williams and Curtis [67], displays and graphic cards

consume 42% of all power consumption in an average laptop (33% for display and 8% for

graphic cards). Therefore, by redesigning GUIs to be displayed in the different types of

displays, it can have a great impact on the amount energy consumption of an overall

software application.

2.2.2 Business Logic Layer

A business logic layer contains business functionalities that control the applications

by performing detail processing. This layer can be viewed as the main computation and

processing layer to manage and control above presentation components and the data layer

components. It mainly acts as the middle layer between those two layers. Therefore, most

of the coding and complex computation processes are normally laid in this layer. These

normally include data access layer because this tier acts as an interface to the data tier,

retrieving and storing information both remotely and locally (from databases, file systems

or storage systems such as CD, DVD or memory sticks). For remote communication, data

transmission can greatly impact the performance and power consumption of the software

application. Therefore, the efficiency of all computational components can also be

optimized here. This includes choosing energy-efficient algorithms and libraries,

compression techniques, decoding-encoding schemes, data structures and applying multi-

threading techniques to some computations to minimize power consumption, for example.

25

The following are some of the examples that can be used and applied in the business layer

of this software architecture. Some of the examples are also discussed in a greater detail in

the later sections.

A study by Benini and Micheli [68] states that algorithms can have approximate

implementations. For example, certain operations may be implemented with limited

accuracy to reduce energy cost. This is the same as Quality of Service (QoS) and energy

consumption tradeoff analysis. For example, given by the authors, a cos(x) function can be

approximated as a Taylor expansion 1-x2/2 + x4/24. Furthermore, it can also be

approximated as 1-x2/2 + x4/32, which is simpler because the division of the last term by

32 can be done by a Shift operation. In addition, Eckerson [69] also mentions that the choice

of algorithms and data structures can make a large difference in the performance of an

application. Using an algorithm that compute a solution in O(nlog n) time is going to

perform better than one that does the job in O(n2) time. For some applications, a stack may

be better than a queue and a B-tree may be better than a binary tree or a hash function. A

study of the problem and a careful consideration of the architecture, design, algorithms,

and data structures can lead to an application that performs better and consumes less

energy. These will be more useful in the future applications if the consideration and

selection process also include energy consumption into the performance and quality

metrics. Or even better, the selection of the choices can be done automatically and

dynamically by the system itself.

In addition, Barr and Asanović [70] had studied the wireless data transmission and

concluded that wireless transmission of a bit can require over 1,000 times more energy than

26

a single 32-bit computation. They suggest that number of bits of data should be reduced by

some computations before transmitting. The key is the energy required to

compress/compute the data. If it is less than the energy required to transmit it, there is a net

energy saving that can contribute to a longer battery life for mobile devices. The study

shows that energy use from data compression and decompression can be minimized

through smart use of memory—including efficient data structures and/or sacrificing

compression ratio for “cacheability”. The result from the study shows that by choosing the

lowest-energy compressor and decompressor on the test platform, rather than using default

levels of compression, overall energy to send compressible web data can be reduced 31%.

Energy to send harder-to-compress English text can be reduced 57%.

2.2.3 Data Layer

A data layer is responsible for retrieving, storing and updating information;

therefore, this tier can be ideally represented through a commercial database, local or

remote file systems, disk drives or other storage systems. For a database system, stored

procedures are considered as a part of the data tier. Currently, we can optimize energy

efficiency at the data layer to some degree based on types of storage systems of the

applications. For database system, we can utilize the tools provided by the database. For

example, the usage of stored procedures can increase the performance and code

transparency of an application since the processes are done at the database process and can

minimize the computation at the business layers. A survey paper by Jones et al. [71] has

mentioned about minimizing power consumed per transaction through embedded indexing

for mobile applications. The idea is to combine the index information together with data

27

on the single broadcast channel in order to minimize access time. The author also mentions

about the energy efficient query optimization for database systems. They show that query

statements too can be optimized similar to the code optimizations.

Moreover, Mathur et al. introduce Capsule, an energy-optimized log-structured

object storage system for memory-constrained sensor devices that enables sensor

applications to exploit storage resources in many ways [72]. The idea of the storage system

is to employ a hardware abstraction layer that hides the NAND flash memories for the

application and support energy-optimized implementations of commonly used storage

objects such as stream, files, arrays, queues and lists etc. The authors claim that Capsule

can provide platform-independence, greater functionality, more tunability, and greater

energy efficiency than existing sensor storage solutions. Also, the experiments not only

demonstrate the energy and memory efficiency of I/O operations in Capsule but also show

that Capsule consumes less than 15% of the total energy cost in a typical sensor application.

This is an example of a storage system that can be used for development of green sensor

software applications.

On the other hand, Ousterhout et al. see that disk-oriented approaches are becoming

increasingly problematic in term of its scalability and access latency and bandwidth

constraints. They introduce a new approach to datacenter storage called RAMCloud, where

information is kept entirely in DRAM and large-scale systems are created by aggregating

the main memories of thousands of commodity servers [73]. They claim that RAMClouds

can provide durable and available storage with 100 - 1000x the throughput of disk-based

systems and 100 - 1000x lower access latency. The new storage system is specially

28

designed for data intensive applications and has the following properties—low latency,

large scale, durability, powerful data model and easy deployment. From their energy

efficiency evaluation results, when measured in terms of cost per operation or energy per

operation, RAMClouds are 100 - 1000x more efficient than disk-based systems and 5 - 10x

more efficient than systems based on flash memory. Thus for systems with high throughput

requirements, a RAMCloud can provide not just high performance but also energy

efficiency.

2.2.4 Energy-Efficient Programming Practices

Steigerwald et al., a team of researchers at Intel, have conducted a thorough study

on data efficiency and its energy saving and developed a white paper guiding programmers

on how to create energy-efficient software [130]. In this section, example guidelines are

mainly based on recommendations made by the research team. The team proposes that

data efficiency can be achieved by designing software algorithms that minimize data

movement, memory hierarchies that keep data close to processing elements, and

application software that efficiently uses cache memories. They have conducted

experiments on DVD playback, disk I/O and file transfer over wireless applications. Their

test results and recommendations are in great details and practical for programmers and

developers to use. For example, the following proposed three guidelines can help minimize

the system energy consumption during a DVD playback:

1) Buffering—the study shows that DVD playback implemented with buffering

techniques can help reduce DVD power consumption by 70% and overall

platform consumption by about 10%.

29

2) Minimize DVD drive use—they recommend that reducing DVD spin-up,

spin-downs, and read access can also help reduce energy consumption.

3) Let the OS manage the CPU frequency—they do not recommend changing the

CPU scheme to run the processor at the highest available frequency and let the

OS manage the frequency by itself.

For disk I/O, the test result shows that disk spin-up takes the most time and consume

the most power. Some of their recommendations include:

1) For reading a large file, use block sizes of 8KB or greater for improved

performance.

2) Utilize a buffering strategy in multimedia playback to minimize disk reads

and save energy.

3) Avoid by pre-allocating large sequential files when they are created.

4) Use NtfsControlFile() function to help in defragmenting files.

5) Applications that deal with random I/O or I/O operations with multiple files

should use asynchronous I/O to take advantage of Native Command Queuing

(NCQ, an extension of the Serial ATA protocol allowing hard disk drives to

internally optimize the order in which received read and write commands are

executed).

6) Queue up all the read requests and use events or callbacks to determine if the

read requests are complete.

30

7) For multiple threads competing simultaneously for disk I/O, queue the I/O

calls and utilize NCQ. Reordering may help optimize the requests, improve

performance, and save energy.

8) When multiple threads competing for the disk causes significant disk

thrashing, consolidate all the read/write operations in a single thread to reduce

read/write head thrashing and reduce frequent disk spin-ups as well.

For file transfer over wireless application, the study focuses on how the

compression ratio or size of the file affects power consumption. The researchers

recommend the following practices to improve data efficiency and energy efficiency:

1) Data sets with higher compression ratios (more than 3.0x), are recommended to

be compressed before uploading/downloading data. This practice provides

better power savings as compared to transmitting uncompressed data. For data

sets having higher compression ratios, it is recommended that applications

transmit compressed data.

2) Data sets with lower compression ratios (~1.2x in this case which is hardly to

compresses) is not recommended for compressing the data before uploading

uncompressed. This practice adds extra overhead. They instead recommended

uploading/downloading uncompressed data.

3) Data sets with compression ratio around 2.5-3.0x provide minimal difference

in the power saving between uploading/downloading compressed data and

uncompressed data.

31

There are also many other techniques that can be used and applied at the design

level to optimize the application performance and energy efficiency. For example, the

utilization of parallelism (parallel programming and multi-threading) can help reduce

energy consumption of computing devices [60]. There are also some energy frameworks

that can be used to develop green software applications. For example, green compiler that

can be considered as the main compiler of green software projects [95]. Today, there are

so many choices of algorithms, components and libraries available for selection. One

challenge is how the selection of a proper choice can be made in solving a programming

problem, while the performance and energy efficiency are also improved. It will be helpful

if there is a tool that can aid programmers and designers in the decision making.

2.3 Power Measuring and Profiling

Among all the areas of green computing research, power measurement and energy

profiling are considered the key research areas. From a famous quote by Deming, “if you

can’t measure it, you can’t manage [and improve] it” [131]. For green software

development and research, power measurement and profiling tools are required in order to

conduct the power-performance evaluation and energy consumption analysis of software

applications and are used to trigger energy-aware mechanisms and evaluating the

effectiveness of these mechanisms. According to Calandrini et al., power profiling can be

categorized into hardware-based and software-based method [96]. Hardware-based power

profiling mainly uses different types of instruments to directly measure the power of a

device. The accuracy is normally higher than that of software-based profilers. However,

they are not suitable for software applications since a power meter is required. It is also

32

expensive to integrate with software and can provide data with low granularity at low

latency. Hardware-based methods are usually used to evaluate the effectiveness of power

saving techniques at the system level. However, some modern computer boards start to

include power metering tools that can measure power consumption of different hardware

components. For software-based power profiling, the methods try to estimate the power of

different levels by designing a group of power models. Software-based tool is normally

more user-friendly and more suitable for software applications; can measure power

consumption at the component and software application level; and can provide real-time

power data at finer granularity. However, they are normally not as accurate as the

hardware-based tools. In this section, we first describe the power metrics and benchmarks

before going back into details of the power measuring and profiling with some examples

of the existing tools.

2.3.1 Energy Metrics and Benchmarks

2.3.1.1 Energy Metrics

Energy is measured in Joule (J) or Watt-Hour (Wh). Power is measured in

Joule/second (J/s) or Watt (W). Energy can be calculated by using the formula: E = P × t;

where E is Energy unit in joules, P is Power unit in watts, and t is a time unit in seconds.

Both metrics are widely used to characterize power consumption of IT and ICT systems.

In computer systems, energy is used more in research related to mobile platforms and data

centers. For mobile devices, energy is strongly related to the battery lifetime. For data

centers which consumes a large amount of energy, energy is used as the concern of

electricity costs. Usually, research in these areas uses energy efficiency, such as PUE

33

(power usage effectiveness) [97], as a metric to evaluate their work or productivity. Power

metric is used to reflect the current delivery and voltage regulator of the circuits. In green

computing research, power may also be used for the abstract concepts of power

consumption as effectuated by system process, operating system and software applications.

Based on papers by Chen and Shi [98] and Ardito [99], the authors provide some of

following useful terminologies:

1) “Energy is the electricity resource that can power the hardware devices to do

computation” [98].

2) “Power is the dissipate rate of energy” [98].

3) “Efficiency is the ratio of useful energy and total energy used” [99].

4) “Productivity is output/resource on a time interval of a production process,”

where the output is computational work and the resource is energy. Examples

of computational work include operations performed, network bits transmitted

and a web application hits and more [99].

There are several metrics being used to measure the energy cost and productivity

of computer systems in green computing research. For example, gathered by Ardito’s

dissertation [99], a million instructions per second per watt (MIPS/Watt), number of

floating point operation computed per watt (MFLOP/Watt, FLOP/Watt) and Useful

Work/Watt are used for measuring a computation capability and productivity of high

performance computers and data centers. For networking, Environmental Performance

Index (EPI) [100] uses 100(MI)/M, where I is energy consumption at idle state and M is

maximum energy at active state, as a metric to measure the network efficiency. There are

34

also studies that use KB/Joule and Gbps/Watt to measure the rate of data transferred per

joule or watt over a network channel [101].

In a recent paper, Abdulsalam et al. propose the Greenup, Powerup, and Speedup

metrics (GPS-UP) to categorize software implementation and optimization efficiency

[102]. Using the three metrics, the researchers can categorize software optimizations into

one of eight categories. Speedup is defined as the ratio of non-optimized code runtime over

optimized code runtime. Similarly, Greenup is defined as the ratio of the total energy

consumption of the non-optimized code over the total energy consumption of the optimized

code. Greenup and Powerup are analogous to Speedup as it reflects how green the

optimized code is in term of energy and power consumption, respectively. Powerup implies

the power effects of an optimization. In our green data structure study, the energy efficiency

metric is the same as the Greenup metric. Our study mainly looks at how much energy

consumption is reduced as a whole when using our methods and tools, by using the product

of both the power and runtime data into consideration.

2.3.1.2 Energy Benchmarks

At the time of writing this dissertation, there are few benchmarks for energy

efficiency in the green computing research area. However, with the growing trends in this

area, we expect to see more benchmarks to be developed in the near future. For the existing

benchmarks, JouleSort [75] is an external, system-level, I/O centric benchmark for

evaluating energy efficiency across many types of computer systems. It is an extension of

the sort benchmarks, which are used to measure the performance and cost-performance of

computer systems [132]. The idea behind the Joulesort benchmark is to sort a predefined

35

number of randomly permuted 100-byte records with 10-byte keys under a controlled

condition. The goal is to sort the records with minimum energy use.

Another example for commercial use, SPECpower_ssj 2008 [76] is a benchmark

suite to evaluate energy efficiency of server-class computer equipment. It is used to

compare power and performance among different servers and serves as a toolset for use in

improving server efficiency. The suite is implemented in Java. Therefore, it can be

executed on almost all operating systems and platforms. Advantages of SPECpower_ssj

2008 compared to JouleSort are the more advanced features such as the automated power

measurements, the power measurement for different load levels and the possibility of

considering temperature as an important environmental factor.

Moreover, the EnergyBench [76] is another industry-standard energy benchmark

that provides data on the amount of energy consumption of a processor when running

EEMBC’s performance benchmarks. EnergyBench provides design engineers with

comparable information regarding energy consumption and insights into the power budget

cost of a device’s performance by allowing a performance/energy number to be derived

using the consolidated performance score in each benchmark suite. The existing

benchmarks are designed specifically for evaluating hardware computing devices and data

centers. However, at the time of writing this document, there is no benchmark designed

specifically for energy efficiency of software applications. Also, we do not use any of the

mentioned benchmarks in our study because they are incompatible with our study. Our

study focuses more on the dynamic data structures specially designed for C# programming

language and .NET technology.

36

2.3.2 Software Power Measurement

In any computing device, although the main drivers of energy consumption is

always at the hardware, the way the energy is consumed is also influenced by the software.

In a paper by Chen and Shi [98], the authors state that software power measurement is

“state of the art” because we cannot directly measure the energy consumption of software

applications just like directly measure the energy of computer systems using a plug load

meter. In fact, the software power measurement can be explained and drawn by a

theoretical model of the energy consumption, which depends both on hardware

specifications and the way in which they are used by software artifacts. In the paper, an

abstract model underlying the power consumption can be summarized as:

 𝑃𝑜𝑤𝑒𝑟 = 𝐼𝑑𝑙𝑒 + ∑ 𝐻𝑤𝑐 × 𝑆𝑤𝑐𝑐 ∈ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 (1)

The total power consumption of a device, when turned on, is composed of an Idle

part that is present even when the device is sitting idle. The additional consumption

depends on the individual hardware components maximum consumption, which is driven

by what the software forces it to do. Depending on the software requests, the hardware

component may run at full throttle or remain idle. Accordingly, to measure energy

consumption of a particular software application, we just control other variables in the

above model and vary the software parameters. The energy consumption data can give

developers the energy visibility for energy efficiency improvements of software

applications. For example, from one of our research studies, Figure 3 presents

power/execution time visibility when executing an ADPCM program, from the start to the

end, on an FPGA Atlys development board. Each line/legend of different voltages in the

37

graph represents power consumption and execution time of different parts of the Atlys

board—from the top legend down, IO/video/USB port, memory, CPU and Ethernet port,

respectively. With this visibility, developers can see the interactions between power and

performance of software applications and use the information to improve the performance

and energy efficiency of their programs.

Figure 3. An Example of Power/Runtime Profile Collected by an FPGA Atlys Board

Executing an ADPCM Benchmark Program

At the time of writing this dissertation, modern operating systems of mobile devices

such as Apple iOS, Google Android and Microsoft Windows, have already integrated the

energy measuring tools into their mobile phone operating systems. The tools provide

device and application battery usage information to users and can be used to aid developers

in developing battery-aware applications for mobile phones. However, these tools are

mainly based on software-based power monitoring since the power/energy data are not

derived from built-in current sensors, battery monitor unit (BMU) or power monitors

attached to the devices. Instead, they are mainly estimated from mathematical formula of

application performance counters provided by the OS and/or energy counters provided by

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
.6

8

2
1

04
.7

3
4

1
86

.4
4

6
2

88
.7

1

8
4

19
.4

7
1

0
42

4
.5

8

1
2

43
2

.4
3

1
4

47
1

.0
0

2
0

86
6

.1
1

2
3

91
9

.9
9

2
6

55
4

.8
0

2
9

25
8

.6
3

3
1

97
2

.5
6

3
4

53
1

.5
2

3
7

04
7

.4
7

3
9

76
1

.3
2

4
2

39
4

.2
8

4
5

18
3

.8
8

4
7

14
2

.6
6

4
8

86
0

.4
4

5
0

75
8

.2
2

5
2

71
1

.2
1

5
4

62
0

.3
6

5
6

43
5

.1
9

5
8

36
9

.8
6

A
ve

ra
ge

 P
o

w
e

r
(w

at
ts

)

Timestamp (millisecond)

ADPCMstart end

3.3V

2.5V

1.8V

1.2V

38

the hardware components such as CPU and power models of the display, Cellular modem,

Wi-Fi, GPS, Bluetooth, battery and more [50, 136]. For example, Apple iOS provides an

energy diagnostic tool to monitor application and mobile device energy usage. An Energy

Impact instrument is integrated in XCode development environment (IDE) for iOS

applications to help identify and address energy problems for application development

[137]. The Energy Impact gauge in XCode displays a report of application’s energy impact

from user interactions with the application. Similarly, the Android OS also provides the

similar capabilities along with many other 3rd party applications such as Trephen profiler

[134] and PowerTutor [135] that can provide the energy information of individual

application and total power usage of the mobile device and be used in Eclipse IDE for

power aware software development. For Windows OS, the same capability is also available

in Windows 8 and 10 operating systems and later versions of their Visual Studio IDE.

In the research community, many researchers have also been trying to improve

computer power consumption affected by software system, many monitoring and

measurement methods, tools and power benchmarks have also been developed either for

specific or general-purpose use. These growing efforts indicate high possibility of

developing standard software power measuring methods in the near future. Many

companies such as, Apple, Google, Microsoft, Qualcomm, Intel, and others also join the

research and develop their own metering tools, which we can use for a green software

project and software testers can also use for their software quality measurement process.

However, it is also very important that the programmers and testers have some background

in green software development and adequate knowledge in software energy consumption.

39

The following sections present some additional examples of hardware and software-based

power measurement and profiling tools that can be used for research purpose.

2.3.2.1 Hardware-Based Power Measurement

For hardware-based power measurement, there are many power meters in the

market that are available for use and integrating with special-purpose devices. The meters

are used to measure power consumption and understand the power dissipation of devices

or different parts of devices. Many studies [3, 27, 79] rely on power meters to measure the

real power and use it to validate their research work and their power models. Moreover,

some research studies [3, 37] measure the power of hardware components and break it

down into sub components based on some indicators that could reflect the activity of these

lower level units. The differences in these methods are in the type of meters used to do the

measurement and in the place the measurement is done. Many meters are not suitable for

computer research since they do not provide public interface or APIs that can be used for

computer access and developing power profiling tools. However, there are a few tools that

have this capability. The following examples are those that we think are practical and

suitable for green software research and development.

First, Watts Up? plug-load meters [16] are among the popular ones because they

are cost effective, simple-to-use and accurate. The manufacturer claims that the wattage

accuracy of their meters are within 1.5%. The meters are used by many researchers for

measuring power consumption of computers, computing devices and servers [27, 79, 103].

Watts Up? meters come with public APIs that allow users to develop power profiling tools

40

to be used in green software research and development. We also use the meter to create

training sets, validate and evaluate our adaptive green data structure in one of our studies.

With the growing popularity of energy efficiency research for mobile devices and

the increasing need for low power/energy computing systems, there are several companies

starting to integrate power meters, current sensors and energy profiling capabilities into

their systems and embedded boards to make energy aware application development easier.

For example, Xilinx Atlys FPGA board [37] integrates the power meters inside the boards

that can provide power consumption data of different parts/components of the development

board, such as Video/USB port, Ethernet port, CPU and memory components. We also use

the tool in one of our studies and it will be discussed in more detail in Chapter 4.

Similarly, an affordable and energy-friendly Wonder Gecko development board by

Silicon Labs [77] provides a quick and easy way for engineers to evaluate their

microcontroller chips. Each board includes an on-board SEGGER J-link SWD debugger

programming and debugging via a MiniUSB connector. The board is equipped with on-

board energy sensors that can be accessed via its low energy sensor interface (LESENSE).

The Wonder Gecko features an advanced energy monitoring system, allowing

programmers to program, debug and perform real-time current profiling of their application

without using external tools. The company also provides SDKs and tools for programmers

to develop software applications on the board and evaluate the energy consumption of the

programs.

For large chip companies such as Intel, AMD and Qualcomm, they are also realized

the importance of the computer energy efficiency and the need for power measurement tool

41

for software applications. These can be seen from many of their energy efficiency projects

from their research websites. Some companies also start to integrate the power/energy

measurement capability to some of their chips and boards. For example, Intel has groups

of researchers and labs for energy efficiency research that focus on technologies for the

efficient future—low power circuit innovations, platform power management and efficient

I/O and memory, for example. One research direction of their platform power management

research is to shift the focus from the OS to hardware management platform [138]. Also,

in recent versions of their famous core processors, Intel includes energy counters in their

Intel Core processor chips and provides drivers, APIs and an SDK tool called Intel Power

Gadget for developers of major operating systems to create real-time energy profiler for

their green software projects [80]. Similarly, AMD has developed CodeXL [139], a

debugging, profiling and analysis tool for taking advantages from their CPUs, GPUs and

APUs (accelerated processing units). The tool also includes a power profiler that can

provide power consumption of CPU, APU and GPU components in real-time, as well as

frequencies and thermal trend. This tool can also be used to provide power visibility in

making software greener. On the other hand, Qualcomm has also introduced Trepn Power

Profiler for Android mobile devices with their Snapdragon processors [134]. With the

power profiling tool, Android developers can have power/energy visibility of their

applications and better understand the impact of their programming choices on both power

and performance.

42

2.3.2.2 Power Models

Power models are considered software-based power measurement tools because

they use a mathematical formula to estimate the power consumption of a system. Based on

Chen and Shi [98], power models are built to estimate the power dissipation of different

levels, such as instruction level, program block level, process level, hardware component

level and system level. The methods capture power indicators that could reflect the power

consumption of software applications or hardware components. The models are then built

with these power indicators and fine-tuned the parameters of the power model for highest

accuracy possible. The accuracy is normally verified by comparing with the result

measured by a power meter or by applying the power information into a power-aware

strategy to test its usability. Power models are more popular in energy-aware software

research because it is more practical and suitable for use with or within software

applications. However, its complexities and errors in the models can introduce inaccuracy

making software-based power measurement less accurate than hardware-based [3, 42].

Also, many models are considered premature to be used in real-world applications. This

section provides some examples of software/modeling-based power measurement tools.

2.3.2.2.1 PowerScope

PowerScope [78] is an early-developed energy profiler that combines both

hardware measurement and a statistical sampling method of system activity with kernel

software support. The energy profiler maps energy consumption to program structure, in

much the same way that CPU profilers, such as prof and gprof, map processor cycles to

specific processes and procedures. Figure 4 is the architecture of PowerScope depicting

43

how a digital multimeter is integrated and how it generates an energy profile. As

applications execute on the profiling computer, the System Monitor component samples

system activity and records the value of the program counter (PC) and the process identifier

(PID) of the executing process. At the same time, the Energy Monitor component samples

voltage and current readings from the digital millimeter at the same corresponding rates

controlled the multimeter. Subsequently, the Energy Analyzer component uses this

information to generate an energy profile.

(a) Data Collection

(b) Offline Analysis

Figure 4. PowerScope Architecture (from [78])

44

The PowerScope Energy Analyzer component generates activity-based profiles by

integrating the product of instantaneous current and voltage over time. The energy value is

approximated by sampling the voltage 𝑉𝑡 and current 𝐼𝑡 at regular intervals of length Δt.

The energy usage of the executing process over n samples is calculated by multiplying the

summation of current samples with the measured voltage (𝑉𝑚) and the sample interval (Δt)

as shown in the following equation:

 𝐸 ≈ 𝑉𝑚 ∑ 𝐼𝑡∆𝑡𝑛
𝑡=0 (2)

The authors claim that, by using PowerScope, they are able to reduce the energy

consumption of an adaptive video playing application by 46%.

2.3.2.2.2 Joulemeter

For a more recent energy profiling tool, Joulemeter [79] is a Microsoft’s software-

based energy profiler that estimates the power consumption of a computer. It tracks

computer resources, such as CPU utilization and screen brightness, and estimates power

usage. Joulemeter estimates the energy usage of a virtual machine (VM), computer, or

software by measuring the hardware resources being used, such as CPU, disk, memory,

screen, etc. The tool then converts the resource usage to actual power usage based on

automatically learned realistic power models. This calibration process can be done with

either the device’s internal battery module or a Watts Up? meter [16]. Joulemeter is used

for gaining visibility into energy use and for making several power management and

provisioning decisions in data centers, client computing, and software design. At the time

of writing this paper, Joulemeter is no longer available for download and supported by

Microsoft. The company informs that similar energy profiling tool has been integrated in

45

the later versions of Visual Studio, a popular integrated development environment (IDE)

from Microsoft.

2.3.2.2.3 Intel Power Gadget

The Intel Power Gadget [80] is one of the most recent power estimation tools that

can also be used for energy-efficient software development projects. It can be considered

as both hardware and software-based power usage monitoring tools since the power

consumption data are derived and calculated from energy counters provided by Intel Core

processors. The motivation for the tool is to assist end-users, ISV’s (independent software

vendors), OEM’s (original equipment manufacturers), developers, and others interested in

a more precise estimation of power from a software level without any hardware

instrumentation. The latest version 3.0 tool is supported on Windows, Mac OS X and

Linux, and includes an application, driver, and libraries to monitor and estimate real-time

processor package power information in watts using the energy counters in the processor.

With the latest release, the tool provides functionality to evaluate power information on

various platforms including notebooks, desktops and servers. The callable APIs allow

programmers to extract power information at finer granularity and within sections of

program codes. The optimal sample rate is suggested at 100 milliseconds per sample. The

data provided by the tool include processor power, package power limit, current processor

frequency, base frequency, GT or GPU frequency, current temperature, maximum

temperature, proc hot (when package temperature exceeds max temperature), timestamps

and elapsed time. The data are obtained from the CPU’s model specific registers (MSRs)

and energy counters that are available only in 2nd-generation Intel Core or later processors.

46

There are also many other power/energy estimation tools—JouleTrack, a web

based tool for software energy profiling [81]; PowerTop [82] that allows users to find

programs that are consuming power when the computer is idle; PowerDail [83], a system

for dynamically adapting application behavior to execute successfully in the face of load

power fluctuations; Green Tracker [84], a tool that estimates the energy consumption of

software in order to help concerned users make informed decisions about the software they

use; and the more recent tool, POSE [85], a mathematical and visual modelling tool to

guide energy aware code optimization. . Figure 5 shows some mathematical formula of

component-level power models used in AppScope framework, an application energy

metering tool for Android smartphone developed by Yoon et al. [140]. There are also many

other tools not included here.

Figure 5. AppScope’s Component-Specific Power Models (from [140])

47

2.4 Performance, Power and Energy Optimization of Software Applications

Like execution time or performance, power and energy consumption are considered

non-functional properties of software applications. The two properties are becoming more

important among battery-driven devices because improving the energy efficiency in

software applications can help extend the device’s battery life. However, there is still some

confusion and questions about energy optimization of software applications. Based on the

energy formula (E = P × t), minimizing the energy consumption can mean either

minimizing the execution time, the power consumption or both. One may argue that

improving the energy efficiency can be done by just improving the performance or making

the code run faster (minimizing the execution time). However, this is not always the case

because optimizing the code to run faster can sometimes increase or decrease the power

consumption of software applications and can result in higher or lower energy

consumption. As mentioned in one of our published papers [3], optimizing the power and

performance of a software system is not simple. This is mainly because the two properties

are considered conflicting attributes and are often traded off. Our study results provide

some evidences of counterintuitive results showing that some system cache configurations

can result in faster execution but the power consumption sometimes remains unchanged or

is lower or higher.

Moreover, Abdulsalam et al. conduct a comprehensive experiment on using

different techniques to optimize software programs and propose the Greenup, Powerup and

Speedup metrics (GPS-UP) to categorize the software implementation and optimization

efficiency [102]. The definitions of the metrics are explained in Section 2.3.1.1. Figure 6

48

shows the GPS-UP software energy efficiency quadrant graph. The “green” categories

(categories 1-4) represent energy savings and the “red” categories (categories 6-8)

represent energy loss compared to the corresponding non-optimized code. For example,

category 1 is specified as Powerup < 1 and Speedup > 1, meaning that the optimized code

runs faster and consumes less power consumption. On the other hand, category 4 is

specified as Powerup < 1 and Speedup < 1. This category indicates that the optimized code

is greener, consumes less power but runs slower. The goal of their study is also to try to

answer the following questions:

1) “Is performance efficiency equivalent to energy efficiency?”

2) “Is there a win-win situation for both performance and power consumption?”

3) “Is there any optimization that helps energy more than performance?”

4) “What are the correlations between performance, power and energy when

optimizing software?”

Figure 6. GPS-UP Software Energy Efficiency Quadrant Graph (from [102])

49

Using a number of different implementations of four selected algorithms, the

authors observe the relationship between GPS-UP metrics and are able to find examples

for all eight categories and show that some optimization techniques can help energy more

than performance. These GPS-UP metrics can also be used to analyze the correlations of

energy, power and performance when optimizing software applications. The ideal

optimization techniques can be identified when the optimized code is in the category 1—

less power consumption and faster execution. The authors also recommend that we

combine the Greenup, Powerup and Speedup in analyzing the impact of language choices,

compilers, and optimization techniques on execution time and energy consumption of

software applications. However, in our adaptive data structure study in this dissertation,

the energy optimization impact is analyzed using the Greenup metric, looking only at the

overall energy impact from using our green data structure, without specifically analyzing

the Powerup or Speedup metrics.

50

CHAPTER 3: GREEN SOFTWARE DEVELOPMENT

Originally, energy efficiency research in computer systems has been driven mainly

by battery constraints of ubiquitous mobile devices and notebooks. Many energy efficiency

tools and methods were developed primarily to help extend battery lifetimes of the devices.

The main purposes were toward the saving of operational costs of data centers and

extending of battery lifetime of mobile devices. However, today the trends and goals of the

research are toward more environmental sustainability; reducing carbon footprints and the

fight against climate change. Besides concentrating on the hardware components, aiming

on software components and application layers of computer systems is also gaining

popularity among many researchers. However, the research area is still in the early stage

and there is much room for improvement. This chapter discusses the background and

current development of green software research and some of the related fields, software

adaptation for energy efficiency and developing green software using machine learning

methods.

3.1 Sustainability in Software Engineering

In recent years, Sustainable or Green Software Engineering (SSE or GSE) has been

gaining importance in the software engineering community. Many researchers are now

realizing the direct and indirect effect of software applications to the system’s energy

consumption and the environment. Their efforts include developing software engineering

methods and promoting green software developments among software engineers and

51

developers. The main purpose is to include sustainability and greenness into every phase

of the software engineering process and consider it as a software quality metric or non-

functional property of software applications.

3.1.1 Framing Sustainability as a Property of Software Quality

Based on the Collins dictionary [105], the definition of sustainability is “the ability

to be maintained at a steady level without exhausting natural resources or causing severe

ecological damage”. Similarly, the Brundtland report from the United Nations (UN) [106]

defines sustainable development as the ability to “meet the needs of the present without

compromising the ability of future generations to satisfy their own needs” [62]. Based on

the UN definition, sustainable development needs to satisfy the requirements of three

dimensions, which are the society, the economy and the environment.

In addition, based on an IUCN’s technical report by Adams [93], the author defines

the three dimensions in sustainable development into three pillars of sustainable

development that can also be applied in IT development:

1) Pillar 1: Economic Development—to ensure economic growth, maintain a

healthy balance with our ecosystem and integrate environmental and social

concerns into business.

2) Pillar 2: Social Development—to create a sustainable society which includes

social justice or reducing poverty.

3) Pillar 3: Environmental Protection—to ensure that the environment is protected

by human actions and help the environment to be able replenish itself; e.g., the

use of recycled materials to help conserve natural resources.

52

In extending the above principle, Lago et al. [26] introduce the fourth pillar, the

Technical pillar, for supporting long-term use and evolution of software-intensive systems

at a level of abstraction closer to implementation. Their suggestion is that sustainability is

achievable only when accounting for all dimensions. The authors also propose a framework

to address the environmental dimension of software performance by demonstrating the use

of the framework in a paper mill and a car-sharing service project. Figure 7 displays their

framework for sustainability software-quality requirements. The framework addresses how

these concepts relate to software and how to break down the respective concerns into

software-quality requirements.

Figure 7. A Framework for Sustainability Software-Quality Requirements (from [26])

To frame software qualities, the framework positions the qualities into the four

sustainability dimensions and relate them to the concerns of the relevant stakeholders.

53

When starting a project with a requirement on sustainability as shown in Figure 7, where

the association aims to link the evaluation objective to the sustainability dimension,

software developers have to resolve any concern and trade-offs among the various qualities

classified as belonging to each of the four dimensions. In contrast with the traditional

software decision making that considers trade-offs either between different technical

sustainability criteria (such as performance versus availability) or between any of the four

dimensions, the framework suggests sustainability-related software decision making

involves trade-offs between environmental sustainability criteria (such as energy

efficiency) and social, economic, and technical sustainability criteria. The authors also

demonstrate the use of the framework in case-study examples.

In the paper-mill control system case study, there can be three main stakeholders

that are concerned about different problems: for example, the surrounding community and

society that are concerned about environmental sustainability like forest sustainability;

customers that are concerned about economic sustainability like production savings

expressing productivity and economic value creation; and producing organization,

including managers and engineers, that are concerned about technical sustainability like

optimization of configurability and performance. The interdependent quality requirements

may influence one another, as in association/association class influences among

sustainability quality requirements. In this case, performance and energy savings could

influence each other, while increasing performance could demand more resources that

consume more power and have a negative effect on energy savings. Using the framework

can help designers of software-intensive systems appreciate the importance of the various

54

qualities and developers keep track of the elements captured by the framework when

making the trade-offs among the various qualities in the four sustainability dimensions.

The term sustainability is sometimes analogous to “green” or “greenability” and

also used in many sub areas of green computing research. For example, in a book by Calero

and Piattini [107], the authors include the definitions for sub areas of green computing

terms, such as information system (IS) Sustainability, ICT/IT sustainability and software

sustainability. However, their main concepts are the same as the above definitions of

sustainable development. This dissertation focuses more on the software sustainability and

green software engineering, with the main goal to motivate green software development

among researchers, programmers and other stakeholders that are involved in software

development projects.

3.1.2 Sustainable and Green Software Engineering

Based on a book by Calero and Piattini [107], software engineering sustainability

is considered a part of software sustainability. The authors state that software sustainability

can be applied in many areas, such as software systems, software products, web

applications, data center, etc. The book also states that the term sustainable software can

be interpreted in two ways: (1) “the software code being sustainable, agnostic of purpose”,

or (2) “the software purpose being to support sustainability goals”. Therefore, in this

context, sustainable software is energy-efficient, minimizes the environmental impact of

the processes it supports, and has a positive impact on social and/or economic

sustainability. Naumann et al. also give a definition of sustainable software as “software,

whose direct and indirect negative impacts on economy, society, human beings, and

55

environment that result from development, deployment, and usage of the software are

minimal and/or which has a positive effect on sustainable development” [24]. The direct

impacts are related to resources and energy consumption during the production and use of

software, while indirect impacts are effects from the software product usage, together with

other processes and long-term systemic effects.

In addition, Calero and Piattini also define green software as environment-friendly

software that helps improve the environment. They also classify green software into four

categories:

1) Software that is greener because it consumes less energy to run

2) Embedded software with smart operations that can assist other parts in going

green

3) Sustainability-reporting software or carbon management software

4) Software for understanding climate change, assessing its effects and forming

appropriate policy responses

For software engineering sustainability, Naumann et al. [24] subsequently define

green and sustainable software engineering as the art of developing green and sustainable

software engineering process, so that the negative and positive impacts on sustainable

development that result and/or are expected to result from the software product over its

whole life cycle are continuously assessed, documented, and used for a further optimization

of the software product. However, as the research in green software engineering progress,

there are also other definitions given by several researchers. For example, stated by Calero

and Piattini [107], green and sustainable engineering is the enhancement of software

56

engineering, which targets; (1) the direct and indirect consumption of natural resources and

energy, and (2) the aftermath that are caused by software systems during their entire life

cycle, the goal being to monitor, continuously measure, evaluate and optimize these facts.

The aims for sustainable software engineering are “to create reliable, long-lasting software

that meets the needs of users while reducing the negative impact on the economy, society

and the environment.” Moreover, researchers from the University of California, Irvine,

state that the aim of software engineering for sustainability (SE4S) is to support all

dimensions of sustainability—human, social, economic, environmental, and technical—

throughout the software lifecycle [108].

Figure 8. Green Software, Green Hardware and Green IT (from [107])

Because there are discrepancies between the concepts and the meanings given by

many different authors, Calero and Piattini also present a simple diagram (Figure 8) to

unify the different terminologies and definitions that together make up “Green IT.” The

57

figure shows where software sustainability and green software engineering can be put in

the green IT research area along with the distinctions from other areas in software and

hardware layers. Based on the figure, our research area of green software development in

this dissertation can be put in the “Green IN Software” research area, in which the main

goal is to develop software applications that consume less energy to run.

3.2 Green Software Development Life Cycle

The trend of green computing has been changing in the last few years, and new

pieces of work related to the area of green software development are emerging. There are

several research studies that attempt to standardize the green software engineering

practices. This section demonstrates two examples of the green software engineering

models.

3.2.1 GREENSOFT

In order to classify and sort some aspects of green and sustainable software and its

engineering, Naumann et al. develop a conceptual reference model named GREENSOFT

model for sustainable software [24], shown in Figure 9. The model contains four parts that

cover; (1) the life cycle model of a software product; (2) criteria and metrics that represent

sustainability aspects that are directly and indirectly related to the software product; (3)

procedure models for the different phases; and (4) recommendations for action, as well as

tools for different stakeholders. The four-part model supports software developers,

administrators, and software users in creating, maintaining, and using software in a green

manner.

58

In the first part, the life cycle of software products, the authors follow the concept

found in the Life Cycle Thinking (LCT) according to the “from cradle to grave” principle

[109]. The life cycle of green software products can also be considered at the development

and the usage phases, up until the end of life of software products.

Figure 9. GREENSOFT Reference Model (from [24])

The intention is to estimate the ecological, social, and economic impacts that

already occur in early stages during the software’s whole life cycle. The sub model also

shows an overview for the life cycle of software and its relationship to different levels of

59

effects—first order effects (effects resulting directly from the product, e.g. energy

consumption), second order effects (usage results, e.g. effects of dematerialization by

software), and third order or rebound effects (e.g. when an energy-efficient product leads

to more energy consumption in total).

In the second part, the authors present some sustainability criteria for software

products. The model categorizes the criteria into three categories—common quality criteria

and metrics, directly related and indirectly related criteria metrics. The part involves mainly

measurements of common effects of software products which are considered important for

developing green software. In this part, the authors also propose a quality model and

introduce some quality criteria terminologies such as, Efficiency, Energy Efficiency,

Runtime Efficiency, CPU-Intensity, Memory Usage, Peripheral Intensity, Idleness,

Number of Methods, Framework Entropy, Functional Types, and so forth.

For the third part, the sub model contains procedure models, based on the different

usage types of different stakeholders such as, developers, purchasers, administrators, and

users. The proposed models suggest that software engineering should become green and

sustainable in its production, support, and application processes. Lastly, the forth sub

model comprises recommendations for action and tools for the different stakeholders, such

as checklists, guidelines, best practice examples, software tools, as well as other tools that

speedup and improve the green software development processes. These support

stakeholders with different professional skill levels in applying green or sustainable

techniques in general, when developing, purchasing, administrating, or using software

products. Our proposed green data structure in this dissertation can also be considered as

60

one of the support tools, particularly for programmers to use in developing green software

applications.

Figure 10. An Overview of Green Software Engineering Process Model (from [24])

As additional detail of the first sub model, software product life cycle, the authors

also give an overview of a green software engineering process model, shown in Figure 10,

which incorporates the green software development practices with the traditional software

development life cycle (SDLC). This general process is enhanced by several activities that

have the objective to enable sustainable software engineering. The sustainability reviews

& previews mainly consider impacts on sustainability which are expected to arise from

distribution and future use of the software products. The sustainability journal is the

information hub of the process enhancements. It is a well-structured report, which evolves

together with the software project. Its purpose is to document sustainability reviews &

previews, process assessment and the sustainability retrospective. Finally, after the project

has finished, it reports the assessed impacts on sustainability.

61

3.2.2 A 2-Level Green Model for Sustainable Software Engineering

In addition to the GREENSOFT model, Mahmoud and Ahmad [25] propose

another software model that covers all aspects of software related to green computing. The

model is a two-level model in which the first level is a hybrid software engineering process

between sequential, iterative, and agile software development processes that aims to create

a green and sustainable software process; and the second level explains how software itself

can be used as a tool to aid in green computing by monitoring resources in an energy

efficient manner.

Figure 11. Level-1 Green Software Engineering Process (from [25])

In the first level shown in Figure 11, the Level-1 model consists of nine main stages

that can aid in producing a green product and is designed to have environmentally

sustainable stages—requirements, design, unit testing, implementation, system testing,

green analysis, usage, maintenance, and disposal. This first level represents how to obtain

a green and sustainable product. The “Business, people, customers” box in the figure

indicates that the customers and the business people should be part of the requirements,

design, implementation, and testing stages.

Each of the nine stages contains some sub stages and can sometimes be iterated

back to the previous steps and repeated multiple times if necessary. For example, starting

62

with the green requirements engineering stage, this stage is the energy efficient requirement

engineering process. It consists of a feasibility study to determine if the system to be built

is relevant and useful to the business, including whether to include energy efficiency as a

non-functional requirement. The requirement process also includes outlining and

organizing the services in the order they should be developed and a risk analysis inspired

from the iterative spiral model but in terms of energy. After the risk analysis, the process

can go back to the requirement outlining stage to implement these changes if necessary. At

the final stage of the requirements process, the requirement test stage is to be conducted to

an environmentally sustainable requirements process. It is energy efficient to develop tests

along with requirements because it provides a better understanding to the testers and

developers of the requirements and mainly satisfies that there will be no changes when

system and acceptance testing occurs.

In the green design stage, a system architecture is created based on the

requirements. During this stage, fundamental software system abstractions and their

relationships are defined. There are a number of design activities that form the

sustainability level of the software component such as architectural design, abstract

specification, data structure design, and algorithm design. The system is then implemented

into a set of programs and program units based on the designs. Software developers should

choose at this stage the most suitable programming patterns or algorithms to the

application. The software testing process can emphasize on either discovering that the

software does not meet its requirements or can emphasize on discovering faults or defects

in the software where the behavior of the software is incorrect.

63

The green analysis stage is to promote energy efficiency and brings forth new ideas

about environmental sustainability to any software engineering process. The green analysis

stage determines the greenness of each increment of the system that is developing. This

stage acts like a testing stage but for energy efficiency. Energy metrics are used in this

stage to perform the analysis. The usage, maintenance and disposal stages are also

conducted in a green manner.

Figure 12. Level-2 Software Model that Promotes Green ICT (from [25])

In Figure 12, the Level-2 model indicates how software tools can play a major role

in having energy efficient use of software applications thus promoting green computing.

This model consists of five categories—operating system frameworks, fine grained green

computing, performance monitoring counters and metrics, code written for energy

allocation purposes, and virtualization. For example, the operating system frameworks that

create intelligent power profiles are integrated into the operating system code to minimize

power consumptions of computer systems. The energy profiles can be used to minimize

the average work load of the CPU by shutting or hibernating applications not in use so that

heat dissipation and power consumption is minimized. For performance monitoring

64

counters and metrics, the authors give Span [110] and GreenTracker [111] as examples of

power estimation tools that can be used for energy efficiency improvement of computer

systems. The fine grained green computing approaches are more specific to a running

application such that power consumptions can be measured at component levels such as

memory banks or I/O peripherals. The fine grained data can help the applications to

improve energy efficiency better. The general approaches are codes written specifically for

energy allocation purposes that can route traffic to locations such as data centers with the

cheapest energy costs or ones with cooler temperatures. The virtualization also plays a role

in green computing and is partly software. Virtual machines are partitioned based operating

systems that allow for multiple applications to exist on a single system. This approach can

reduce the number of systems needed and the amount of power required, thereby

contributing to green computing.

In our main study, the proposed adaptive green data structure can be put in both

levels of the green model. If we consider our green data structure as a green programming

tool that programmers can use to develop green software application, then the approach

can be viewed as the Level-1 model—in the design and implementation stages, in particular

during the selection process of a green design architecture, tools and algorithms. If the

green data structure is viewed as a software tool that aids in green computing and software

development, it can also be put in the Level-2 model—possibly in a fine grained green

computing group.

65

3.3 Software Adaptation and Energy-Aware Applications

Due to the growing numbers of modern and complex applications with the ability

to adapt to different users, environments, platforms and/or screen sizes of mobile devices,

software adaptation is emerging as a new discipline in the software engineering field.

According a paper by Canal et al. [112], software adaptation refers to “a process, in which

an interactive/adaptive system adapts its behavior to individual users based on information

acquired about its user(s) and its environment”. In a more specific definition in software

engineering term, software adaptation promotes the use of adaptors—specific

computational entities whose main goal is to guarantee that software components are able

to interact in the right way not only at the signature level, but also at the behavioral,

semantic, and service levels. There are many purposes for software adaptation—

interoperability, usability and improving performance, quality of service or energy

efficiency, among others.

For interoperability purpose, at the signature level, a software component is

designed so that its interfaces or the name of the service, type of its arguments and return

values, and the possible exceptions raised, that is, the full signature of the component can

be reused many times in developing many other applications. At the behavioral level, the

component has the behavior or protocol as expected or specified by the interfaces. The

mismatched behavior can make the component to be incompatible or have no behavioral

adaptability. At the semantic level, the compatible component has to be designed and

implemented correctly with correct formal functional descriptions and language semantic.

And at the service level, typical aspects that can be adapted are synchronization, security,

66

persistence, and so forth. For usability purpose, software components are to be

designed/implemented so that it can adapt to the users and environments such as platforms,

internet connectivity, screen size and other usability requirements. In addition, a study by

Oreizy et al. [113] shows how an application can be adapted at runtime by manipulating

its architectural model. In particular, the paper demonstrates how software connectors in

aiding runtime change, provides an explicit architectural model fielded with the system and

used as the basis for runtime change, and suggests architectural style in providing both

structural and behavioral constraints over runtime change.

For green software development, software adaptation is the ability of software to

adapt and be reconfigured, changed or transformed for energy efficiency. This adaptation

can be either in a manual or automatic manner. For example, an adaptive online video

player is designed/implemented so that it can be manually or automatically reconfigured

for the video content to be streamed at different quality levels depending on the strength of

the internet connection or the battery lifetime of a computing device. For manual

reconfiguration, the process is normally done offline by users or programmers at design

times. But, automatic reconfiguration is normally done at runtime so the software can adapt

dynamically and automatically. Sometimes, the online or dynamic adaptation requires

some types of intelligence for decision making of when and how to adapt.

For modern software systems, many studies focus on software adaptation for

energy efficiency. The software adaptation capability sometimes is mechanically included

in energy-aware applications. The energy-aware applications normally include energy

monitoring capabilities (so they know the energy impacts from its processes) and runtime

67

adaptability for energy efficiency. For example, a study by Flinn and Satyanarayanan [13]

demonstrates how mobile applications can dynamically modify their behavior to conserve

energy. One experiment in the Linux operating system shows that the operating system can

guide such adaptation to yield a battery life of desired duration. By monitoring energy

supply and demand, it is able to select the correct tradeoff between energy conservation

and application quality. Their evaluation result shows that this approach can meet goals

that extend battery life by as much as 30%.

In a recent study by Hoffman [114], the author combines approximate applications

and energy aware systems to create JouleGard, a runtime control system that coordinates

approximate applications with system resource usage to provide control theoretic formal

guarantees of energy consumption, while maximizing accuracy. JouleGuard is evaluated

by testing on three different platforms (a mobile, tablet, and server) with eight different

approximate applications created from two different frameworks. The result shows that

JouleGuard respects energy budgets, provides near optimal accuracy, adapts to phases in

application workload, and provides better outcomes than application approximation or

system resource adaptation alone. For another study that focuses on software adaptation

for energy efficiency, OpenMPE [115] is an extension to OpenMP designed for power

management. OpenMP is a standard for programming parallel shared memory systems

without any support for power control. The OpenMPE exposes per-region multi-objective

optimization hints and application-level adaptation parameters, in order to create energy-

saving opportunities for the whole system stack. The evaluation results demonstrate the

68

effectiveness of OpenMPE with geometric mean energy savings across 9 use cases of 15%

while maintaining full quality of service.

Figure 13. Idealized Infrastructure for Dynamic System Adaptation (from [116])

There are many types of system infrastructures and architectures for software

adaptation; for example, Kinesthetics eXtreme (KX) for applying dynamic adaptation

facilities “from the outside” of a given target system [116]; and KX Feedback-Control-

Loop infrastructure that extends the KX architecture with a feedback-control-loop

infrastructure. However, in general, an adaptive system composes of monitoring, dynamic

analysis, decision making and feedback to reconfiguration components. As seen in Figure

13, it is an idealized infrastructure for system adaptation with the “Feedback-Control-

Loop” infrastructure being added to the legacy systems. This infrastructure adds the ability

69

for dynamic adaption to the legacy systems. In the figure, initially, data is collected from

the running target system. It is instrumented with non-invasive probes that report raw data

to other layers via the probe bus. The data is then interpreted via a set of gauges that map

the probe data into various models of the system. The gauges then report their findings to

the gauge bus. Then the decision and control layer can analyze the implications of the

interpreted data on overall system performance and make decisions on whether to: (1)

introduce new gauges in the interpretation layer to analyze further, or disable some as

unneeded; (2) deploy new probes to provide more detailed information to the remaining

gauges, or turn some off to reduce “noise”; and/or (3) reconfigure the system itself, perhaps

changing the running system’s structure by introducing new modules or modifying system

or component parameters.

The adaptive green data structure in our study and other energy-aware applications

also have similar infrastructure. There is an energy monitoring component for energy

profiling and collecting energy data. There is also a data analysis for data interpretation

and a decision making component for making decisions on when and how to adapt. There

is also a feedback mechanism to notify different parts of the system to reconfigure,

transform or adapt for energy efficiency and extending battery life. Also similar to the

idealized architecture, our green data structure adds the Green component to the existing

dynamic data structures so that they have the ability to learn and adapt for energy

efficiency. However, in software applications, the main challenges are (1) how to add

power monitoring components since, at the time of writing this dissertation, there is no

such tool for measuring energy impact at the software object level, and (2) how to add the

70

data analysis and decision making capabilities without introducing overhead due to the

additional computation. Our approach to solving the problems and overcome the

challenges are to use machine learning technology and make the decision mechanism as

lightweight as possible.

3.4 Machine Learning for Energy-Efficient Computing

Machine learning is a field in computer science that is becoming more and more

popular among many research areas such as gaming, natural language processing, data

science and robotics. Based on a book by Bekkererman et al. [44], machine learning is

about developing algorithms for making predictions from data. The purpose of a machine

learning task is to identify (or to learn) a function f: X Y that maps the input domain X

(data) onto output domain Y (of possible predictions). The function f is selected from a

certain function class, which is different for each learning algorithm. X and Y are the

domain-specific representations of data objects and predictions, respectively. For learning

algorithms, there are two main types—supervised and unsupervised learning. Supervised

learning algorithms require training data to create a function f that produces accurate

predictions on test data. Instead, unsupervised learning algorithms aim to construct

predictive functions that generalize or describe hidden structure of unlabeled or unseen

data.

Two famous examples of supervised learning tasks are classification and

regression. Classification tasks have the output Y as discrete set of categories (or classes),

Y = {c1, c2, c3,..., ck}, whereas, regression tasks has the output Y as real numbers. One

famous example of the unsupervised learning is data clustering. The goal of data clustering

71

is to construct a function f that partitions an unlabeled dataset into clusters, with Y being

the set of cluster indices. In our green data structure study, supervised learning technique

is used for training our green data structure, and classification technique is used when

predicting energy efficient data structures from the workload. In general, machine learning

gives computers the ability to learn and make predictions without explicitly being

programed.

Today, machine learning is being widely used in many computer fields and is

another important methodology for sustainability as well. There are many research and

products that use machine learning techniques for improving energy efficiency; for

example, intelligent agents in smart meters and the Smart Power Grid [117]; ThinkHome

[118] and Smart Buildings [119] for optimizing energy bills in homes and buildings; and

smart cars [120] for optimizing fuel consumption and extending battery life of electric cars.

For green computing research, there are also several research studies that make use of

stochastic search for improving energy efficiency of computer systems and for developing

green software applications. This section provides some research examples that uses such

techniques for improving energy efficiency of computer systems and software applications.

First, a research by Lorenz et al. [121] focuses on the compiler layer, in particular the code

optimizer in embedded systems. The authors propose an energy-aware code generator

(GCG) based on single population genetic algorithm. This code generator reduces the

energy consumption by suitable instruction selection and instruction scheduling. Energy-

aware compilation is done with respect to an instruction level energy cost model which is

integrated into the code generator and simulator. Their method is to decompose a source

72

program into basic blocks of procedures and present them as nodes in a data flow diagram

(DFG). The genetic algorithm module encodes the basic blocks into specialized

chromosomes. Each gene of the chromosome represents an operation like a load or an

addition. The values of a gene express information about used registers, performed

processor instruction, execution cycle, and others, which are necessary for code generation.

An objective function is defined as the consumed power or energy of a program. It is

represented by values of average power dissipation of certain combinations of instructions.

The authors used their method for SIMD instructions (SIMD refers to single instruction

multiple data). The evaluation results show a 30% of energy reduction and 8% reduction

of the application code.

Furthermore, similar code optimizer research by Azzemi [122] uses a simple multi-

objective genetic algorithm (MOGA) in their optimization and achieve an energy reduction

of about 17%. Meedeniya et al. [123] try to solve the redundancy allocation problem in the

embedded systems by using the Markov Reward Model [124] for system representation.

The authors use the non-dominated sorting GA (NSGA) algorithm to solve a bi-objective

optimization problem between system reliability and energy consumption. The achieved

empirical results show that the proposed method can significantly reduce the energy

consumption for a very small trade-off of reliability.

For network data transmission, dynamic data compression in the application code

seems to be a promising software tool for saving the energy used for data propagation in

wireless sensor networks. Compression methods exploit the data structure and reduce the

data size. Marcelloni and Vecchio [125] perform a data compression on a network (single)

73

node based on a differential pulse code modulation scheme with quantization of the

differences between consecutive codes of the signal samples. The trade-off between a

performance of compression algorithm and the amount of the lost information is

determined by the set of quantization parameters. The authors employ the Non-Dominated

Sorting Genetic Algorithm II (NSGA–II) for optimizing the combinations of these

parameters corresponding to different optimal trade-offs. The evaluation analysis of the

proposed method shows a 62% reduction of the energy consumed in data transmission.

Similarly, Liu et al. [126] propose a MAC layer solution called pushback that

appropriately delays packet transmissions for energy efficiency in sensor networks. The

method is to overcome periods of poor channel quality and high interference, while

ensuring that the throughput requirement of the node is met. It uses a hidden Markov model

(HMM) based channel model that is maintained without any additional signaling overhead

scheme. The pushback algorithm is shown to improve the packet success rate by up to 71%

and reduce the number of transmissions needed by up to 38% while ensuring the same

throughput.

A recent article by MIT News [129] reports that MIT researchers have built an

energy-friendly chip that can perform powerful learning tasks. The new chip is designed

specifically to implement neural networks that enable future mobile devices to model the

human brain. It is 10 times as efficient as a mobile GPU so it could enable mobile devices

to run powerful learning algorithms locally rather than uploading data to the internet for

processing. Also stated in the article, neural nets were widely studied in the early days of

74

machine learning research, but by the 1970s, they had fallen out of favor. In the past

decade, however, they have come back under the name “deep learning.”

75

CHAPTER 4: A POWER-PERFORMANCE TRADEOFF STUDY

As our first study and an initial exploration in green computing research, this

chapter presents a power-performance tradeoff study of the cache system in computer

hardware systems. The purpose is to see how the cache system impacts the energy

consumption of a computer system and how the energy efficiency can be improved by

using a Pareto tradeoff method. In the study, we conduct an empirical evaluation of the

power/performance impact of cache configuration on embedded systems. We gather live

power consumption and execution time data for the programs in the CHStone benchmark

suite on an embedded processor with configurable cache parameters and perform a Pareto

analysis on these data to identify the optimal cache configurations. We observe that the

optimal configurations are sparse in the design space, are inconsistent across the

benchmark, and are counterintuitive in some cases. Our results reveal interesting,

unexpected insights motivating the need for tools and methodologies that automate this

process and operate directly on data gathered from the systems.

4.1 Introduction

Power-performance optimization is challenging and becoming increasingly

important among modern computer systems, especially for those that rely on battery power.

The sophistication of software applications and the increasing needs of rich media and big

data have made today’s computer systems power-hungry, while battery standards are not

keeping pace with the demand [49]. Therefore, many researchers have been developing

76

optimization techniques to extend battery life and reduce power consumption while

maintaining other performance characteristics at acceptable levels.

Many power reduction techniques are based on power models which might not

represent the full complexity of the system being analyzed. Most computer systems are not

originally designed to support power optimization so the onboard power monitoring

systems are not included, or if included, they are not explicitly designed to measure the

power consumption of software applications [42, 50]. Many power models have been

developed to support power optimization [39, 45, 48, 50, 51]. They are mostly intended to

evaluate a specific platform or specific technology [51]. As with all models, if there are

errors with calibration or inaccuracies in the models, or if they are used incorrectly, the

results can be skewed or different from those based on analysis of live power consumption

data [42]. In order to avoid the use of power models, we focus on the use of live data.

Optimization with live data is difficult: the process of gathering and analyzing these

data is tedious and understanding conflicting performance attributes is challenging. In

software engineering, performance and power consumption are viewed as non-functional

properties. They are considered conflicting attributes and are often traded off, making

them difficult and time consuming to optimize [41]. Many researchers point out that high-

level strategies can help in trading off the conflicting properties and solving the multi-

objective optimization problem [33, 41]. Although their results are intuitive and feasible,

there are still many open challenges and the strategies are far from being adopted into

practice.

77

In this paper, as a case study, we conduct an experiment on an embedded hardware

platform that can run a wide variety of software applications while providing live power

consumption data. We investigate one aspect of the system, the cache system, because it

has a major impact on both power consumption and execution time, and virtually all

computer systems use caches [45]. Several other studies have shown that the cache has a

large effect on the overall system performance and also accounts for a large amount of total

energy consumption in embedded systems; up to 50% of total energy usage in some cases

[48]. Also, there are many tunable parameters in most cache designs [46, 48].

We select Pareto optimality as the main principle to solve the bi-objective

optimization problem because it is well-known and has been applied in many fields,

including engineering and economics where optimal decisions need to be made in the

presence of tradeoffs between two or more conflicting objectives [36]. Our goals are to

demonstrate a detailed manual optimization process and to convey the basic concept of

power-performance tradeoff in an energy-aware system and to understand the impact that

different cache parameters have (or do not have) on the power/time tradeoff in order to

better understand how an automated optimization methodology for performing this

analysis might work.

We consider power consumption data (watts) for the analysis instead of energy

(joules) because we want to look at the system’s power consumption and performance as

a whole and not the specific software being executed. We consider these properties to be

independent from each other. Power consumption and execution time are just a few of the

many performance and non-functional properties of a system [42]. Our goal is to observe

78

the interactions between the system’s power consumption and execution time as

effectuated by different cache system parameters when executing different benchmark

programs.

The contributions of this study are threefold: (1) the demonstration of a detailed

manual process for power-performance tradeoff analysis using Pareto optimality and how

some unexpected insights can be discovered and categorized, (2) to provide evidence that

some optimal configurations might not be as expected when analyzing the live power

consumption data; our test results show that the optimal configurations can be sparse,

inconsistent and in many cases counterintuitive, making automated optimization processes

hard to implement without analysis from actual data, and (3) to provide some useful test

results of FPGA cache configurations and to demonstrate that the optimal cache

configurations do exist in the selected CHStone benchmarks.

4.2 Background

In the existing literature on power/performance tradeoffs, proposed techniques

target improvements over the base system without using Pareto optimality. They often fail

to address the overall space of possible solutions without knowing whether their chosen

solution is optimal (where they are on the Pareto front). Much of the research is conducted

without the understanding of the power-performance interactions at the system level. As

stated in [43], observation of a lack of Pareto optimality is an alert to an opportunity to

improve the design that might be missed, especially when no single engineer understands

all the design dependencies. By applying the Pareto optimality principle with all possible

79

solutions for the development of an efficient energy-aware system, we come up with the

following hypothesis for the experiment:

 There exists a Pareto optimal curve on a solution space so that power and

performance can be traded off at different weights.

 If the curve is sparse, the development of the efficient energy-aware

system is difficult.

Based on our hypotheses, without a Pareto optimal analysis, it is hard to

demonstrate that an improved result is optimal. It is possible that the reported result might

in fact be suboptimal, far from a Pareto optimal curve. In that case, the work done could

be wasted as the solutions do not encompass all the necessary elements.

4.2.1 The FPGA Cache System

To study the cache parameters of an embedded system in our experiment, we select

an Atlys development board, a complete, ready-to-use digital circuit development platform

based on a Xilinx Spartan-6 LX45 FPGA [37]. All of the hardware platforms configured

for the experiments are based on Xilinx’s MicroBlaze, a FPGA soft processor core that

includes advanced architecture options like AXI or PLB interface, Memory Management

Unit (MMU), Floating-Point Unit (FPU), instruction and data cache among other

capabilities [46]. For MicroBlaze, the AXI System Cache soft-peripheral system used for

the study is viewed as a direct-mapped L2 Cache and is highly configurable. The available

cache configuration options in the Atlys board include cache size, cache line length,

number of stream buffers, number of victims and write-back storage policy (all options are

listed in Figure 16). Note that the MicroBlaze Cache configuration parameters are preset

80

with some default values and the data cache write-back storage policy is disabled by

default.

4.2.2 Pareto Optimality for a Typical Power-Performance Tradeoff

As an example of power-performance tradeoff analysis, the design process we

consider can be viewed as solving a bi-objective optimization problem, where we seek a

cache configuration that minimizes two objectives, namely the execution time of

applications in the system, and the power consumption of the system. Choices in

configuring the system are generated by varying multiple cache-related parameters. In

Pareto optimality, all objectives are treated equal. The “optimal” solutions found in a Pareto

analysis together form the Pareto set or the Pareto front [52]. Solutions in the Pareto set

reflect tradeoffs in the achievement of the different objectives. The selection of these

solutions is based on the concept of dominance—a solution is worse than another only if it

is so in all the objectives in the problem [36].

A scatter plot of the objective values corresponding to Pareto optimal

configurations (also called a Pareto curve) can give system designers and software

developers an overview of how power and performance interact in the system. It can help

them design optimization algorithms for an efficient energy-aware system that can handle

a wide variety of power-performance requirements. With these algorithms, an energy-

aware software system can have the ability to adapt its power consumption behavior at

different stages during program execution. For example, when the battery level in a system

is low, applications may be forced to run at a degraded performance level in order to induce

a lower power consumption rate. Algorithms could navigate possible choices on the Pareto

81

curve so that the performance of the applications is minimally affected even with reduced

power availability.

Figure 14. A Pareto Optimal Curve and Clusters for Typical Power-Performance

Tradeoffs

We generally categorize the power-performance requirements of a system into

three types—performance-favored, power-favored and balanced. The performance-

favored type is a system that demands fast execution time over power consumption, while

the power-favored type is a system that demands low power consumption over faster

execution time. The balanced type is sought in a software system where both power

consumption and performance are deemed equally important. Similarly, on a typical Pareto

optimal curve, we can categorize the solutions into three clusters—performance, balanced

and power (Figure 14). As can be seen in the figure, configurations in the power cluster

allow flexibility in adjusting the performance of the applications, with no significant impact

on the power consumption. While we hypothesize that a Pareto optimal curve will conform

to this typical picture, the existence (or non-existence) of one or more cluster types is a

82

characteristic of the application(s) under test. Further, a cluster may be dense, including a

large number of configurations to choose from, while another may be sparse, with a

significantly fewer number of choices.

4.3 Related Work

Most related work either does not include the Pareto optimality principle or

analyzes power data derived from power estimation models. For example, the research by

Sahin et al. [33] focuses on high-level strategies through an approach for mapping software

design to power consumption and exploring how high-level design decisions affect an

application’s energy usage. The results from this study show that applying design patterns

can both increase and decrease the amount of energy used by an application; and design

patterns within a category do not impact energy usage in similar ways. While this is just

one study, the results imply that it is unlikely that impacts on the energy usage can be

precisely estimated by only considering design-level artifacts. The research uses live power

data but focuses on reducing energy consumption based on different software designs and

does not address other non-functional properties, the tradeoff process, or include Pareto

optimal analysis which are likely to be important in general.

Another interesting project related to our work is GISMOE [41]. This project sets

out an alternative vision for a software development environment that can automatically

generate a set of candidate program implementations, called Pareto program surface, with

different non-functional attributes. At present, GISMOE is a proposed high-level

architecture and set of principal features of the development environment. Although their

concept is related to our research, unlike our study, their research is speculative rather than

83

based on empirical evidence. Their high-level abstractions of Pareto analysis might hide

some unexpected insights producing an inaccurate Pareto surface. Unlike the approach

proposed in GISMOE, we do not transform or change any of the benchmark program code.

We instead focus on the cache system as that has been shown to have an impact on both

the software performance and power consumption [48]. Although our manual process of

gathering these data is tedious, the analysis results from CHStone benchmark suite yield

useful information and provide a foundation toward efficient energy-aware systems and

GISMOE.

There is also research related to energy efficiency and power-performance tradeoffs

on the system cache [39, 45, 48]. However, the tradeoff techniques are either

hardware/software specific or require additional hardware or features built in. The analyses

are based on estimated power data using a power model of memory access. Their main

focus is for designing optimal cache architecture and developing energy-efficient cache

hardware, not for the whole system in general. In particular, the study in [45] is similar to

ours but its main objective is to design power efficient cache hardware systems. The study

also does not include Pareto optimality in their tradeoffs and their power data for the

analysis are based on power models.

4.4 Experiment

4.4.1 Experimental Setup

To perform our experiment, we developed a custom power monitoring and profiling

tool for the Xilinx Atlys FPGA board [37] using the APIs and drivers provided by the

manufacturer. The board is equipped with four on-board power-supply monitors with

84

accuracy within 1%. The tool also annotates power consumption data with time stamps at

a fine-grained resolution with an average of about one sample every two milliseconds. The

monitoring tool simultaneously records power data in real-time for all four power-supply

rails. In our experiments, we are primarily interested in the 1.2V and 1.8V rails which

correspond to CPU and memory operations.

Table 1. Number of Pareto Optimal Solutions and Negligible Ones by Benchmark

Program

Benchmark

Programs

Number of

Pareto optimal

solutions

Percentage of all

cache configurations

(out of 36)

Number of negligible

Pareto optimal

solutions

ADPCM 11 30.56% 2

GSM 5 13.89% 2

MOTION 3 8.33% 1

AES 9 25.00% 4

BLOWFISH 11 30.56% 0

SHA 8 22.22% 2

DFADD 4 11.11% 3

DFDIV 4 11.11% 1

DFMUL 3 8.33% 0

DFSIN 11 30.56% 1

MIPS 4 11.11% 1

Total 73 17

The experiment uses the CHStone benchmark suite version 1.6 as standard

workloads for creating power consumption profiles. The suite is designed for C-based high-

level synthesis, and is easy to use since the programs are self-contained and require no

external libraries [40]. The CHStone suite consists of 12 programs taken from widely-used

applications in the real world from various application domains—four arithmetic

85

programs, four media applications, three cryptography programs, and one processor. We

are able to compile and run 11 out of the 12 programs on the Atlys board (presented in

Table 1 and Figure 16). For each hardware system with different cache configurations, the

11 programs were executed and profiled.

4.4.2 Experimental Method

There are three main steps in conducting the experiment—implementing the

hardware platforms, profiling the software’s power and performance, and analyzing the

resulting data.

4.4.2.1 Implementing the Hardware Platforms

In the first step, we use the Xilinx EDK tool to design and implement each

individual hardware platform with different cache parameters for the experiments. The

system design and specifications of the hardware platforms are based on the Atlys Base

System specifications provided by the manufacturer [38]. The only non-default parameter

in each platform is the cache configuration parameter. The idea is not to build all hardware

platforms for every possible combination of cache configurations but to vary only the

controlled parameters from the base system, while leaving the other parameter values at

the defaults. The purpose is to see how the dependent variable impacts the power

consumption and performance of the base system. Based on the FPGA cache properties,

we implement 36 hardware platforms, each labeled with a code—for example, ICS-64B

for Instruction Cache Size of 64B (the rest of the parameters are set to the default values),

DCS-512KB for Data Cache Size of 512KB, DC-WB-VIC4 for Data Cache Write-Back

86

Storage Policy Enabled with 4 victims, DC-LL-4W for Data Cache Line Length of 4 words

(see Figure 16).

4.4.2.2 Software Power/Performance Profiling

The second step is to create a software project for each CHStone benchmark

program on each hardware platform using the Xilinx SDK. With the combination of all 36

hardware platforms and 11 benchmark programs, a total of 396 software projects are built

for the experiment. Since most of the benchmark programs are small and have short

execution time, we modify the main programs to execute each benchmark multiple times.

This provides for longer execution time so that the power monitoring tool can capture

enough power data for the calculations in the next step. Also, during the data collection, all

the print commands have been commented to minimize the CPU overhead caused by the

commands.

4.4.2.3 Analyzing the Result Data

Power/performance profile data collected from each benchmark execution contain

raw sample readings of power and execution times. The average power of each power rail

is calculated as the sum of all power readings divided by the number of samples read from

the start to the end of the program execution. The time of execution per iteration is

calculated by the total time of execution from start to end divided by the number of times

a benchmark was executed. For 396 projects, we have collected pairs of average power and

time of execution per iteration for each program execution. These values are used in the

Pareto optimal analysis of each benchmark described next.

87

4.5 Results and Discussion

With the data gathered we identify the set of Pareto optimal configurations for each

benchmark. Note that the difference in power/time values may be very small across certain

configurations; accordingly, some points may look identical on the plots. By using the K-

Means clustering algorithm [47], the Pareto front is divided into three clusters. These

clusters may not exactly signify the three cluster types as displayed in Figure 14; we

manually merged one or more clusters generated by the K-Means algorithm in order to

retain the underlying meaning of the three cluster types. A total of 11 such scatter plots are

produced, one for each benchmark program. Figure 15 shows plots and clusters for three

programs (ADPCM, AES and DFDIV) in the CHStone benchmark suite. The result data is

also translated into a profile table (Figure 16) to be used in the power-performance tradeoff

analysis.

4.5.1 Power-Performance Tradeoff Result

For each of the plots shown in Figure 15, the red dots (solid) represent the Pareto

optimal cache configurations, while the blue points (hollow) represent suboptimal cache

configurations. The groupings depict the three clusters—power, balanced and

performance. Across all 11 benchmarks, we summarize the experimental result as follows:

1) All graphs reveal promising Pareto optimal curves showing that the cache is a

good candidate for power-performance optimization in an efficient energy-

aware embedded system development.

88

2) The results reveal that only a small numbers of choices of cache

configurations (as low as 3 choices from the total of 36 cache configurations)

are optimal for power-performance tradeoffs (see Table 1).

3) The clusters show that a small set of configurations optimally satisfies all

three types of system requirements (performance-favored, power-favored and

balanced).

4.5.2 Optimal Cache Configuration Result

With some post-Pareto analysis, power/execution time data from the benchmarks

are put into a tradeoff profile table, as shown in Figure 16. This figure demonstrates how

tradeoff analysis result data can be displayed, providing the power/performance visibility

and initial guidelines for tradeoff purposes. Other information can be added depending on

the requirements and selection criteria. In Figure 16, in addition to the Pareto analysis

results, there are also data from using the K-Means and Normalized Distance to Ideal Point

[47] methods as the post-Pareto analysis for clustering the optimal points in the scatter

plots (e.g., Figure 15). As an example, our tradeoff profile table contains 36 rows

representing 36 cache configurations and 11 columns for 11 benchmark programs. The

table cells highlighted with red (darkest in grayscale) are the Pareto optimal cache

configurations. The green (gray in grayscale) and light gray cells are the 2nd and 3rd

iterations of Pareto analysis respectively. The second iteration of Pareto analysis is done

after removing the Pareto optimal configurations from the design space. The 3rd iteration

is done after removing the configurations found optimal in the 1st and 2nd iterations.

89

Figure 15. Examples of Pareto Optimal Cache Configurations and Clusters of Four

Programs in the CHStone Benchmark

Multiple iterations of Pareto analysis is useful when the power/performance data

exhibit low variability and points on the scatter plot are close together (as seen in Figure

15(a) inside the balanced cluster). Some configurations result in similar power-

0

2

4

6

8

10

12

14

16

18

1.05 1.1 1.15 1.2 1.25 1.3

P
e

rf
o

rm
an

ce
 (

ex
ec

u
ti

o
n

 t
im

e
p

er
 It

er
at

io
n

in

 m
ill

is
ec

o
n

d
s)

Average Power (watts)

ADPCM
Power Cluster

Balance Cluster

Performance Cluster

(a)

0

1

2

3

4

5

6

7

8

1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2 1.22

P
e

rf
o

rm
an

ce
 (

ex
ec

u
ti

o
n

 t
im

e
p

er

It
er

at
io

n
 in

 m
ill

is
ec

o
n

d
s)

Average Power (watts)

AES

(b)

Power Cluster

Balance Cluster

Performance Cluster

the five Pareto points in this group can be reduced in to one, the left-most one.

2.95

3

3.05

3.1

3.15

3.2

3.25

1.06 1.08 1.1 1.12 1.14 1.16 1.18

P
e

rf
o

rm
an

ce
(e

xe
cu

ti
o

n
 t

im
e

p
er

 it
er

at
io

n

in
 m

ill
is

ec
o

n
d

s)

Average Power (Watts)

DFDIV

(c)

Power Cluster

Balance Cluster

Performance Cluster

90

performance outputs—we found that some values are equal up to the 3rd decimal place.

The purpose of this analysis is to provide additional choices from the suboptimal solutions,

which might be meaningful to developers or system designers. It also provides a better

picture of how each cache property impacts power and performance on different

benchmarks.

4.5.3 Insight Summary

Based on our observations from the experimental results, we summarize our

insights as follows:

1) Only a few cache configurations are optimal for power-performance tradeoffs

All 11 benchmarks reveal only a small number of optimal (non-dominated) cache

configurations from a relatively large cache configuration space. For example, as

summarized in Table 1, the smallest number of optimal cache configurations are from the

MOTION and DFMUL benchmarks, with only 3 Pareto points from 36. These account for

about 8% of the cache configuration space that we evaluated and therefore the other 92%

could have been ignored or removed from the solution space. On average, the benchmark

programs produce 6.6 Pareto points or about 18% of the solution space. The number is

relatively small and more than 80% of solution space can be disregarded or avoided on

average. Smaller optimal choices can contribute to less complexity in the calculations of

an optimization algorithm. In this case, there are fewer options for the system to switch the

cache configuration parameters and adapt itself to its current state of power/performance

requirements.

91

2) Optimal cache configurations are sparse, inconsistent and sometimes

counterintuitive

The results are sparse and inconsistent because not all Pareto curves are in the

expected Pareto shape. As seen in the examples, Figure 15(a), 15(b) and 15(c), some

sections of the curves form vertical or horizontal lines. This means that by changing from

one optimal configuration to another on the Pareto curve, there is no significant

improvement on either power consumption or system performance. In this case, some

optimal solutions can be ignored and one solution on each section can be selected as the

representative optimal solution in the group. We call the ignored optimal solutions

“negligible” because, by definition, they are insignificant or unimportant as to be not worth

considering.

For example, in Figure 15(a) and 15(b) in the performance clusters, most of the

optimal cache configuration points are flat and form horizontal lines on the performance

axis (time of program execution). By changing from one optimal configuration to another,

there is not a significant gain in performance. Therefore, only one optimal solution should

be retained in this case, the one with the lowest power consumption (best solution in term

of power consumption), which is the left-most one in the cluster.

In Figure 16, all decimal numbers in the cells are the Normalized Distance to the

Ideal Point (0, 0) in normalized scatter plots—the modified version of scatter plots in

Figure 15 but with both scales of execution time and power axis normalized to the scale

from 0 -10 units. The ideal point (0, 0) signifies a system that can run a program at the

fastest speed (lowest execution time) and consume the lowest possible power, both ideally

92

zeroes. The bold, italic and underlined numbers indicate a Pareto optimal configuration

with the lowest normalized distance to the ideal point, among all optimal cache

configurations for the same benchmark program. For example, in the ADPCM column,

data cache with write-back policy enabled and number of victim 0 (row DC-WB-VIC0) is

one of the optimal cache configurations. In addition, the bold italic and underlined notation

CT(8.98525) implies that 8.98525 is also the lowest distance to the ideal point (0, 0) among

the 11 optimal choices (red or darkest cells in ADPCM column)—meaning that when

running program ADPCM on the system we just need to enable write back policy for the

data cache and set the number of victim of the cache to 0 to get the optimal power-

performance result.

In the red-highlighted cells (or darkest cells in grayscale), there are also the letters

CT, CB or CP. The letters indicate clusters in the scatter plots or categories of the Pareto

cache configurations. CT stands for performance cluster, CB for balance cluster and CP

for power cluster. This means that, for our selected example, DC-WB-VIC0 is an optimal

cache configuration categorized in the performance cluster (CT)—meaning that it is one of

the optimal choices suitable for running ADPCM benchmark program in a system state

where performance is more important than power, or execution time is more important than

the power consumption.

9
3

Figure 16. A Power-Performance Tradeoff Profile of the Pareto Analysis Result (CT = performance cluster, CB =

balance cluster and CP = power cluster; bold, italic and underlined numbers indicate the minimum normalized

distance to ideal point of a benchmark)

 94

By looking horizontally across all benchmarks in the power-performance tradeoff

profile (Figure 16) to count the number of the red (or darkest) cells, and the data in Table

2, we can additionally summarize the optimal cache configuration result related to cache

properties as follows:

(1) Data and instruction cache size, and write-back policy are the most influential

cache properties in the power-performance tradeoff analysis. They account for most of the

Pareto optimal configurations. In Figure 16, I-Cache, D-Cache size and D-Cache Write-

Back rows have the highest combined number of red cells or darkest cells across all

benchmark programs. Also in Table 2, the first three rows cover more than 95% of all

optimal configurations. This means that when trying to configure the cache parameters for

the optimal power/performance, we just look at these three cache properties as the main

starting points for power-performance optimization.

(2) Data and instruction cache with larger size (2K and above), line length,

instruction cache’s string buffer and number of victims did not contribute significantly in

the optimal achievement of a power-performance tradeoff. In Figure 16, rows of cache size

2K and larger and the last three cache configuration groups (line lengths, I-Cache string

buffer and I-Cache number of victim) of the table do not have as many red cells as the

previous three cache properties. Table 2 shows that the last three cache configuration

groups only cover 4.1% of the optimal cache configurations. It seems that they can be

ignored for most applications and are not the first candidate for power-performance

optimization. This is counterintuitive.

95

(3) Manipulating the write-back policy on the data cache is recommended for

performance-favored and balanced systems, while the instruction and data cache size are

recommended for power-favored and balanced interactions. In Figure 16 and Table 2, the

write-back policy row has the highest number of red cells with CT (performance cluster)

letters.

Table 2. Counts of First Iteration Pareto Points by Cache Property and Cluster

Power

Cluster (CP)

Performance

Cluster (CT)

Balance

Cluster (CB)
Total

I-Cache Size 20 3 8 31(42.5%)

D-Cache Size 1 7 16 24 (32.9%)

Write-Back Policy 1 9 5 15 (20.5%)

Line Length 0 2 0 2 (2.7%)

I-Cache String Buffers 0 1 0 1(1.4%)

I-Cache # of Victims 0 0 0 0 (0.00%)

Total 22 22 29 73 (100%)

(4) Smaller instruction cache size (smaller than 2K) is recommended for power-

favored optimization since this property produces the lowest power consumption with a

graceful degradation in performance. In Table 2, the instruction cache size row has the

highest number of optimal configurations categorized in power cluster (CP). Also, in

Figure 16, rows of I-Cache size from 64 to 2K bytes cover the majority of the optimal

cache configurations. While the I-Cache with larger size than 2K does not produce many

optimal cache configurations.

Similarly, in Figure 15(b), the five optimal configurations in the performance

cluster can be collapsed into one optimal solution; the other four can be ignored because

96

they do not create any significant performance improvement. In Figure 15(c) inside the

power cluster, the two cache configurations on the DFDIV plot graph form a straight

vertical line on the power axis. There is one additional negligible Pareto point (the top one)

that can also be removed from the optimal cache configurations. All negligible Pareto

points in the benchmark programs are presented in Table 1.

Our analysis also reveals unexpected insights from these irregular Pareto shapes

and the negligible cache configurations. One most obvious result is revealed by AES

benchmark in Figure 15(b) inside the performance cluster. Four out of the five optimal

cache configurations inside the cluster are related to data cache write-back policy with

different number of victims (0, 2, 4 and 8). A victim is a cache line that is evicted from the

cache. If no victims are saved, all evicted lines must be read from memory again, when

they are needed. Conventional wisdom states that by saving the most recent lines data can

be fetched much faster, thus improving performance [46]. However, for this particular AES

benchmark, our result clearly shows that not all victim policies contribute to significant

improvement in performance. This evidence indicates that the conventional wisdom is not

always accurate.

Additionally, in Figure 15(c), the example is not so obvious but there is a small

evidence of counterintuitive insight. In the power cluster, the two optimal cache

configurations are related to instruction cache size—64B and 256B respectively. In this

case, changing from one I-Cache size to another does not yield significantly different

power consumption. This is somewhat unexpected and contradicts studies relating cache

size and system power consumption. For example, a study in [45] states that “increasing

97

cache line sizes tends to consume more energy” and, for I-Cache size less than 4K, the

smaller size tends to consume more power.

3) There exists cache configurations with certain properties that do not produce

any Pareto optimal points

In our cache solution space, we found that cache configurations related to I-Cache

victims (the last row in Figure 16 and Table 2) do not produce any Pareto points. Also,

cache configurations with I-Cache string buffer and D-Cache/I-Cache line length do not

produce a significant number of Pareto points (second and third from the last row in Figure

16 and Table 2). These cache properties are therefore not candidates for power-

performance optimization and can be ignored completely. Our rankings in Table 2 and

colored cells in Figure 16 can help us identify the “hot spots”, the best candidates for

power-performance optimization and the areas having less impact on the system’s

performance and power consumption. From our case study, the hot spots for cache

configurations are the top three in Table 2, in which they produce the most red cells in

Figure 16. The table also shows that up to 50% of the total effort put into the cache based

optimization can be cut (last 3 out of six cache properties in the table).

4) There exists at least one cache configuration that can fulfill each of the typical

power-performance tradeoff requirements

As already mentioned, our analysis shows that there exist optimal cache

configurations that can fulfil the three types of system requirements for a typical power-

performance tradeoff—power-favored, performance-favored and balanced. As shown in

Figure 15 and summarized in Table 2, the Pareto points can be clustered into performance,

98

power and balance clusters using the K-Means algorithm, the same way as the typical

Pareto Optimal curve and clusters in Figure 14. For power-favored, performance-favored

and balanced requirements, our results recommend the cache configurations related to

instruction cache size (I-Cache Size), data cache size (D-Cache Size) and Write-Back

policy respectively.

4.5.4 Threats to Validity

There are several validity threats to the design of this study. For threats to internal

validity, our study is limited to the configurable cache system of the FPGA embedded

system, one aspect of the energy-aware system. There are also other areas at different

system layers having impact on the system power consumption and execution times. The

cache configuration results might be different if configured differently along with other

system parameters. In extending this work, we should also include other areas or

combinations of different areas and parameters to obtain a broader coverage on the power-

performance tradeoffs. Also, the configurable cache systems are only based on the

configurable setting and property values available in the Atlys FPGA. For other embedded

systems, there might be different tunable cache configurations.

For each hardware construction, we only change a single cache parameter value at

a time while leaving the others the default values. Therefore, the power consumption and

execution values are only based on the default cache configuration as provided by the

manufacturer. This does not cover all combinations of available cache configurations. For

more complete results, more hardware platforms can be built with other combinations of

the available cache setting values. Also, the power consumption data of the system are only

99

of the CPU and Memory. There are two other power monitor rails of Video/Audio and

Ethernet ports that have been ignored.

During the data collection process, because we have 396 software projects to

execute, we only execute each benchmark on each hardware platform three times. Also,

each benchmark program is set to execute multiple iterations for each run to make sure

each benchmark executes in about 10 seconds. Therefore, the measured numbers can

contain some overhead from these loops that control the executions. If we increase the

number of executions, the data would be more accurate. Also, the Pareto analysis result

will be more accurate if conducted on a larger solution space. Our solution space may not

be large enough. The front of our Pareto optimal values is therefore considered an

approximation of the “true” front. Further runs of the system with more cache

configurations may improve the front approximation. Our selection of using Pareto

optimality and the post-Pareto methods for the analysis is for demonstration purposes only.

There are many other methods that can also be used to solve the power-performance

tradeoff problems.

For threats to external validity, we try to generalize the result of our study to all

software application domains. We select the CHStone benchmark suite because it covers

multiple domains of real-world software applications—media, cryptography, arithmetic

and processor. However, the processor domain only contains one benchmark which might

not have enough coverage. And, the generalizability of the result is only for these four

software domains. There is also a risk that the result might not reflect all domains of

100

complex software applications, since all the benchmarks are small programs and specially

designed for embedded systems.

4.6 Conclusion

As a case study, our research demonstrates a detailed power-performance

optimization process that can be used in developing efficient energy-aware systems.

Because the process is tedious, it is crucial that developers and researchers understand the

manual process and are aware that unexpected insights discovery is important and not easy

to do in real systems. In the process, we also gather some basic background of how we can

use Pareto optimality in power-performance tradeoffs; how power-performance

requirements and the optimal solutions can be categorized; and how the data are collected,

analyzed and used. Along with this, we provide some useful test results of FPGA cache

configurations and demonstrate that the Pareto optimal cache configurations do exist in the

CHStone benchmarks.

Our results suggest that some optimal configurations might not be as expected when

analyzing the live power consumption data. We observe that the optimal configurations are

sparse in the cache design space, are inconsistent across the benchmark and

counterintuitive in many cases, making power-performance optimization processes hard to

implement without analysis from actual data. Our results also show that even something

very low-level like the cache system (that might not be captured in a power model) can

impact the power-performance analysis significantly and unpredictably. These results

motivate the need for tools and methodologies that operate directly on data gathered from

the systems themselves.

 101

CHAPTER 5: GREEN DATA STRUCTURE DESIGN

From this chapter forward, it is our main study of the dissertation. In this chapter,

we provide in-depth details about our green data structure design approach and some of the

background knowledge of our second case study.

5.1 Interface-Based Data Structure

In object-oriented programming, one common way to reduce complexity and

increase maintainability, reusability and flexibility of software systems is by using

interface-based design [6]. Many modern programming languages, such as Java, C#,

SmallTalk and C++, implement their dynamic data structure class libraries using interface-

based design where there are multiple choices of data structures with different

implementations [8]—e.g. array-based, linked-list-based, hash-based and tree-based [7].

Dynamic data structures are useful for managing internal data in algorithms of software

application (creating, retrieving, updating and deleting data, for example) with the

flexibility to grow or shrink memory requirements based on the number of elements in the

structure. Different implementations of the data structures have been shown to have

different impact on the performance and memory consumption of software applications [8,

9]. Each is designed differently and is intended for different workloads and usage. Thus, it

is possible that by putting the right data structure with the right workload, performance and

energy consumption of software applications can be improved.

102

We select the C5 generic collection (version 2.3) for this study because it contains

interface-based dynamic data structures and is created using a “code-to-interface”

implementation [9]. It is a comprehensive, open-source C# data structure library for the

.NET framework and Mono1, with solid documentation. C5 also provides a full

complement of well-known abstractions such as lists, sets, bags, dictionaries, priority

queues, queues and stacks. For the case study, we explore how the choice of data structure

impacts the energy consumption of software applications and what are the energy saving

opportunities among these data structures. The predictive model, our proposed architecture

and the GreenC5 prototype for building adaptive green data structures in this case study

are also based on the C5 collection.

5.2 Data Structure Features

In order to create the predictive model for use in the dynamic selection and

switching processes, our study looks at data structure features that can impact performance

and limit the selection choice. Based on a data structure book by King [7], there are several

features that influence the performance of dynamic data structures: number of existing

elements or size, types and frequency of data structure operations. There are also features

that can limit the selection choice: interface and data structure properties such as bag and

set semantics. For a program or algorithm that requires data structures with a sort method,

the choice can only be made on some data structure classes that implement the interface

with a sort method, limiting the number of applicable data structures. Moreover, if a

1 Mono is a software platform designed to allow developers to easily create cross platform applications.

103

requirement is to allow or not allow duplication of data elements, the data structures with

bag or set semantic properties can also limit the selection.

Table 3. The Selected Data Structure Features

Features that can impact the performance

of data structures

Features that can limit the choice

of data structures

Number of elements in the data structure at

the time of an operation (N)
Interface

Frequency of data structure operations Bag/set semantics

Table 3 shows the selected data structure features in this study. For the features that

impact the performance, we select number of elements in the data structure at the time of

an operation (labeled as N), and frequency of insertion, deletion, query and update

operations. We focus on the four operations because they are fundamental to a data

structure. Many other operations, such as the sort operation, can be made up from

combining these common operations together [7]. For features that limit the selection

choice, we select interface, bag and set properties of dynamic data structures.

We also select only those C5 dynamic data structures that implement the

ICollection interface in the C5 interface hierarchy (Figure 17). ICollection implements the

four common data structure operations. Under this interface, we select 9 (out of 12)

dynamic data structures, as listed in Figure 18, grouped by interface, set and bag semantics.

We call them data structure groups, and denote them by G. Based on the selected features,

there are 6 data structure groups: ICollection, ICollectionBag, ICollectionSet, IList,

IListBag, and IListSet. For example, in the ICollectionBag group, there are four dynamic

data structures that implement the ICollection interface and have bag semantic property.

Similarly, there are two and three selection choices in the IListBag and IListSet groups,

104

respectively. The groupings demonstrate how selection choices can be different and vary

based on application requirements. Our predictive model for energy efficiency also makes

predictive data structure selection within each of these data structure groups. The

WrappedArray under the ICollection interface is not included in the study because it is not

a dynamic data structure.

Figure 17. The C5 Collection Classes and Interfaces (from [9]). Solid Lines Indicate a Sub-

Interface Relation, and Dashed Lines Indicate an Implementation Relation.

We also map the four selected data structure operations to the Create, Retrieve,

Update and Delete operations (also known as CRUD operations), the four basic functions

of persistent storage and database-driven applications [10]. We consider insertion and

addition of elements as the same operation, analogous to the create operation. We use

percentage numbers, instead of counts, as the frequency of CRUD operations. These

105

numbers are labeled as %C, %R, %U, and %D respectively. Since non-CRUD operations

are ignored, these numbers always add up to 100. These numbers reflect the workload that

a data structure is subjected to. Altogether, the group G, the size N, %C, %R, %U and %D

are combined as input features to our model, and are the independent variables of our

training and validation datasets.

Figure 18. C5 Data Structure Groups by Interface and Set/Bag Semantics

5.3 Green Data Structure Architecture

The sought GreenC5 is an example of an adaptive green data structure. Figure 19

displays the high-level components of our proposed GreenC5. It is an enhanced version of

the C5 Generic Collection that wraps the 9 data structures into one, and adds the Green

component to make it smart and energy-aware. There are two main components in our

proposed adaptive green data structure—the CRUD-based C5 Collection and the Green

component. The first component is a wrapper/factory class of the 9 C5 data structures. It

contains the public interface of the C5 data structures and has the ability to transform itself

to different implementations at runtime, as directed by the Decision Maker of the Green

component.

106

Figure 19. A Component Architecture of the GreenC5 Data Structure

 The second component, the Green component, is composed of four main sub-

components—Event Listener and X-Value Translator, Classifier, Predictor, and Decision

Maker. These sub-components add the ability for the C5 Collection to learn workloads,

classify, predict energy efficient C5 data structures, and make decisions based on the

current workload, environment and requirements. The Event Listener and X-Value

Translator component acts as a utility component for observing activities, operation

execution and states of the CRUD-based C5 Collection component, and translating them

into meaningful feature values for the Classifier. The Classifier acts as a virtual energy

measurement tool inside the green object. It guesses the most-likely energy efficient C5

data structure for an observed sequence of operations, based on prior knowledge gained

during training. Therefore, the output from the Classifier component is a sequence of data

structures per instance of the data structure being executed in a program. This sequence is

input to the Predictor component to learn (in real time) and predict the next data structure

most likely to appear in the sequence. The Decision Maker then uses this prediction to

analyze, decide and instruct the CRUD-based Collection when to switch to the new data

107

structure implementation. The Decision Maker component will be explained in more detail

in Chapter 7.

 Figure 20 displays a complete process of the GreenC5 data structure, depicting

how the green data structure is trained and how it operates at runtime. The complete

workflow in the figure can be summarized into the following sections and sub-sections:

1. A Priori Energy Model Generation—a one-time process for producing

knowledge for the Classifier.

a) Energy Profiling—for collecting energy data and creating a training

dataset for the Classifier and all ground truths for model validations in

the experiment.

b) Offline Supervised Learning—for training and validating the

Classifier.

2. Per-Instance Green Data Structure—for tracking how each instance of an

adaptive green data structure works at runtime.

The final output from the left half of Figure 20 is a priori knowledge to be

embedded in the Classifier of the GreenC5. We use an Artificial Neural Network (ANN)

as the Classifier. Therefore, this knowledge contains weights and biases for the ANN

edges, along with other values for data normalization, encoding and decoding purposes. In

the right half, it is a per-instance GreenC5 data structure. As proposed in our previously

paper [27], the CRUD-based C5 Collection and Green components no longer need to run

in separate threads. In this implementation, it is simpler to have them run sequentially in

the same

1
0
8

 Figure 20. Adaptive GreenC5 Data Structure Process

109

thread. This is also to avoid adding complex code to handle data structure concurrent issue

when they run asynchronously in separate threads. Most importantly, the performance

penalty and overhead from running the code sequentially in the same thread is much lower

than anticipated.

When a CRUD operation is performed on a GreenC5 data structure instance, the

Green component continuously tracks and counts the operations, and observes other data

structure states such as the interface and set/bag semantics (collectively the data structure

group G), and the current number of elements in the data structure (N). The Green

component sees a sequence of CRUD operations as the data structure’s workload. During

execution, an instance of the data structure in the program can be alive for a period of time

and sometimes indefinitely if a program is always on and running. As a result, the Green

component can observe a long sequence of data structure operations. In the figure, this long

sequence is divided into subsequences, S0, S1, S2, ..., each of length L. Together with the

other observed information (G and N), each subsequence S is then input to the X-Value

Translator to be translated into a meaningful feature vector for the Classifier. This feature

vector is in the <G,N,%C,%R,%U,%D> format. The ANN-based Classifier maps this

feature vector to a data structure DS, and outputs it. Recall that DS is one of the 9 data

structures depicted in Figure 18–ArrayList, LinkedList, HashBag, TreeBag,

HashedArrayList, HashedLinkedList, SortedArray, HashSet, and TreeSet. Hence, for

every subsequence Si, the Classifier outputs a data structure DSi, effectively producing a

sequence DS0, DS1, DS2,..., of data structures. This sequence is fed to the Predictor in real

time, where it is used for online learning and prediction of the next data structure that is

110

likely to appear in the sequence. The predicted data structure is input to the Decision Maker

to be used for decision making to instruct the CRUD-based C5 Collection to switch if

needed.

Note that we do not directly use the features (G, N and percentage of CRUD

operations) to perform prediction of the data structure to use for the next L operations.

Instead, we make a best guess for the data structure that would have been the most energy-

efficient, and use the guesses as input in the prediction. This method allows us to discard

feature vectors once they are processed, and also reduces the dimensionality of the input

space for the prediction. Further, training a model that uses a history of feature vectors for

prediction is not straightforward, and can easily become prone to issues related to biased

sampling in the training set.

5.4 Energy Profiling

The energy profiling step is crucial to produce a dataset for training the Classifier

and create ground truths for model validations. To get the most accurate model for the

Classifier, in this experiment, we avoid using any model-based power meter for the energy

profiling. As described in our power-performance tradeoff paper [3], model-based meters

might not represent the full complexity of the system being analyzed and might introduce

errors. Instead, all datasets in this experiment are created and validated using a Watts Up?

Pro [16], a plug load power meter. The power meter can measure power consumption data

at about 1 sample/second. It is a cost effective tool that can produce accurate power

consumption data of computer systems. For this study, we have developed an energy

profiler to read power data by sending a command to the device via a USB port. As part of

111

the GreenC5 development and overall evaluation process, we conduct the profiling on a

HP PC, with Intel Core i7 and 64-bit Windows 8.1 Pro (labeled as COMP1 in the

experiment). The active power consumption of the base PC ranges from about 35 to 100

watts.

Figure 21. Energy Profiling Algorithm

In the energy profiling process, energy consumption data are collected for creating

the datasets of the Classifier. The exact process is detailed in energy profiling algorithm in

Figure 21. For each of the 9 C5 data structures, the instance is first filled with N elements.

Then the operations corresponding to each workload (%C, %R, %U and %D) are

performed on the data structure instance. The data structure is profiled for energy

consumption while performing the CRUD operations. During the energy profiling

operations, a WattsUpPro instance runs asynchronously and a power reading event is raised

L := 10000
start WattsUpPro asynchronously
for each N do
 for each C5DataStructure do
 for each Workload := {%C, %R, %U, %D} do
 while PowerReadCount < = 5 do
 create an instance of C5DataStructure
 fill instance with N elements
 start Timer and capturing of power data samples
 perform C operation (%C×L) times
 perform R operation (%R×L) times
 perform U operation (%U×L) times
 perform D operation (%D×L) times
 stop Timer
 end while
 save average power/execution time data to a file
 end for
 end for
end for
stop WattsUpPro

112

every second. The loops in the pseudo-code are controlled by the WattsUpPro instance.

The inner loop breaks after the power read count reaches 5, i.e. five power values are

collected. We ignore the first read sample to reduce noise due to potential delays of the

USB port. The average power consumption data and execution times are measured and

recorded to a file. The data are then analyzed to determine the most energy-efficient data

structure (called the Y value) for each feature value set explored in the profiling. The Y

values, together with the X values (independent variables), become a ground truth dataset.

There are a total of 21 datasets created by this process—one training dataset, one

validation dataset, and 19 program validation datasets. The training and validation datasets

contain 37,098 and 7,392 observations, respectively. The training and validation datasets

uniformly explore the space of possible X values. The 19 program validation datasets are

from 10 simulated programs and 9 real-world programs. The 10 simulated programs

execute a random CRUD sequence of 400K size. Each CRUD sequence is equally divided

into 40 10K-size subsequences. The 10-K size (also in Figure 21, the initial value of L) is

selected because it is an appropriate number for our energy profiler to capture power

consumption data. Note that the CRUD percentage numbers of these programs may not

exist in the training dataset. The number of elements N of each subsequence is calculated

based on the prior CRUD operations. Each simulated-program validation dataset contains

40 observations.

The program validation datasets of the 9 real-world programs are created from the

actual CRUD operations generated by 3 real-world, open-source C# programs—A* Path

Finder [17], Huffman Encoder [18] and Genetic Algorithm [19]. Each real-world program

113

contains at least one .NET data structure. In generating the CRUD sequences of the real-

world programs, we replace the original data structures with an enhanced one that can trace

and map the add, insert, access, delete and update operations to CRUD operations. The

length of the generated CRUD sequences ranges from 120,000 to 1.52 million. Like the

simulated programs, each such CRUD sequence is divided into 10K-size subsequences and

translated into program validation datasets. The last subsequence with length less than 10K

operations is ignored.

In the energy profiling process, the CRUD operations are mapped to add, find

update and remove operations in the C5 data structures. In this experiment, we assume that

all data structure elements are unindexed. Therefore, they are accessed by using element

objects instead of indexes or keys. Also, to get the upper bound energy consumption data,

the operations here are controlled so that the added element is always added to the last

index. Similarly, the find and update operations always search for the last element in the

dynamic data structure. However, for the remove operation, the first element is always

removed. For query-related operations, all positive queries are to be performed, meaning

that the accessed data element always exist in the data structure. According to King [7] and

Kokholm and Sestoft [9], these operations normally result in the worst performance for

dynamic data structures. It normally takes more time to search for last element than the

first one in a data structure. Also, it normally takes more time to remove the first element

than the last one. When the first item is removed, all other remaining items in most data

structures are automatically moved up (the data structure is dynamically shrunk in size).

114

5.5 Energy Saving Opportunity

As a feasibility study, the energy data collected for creating the training dataset are

further analyzed to see how the Y values, the most energy-efficient C5 data structures, are

distributed in the training dataset and how much energy saving opportunity there is among

the C5 data structures. The pie chart in Figure 22 is the analysis result displaying the

distribution of the most energy-efficient C5 data structures in the 37,098 observations of

the training dataset. As we can see, HashSet is the most preferable energy-efficient C5 data

structure, and covers 31.44% of the training dataset. Overall, all 9 data structures are well

represented in the training dataset.

Figure 22. Distribution of Most Energy-Efficient C5 Data Structures in the Training

Dataset

For more detail, Figure 23 displays an energy efficiency ranking table of the data

structures by group. The higher percentage values indicate the more preferable energy

efficient data structure in each group. For example, in row 5, the IListBag group has two

choices of applicable data structures: LinkedList and ArrayList. ArrayList is more

115

preferable and should more likely be selected since it covers 63% of the workloads, while

LinkedList only covers 37%. The last row of the ranking table is what is represented in the

pie chart in Figure 22. This table can be used as a guide to select an energy-efficient data

structure within a given data structure group. One main capability of the adaptive data

structure that we seek is the automatic selection of the most energy-efficient C5 data

structures without using this ranking table.

Figure 23. Distribution and Ranking Table of Most Energy-Efficient C5 Data Structures

by Data Structure Group

The potential energy savings are calculated using actual energy consumption data

(in Joules) of each workload (observation). These numbers are of the C5 data structures

that can be used to estimate and compare with the potential energy savings of our GreenC5.

For each observation in the training dataset, we calculate the energy difference between

the most energy-efficient and the least energy-efficient data structures, ignoring the ones

in between:

Potential energy savings =

energy consumption of the worst data structure choice – energy

consumption of the best data structure choice in each data structure group

116

The percentage difference tells us how much energy can be saved by selecting the

best data structure, compared to the worst one. This analysis (based on the data points in

the training dataset) shows that, overall, the median of potential energy saving about

94.24%. By data structure group, in Figure 24, the IListBag group produces the smallest

energy saving opportunity of about 16.97%. This implies that if our requirement is to select

only C5 data structures in the IListBag group (only two choices, ArrayList and LinkedList),

the potential energy saving by selecting the right data structure is estimated at about

16.97%. In contrast, the largest potential energy saving is revealed by data structures in the

ICollection group, at about 97.50%.

Figure 24. Potential Energy Savings of C5 Data Structures by Data Structure Group

5.6 Related Work

There are several studies related to our research. A closely related study is the Smart

Data Structures project conducted by Eastep et al. [11]. Their research is aimed at creating

a new class of parallel data structures that leverage online machine learning to adapt

automatically. However, the approach has many differences with our study. First, the

117

objective there is to create a new set of data structures for parallel computing, while we

attempt to apply adaptation techniques to select and transform the right data structure for

the right workload from existing object-oriented data structures, mainly for energy

efficiency. As such, the smart data structures [11] concentrate on using online learning and

self-adaptation techniques to improve speed in order to gain the energy savings. The main

technique is self-tuning of internal algorithms by changing parameters to get good

performance. Instead, the knowledge for adaptation and online/offline learning of our

models is based on actual energy consumption data of computer systems and done using

statistical machine learning techniques.

In another related study, Daylight et al. introduce systematic, high-level, data

structure transformations in the context of memory-efficient and low-power, embedded

software design for dynamic multimedia applications [12]. Instead of using predictive

models, the decision-making for the transformation is performed based on a Pareto tradeoff

analysis between the data accesses and memory footprints. The speed and power

consumption improvements are the gains from the decision results. The adaptation

approach and methodology rearranges internal data structures for better memory footprint

and data accesses. The power consumption data for the analysis are derived from a memory

chip model, while our models are based on the energy consumption data measured by a

power meter.

Our training and validation datasets are created from a custom energy profiler using

a power meter to measure power consumption at the system level. However, modern

processors have started embedding power measurement components in their design (e.g.

118

Intel Power Gadget [23]) that can potentially be used to estimate processor power

consumption of software applications at a finer granularity. At the end of this dissertation,

we also include an initial exploration of this avenue, primarily to search for an alternative,

more practical power meter that can provide real-time energy information to the adaptive

green data structure for online learning.

There are also other studies related to software adaptations for performance and/or

energy efficiency. For example, the study by Flinn and Satyanarayanan [13] extends the

Odyssey platform to guide mobile applications to adapt for battery life. By monitoring

energy supply and demand, the platform is able to select the correct tradeoff between

energy conservation and application quality. Also, research on dynamic adaptive data

structures for monitoring data streams focuses on changing a specific data structure

representation for accuracy, speed of response and memory requirements [14]. And lastly,

the study by Ansel [15] presents a method for auto-tuning programs with algorithmic

choice. The main differences with our research are that these research projects either use

different adaptation or learning techniques, or are not data structure related.

119

CHAPTER 6: PREDICTING DATA STRUCTURES FOR ENERGY EFFICIENT

COMPUTING

This chapter discusses in more detail our implementation of the two predictive

components of the adaptive green data structure, the Classifier and the Predictor, along

with some prediction accuracy and validation results. The implementations represent

possible machine learning based solutions to the two problems highlighted in our adaptive

green data structures approach—classification and sequence prediction problems. We

choose to solve the problems and implement the Classifier and Predictor with artificial

neural network (ANN) and n-gram, respectively.

6.1 Classifier

The problem of identifying the data structure to which a new feature vector maps

to is a classification problem. We choose to solve the problem by implementing the

Classifier component with an ANN. Our C# implementation of the network is based on a

book by James D. McCaffrey [20]. As shown in Figure 25, our hand-tuned ANN consists

of 10 input, 15 hidden, and 9 output nodes. Among the 10 input nodes, there are five nodes

for the data structure group, G; one node for N; and the other four for %C, %R, %U and

%D. The feature G is encoded into 5 input nodes using the 1-of-(c-1) effects encoding

method, where c is the number of data structure groups. The 9 output nodes are derived

from encoding the 9 C5 data structures using the dummy encoding method. The 15 hidden

120

nodes are the result of hand tuning that produced the highest accuracy results. The

activation functions in this implementation include the hyperbolic tangent function on the

input-to-hidden nodes and the SoftMax function for hidden-to-output nodes.

Figure 25. Our Hand-Tuned Artificial Neural Network Classifier

Offline supervised learning is used for training the Classifier. The incremental

backpropagation method is the training algorithm in our implementation. The result from

the training is an a priori energy model that consists of 309 weights and biases, the

knowledge for the classification model (included in one of the appendices). The numbers

are hardcoded in the GreenC5 data structure to be used at runtime, along with means,

standard deviation values, and X and Y dictionaries—the means and standard deviation

121

values are used for X-value data normalization, and the X and Y dictionaries are used for

translating encoded numeric values to/from the data structure group and C5 data structures

respectively. The other default parameter values are also derived from the hand-tuning

process—maximum epochs = 3000, learning rate = 0.02, momentum = 0.01 and stop error

= 0.04. The classification method used in the implementation is the multi-layer feed-

forward method. More detail and definitions of the terminology can be found in the James’

book [20].

6.2 Predictor

The purpose of the Predictor is to add the ability to predict the next most-likely

energy efficient data structure in the already seen data structure sequence produced by the

Classifier. This is a sequence prediction problem. We solve the problem with a well-known

probabilistic language model, the n-gram model [22]. This model is used for predicting the

next item in a sequence in the form of a (n-1)-order Markov process. Our C#

implementation of the n-gram Predictor is based on the string matching pseudo code found

in the book by Ian Millington [22].

Our n-gram Predictor component uses incremental online learning to infer the

distribution of data structures conditioned on observed data structure sequences, and make

online predictions based on this distribution. The n-gram sequences used for learning come

from the Classifier’s output. The prediction is continuously made once an n-gram is

registered. The output will be “Unknown” if there is not enough knowledge for the

prediction, and is considered a misprediction. For example, Figure 26 shows the process of

the incremental online learning and prediction of a trigram-based predictor. There are two

122

main methods of the Predictor component that perform the two functions, registerSequence

and predictNext. Sequences of C5 data structures produced by the Classifier component

are used to register to the Predictor for incremental online learning—every last seen n data

structure sequence is input to the registerSequence method.

Figure 26. Incremental Online Learning and Prediction Process of a Trigram-Based

Predictor

From the figure, every last three data structures, {DS0, DS1, DS2}, {DS1, DS2, DS3},

{DS2, DS3, DS4} and so on, are incrementally registered to the trigram predictor. After

each registration, a prediction is made based on the last n-1 registered items (last two items

for a trigram or last one item for a bigram). In this example, the predictions are made based

on items {DS1, DS2}, {DS2, DS3}, {DS3, DS4} and so on, respectively. For the incremental

online learning, the more data structure sequences are registered to the trigram, the more

123

knowledge and the better prediction of the Predictor. The final outcome of each program

execution is a sequence of predicted most energy-efficient data structures, to be compared

with the ground truths. We validate and test the accuracy of the model with the 19

validation programs.

6.3 Evaluation Results

6.3.1 Classification Results

To reduce bias and over fitting, we use a 10-fold cross validation method [21] to

train the Classifier. The original training dataset is randomly partitioned into ten equal size

subsamples. A single subsample, 10% of the training dataset, is retained as the test data,

and the remaining 90% is used as the training data. This process is repeated 10 times, with

each of the 10 subsamples used exactly once as the test data. The average accuracy result

from all 10 subsamples is observed to be 95.80%. The most accurate model for

classification is selected as the final a priori model to be used in the Classifier. This model

is also tested with other remaining unseen datasets, the 20 remaining datasets (one

validation dataset and 19 program validation datasets). We also test the accuracy with the

training dataset to see how the Classifier performs on the already seen data. The accuracy

result on the training dataset is 96.01%. The accuracy on the validation dataset is 82.40%,

and averages 76.52% on the 19 programs (ranges from 59.71% to 99.25% accuracy). The

numbers show that the neural network Classifier is adequately accurate.

6.3.2 Prediction Result

To test the n-gram Predictor, both the Classifier and Predictor components are used.

CRUD operation sequences of the 19 programs are input to the Classifier to produce data

124

structure sequences for the Predictor to learn and predict. Each program is set to run in

loops for multiple iterations simulating that real-world programs/algorithms can be

executed repeatedly multiple times. The graphs in Figure 27(a) display prediction accuracy

results of a trigram predictor from running 4 of the 19 simulated and real-word programs.

The y-axis of the graphs represents the accuracy in percentage and the x-axis shows the

first four iterations of the looped execution of a program. The accuracy numbers indicate

how many data structures in each predicted sequence match with the corresponding ground

truth. The graphs display the accuracy results by data structure group as indicated by the

graph legend at the top of the figure. As we can see, the predictions on C5 data structures

in ICollection, ICollectionBag and ICollectionSet are more accurate than that of ones in

IList, IListBag and IListSet. However, there are some programs, such as the simulated

program #2 and Huffman Encoder, for which the trigram Predictor produces very accurate

predictions for all groups.

We also notice some low accuracy in the IList and IListSet groups when executing

the A* Path Finder programs. After further investigation, we found that the inaccuracy is

due to the limited size of the training dataset, and the uniform coverage therein. As a result,

the workloads represented in the training dataset do not adequately sample those produced

by these particular programs. We validate this by also training the Classifier with two of

the five A* Path Finder programs, and then testing the Predictor with the other three

remaining programs. The accuracy of the test programs in these data structure groups

improves significantly, to more than 90%. Therefore, to improve the accuracy of the

Predictor, it is crucial that the Classifier is trained with either more granular data points, or

125

with a data set that contains data points that are representative of the programs expected to

execute in the system.

(a)

(b)

Figure 27. Prediction Accuracy Results: (a) Accuracy Results by Program using a Trigram

Predictor and (b) Averaged Accuracy Results of All 19 Programs using Bigram and

Trigram Predictors

We also conduct some misprediction analysis. One interesting result revealed in the

mispredictions of a bigram Predictor is that, even if the prediction is incorrect, the energy

savings from the mispredicted data structure is still more than 56%, compared to the worst

data structure choice. Therefore, absolute accuracy is not always necessary to gain

126

advantages from the approach, especially when data structure choices are made in an

uninformed manner.

Overall prediction accuracy results are displayed in the graphs in Figure 27(b). The

graphs display average prediction accuracy of the bigram and trigram predictors when

executing all 19 programs. For each data structure group, while incremental online learning

is in progress, the accuracies of the two predictors are increasing in every iteration of

program execution, and start to converge at iteration 4. The values stay unchanged after

iteration 4, implying a steady state in the underlying model. Overall, the prediction for data

structures in the ICollectionBag group gives the highest accuracy, converging at about

98%. On the other hand, ones in the IList and IListSet groups give the lowest prediction

accuracy, primarily due to the poor performance in the A* program. For the top 4 interface

groups (ICollection, ICollectionBag, ICollectionSet and IListBag), the average accuracy

converges above 70%. Since the performance is not significantly different, a bigram

Predictor should be sufficient. A bigram Predictor will predict the next energy efficient

data structure by only looking at the current data structure in the sequence. According to

Mandery [127], one of the limitations of n-grams is that as number of n grows, the memory

requirements grow rapidly due to dimensionality. A lower n number is better and makes

the Predictor component lightweight. With this reason, along with the adequate prediction

accuracy, a bigram-based predictor is used in the implementation of our GreenC5 data

structure.

127

CHAPTER 7: GREEN DATA STRUCTURE IMPLEMENTATION

This chapter discusses in more detail the implementation of our adaptive green data

structure prototype, the GreenC5. The implementation represents a possible machine

learning based data structure of an adaptive green data structure. In addition to the

Classifier and Predictor, this chapter focuses more on the remaining implementations of

the Green component, the Decision Maker and the data structure transformation and

switching process.

7.1 GreenC5 Architecture

The GreenC5 is an enhanced version of the CRUD-based C5 Collection. It is

implemented in C# and intended to be used in .NET programming. The main difference

between this data structure and the original C5 data structures is its internal mechanism

that makes the data structure smart, adaptive and energy-aware. The following section

describes some features of our GreenC5 prototype class library.

7.2 Main Features

Main features of the GreenC5 data structure are highlighted below:

1) Smart, adaptive and energy-aware: the GreenC5 data structure can be

trained to classify, predict and intelligently adapt for energy efficiency at runtime.

2) Easy-to-use: only one GreenC5 type is needed for each instantiation in a

program. When fully functional, the usage is similar to the C5 data structure with few extra

128

installations and configurations. GreenC5 can potentially be used in multiple platforms

with similar performance results without the need for calibrations.

3) Lightweight: the green data structure has less than 3% overhead when

compared to the original C5 data structures.

7.3 Class Diagrams

Appendix A and B are the class diagrams of the CRUD-based C5 Collection and

GreenC5 data structure, respectively. The diagrams detail out all properties, methods and

events of the green data structure classes. In Appendix A, the CRUD-based C5 Collection

class is a factory class of the 9 C5 generic data structures. The class implements the

ICrudable interface so that it contains only 4 CRUD public methods of C5 data structures,

while other operations are ignored and inaccessible. Using a Factory design pattern [28],

the class has the ability to manufacture different data structures at runtime. The Factory

pattern deals with the instantiation of objects without exposing the instantiation logic. A

factory is actually a creator of objects that have a common interface. The creation of each

object is done by calling the factory method rather than by calling a constructor.

The InternalC5DataStructure property is the actual internal data structure that

holds and stores the data and is declared as ICollection<T> type of the C5 Collection

libraries. The CreateInstanceOfInternalC5DataStructure method of the

C5CollectionFactory class is called when a new instance of a data structure is to be created

and it returns the data structure of choice to the InternalC5DataStructure property. The

data structure transformation process takes place in this class. For every transformation and

switching process, the Copy-To methods are called to copy the existing data of the current

129

data structure to a new data structure. The TransformCompleted event is then raised when

each transformation is completed. Because the 9 data structures implement the same

ICollection interface, Factory design pattern enables the class to have the ability to switch

to different data structures at runtime.

Appendix B depicts our GreenC5 class library. The diagram contains three main

component classes (GreenC5, Green and DecisionMaker) and three utility classes

(CrudCounter, FeatureRegisteredEventArgs and TransformNotifiedEventArgs). The

CrudCounter class is for counting CRUD operations. It also contains an event to be raised

when the combined CRUD operation counts reach some count threshold. In this prototype,

the CRUD count threshold (CrudLengthThreshold property) is set to a default of 10,000,

the same as the length L of our CRUD subsequences in Figure 21. In this case, for every

10,000 CRUD operations, a vector set of data structure features is to be registered to the

Classifier. For the other two EventArgs type classes, the FeatureRegisteredEventArgs is to

hold registered feature and state information when the feature register event is raised; and

TransformNotifiedEventArgs is to hold the name of a C5 data structure to be transformed

to, when it notifies the GreenC5 object. The rest are some event handlers and enumerations

used in the implementation. As proposed in Figure 20, the Event Listener and X-Value

Translator component is not explicitly implemented here but its capabilities are actually

embedded in the GreenC5, Green and CrudCounter classes.

There are four enumerations that explain some capabilities of our GreenC5

prototype—DataStructureMode, DataStructureGroup, TransformationMode and

ActiveStatus. For DataStructureMode, it is an enumerated type that contains three

130

application run modes of the GreenC5—Static, Silent and Dynamic. When the GreenC5 is

set to run in a Static mode, each instance has a static internal C5 data structure and its Green

component is disabled. There is no internal mechanism running so it is considered least

overhead. For a Silent mode, each Green5 instance has its Green component enabled and

the internal mechanisms such as the classification, prediction, decision making, event and

notification processes running normally. However, the internal data structure stays

unchanged and the actual data copy and transformation processes never take place even

though it is notified by the Green component. In contrary, the Dynamic mode enables the

GreenC5 to run in fully operational mode where all the internal mechanisms are running

normally, including the data copy and the transformation of its internal data structure.

When running in this mode, the transformation and switching to different data structures

can take place anytime dynamically and automatically. Therefore, the Dynamic mode has

highest overhead. It is also the default mode of the GreenC5.

 The DataStructureGroup enumeration represents available choices of feature G

(data structure group). Users can change the values at the program level from the available

choices. In the implementation, ICollection is the default value and it is set in

InterfaceAndSetBagProperty property of the GreenC5 class. Every time the property value

is changed, the values of the CurrentDataStructure and InternalC5DataStructure

properties are automatically changed to a proper C5 data structure. In this case, they are

automatically set to a HashSet by default (most preferable C5 data structure in ICollection

group, see Figure 23). The TransformationMode enumeration contains two modes of data

transformation—Immediate or WhenIdle. However, in this version, the WhenIdle mode is

131

not implemented. GreenC5 defaults to Immediate mode, meaning that GreenC5

immediately transforms when notified by the Decision Maker. As the result, GreenC5 is

assumed to always be in Active status in this implementation.

GreenC5 is a generic data structure class that is inherited from

CRUDBasedCollection generic class and implements the INotifyPropertyChanged

interface. Therefore, the available public methods of data structure operations are only

those of the four CRUD operations. Also, the INotifyPropertyChanged interface allows

PropertyChanged events to be raised when public property values have been changed. For

example, when the RunMode property is changed to Static or another mode, the event is

raised so that the Green component is enabled or disabled automatically, and some other

default values are also changed to proper values.

GreenC5 class is considered a dynamic data structure because it has a C5 data

structure as the internal data storage. The class consists of two main components and are

declared as private fields—the CrudCounter and Green components. However, the two

components are enabled/instantiated only when the run mode is set to Silent or Dynamic.

The CrudCounter tracks and counts numbers of CRUD methods being called and notifies

the Green component to register a feature vector value for every 10,000 CRUD operations

it observes. The Green component is the brain of the GreenC5. It is composed of an ANN-

based Classifier, a bigram-based Predictor and a Decision Maker sub-component. The

functionalities and implementation detail of the Classifier and the Predictor are already

explained in the previous chapters. This section will explain more on the processes of the

latter two sub-components—decision making and data structure transformation processes.

132

7.4 Data Structure Transformation and Adaptation

Self-adaptation in our GreenC5 is the process of transforming its internal data

structure to different C5 data structures. The runtime process takes place in the CRUD-

based C5 Collection instance, and only when it is notified by the Green component or when

the value of the InterfaceAndSetBagProperty property of the GreenC5 object is changed.

This process allows GreenC5 to adapt itself to the workload, environment and

requirements, for energy efficiency. However, the overhead of each transformation

process is considered high since it involves instantiating a new C5 data structure, copying

over existing data to the new one and the disposal of the old one. Therefore, it is important

that GreenC5 handles the transformation process properly in order to maximize the overall

energy saving and avoid unnecessary overheads.

7.5 Decision Maker

The component that controls the transformation process and decides when to

transform, and to which data structure, is the Decision Maker component. This component

has a crucial task because a wrong decision can sometimes cause the green data structure

to perform worse than the original C5 data structure choices, or the actual energy savings

is not at the maximum level possible. Also, to avoid high overhead, its internal logic and

codes should also be as simple as possible. In this implementation, our goal is to make the

component lightweight. Therefore, having a simple decision making logic with adequate

accuracy is the key of the implementation.

Our methodology for the decision making is basically to answer when it is worth

to transform, and how often, so that the overall energy consumption can be minimized.

133

Each transformation can take place any point in time and as many times during the CRUD

operations. The goal is to maximize the number of overall energy savings. Therefore, the

transformations should take place only when it is necessary so that overall energy savings

is at the maximum level possible. The number of transformations should be at some optimal

point because the higher number of transformations the higher overhead and the lower

number of transformations the higher chance of the energy saving opportunity to be missed.

One way to answer the decision making question is by looking back at how many

CRUD operations have been performed since the start of the program execution or since

the last data structure transformation. This is the same as counting how many feature

vectors are registered to the Classifier; how many data structures have been registered to

the Predictor; and how many prediction has been made. In this case, each count of the

events means that 10,000 CRUD operations have been performed and one feature

registration and one online prediction have been made. We use the sequence registration

count (labeled as SC) as the first decision making criteria. For example, the criteria can be

SC >= k1, where k1 is a constant integer representing how far to look back or how many

data structure has been registered to the Predictor or how many times the predictions has

been made. By assigning the criteria with some k1 values (inside the Decision Maker in

Figure 28), the SC criteria can control the GreenC5 when to transform and how many times

during each program execution. For example, for SC >= 5 criteria, the transformation can

take place only when the predictions have been made at least five times or the CRUD

operations have been performed at least 50,000 times. So, for a program with 400 × 103

operations, the maximum number of transformations that can take place is 8.

1
3
4

 Figure 28. Flow Chart Diagram of the GreenC5

135

In this implementation, our first default decision making criteria is SC >= 5. The

value of k1 = 5 is derived from a hand-tuned process that, when combined with the other

criteria (to be mentioned next), gives highest overall energy savings. From what we

discovered, the lower numbers can sometimes result in higher number of transformations

causing higher overheads and lower energy savings. The higher numbers can sometimes

result in lower energy savings. If the number is too high, the transformation sometimes

never take place.

Another decision making criteria is for deciding whether it is feasible or worth to

switch to a different data structure. This criteria gives us some level of confidence for each

decision. We look at the percentage probability value produced by the Predictor during

each prediction (labeled as PD). In this implementation, the Predictor is bigram-based. The

Predictor predicts the next energy-efficient data structure (DSi+1) from the current data

structure (DSi). When the Predictor predicts for DSi+1, the bigram-based predictor also

returns the probability value associating to the predicted C5 data structure. This probability

value is used in the second decision making criteria; PD >= k2, where k2 is the percentage

probability threshold value produced by the Predictor component when performing a

prediction. For example, for PD >= 50%, the transformation can take place only when the

bigram predictor produces the probability value (PD) or relative frequency value of 50%

or above. Base on Jurafsky and Martin [34], the probability value created by an n-gram is

called “relative frequency”. One method to estimate the probabilities is by getting counts

from a data structure history, and then normalizing the counts so that they lie between 0

and 1. Our method for producing the PD values is based on the n-gram algorithm by

136

Millington [22]. The actual PD values of our implementation are expected to fall between

1/n to 1, where n is the number of the C5 data structures in each of the structure group G.

However, for simplicity, our PD values are in percentage instead. In our n-gram algorithm,

to compute a particular bigram probability of a DSi+1 given a previous data structure DSi,

we compute the count of the bigram C(DSi,DSi+1) and normalize by the sum of all the

bigrams that share the same DSi:

 𝑃(𝐷𝑆𝑖+1| 𝐷𝑆𝑖) =
𝐶(𝐷𝑆𝑖,𝐷𝑆𝑖+1)

∑ 𝐶(𝐷𝑆𝑖,𝐷𝑆)𝐷𝑆
 (3)

Intuitively, the higher k2 value of PD criteria should also give us higher level of

confidence for decision making. It also tells us that it is worth to transform to DSi+1 because

the data structure has been seen most of the times in the history compared to other choices.

Therefore, for higher k2 value, it is more feasible to transform and there is higher possibility

to gain more energy savings. The second decision making criteria is default to PD >= 60%.

The default k2 value of 60% is selected mainly because the smallest number of C5 data

structure choices in IListBag group is two. Therefore, the probability value should be

greater than 50% and should not be too high or too low. Based on some trial and error

experiments, 60% is a good and reasonable number to start with. The lower the value, the

higher the number of transformations that can take place.

Together, the default two decision making criteria of our GreenC5 data structure

are SC>=5 and PD >= 60%. Both criteria controls how often and when the transformations

can take place disregarding how many features are registered and how many data structures

are predicted. Even though, these decision making criteria values (k1, k2) might not be the

optimal ones, they represent a good starting point for further exploration. In this

137

dissertation, a full exploration of the decision criteria values is conducted as one of our

additional case studies presented in chapter 8. Figure 28 displays the flow chart diagram

that shows some logic, data and process flows of the GreenC5 data structure. The dashed-

line boxes underneath the flow chart diagrams indicate the areas inside GreenC5

components where each process takes place.

7.6 Usage of the GreenC5 Data Structure

Ultimately, the GreenC5 data structure should preserve all properties and

capabilities of the original C5 data structures including the usage. It should be easy-to-use

and require minimum learning curve, configurations or extra installations. The followings

are some examples of the usage of our GreenC5. There are at least three important class

libraries to be installed in the target machine and included on the top of each

program/project:

using C5;
using CrudBasedCollection;
using GreenCrudBasedCollection;

To create an instance of a GreenC5 data structure, programmers can instantiate it

the same way as instantiating any of the C5 generic data structures. The below lines of code

is an example of creating a new GreenC5 instance object to store string objects. By default,

the data structure will run in a Dynamic mode unless specified by the programs. In

Dynamic mode, the data structure automatically and dynamically transforms itself to

different C5 data structures in the ICollection group for better energy efficiency. The code

example demonstrates how to add 10,000 string objects to a GreenC5 instance and then

update, retrieve, print and delete the strings. As already tested, the code section results in

less energy consumption than using a LinkedList (the least preferable C5 data structure in

138

ICollection group). This example forces the GreenC5 instance to start as a LinkedList.

However, by the end of the code execution, the internal data structure of the GreenC5 has

automatically and correctly been transformed to a HashSet and consume less energy than

the LinkedList and other C5 data structures.

GreenC5<string> ds = new GreenC5<string>();
ds.CurrentDataStructure = C5DataStructure.LinkedList;
//force it to start as a LinkedList
ds.CreateNewInstanceOfInternalC5DataStructure(C5DataStructure.LinkedList);

for (int i = 0; i < 10000; i++)//Create
{
 ds.Create("Hello" + i);
}
for (int i = 0; i < 10000; i++)//Update
{
 ds.Update("Hello" + i);
}
for (int i = 0; i < 10000; i++)//Retrieve
{
 ds.Retrieve("Hello" + i);
}
for (int i = 0; i < 10000; i++)//Print
{
 Console.WriteLine(ds.Retrieve("Hello" + i));
}
for (int i = 0; i < 10000; i++)//Delete
{
 ds.Delete("Hello" + i);
}

7.7 Code Release

The GreenC5 project is set to be an open-source project. Therefore, some

fundamental projects and the source code have been released to the public via a GitHub

website [141]. The main goal is for research purposes and to provide some power metering

tools for green software development projects and for future development of the GreenC5.

All released projects are in C# language and combined in a single project called DUGreen

project. The released projects include:

139

1. Watts Up? Framework: this framework contains APIs for power measurement

using a Watts Up? Pro meter.

2. Intel Power Gadget Framework: this framework contains APIs for power

measurement using the Intel Power Gadget with other required libraries.

3. CRUD-Based Collection Energy Profiling: this project contains a program for

creating training and program validation datasets using a Watts Up? Pro power

meter.

4. Machine Learning Framework: this project contains two implementations of an

Artificial Neural Network and N-Gram.

5. CRUD-Based C5 Collection: this project contains a wrapper/factory class of the

C5 data structures.

6. Green CRUD-Based C5 Collection: this project contains the GreenC5 data

structure class, Green component and other utility classes.

7. GreenC5 Simulator: this project is the implementation of our GreenC5 simulator

to allow users to interact with the GreenC5 in different use-case scenarios and

settings. The project also contains code examples of how the GreenC5 is used and

the implementations of Watts Up? and Intel Power Gadget power profilers.

140

CHAPTER 8: GREEN DATA STRUCTURE EVALUATIONS

This chapter explains the evaluation of the GreenC5 data structure along with the

results and analysis. It also includes several additional case studies to further evaluate the

green data structure.

8.1 Experimental Setup

Figure 29. GreenC5 Evaluation Process

Figure 29 shows the overall process to evaluate the performance and overhead and

to calculate the estimated and actual potential energy savings of GreenC5. There are three

computers used in this study, labeled as COMP1-3 with different specifications, based

141

power consumption and versions of Windows operating system. List of the computers is

displayed in Table 4. COMP1 is used to perform the energy profiling, training and creating

the a priori energy model, as already explained in previous chapters. The other two

machines are used to test GreenC5 data structure embedded with the same a priori model

created by COMP1.

Table 4. List of Test Computers with Specifications and Based Power Consumption

Computers Specifications

Base Power

Consumption

(Watts)

COMP1
HP Envy PC, model h8-1520t with Intel Core i7

CPU@3.4 GHz 10GB RAM and Windows 8.1 Pro

35

COMP2
HP Probook 4720s with Intel Core i7, CPU@2.67

GHz, 8GB RAM and Windows 7 Pro

30

COMP3

Acer Aspire R14 with 6th-Generation Intel Core i5

CP-6200U, 8GB DDR3 RAM, 256GB SSD Drive

and Windows 10 Home edition

9

The purpose of the experiment is to investigate whether our a priori model created

during the energy profiling and offline learning processes in the first machine can be used

in other machines; and whether they produce similar results. We want to see if the model

can potentially be universal where only one single model is needed and can be used in

many other machines. The purpose is to avoid a repeated machine calibration process when

using GreenC5. In real world, the number of machines in the experiment can be increased

for better results. However, in our study, the number is limited to 3 machines. Also, to

improve accuracy in this evaluation process, the total number of observations of the

training dataset is expanded to 38,826. This dataset includes observations of the original

training dataset and the ones from two of the five A* Path Finder programs. Therefore, the

142

remaining 17 of the 19 validation programs are used to evaluate GreenC5. The following

evaluation results are based on the 17 validation programs.

8.2 GreenC5 Evaluation Results

According to the experimental setup in Figure 29, there are two tests needed to

validate the GreenC5 prototype—overhead and energy saving tests. This section explains

the preliminary results showing that GreenC5 can help minimize the energy consumption

of the base systems.

8.2.1 Overhead Testing Results

When enhancing application objects and components, more code is normally added

to the programs. More complex code normally means higher overhead that can sometimes

undesirable. This experiment is to see how much overhead in term of energy consumption

is added to GreenC5 when compared with the original C5 data structures. The method is

straight forward. We run 17 validation programs on each of the two test computers

(COMP2 and COMP3), by inputting CRUD sequences of the validation programs to each

of the 9 C5 data structures. The energy consumptions from running each of the programs

are captured and saved by the energy profiler for analysis.

The same process is also done on the GreenC5 data structure in a Silent mode. In

this mode, the GreenC5’s internal data structure is set statically to each of the C5 data

structures. The Silent mode activates all internal mechanisms and enables the Green

component, but no actual transformation takes place. When a GreenC5 is running in a

Silent Mode, it acts like a C5 data structure running with an active Green component

attached to it. By comparing the energy consumption of the original C5 data structures

143

with the GreenC5 running in a Silent mode, the energy differences can tell us how much

additional energy consumption caused by the Green component. The following overhead

results are based on data collected from executing each validation program for two runs on

each computer. Both computers are executed in a controlled environment, where some

system processes of Windows operating systems such as Wifi and Internet connection are

turned off to minimize noises. Note that we do not include the adaptation and

transformation processes in this overhead testing because the cost is high and vary

depending on the types of C5 data structures. Instead, these processes are managed by the

Decision Maker component to maximize system’s energy efficiency.

The overhead results are quite surprising. We expect to see high overhead in term

of energy consumption since the added code of the green component is rather complex.

Instead, the average energy differences are quite small. For most programs, GreenC5

consumes more energy than the original C5 data structures. Only few experiments show

that GreenC5 consumes less energy than the original ones. The percentage energy

differences range from small decimal numbers for most program executions and up to the

twenties for few program executions. This is due to the fluctuations of the system power

consumption. However, on average, the energy differences or overhead of GreenC5 for all

programs in both computers are less than 3% (2.62% and 2.14% for COMP2 and COMP3

respectively). Since, the numbers are small, we consider the GreenC5 data structure as

lightweight.

144

8.2.2 Potential Energy Saving Results

Next test is to compare the energy consumption of programs running the least

preferable C5 data structures of each data structure group with ones running the GreenC5

data structure in Dynamic mode. Our goal is to see how well the green data structure can

adapt for energy efficiency and what are the actual potential energy savings from

dynamically transforming its internal data structure to different C5 data structures at

runtime.

To achieve the goal, the energy consumption data of the C5 data structures are used

as the base to compare with that of GreenC5 running in Dynamic mode. For each of the

program, we seek the best and worst C5 data structures in each of the data structure groups

when running each of the validation programs (Min and Max lines in Figure 30). The

energy consumptions of the two data structures are set as the lower and upper bounds of

each group. Next, we execute the programs with the GreenC5 data structure in Dynamic

mode with different values of InterfaceAndSetBagProperty property (data structure group

G), simulating different interface and set/bag semantic requirements. We start each

execution by setting the initial internal data structure of the GreenC5 to the worst choice in

each group, found in Figure 23. For example, the GreenC5 data structure is set to start with

a LinkedList for ICollection, ICollectionBag, IList and IListBag groups. The CRUD

workload of each program is then input to the green data structure. If the GreenC5 adapts

correctly, the energy consumption of the GreenC5 is expected to fall in between the Min

and Max points in each data structure group and by the end of each execution, the internal

data structure of the GreenC5 should be transformed to a better energy-efficient C5 data

1
4
5

 Figure 30. GreenC5’s Potential Energy Savings by Data Structure Group by Program

146

structure in each group. Figure 30 shows some experimental results of the potential

energy savings of GreenC5 by data structure group per program conducted in COMP2 and

COMP3.

In Figure 30, the energy consumption data of both computers are normalized so

that the Max points or upper bound are always at 100 (Y axis). The dots on Min and Max

dash lines represent the maximum and minimum energy consumption points of C5 data

structures by data structure group per program, respectively. The dots on GreenC5 lines

represent the energy consumption of Dynamic-mode GreenC5. The closer to the bottom

lines the better energy efficiency and the higher potential energy saving. The energy

differences between the Min and Max points are called expected energy savings. While,

the actual energy savings of the GreenC5 are the energy differences between the GreenC5

and the Max points. As you can see, the GreenC5 points lie between the top and bottom

lines as expected. Only few that lies above the top or below the bottom lines (in the IList

group of Simulated Program #3, for example).

Surprisingly, GreenC5 performs quite well as you can see that most of its energy

consumptions are close to or almost lie on top of the Min lines and mostly in between the

Min and Max lines. This means that our Predictor can predict accurately and the Decision

Maker can notify GreenC5 to transform and adapt correctly with minimum overhead.

Moreover, the results from both computers are almost identical even though their base

power consumption and system specifications are significantly different. This is another

unexpected result. This means that our a priori model can potentially be a universal model

that can be used in multiple computer platforms. As a result, only one model is needed for

147

GreenC5 and there is no need for system calibration, making GreenC5 even more user

friendly.

Figure 31. Average Potential Energy Savings of GreenC5 by Data Structure Group

COMP2

COMP3

148

For the overall picture, Figure 31 shows the graphs of average actual potential

energy savings of GreenC5 in the 17 validation programs on COMP2 and COMP3,

respectively. The numbers indicate the percentage energy savings, representing how much

energy can actually be saved from using GreenC5, by data structure group. Again the two

graphs are almost identical and are in the ranges as estimated during the energy profiling

process (Figure 24). GreenC5 performs very well in the ICollection and ICollectionBag

groups—more than 95% potential energy savings when compare to the worst C5 data

structure choices. IListBag group produces the least potential energy savings (little above

18%). For all data structure groups, the median potential energy savings are 61.19% and

60.56% for COMP2 and COMP3 respectively. The numbers show that GreenC5 can adapt

for energy efficiency and can potentially help the computer systems consume less energy.

8.3 Threats to Validity

There are many other aspects that need to be considered in order to develop a fully

functional adaptive green data structure. This section explains several validity threats to

the design of our study and the implementation of the GreenC5 prototype. For the creation

of a priori knowledge of our green data structure, the model is based on C5 dynamic data

structures that implement the ICollection interface, and is based only on the selected data

structure features. Because the training dataset does not cover all possible workloads, our

predictive model has some limitations. First, the predictive model is limited to common

operations that map to the CRUD operations. Other operations are ignored. Second, the

feature N is also limited to 50K elements and the length of CRUD subsequences is fixed at

10K. The workloads, %C, %R, %U and %D, are also limited at some level of granularity.

149

We do not consider whether the CRUD workloads in the training dataset are

feasible. For example, we include a workload with 90% of delete operations and 10% of

add operations; such a scenario will never realize. Also, our models (ANN and bigram) are

selected mainly because they can be used to solve energy-efficient data structure

classification and sequence prediction problems and the source codes and algorithms for

developing the models are available. Some of them are hand-tuned without full exploration

of all possible solutions. They are not claimed to be the best solutions for these problems.

Other machine learning methods such as Recurrent Neural Network (RNN), SVM, Logistic

Regression and HMM are among the possible candidates for solving the energy-efficient

data structure classification problems.

The energy profiling is a key process in creating the a priori knowledge for our

predictive model. The energy data collection process is done with a power meter that can

read power consumption at 1 sample per second. The result can be more accurate if we can

measure power consumption data at a finer grain and on different parts of the system, such

as CPU, memory, display, etc. Our power measurement is at the system level, and may

have overhead and noise. The energy collection process is designed to collect energy data

on a fixed setting as described in the algorithm presented in Figure 21. We claim that the

priori knowledge is potentially universal. Our claim is based on only two Windows

machines and mainly because the results from both computers are almost identical. More

tests can be done on more programs and computers to make the claim more legitimate.

Lastly, the version of our GreenC5 data structure is mainly for research purpose

and is implemented as a prototype of an adaptive green data structure only. It is not a fully

150

functional green data structure that can replace the C5 data structures in existing programs.

There is much more work to be done to make it fully functional. The internal mechanism

and logic of the Green component, the decision maker and transformation process are as

described in Figure 28. The energy saving results are based on the fixed decision making

criteria values (SC >=5 and PD >=60%). Even though, an exploration for better decision

making criteria values is conducted in one of the case studies, the better optimal criteria

values produced from the experiment are not used in any of the mentioned experiments.

Also, the potential energy savings are evaluated from the 17 program workloads created

from 3 real-world and 8 simulated programs. More workloads from more programs are

also needed and the testing should be conducted more extensively on more platforms for

better results.

8.4 Additional Analysis and GreenC5 Simulator Implementation

The purpose of the additional analysis is to further evaluate the GreenC5 prototype

in different use-case scenarios and to answer some of the additional research questions that

are considered threats to the validity of our experiment. The following questions are to be

answered in the case studies:

1) What are the optimal values for the decision making criteria in the decision

maker (values of k1 and k2)?

2) Are there any other alternative power measurement tools that can be used in

GreenC5, possibly for reinforcement and online learning in the future work?

3) What is the energy efficiency improvement in other use-case scenarios? For

example, how the GreenC5 affects the system energy consumption when

151

multiple instances are being executed sequentially in a single thread and

asynchronously in separate threads/programs?

8.4.1 Additional Analysis #1: Alternative Power Profiling Tool and GreenC5 Simulator

Implementation

To answer some of the additional research questions related to our GreenC5

prototype, we develop a GreenC5 and demonstrate how GreenC5 can be used in different

use-case scenarios and settings, and how it can help software applications to save energy.

The simulator also integrates both Watts Up? and Intel Power Gadget power monitoring

tools for comparison. Intel Power Gadget is selected as an alternative power profiling tool

because it can potentially be used for online learning of GreenC5 in our future research

projects. This section explains features and the implementation of the GreenC5 simulator

and the integration of the Intel Power Gadget with the simulator.

8.4.1.1 GreenC5 Simulator Implementation

The main goal of the GreenC5 simulator is to allow users to interact with the

GreenC5 data structure. The simulator is implemented in C# and is intended to run on

Windows machines with 2nd or later generation of Intel Core processors. It utilizes the C5

collection and the GreenC5, Watts Up? and Intel Power Gadget class libraries. Using the

graphical user interface of the simulator, users can add GreenC5 instances to application

threads, change the settings, execute the program in different use-case scenarios and see

how the program is performing and how much energy is being consumed, interactively.

Users can set GreenC5 to run in static mode, silent or dynamic mode. Users can also select

a program from the 19 validation programs and set the decision making criteria values for

152

the GreenC5 instances. The real-time power consumption data from both Watts Up? and

Intel Power Gadget power are displayed side-by-side for comparison. The simulator is

designed to be used for one of experiments in the additional analysis. The results will be

explained in the following sections.

Figure 32 is a screenshot of our GreenC5 simulator. The screenshot contains three

main areas of the simulator application. In the first area, the top part of the window, are the

live power consumption graphs (in watts) of the two power monitors. The second area, the

bottom left part, is the simulated application area; users can add application threads and

GreenC5 instances to each thread and set the GreenC5 setting properties, simulating

different application use-case scenarios. The last area, the bottom right, is the application

information and setting area. The area contains settings of the simulated application and

the decision making criteria of the added GreenC5 instances, and the user controls for

controlling the simulator. It also displays live power number readings, live energy

consumption (in joules and watt hours) and productivity (number of executions per joule)

of the application simulation. At the top of this area, a live number of normalized

correlation of the two graphs is also displayed. The number indicates how much the two

graphs are correlated. This number can also tell us whether Intel Power Gadget tool can be

used as an alternative power monitoring tool for the future GreenC5 projects.

1
5
3

Figure 32. A Screenshot of the GreenC5 Simulator Application

154

One way to determine whether two power monitoring tools are similar, can provide

similar results and can be substituted for each other in GreenC5 and green software

development projects is to measure the graph correlation of their power readings. One

limitation of the Intel Power Gadget is that the power consumption data it provides is for

the CPU only, while Watts Up’s power readings are for the computer system (CPU, GPU,

Wi-Fi, display and others). As seen in Figure 32, the power reading samples of the two

graphs are different so they need to be normalized before computing the graph correlation.

In the implementation, the power sample rate of the Intel Power Gadget is set to 100

milliseconds/sample. However, the maximum power sample rate of the Watts Up? is at 1

sample/second. So, when plotting graphs and calculating the graph correlation, we adjust

the power sample rate of the Watts Up? graph to have the same rate of 100

milliseconds/sample as of the Intel Power Gadget, to make it easy for comparison. The

additional power reading samples are duplicated from numbers of the most recent readings

in each time interval. We use a method used in signal processing called normalized

correlation of discrete signals [104], as a measure of similarity of the two signals. The

calculation is based on the following formula:

 Norm Corr X,Y =
∑ 𝑋[𝑛]𝑌[𝑛]𝑁−1

𝑛=0

√∑ 𝑋2[𝑛] ∑ 𝑌2[𝑛]𝑁−1
𝑛=0

𝑁−1
𝑛=0

 (4)

where, X and Y are the power datasets of Intel Power Gadget and Watts UP? being used to

plot the graphs, respectively. N is the number of samples of X and Y datasets. X[n] and Y[n]

is a power data sample in each of X and Y datasets. The top part of the formula, the

numerator term, is for calculating the correlation of the two graphs. To get the normalized

155

correlation number, the top term is normalized by the denominator term. The denominator

term normalizes and scales the weight of power data of both graphs to be at the same

weight. The normalized correlation value is expected to fall between -1 and 1. A value

closer to 1 indicates higher positive correlation of the two graphs.

8.4.1.2 Intel Power Gadget Evaluation Method

As described in Figure 33, we conduct experiments using our GreenC5 simulator

running on COMP3 (with 6th-Gen Intel Core i5). Each of the 17 validation programs is

executed with the same set of three use case scenarios. The graph correlation values of each

execution will be recorded for the analysis.

Figure 33. Intel Power Gadget Evaluation Process

156

8.4.1.3 Experimental Results

The total of 51 use-case scenarios are manually executed using the GreenC5

simulator. The average normalized correlation value of the two graphs is above 0.98. This

value is very close to 1. The number indicates a strong positive correlation, meaning that

the two graphs or power sample readings have a strong positive linear relationship. Even

though the graphs have different weight of power readings (CPU vs. system), the two

graphs seem to behave almost exactly the same and produce the same pattern of power

readings when executing the same programs. As a result, we can conclude that Intel Power

Gadget can be used as an alternative power measurement tool for future GreenC5 projects

and any CPU-intensive program development.

8.4.2 Additional Analysis #2: A Performance Evaluation of Multiple Instances in

Multiple Programs

The purpose of this additional case study is to see how GreenC5 performs and

affects the system energy consumption in other use-case scenarios where multiple instances

of the GreenC5 are executed sequentially in a single thread and asynchronously in separate

threads/programs. We also want to compare its performance with the most and least

preferable C5 data structures in each data structure group.

8.4.2.1 Experimental Setup

We create a project to simulate the use of C5 and GreenC5 data structures in

different use-case scenarios on COMP3. Each use case and instance of the data structures

are set to run either sequentially in a single thread or asynchronously in multiple threads.

The energy consumption of each execution is captured by the Intel Power Gadget profiler

157

for analysis. We select 5 CRUD workloads from the 17 programs for the simulation, to be

input to each of the data structure instances—2 simulated programs, 1 A* Path Finder, 1

Huffman Encoding and 1 Genetic Algorithm programs. Figure 34 depicts the evaluation

process and steps of the experiment:

1. 5 use-case scenarios are created for the experiment—labeled as UseCase#1,

UseCase#2, UseCase#3, UseCase#4, UseCase#5, where 1, 2, 3, 4, 5 instances of

the C5 and GreenC5 data structures are initiated respectively.

2. Each use case is set to run on the least preferable C5 data structure instances, most

preferable C5 data structures and dynamic-mode GreenC5 instances. For each

GreenC5 instance, its data structure group property is set to each of different data

structure groups. The initial C5 data structure property is set to start as the least

preferable C5 data structure in each group and the default decision making criteria

is set to SC>=5 and PD >=60%.

3. The use cases are set to run sequentially in a single thread application and

asynchronously in different thread application. In the experiment, we utilize the

.NET’s Task Factory class library for parallel executions of the C5 and GreenC5

data structures.

4. The energy consumption of each execution is recorded using Intel Power Gadget

for analysis. The total number of 2 runs are performed in this experiment.

5. The data analysis, graph plotting and energy savings are calculated against the least

and most preferable C5 data structures in each data structure group.

158

Figure 34. The Evaluation Process of GreenC5 in Different Use-Case Scenarios (Multiple

Instances and Multiple Threads)

8.4.2.2 Experimental Result

The energy consumption data of the program executions from the two runs are

averaged and normalized so that the numbers range from 0 to 100. Also, for better

159

comparison, the energy consumption data of the most and least preferable C5 data

structures are plotted together in the same graphs with GreenC5. The energy data are

averaged and grouped by program and data structure group and displayed by sequential

and parallel executions, side-by-side for comparison. Figure 35 shows some of the energy

consumption graphs. The left and right-side graphs display the energy data of the sequential

and parallel executions respectively. Figure 35(a) displays the graphs of the overall

executions of all 5 programs. Figure 35(b) shows three of the six energy consumption

graphs by data structure group—from the top down, ICollection, ICollectionSet and

IListBag respectively. The top legends in the figure, from left to right, represent energy

consumption of the least, the most preferable C5 data structures and the GreenC5 data

structure, respectively. In each graph, the y-axis is the average normalized energy

consumption (in joules) of program executions. The x-axis represents program executions

of different use cases—in which 1, 2, 3, 4 and 5 instances of the data structure are executed.

Overall, the energy consumption of the C5 and GreenC5 data structures are

increasing when the number of instances increases. The trend is similar in both sequential

and parallel executions. This shows that the GreenC5 seems to funtion well similar to the

original C5 data structures when multiple instances are executed together. However,

parallel executions tend to use less energy than sequential executions. This can be seen in

the slopes of the right-side graphs in Figure 35 that are lower than that of the left-side

graphs. To support this, Table 5 shows the average energy savings of parallel executions

of the GreenC5 data structures versus sequential executions per number of instances.

Executing one instance of the data structure in a separate thread is not normally done and

160

(a)

(b)

Figure 35. Energy Consumptions of Sequential and Parallel Executions of GreenC5 and

C5 Data Structures, (a) All Data Structure Groups and (b) ICollection, ICollectionSet and

IListBag Groups.

161

it does not gain any energy savings, so it is not included in the table. The percentage

numbers show the extra energy savings or energy efficiency improvement gained by

parallel executions against sequential executions. For multiple instances, when the number

of instances increase, the energy efficiency improvement tends to also increase. From the

data, at five instances, the energy efficiency improvement of parallel executions can reach

almost 11%. Therefore, we recommend parallel executions over sequential executions of

the data structures whenever possible for maximum energy savings. Moreover, even

though the net energy consumption seems to be lower for parallel executions, but if we

look at the execution time and power consumption data, parallel executions normally take

less time to complete but consume more power to run than sequential executions.

Table 5. The Energy Efficiency Improvement of Parallel Executions vs. Sequential

Executions of GreenC5 by Number of Instances

Number of Instances Energy Efficiency Improvement

2 6.35%

3 7.18%

4 9.26%

5 10.70%

Additionally, from the graphs in Figure 35, the energy consumptions of the

GreenC5 data structure, as expected, falls between the energy consumptions of the least

and most preferable C5 data structures in each data structure group. The overall potential

energy savings of the GreenC5 for all numbers of instances (the energy differences between

the worst or least preferable C5 data structures and the GreenC5) about 47% and 45%, on

average, for sequential and parallel executions respectively (see Figure 35a and the last

162

row of Table 6). The graphs also show that, for all number of instances, potential energy

savings in ICollection, ICollectionBag and ICollectionSet are higher than that of the IList,

IListBag and IListSet groups. These can be seen by the wider gaps between the least

preferable lines and the GreenC5 lines in the graphs and the higher numbers shown in Table

6. Also, for multiple-stance executions, the data structures in ICollection and

ICollectionBag provide the highest numbers of potential energy savings while ones in

IListBag provide the lowest potential energy savings. Also, from the data, it seems that

GreenC5 is also scalable just like the original C5 collection. GreenC5 seems to continue to

function and perform well when the number of instances and threads increase. However,

to make the assumption more valid, more evaluations should be conducted with higher

numbers of instances and application threads. In addition, the results produced by Intel

Power Gadget data seem to be correlated with ones produced by Watts Up? power meters

in the previous experiments. This supplemental result also confirms that the Intel Power

Gadget tool is a good alternative energy profiler tool for our future GreenC5 projects.

Table 6. Average Potential Energy Savings of Parallel and Sequential Executions of

GreenC5 for All Numbers of Instances by Data Structure Group

Data Structure Group Sequential Parallel

ICollection 84.51% 85.54%

ICollectionBag 84.30% 85.91%

ICollectionSet 61.66% 62.33%

IList 22.68% 16.45%

IListBag 5.78% 3.17%

IListSet 24.91% 12.63%

Average 47.31% 44.43%

163

8.4.3 Additional Analysis #3: An Initial Exploration of Decision Making Criteria

The key functionality of the decision maker is to control the number of the

transformations and timing of each transformation during each program execution so that

the overall energy saving is at the maximum level. If there is no decision making

mechanism to control the transformations, the number of transformations can be as high as

the number of predictions made by the predictor component. If the transformations take

place too many times, the overhead and energy cost of the transformations can be too high,

making the GreenC5 perform worse than the original C5 data structure and the energy

saving opportunity windows to be missed. The decision maker’s main role is therefore to

control the transformations to take place only when necessary in order to maximize energy

savings. The main mechanism is the controlling of k1 and k2 values in the SC>=k1 and

PD>=k2 decision making criteria.

The purpose of this additional analysis study is to systematically explore for the

optimal decision making criteria of the Decision Maker component that can control the

number and timing of GreenC5’s transformations so that the overall energy savings are at

the maximum level. Also, the purpose is to see how the criteria values impact the energy

savings and how the GreenC5 transforms and adapts when the criteria change. The ultimate

goal is to find the optimal values of k1 and k2 that can be used as the default decision

making criteria in the GreenC5 data structure. In this case study, the goal is not to explore

all possible values, but to explore the values of k1 and k2 only at some granularity, in order

to understand and get some general ideas of how the decision making criteria impact the

potential energy savings and transformation and adaptation behaviors of the GreenC5. The

164

study is also to demonstrate how an exploration of decision making criteria can be

conducted.

8.4.3.1 Experimental Setup

By utilizing the GreenC5 and Intel Power Gadget class libraries, a new

experimental project is created and executed on COMP3. The project is to automate the

use of GreenC5 with different values of decision criteria parameters. The goal is to search

Figure 36. Decision Making Criteria Exploration Process

165

for k1 and k2 values that make GreenC5 instances perform with highest potential energy

savings. The energy savings are calculated by comparing with the base energy consumption

of the least favorable C5 data structures in each of the data structure groups. The

experimental method is described in Figure 36. In the method, the 17 validation programs

are used as the input workload to both the C5 data structures and GreenC5. For GreenC5,

the decision making criteria are varied with different values of k1 and k2 in each the

program execution. The energy consumption data are captured by the Intel Power Gadget

and the internal data structure transformations of the GreenC5 are also traced for analysis.

In this experiment, to speed up the energy profiling process, only the first 120,000

CRUD operations of the 17 programs are used in each execution. Because of the limited

size of the CRUD operations, the values of k1 to be explored are only from 1 to 6. The

values of k1 and k2 are varied at the following granularity:

k1 = {1, 2, 3, 4, 5, 6}

k2 = {0%, 20%, 40%, 60%, 80%, 100%}

For example, for k1 = 6, the maximum number of transformations can take place is 2

because the prediction and decision making are made every 10,000 observed CRUD

operations (value of L). For k1 =1, the maximum number of transformation can take place

is 12. On the other hand, the percentage values of k2 are multiples of 20. Together, values

of k1 and k2 thresholds in the decision making criteria controls the number of

transformations that can result in different amount of overall potential energy savings.

166

8.4.3.2 Experimental Result

From all program executions, we found that the number of actual transformations

of the GreenC5’s internal data structure ranges from 0 to 6. There are few program

executions with some values of k1 and k2 that cause zero transformation during the

program executions—for example, in program executions of simulated program #1 and #2,

where the values of k1 and k2 are set to 4 and 100% and 6 and 100% respectively. This is

due to the fact that, during the program executions, there is no window in the CRUD

sequence that the prediction probability values (PD) produced by the predictor component

reaches 100%. Also, there are many of the program executions, mostly in ICollection,

ICollection and ICollectionBag groups that have at least 1 program transformation, In this

case, it is mainly because that GreenC5 instances are set to start as the worst data structure

choices in each data structure group. And, the GreenC5 instances are able to

adapt/transform to the more energy-efficient data structures. Also, there is no additional

transformation during each program execution because either the predictor predicts the

same energy-efficient data structure or because there is no window for the transformation

made by the decision maker. On the other hand, there are also many program executions

that shows multiple transformations during the program executions of the first 120K

CRUD operations. Many can be seen in IList, IListBag and IListSet data structure groups.

These result examples with multiple transformations demonstrate that the transformations

167

of the GreenC5 data structure are indeed dynamic. To see dynamic transformations of the

GreenC5, users can also use our GreenC5 simulator to simulate the scenarios.

To understand the dynamic transformation and adaptation process in our GreenC5

data structure, Figure 37 shows one example of the actual program executions from our

experiment showing how the dynamic transformation and adaptation process work. The

figure depicts program executions of the Simulated Program # 9 in the IList data structure

group. It explains how and when the predictions and transformations take place and how

different decision making criteria can change the pattern and number of transformations

that results in different amount of energy consumption and potential energy savings. From

the figure, the program workload sequence contains 120,000 CRUD operations that can be

sub-divided into 12 L-long subsequences, where L = 10,000 operations. Each subsequence

has different features of %C, %R, %U, %D, N and G that can be observed by the Green

component of the GreenC5. The observed features are, at runtime, then sequentially input

to the ANN Classifier component and translated/mapped into a sequence of 12 energy-

efficient C5 data structures in the IList group. Among the choices in the IList group, in this

example, the Classifier identifies HashedLinkedList and HashedArrayList as the energy-

efficient data structures to best perform different subsequences of the program workload.

The classified data structure sequence is also shown in the figure (one that is produced by

the ANN Classifier).

The IList group has 5 available choices of C5 data structures—ArrayList (AL),

LinkedList, (LL) HashedArrayList (HAL), HashedLinkedList (HLL) and SortedArray

(SA). Among the choices in this group, we have already identified that LinkedList is the

168

least preferable data structure because it consumes highest energy consumption when

performing the same operations. So, LinkedList is used as the base data structure for

comparing with the GreenC5 and calculating the potential energy savings. In this example,

LinkedList uses about 332.41 joules on COMP3 to perform the program’s workload. To

search for an optimal decision making criteria in this experiment, GreenC5 is varied with

different values of k1 and k2 in the decision making criteria. The bottom three sequences

in the figure show actual transformations of the internal data structure with different

decision making criteria. In the first sequence with the SC>=1 && PD>=60% decision

making criteria, there are total of 3 transformations that take place dynamically and form a

GreenC5’s internal data structure sequence of LL, HAL and HLL data structures. The

sequence or the transformation/switching pattern of internal data structure consumes

72.61% less energy than just staying statically as a LinkedList. With different decision

criteria, the numbers of transformations and the switching patterns of the GreenC5 are also

different, consuming different amount of energy. In the second sequence of SC>=5 &&

PD>=60% decision criteria, there are total of 2 transformations that form another

transformation/switching pattern, consuming 66.80% less energy than the LinkedList. This

pattern has lower potential energy saving than the previous one. The last sequence is when

the decision making criteria being set to SC>5 && PD>=100%. This criteria makes no

change in the transformation and switching pattern. So, the GreenC5 stays statically as a

LinkedList. In this case, there is no gain in energy saving. The potential energy saving

number of -2.55% in the figure indicates some overhead in the GreenC5 and energy

fluctuations of the base system. Also, as you can see in the three sequences, different

1
6
9

 Figure 37. GreenC5's Internal Dynamic Transformation Example

170

transformation pattern and different timing of each transformation do impact the energy

consumption of the dynamic-mode GreenC5 data structure. The decision making criteria

of the one with highest potential energy saving should be selected as the optimal decision

making criteria. The goal of this additional case study is to do a brute-force search in a

larger solution space for better decision making criteria.

Ultimately, a full exploration of the decision making criteria should be done with

wider range and higher granularity of k1 and k2 values. However, it will take a very long

time for the exhaustive search to be completed. Therefore, in this exploration, the search is

limited by some values of k1 and k2 as specified in the previous section. From the two runs

of program executions, the energy data of all 17 program executions are averaged, analyzed

and plotted into surface graphs of potential energy savings as shown in Figure 38 and

Figure 39. The x and y-axis of the graphs are the k1 and k2 values of the decision making

Figure 38. Overall Potential Energy Savings by Decision Making Criteria

171

criteria, while the z-axis are the percentage potential energy savings produced by each

combination of the two decision making criteria. The legends beneath the graphs present

different ranges of potential energy saving numbers and areas on each graph surface.

Figure 38 shows the overall potential energy savings by decision making criteria.

The energy saving values are the overall average of all program executions. Overall, in

Figure 38, the combination of SC and PD criteria (k1 and k2 values) clearly impact the

potential energy savings because the graph clearly shows uneven surface. From the

experiment, the overall average potential energy savings, ranging from 19% to almost 62%,

are plotted on the graph. To determine the optimal decision criteria, we select ones in the

ranges of k1 and k2 values that produce the highest potential energy savings and ones in

the highest areas on the graph surface. Also, for the PD criteria (the probability value of a

prediction), the k2 values are also limited by the number of available data structure choices

in each data structure group. Because the PD value is produced by a bigram-based

predictor, the PD values are always in the range between the percentage of 1/n and 1, where

n is the number of data structure choices in each data structure group. This criteria is also

used in the selection of a proper optimal decision making criteria. Overall, by looking at

the energy saving data and graph surface, our estimated decision making criteria is

determined to be SC>=4 && SC<=5 and PD>=60%. This criteria values are clearly in the

top area of the surface graph in Figure 38 (60-80 area). These optimal criteria are to be set

as the default decision making criteria of our GreenC5 data structure. Surprisingly, our

172

previous random-select decision-making criteria of SC>=5 && PD >=60% falls right on

this optimal area.

Figure 39. Potential Energy Savings by Decision Making Criteria and Data Structure Group

173

In addition, Figure 39 presents surface graphs of GreenC5’s potential energy

savings by decision making criteria and by data structure group. These six graphs when

combined together will becomes the graph shown in Figure 38. Clearly, the surface graphs

and potential energy savings by data structure are different. The graphs of ICollection,

ICollectionBag and IList groups look similar. For these three graphs, it seems that the PD

criteria (k2 values) do not have much impact on the energy savings. As you can see along

the k2-axis, the potential energy savings changes minimally when k2 values change. In

contrary, along the k1-axis, the energy savings change more dramatically when k1 values

change. From these three graphs, the higher amount of energy savings can mostly be made

when values of k1 are smaller. For the other three graphs, both k1 and k2 parameters have

some impact on the GreenC5’s transformation patterns and potential energy savings. In

particular, for the graphs of ICollection and IListSet graphs, the optimal areas can clearly

be spotted on the graph surface.

Table 7. Recommended Optimal Decision Making Criteria by Data Structure Group

Data Structure

Group

of Data

Structure Choices

Decision Making Criteria

Criteria 1 (k1) Criteria 2 (k2)

ICollection 9 SC>=1 && SC<=2 PD>11%

ICollectionBag 4 SC>=1 && SC<=2 PD>=25%

ICollectionSet 5 SC=4 PD>=60%

IList 5 SC>=1 && SC<=2 PD>=20%

IListBag 2 SC>=2 && SC<=3 PD>=50%

IListSet 3 SC<=4 && SC<=5 PD>=60%

Overall (default) SC>=4 && SC<=5 PD>=60%

174

Finally, for better energy savings, we recommend that the decision making criteria

of GreenC5 should be different by the data structure group property. The list of our

recommended decision making criteria by data structure group is presented in Table 7.

These optimal decision making criteria are derived from both analyzing the potential

energy saving data and looking at the surface graphs. They are not considered to be the

best optimal criteria but certainly valid for future version of our GreenC5 collection. From

the result, our previous decision making criteria of SC>=5 && PD >= 60% is still

considered valid and can still be used as the default criteria. If you notice the k2 values in

the PD criteria column, the bigram probability value criteria of 1/n and 1 is also used in

determining the criteria. This is the reason why the k2 values are always not less than the

percentage of 1/n, where n is the number of data structure choices by group (shown in the

second column).

 175

CHAPTER 9: CONCLUSION AND FUTURE WORK

9.1 Conclusion

With a vision to see smart and adaptive green objects and components be part of

green software programs in the future, we have detailed a concept, an architecture and

prototype for building adaptive green data structures that can intelligently adapt for energy

efficiency. We provide empirical evidence that there exists energy saving opportunities in

C5 dynamic data structures, which may be present in other interface-based, object-oriented

dynamic data structures as well. Using a “select the right data structure for the right

workload” approach, we demonstrate how the C5 data structure selection process can be

automated with machine learning tools such as Artificial Neural Networks and n-gram

based predictors. The results show that the models can accurately classify and predict data

structures for energy efficient computing.

Our green data structure prototype, GreenC5, demonstrates how the concept can

actually be implemented. Our simple technique of decision making can help the GreenC5

to decide when to transform dynamically for energy efficiency. The predictive model can

help the data structure know how to adapt by correctly transforming to different data

structure choices. The result shows that the GreenC5 can efficiently adapt for energy

efficiency with minimum overhead. The a priori knowledge can potentially be universal

where only one single model is needed and can be used in different machines, improving

the user-friendliness of the data structure. The work could also be applied in other interface-

176

based objects as well and is an essential groundwork for building fully functional adaptive

green data structures in the future.

Along with the adaptive green data structure, we also include an additional study

of the cache system on an FPGA development board and demonstrate an in-depth manual

process of a power-performance tradeoffs using the Pareto optimality principle. The results

suggest that the Pareto optimal configurations do exist in the cache configurations and

some optimal configurations might not be as expected when analyzing the live power

consumption data. We observe that the optimal configurations are sparse in the cache

design space, are inconsistent across the benchmark and counterintuitive in many cases,

making power-performance optimization processes hard to implement without analysis

from actual data. From this study, we learn that even something very low-level like the

cache system can impact the power-performance analysis significantly and unpredictably.

This might not be captured if the analysis is done using data from a power model. As a

result, we also suggest the need for tools and methodologies that operate directly on data

gathered from the systems themselves.

9.2 Future Work

This dissertation proposes a working prototype of an adaptive green data structure,

the GreenC5. However, the processes of gathering power data and machine learning are

done in an offline manner. The analysis is done on the power data gathered by a hardware-

based meter, in which might not be practical in real life and is limited only to the offline

learning capability. Our future work will therefore focus on incorporating the green data

structure with alternative, more accurate, finer-grained and more practical power meters.

177

One of the alternative tools that will be used in our future GreenC5 projects is the Intel

Power Gadget as described in one of our additional case studies. With a more accurate

software-based meter, the future work can include adding the reinforcement and online

learning capabilities to the adaptive green data structure, in which the data structure can

learn and adapt to the workload automatically with minimal or no base knowledge. The

future work can also include searching for better architectures and designs of the adaptive

green data structure, with different methods of dynamic selection, decision making and

self-adaptation and transformation for energy efficiency. We also suggest that the concept

is to be applied in other data structures of different programming languages and platforms

and other interface-based software components and objects.

178

BIBLIOGRAPHY

[1] M. P. Mills, “The cloud begins with coal. Big data, big networks, big

infrastructure, and big power—an overview of the electricity used by the global

digital ecosystem”, Digital Power Group, August 2013. http://www.tech-

pundit.com/wp-content/uploads/2013/07/Cloud_Begins_With_Coal.pdf?c761ac

[2] Greenpeace, “The iPad, internet, climate change link in the spotlight”,

Greenpeace International, 30 March 2010.

http://www.greenpeace.org/international/en/news/features/ipad-cloud-climate-

change-290310/

[3] J. Michanan, R. Dewri, and M. J. Rutherford, “Understanding the power-

performance tradeoff through Pareto analysis of live performance data”, in

International Green Computing Conference (IGCC), November 2014.

[4] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,

“Single-ISA heterogeneous multi-core architectures: The potential for processor

power reduction”, in ACM/IEEE MICRO, pp. 81–92, 2003.

[5] K. Baynes, C. Collins, E. Fiterman, B. Ganesh, P. Kohout, C. Smit, T. Zhang, and

B. Jacob, “The performance and energy consumption of embedded real-time

operating systems”, in IEEE Transactions on Computers, vol.52, no.11, pp. 1454-

1469, November 2003.

[6] F. Steimann and P. Mayer, “Patterns of Interface-Based Programming”, in

Journal of Object Technology, vol. 4, no. 5, pp. 75-94, July-August 2005.

http://www.jot.fm/issues/issue_2005_07/article1

[7] T. King, “Dynamic data structures: Theory and application”, Academic Press,

1992.

[8] R. Horvick, “Data Structures Succinctly Part 1”, Technology Resource Portal,

Syncfusion Inc., 2012.

[9] N. Kokholm and P. Sestoft, “The C5 Generic Collection Library for C# and CLI”,

Technical Report ITU-TR-2006-76, IT University of Copenhagen, January 2006.

https://www.itu.dk/research/c5/latest/ITU-TR-2006-76.pdf

[10] S. Millett and N. Tune, “Patterns, Principles, and Practices of Domain-Driven

Design”, John Wiley & Sons, 20 April 2015.

[11] J. Eastep, D. Wingate and A. Agarwal, “Smart data structures: an online machine

learning approach to multicore data structures”, in Proceedings of the 8th ACM

International Conference on Autonomic Computing, pp. 11-20, 2011.

179

[12] E. G. Daylight, D. Atienza, A. Vandecappelle, F. Catthoor and J. M. Mendias,

“Memory-access-aware data structure transformatins for embedded software with

dynamic data accesses”, in IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol.12, no.3, pp. 269-280, March 2004.

[13] J. Flinn and M. Satyanarayanan, “Energy-aware adaptation for mobile

applications”, ACM SIGOPS Operating Systems Review, vol. 34, no. 2, pp. 13-14,

2000.

[14] J. Aguilar-Saborit, P. Trancoso, V. Muntes-Mulero and J.L. Larriba-Pey,

“Dynamic adaptive data structures for monitoring data streams”, Data &

Knowledge Engineering, Science Direct, vol.66, pp. 92-115, March 2008.

[15] J. Ansel, “Autotuning programs with algorithmic choice”, Doctoral Dissertation,

Massachusetts Institute of Technology, 2014.

[16] “Watts Up? Plug Load Meters”, Watts Up?.

https://www.wattsupmeters.com/secure/products.php?pn=0

[17] G. Franco, “A-Star (A*) Implementation in C#”, CodeGuru, 6 September 2006.

http://www.codeguru.com/csharp/csharp/cs_misc/designtechniques/article.php/c1

2527/AStar-A-Implementation-in-C-Path-Finding-PathFinder.htm

[18] S. Natav, “Huffman Encoding - From Implementation to Archive”, CodeProject,

18 May 2009. http://www.codeproject.com/Articles/36415/HuffMan-Encoding-

From-Implementation-to-Archive-Pa

[19] B. Lapthorn, “A Simple C# Genetic Algorithm”, CodeProject, 21 August 2003.

http://www.codeproject.com/Articles/3172/A-Simple-C-Genetic-Algorithm

[20] J. McCaffrey, “Neural Networks Using C#”, Technical Resource Portal,

Syncfusion Inc., 2014.

[21] R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and

model selection”, in Proceedings of the 14th International Joint Conference on

Artificial Intelligence, vol. 2, pp. 1137-1143, 1995.

[22] I. Millington, “Artificial Intelligence for Games”, Morgan Kaufmann Publisher,

Elsevier Inc., 2006.

[23] J. D. Vega, “Intel Power Gadget.” Intel Developer Zone, 7 January 2014,

https://software.intel.com/en-us/articles/intel-power-gadget-20

180

[24] S. Naumann, M. Dick, E. Kern and T. Johann, “The GREENSOFT Model: A

reference model for green and sustainable software and its engineering”,

Sustainable Computing: Informatics and Systems, vol. 1, no. 4, (2011), pp. 294-

304.

[25] S. S. Mahmoud and I. Ahmad, “A Green Model for Sustainable Software

Engineering”, International Journal of Software Engineering and Its

Applications, vol. 7, no. 4, July, 2013.

[26] P. Lago and I. Crnkovic, “Framing sustainability as a property of software

quality”, Article in Communication of the ACM, October 2015.

[27] J. Michanan, R. Dewri and M. J. Rutherford, “Predicting Data Structures for

Energy Efficient Computing”, in International Green and Sustainable Computing

Conference (IGSC), December 2015.

[28] E. Freeman, E. Robson, B. Bates and K. Sierra. “Head first design pattern”,

O’Reilly Media, Inc., October 2004.

[29] A. Gupta, T. Zimmermann, C. Bird, N. Nagappan, T. Bhat and S. Emran,

“Detecting Energy Patterns in Software Development”, Microsoft Research.

Technical Report, 2011.

[30] F. Chen, J. Grundy, Y. Yang, J. Schneider and Q. He, “Experimental Analysis of

Task-based Energy Consumption in Cloud Computing Systems”, in Proceedings

of the 4th ACM/SPEC International Conference on Performance Engineering, pp.

295-306, 2013.

[31] I. A. Gul and W. Hasselbring, “Towards Power Consumption Reduction by User

Behavior Monitoring at Application level”, in International Conference on

Architecture of Computing Systems (ARCS), February 2010.

[32] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze and D. Grossman,

“EnerJ: approximate data types for safe and general low-power computation”, in

Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language

Design and Implementation, vol. 46, issue 6, pp. 164-174, June 2011.

[33] C. Sahin, F. Cayci, I.L.M Gutierrez, J. Clause, F. Kiamilev, L. Pollock, and K.

Winbladh, “Initial explorations on design pattern energy usage”, in 2012 First

International Workshop on Green and Sustainable Software (GREENS), pp. 55-

61, IEEE, 2012.

[34] D. Jurafsky and J. H. Martin, “Speech and Language Processing”, Prenctice Hall,

May 16, 2008.

181

[35] C. Sterling, “Energy Consumption tool in Visual Studio 2013”, Microsoft

Application Lifecycle Management, July 10, 2013,

http://blogs.msdn.com/b/visualstudioalm/archive/2013/07/10/energy-

consumption-tool-in-visual-studio-2013.aspx

[36] J. Arora, “Introduction to optimum design”, Academic Press, 2004.

[37] “Atlys Board Reference Manual”, Digilent Inc., 2012,

http://www.digilentinc.com/Data/Products/ATLYS/Atlys_rm.pdf.

[38] “Atlys board support files for EDK BSB wizard. Supports EDK 13.2 - 14.2 for

both AXI and PLB buses”, Digilent Inc., 2012,

http://www.digilentinc.com/Data/Products/ATLYS/Atlys_BSB_Support_v_3_6.zi

p.

[39] A. Gordon-Ross, F. Vahid, and N. D. Dutt, “Fast configurable-cache tuning with

a unified second-level cache”, in IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, pp. 80-91, 2009.

[40] Y. Hara., H. Tomiyama, S. Honda, H. Takada, and K. Ishii, “CHStone: A

benchmark program suite for practical c-based high-level synthesis”, in 2008

IEEE International Symposium on Circuits and Systems (ISCAS 2008), pp. 1192-

1195, IEEE, 2008.

[41] M. Harman, W. B. Langdon, Y. Jia, D. R. White, A. Arcuri, and J. A. Clark,

“The GISMOE challenge: constructing the Pareto program surface using genetic

programming to find better programs (keynote paper)”, in 2012 Proceedings of

the 27th IEEE/ACM International Conference on Automated Software

Engineering (ASE 2012), pp.1-14, 3-7 Sept 2012.

[42] J. C. McCullough, A. Yuvraj, J. Chandrashekar, S. Kuppuswamy, A. C. Snoeren,

and R. K. Gupta, “Evaluating the effectiveness of model-based power

characterization”, in USENIX Annual Technical Conference, 2011.

[43] C. J. Petrie, T. A. Webster, and M. R. Cutkosky, “Using Pareto Optimality to

Coordinate Distributed Agents”, AIEDAM Special Issue on Conflict Management

vol. 9, pp. 269-281, 1995.

[44] R. Bekkererman, M. Bilenko and J. Langford, “Scaling up machine learning—

parallel and distributed approaches”, Cambridge University Press, 2012.

[45] C. Su and A. M. Despain, “Cache design trade-offs for power and performance

optimization: a case study”, in Proceedings of the 1995 International Symposium

on Low Power Design, ACM, 1995.

182

[46] Xilinx Inc., “Field Programmable Gate Array (FPGA),” 2013,

http://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm.

[47] N. Lopez, O. Aguirre, J. F. Espiritu, and H. A. Taboada, “Using game theory as a

post-Pareto analysis for renewable energy integration problems considering

multiple objectives”, in Proceedings of the 41st International Conference on

Computers & Industrial Engineering, pp. 678-683, 2011.

[48] C. Zhang, F. Vahid, and W. Najjar, “A highly configurable cache architecture for

embedded systems”, in Proceedings of 30th Annual International Symposium on

Computer Architecture, IEEE, 2003.

[49] F. Rezzi, L. Collamati, M. Costagliola, and M. Cutrupi, “Battery management in

mobile devices”, in Frequency References on Power Management for SoC and

Smart Wireless Interfaces, Springer International Publishing, pp.147-168, 2014.

[50] R. Mittal, A. Kansal, and R. Chandra, “Empowering developers to estimate app

energy consumption”, in Proceedings of the 18th Annual International

Conference on Mobile Computing and Networking, pp. 317-328, ACM, 2012.

[51] S. Rivoire , P. Ranganathan and C. Kozyrakis, “A comparison of high-level full-

system power models”, in Proceedings of the 2008 Conference on Power Aware

Computing and Systems, pp.3-3, 2008.

[52] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched Pareto genetic algorithm

for multiobjective optimization”, in Proceedings of the First IEEE Conference on

Evolutionary Computation, IEEE World Congress on Computational Intelligence,

vol.1, pp. 82-87, 1994.

[53] S.Ruth, “Green IT More Than a Three Percent Solution?”, Internet Computing,

IEEE , vol.13, no.4, pp.74-78, July-Aug. 2009.

[54] D. Wang, “Meeting Green Computing Challenges”, in Proceedings of the

International Symposium on High Density packaging and Microsystem

Integration, vol., no., pp.1-4, 26-28 June 2007.

[55] L. Smarr, “Project Greenlight: optimizing cyber-infrastructure for a carbon-

constrained”, World Computer, pp.22-27. January 2010.

[56] BTW, “The Dividends from Green Offices”, Bloomberg Business, November 24.

2009, http://www.bloomberg.com/bw/stories/2009-11-24/btw

[57] “Going Green May Reduce Your Taxes—IRS Tax Tip 2010-66”, IRS, 06 June

2013. https://www.irs.gov/uac/Going-Green-May-Reduce-Your-Taxes

183

[58] “Consumer-goods’ brands that demonstrate commitment to sustainability

outperform those that don’t”, Nielson, 12 October 2015.

http://www.nielsen.com/us/en/press-room/2015/consumer-goods-brands-that-

demonstrate-commitment-to-sustainability-outperform.html

[59] K. S. Vallerio , L. Zhong , N. K. Jha, “Energy-Efficient Graphical User Interface

Design”, in IEEE Transactions on Mobile Computing, v.5 n.7, p.846-859, July

2006.

[60] G. Mackey, S. Sehrish, J. Bent, J. Lopez, S. Habib and J. Wang, “Introducing

map-reduce to high end computing”, Petascale Data Storage Workshop, vol. 3,

pp.1-6, 17 November 2008.

[61] Y. Fei, S. Ravi , A. Raghunathan and N. K. Jha, “Energy-optimizing source code

transformations for operating system-driven embedded software”, in ACM

Transactions on Embedded Computing Systems (TECS), vol.7, no.1, pp.1-26,

December 2007.

[62] P. Nastu, “82 Percent of Consumers Buy Green, Despite Economy”,

Environmental Leader, 5 February, 2009.

http://www.environmentalleader.com/2009/02/05/82-percent-of-consumers-buy-

green-despite-economy/#ixzz3y0gZzLUq

[63] Developer Network, “Three-Layered Services Application”, Microsoft, 22

January 2016. https://msdn.microsoft.com/en-us/library/ff648105.aspx

[64] G. Qu and M. Potkonjak, “Energy minimization with guaranteed quality of

service”, In Proceedings of the International Symposium on Low Power

Electronics and Design, p.43-49, 25-27July, 2000.

[65] L. Zhong and N. K. Jha, “Energy efficiency of handheld computer interfaces:

limits, characterization and practice”, in Proceedings of the 3rd International

conference on Mobile Systems, Applications, and Services, 06-08 June 2005.

[66] R. Whitmam, “How much power does a black interface really save on AMOLED

displays?”, GreenBot, 21 October 2014.

http://www.greenbot.com/article/2834583/how-much-power-does-a-black-

interface-really-save-on-amoled-displays.html

[67] J. Williams and L. Curtis, “Green: The New Computing Coat of Arms?”, IT

Professional, vol.10, no.1, pp.12-16, January 2008.

[68] L. Benini and G. Micheli, “System-level power optimization: techniques and

tools”, in ACM Transactions on Design Automation of Electronic Systems

(TODAES), vol.5 no.2, pp.115-192, April 2000.

184

[69] W. W. Eckerson, “Three Tier Client/Server Architecture: Achieving Scalability,

Performance, and Efficiency in Client Server Applications”, in Open Information

Systems 10, January 1995.

[70] K. C. Barr and K. Asanović, “Energy-aware lossless data compression”, in ACM

Transactions on Computer Systems (TOCS), vol.24 no.3, pp.250-291, August

2006.

[71] C. E. Jones , K. M. Sivalingam , P. Agrawal and J. C. Chen, “A Survey of Energy

Efficient Network Protocols for Wireless Networks”, Wireless Networks, vol.7

no.4, pp. 343-358, 1 August 2001.

[72] G. Mathur, P. Desnoyers , D. Ganesan and P. Shenoy, “Capsule: an energy-

optimized object storage system for memory-constrained sensor devices”, in

Proceedings of the 4th International Conference on Embedded Networked Sensor

Systems, October 31-November 03, 2006.

[73] J. Ousterhout , P. Agrawal , D. Erickson , C. Kozyrakis , J. Leverich , D.

Mazières, S. Mitra , A. Narayanan , G. Parulkar , M. Rosenblum , S. M. Rumble ,

E. Stratmann and R. Stutsman, “The case for RAMClouds: scalable high-

performance storage entirely in DRAM”, ACM SIGOPS Operating Systems

Review, vol.43, no.4, January 2010.

[74] C. H. Chang, “A Low-Cost Green IT Design and Application of VHSP Based on

Virtualization Technology,” in International Conference on Computational

Science and Engineering, vol.3, pp.225-230, 29-31 August 2009.

[75] K. Lange, “Identifying Shades of Green: The SPECpower Benchmarks”,

Computer, p.95-97, March 2009.

[76] “EnergyBench Benchmark Software”, Industry-Standard Benchmarks for

Embedded Systems, 22 January 2016.

http://www.eembc.org/benchmark/power_sl.php

[77] “EFM32 Wonder Gecko Development Kit”, Silicon Lab, 22 January 2016.

https://www.silabs.com/products/mcu/lowpower/Pages/efm32wg-dk3850.aspx

[78] J. Flinn and M. Satyanarayanan, “PowerScope: A tool for profiling the energy

usage of mobile applications”, in Proceedings of the Second IEEE Workshop on

Mobile Computer Systems and Applications, pp.2, 25-26 February 1999.

[79] A. Kansal, F. Zhao, J. Liu, Nupur Kothari, and A. Bhattacharya, “Virtual Machine

Power Metering and Provisioning” , in ACM Symposium on Cloud Computing

(SOCC), ACM., 10 June 2010.

185

[80] J. D. Vega, “Using the Intel® Power Gadget 3.0 API on Windows”, Intel

Developer Zone, 7 January 2014. https://software.intel.com/en-

us/blogs/2014/01/07/using-the-intel-power-gadget-30-api-on-windows

[81] A. Sinha and A. P. Chandrakasan, “JouleTrack: a web based tool for software

energy profiling”, in Proceedings of the 38th annual Design Automation

Conference, p.220-225, June 2001.

[82] J. Baliga, R. W. A. Ayre, K. Hinton, R. S. Tucker, “Green Cloud Computing:

Balancing Energy in Processing, Storage and Transport,” in Proceedings of the

IEEE, no.99, pp.1-19, 29 August 2010.

[83] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and M.

Rinard, “Power-Aware Computing with Dynamic Knobs”, MIT Computer Science

and Artificial Intelligence Laboratory Technical Report, May 14, 2010.

[84] N. Amsel and B. Tomlinson, “Green tracker: a tool for estimating the energy

consumption of software,” in Proceedings of the 28th of the international

conference extended abstracts on Human factors in computing systems, 10–

15April 2010.

[85] S. Roberts, S. Wright, D. Lecomber, C. January, J. Byrd, X. Oró and S. Jarvis,

“POSE: A Mathematical and Visual Modelling Tool to Guide Energy Aware

Code Optimisation”, in 6th International Green and Sustainable Computing

Conference, 14-16 December 2015.

[86] S. Murugesan S, “Harnessing Green IT: Principles and Practices”, IT

professional, vol. 10, no. 1, pp. 24-33, January 2008.

[87] A. Y. Zomaya, and Y. C. Lee, “Energy Efficient Distributed Computing

Systems”, Wiley, vol.88, 2012.

[88] G. Fettweis and E. Zimmermann, “ICT energy consumption—trends and

challenges”, in Proceedings of the 11th International Symposium on Wireless

Personal Multimedia Communications, vol. 2, no. 4, p. 6, September 2008.

[89] “America's Data Centers Consuming and Wasting Growing Amounts of Energy”,

Natural Resources Defense Council (NRDC), 6 February 2015.

http://www.nrdc.org/energy/data-center-efficiency-assessment.asp

[90] “Energy-Efficient Computing Systems, dynamic adaptation of Quality of Service

and approximate computing”, Europa, 27 November 2014.

http://ec.europa.eu/newsroom/dae/document.cfm?doc_id=8756

186

[91] “Approximate computing' improves efficiency, saves energy”, Purdue University,

17 December 2013.

http://www.purdue.edu/newsroom/releases/2013/Q4/approximate-computing-

improves-efficiency,-saves-energy.html

[92] “Ericsson energy and carbon report”, Ericsson, November 2014.

http://www.ericsson.com/res/docs/2014/ericsson-energy-and-carbon-report.pdf

[93] W. M. Adams, “The future of sustainability. Re-thinking environment and

development in the twenty-first century: technical report”, IUCN, 2006.

[94] B. Penzenstadler, V. Bauer, C. Calero and X. Franch, “Sustainability in software

engineering: A systematic literature review”, in Proceedings of the International

Conference on Evaluation and Assessment in Software Engineering, pp. 32–4, 14-

15 May 2012.

[95] F. Fakhar, R. U. Rasool and O. Malik. “Distributed Green Compiler”, in

Proceedings of the 2011 Fourth IEEE International Conference on Utility and

Cloud Computing (UCC '11), pp.421-426, 2011.

[96] G. Calandrini, A. Gardel, I. Bravo, P. Revenga, J. L.Lázaro and F. J. Toledo-

Moreo, “Power measurement methods for energy efficient applications”, Sensors,

2013.

[97] “The Green Grid Data Center Power Efficiency Metrics: PUE and DCiE”, Metrics

& Measurments White Paper, The Green Grid, retrieved on 23 January 2016.

http://www.thegreengrid.org/sitecore/content/Global/Content/white-papers/The-

Green-Grid-Data-Center-Power-Efficiency-Metrics-PUE-and-DCiE.aspx

[98] H. Chen and W. Shi, “Power measuring and profiling: the state of art,” Handbook

of Energy-Aware and Green Computing, Chapman and Hall/CRC, Boca Raton,

2012.

[99] L. Ardito, “Energy-aware Software”, Dissertation, Tese de Doutorado,

Politecnico di Torino, 2014.

[100] P. Zhou, B. W. Ang and K. L. Poh, “Measuring environmental performance under

different environmental DEA technologies”, Energy Economics, vol.30, no.1,

pp.1-14, 2008.

[101] O. Soysal, S. Ayyorgun and M. Demirbas, “PowerNap: An energy efficient MAC

layer for random routing in wireless sensor networks”, in 2011 8th Annual IEEE

Communications Society Conference on Sensor, Mesh and Ad Hoc

Communications and Networks (SECON), pp. 10-18, June 2011.

187

[102] S. Abdulsalam, Z. Zong, Q. Gu and M. Qiu, “Using the Greenup, Powerup and

Speedup Metrics to Evaluate Software Energy Efficiency,” 6th International

Green and Sustainable Computing, 14-16 December 2015.

[103] X. Zhang, “Operating system-level on-chip resource management in the multicore

era”, Doctoral dissertation, University of Rochester, 2010.

[104] D. Lyon, “The Discrete Fourier Transform, Part 6: Cross-Correlation”, Journal of

Object Technology, pp. 17-22, 2010.

[105] “Sustainability,” English Dictionary, Collins.

http://www.collinsdictionary.com/dictionary/english/sustainability

[106] “Sustainable Development”, International Institute for Sustainable Development,

23 January 2016. https://www.iisd.org/topic/sustainable-development

[107] C. Calero and M. Piattini, “Green in Software Engineering”, Springer, 3 April,

2015.

[108] “Software Engineering for Sustainability”, Institute for Software Research,

University of California, Irvine, retrieved on 23 January 2016.

https://isr.uci.edu/content/software-engineering-sustainability

[109] “Defining Life Cycle Assessment (LCA)”, US Environmental Protection Agency,

17 October 2010. http://www.gdrc.org/uem/lca/lca-define.html

[110] S. Wang, H. Chen and W. Shi, “SPAN: A software power analyzer for multicore

computer systems”, Sustainable Computing: Informatics and Systems, vol. 1, no.

1, pp. 23-34, 2011.

[111] N. Amsel, Z. Ibrahim, A. Malik and B. Tomlinson, “Toward sustainable software

engineering: NIER track”, in 2011 IEEE 33rd International Conference on

Software Engineering (ICSE), pp. 976-979, 2011.

[112] C. Canal, J. M. Murillo and P. Poizat, “Software Adaptation”, L’Objet, vol. 12,

no. 1, pp. 9–31, 2006.

[113] P. Oreizy, N. Medvidovic and R. N. Taylor, “Runtime software adaptation:

framework, approaches, and styles”, in Companion of the 30th International

Conference on Software Engineering, pp. 899-910, ACM, May 2008.

[114] H. Hoffmann, “JouleGuard: energy guarantees for approximate applications”, in

Proceedings of the 25th Symposium on Operating Systems Principles, pp. 198-

214, ACM, October 2015.

188

[115] F. Alessi, P. Thoman, G. Georgakoudis, T. Fahringer and D. S. Nikolopoulos,

“Application-level Energy Awareness for OpenMP”, in OpenMP: Heterogenous

Execution and Data Movements, Springer International Publishing, pp. 219-232,

2015.

[116] G. Valetto and G. Kaiser, “A case study in software adaptation”, in Proceedings

of the First Workshop on Self-Healing Systems, pp. 73-78, ACM, November

2002.

[117] S. D. Ramchurn, P. Vytelingum, A. Rogers and N. R. Jennings, “Putting the

‘Smarts’ into the Smart Grid: A Grand Challenge for Artificial Intelligence,” in

Communications of the ACM, vol. 55, vo. 4, pp. 86-97, April 2012.

[118] C. Reinisch, M. J. Kofler, and W. Kastner, “ThinkHome: A smart home as digital

ecosystem”, in 2010 4th IEEE International Conference on Digital Ecosystems

and Technologies (DEST), pp. 256-261, IEEE, April 2010.

[119] T. A. Nguyen and M. Aiello, “Energy intelligent buildings based on user activity:

A survey”, Energy and Buildings, vol. 56, pp. 244-257, 2013.

[120] A. Vojdani, “Smart integration,” Power and Energy Magazine, IEEE, vol.6, no.6,

pp. 71-79, 2008.

[121] M. Lorenz, L. Wehmeyer, and T. Dr¨ager T. “Energy aware Compilation for

DSPs with SIMD instructions”, in Proceedings of Languages, compilers and tools

for embedded systems: software and compilers for embedded systems

LCTES/SCOPES ’02, pp. 94-101, 2002.

[122] N. Z. Azzemi, “A Multiobjective Evolutionary Approach for Constrained Joint

Source Code Optimization”, in Proceedings of ISCA 19th International

Conference on Computer Application in Industry (CAINE 2006), Las Vegas,

Nevada, USA, pp. 175–180, 2006.

[123] I. Meedeniya, B. Buhnova, A. Aleti, and L. Grunske, “Architecture-Driven

Reliability and Energy Optimization for Complex Embedded Systems”, in

Proceedings of the International Conference on the Quality of Software

Architectures (QoSA’10), Springer Verlag, pp. 52–67, 2010.

[124] J. P. Katoen, M. Khattri, and I. S. Zapreev, “A Markov reward model checker”, in

Proceedings of the QEST:International Conference on the Quantitative

Evaluation of Systems, IEEE Computer Society, pp. 243–244, 2005.

[125] F. Marcelloni, and M. Vecchio, “Enabling energy-efficient and lossy-aware data

compression in wireless sensor networks by multi-objective evolutionary

optimization”, Information Sciences, vol. 180, pp. 1924-1941, 2010.

189

[126] S. Liu, R. Srivastava, C. E. Koksal, and P. Sinha, “Pushback: A hidden Markov

model based scheme for energy efficient data transmission in sensor networks”,

Ad Hoc Netw, pp. 973-986, July 2009.

[127] C. Mandery, “Distributed N-Gram Language Models: Application of Large

Models to Automatic Speech Recognition”, Doctoral Dissertation, Informatics

Institute, 2011.

[128] “Internet of Things’ connected devices to almost triple to over 38 billion units by

2020”, Juniper Research, retrieved on 27 January 2016.

http://www.juniperresearch.com/press/press-releases/iot-connected-devices-to-

triple-to-38-bn-by-2020

[129] L. Hardesty, “Energy-friendly chip can perform powerful artificial-intelligence

tasks”, MIT News on Campus and Around the World, 3 February 2016.

http://news.mit.edu/2016/neural-chip-artificial-intelligence-mobile-devices-0203

[130] B. Steigerwald, R. Chabukswar, K. Krishnan, and J. D. Vega, “Creating energy

efficient software”, Intel White Paper, 2008.

[131] W. E. Deming, “The New Economics for Industry, Government”, The MIT Press,

2nd edition, p. 35, 2000.

[132] J. Gray, “Sort Benchmark Homepage”, retrieved on March 8, 2016.

http://www.sortbenchmark.org

[133] J. Zhang, A. Musa and W. Le, “A comparison of energy bugs for smartphone

platforms”, in 1st International Workshop on the Engineering of Mobile-Enabled

Systems (MOBS), pp. 25-30, IEEE, 2013.

[134] “Trepn Power Profiler”, Qualcomm Developer Network, retrieved on March 2016.

https://developer.qualcomm.com/software/trepn-power-profiler

[135] M. Gordon, L. Zhang, B. Tiwana, R. P. Dick, Z. M. Mao and L. Yang,

“PowerTutor: a power monitor for android-based mobile platforms”, University of

Michigan, retrieved on March 2016.

http://ziyang.eecs.umich.edu/projects/powertutor/

[136] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and L. Yang,

“Accurate online power estimation and automatic battery behavior based power

model generation for smartphones”, in Proceedings of the eighth IEEE/ACM/IFIP

international conference on Hardware/software codesign and system synthesis

pp. 105-114, ACM, October 2010.

190

[137] “Measure Energy Impact with Instruments”, iOS Developer Library, retrieved on

March 2016.

https://developer.apple.com/library/ios/documentation/Performance/Conceptual/E

nergyGuide-iOS/MonitorEnergyWithInstruments.html

[138] W. H. Wang and V. De, “Intel Labs ISSCC 2014 Highlights Energy Efficiency

Research”, Intel Labs Energy Efficiency Research, retrieved on March 2016.

http://www.intel.com/newsroom/kits/isscc/2014/pdfs/Intel_Labs_Energy_Efficien

cy_Research.pdf

[139] “CodeXL – Powerful debugging, profiling & analysis”, AMD Developer Central,

retrieved on March 2016. http://developer.amd.com/tools-and-sdks/opencl-

zone/codexl/

[140] C. Yoon, D. Kim, W. Jung, C. Kang and H. Cha, “Appscope: Application energy

metering framework for android smartphone using kernel activity monitoring”, in

Presented as part of the 2012 USENIX Annual Technical Conference (USENIX

ATC 12), pp. 387-400, 2012.

[141] J. Michanan, “DUGreen Project”, GitHub, retrieved on April 2016,

https://github.com/michanaj/DUGreen-Project.

191

APPENDICES

Appendix A: CRUD-Based C5 Collection Class Diagram

192

Appendix B: GreenC5 Class Diagram

193

Appendix C: Learning Algorithms

Algorithm C.1: Offline Supervised Learning and Accuracy Testing of the ANN Classifier

Input: Training sets, additional test sets, program validation sets

Output: Weights and biases (a priori model), Gaussian Normalization Values, Accuracy

Results and X and Y decoded value dictionaries

 //procedure accuracy testing for the testData using winner-takes all strategy

 procedure Accuracy(testData)

 begin

 // Percentage correct using a winner-takes-all method

 numCorrect := 0

 numWrong := 0

 for each row in testData do

 xValues := the first numInput items of row// Get x-values, first 10

 tValues:= the last numOutput items of row// Get target values (actual y-value vector)

 yValues := NN.ComputeOutputs(xValues) //get the computed y-value vector from NN

 maxIndex := Helpers.MaxIndex(yValues) // Which cell in yValues has the largest value?

 if tValues[maxIndex] =1.0 then

 numCorrect := numCorrect + 1

 else
 numWrong := numWrong+ 1

 end if

 end for

 return numCorrect / (numCorrect + numWrong);

 end

 procedure Main();

begin
//1. Read data from dataset files

trainingSet := read Training set from a file

 testSets := read Additional Test sets and program validation sets from files

//2. Encode non-numeric Y value of datasets to numeric values using 1-of-N dummy encoding

//and save the encoded dictionary for Y values

 Helpers.EncodeFile(trainingSet, 6, “dummy”, out encodedYDictionary)

 foreach set in testSets do

 Helpers.EncodeFile(set, 6, “dummy”, encodedYDictionary)//column 6 in the training set

//(0based)

 end for

//3. Encoded non-numeric X values of all datasets to numeric values using 1-of-(N-1) effects

//encoding and save the encoded dictionary for X values

Helpers.EncodeFile(trainingSet, 0, “effects”, out encodedXDictionary)//column 0 in the

//training set

foreach set in testSets do

 Helpers.EncodeFile(set, 0, “effects”, encodedXDictionary)//col 6 in the training set

//(0based)

 end for

 //4. Normalize numeric X values of datasets using Gaussian Normalization (normalize number

//to between -10 and 10) on columns 5,6,7,8,9 (number columns got expanded after the

194

//encoding above)

Helpers.GaussNormal(trainingSet, 5, out gaussStdvX2_ElmSize, out gaussMeanX2_ElmSize)

 Helpers.GaussNormal(trainingSet, 6, out gaussStdvX3_C, out gaussMeanX3_C)

 Helpers.GaussNormal(trainingSet, 7, out gaussStdvX4_R, out gaussMeanX4_R)

 Helpers.GaussNormal(trainingSet, 8, out gaussStdvX5_U, out gaussMeanX5_U)

 Helpers.GaussNormal(trainingSet, 9, out gaussStdvX6_D, out gaussMeanX6_D)

 foreach set in testSets do

 Helpers.GaussNormal(set, 5, gaussStdvX2_ElmSize, gaussMeanX2_ElmSize)

 Helpers.GaussNormal(set, 6, gaussStdvX3_C, gaussMeanX3_C)

 Helpers.GaussNormal(set, 7, gaussStdvX4_R, gaussMeanX4_R)

 Helpers.GaussNormal(set, 8, gaussStdvX5_U, gaussMeanX5_U)

 Helpers.GaussNormal(set, 9, gaussStdvX6_D, gaussMeanX6_D)

 end for

 //5. Split training set to 80% train set and 20% test set (Hold-Out validation method)

// shuffle the order of training set rows randomly and split them to two sets

 Helpers.MakeTrainTest(traininSet, out trainData, out testData);

 //6. Create a 10-15-9 Neural Network

 numInput := 10

numHidden := 15

numOutput := 9

 NeuralNetwork NN := new NeuralNetwork(numInput, numHidden, numOutput);

 //7. Start training the NN on the trainData (80% of the training set) with these parameters

 maxEpochs := 3000

 learnRate := 0.02

 momentum: = 0.01

 stopError:= 0.04

NN.Train(trainData, maxEpochs, learnRate, momentum, stopError)

 //8. Get the weights and biases (contains both)

 weights := NN.GetWeights()

 //9. Accuracy testing on the testData (20% of the Training set)

 testAccuracy := Accuracy(testData)

 //10. Accuracy testing on the remaining additional test sets and program validation sets

foreach set in testSets do

 testAccuracies := Accuracy(set)

 end for

 //11. Save all the weights and biases, Gaussian Normalization means and standard deviation

//values, accuracy results and others info to a file

 results := { numInput, numHidden, numOutput, encodedXDictionary , encodedYDictionary

,weights, gaussStdvs, gaussMeans, testAccuracy, testAccuracies}

 Helpers.SaveToFile(results)

 end

195

Algorithm C.2: Online learning, classifying and predicting the most energy efficient C5

data structure and prediction accuracy testing

Input: NNValues, Additional test sets, program validation sets, program CRUD sequences

Output: Accuracy results

 //procedure to compute accuracy for the predicted DS sequence with the actual one

 procedure ComputeAccuracy(predictedDSSeqList, actualDSSeqList)

 begin

 numCorrect := 0

 totalCount := actualDSSeqList.Count

 index := 0

 for each ds in actualDSSeqList do

 if predictedDSSeqList[index] = ds then

 numCorrect := numCorrect + 1

 end if

 index := index+ 1

 end for

 return numCorrect / totalCount

 end

 procedure Main()

 begin

 //1. Read all parameter values for the NN classifier

NNResults := read NN results from the result file

 numInput := NNResults.numInput, numHidden:= NNResults.numHidden

numOutput:= NNResults.numOutput

 weights:= NNResults.weights

 gaussMeanX2 := NNResults.gaussMeanX2, gaussStdvX2:= NNResults.gaussStdvX2

gaussMeanX3 := NNResults.gaussMeanX3, gaussStdvX3:= NNResults.gaussStdvX2

 gaussMeanX4 := NNResults.gaussMeanX4, gaussStdvX4:= NNResults.gaussStdvX2

 gaussMeanX5 := NNResults.gaussMeanX5, gaussStdvX5:= NNResults.gaussStdvX2

gaussMeanX6 := NNResults.gaussMeanX6, gaussStdvX6:= NNResults.gaussStdvX2

 encodedXDictionary := NNResults.encodedYDictionary

encodedYDictionary := NNResults.encodedYDictionary

//2. Create a Neural Network with the same set of the tuned weights and biases

NeuralNetwork NN := new NeuralNetwork(numInput, numHidden, numOutput);

 NN.SetWeights(weights)

 //3. Encoded the X1 (Interface) values to numeric data

 x1Interfaces:= {ICollecction, ICollectionBag, ICollectionSet, IList, IListBag, IListSet}

 x1EncodedValues := {}

 for each x1 in x1Interfaces do

 //this will encode x1 value to numeric values using 1-of-(N-1) effects encoding

 x1EncodedValue :=Helpers.Encoded(x1, “effects”, encodedXDictionary)

 add x1EncodedValue to x1EncodedValues

 end for

 //4. Create a N-Gram predictor

 nValue := 2 //bi-gram

 NGramPredictor PREDICTOR = new NGramPredictor(nValue)

//5. Start by reading program CRUD sequences from files (19 progCRUD files each contains

//full CRUD sequences from start to end of the program)

196

 maxIteration := 5 //control how many times of each program sequence to be running

 iteration : = 0

for each x1EncodedValue in x1EncodedValues do //loop through each encoded Interface

 while iteration < maxIteration do

 for each programSeq in progCRUDSeqFiles do //this will ignore the last remainder

 startSize :=0 //assume each data structure always start with size 0

 endSize := 0

 nGram := new List() //this is for storing N-gram sequence

 n-1Gram := new List() //this for storing N-1 sequence for predicting

 actualDSSeqList := read from program sequence file

 classifiedDSSeqList := new List() //to store the computed DS by the classifier

 predictedDSSeqList := new List() //to store the predicted DS sequence

 for each 10KSeq in programSeq do //this will ignore the last remainder

 xValuesNoX1 := translateToXValues(10KSeq, startSize , out endSize)

 //normalize the X values

 x2Normal:= (xValuesNoX1[0] - gaussMeanX2)/ gaussStdvX2

 x3Normal:= (xValuesNoX1[1] – gaussMeanX3)/ gaussStdvX3

 x4Normal:= (xValuesNoX1[2] – gaussMeanX4)/ gaussStdvX4

 x5Normal:= (xValuesNoX1[3] – gaussMeanX5)/ gaussStdvX5

 x6Normal:= (xValuesNoX1[4] - gaussMeanX24)/ gaussStdvX4

xEncodedNormalizedValues :=

{x1EncodedValue} combines with { x2Normal, x3Normal,

x4Normal, x5Normal, x6Normal}

 yValues := NN.ComputeOutputs(xEncodedNormalizedValues)

 maxIndex := Helpers.MaxIndex(yValues)

 computedDs := encodedYDictionary[maxIndex]

 classifiedDSSeqList.Add(computedDs)

 nGram := get the last nValue items in classifiedDSSeqList

 n-1Gram := get the last nValue-1 items in classifiedDSSeqList

 if nGram.Count = nValue then //register the sequence to N-Gram

 PREDICTOR.Register(nGram.ToArray());

 nGram.Clear()

 end if

 if n-1Gram.Count = nValue-1 then

 predictedDs := PREDICTOR.PredictNext(n-1Gram)

 n-1Gram.Clear()

 else

 predictedDs := “Unknown”

 end if

 predictedDSSeqList.Add(predictedDs)

 startSize:= endSize

 end for

 accuracy := ComputeAccuracy(predictedDSSeqList, actualDSSeqList)

 end for

 save accuracy result of each Interface and iteration to a file

 end while

end for

 end

	GreenC5: An Adaptive, Energy-Aware Collection for Green Software Development
	Recommended Citation

	tmp.1487090167.pdf.PVFtY

