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ABSTRACT 

 

Dynamic data structures in software applications have been shown to have a large 

impact on system performance. In this paper, we explore energy saving opportunities of 

interface-based dynamic data structures. Our results suggest that savings opportunities 

exist in the C5 Collection between 16.95% and 97.50%. We propose a prototype and 

architecture for creating adaptive green data structures by applying machine learning tools 

to build a model for predicting energy efficient data structures based on the dynamic 

workload. Our neural network model can classify energy efficient data structures based on 

features such as the number of elements, frequency of operations, interface and set/bag 

semantics. The 10-fold cross validation result show 95.80% average accuracy of these 

predictions. Our n-gram model can accurately predict the most energy efficient data 

structure sequence in 19 simulated and real-world programs—on average, with more than 

50% accuracy and up to 98% using a bigram predictor. Our GreenC5 prototype 

demonstrates how a green data structure can be implemented. With a simple decision 

making technique, the data structure can efficiently adapt for energy efficiency with low 

overhead. The median of GreenC5’s potential energy savings is more than 60% and ranges 

from 18% to 95%. 
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CHAPTER 1: INTRODUCTION 

In modern computing systems, energy consumption has becoming increasingly 

important among systems that rely on battery power. Moreover, the proliferation of global 

computing devices has pushed IT energy consumption higher and higher, raising concerns 

among many environmentalists. As reported in an article by Digital Power Group [1], 

information and communication technology ecosystems have approached 10% of the 

world’s electricity generation. The number has been estimated to range from 1,100 to 1,800 

TWh annually. As worries about global warming issue are increasing, this trend inspires 

depression among environmentalists. The need for reducing IT energy consumption and 

research efforts in every sector is now necessary, not just for energy saving and extending 

battery life, but also for the environment. 

There are many areas in the layers of computer systems that can be optimized for 

energy efficiency—from hardware [3, 4], operating systems [5] to application layers [12, 

13]. At the software application layer, green or “unpolluted” design of software 

applications can also help minimize the system energy consumption [2]. However, there 

are also many areas in the software that affect the system performance and can be optimized 

for energy efficiency—from user behaviors/application workloads [29, 30, 31], coding 

styles and algorithms [6, 29, 32], to design patterns [33]. Like hardware engineers, software 

developers too can now join the rest of the communities in the fight against climate change.  
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One way to improve the energy efficiency of software applications is by optimizing 

the program code or modifying some of their properties so that the overall energy 

consumption is reduced—either by making the software run faster, consume less power or 

both. The main goal is that the overall energy consumption of the optimized program is 

less than that of the non-optimized one. Energy consumption is a product of execution time 

and power consumption. Power and performance (execution time) are considered 

conflicting attributes and are often traded off in order to achieve energy efficiency 

improvement [41]. One may argue that energy consumption can be reduced by just making 

the software applications run faster. However, this is not always the case. Abdulsalam et 

al. conduct a thorough study to show that faster code does not always lead to more energy 

efficiency code [102]. From their study, the energy efficiency codes can lead to either faster 

and lower power code, faster and higher power code, slower and higher power code or 

slower and lower power code. The authors are able to find program examples for all eight 

of their red (waste energy) and green (save energy) program categories. The authors also 

suggest that “judging software energy efficiency by time analysis or power usage alone is 

a deficient vision, which will bring in uncertainties and sometimes cause confusion.” 

However, in our main study, we look at only the energy dimension. Our study aims to 

improve the energy efficiency of software applications by building a software tool that can 

help software application to consume less energy. 

Today, sustainability has been gaining importance among software engineering 

communities. There have been many studies that include greenness, carbon footprint and 

sustainability in the existing green software engineering life cycles, to promote green and 

sustainable software development. For example, Naumann et al. propose GREENSOFT, a 
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conceptual reference model for sustainable software [24]; Mahmoud and colleagues 

propose a new two-level green software model that covers the sustainable life cycle of a 

software product and the software tools promoting green and environmentally sustainable 

software [25]; Lago et al. develop a sustainability analysis framework  that enables 

software developers to specifically consider environmental and social dimensions in their 

green software projects [26].  

Most research is concentrated more on the conceptual and higher level but not much 

is focused at the lower level, in particular the coding and implementation phases. There is 

still a lack of easy-to-use tools that can help programmers develop green software. These 

tools could help promote the green software development and are an important factor for 

software engineers and developers to consider the role of software engineering in the 

environmental impact of our computing technologies. In this study, we focus on the 

application layer, primarily object-oriented software with “interface-based” 

implementation [6], where there are multiple choices of classes that implement the same 

interface. Our goal is to explore how the choice of these classes impacts the energy 

consumption of software applications and to find ways to intelligently and dynamically 

switch between implementations for energy efficiency. 

1.1 Green Data Structure Introduction 

Our vision is to see a new generation of software applications composed of 

smart/green objects and components. We envision that these adaptive objects and 

components have the ability to intelligently adapt themselves to the workloads and 

environments for energy efficiency, and become the main building blocks in developing 

green software applications. The green objects are smart because they can learn, classify 
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and predict their workload, and can decide when and how to dynamically adapt for energy 

efficiency. 

As a case study, we investigate dynamic data structures because they have been 

shown to have a large impact on performance and are considered key components of many 

object-oriented software applications [7, 8]; many applications are implemented using 

interface-based design [6]. By using a “select the right data structure for the right 

workload” approach, we apply machine learning tools and enhance these classes to be 

adaptive green data structures that can dynamically adapt for energy efficiency without 

creating more work for developers.  

We propose a working prototype of adaptive green data structures called GreenC5, 

demonstrating how a green data structure can be implemented and how the models for 

predicting energy efficient data structures are integrated and used. Together with simple 

decision making and transformation techniques, we demonstrate that GreenC5 can 

accurately and efficiently adapt to the workload helping the software applications to 

perform better and the base system to consume less energy than necessary. The evaluation 

results also show that our models for predicting energy efficient data structure are accurate 

and the a priori knowledge is potentially be universal because it can be used in multiple 

platforms with similar performance results. 

1.2 Programming Problems 

Dynamic data structures have been around since the beginning of computer 

programming. They are major components of many programs and widely used in many 

software algorithms. They are also considered the key performance and energy 

consumption factors of software applications and computing devices. In programming, the 
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selection of a data structure implementation is normally done at the development phase. 

Once a program is completed, the data structure choice is fixed. Dynamic data structure 

selection and switching are not normally done at runtime. Moreover, programmers tend to 

choose their favorite data structures [8] for their programs, often without taking 

performance and/or energy consumption into consideration, or knowing whether there are 

better choices.  As a result, the energy consumption of computer systems when running the 

application can be higher than necessary. The process of selecting the most energy efficient 

data structure should be automatic and switching to a different implementation should be 

dynamic, without creating more work for programmers. Our long-term goal is to develop 

an architecture for adaptive green data structures that allows programmers to replace their 

existing data structure with a universal “green” data structure, and expect the programs to 

function the same, with minimal overhead and configuration. It is the same as a drop-in 

replacement of existing collections. 

Dynamic selection of the right data structure for the right workload, algorithm and 

program is sometimes not an easy task and many times difficult at the program level done 

by programmers. It would be much more convenient if the selection is left to the program. 

As shown in Figure 1(a), traditionally, programmers have to select data structures during 

the implementation phase. Once a data structure is selected, it is normally not changed at 

runtime. Our ultimate goal is to have a green data structure to be used as shown in Figure 

1(b)—only one green data structure is declared; and the automatic switching of internal 

data structure implementations is done by the data structure itself. There is no need for 

programmers to select an energy-efficient data structure for their programs. The GreenC5 

changes its internal data structures automatically and dynamically at runtime, for energy 
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efficiency. The idealized green data structure should also preserve all capabilities of the 

original data structures and the usage should be similar to the original ones so that the 

learning curve for programmers is at the minimum level. 

 

(a) 

 

 (b) 

Figure 1.  (a) Code Example of Traditional Data Structures; and (b) Code Example of Our 

Green Data Structure 

 

1.3 Research Questions and Key Contributions 

Our main research questions are related to interface-based dynamic data structures 

in object-oriented programming. In particular, the main topic in this dissertation focuses 

on the development of a smart and adaptive energy-aware dynamic data structure for green 

software development, called GreenC5. The key challenges and main research questions 

reside throughout the research and development phases of the GreenC5—from finding 

solutions for the problems of dynamic data structures, to developing software energy 

measurement tools and energy profiling process, to creating the predictive models and 

ArrayList<string> ds = new ArrayList<string>(); 
ds.Add("Hello"); 
ds.Update("Hello"); 
ds.Find("Hello"); 
ds.Remove("Hello"); 

GreenC5<string> ds = new GreenC5<string>(); 
ds.Create("Hello"); 
ds.Update("Hello"); 
ds.Retrieve("Hello"); 
ds.Delete("Hello"); 
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training datasets, and to implementing and validating the green data structure. The 

following are the key data structure research questions to be answered in this dissertation: 

1) Does the choice of data structures impact a system’s energy consumption? 

2) Can we create models for classifying and predicting energy efficient data 

structures for use in object-oriented programs? 

3) Can we intelligently switch between different data structure implementations 

to improve energy efficiency? 

4) Can a green data structure be implemented? 

To answer the questions, we implement a working prototype of an adaptive green 

data structure for green software development, the GreenC5. Along with the 

implementation process, we also identify key performance/energy features of dynamic data 

structures and develop a predictive model for dynamic selection and switching of energy-

efficient data structures. The study also provides some in-depth concept, interesting 

research insights and the design, architecture and actual implementation of our adaptive 

green data structure. Along with the software-layer study, we also include one of our initial 

explorations in green computing research at the hardware layer, in particular the energy 

impact from the cache system and the power-performance tradeoffs using live power data. 

The key contributions of this dissertation are fivefold:  

1) Empirical evidence that energy saving opportunities exist in interface-based, 

object-oriented dynamic data structures. 

2) Development of a predictive model based on artificial neural networks and n-

gram inference to predict energy efficient data structures for use in object-

oriented programs. 
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3) An architecture for building an adaptive green data structure. 

4) A working prototype of GreenC5 that is lightweight, smart, adaptive and easy-

to-use. 

5) Understanding of power-performance tradeoff of live power data using the 

Pareto optimality principle. 

1.4 Dissertation Outline 

This dissertation contains two main studies in green computing research area. In 

particular, our interest areas are at the two main computer system layers—hardware and 

software layers. Our first study concentrates on the cache system, a key component of 

computer systems at hardware layer. The second study aims at the application layer, in 

particular the data structures. The two components are selected mainly because they both 

have shown to have large impact on the performance of computer systems. In these studies, 

we want to further explore their energy impacts and find ways to optimize and minimize 

the energy consumption. Our first study (Chapter 4) is presented as an initial and additional 

work to the second study (Chapter 5, 6, 7 and 8). The green data structure in the second 

study is the main topic and contains answers to our key research questions in this 

dissertation.  

 The remainder of this dissertation is organized as follows: Chapter 2 and 3 present 

a literature review and background materials. They include some introduction and 

discussions about green computing research, power measuring and profiling, green 

software development and machine learning for energy efficient computing. Chapter 4 

presents our first study about the energy impact from the cache system. The goal is to 

understand the power-performance tradeoffs on computer systems using Pareto 
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optimization method. The remaining chapters present our second study of the green data 

structure. Chapter 5 describes the background and our design of the adaptive green data 

structure. Chapter 6 describes in-depth details of our methods for predicting data structures 

for energy efficiency and the evaluation results. Chapter 7 and 8 discuss the 

implementation, evaluation results and additional analysis of our green data structure 

prototype, respectively. In this chapter, we also present some examples found in the 

experiment to demonstrate how the GreenC5 performs dynamic transformations for energy 

efficiency. The last chapter summarizes our conclusions and describes the future work. 
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CHAPTER 2: GREEN COMPUTING BACKGROUND 

As the obligation to reduce environmental impact is becoming crucial in the fight 

against climate change and global warming issue, the energy efficiency of computer 

systems are increasingly becoming one of the most important research topics for 

researchers, system designers, architects and software developers. This chapter explains 

the background and related work in green computing research and our green data structure 

for green software development. 

2.1 Green Computing Research  

The research in this dissertation is in the area of Sustainable/Green Computing or 

Green IT. As stated in a paper by Murugesan [86], Green Computing is defined as:  

“the study and practice of designing, manufacturing, using, and 

disposing of computers, servers, and associated subsystems such as 

monitors, printers, storage devices, and networking and communications 

systems efficiently and effectively with minimal or no impact on the 

environment.” 

 

The paper also states that “Green IT benefits the environment by improving energy 

efficiency, lowering greenhouse gas emissions, using less harmful material, and 

encouraging reuse and recycling”. The “Green Computing” or “Green IT” concept was 

introduced in 1992 when Energy Star was launched by US Environmental Protection 

Agency (EPA). The main purpose of the Energy Star labeling is to give a recognition to 

electronic equipment that meets the EPA’s energy-efficiency standard [53]. Green 
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computing normally takes all product life cycles that can directly or indirectly impact the 

environment into consideration, from manufacturing to usage to disposing and recycling 

[54]. Nonetheless, the main focus of the Energy Star program and Green Computing 

initiatives are primarily on energy efficiency of computer hardware devices, servers and 

data centers, not on software applications which run and operate the hardware components. 

However, recently the green initiatives start to also include developing green software 

applications as part of the main focus to minimize carbon footprint of computing 

technology. 

Based on Zomaya and Lee [87], Green IT can be made up of three parts: (1) 

“designing product that are less polluting, less energy consuming and easier to recycle”; 

(2) “building more efficient data centers”; and (3) “working on innovative projects that will 

enable, via IT contributions, in building of a more sustainable world”. In more detail, 

Murugesan [86] also explains that the main research topics in Green IT include:  

1) Design for environmental sustainability—making business operations, 

buildings and other systems energy efficient by balancing energy and resource 

savings by Information and Communication Technology (ICT) infrastructures. 

2) Energy-efficient computing—the efficient use of computing resources such as 

energy-aware algorithms, green compliers, parallel programming and energy 

efficient software development. 

3) Power management—the use of hardware/software power management 

systems that help optimize the performance, energy consumption and manage 

the power resources in computer systems. 
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4) Data center design—environmental-friendly designs that improve energy 

efficiency and energy conservation of data centers. 

5) Virtualization—the recreation of an entire system in software, which provides 

a virtual version of a machine to all software application to run on. 

6) Disposal and recycling management—managing e-waste and developing 

plans for disposing, upgrading and replacing devices in a more sustainable and 

environmental friendly manner. 

7) Regulatory compliance— legislative actions and regulatory requirements that 

can force acceptance of a technology or practice. 

8) Green metrics, tools and methodology assessments—software tools for 

collecting, reporting and analyzing energy consumptions of computer systems 

and platforms for managing the environmental risks, environmental impact 

and greenhouse gas emissions, emission trading and ethical investing, etc.  

Many organizations, such as the UN, WEF, GATT, G8 and G20 and governments 

of many countries, are now realizing the importance of environmental impact and climate 

protection and support the idea of three Rs: Rethink, Redesign and Rebuild [87] for 

mitigating the environmental impact. It has been estimated that by the year 2030, if the 

current trends continue, worldwide electricity consumption by ICT infrastructures will 

grow by a factor of 30 [88]. The trends are demonstrated by a fast growing number of 

worldwide Internet users and connected devices, the advancement of broadband Internet, 

as well as the usage and exchange of online information and rich media such as high 

definition video streaming among the users and devices. According to a recent report on 
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data center energy efficiency from the Natural Resources Defense Council (NRDC) [89], 

an environmental action organization, nationwide data centers in total used 91 billion 

kilowatt-hours of electrical energy in 2013. They estimate that the number will reach 139 

billion kilowatt-hours by 2020, a 53% increase. 

2.1.1 Improvement Opportunities 

There are many energy efficiency improvement opportunities in all layers of 

computer products—from hardware, middleware to software application layers. At 

hardware layer, the semiconductor industry is well aware of energy issues and the 

environmental impacts. Several energy saving solutions for the hardware or chip level have 

already been developed such as voltage and frequency scaling, hardware accelerators, on-

chip power domains, biometric components, efficient standby modes, etc. [90]. At the 

software level, however, there is much more room for improvement. One main problem is 

that software and middleware layers are normally not energy-aware. Software is not 

originally designed to support and not yet ready for the new energy-efficient hardware 

features. There is a need for standard and well-defined interfaces between hardware and 

software that allow the systems to better manage power domains in hardware that could 

provide significant improvements in energy efficiency [90].  

One possible solution at the functional level that has potential to improve energy 

efficiency of computing devices is by using “good-enough” computing or by relaxing the 

strict accurate requirements. Some classes of applications, such as user interfaces, analytics 

and media processing do not require high precision results. These type of applications are 

well suited for the “good-enough” or adequate precision computing, where inaccurate 
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result or errors could be accepted and managed and approximate results are sufficient for 

performing the tasks. For example, to improve performance and energy efficiency, some 

frames in a video application can be dropped just enough that the quality degradation 

cannot be detected by human eyes. This is known as Approximate Computing [32]. For 

traditional energy-efficient computing, it is about the tradeoff between performance and 

energy consumption. However, for general-purpose approximate computing, it explores a 

third optimization objective—accuracy or error. The tri-objective optimization process is 

the tradeoffs of the accuracy of computation for gains in both energy and performance. In 

addition, there are several promising approaches to use adequate precision computing, such 

as EnerJ, the language of good-enough [32] and Quora, an energy efficient, quality 

programmable vector processor for approximate computing [92]. However, at the time of 

writing this dissertation, none of them is mature enough for use in actual software 

implementations. This is just one of the improvement opportunities. There are also many 

other aspects of software applications that can be improved for energy efficiency and are 

also open for future research. 

2.1.2 Green Computing Benefits 

We categorize three major areas and groups of people who might obtain benefits 

from energy-aware computing practices—the environment, the organizations and 

businesses, and the individuals. The details are discussed in this section. 

2.1.2.1 Environmental Benefits 

Information and Communication Technology (ICT) sector contributes about 3% of 

worldwide electricity usage and the same percentage of greenhouse gases [53]. In a recent 
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study in 2014, the study estimates that 2% of carbon emissions is from the ICT equipment 

and services and household electronic sector. The ICT total electricity consumption is 

forecast to reach 1,100 million tons by 2020. Its share of the global carbon footprint is 

estimated to increase from 1.3% in 2007 to about 2% in 2020. For fixed ICT networks, it 

is estimated that the share of greenhouse gas (GHG) emissions will be 1.4% in 2020, as 

shown in Figure 2, due to the increasing number of devices as well as due to network 

expansion [92]. Even though, these percentage numbers seem to be small, it is expected to 

get higher since the sector is getting larger and larger as technology is doubling every 

couple of years according to Moore’s laws. A Smart 2020 report [53] states that the number 

of PCs (desktops and laptops) globally is expected to increase from 592 million in 2002 to 

more than 4 billion in 2020. Also in a recent study by Juniper Research, it has revealed that 

the number of IoT (Internet of Things) connected devices will reach 38.5 billion in 2020, 

up from 13.4 billion in 2015: a 285% jump [128]. When not include other computing 

devices in the parameters, if each PC is running 10 software applications, there will be 40 

billion software applications running on the planet; imagine how much energy can be saved 

if all the software is green and energy efficient. According to a Climate Group report, 

despite of making the ICT more energy efficient, applications of those systems to 

electricity grids, logistic chains, intelligent transportation and building infrastructure could 

reduce greenhouse gases (GHG) emissions by as much as 15% by year 2020.  

According to the NRDC report [89], if companies adopted data center best 

practices, the reduction in energy use could reach 40% and that the economic benefits 

would also be substantial. The 40% reduction in energy use would equal to $3.8 billion in 
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savings for businesses. In 2014, this number represents a savings of 39 billion kilowatt-

hours annually—equivalent to the annual electricity consumption of nearly all the 

households in the state of Michigan. The report also states that the number is only half of 

the technically possible reduction. The need for solving climate change and global warming 

problems has led to a growing realization that climate impact must inform everyone 

including software engineers and programmers to be aware of the threats and try to use all 

resources to help solve the problems. 

 

Figure 2.  ICT Carbon Footprint Outlook (million tones CO2e) (from [92]) 
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According to a paper by Smarr [55], the emissions are divided into three component 

parts—emissions resulting from fixed and mobile telecommunications/internet 

infrastructures, data centers and the edge of the network. Even though, much attention in 

Green IT focuses on data centers, but in 2020, the amount of carbon emissions for data 

centers will account less than 20% of the total ICT emissions. The majority (57%) will 

come from the edge of the network—such as, phones, tablets, notebooks, PCs, peripherals, 

printers and IoTs. Even though, the edge devices refer to both hardware and software 

components. Our main study, however, focuses more on the applications that execute on 

those devices. The focus on green software can also contribute much impact on reducing 

the greenhouse emissions since software applications run on and operate all the network 

edges and the computing devices, which will be on every part of every person’s life. Green 

Computing, Green IT and Green Software Development research must be driven at a faster 

pace to help the rest of the sectors solve the environment threats before it is too late. 

2.1.2.2 Business and Organization Benefits  

Going green can directly benefit companies and organizations in many ways. First, 

it can influence the consumers, the shareholders, and the company perception in the market. 

Based on an actual study performed jointly by University of San Diego and CB Richard 

Ellis Group and printed in a Business Week magazine on December 2009, the result from 

2,000 business participants shows that businesses with green initiatives had 5% average 

increase in business net worth and 74% increase in business image and name branding [56]. 

The “greenness” of computing and software products can also be used as a part of 



 

18 

marketing campaigns and can help build better image and name of their brands and drive 

profits. 

As part of the technological advancement, businesses and organizations like 

governments play major roles in driving the future technology. The green computing and 

energy-aware software development initiatives cannot be successful without the 

participation of businesses and organizations since the majority of software applications 

are developed by them. In addition to the better business perception and brand image, 

companies and organizations going green might also gain benefits from the IRS tax breaks 

[58]. For example, a tax credit for 30 percent of the cost of a residential fuel cell and 

microturbine system, up to $500 per 0.5 kilowatt of power capacity, is available through 

December 31, 2016. And, tax credits for all-electric cars range from $2,500 to $7,500, 

based on the vehicle’s battery capacity, etc. 

Currently, there is no tax credits available for building green software. However, in 

the future it is possible that similar tax breaks could be issued to promote green software 

development if governments realize the importance of the green practices in software 

application development. Not only just commercial benefits, businesses and organizations, 

in particular their IT departments, might have to be forced to follow and be compliance 

with International Standardization Organization (ISO) because green quality is being 

considered as a standard quality metric for software applications. One evidence can be 

found in a paper by Lago et al. [26]. The paper mentions that a working group on software 

architecture (WG42, working on ISO/IEC 42030) is considering to include Kern et al. [24] 

who developed a quality model for green software that refers to quality factors from 
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ISO/IEC 25000 based on direct and indirect software-related criteria. Also, Calero et al. 

[94], who considered sustainability in 2013 as a new factor affecting software quality, 

presented a quality model based on ISO/25010. 

Today, consumers are becoming more educated and environmentally conscious. 

According to a Nielson’s marketing research [58], “66% of global consumers say they’re 

willing to pay more for sustainable brands—up 55% from 2014. 73% of global millennials 

are willing to pay extra for sustainable offerings—up from 50% in 2014”. A new emerging 

trend of consumers is increasingly asking for products and services from businesses that 

are green and care about the environment.  As a result, software companies with green 

software in their product lines could drive more green oriented customers leading to more 

sales, increased revenue, higher gross margin and higher profit. 

2.1.2.3 Our Benefits 

For individuals installing green software applications or having computing devices 

with an energy management component, some direct benefits are the energy savings and 

longer battery life. Many studies show that power-aware or green software applications 

and a good energy management component can help reduce the energy consumption of 

computer systems and lengthen battery life of mobile devices. This is the main reason why 

big companies such as Apple, Google and Windows have battery management as one of 

the key functionality in their operating systems and hardware platforms. As the result, there 

are also many research studies focusing on this area. For example, applications built using 

energy-efficient GUI (E2GUI) technique for its graphical interface can significantly 

lengthen battery life [59]. The design technique involves reducing system energy through 
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optimization of human-computer interaction. The researchers demonstrate that the 

techniques can improve the average system energy of three benchmarks (text-viewer, 

personal viewer, and calculator applications) by 26.9%, 45.2% and 16.4% respectively. 

Moreover, the use of parallel programming such as MapReduce [60] and the code 

transformation techniques in [61] can be applied and used in green software construction 

phase when a code transformation tool can help reduce the system’s energy consumption. 

The authors of the research paper claim that the merging process of code transformations 

in parallel using MapReduce can contribute nearly 29.6% in energy saving. The energy 

reduction corresponding to the final optimized source code after transformation is 37.9% 

when compared to the un-optimized ones. 

Even though, the amount of energy saving from running green software 

applications in a device seems to be small for individual, many people seem to be fine 

buying green products for a higher price. According to a Green Buying research survey 

[62], “82 percent of consumers buy green products.” The main reason from buying green 

products is that it is good for the environment. This clearly indicates that people now are 

more and more environmental conscious. In the future, there will be billions of PCs, 

laptops, tablet PCs, mobile phones, digital photo frames, printers, gamming consoles, TVs, 

set top boxes, refrigerators, and other future computing devices driven and controlled by 

software applications and interconnected to the world network exchanging richer and more 

interactive data like 3D movies, high definition images and voices, and large data files. If 

each individual installs green software applications in their devices, there will be an 
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immense amount of energy saving combined. This small energy saving for each individual 

can have a tremendous contribution in the fight against climate change at a global scale. 

2.2 Energy-Efficient Software Research 

Software applications can have a large impact on the system energy consumption. 

Accordingly, many research studies focus on different areas in the software application 

layer. Software applications have different architectural designs depending on application 

type and hardware platform. For one example, many modern software applications can 

have multiple layers such as a 3-teir architecture design [63]. The 3-tier software 

application architecture consists of Tier 1—Presentation layer, Tier 2—Business Logic 

layer, and Tier 3—Data layer. For simplicity, this section presents energy-efficient 

software research in the 3-tier architecture. 

2.2.1 Presentation Layer 

The presentation layer of software applications normally refers to the graphical user 

interface (GUI), located at the top part of the multi-tier layers. This layer interacts directly 

with the users. If software components at presentation layer are designed poorly, they give 

the users poor view of the system and sometimes can cause the computer systems to 

consume energy higher than necessary. In addition, by designing the user interface 

properly, we can reduce power consumption of the whole system at a great level. For 

example, in an early study by Qu and Potkonjak [64], the study presents techniques for 

minimizing energy of a software application with guaranteed quality of service (QoS), one 

of the key features for new Internet-based multimedia and other applications. The paper 

presents how to satisfy QoS requirements and minimize the system’s energy consumption. 
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The key contributions in their paper include formulation of the energy minimization with 

QoS guarantee and development of the dynamic programming (DP) procedure for solving 

the general energy minimization (EM) problem. Their simulations show an average of 

38.7% energy saving over the system shut-down technique. At the presentation layer, 

image, voice and movie rendering can be optimized using their techniques to minimize the 

power/energy consumption of a software application. 

Moreover, energy-efficient GUI (E2GUI) design techniques [59] are proposed to 

improve system energy efficiency without sacrificing application performance, ease of use 

of aesthetics. The optimization techniques of E2GUI include power reduction techniques 

(low-energy-color scheme and reduced screen changes), performance enhancement 

techniques (hot keys, user input caches and content placement) and facilitators (paged 

display and quick buttons). For the first technique, the researchers show that low-energy 

color schemes of GUI can help reduce display energy. The second power reduction 

technique, reducing screen changes, can also minimize the energy by reducing the 

switching activity and computation required for screen generation. The authors also give 

some examples; user-perceived responsiveness is different from real responsiveness. By 

using a progress bar, it makes a user to feel that the computer is more responsive. But, it 

actually slows down the system and increases energy consumption. Animations give users 

a natural feeling for screen changes. However, these animations waste energy and add little 

or no functionality, but increase the power consumption. To enhance performance, the 

focus is on improving user productivity by eliminating the time and energy waiting for user 

responses. For example, hot keys instead of menus styles can reduce the amount of energy 
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consumption. Also, user input caches which store the most recent use, most frequent use 

or most common use inputs by users can also reduce amount of computation and screen 

generation and help save system energy. Content placement techniques focus on reducing 

the user interaction time for frequent inputs by strategically laying out the GUI content by 

using perception capacity, motor speed and cognitive speed as the main consideration for 

the layouts. Lastly, the facilitators are a pair of techniques that enable or enhance the effects 

of the other techniques. The paper demonstrates that paged display and quick buttons can 

reduce energy consumption. Paged display enables increased user interface functionality 

by increasing the effective display size. Page navigation buttons are designed to enhance 

the user interaction speed. Quick buttons use the available hardware buttons to increase 

user interaction capabilities. Holding down a hardware button can act as a <SHIFT> or 

<Control> key, which can facilitate the use of key combinations that are traditional 

impractical for GUI design. Similarly, the same authors in [65] also conduct energy 

efficiency improvements of handheld computer interfaces and study the human 

sensory/speed limits and characterization and proposed some practices to low energy 

consumption at the GUI level. 

There are also many other studies about color scheme impacting the display power 

consumption. For example, in an article by Whitman [66], use of different colors, color 

patterns and color sequences in LCDs, OLED-based displays and AMOLED displays of 

flagship phones, consumes different amount of power and can be exploited for energy 

efficiency. Thin film transistor (TFT) LCDs consume more power when white than when 

black. OLED-based displays consume the power proportional to the number of on pixels 
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and their luminance. The article also states that a black screen does indeed consume 41% 

lower overall power when using the predominantly black interface in Reddit Sync. By 

using AMOLED-friendly apps most of the time, users can actual gain an extra of 15 or 

20% screen time. Also, according to Williams and Curtis [67], displays and graphic cards 

consume 42% of all power consumption in an average laptop (33% for display and 8% for 

graphic cards). Therefore, by redesigning GUIs to be displayed in the different types of 

displays, it can have a great impact on the amount energy consumption of an overall 

software application. 

2.2.2 Business Logic Layer 

A business logic layer contains business functionalities that control the applications 

by performing detail processing. This layer can be viewed as the main computation and 

processing layer to manage and control above presentation components and the data layer 

components. It mainly acts as the middle layer between those two layers. Therefore, most 

of the coding and complex computation processes are normally laid in this layer. These 

normally include data access layer because this tier acts as an interface to the data tier, 

retrieving and storing information both remotely and locally (from databases, file systems 

or storage systems such as CD, DVD or memory sticks). For remote communication, data 

transmission can greatly impact the performance and power consumption of the software 

application. Therefore, the efficiency of all computational components can also be 

optimized here. This includes choosing energy-efficient algorithms and libraries, 

compression techniques, decoding-encoding schemes, data structures and applying multi-

threading techniques to some computations to minimize power consumption, for example.  
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The following are some of the examples that can be used and applied in the business layer 

of this software architecture. Some of the examples are also discussed in a greater detail in 

the later sections. 

A study by Benini and Micheli [68] states that algorithms can have approximate 

implementations. For example, certain operations may be implemented with limited 

accuracy to reduce energy cost. This is the same as Quality of Service (QoS) and energy 

consumption tradeoff analysis. For example, given by the authors, a cos(x) function can be 

approximated as a Taylor expansion 1-x2/2 + x4/24. Furthermore, it can also be 

approximated as 1-x2/2 + x4/32, which is simpler because the division of the last term by 

32 can be done by a Shift operation. In addition, Eckerson [69] also mentions that the choice 

of algorithms and data structures can make a large difference in the performance of an 

application. Using an algorithm that compute a solution in O(nlog n) time is going to 

perform better than one that does the job in O(n2) time. For some applications, a stack may 

be better than a queue and a B-tree may be better than a binary tree or a hash function. A 

study of the problem and a careful consideration of the architecture, design, algorithms, 

and data structures can lead to an application that performs better and consumes less 

energy. These will be more useful in the future applications if the consideration and 

selection process also include energy consumption into the performance and quality 

metrics. Or even better, the selection of the choices can be done automatically and 

dynamically by the system itself. 

In addition, Barr and Asanović [70] had studied the wireless data transmission and 

concluded that wireless transmission of a bit can require over 1,000 times more energy than 
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a single 32-bit computation. They suggest that number of bits of data should be reduced by 

some computations before transmitting. The key is the energy required to 

compress/compute the data. If it is less than the energy required to transmit it, there is a net 

energy saving that can contribute to a longer battery life for mobile devices. The study 

shows that energy use from data compression and decompression can be minimized 

through smart use of memory—including efficient data structures and/or sacrificing 

compression ratio for “cacheability”. The result from the study shows that by choosing the 

lowest-energy compressor and decompressor on the test platform, rather than using default 

levels of compression, overall energy to send compressible web data can be reduced 31%. 

Energy to send harder-to-compress English text can be reduced 57%. 

2.2.3 Data Layer 

A data layer is responsible for retrieving, storing and updating information; 

therefore, this tier can be ideally represented through a commercial database, local or 

remote file systems, disk drives or other storage systems. For a database system, stored 

procedures are considered as a part of the data tier. Currently, we can optimize energy 

efficiency at the data layer to some degree based on types of storage systems of the 

applications. For database system, we can utilize the tools provided by the database. For 

example, the usage of stored procedures can increase the performance and code 

transparency of an application since the processes are done at the database process and can 

minimize the computation at the business layers.  A survey paper by Jones et al. [71] has 

mentioned about minimizing power consumed per transaction through embedded indexing 

for mobile applications.  The idea is to combine the index information together with data 
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on the single broadcast channel in order to minimize access time. The author also mentions 

about the energy efficient query optimization for database systems. They show that query 

statements too can be optimized similar to the code optimizations. 

Moreover, Mathur et al. introduce Capsule, an energy-optimized log-structured 

object storage system for memory-constrained sensor devices that enables sensor 

applications to exploit storage resources in many ways [72]. The idea of the storage system 

is to employ a hardware abstraction layer that hides the NAND flash memories for the 

application and support energy-optimized implementations of commonly used storage 

objects such as stream, files, arrays, queues and lists etc.  The authors claim that Capsule 

can provide platform-independence, greater functionality, more tunability, and greater 

energy efficiency than existing sensor storage solutions. Also, the experiments not only 

demonstrate the energy and memory efficiency of I/O operations in Capsule but also show 

that Capsule consumes less than 15% of the total energy cost in a typical sensor application. 

This is an example of a storage system that can be used for development of green sensor 

software applications. 

On the other hand, Ousterhout et al. see that disk-oriented approaches are becoming 

increasingly problematic in term of its scalability and access latency and bandwidth 

constraints. They introduce a new approach to datacenter storage called RAMCloud, where 

information is kept entirely in DRAM and large-scale systems are created by aggregating 

the main memories of thousands of commodity servers [73]. They claim that RAMClouds 

can provide durable and available storage with 100 - 1000x the throughput of disk-based 

systems and 100 - 1000x lower access latency. The new storage system is specially 
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designed for data intensive applications and has the following properties—low latency, 

large scale, durability, powerful data model and easy deployment. From their energy 

efficiency evaluation results, when measured in terms of cost per operation or energy per 

operation, RAMClouds are 100 - 1000x more efficient than disk-based systems and 5 - 10x 

more efficient than systems based on flash memory. Thus for systems with high throughput 

requirements, a RAMCloud can provide not just high performance but also energy 

efficiency. 

2.2.4 Energy-Efficient Programming Practices 

Steigerwald et al., a team of researchers at Intel, have conducted a thorough study 

on data efficiency and its energy saving and developed a white paper guiding programmers 

on how to create energy-efficient software [130]. In this section, example guidelines are 

mainly based on recommendations made by the research team.  The team proposes that 

data efficiency can be achieved by designing software algorithms that minimize data 

movement, memory hierarchies that keep data close to processing elements, and 

application software that efficiently uses cache memories.  They have conducted 

experiments on DVD playback, disk I/O and file transfer over wireless applications. Their 

test results and recommendations are in great details and practical for programmers and 

developers to use. For example, the following proposed three guidelines can help minimize 

the system energy consumption during a DVD playback:  

1) Buffering—the study shows that DVD playback implemented with buffering 

techniques can help reduce DVD power consumption by 70% and overall 

platform consumption by about 10%. 
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2) Minimize DVD drive use—they recommend that reducing DVD spin-up, 

spin-downs, and read access can also help reduce energy consumption. 

3) Let the OS manage the CPU frequency—they do not recommend changing the 

CPU scheme to run the processor at the highest available frequency and let the 

OS manage the frequency by itself.  

For disk I/O, the test result shows that disk spin-up takes the most time and consume 

the most power. Some of their recommendations include:  

1) For reading a large file, use block sizes of 8KB or greater for improved 

performance. 

2) Utilize a buffering strategy in multimedia playback to minimize disk reads 

and save energy. 

3) Avoid by pre-allocating large sequential files when they are created. 

4) Use NtfsControlFile() function to help in defragmenting files. 

5) Applications that deal with random I/O or I/O operations with multiple files 

should use asynchronous I/O to take advantage of Native Command Queuing 

(NCQ, an extension of the Serial ATA protocol allowing hard disk drives to 

internally optimize the order in which received read and write commands are 

executed). 

6) Queue up all the read requests and use events or callbacks to determine if the 

read requests are complete. 
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7) For multiple threads competing simultaneously for disk I/O, queue the I/O 

calls and utilize NCQ.  Reordering may help optimize the requests, improve 

performance, and save energy. 

8) When multiple threads competing for the disk causes significant disk 

thrashing, consolidate all the read/write operations in a single thread to reduce 

read/write head thrashing and reduce frequent disk spin-ups as well.  

For file transfer over wireless application, the study focuses on how the 

compression ratio or size of the file affects power consumption. The researchers 

recommend the following practices to improve data efficiency and energy efficiency:  

1) Data sets with higher compression ratios (more than 3.0x), are recommended to 

be compressed before uploading/downloading data. This practice provides 

better power savings as compared to transmitting uncompressed data. For data 

sets having higher compression ratios, it is recommended that applications 

transmit compressed data. 

2) Data sets with lower compression ratios (~1.2x in this case which is hardly to 

compresses) is not recommended for compressing the data before uploading 

uncompressed. This practice adds extra overhead. They instead recommended 

uploading/downloading uncompressed data. 

3) Data sets with compression ratio around 2.5-3.0x provide minimal difference 

in the power saving between uploading/downloading compressed data and 

uncompressed data. 
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There are also many other techniques that can be used and applied at the design 

level to optimize the application performance and energy efficiency.  For example, the 

utilization of parallelism (parallel programming and multi-threading) can help reduce 

energy consumption of computing devices [60]. There are also some energy frameworks 

that can be used to develop green software applications. For example, green compiler that 

can be considered as the main compiler of green software projects [95]. Today, there are 

so many choices of algorithms, components and libraries available for selection. One 

challenge is how the selection of a proper choice can be made in solving a programming 

problem, while the performance and energy efficiency are also improved. It will be helpful 

if there is a tool that can aid programmers and designers in the decision making. 

2.3 Power Measuring and Profiling 

Among all the areas of green computing research, power measurement and energy 

profiling are considered the key research areas. From a famous quote by Deming, “if you 

can’t measure it, you can’t manage [and improve] it” [131]. For green software 

development and research, power measurement and profiling tools are required in order to 

conduct the power-performance evaluation and energy consumption analysis of software 

applications and are used to trigger energy-aware mechanisms and evaluating the 

effectiveness of these mechanisms. According to Calandrini et al., power profiling can be 

categorized into hardware-based and software-based method [96]. Hardware-based power 

profiling mainly uses different types of instruments to directly measure the power of a 

device. The accuracy is normally higher than that of software-based profilers. However, 

they are not suitable for software applications since a power meter is required. It is also 
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expensive to integrate with software and can provide data with low granularity at low 

latency.   Hardware-based methods are usually used to evaluate the effectiveness of power 

saving techniques at the system level. However, some modern computer boards start to 

include power metering tools that can measure power consumption of different hardware 

components. For software-based power profiling, the methods try to estimate the power of 

different levels by designing a group of power models. Software-based tool is normally 

more user-friendly and more suitable for software applications; can measure power 

consumption at the component and software application level; and can provide real-time 

power data at finer granularity. However, they are normally not as accurate as the 

hardware-based tools.   In this section, we first describe the power metrics and benchmarks 

before going back into details of the power measuring and profiling with some examples 

of the existing tools. 

2.3.1 Energy Metrics and Benchmarks 

2.3.1.1 Energy Metrics 

Energy is measured in Joule (J) or Watt-Hour (Wh). Power is measured in 

Joule/second (J/s) or Watt (W). Energy can be calculated by using the formula: E = P × t; 

where E is Energy unit in joules, P is Power unit in watts, and t is a time unit in seconds. 

Both metrics are widely used to characterize power consumption of IT and ICT systems. 

In computer systems, energy is used more in research related to mobile platforms and data 

centers. For mobile devices, energy is strongly related to the battery lifetime. For data 

centers which consumes a large amount of energy, energy is used as the concern of 

electricity costs. Usually, research in these areas uses energy efficiency, such as PUE 
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(power usage effectiveness) [97], as a metric to evaluate their work or productivity. Power 

metric is used to reflect the current delivery and voltage regulator of the circuits. In green 

computing research, power may also be used for the abstract concepts of power 

consumption as effectuated by system process, operating system and software applications. 

Based on papers by Chen and Shi [98] and Ardito [99], the authors provide some of 

following useful terminologies: 

1) “Energy is the electricity resource that can power the hardware devices to do 

computation” [98]. 

2) “Power is the dissipate rate of energy” [98]. 

3) “Efficiency is the ratio of useful energy and total energy used” [99]. 

4) “Productivity is output/resource on a time interval of a production process,” 

where the output is computational work and the resource is energy. Examples 

of computational work include operations performed, network bits transmitted 

and a web application hits and more [99]. 

There are several metrics being used to measure the energy cost and productivity 

of computer systems in green computing research. For example, gathered by Ardito’s 

dissertation [99], a million instructions per second per watt (MIPS/Watt), number of 

floating point operation computed per watt (MFLOP/Watt, FLOP/Watt) and Useful 

Work/Watt are used for measuring a computation capability and productivity of high 

performance computers and data centers. For networking, Environmental Performance 

Index (EPI) [100] uses 100(MI)/M, where I is energy consumption at idle state and M is 

maximum energy at active state, as a metric to measure the network efficiency. There are 
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also studies that use KB/Joule and Gbps/Watt to measure the rate of data transferred per 

joule or watt over a network channel [101]. 

In a recent paper, Abdulsalam et al. propose the Greenup, Powerup, and Speedup 

metrics (GPS-UP) to categorize software implementation and optimization efficiency 

[102]. Using the three metrics, the researchers can categorize software optimizations into 

one of eight categories. Speedup is defined as the ratio of non-optimized code runtime over 

optimized code runtime. Similarly, Greenup is defined as the ratio of the total energy 

consumption of the non-optimized code over the total energy consumption of the optimized 

code. Greenup and Powerup are analogous to Speedup as it reflects how green the 

optimized code is in term of energy and power consumption, respectively. Powerup implies 

the power effects of an optimization. In our green data structure study, the energy efficiency 

metric is the same as the Greenup metric. Our study mainly looks at how much energy 

consumption is reduced as a whole when using our methods and tools, by using the product 

of both the power and runtime data into consideration. 

2.3.1.2 Energy Benchmarks 

At the time of writing this dissertation, there are few benchmarks for energy 

efficiency in the green computing research area. However, with the growing trends in this 

area, we expect to see more benchmarks to be developed in the near future. For the existing 

benchmarks, JouleSort [75] is an external, system-level, I/O centric benchmark for 

evaluating energy efficiency across many types of computer systems. It is an extension of 

the sort benchmarks, which are used to measure the performance and cost-performance of 

computer systems [132]. The idea behind the Joulesort benchmark is to sort a predefined 
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number of randomly permuted 100-byte records with 10-byte keys under a controlled 

condition. The goal is to sort the records with minimum energy use. 

Another example for commercial use, SPECpower_ssj 2008 [76] is a benchmark 

suite to evaluate energy efficiency of server-class computer equipment. It is used to 

compare power and performance among different servers and serves as a toolset for use in 

improving server efficiency. The suite is implemented in Java. Therefore, it can be 

executed on almost all operating systems and platforms. Advantages of SPECpower_ssj 

2008 compared to JouleSort are the more advanced features such as the automated power 

measurements, the power measurement for different load levels and the possibility of 

considering temperature as an important environmental factor.   

Moreover, the EnergyBench [76] is another industry-standard energy benchmark 

that provides data on the amount of energy consumption of a processor when running 

EEMBC’s performance benchmarks. EnergyBench provides design engineers with 

comparable information regarding energy consumption and insights into the power budget 

cost of a device’s performance by allowing a performance/energy number to be derived 

using the consolidated performance score in each benchmark suite.  The existing 

benchmarks are designed specifically for evaluating hardware computing devices and data 

centers. However, at the time of writing this document, there is no benchmark designed 

specifically for energy efficiency of software applications. Also, we do not use any of the 

mentioned benchmarks in our study because they are incompatible with our study. Our 

study focuses more on the dynamic data structures specially designed for C# programming 

language and .NET technology. 
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2.3.2 Software Power Measurement 

In any computing device, although the main drivers of energy consumption is 

always at the hardware, the way the energy is consumed is also influenced by the software. 

In a paper by Chen and Shi [98], the authors state that software power measurement is 

“state of the art” because we cannot directly measure the energy consumption of software 

applications just like directly measure the energy of computer systems using a plug load 

meter. In fact, the software power measurement can be explained and drawn by a 

theoretical model of the energy consumption, which depends both on hardware 

specifications and the way in which they are used by software artifacts. In the paper, an 

abstract model underlying the power consumption can be summarized as: 

                   𝑃𝑜𝑤𝑒𝑟 = 𝐼𝑑𝑙𝑒 +  ∑ 𝐻𝑤𝑐   ×  𝑆𝑤𝑐𝑐 ∈ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠           (1) 

The total power consumption of a device, when turned on, is composed of an Idle 

part that is present even when the device is sitting idle. The additional consumption 

depends on the individual hardware components maximum consumption, which is driven 

by what the software forces it to do. Depending on the software requests, the hardware 

component may run at full throttle or remain idle. Accordingly, to measure energy 

consumption of a particular software application, we just control other variables in the 

above model and vary the software parameters. The energy consumption data can give 

developers the energy visibility for energy efficiency improvements of software 

applications. For example, from one of our research studies, Figure 3 presents 

power/execution time visibility when executing an ADPCM program, from the start to the 

end, on an FPGA Atlys development board. Each line/legend of different voltages in the 
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graph represents power consumption and execution time of different parts of the Atlys 

board—from the top legend down, IO/video/USB port, memory, CPU and Ethernet port, 

respectively. With this visibility, developers can see the interactions between power and 

performance of software applications and use the information to improve the performance 

and energy efficiency of their programs. 

 

Figure 3. An Example of Power/Runtime Profile Collected by an FPGA Atlys Board 

Executing an ADPCM Benchmark Program 

 

At the time of writing this dissertation, modern operating systems of mobile devices 

such as Apple iOS, Google Android and Microsoft Windows, have already integrated the 

energy measuring tools into their mobile phone operating systems. The tools provide 

device and application battery usage information to users and can be used to aid developers 

in developing battery-aware applications for mobile phones. However, these tools are 

mainly based on software-based power monitoring since the power/energy data are not 

derived from built-in current sensors, battery monitor unit (BMU) or power monitors 

attached to the devices. Instead, they are mainly estimated from mathematical formula of 

application performance counters provided by the OS and/or energy counters provided by 
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the hardware components such as CPU and power models of the display, Cellular modem, 

Wi-Fi, GPS, Bluetooth, battery and more [50, 136]. For example, Apple iOS provides an 

energy diagnostic tool to monitor application and mobile device energy usage. An Energy 

Impact instrument is integrated in XCode development environment (IDE) for iOS 

applications to help identify and address energy problems for application development 

[137]. The Energy Impact gauge in XCode displays a report of application’s energy impact 

from user interactions with the application. Similarly, the Android OS also provides the 

similar capabilities along with many other 3rd party applications such as Trephen profiler 

[134] and PowerTutor [135] that can provide the energy information of individual 

application and total power usage of the mobile device and be used in Eclipse IDE for 

power aware software development. For Windows OS, the same capability is also available 

in Windows 8 and 10 operating systems and later versions of their Visual Studio IDE. 

In the research community, many researchers have also been trying to improve 

computer power consumption affected by software system, many monitoring and 

measurement methods, tools and power benchmarks have also been developed either for 

specific or general-purpose use. These growing efforts indicate high possibility of 

developing standard software power measuring methods in the near future. Many 

companies such as, Apple, Google, Microsoft, Qualcomm, Intel, and others also join the 

research and develop their own metering tools, which we can use for a green software 

project and software testers can also use for their software quality measurement process.  

However, it is also very important that the programmers and testers have some background 

in green software development and adequate knowledge in software energy consumption. 
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The following sections present some additional examples of hardware and software-based 

power measurement and profiling tools that can be used for research purpose. 

2.3.2.1 Hardware-Based Power Measurement  

For hardware-based power measurement, there are many power meters in the 

market that are available for use and integrating with special-purpose devices. The meters 

are used to measure power consumption and understand the power dissipation of devices 

or different parts of devices.  Many studies [3, 27, 79] rely on power meters to measure the 

real power and use it to validate their research work and their power models. Moreover, 

some research studies [3, 37] measure the power of hardware components and break it 

down into sub components based on some indicators that could reflect the activity of these 

lower level units. The differences in these methods are in the type of meters used to do the 

measurement and in the place the measurement is done. Many meters are not suitable for 

computer research since they do not provide public interface or APIs that can be used for 

computer access and developing power profiling tools. However, there are a few tools that 

have this capability. The following examples are those that we think are practical and 

suitable for green software research and development. 

First, Watts Up? plug-load meters [16] are among the popular ones because they 

are cost effective, simple-to-use and accurate. The manufacturer claims that the wattage 

accuracy of their meters are within 1.5%. The meters are used by many researchers for 

measuring power consumption of computers, computing devices and servers [27, 79, 103]. 

Watts Up? meters come with public APIs that allow users to develop power profiling tools 
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to be used in green software research and development. We also use the meter to create 

training sets, validate and evaluate our adaptive green data structure in one of our studies.  

With the growing popularity of energy efficiency research for mobile devices and 

the increasing need for low power/energy computing systems, there are several companies 

starting to integrate power meters, current sensors and energy profiling capabilities into 

their systems and embedded boards to make energy aware application development easier. 

For example, Xilinx Atlys FPGA board [37] integrates the power meters inside the boards 

that can provide power consumption data of different parts/components of the development 

board, such as Video/USB port, Ethernet port, CPU and memory components. We also use 

the tool in one of our studies and it will be discussed in more detail in Chapter 4.  

Similarly, an affordable and energy-friendly Wonder Gecko development board by 

Silicon Labs [77] provides a quick and easy way for engineers to evaluate their 

microcontroller chips. Each board includes an on-board SEGGER J-link SWD debugger 

programming and debugging via a MiniUSB connector. The board is equipped with on-

board energy sensors that can be accessed via its low energy sensor interface (LESENSE). 

The Wonder Gecko features an advanced energy monitoring system, allowing 

programmers to program, debug and perform real-time current profiling of their application 

without using external tools. The company also provides SDKs and tools for programmers 

to develop software applications on the board and evaluate the energy consumption of the 

programs. 

For large chip companies such as Intel, AMD and Qualcomm, they are also realized 

the importance of the computer energy efficiency and the need for power measurement tool 
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for software applications. These can be seen from many of their energy efficiency projects 

from their research websites. Some companies also start to integrate the power/energy 

measurement capability to some of their chips and boards. For example, Intel has groups 

of researchers and labs for energy efficiency research that focus on technologies for the 

efficient future—low power circuit innovations, platform power management and efficient 

I/O and memory, for example. One research direction of their platform power management 

research is to shift the focus from the OS to hardware management platform [138]. Also, 

in recent versions of their famous core processors, Intel includes energy counters in their 

Intel Core processor chips and provides drivers, APIs and an SDK tool called Intel Power 

Gadget for developers of major operating systems to create real-time energy profiler for 

their green software projects [80]. Similarly, AMD has developed CodeXL [139], a 

debugging, profiling and analysis tool for taking advantages from their CPUs, GPUs and 

APUs (accelerated processing units). The tool also includes a power profiler that can 

provide power consumption of CPU, APU and GPU components in real-time, as well as 

frequencies and thermal trend. This tool can also be used to provide power visibility in 

making software greener. On the other hand, Qualcomm has also introduced Trepn Power 

Profiler for Android mobile devices with their Snapdragon processors [134]. With the 

power profiling tool, Android developers can have power/energy visibility of their 

applications and better understand the impact of their programming choices on both power 

and performance. 
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2.3.2.2 Power Models 

Power models are considered software-based power measurement tools because 

they use a mathematical formula to estimate the power consumption of a system. Based on 

Chen and Shi [98], power models are built to estimate the power dissipation of different 

levels, such as instruction level, program block level, process level, hardware component 

level and system level. The methods capture power indicators that could reflect the power 

consumption of software applications or hardware components. The models are then built 

with these power indicators and fine-tuned the parameters of the power model for highest 

accuracy possible. The accuracy is normally verified by comparing with the result 

measured by a power meter or by applying the power information into a power-aware 

strategy to test its usability. Power models are more popular in energy-aware software 

research because it is more practical and suitable for use with or within software 

applications. However, its complexities and errors in the models can introduce inaccuracy 

making software-based power measurement less accurate than hardware-based [3, 42]. 

Also, many models are considered premature to be used in real-world applications. This 

section provides some examples of software/modeling-based power measurement tools. 

2.3.2.2.1 PowerScope 

PowerScope [78] is an early-developed energy profiler that combines both 

hardware measurement and a statistical sampling method of system activity with kernel 

software support.  The energy profiler maps energy consumption to program structure, in 

much the same way that CPU profilers, such as prof and gprof, map processor cycles to 

specific processes and procedures. Figure 4 is the architecture of PowerScope depicting 
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how a digital multimeter is integrated and how it generates an energy profile. As 

applications execute on the profiling computer, the System Monitor component samples 

system activity and records the value of the program counter (PC) and the process identifier 

(PID) of the executing process. At the same time, the Energy Monitor component samples 

voltage and current readings from the digital millimeter at the same corresponding rates 

controlled the multimeter. Subsequently, the Energy Analyzer component uses this 

information to generate an energy profile. 

 

(a) Data Collection 

 
(b) Offline Analysis 

 

Figure 4. PowerScope Architecture (from [78]) 
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The PowerScope Energy Analyzer component generates activity-based profiles by 

integrating the product of instantaneous current and voltage over time. The energy value is 

approximated by sampling the voltage 𝑉𝑡 and current 𝐼𝑡 at regular intervals of length Δt. 

The energy usage of the executing process over n samples is calculated by multiplying the 

summation of current samples with the measured voltage (𝑉𝑚) and the sample interval (Δt) 

as shown in the following equation: 

                                        𝐸 ≈ 𝑉𝑚 ∑ 𝐼𝑡∆𝑡𝑛
𝑡=0                        (2) 

The authors claim that, by using PowerScope, they are able to reduce the energy 

consumption of an adaptive video playing application by 46%. 

2.3.2.2.2 Joulemeter 

For a more recent energy profiling tool, Joulemeter [79] is a Microsoft’s software-

based energy profiler that estimates the power consumption of a computer. It tracks 

computer resources, such as CPU utilization and screen brightness, and estimates power 

usage. Joulemeter estimates the energy usage of a virtual machine (VM), computer, or 

software by measuring the hardware resources being used, such as CPU, disk, memory, 

screen, etc. The tool then converts the resource usage to actual power usage based on 

automatically learned realistic power models. This calibration process can be done with 

either the device’s internal battery module or a Watts Up? meter [16]. Joulemeter is used 

for gaining visibility into energy use and for making several power management and 

provisioning decisions in data centers, client computing, and software design. At the time 

of writing this paper, Joulemeter is no longer available for download and supported by 

Microsoft. The company informs that similar energy profiling tool has been integrated in 



 

45 

the later versions of Visual Studio, a popular integrated development environment (IDE) 

from Microsoft. 

2.3.2.2.3 Intel Power Gadget 

The Intel Power Gadget [80] is one of the most recent power estimation tools that 

can also be used for energy-efficient software development projects. It can be considered 

as both hardware and software-based power usage monitoring tools since the power 

consumption data are derived and calculated from energy counters provided by Intel Core 

processors. The motivation for the tool is to assist end-users, ISV’s (independent software 

vendors), OEM’s (original equipment manufacturers), developers, and others interested in 

a more precise estimation of power from a software level without any hardware 

instrumentation. The latest version 3.0 tool is supported on Windows, Mac OS X and 

Linux, and includes an application, driver, and libraries to monitor and estimate real-time 

processor package power information in watts using the energy counters in the processor. 

With the latest release, the tool provides functionality to evaluate power information on 

various platforms including notebooks, desktops and servers. The callable APIs allow 

programmers to extract power information at finer granularity and within sections of 

program codes. The optimal sample rate is suggested at 100 milliseconds per sample.  The 

data provided by the tool include processor power, package power limit, current processor 

frequency, base frequency, GT or GPU frequency, current temperature, maximum 

temperature, proc hot (when package temperature exceeds max temperature), timestamps 

and elapsed time. The data are obtained from the CPU’s model specific registers (MSRs) 

and energy counters that are available only in 2nd-generation Intel Core or later processors. 
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There are also many other power/energy estimation tools—JouleTrack, a web 

based tool for software energy profiling [81]; PowerTop [82] that allows users to find 

programs that are consuming power when  the computer is idle; PowerDail [83], a system 

for dynamically adapting application behavior to execute successfully in the face of load 

power fluctuations; Green Tracker [84], a tool that estimates the energy consumption of 

software in order to help concerned users make informed decisions about the software they 

use; and the more recent tool, POSE [85], a mathematical and visual modelling tool to 

guide energy aware code optimization. . Figure 5 shows some mathematical formula of 

component-level power models used in AppScope framework, an application energy 

metering tool for Android smartphone developed by Yoon et al. [140]. There are also many 

other tools not included here. 

 

Figure 5. AppScope’s Component-Specific Power Models (from [140]) 
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2.4 Performance, Power and Energy Optimization of Software Applications 

Like execution time or performance, power and energy consumption are considered 

non-functional properties of software applications. The two properties are becoming more 

important among battery-driven devices because improving the energy efficiency in 

software applications can help extend the device’s battery life. However, there is still some 

confusion and questions about energy optimization of software applications. Based on the 

energy formula (E = P × t), minimizing the energy consumption can mean either 

minimizing the execution time, the power consumption or both.  One may argue that 

improving the energy efficiency can be done by just improving the performance or making 

the code run faster (minimizing the execution time). However, this is not always the case 

because optimizing the code to run faster can sometimes increase or decrease the power 

consumption of software applications and can result in higher or lower energy 

consumption. As mentioned in one of our published papers [3], optimizing the power and 

performance of a software system is not simple. This is mainly because the two properties 

are considered conflicting attributes and are often traded off. Our study results provide 

some evidences of counterintuitive results showing that some system cache configurations 

can result in faster execution but the power consumption sometimes remains unchanged or 

is lower or higher. 

Moreover, Abdulsalam et al. conduct a comprehensive experiment on using 

different techniques to optimize software programs and propose the Greenup, Powerup and 

Speedup metrics (GPS-UP) to categorize the software implementation and optimization 

efficiency [102]. The definitions of the metrics are explained in Section 2.3.1.1. Figure 6 



 

48 

shows the GPS-UP software energy efficiency quadrant graph. The “green” categories 

(categories 1-4) represent energy savings and the “red” categories (categories 6-8) 

represent energy loss compared to the corresponding non-optimized code. For example, 

category 1 is specified as Powerup < 1 and Speedup > 1, meaning that the optimized code 

runs faster and consumes less power consumption. On the other hand, category 4 is 

specified as Powerup < 1 and Speedup < 1. This category indicates that the optimized code 

is greener, consumes less power but runs slower. The goal of their study is also to try to 

answer the following questions:  

1) “Is performance efficiency equivalent to energy efficiency?” 

2) “Is there a win-win situation for both performance and power consumption?” 

3) “Is there any optimization that helps energy more than performance?” 

4) “What are the correlations between performance, power and energy when 

optimizing software?” 

 

Figure 6. GPS-UP Software Energy Efficiency Quadrant Graph (from [102]) 
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Using a number of different implementations of four selected algorithms, the 

authors observe the relationship between GPS-UP metrics and are able to find examples 

for all eight categories and show that some optimization techniques can help energy more 

than performance. These GPS-UP metrics can also be used to analyze the correlations of 

energy, power and performance when optimizing software applications. The ideal 

optimization techniques can be identified when the optimized code is in the category 1—

less power consumption and faster execution. The authors also recommend that we 

combine the Greenup, Powerup and Speedup in analyzing the impact of language choices, 

compilers, and optimization techniques on execution time and energy consumption of 

software applications. However, in our adaptive data structure study in this dissertation, 

the energy optimization impact is analyzed using the Greenup metric, looking only at the 

overall energy impact from using our green data structure, without specifically analyzing 

the Powerup or Speedup metrics. 
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CHAPTER 3: GREEN SOFTWARE DEVELOPMENT 

Originally, energy efficiency research in computer systems has been driven mainly 

by battery constraints of ubiquitous mobile devices and notebooks. Many energy efficiency 

tools and methods were developed primarily to help extend battery lifetimes of the devices.  

The main purposes were toward the saving of operational costs of data centers and 

extending of battery lifetime of mobile devices. However, today the trends and goals of the 

research are toward more environmental sustainability; reducing carbon footprints and the 

fight against climate change. Besides concentrating on the hardware components, aiming 

on software components and application layers of computer systems is also gaining 

popularity among many researchers. However, the research area is still in the early stage 

and there is much room for improvement. This chapter discusses the background and 

current development of green software research and some of the related fields, software 

adaptation for energy efficiency and developing green software using machine learning 

methods. 

3.1 Sustainability in Software Engineering 

In recent years, Sustainable or Green Software Engineering (SSE or GSE) has been 

gaining importance in the software engineering community. Many researchers are now 

realizing the direct and indirect effect of software applications to the system’s energy 

consumption and the environment. Their efforts include developing software engineering 

methods and promoting green software developments among software engineers and 
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developers. The main purpose is to include sustainability and greenness into every phase 

of the software engineering process and consider it as a software quality metric or non-

functional property of software applications.  

3.1.1 Framing Sustainability as a Property of Software Quality 

Based on the Collins dictionary [105], the definition of sustainability is “the ability 

to be maintained at a steady level without exhausting natural resources or causing severe 

ecological damage”. Similarly, the Brundtland report from the United Nations (UN) [106] 

defines sustainable development as the ability to “meet the needs of the present without 

compromising the ability of future generations to satisfy their own needs” [62]. Based on 

the UN definition, sustainable development needs to satisfy the requirements of three 

dimensions, which are the society, the economy and the environment. 

In addition, based on an IUCN’s technical report by Adams [93], the author defines 

the three dimensions in sustainable development into three pillars of sustainable 

development that can also be applied in IT development: 

1) Pillar 1: Economic Development—to ensure economic growth, maintain a 

healthy balance with our ecosystem and integrate environmental and social 

concerns into business. 

2) Pillar 2: Social Development—to create a sustainable society which includes 

social justice or reducing poverty. 

3) Pillar 3: Environmental Protection—to ensure that the environment is protected 

by human actions and help the environment to be able replenish itself; e.g., the 

use of recycled materials to help conserve natural resources. 
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In extending the above principle, Lago et al. [26] introduce the fourth pillar, the 

Technical pillar, for supporting long-term use and evolution of software-intensive systems 

at a level of abstraction closer to implementation. Their suggestion is that sustainability is 

achievable only when accounting for all dimensions. The authors also propose a framework 

to address the environmental dimension of software performance by demonstrating the use 

of the framework in a paper mill and a car-sharing service project. Figure 7 displays their 

framework for sustainability software-quality requirements. The framework addresses how 

these concepts relate to software and how to break down the respective concerns into 

software-quality requirements.  

 

Figure 7. A Framework for Sustainability Software-Quality Requirements (from [26]) 

To frame software qualities, the framework positions the qualities into the four 

sustainability dimensions and relate them to the concerns of the relevant stakeholders. 
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When starting a project with a requirement on sustainability as shown in Figure 7, where 

the association aims to link the evaluation objective to the sustainability dimension, 

software developers have to resolve any concern and trade-offs among the various qualities 

classified as belonging to each of the four dimensions. In contrast with the traditional 

software decision making that considers trade-offs either between different technical 

sustainability criteria (such as performance versus availability) or between any of the four 

dimensions, the framework suggests sustainability-related software decision making 

involves trade-offs between environmental sustainability criteria (such as energy 

efficiency) and social, economic, and technical sustainability criteria.  The authors also 

demonstrate the use of the framework in case-study examples.  

In the paper-mill control system case study, there can be three main stakeholders 

that are concerned about different problems: for example, the surrounding community and 

society that are concerned about environmental sustainability like forest sustainability; 

customers  that are concerned about economic sustainability like production savings 

expressing productivity and economic value creation; and producing organization, 

including managers and engineers, that are concerned about technical sustainability like 

optimization of configurability and performance. The interdependent quality requirements 

may influence one another, as in association/association class influences among 

sustainability quality requirements. In this case, performance and energy savings could 

influence each other, while increasing performance could demand more resources that 

consume more power and have a negative effect on energy savings. Using the framework 

can help designers of software-intensive systems appreciate the importance of the various 
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qualities and developers keep track of the elements captured by the framework when 

making the trade-offs among the various qualities in the four sustainability dimensions. 

The term sustainability is sometimes analogous to “green” or “greenability” and 

also used in many sub areas of green computing research. For example, in a book by Calero 

and Piattini [107], the authors include the definitions for sub areas of green computing 

terms, such as information system (IS) Sustainability, ICT/IT sustainability and software 

sustainability. However, their main concepts are the same as the above definitions of 

sustainable development.  This dissertation focuses more on the software sustainability and 

green software engineering, with the main goal to motivate green software development 

among researchers, programmers and other stakeholders that are involved in software 

development projects. 

3.1.2 Sustainable and Green Software Engineering 

Based on a book by Calero and Piattini [107], software engineering sustainability 

is considered a part of software sustainability. The authors state that software sustainability 

can be applied in many areas, such as software systems, software products, web 

applications, data center, etc. The book also states that the term sustainable software can 

be interpreted in two ways: (1) “the software code being sustainable, agnostic of purpose”, 

or (2) “the software purpose being to support sustainability goals”. Therefore, in this 

context, sustainable software is energy-efficient, minimizes the environmental impact of 

the processes it supports, and has a positive impact on social and/or economic 

sustainability. Naumann et al. also give a definition of sustainable software as “software, 

whose direct and indirect negative impacts on economy, society, human beings, and 
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environment that result from development, deployment, and usage of the software are 

minimal and/or which has a positive effect on sustainable development” [24]. The direct 

impacts are related to resources and energy consumption during the production and use of 

software, while indirect impacts are effects from the software product usage, together with 

other processes and long-term systemic effects. 

In addition, Calero and Piattini also define green software as environment-friendly 

software that helps improve the environment. They also classify green software into four 

categories: 

1) Software that is greener because it consumes less energy to run 

2) Embedded software with smart operations that can assist other parts in going 

green 

3) Sustainability-reporting software or carbon management software 

4) Software for understanding climate change, assessing its effects and forming 

appropriate policy responses 

For software engineering sustainability, Naumann et al. [24] subsequently define 

green and sustainable software engineering as the art of developing green and sustainable 

software engineering process, so that the negative and positive impacts on sustainable 

development that result and/or are expected to result from the software product over its 

whole life cycle are continuously assessed, documented, and used for a further optimization 

of the software product. However, as the research in green software engineering progress, 

there are also other definitions given by several researchers. For example, stated by Calero 

and Piattini [107], green and sustainable engineering is the enhancement of software 
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engineering, which targets; (1) the direct and indirect consumption of natural resources and 

energy, and (2) the aftermath that are caused by software systems during their entire life 

cycle, the goal being to monitor, continuously measure, evaluate and optimize these facts. 

The aims for sustainable software engineering are “to create reliable, long-lasting software 

that meets the needs of users while reducing the negative impact on the economy, society 

and the environment.” Moreover, researchers from the University of California, Irvine, 

state that the aim of software engineering for sustainability (SE4S) is to support all 

dimensions of sustainability—human, social, economic, environmental, and technical—

throughout the software lifecycle [108]. 

 

Figure 8. Green Software, Green Hardware and Green IT (from [107]) 

Because there are discrepancies between the concepts and the meanings given by 

many different authors, Calero and Piattini also present a simple diagram (Figure 8) to 

unify the different terminologies and definitions that together make up “Green IT.” The 
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figure shows where software sustainability and green software engineering can be put in 

the green IT research area along with the distinctions from other areas in software and 

hardware layers. Based on the figure, our research area of green software development in 

this dissertation can be put in the “Green IN Software” research area, in which the main 

goal is to develop software applications that consume less energy to run. 

3.2 Green Software Development Life Cycle 

The trend of green computing has been changing in the last few years, and new 

pieces of work related to the area of green software development are emerging. There are 

several research studies that attempt to standardize the green software engineering 

practices. This section demonstrates two examples of the green software engineering 

models. 

3.2.1 GREENSOFT 

In order to classify and sort some aspects of green and sustainable software and its 

engineering, Naumann et al. develop a conceptual reference model named GREENSOFT 

model for sustainable software [24], shown in Figure 9. The model contains four parts that 

cover; (1) the life cycle model of a software product; (2) criteria and metrics that represent 

sustainability aspects that are directly and indirectly related to the software product; (3) 

procedure models for the different phases; and (4) recommendations for action, as well as 

tools for different stakeholders. The four-part model supports software developers, 

administrators, and software users in creating, maintaining, and using software in a green 

manner. 
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In the first part, the life cycle of software products, the authors follow the concept 

found in the Life Cycle Thinking (LCT) according to the “from cradle to grave” principle 

[109]. The life cycle of green software products can also be considered at the development 

and the usage phases, up until the end of life of software products. 

 

 

Figure 9. GREENSOFT Reference Model (from [24]) 

The intention is to estimate the ecological, social, and economic impacts that 

already occur in early stages during the software’s whole life cycle. The sub model also 

shows an overview for the life cycle of software and its relationship to different levels of 
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effects—first order effects (effects resulting directly from the product, e.g. energy 

consumption), second order effects (usage results, e.g. effects of dematerialization by 

software), and third order or rebound effects (e.g. when an energy-efficient product leads 

to more energy consumption in total).  

In the second part, the authors present some sustainability criteria for software 

products. The model categorizes the criteria into three categories—common quality criteria 

and metrics, directly related and indirectly related criteria metrics. The part involves mainly 

measurements of common effects of software products which are considered important for 

developing green software. In this part, the authors also propose a quality model and 

introduce some quality criteria terminologies such as, Efficiency, Energy Efficiency, 

Runtime Efficiency, CPU-Intensity, Memory Usage, Peripheral Intensity, Idleness, 

Number of Methods, Framework Entropy, Functional Types, and so forth. 

For the third part, the sub model contains procedure models, based on the different 

usage types of different stakeholders such as, developers, purchasers, administrators, and 

users. The proposed models suggest that software engineering should become green and 

sustainable in its production, support, and application processes. Lastly, the forth sub 

model comprises recommendations for action and tools for the different stakeholders, such 

as checklists, guidelines, best practice examples, software tools, as well as other tools that 

speedup and improve the green software development processes. These support 

stakeholders with different professional skill levels in applying green or sustainable 

techniques in general, when developing, purchasing, administrating, or using software 

products. Our proposed green data structure in this dissertation can also be considered as 
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one of the support tools, particularly for programmers to use in developing green software 

applications. 

 

Figure 10. An Overview of Green Software Engineering Process Model (from [24]) 

As additional detail of the first sub model, software product life cycle, the authors 

also give an overview of a green software engineering process model, shown in Figure 10, 

which incorporates the green software development practices with the traditional software 

development life cycle (SDLC). This general process is enhanced by several activities that 

have the objective to enable sustainable software engineering. The sustainability reviews 

& previews mainly consider impacts on sustainability which are expected to arise from 

distribution and future use of the software products. The sustainability journal is the 

information hub of the process enhancements. It is a well-structured report, which evolves 

together with the software project. Its purpose is to document sustainability reviews & 

previews, process assessment and the sustainability retrospective. Finally, after the project 

has finished, it reports the assessed impacts on sustainability. 
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3.2.2 A 2-Level Green Model for Sustainable Software Engineering 

In addition to the GREENSOFT model, Mahmoud and Ahmad [25] propose 

another software model that covers all aspects of software related to green computing. The 

model is a two-level model in which the first level is a hybrid software engineering process 

between sequential, iterative, and agile software development processes that aims to create 

a green and sustainable software process; and the second level explains how software itself 

can be used as a tool to aid in green computing by monitoring resources in an energy 

efficient manner. 

 

Figure 11. Level-1 Green Software Engineering Process (from [25]) 

In the first level shown in Figure 11, the Level-1 model consists of nine main stages 

that can aid in producing a green product and is designed to have environmentally 

sustainable stages—requirements, design, unit testing, implementation, system testing, 

green analysis, usage, maintenance, and disposal. This first level represents how to obtain 

a green and sustainable product. The “Business, people, customers” box in the figure 

indicates that the customers and the business people should be part of the requirements, 

design, implementation, and testing stages. 

Each of the nine stages contains some sub stages and can sometimes be iterated 

back to the previous steps and repeated multiple times if necessary. For example, starting 
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with the green requirements engineering stage, this stage is the energy efficient requirement 

engineering process. It consists of a feasibility study to determine if the system to be built 

is relevant and useful to the business, including whether to include energy efficiency as a 

non-functional requirement. The requirement process also includes outlining and 

organizing the services in the order they should be developed and a risk analysis inspired 

from the iterative spiral model but in terms of energy. After the risk analysis, the process 

can go back to the requirement outlining stage to implement these changes if necessary. At 

the final stage of the requirements process, the requirement test stage is to be conducted to 

an environmentally sustainable requirements process. It is energy efficient to develop tests 

along with requirements because it provides a better understanding to the testers and 

developers of the requirements and mainly satisfies that there will be no changes when 

system and acceptance testing occurs. 

In the green design stage, a system architecture is created based on the 

requirements. During this stage, fundamental software system abstractions and their 

relationships are defined. There are a number of design activities that form the 

sustainability level of the software component such as architectural design, abstract 

specification, data structure design, and algorithm design. The system is then implemented 

into a set of programs and program units based on the designs. Software developers should 

choose at this stage the most suitable programming patterns or algorithms to the 

application. The software testing process can emphasize on either discovering that the 

software does not meet its requirements or can emphasize on discovering faults or defects 

in the software where the behavior of the software is incorrect. 
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The green analysis stage is to promote energy efficiency and brings forth new ideas 

about environmental sustainability to any software engineering process. The green analysis 

stage determines the greenness of each increment of the system that is developing. This 

stage acts like a testing stage but for energy efficiency. Energy metrics are used in this 

stage to perform the analysis. The usage, maintenance and disposal stages are also 

conducted in a green manner. 

 
 

Figure 12. Level-2 Software Model that Promotes Green ICT (from [25]) 

In Figure 12, the Level-2 model indicates how software tools can play a major role 

in having energy efficient use of software applications thus promoting green computing. 

This model consists of five categories—operating system frameworks, fine grained green 

computing, performance monitoring counters and metrics, code written for energy 

allocation purposes, and virtualization. For example, the operating system frameworks that 

create intelligent power profiles are integrated into the operating system code to minimize 

power consumptions of computer systems. The energy profiles can be used to minimize 

the average work load of the CPU by shutting or hibernating applications not in use so that 

heat dissipation and power consumption is minimized. For performance monitoring 
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counters and metrics, the authors give Span [110] and GreenTracker [111] as examples of 

power estimation tools that can be used for energy efficiency improvement of computer 

systems. The fine grained green computing approaches are more specific to a running 

application such that power consumptions can be measured at component levels such as 

memory banks or I/O peripherals. The fine grained data can help the applications to 

improve energy efficiency better. The general approaches are codes written specifically for 

energy allocation purposes that can route traffic to locations such as data centers with the 

cheapest energy costs or ones with cooler temperatures. The virtualization also plays a role 

in green computing and is partly software. Virtual machines are partitioned based operating 

systems that allow for multiple applications to exist on a single system. This approach can 

reduce the number of systems needed and the amount of power required, thereby 

contributing to green computing. 

In our main study, the proposed adaptive green data structure can be put in both 

levels of the green model. If we consider our green data structure as a green programming 

tool that programmers can use to develop green software application, then the approach 

can be viewed as the Level-1 model—in the design and implementation stages, in particular 

during the selection process of a green design architecture, tools and algorithms. If the 

green data structure is viewed as a software tool that aids in green computing and software 

development, it can also be put in the Level-2 model—possibly in a fine grained green 

computing group. 



 

65 

3.3 Software Adaptation and Energy-Aware Applications 

Due to the growing numbers of modern and complex applications with the ability 

to adapt to different users, environments, platforms and/or screen sizes of mobile devices, 

software adaptation is emerging as a new discipline in the software engineering field. 

According a paper by Canal et al. [112], software adaptation refers to “a process, in which 

an interactive/adaptive system adapts its behavior to individual users based on information 

acquired about its user(s) and its environment”. In a more specific definition in software 

engineering term, software adaptation promotes the use of adaptors—specific 

computational entities whose main goal is to guarantee that software components are able 

to interact in the right way not only at the signature level, but also at the behavioral, 

semantic, and service levels. There are many purposes for software adaptation—

interoperability, usability and improving performance, quality of service or energy 

efficiency, among others. 

For interoperability purpose, at the signature level, a software component is 

designed so that its interfaces or the name of the service, type of its arguments and return 

values, and the possible exceptions raised, that is, the full signature of the component can 

be reused many times in developing many other applications. At the behavioral level, the 

component has the behavior or protocol as expected or specified by the interfaces. The 

mismatched behavior can make the component to be incompatible or have no behavioral 

adaptability. At the semantic level, the compatible component has to be designed and 

implemented correctly with correct formal functional descriptions and language semantic. 

And at the service level, typical aspects that can be adapted are synchronization, security, 
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persistence, and so forth. For usability purpose, software components are to be 

designed/implemented so that it can adapt to the users and environments such as platforms, 

internet connectivity, screen size and other usability requirements. In addition, a study by 

Oreizy et al. [113] shows how an application can be adapted at runtime by manipulating 

its architectural model. In particular, the paper demonstrates how software connectors in 

aiding runtime change, provides an explicit architectural model fielded with the system and 

used as the basis for runtime change, and suggests architectural style in providing both 

structural and behavioral constraints over runtime change. 

For green software development, software adaptation is the ability of software to 

adapt and be reconfigured, changed or transformed for energy efficiency. This adaptation 

can be either in a manual or automatic manner. For example, an adaptive online video 

player is designed/implemented so that it can be manually or automatically reconfigured 

for the video content to be streamed at different quality levels depending on the strength of 

the internet connection or the battery lifetime of a computing device. For manual 

reconfiguration, the process is normally done offline by users or programmers at design 

times. But, automatic reconfiguration is normally done at runtime so the software can adapt 

dynamically and automatically. Sometimes, the online or dynamic adaptation requires 

some types of intelligence for decision making of when and how to adapt. 

For modern software systems, many studies focus on software adaptation for 

energy efficiency. The software adaptation capability sometimes is mechanically included 

in energy-aware applications. The energy-aware applications normally include energy 

monitoring capabilities (so they know the energy impacts from its processes) and runtime 
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adaptability for energy efficiency. For example, a study by Flinn and Satyanarayanan [13] 

demonstrates how mobile applications can dynamically modify their behavior to conserve 

energy. One experiment in the Linux operating system shows that the operating system can 

guide such adaptation to yield a battery life of desired duration. By monitoring energy 

supply and demand, it is able to select the correct tradeoff between energy conservation 

and application quality. Their evaluation result shows that this approach can meet goals 

that extend battery life by as much as 30%. 

In a recent study by Hoffman [114], the author combines approximate applications 

and energy aware systems to create JouleGard, a runtime control system that coordinates 

approximate applications with system resource usage to provide control theoretic formal 

guarantees of energy consumption, while maximizing accuracy. JouleGuard is evaluated 

by testing on three different platforms (a mobile, tablet, and server) with eight different 

approximate applications created from two different frameworks. The result shows that 

JouleGuard respects energy budgets, provides near optimal accuracy, adapts to phases in 

application workload, and provides better outcomes than application approximation or 

system resource adaptation alone. For another study that focuses on software adaptation 

for energy efficiency, OpenMPE [115] is an extension to OpenMP designed for power 

management. OpenMP is a standard for programming parallel shared memory systems 

without any support for power control. The OpenMPE exposes per-region multi-objective 

optimization hints and application-level adaptation parameters, in order to create energy-

saving opportunities for the whole system stack. The evaluation results demonstrate the 
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effectiveness of OpenMPE with geometric mean energy savings across 9 use cases of 15% 

while maintaining full quality of service. 

 

Figure 13. Idealized Infrastructure for Dynamic System Adaptation (from [116]) 

There are many types of system infrastructures and architectures for software 

adaptation; for example, Kinesthetics eXtreme (KX) for applying dynamic adaptation 

facilities “from the outside” of a given target system [116]; and KX Feedback-Control-

Loop infrastructure that extends the KX architecture with a feedback-control-loop 

infrastructure. However, in general, an adaptive system composes of monitoring, dynamic 

analysis, decision making and feedback to reconfiguration components.  As seen in Figure 

13, it is an idealized infrastructure for system adaptation with the “Feedback-Control-

Loop” infrastructure being added to the legacy systems. This infrastructure adds the ability 
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for dynamic adaption to the legacy systems. In the figure, initially, data is collected from 

the running target system. It is instrumented with non-invasive probes that report raw data 

to other layers via the probe bus. The data is then interpreted via a set of gauges that map 

the probe data into various models of the system. The gauges then report their findings to 

the gauge bus. Then the decision and control layer can analyze the implications of the 

interpreted data on overall system performance and make decisions on whether to: (1) 

introduce new gauges in the interpretation layer to analyze further, or disable some as 

unneeded; (2) deploy new probes to provide more detailed information to the remaining 

gauges, or turn some off to reduce “noise”; and/or (3) reconfigure the system itself, perhaps 

changing the running system’s structure by introducing new modules or modifying system 

or component parameters. 

The adaptive green data structure in our study and other energy-aware applications 

also have similar infrastructure. There is an energy monitoring component for energy 

profiling and collecting energy data. There is also a data analysis for data interpretation 

and a decision making component for making decisions on when and how to adapt. There 

is also a feedback mechanism to notify different parts of the system to reconfigure, 

transform or adapt for energy efficiency and extending battery life. Also similar to the 

idealized architecture, our green data structure adds the Green component to the existing 

dynamic data structures so that they have the ability to learn and adapt for energy 

efficiency. However, in software applications, the main challenges are (1) how to add 

power monitoring components since, at the time of writing this dissertation, there is no 

such tool for measuring energy impact at the software object level, and (2) how to add the 
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data analysis and decision making capabilities without introducing overhead due to the 

additional computation. Our approach to solving the problems and overcome the 

challenges are to use machine learning technology and make the decision mechanism as 

lightweight as possible. 

3.4 Machine Learning for Energy-Efficient Computing 

Machine learning is a field in computer science that is becoming more and more 

popular among many research areas such as gaming, natural language processing, data 

science and robotics. Based on a book by Bekkererman et al. [44], machine learning is 

about developing algorithms for making predictions from data. The purpose of a machine 

learning task is to identify (or to learn) a function f: X  Y that maps the input domain X 

(data) onto output domain Y (of possible predictions). The function f is selected from a 

certain function class, which is different for each learning algorithm. X and Y are the 

domain-specific representations of data objects and predictions, respectively. For learning 

algorithms, there are two main types—supervised and unsupervised learning. Supervised 

learning algorithms require training data to create a function f that produces accurate 

predictions on test data. Instead, unsupervised learning algorithms aim to construct 

predictive functions that generalize or describe hidden structure of unlabeled or unseen 

data. 

Two famous examples of supervised learning tasks are classification and 

regression. Classification tasks have the output Y as discrete set of categories (or classes), 

Y = {c1, c2, c3,..., ck}, whereas, regression tasks has the output Y as real numbers. One 

famous example of the unsupervised learning is data clustering. The goal of data clustering 
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is to construct a function f that partitions an unlabeled dataset into clusters, with Y being 

the set of cluster indices. In our green data structure study, supervised learning technique 

is used for training our green data structure, and classification technique is used when 

predicting energy efficient data structures from the workload. In general, machine learning 

gives computers the ability to learn and make predictions without explicitly being 

programed. 

Today, machine learning is being widely used in many computer fields and is 

another important methodology for sustainability as well. There are many research and 

products that use machine learning techniques for improving energy efficiency; for 

example, intelligent agents in smart meters and the Smart Power Grid [117]; ThinkHome 

[118] and Smart Buildings [119] for optimizing energy bills in homes and buildings; and 

smart cars [120] for optimizing fuel consumption and extending battery life of electric cars. 

For green computing research, there are also several research studies that make use of 

stochastic search for improving energy efficiency of computer systems and for developing 

green software applications. This section provides some research examples that uses such 

techniques for improving energy efficiency of computer systems and software applications.  

First, a research by Lorenz et al. [121] focuses on the compiler layer, in particular the code 

optimizer in embedded systems. The authors propose an energy-aware code generator 

(GCG) based on single population genetic algorithm. This code generator reduces the 

energy consumption by suitable instruction selection and instruction scheduling. Energy-

aware compilation is done with respect to an instruction level energy cost model which is 

integrated into the code generator and simulator. Their method is to decompose a source 
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program into basic blocks of procedures and present them as nodes in a data flow diagram 

(DFG). The genetic algorithm module encodes the basic blocks into specialized 

chromosomes. Each gene of the chromosome represents an operation like a load or an 

addition. The values of a gene express information about used registers, performed 

processor instruction, execution cycle, and others, which are necessary for code generation. 

An objective function is defined as the consumed power or energy of a program. It is 

represented by values of average power dissipation of certain combinations of instructions. 

The authors used their method for SIMD instructions (SIMD refers to single instruction 

multiple data). The evaluation results show a 30% of energy reduction and 8% reduction 

of the application code.  

Furthermore, similar code optimizer research by Azzemi [122] uses a simple multi-

objective genetic algorithm (MOGA) in their optimization and achieve an energy reduction 

of about 17%. Meedeniya et al. [123] try to solve the redundancy allocation problem in the 

embedded systems by using the Markov Reward Model [124] for system representation. 

The authors use the non-dominated sorting GA (NSGA) algorithm to solve a bi-objective 

optimization problem between system reliability and energy consumption. The achieved 

empirical results show that the proposed method can significantly reduce the energy 

consumption for a very small trade-off of reliability. 

For network data transmission, dynamic data compression in the application code 

seems to be a promising software tool for saving the energy used for data propagation in 

wireless sensor networks. Compression methods exploit the data structure and reduce the 

data size. Marcelloni and Vecchio [125] perform a data compression on a network (single) 
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node based on a differential pulse code modulation scheme with quantization of the 

differences between consecutive codes of the signal samples. The trade-off between a 

performance of compression algorithm and the amount of the lost information is 

determined by the set of quantization parameters. The authors employ the Non-Dominated 

Sorting Genetic Algorithm II (NSGA–II) for optimizing the combinations of these 

parameters corresponding to different optimal trade-offs. The evaluation analysis of the 

proposed method shows a 62% reduction of the energy consumed in data transmission.  

Similarly, Liu et al. [126] propose a MAC layer solution called pushback that 

appropriately delays packet transmissions for energy efficiency in sensor networks. The 

method is to overcome periods of poor channel quality and high interference, while 

ensuring that the throughput requirement of the node is met. It uses a hidden Markov model 

(HMM) based channel model that is maintained without any additional signaling overhead 

scheme. The pushback algorithm is shown to improve the packet success rate by up to 71% 

and reduce the number of transmissions needed by up to 38% while ensuring the same 

throughput.  

A recent article by MIT News [129] reports that MIT researchers have built an 

energy-friendly chip that can perform powerful learning tasks. The new chip is designed 

specifically to implement neural networks that enable future mobile devices to model the 

human brain. It is 10 times as efficient as a mobile GPU so it could enable mobile devices 

to run powerful learning algorithms locally rather than uploading data to the internet for 

processing. Also stated in the article, neural nets were widely studied in the early days of 
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machine learning research, but by the 1970s, they had fallen out of favor.  In the past 

decade, however, they have come back under the name “deep learning.” 
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CHAPTER 4: A POWER-PERFORMANCE TRADEOFF STUDY 

As our first study and an initial exploration in green computing research, this 

chapter presents a power-performance tradeoff study of the cache system in computer 

hardware systems. The purpose is to see how the cache system impacts the energy 

consumption of a computer system and how the energy efficiency can be improved by 

using a Pareto tradeoff method. In the study, we conduct an empirical evaluation of the 

power/performance impact of cache configuration on embedded systems.  We gather live 

power consumption and execution time data for the programs in the CHStone benchmark 

suite on an embedded processor with configurable cache parameters and perform a Pareto 

analysis on these data to identify the optimal cache configurations. We observe that the 

optimal configurations are sparse in the design space, are inconsistent across the 

benchmark, and are counterintuitive in some cases.  Our results reveal interesting, 

unexpected insights motivating the need for tools and methodologies that automate this 

process and operate directly on data gathered from the systems. 

4.1 Introduction 

Power-performance optimization is challenging and becoming increasingly 

important among modern computer systems, especially for those that rely on battery power.  

The sophistication of software applications and the increasing needs of rich media and big 

data have made today’s computer systems power-hungry, while battery standards are not 

keeping pace with the demand [49].  Therefore, many researchers have been developing 
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optimization techniques to extend battery life and reduce power consumption while 

maintaining other performance characteristics at acceptable levels.  

Many power reduction techniques are based on power models which might not 

represent the full complexity of the system being analyzed. Most computer systems are not 

originally designed to support power optimization so the onboard power monitoring 

systems are not included, or if included, they are not explicitly designed to measure the 

power consumption of software applications [42, 50]. Many power models have been 

developed to support power optimization [39, 45, 48, 50, 51]. They are mostly intended to 

evaluate a specific platform or specific technology [51]. As with all models, if there are 

errors with calibration or inaccuracies in the models, or if they are used incorrectly, the 

results can be skewed or different from those based on analysis of live power consumption 

data [42]. In order to avoid the use of power models, we focus on the use of live data. 

Optimization with live data is difficult: the process of gathering and analyzing these 

data is tedious and understanding conflicting performance attributes is challenging. In 

software engineering, performance and power consumption are viewed as non-functional 

properties.  They are considered conflicting attributes and are often traded off, making 

them difficult and time consuming to optimize [41]. Many researchers point out that high-

level strategies can help in trading off the conflicting properties and solving the multi-

objective optimization problem [33, 41]. Although their results are intuitive and feasible, 

there are still many open challenges and the strategies are far from being adopted into 

practice.  
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In this paper, as a case study, we conduct an experiment on an embedded hardware 

platform that can run a wide variety of software applications while providing live power 

consumption data. We investigate one aspect of the system, the cache system, because it 

has a major impact on both power consumption and execution time, and virtually all 

computer systems use caches [45]. Several other studies have shown that the cache has a 

large effect on the overall system performance and also accounts for a large amount of total 

energy consumption in embedded systems; up to 50% of total energy usage in some cases 

[48]. Also, there are many tunable parameters in most cache designs [46, 48]. 

We select Pareto optimality as the main principle to solve the bi-objective 

optimization problem because it is well-known and has been applied in many fields, 

including engineering and economics where optimal decisions need to be made in the 

presence of tradeoffs between two or more conflicting objectives [36]. Our goals are to 

demonstrate a detailed manual optimization process and to convey the basic concept of 

power-performance tradeoff in an energy-aware system and to understand the impact that 

different cache parameters have (or do not have) on the power/time tradeoff in order to 

better understand how an automated optimization methodology for performing this 

analysis might work.  

We consider power consumption data (watts) for the analysis instead of energy 

(joules) because we want to look at the system’s power consumption and performance as 

a whole and not the specific software being executed. We consider these properties to be 

independent from each other. Power consumption and execution time are just a few of the 

many performance and non-functional properties of a system [42]. Our goal is to observe 
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the interactions between the system’s power consumption and execution time as 

effectuated by different cache system parameters when executing different benchmark 

programs. 

The contributions of this study are threefold: (1) the demonstration of a detailed 

manual process for power-performance tradeoff analysis using Pareto optimality and how 

some unexpected insights can be discovered and categorized, (2) to provide evidence that 

some optimal configurations might not be as expected when analyzing the live power 

consumption data; our test results show that the optimal configurations can be sparse, 

inconsistent and in many cases counterintuitive, making automated optimization processes 

hard to implement without analysis from actual data, and (3) to provide some useful test 

results of FPGA cache configurations and to demonstrate that the optimal cache 

configurations do exist in the selected CHStone benchmarks. 

4.2 Background 

In the existing literature on power/performance tradeoffs, proposed techniques 

target improvements over the base system without using Pareto optimality. They often fail 

to address the overall space of possible solutions without knowing whether their chosen 

solution is optimal (where they are on the Pareto front). Much of the research is conducted 

without the understanding of the power-performance interactions at the system level. As 

stated in [43], observation of a lack of Pareto optimality is an alert to an opportunity to 

improve the design that might be missed, especially when no single engineer understands 

all the design dependencies. By applying the Pareto optimality principle with all possible 
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solutions for the development of an efficient energy-aware system, we come up with the 

following hypothesis for the experiment: 

 There exists a Pareto optimal curve on a solution space so that power and 

performance can be traded off at different weights. 

 If the curve is sparse, the development of the efficient energy-aware 

system is difficult.   

Based on our hypotheses, without a Pareto optimal analysis, it is hard to 

demonstrate that an improved result is optimal.  It is possible that the reported result might 

in fact be suboptimal, far from a Pareto optimal curve. In that case, the work done could 

be wasted as the solutions do not encompass all the necessary elements. 

4.2.1 The FPGA Cache System 

To study the cache parameters of an embedded system in our experiment, we select 

an Atlys development board, a complete, ready-to-use digital circuit development platform 

based on a Xilinx Spartan-6 LX45 FPGA [37]. All of the hardware platforms configured 

for the experiments are based on Xilinx’s MicroBlaze, a FPGA soft processor core that 

includes advanced architecture options like AXI or PLB interface, Memory Management 

Unit (MMU), Floating-Point Unit (FPU), instruction and data cache among other 

capabilities [46]. For MicroBlaze, the AXI System Cache soft-peripheral system used for 

the study is viewed as a direct-mapped L2 Cache and is highly configurable. The available 

cache configuration options in the Atlys board include cache size, cache line length, 

number of stream buffers, number of victims and write-back storage policy (all options are 

listed in Figure 16). Note that the MicroBlaze Cache configuration parameters are preset 
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with some default values and the data cache write-back storage policy is disabled by 

default. 

4.2.2 Pareto Optimality for a Typical Power-Performance Tradeoff 

As an example of power-performance tradeoff analysis, the design process we 

consider can be viewed as solving a bi-objective optimization problem, where we seek a 

cache configuration that minimizes two objectives, namely the execution time of 

applications in the system, and the power consumption of the system. Choices in 

configuring the system are generated by varying multiple cache-related parameters. In 

Pareto optimality, all objectives are treated equal. The “optimal” solutions found in a Pareto 

analysis together form the Pareto set or the Pareto front [52]. Solutions in the Pareto set 

reflect tradeoffs in the achievement of the different objectives. The selection of these 

solutions is based on the concept of dominance—a solution is worse than another only if it 

is so in all the objectives in the problem [36]. 

A scatter plot of the objective values corresponding to Pareto optimal 

configurations (also called a Pareto curve) can give system designers and software 

developers an overview of how power and performance interact in the system. It can help 

them design optimization algorithms for an efficient energy-aware system that can handle 

a wide variety of power-performance requirements. With these algorithms, an energy-

aware software system can have the ability to adapt its power consumption behavior at 

different stages during program execution. For example, when the battery level in a system 

is low, applications may be forced to run at a degraded performance level in order to induce 

a lower power consumption rate. Algorithms could navigate possible choices on the Pareto 
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curve so that the performance of the applications is minimally affected even with reduced 

power availability. 

 

Figure 14. A Pareto Optimal Curve and Clusters for Typical Power-Performance 

Tradeoffs 

We generally categorize the power-performance requirements of a system into 

three types—performance-favored, power-favored and balanced. The performance-

favored type is a system that demands fast execution time over power consumption, while 

the power-favored type is a system that demands low power consumption over faster 

execution time. The balanced type is sought in a software system where both power 

consumption and performance are deemed equally important. Similarly, on a typical Pareto 

optimal curve, we can categorize the solutions into three clusters—performance, balanced 

and power (Figure 14). As can be seen in the figure, configurations in the power cluster 

allow flexibility in adjusting the performance of the applications, with no significant impact 

on the power consumption. While we hypothesize that a Pareto optimal curve will conform 

to this typical picture, the existence (or non-existence) of one or more cluster types is a 
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characteristic of the application(s) under test. Further, a cluster may be dense, including a 

large number of configurations to choose from, while another may be sparse, with a 

significantly fewer number of choices. 

4.3 Related Work 

Most related work either does not include the Pareto optimality principle or 

analyzes power data derived from power estimation models. For example, the research by 

Sahin et al. [33] focuses on high-level strategies through an approach for mapping software 

design to power consumption and exploring how high-level design decisions affect an 

application’s energy usage. The results from this study show that applying design patterns 

can both increase and decrease the amount of energy used by an application; and design 

patterns within a category do not impact energy usage in similar ways. While this is just 

one study, the results imply that it is unlikely that impacts on the energy usage can be 

precisely estimated by only considering design-level artifacts. The research uses live power 

data but focuses on reducing energy consumption based on different software designs and 

does not address other non-functional properties, the tradeoff process, or include Pareto 

optimal analysis which are likely to be important in general.  

Another interesting project related to our work is GISMOE [41]. This project sets 

out an alternative vision for a software development environment that can automatically 

generate a set of candidate program implementations, called Pareto program surface, with 

different non-functional attributes. At present, GISMOE is a proposed high-level 

architecture and set of principal features of the development environment. Although their 

concept is related to our research, unlike our study, their research is speculative rather than 
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based on empirical evidence. Their high-level abstractions of Pareto analysis might hide 

some unexpected insights producing an inaccurate Pareto surface. Unlike the approach 

proposed in GISMOE, we do not transform or change any of the benchmark program code. 

We instead focus on the cache system as that has been shown to have an impact on both 

the software performance and power consumption [48]. Although our manual process of 

gathering these data is tedious, the analysis results from CHStone benchmark suite yield 

useful information and provide a foundation toward efficient energy-aware systems and 

GISMOE. 

There is also research related to energy efficiency and power-performance tradeoffs 

on the system cache [39, 45, 48]. However, the tradeoff techniques are either 

hardware/software specific or require additional hardware or features built in. The analyses 

are based on estimated power data using a power model of memory access. Their main 

focus is for designing optimal cache architecture and developing energy-efficient cache 

hardware, not for the whole system in general. In particular, the study in [45] is similar to 

ours but its main objective is to design power efficient cache hardware systems. The study 

also does not include Pareto optimality in their tradeoffs and their power data for the 

analysis are based on power models. 

4.4 Experiment 

4.4.1 Experimental Setup 

To perform our experiment, we developed a custom power monitoring and profiling 

tool for the Xilinx Atlys FPGA board [37] using the APIs and drivers provided by the 

manufacturer. The board is equipped with four on-board power-supply monitors with 
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accuracy within 1%. The tool also annotates power consumption data with time stamps at 

a fine-grained resolution with an average of about one sample every two milliseconds. The 

monitoring tool simultaneously records power data in real-time for all four power-supply 

rails. In our experiments, we are primarily interested in the 1.2V and 1.8V rails which 

correspond to CPU and memory operations.  

Table 1. Number of Pareto Optimal Solutions and Negligible Ones by Benchmark 

Program 

Benchmark 

Programs 

Number of 

Pareto optimal 

solutions 

Percentage of all 

cache configurations 

(out of 36) 

Number of negligible 

Pareto optimal 

solutions  

ADPCM 11 30.56% 2 

GSM 5 13.89% 2 

MOTION 3 8.33% 1 

AES 9 25.00% 4 

BLOWFISH 11 30.56% 0 

SHA 8 22.22% 2 

DFADD 4 11.11% 3 

DFDIV 4 11.11% 1 

DFMUL 3 8.33% 0 

DFSIN 11 30.56% 1 

MIPS 4 11.11% 1 

Total 73  17 

 

The experiment uses the CHStone benchmark suite version 1.6 as standard 

workloads for creating power consumption profiles. The suite is designed for C-based high-

level synthesis, and is easy to use since the programs are self-contained and require no 

external libraries [40].  The CHStone suite consists of 12 programs taken from widely-used 

applications in the real world from various application domains—four arithmetic 
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programs, four media applications, three cryptography programs, and one processor. We 

are able to compile and run 11 out of the 12 programs on the Atlys board (presented in 

Table 1 and Figure 16). For each hardware system with different cache configurations, the 

11 programs were executed and profiled. 

4.4.2 Experimental Method 

There are three main steps in conducting the experiment—implementing the 

hardware platforms, profiling the software’s power and performance, and analyzing the 

resulting data.  

4.4.2.1 Implementing the Hardware Platforms 

In the first step, we use the Xilinx EDK tool to design and implement each 

individual hardware platform with different cache parameters for the experiments. The 

system design and specifications of the hardware platforms are based on the Atlys Base 

System specifications provided by the manufacturer [38]. The only non-default parameter 

in each platform is the cache configuration parameter. The idea is not to build all hardware 

platforms for every possible combination of cache configurations but to vary only the 

controlled parameters from the base system, while leaving the other parameter values at 

the defaults. The purpose is to see how the dependent variable impacts the power 

consumption and performance of the base system.  Based on the FPGA cache properties, 

we implement 36 hardware platforms, each labeled with a code—for example, ICS-64B 

for Instruction Cache Size of 64B (the rest of the parameters are set to the default values), 

DCS-512KB for Data Cache Size of 512KB, DC-WB-VIC4 for Data Cache Write-Back 
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Storage Policy Enabled with 4 victims, DC-LL-4W for Data Cache Line Length of 4 words 

(see Figure 16). 

4.4.2.2 Software Power/Performance Profiling 

The second step is to create a software project for each CHStone benchmark 

program on each hardware platform using the Xilinx SDK. With the combination of all 36 

hardware platforms and 11 benchmark programs, a total of 396 software projects are built 

for the experiment. Since most of the benchmark programs are small and have short 

execution time, we modify the main programs to execute each benchmark multiple times. 

This provides for longer execution time so that the power monitoring tool can capture 

enough power data for the calculations in the next step. Also, during the data collection, all 

the print commands have been commented to minimize the CPU overhead caused by the 

commands.  

4.4.2.3 Analyzing the Result Data 

Power/performance profile data collected from each benchmark execution contain 

raw sample readings of power and execution times. The average power of each power rail 

is calculated as the sum of all power readings divided by the number of samples read from 

the start to the end of the program execution. The time of execution per iteration is 

calculated by the total time of execution from start to end divided by the number of times 

a benchmark was executed. For 396 projects, we have collected pairs of average power and 

time of execution per iteration for each program execution. These values are used in the 

Pareto optimal analysis of each benchmark described next. 
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4.5 Results and Discussion 

With the data gathered we identify the set of Pareto optimal configurations for each 

benchmark. Note that the difference in power/time values may be very small across certain 

configurations; accordingly, some points may look identical on the plots. By using the K-

Means clustering algorithm [47], the Pareto front is divided into three clusters. These 

clusters may not exactly signify the three cluster types as displayed in Figure 14; we 

manually merged one or more clusters generated by the K-Means algorithm in order to 

retain the underlying meaning of the three cluster types. A total of 11 such scatter plots are 

produced, one for each benchmark program. Figure 15 shows plots and clusters for three 

programs (ADPCM, AES and DFDIV) in the CHStone benchmark suite. The result data is 

also translated into a profile table (Figure 16) to be used in the power-performance tradeoff 

analysis.  

4.5.1 Power-Performance Tradeoff Result 

For each of the plots shown in Figure 15, the red dots (solid) represent the Pareto 

optimal cache configurations, while the blue points (hollow) represent suboptimal cache 

configurations. The groupings depict the three clusters—power, balanced and 

performance. Across all 11 benchmarks, we summarize the experimental result as follows: 

1) All graphs reveal promising Pareto optimal curves showing that the cache is a 

good candidate for power-performance optimization in an efficient energy-

aware embedded system development. 
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2) The results reveal that only a small numbers of choices of cache 

configurations (as low as 3 choices from the total of 36 cache configurations) 

are optimal for power-performance tradeoffs (see Table 1). 

3) The clusters show that a small set of configurations optimally satisfies all 

three types of system requirements (performance-favored, power-favored and 

balanced). 

4.5.2 Optimal Cache Configuration Result 

With some post-Pareto analysis, power/execution time data from the benchmarks 

are put into a tradeoff profile table, as shown in Figure 16. This figure demonstrates how 

tradeoff analysis result data can be displayed, providing the power/performance visibility 

and initial guidelines for tradeoff purposes.  Other information can be added depending on 

the requirements and selection criteria. In Figure 16, in addition to the Pareto analysis 

results, there are also data from using the K-Means and Normalized Distance to Ideal Point 

[47] methods as the post-Pareto analysis for clustering the optimal points in the scatter 

plots (e.g., Figure 15). As an example, our tradeoff profile table contains 36 rows 

representing 36 cache configurations and 11 columns for 11 benchmark programs.  The 

table cells highlighted with red (darkest in grayscale) are the Pareto optimal cache 

configurations. The green (gray in grayscale) and light gray cells are the 2nd and 3rd 

iterations of Pareto analysis respectively. The second iteration of Pareto analysis is done 

after removing the Pareto optimal configurations from the design space. The 3rd iteration 

is done after removing the configurations found optimal in the 1st and 2nd iterations. 
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Figure 15. Examples of Pareto Optimal Cache Configurations and Clusters of Four 

Programs in the CHStone Benchmark 

Multiple iterations of Pareto analysis is useful when the power/performance data 

exhibit low variability and points on the scatter plot are close together (as seen in Figure 

15(a) inside the balanced cluster). Some configurations result in similar power-
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performance outputs—we found that some values are equal up to the 3rd decimal place. 

The purpose of this analysis is to provide additional choices from the suboptimal solutions, 

which might be meaningful to developers or system designers. It also provides a better 

picture of how each cache property impacts power and performance on different 

benchmarks. 

4.5.3 Insight Summary 

Based on our observations from the experimental results, we summarize our 

insights as follows:  

1) Only a few cache configurations are optimal for power-performance tradeoffs 

All 11 benchmarks reveal only a small number of optimal (non-dominated) cache 

configurations from a relatively large cache configuration space. For example, as 

summarized in Table 1, the smallest number of optimal cache configurations are from the 

MOTION and DFMUL benchmarks, with only 3 Pareto points from 36. These account for 

about 8% of the cache configuration space that we evaluated and therefore the other 92% 

could have been ignored or removed from the solution space. On average, the benchmark 

programs produce 6.6 Pareto points or about 18% of the solution space. The number is 

relatively small and more than 80% of solution space can be disregarded or avoided on 

average. Smaller optimal choices can contribute to less complexity in the calculations of 

an optimization algorithm. In this case, there are fewer options for the system to switch the 

cache configuration parameters and adapt itself to its current state of power/performance 

requirements.  
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2) Optimal cache configurations are sparse, inconsistent and sometimes 

counterintuitive 

The results are sparse and inconsistent because not all Pareto curves are in the 

expected Pareto shape. As seen in the examples, Figure 15(a), 15(b) and 15(c), some 

sections of the curves form vertical or horizontal lines. This means that by changing from 

one optimal configuration to another on the Pareto curve, there is no significant 

improvement on either power consumption or system performance. In this case, some 

optimal solutions can be ignored and one solution on each section can be selected as the 

representative optimal solution in the group. We call the ignored optimal solutions 

“negligible” because, by definition, they are insignificant or unimportant as to be not worth 

considering.  

For example, in Figure 15(a) and 15(b) in the performance clusters, most of the 

optimal cache configuration points are flat and form horizontal lines on the performance 

axis (time of program execution). By changing from one optimal configuration to another, 

there is not a significant gain in performance. Therefore, only one optimal solution should 

be retained in this case, the one with the lowest power consumption (best solution in term 

of power consumption), which is the left-most one in the cluster. 

In Figure 16, all decimal numbers in the cells are the Normalized Distance to the 

Ideal Point (0, 0) in normalized scatter plots—the modified version of scatter plots in 

Figure 15 but with both scales of execution time and power axis normalized to the scale 

from 0 -10 units.  The ideal point (0, 0) signifies a system that can run a program at the 

fastest speed (lowest execution time) and consume the lowest possible power, both ideally 
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zeroes. The bold, italic and underlined numbers indicate a Pareto optimal configuration 

with the lowest normalized distance to the ideal point, among all optimal cache 

configurations for the same benchmark program. For example, in the ADPCM column, 

data cache with write-back policy enabled and number of victim 0 (row DC-WB-VIC0) is 

one of the optimal cache configurations. In addition, the bold italic and underlined notation 

CT(8.98525) implies that 8.98525 is also the lowest distance to the ideal point (0, 0) among 

the 11 optimal choices (red or darkest cells in ADPCM column)—meaning that when 

running program ADPCM on the system we just need to enable write back policy for the 

data cache and set the number of victim of the cache to 0 to get the optimal power-

performance result.   

In the red-highlighted cells (or darkest cells in grayscale), there are also the letters 

CT, CB or CP. The letters indicate clusters in the scatter plots or categories of the Pareto 

cache configurations. CT stands for performance cluster, CB for balance cluster and CP 

for power cluster. This means that, for our selected example, DC-WB-VIC0 is an optimal 

cache configuration categorized in the performance cluster (CT)—meaning that it is one of 

the optimal choices suitable for running ADPCM benchmark program in a system state 

where performance is more important than power, or execution time is more important than 

the power consumption.  
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Figure 16.  A Power-Performance Tradeoff Profile of the Pareto Analysis Result (CT = performance cluster, CB = 

balance cluster and CP = power cluster; bold, italic and underlined numbers indicate the minimum normalized 

distance to ideal point of a benchmark) 
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By looking horizontally across all benchmarks in the power-performance tradeoff 

profile (Figure 16) to count the number of the red (or darkest) cells, and the data in Table 

2, we can additionally summarize the optimal cache configuration result related to cache 

properties as follows: 

(1) Data and instruction cache size, and write-back policy are the most influential 

cache properties in the power-performance tradeoff analysis. They account for most of the 

Pareto optimal configurations. In Figure 16, I-Cache, D-Cache size and D-Cache Write-

Back rows have the highest combined number of red cells or darkest cells across all 

benchmark programs. Also in Table 2, the first three rows cover more than 95% of all 

optimal configurations.  This means that when trying to configure the cache parameters for 

the optimal power/performance, we just look at these three cache properties as the main 

starting points for power-performance optimization. 

(2) Data and instruction cache with larger size (2K and above), line length, 

instruction cache’s string buffer and number of victims did not contribute significantly in 

the optimal achievement of a power-performance tradeoff. In Figure 16, rows of cache size 

2K and larger and the last three cache configuration groups (line lengths, I-Cache string 

buffer and I-Cache number of victim) of the table do not have as many red cells as the 

previous three cache properties. Table 2 shows that the last three cache configuration 

groups only cover 4.1% of the optimal cache configurations. It seems that they can be 

ignored for most applications and are not the first candidate for power-performance 

optimization. This is counterintuitive. 
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(3) Manipulating the write-back policy on the data cache is recommended for 

performance-favored and balanced systems, while the instruction and data cache size are 

recommended for power-favored and balanced interactions. In Figure 16 and Table 2, the 

write-back policy row has the highest number of red cells with CT (performance cluster) 

letters. 

Table 2. Counts of First Iteration Pareto Points by Cache Property and Cluster 

 
Power 

Cluster (CP) 

Performance 

Cluster (CT) 

Balance 

Cluster (CB) 
Total 

I-Cache Size 20 3 8 31(42.5%) 

D-Cache Size 1 7 16 24 (32.9%) 

Write-Back Policy 1 9 5 15 (20.5%) 

Line Length 0 2 0 2 (2.7%) 

I-Cache String Buffers 0 1 0 1(1.4%) 

I-Cache # of Victims 0 0 0 0 (0.00%) 

Total 22 22 29 73 (100%) 

 

(4) Smaller instruction cache size (smaller than 2K) is recommended for power-

favored optimization since this property produces the lowest power consumption with a 

graceful degradation in performance. In Table 2, the instruction cache size row has the 

highest number of optimal configurations categorized in power cluster (CP). Also, in 

Figure 16, rows of I-Cache size from 64 to 2K bytes cover the majority of the optimal 

cache configurations. While the I-Cache with larger size than 2K does not produce many 

optimal cache configurations. 

Similarly, in Figure 15(b), the five optimal configurations in the performance 

cluster can be collapsed into one optimal solution; the other four can be ignored because 
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they do not create any significant performance improvement. In Figure 15(c) inside the 

power cluster, the two cache configurations on the DFDIV plot graph form a straight 

vertical line on the power axis. There is one additional negligible Pareto point (the top one) 

that can also be removed from the optimal cache configurations. All negligible Pareto 

points in the benchmark programs are presented in Table 1. 

Our analysis also reveals unexpected insights from these irregular Pareto shapes 

and the negligible cache configurations. One most obvious result is revealed by AES 

benchmark in Figure 15(b) inside the performance cluster. Four out of the five optimal 

cache configurations inside the cluster are related to data cache write-back policy with 

different number of victims (0, 2, 4 and 8). A victim is a cache line that is evicted from the 

cache. If no victims are saved, all evicted lines must be read from memory again, when 

they are needed. Conventional wisdom states that by saving the most recent lines data can 

be fetched much faster, thus improving performance [46]. However, for this particular AES 

benchmark, our result clearly shows that not all victim policies contribute to significant 

improvement in performance.  This evidence indicates that the conventional wisdom is not 

always accurate.  

Additionally, in Figure 15(c), the example is not so obvious but there is a small 

evidence of counterintuitive insight. In the power cluster, the two optimal cache 

configurations are related to instruction cache size—64B and 256B respectively.  In this 

case, changing from one I-Cache size to another does not yield significantly different 

power consumption. This is somewhat unexpected and contradicts studies relating cache 

size and system power consumption. For example, a study in [45] states that “increasing 
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cache line sizes tends to consume more energy” and, for I-Cache size less than 4K, the 

smaller size tends to consume more power.  

3) There exists cache configurations with certain properties that do not produce 

any Pareto optimal points 

In our cache solution space, we found that cache configurations related to I-Cache 

victims (the last row in Figure 16 and Table 2) do not produce any Pareto points. Also, 

cache configurations with I-Cache string buffer and D-Cache/I-Cache line length do not 

produce a significant number of Pareto points (second and third from the last row in Figure 

16 and Table 2). These cache properties are therefore not candidates for power-

performance optimization and can be ignored completely.  Our rankings in Table 2 and 

colored cells in Figure 16 can help us identify the “hot spots”, the best candidates for 

power-performance optimization and the areas having less impact on the system’s 

performance and power consumption. From our case study, the hot spots for cache 

configurations are the top three in Table 2, in which they produce the most red cells in 

Figure 16.  The table also shows that up to 50% of the total effort put into the cache based 

optimization can be cut (last 3 out of six cache properties in the table).   

4) There exists at least one cache configuration that can fulfill each of the typical 

power-performance tradeoff requirements 

As already mentioned, our analysis shows that there exist optimal cache 

configurations that can fulfil the three types of system requirements for a typical power-

performance tradeoff—power-favored, performance-favored and balanced. As shown in 

Figure 15 and summarized in Table 2, the Pareto points can be clustered into performance, 
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power and balance clusters using the K-Means algorithm, the same way as the typical 

Pareto Optimal curve and clusters in Figure 14. For power-favored, performance-favored 

and balanced requirements, our results recommend the cache configurations related to 

instruction cache size (I-Cache Size), data cache size (D-Cache Size) and Write-Back 

policy respectively.   

4.5.4 Threats to Validity 

There are several validity threats to the design of this study. For threats to internal 

validity, our study is limited to the configurable cache system of the FPGA embedded 

system, one aspect of the energy-aware system. There are also other areas at different 

system layers having impact on the system power consumption and execution times. The 

cache configuration results might be different if configured differently along with other 

system parameters. In extending this work, we should also include other areas or 

combinations of different areas and parameters to obtain a broader coverage on the power-

performance tradeoffs. Also, the configurable cache systems are only based on the 

configurable setting and property values available in the Atlys FPGA. For other embedded 

systems, there might be different tunable cache configurations.  

For each hardware construction, we only change a single cache parameter value at 

a time while leaving the others the default values. Therefore, the power consumption and 

execution values are only based on the default cache configuration as provided by the 

manufacturer. This does not cover all combinations of available cache configurations. For 

more complete results, more hardware platforms can be built with other combinations of 

the available cache setting values. Also, the power consumption data of the system are only 
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of the CPU and Memory. There are two other power monitor rails of Video/Audio and 

Ethernet ports that have been ignored. 

During the data collection process, because we have 396 software projects to 

execute, we only execute each benchmark on each hardware platform three times. Also, 

each benchmark program is set to execute multiple iterations for each run to make sure 

each benchmark executes in about 10 seconds. Therefore, the measured numbers can 

contain some overhead from these loops that control the executions. If we increase the 

number of executions, the data would be more accurate. Also, the Pareto analysis result 

will be more accurate if conducted on a larger solution space. Our solution space may not 

be large enough. The front of our Pareto optimal values is therefore considered an 

approximation of the “true” front. Further runs of the system with more cache 

configurations may improve the front approximation. Our selection of using Pareto 

optimality and the post-Pareto methods for the analysis is for demonstration purposes only. 

There are many other methods that can also be used to solve the power-performance 

tradeoff problems.  

For threats to external validity, we try to generalize the result of our study to all 

software application domains. We select the CHStone benchmark suite because it covers 

multiple domains of real-world software applications—media, cryptography, arithmetic 

and processor. However, the processor domain only contains one benchmark which might 

not have enough coverage. And, the generalizability of the result is only for these four 

software domains. There is also a risk that the result might not reflect all domains of 
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complex software applications, since all the benchmarks are small programs and specially 

designed for embedded systems. 

4.6 Conclusion 

As a case study, our research demonstrates a detailed power-performance 

optimization process that can be used in developing efficient energy-aware systems. 

Because the process is tedious, it is crucial that developers and researchers understand the 

manual process and are aware that unexpected insights discovery is important and not easy 

to do in real systems. In the process, we also gather some basic background of how we can 

use Pareto optimality in power-performance tradeoffs; how power-performance 

requirements and the optimal solutions can be categorized; and how the data are collected, 

analyzed and used. Along with this, we provide some useful test results of FPGA cache 

configurations and demonstrate that the Pareto optimal cache configurations do exist in the 

CHStone benchmarks.  

Our results suggest that some optimal configurations might not be as expected when 

analyzing the live power consumption data. We observe that the optimal configurations are 

sparse in the cache design space, are inconsistent across the benchmark and 

counterintuitive in many cases, making power-performance optimization processes hard to 

implement without analysis from actual data. Our results also show that even something 

very low-level like the cache system (that might not be captured in a power model) can 

impact the power-performance analysis significantly and unpredictably.  These results 

motivate the need for tools and methodologies that operate directly on data gathered from 

the systems themselves.
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CHAPTER 5: GREEN DATA STRUCTURE DESIGN 

From this chapter forward, it is our main study of the dissertation. In this chapter, 

we provide in-depth details about our green data structure design approach and some of the 

background knowledge of our second case study. 

5.1 Interface-Based Data Structure 

In object-oriented programming, one common way to reduce complexity and 

increase maintainability, reusability and flexibility of software systems is by using 

interface-based design [6]. Many modern programming languages, such as Java, C#, 

SmallTalk and C++, implement their dynamic data structure class libraries using interface-

based design where there are multiple choices of data structures with different 

implementations [8]—e.g. array-based, linked-list-based, hash-based and tree-based [7]. 

Dynamic data structures are useful for managing internal data in algorithms of software 

application (creating, retrieving, updating and deleting data, for example) with the 

flexibility to grow or shrink memory requirements based on the number of elements in the 

structure. Different implementations of the data structures have been shown to have 

different impact on the performance and memory consumption of software applications [8, 

9]. Each is designed differently and is intended for different workloads and usage. Thus, it 

is possible that by putting the right data structure with the right workload, performance and 

energy consumption of software applications can be improved. 
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We select the C5 generic collection (version 2.3) for this study because it contains 

interface-based dynamic data structures and is created using a “code-to-interface” 

implementation [9]. It is a comprehensive, open-source C# data structure library for the 

.NET framework and Mono1, with solid documentation. C5 also provides a full 

complement of well-known abstractions such as lists, sets, bags, dictionaries, priority 

queues, queues and stacks. For the case study, we explore how the choice of data structure 

impacts the energy consumption of software applications and what are the energy saving 

opportunities among these data structures. The predictive model, our proposed architecture 

and the GreenC5 prototype for building adaptive green data structures in this case study 

are also based on the C5 collection. 

5.2 Data Structure Features 

In order to create the predictive model for use in the dynamic selection and 

switching processes, our study looks at data structure features that can impact performance 

and limit the selection choice. Based on a data structure book by King [7], there are several 

features that influence the performance of dynamic data structures: number of existing 

elements or size, types and frequency of data structure operations. There are also features 

that can limit the selection choice: interface and data structure properties such as bag and 

set semantics. For a program or algorithm that requires data structures with a sort method, 

the choice can only be made on some data structure classes that implement the interface 

with a sort method, limiting the number of applicable data structures. Moreover, if a 

                                                 
1 Mono is a software platform designed to allow developers to easily create cross platform applications. 
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requirement is to allow or not allow duplication of data elements, the data structures with 

bag or set semantic properties can also limit the selection. 

Table 3. The Selected Data Structure Features 

Features that can impact the performance 

of data structures 

Features that can limit the choice 

of data structures 

Number of elements in the data structure at 

the time of an operation (N) 
Interface 

Frequency of data structure operations  Bag/set semantics 

 

Table 3 shows the selected data structure features in this study. For the features that 

impact the performance, we select number of elements in the data structure at the time of 

an operation (labeled as N), and frequency of insertion, deletion, query and update 

operations. We focus on the four operations because they are fundamental to a data 

structure. Many other operations, such as the sort operation, can be made up from 

combining these common operations together [7]. For features that limit the selection 

choice, we select interface, bag and set properties of dynamic data structures. 

We also select only those C5 dynamic data structures that implement the 

ICollection interface in the C5 interface hierarchy (Figure 17). ICollection implements the 

four common data structure operations. Under this interface, we select 9 (out of 12) 

dynamic data structures, as listed in Figure 18, grouped by interface, set and bag semantics. 

We call them data structure groups, and denote them by G. Based on the selected features, 

there are 6 data structure groups: ICollection, ICollectionBag, ICollectionSet, IList, 

IListBag, and IListSet.  For example, in the ICollectionBag group, there are four dynamic 

data structures that implement the ICollection interface and have bag semantic property. 

Similarly, there are two and three selection choices in the IListBag and IListSet groups, 
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respectively. The groupings demonstrate how selection choices can be different and vary 

based on application requirements. Our predictive model for energy efficiency also makes 

predictive data structure selection within each of these data structure groups. The 

WrappedArray under the ICollection interface is not included in the study because it is not 

a dynamic data structure. 

 

Figure 17. The C5 Collection Classes and Interfaces (from [9]). Solid Lines Indicate a Sub-

Interface Relation, and Dashed Lines Indicate an Implementation Relation. 

We also map the four selected data structure operations to the Create, Retrieve, 

Update and Delete operations (also known as CRUD operations), the four basic functions 

of persistent storage and database-driven applications [10]. We consider insertion and 

addition of elements as the same operation, analogous to the create operation. We use 

percentage numbers, instead of counts, as the frequency of CRUD operations. These 
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numbers are labeled as %C, %R, %U, and %D respectively. Since non-CRUD operations 

are ignored, these numbers always add up to 100. These numbers reflect the workload that 

a data structure is subjected to. Altogether, the group G, the size N, %C, %R, %U and %D 

are combined as input features to our model, and are the independent variables of our 

training and validation datasets. 

 

Figure 18. C5 Data Structure Groups by Interface and Set/Bag Semantics 

5.3 Green Data Structure Architecture 

The sought GreenC5 is an example of an adaptive green data structure. Figure 19 

displays the high-level components of our proposed GreenC5. It is an enhanced version of 

the C5 Generic Collection that wraps the 9 data structures into one, and adds the Green 

component to make it smart and energy-aware. There are two main components in our 

proposed adaptive green data structure—the CRUD-based C5 Collection and the Green 

component. The first component is a wrapper/factory class of the 9 C5 data structures. It 

contains the public interface of the C5 data structures and has the ability to transform itself 

to different implementations at runtime, as directed by the Decision Maker of the Green 

component. 



 

106 

 

Figure 19. A Component Architecture of the GreenC5 Data Structure 

 The second component, the Green component, is composed of four main sub-

components—Event Listener and X-Value Translator, Classifier, Predictor, and Decision 

Maker. These sub-components add the ability for the C5 Collection to learn workloads, 

classify, predict energy efficient C5 data structures, and make decisions based on the 

current workload, environment and requirements. The Event Listener and X-Value 

Translator component acts as a utility component for observing activities, operation 

execution and states of the CRUD-based C5 Collection component, and translating them 

into meaningful feature values for the Classifier. The Classifier acts as a virtual energy 

measurement tool inside the green object. It guesses the most-likely energy efficient C5 

data structure for an observed sequence of operations, based on prior knowledge gained 

during training. Therefore, the output from the Classifier component is a sequence of data 

structures per instance of the data structure being executed in a program. This sequence is 

input to the Predictor component to learn (in real time) and predict the next data structure 

most likely to appear in the sequence. The Decision Maker then uses this prediction to 

analyze, decide and instruct the CRUD-based Collection when to switch to the new data 
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structure implementation. The Decision Maker component will be explained in more detail 

in Chapter 7. 

     Figure 20 displays a complete process of the GreenC5 data structure, depicting 

how the green data structure is trained and how it operates at runtime. The complete 

workflow in the figure can be summarized into the following sections and sub-sections: 

1. A Priori Energy Model Generation—a one-time process for producing 

knowledge for the Classifier. 

a) Energy Profiling—for collecting energy data and creating a training 

dataset for the Classifier and all ground truths for model validations in 

the experiment. 

b) Offline Supervised Learning—for training and validating the 

Classifier.  

2. Per-Instance Green Data Structure—for tracking how each instance of an 

adaptive green data structure works at runtime. 

The final output from the left half of      Figure 20 is a priori knowledge to be 

embedded in the Classifier of the GreenC5. We use an Artificial Neural Network (ANN) 

as the Classifier. Therefore, this knowledge contains weights and biases for the ANN 

edges, along with other values for data normalization, encoding and decoding purposes.  In 

the right half, it is a per-instance GreenC5 data structure. As proposed in our previously 

paper [27], the CRUD-based C5 Collection and Green components no longer need to run 

in separate threads. In this implementation, it is simpler to have them run sequentially in 

the same 
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     Figure 20.  Adaptive GreenC5 Data Structure Process 
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thread. This is also to avoid adding complex code to handle data structure concurrent issue 

when they run asynchronously in separate threads. Most importantly, the performance 

penalty and overhead from running the code sequentially in the same thread is much lower 

than anticipated. 

When a CRUD operation is performed on a GreenC5 data structure instance, the 

Green component continuously tracks and counts the operations, and observes other data 

structure states such as the interface and set/bag semantics (collectively the data structure 

group G), and the current number of elements in the data structure (N). The Green 

component sees a sequence of CRUD operations as the data structure’s workload. During 

execution, an instance of the data structure in the program can be alive for a period of time 

and sometimes indefinitely if a program is always on and running. As a result, the Green 

component can observe a long sequence of data structure operations. In the figure, this long 

sequence is divided into subsequences, S0, S1, S2, ..., each of length L. Together with the 

other observed information (G and N), each subsequence S is then input to the X-Value 

Translator to be translated into a meaningful feature vector for the Classifier. This feature 

vector is in the <G,N,%C,%R,%U,%D> format. The ANN-based Classifier maps this 

feature vector to a data structure DS, and outputs it. Recall that DS is one of the 9 data 

structures depicted in Figure 18–ArrayList, LinkedList, HashBag, TreeBag, 

HashedArrayList, HashedLinkedList, SortedArray, HashSet, and TreeSet. Hence, for 

every subsequence Si, the Classifier outputs a data structure DSi, effectively producing a 

sequence DS0, DS1, DS2,..., of data structures. This sequence is fed to the Predictor in real 

time, where it is used for online learning and prediction of the next data structure that is 
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likely to appear in the sequence. The predicted data structure is input to the Decision Maker 

to be used for decision making to instruct the CRUD-based C5 Collection to switch if 

needed. 

Note that we do not directly use the features (G, N and percentage of CRUD 

operations) to perform prediction of the data structure to use for the next L operations. 

Instead, we make a best guess for the data structure that would have been the most energy-

efficient, and use the guesses as input in the prediction. This method allows us to discard 

feature vectors once they are processed, and also reduces the dimensionality of the input 

space for the prediction. Further, training a model that uses a history of feature vectors for 

prediction is not straightforward, and can easily become prone to issues related to biased 

sampling in the training set. 

5.4 Energy Profiling 

The energy profiling step is crucial to produce a dataset for training the Classifier 

and create ground truths for model validations. To get the most accurate model for the 

Classifier, in this experiment, we avoid using any model-based power meter for the energy 

profiling. As described in our power-performance tradeoff paper [3], model-based meters 

might not represent the full complexity of the system being analyzed and might introduce 

errors. Instead, all datasets in this experiment are created and validated using a Watts Up? 

Pro [16], a plug load power meter. The power meter can measure power consumption data 

at about 1 sample/second. It is a cost effective tool that can produce accurate power 

consumption data of computer systems. For this study, we have developed an energy 

profiler to read power data by sending a command to the device via a USB port. As part of 
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the GreenC5 development and overall evaluation process, we conduct the profiling on a 

HP PC, with Intel Core i7 and 64-bit Windows 8.1 Pro (labeled as COMP1 in the 

experiment). The active power consumption of the base PC ranges from about 35 to 100 

watts. 

 

Figure 21. Energy Profiling Algorithm 

In the energy profiling process, energy consumption data are collected for creating 

the datasets of the Classifier. The exact process is detailed in energy profiling algorithm in 

Figure 21.  For each of the 9 C5 data structures, the instance is first filled with N elements. 

Then the operations corresponding to each workload (%C, %R, %U and %D) are 

performed on the data structure instance. The data structure is profiled for energy 

consumption while performing the CRUD operations. During the energy profiling 

operations, a WattsUpPro instance runs asynchronously and a power reading event is raised 

L := 10000 
start WattsUpPro asynchronously 
for each N do 
 for each C5DataStructure do 
    for each Workload := {%C, %R, %U, %D}  do 
        while PowerReadCount < = 5 do 
            create an instance of C5DataStructure   
            fill instance with N elements 
            start Timer and capturing of power data samples 
            perform C operation (%C×L)  times 
              perform R operation (%R×L)  times 
              perform U operation (%U×L)  times 
              perform D operation (%D×L)  times 
              stop Timer             
         end while 
         save average power/execution time data to a file      
       end for 
 end for 
end for 
stop WattsUpPro 
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every second. The loops in the pseudo-code are controlled by the WattsUpPro instance. 

The inner loop breaks after the power read count reaches 5, i.e. five power values are 

collected. We ignore the first read sample to reduce noise due to potential delays of the 

USB port.  The average power consumption data and execution times are measured and 

recorded to a file. The data are then analyzed to determine the most energy-efficient data 

structure (called the Y value) for each feature value set explored in the profiling. The Y 

values, together with the X values (independent variables), become a ground truth dataset. 

There are a total of 21 datasets created by this process—one training dataset, one 

validation dataset, and 19 program validation datasets. The training and validation datasets 

contain 37,098 and 7,392 observations, respectively. The training and validation datasets 

uniformly explore the space of possible X values. The 19 program validation datasets are 

from 10 simulated programs and 9 real-world programs. The 10 simulated programs 

execute a random CRUD sequence of 400K size. Each CRUD sequence is equally divided 

into 40 10K-size subsequences. The 10-K size (also in Figure 21, the initial value of L) is 

selected because it is an appropriate number for our energy profiler to capture power 

consumption data.  Note that the CRUD percentage numbers of these programs may not 

exist in the training dataset. The number of elements N of each subsequence is calculated 

based on the prior CRUD operations. Each simulated-program validation dataset contains 

40 observations. 

The program validation datasets of the 9 real-world programs are created from the 

actual CRUD operations generated by 3 real-world, open-source C# programs—A* Path 

Finder [17], Huffman Encoder [18] and Genetic Algorithm [19]. Each real-world program 
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contains at least one .NET data structure. In generating the CRUD sequences of the real-

world programs, we replace the original data structures with an enhanced one that can trace 

and map the add, insert, access, delete and update operations to CRUD operations. The 

length of the generated CRUD sequences ranges from 120,000 to 1.52 million. Like the 

simulated programs, each such CRUD sequence is divided into 10K-size subsequences and 

translated into program validation datasets. The last subsequence with length less than 10K 

operations is ignored. 

In the energy profiling process, the CRUD operations are mapped to add, find 

update and remove operations in the C5 data structures. In this experiment, we assume that 

all data structure elements are unindexed. Therefore, they are accessed by using element 

objects instead of indexes or keys. Also, to get the upper bound energy consumption data, 

the operations here are controlled so that the added element is always added to the last 

index. Similarly, the find and update operations always search for the last element in the 

dynamic data structure. However, for the remove operation, the first element is always 

removed. For query-related operations, all positive queries are to be performed, meaning 

that the accessed data element always exist in the data structure. According to King [7] and 

Kokholm and Sestoft [9], these operations normally result in the worst performance for 

dynamic data structures. It normally takes more time to search for last element than the 

first one in a data structure. Also, it normally takes more time to remove the first element 

than the last one. When the first item is removed, all other remaining items in most data 

structures are automatically moved up (the data structure is dynamically shrunk in size). 
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5.5 Energy Saving Opportunity 

As a feasibility study, the energy data collected for creating the training dataset are 

further analyzed to see how the Y values, the most energy-efficient C5 data structures, are 

distributed in the training dataset and how much energy saving opportunity there is among 

the C5 data structures. The pie chart in Figure 22 is the analysis result displaying the 

distribution of the most energy-efficient C5 data structures in the 37,098 observations of 

the training dataset. As we can see, HashSet is the most preferable energy-efficient C5 data 

structure, and covers 31.44% of the training dataset. Overall, all 9 data structures are well 

represented in the training dataset. 

 

Figure 22.  Distribution of Most Energy-Efficient C5 Data Structures in the Training 

Dataset 

For more detail, Figure 23 displays an energy efficiency ranking table of the data 

structures by group. The higher percentage values indicate the more preferable energy 

efficient data structure in each group. For example, in row 5, the IListBag group has two 

choices of applicable data structures: LinkedList and ArrayList. ArrayList is more 
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preferable and should more likely be selected since it covers 63% of the workloads, while 

LinkedList only covers 37%. The last row of the ranking table is what is represented in the 

pie chart in Figure 22. This table can be used as a guide to select an energy-efficient data 

structure within a given data structure group. One main capability of the adaptive data 

structure that we seek is the automatic selection of the most energy-efficient C5 data 

structures without using this ranking table. 

 

Figure 23.  Distribution and Ranking Table of Most Energy-Efficient C5 Data Structures 

by Data Structure Group 

The potential energy savings are calculated using actual energy consumption data 

(in Joules) of each workload (observation). These numbers are of the C5 data structures 

that can be used to estimate and compare with the potential energy savings of our GreenC5.  

For each observation in the training dataset, we calculate the energy difference between 

the most energy-efficient and the least energy-efficient data structures, ignoring the ones 

in between:  

Potential energy savings =  

energy consumption of the worst data structure choice – energy 

consumption of the best data structure choice in each data structure group 
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The percentage difference tells us how much energy can be saved by selecting the 

best data structure, compared to the worst one. This analysis (based on the data points in 

the training dataset) shows that, overall, the median of potential energy saving about 

94.24%. By data structure group, in Figure 24, the IListBag group produces the smallest 

energy saving opportunity of about 16.97%. This implies that if our requirement is to select 

only C5 data structures in the IListBag group (only two choices, ArrayList and LinkedList), 

the potential energy saving by selecting the right data structure is estimated at about 

16.97%. In contrast, the largest potential energy saving is revealed by data structures in the 

ICollection group, at about 97.50%. 

 

Figure 24.  Potential Energy Savings of C5 Data Structures by Data Structure Group 

5.6 Related Work 

There are several studies related to our research. A closely related study is the Smart 

Data Structures project conducted by Eastep et al. [11]. Their research is aimed at creating 

a new class of parallel data structures that leverage online machine learning to adapt 

automatically. However, the approach has many differences with our study. First, the 
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objective there is to create a new set of data structures for parallel computing, while we 

attempt to apply adaptation techniques to select and transform the right data structure for 

the right workload from existing object-oriented data structures, mainly for energy 

efficiency. As such, the smart data structures [11] concentrate on using online learning and 

self-adaptation techniques to improve speed in order to gain the energy savings. The main 

technique is self-tuning of internal algorithms by changing parameters to get good 

performance. Instead, the knowledge for adaptation and online/offline learning of our 

models is based on actual energy consumption data of computer systems and done using 

statistical machine learning techniques. 

In another related study, Daylight et al. introduce systematic, high-level, data 

structure transformations in the context of memory-efficient and low-power, embedded 

software design for dynamic multimedia applications [12]. Instead of using predictive 

models, the decision-making for the transformation is performed based on a Pareto tradeoff 

analysis between the data accesses and memory footprints. The speed and power 

consumption improvements are the gains from the decision results. The adaptation 

approach and methodology rearranges internal data structures for better memory footprint 

and data accesses.  The power consumption data for the analysis are derived from a memory 

chip model, while our models are based on the energy consumption data measured by a 

power meter.  

Our training and validation datasets are created from a custom energy profiler using 

a power meter to measure power consumption at the system level. However, modern 

processors have started embedding power measurement components in their design (e.g. 
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Intel Power Gadget [23]) that can potentially be used to estimate processor power 

consumption of software applications at a finer granularity. At the end of this dissertation, 

we also include an initial exploration of this avenue, primarily to search for an alternative, 

more practical power meter that can provide real-time energy information to the adaptive 

green data structure for online learning. 

There are also other studies related to software adaptations for performance and/or 

energy efficiency. For example, the study by Flinn and Satyanarayanan [13] extends the 

Odyssey platform to guide mobile applications to adapt for battery life. By monitoring 

energy supply and demand, the platform is able to select the correct tradeoff between 

energy conservation and application quality. Also, research on dynamic adaptive data 

structures for monitoring data streams focuses on changing a specific data structure 

representation for accuracy, speed of response and memory requirements [14]. And lastly, 

the study by Ansel [15] presents a method for auto-tuning programs with algorithmic 

choice. The main differences with our research are that these research projects either use 

different adaptation or learning techniques, or are not data structure related.
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CHAPTER 6: PREDICTING DATA STRUCTURES FOR ENERGY EFFICIENT 

COMPUTING 

This chapter discusses in more detail our implementation of the two predictive 

components of the adaptive green data structure, the Classifier and the Predictor, along 

with some prediction accuracy and validation results. The implementations represent 

possible machine learning based solutions to the two problems highlighted in our adaptive 

green data structures approach—classification and sequence prediction problems. We 

choose to solve the problems and implement the Classifier and Predictor with artificial 

neural network (ANN) and n-gram, respectively. 

6.1 Classifier 

The problem of identifying the data structure to which a new feature vector maps 

to is a classification problem. We choose to solve the problem by implementing the 

Classifier component with an ANN. Our C# implementation of the network is based on a 

book by James D. McCaffrey [20]. As shown in Figure 25, our hand-tuned ANN consists 

of 10 input, 15 hidden, and 9 output nodes. Among the 10 input nodes, there are five nodes 

for the data structure group, G; one node for N; and the other four for %C, %R, %U and 

%D. The feature G is encoded into 5 input nodes using the 1-of-(c-1) effects encoding 

method, where c is the number of data structure groups. The 9 output nodes are derived 

from encoding the 9 C5 data structures using the dummy encoding method. The 15 hidden 
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nodes are the result of hand tuning that produced the highest accuracy results. The 

activation functions in this implementation include the hyperbolic tangent function on the 

input-to-hidden nodes and the SoftMax function for hidden-to-output nodes. 

 

Figure 25. Our Hand-Tuned Artificial Neural Network Classifier 

Offline supervised learning is used for training the Classifier. The incremental 

backpropagation method is the training algorithm in our implementation. The result from 

the training is an a priori energy model that consists of 309 weights and biases, the 

knowledge for the classification model (included in one of the appendices). The numbers 

are hardcoded in the GreenC5 data structure to be used at runtime, along with means, 

standard deviation values, and X and Y dictionaries—the means and standard deviation 
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values are used for X-value data normalization, and the X and Y dictionaries are used for 

translating encoded numeric values to/from the data structure group and C5 data structures 

respectively. The other default parameter values are also derived from the hand-tuning 

process—maximum epochs = 3000, learning rate = 0.02, momentum = 0.01 and stop error 

= 0.04. The classification method used in the implementation is the multi-layer feed-

forward method. More detail and definitions of the terminology can be found in the James’ 

book [20]. 

6.2 Predictor 

The purpose of the Predictor is to add the ability to predict the next most-likely 

energy efficient data structure in the already seen data structure sequence produced by the 

Classifier. This is a sequence prediction problem. We solve the problem with a well-known 

probabilistic language model, the n-gram model [22]. This model is used for predicting the 

next item in a sequence in the form of a (n-1)-order Markov process. Our C# 

implementation of the n-gram Predictor is based on the string matching pseudo code found 

in the book by Ian Millington [22]. 

Our n-gram Predictor component uses incremental online learning to infer the 

distribution of data structures conditioned on observed data structure sequences, and make 

online predictions based on this distribution. The n-gram sequences used for learning come 

from the Classifier’s output. The prediction is continuously made once an n-gram is 

registered. The output will be “Unknown” if there is not enough knowledge for the 

prediction, and is considered a misprediction. For example, Figure 26 shows the process of 

the incremental online learning and prediction of a trigram-based predictor. There are two 
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main methods of the Predictor component that perform the two functions, registerSequence 

and predictNext. Sequences of C5 data structures produced by the Classifier component 

are used to register to the Predictor for incremental online learning—every last seen n data 

structure sequence is input to the registerSequence method. 

 

Figure 26. Incremental Online Learning and Prediction Process of a Trigram-Based 

Predictor 

From the figure, every last three data structures, {DS0, DS1, DS2}, {DS1, DS2, DS3}, 

{DS2, DS3, DS4} and so on, are incrementally registered to the trigram predictor. After 

each registration, a prediction is made based on the last n-1 registered items (last two items 

for a trigram or last one item for a bigram). In this example, the predictions are made based 

on items {DS1, DS2}, {DS2, DS3}, {DS3, DS4} and so on, respectively. For the incremental 

online learning, the more data structure sequences are registered to the trigram, the more 
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knowledge and the better prediction of the Predictor. The final outcome of each program 

execution is a sequence of predicted most energy-efficient data structures, to be compared 

with the ground truths. We validate and test the accuracy of the model with the 19 

validation programs. 

6.3 Evaluation Results 

6.3.1 Classification Results 

To reduce bias and over fitting, we use a 10-fold cross validation method [21] to 

train the Classifier. The original training dataset is randomly partitioned into ten equal size 

subsamples. A single subsample, 10% of the training dataset, is retained as the test data, 

and the remaining 90% is used as the training data. This process is repeated 10 times, with 

each of the 10 subsamples used exactly once as the test data. The average accuracy result 

from all 10 subsamples is observed to be 95.80%. The most accurate model for 

classification is selected as the final a priori model to be used in the Classifier. This model 

is also tested with other remaining unseen datasets, the 20 remaining datasets (one 

validation dataset and 19 program validation datasets). We also test the accuracy with the 

training dataset to see how the Classifier performs on the already seen data. The accuracy 

result on the training dataset is 96.01%. The accuracy on the validation dataset is 82.40%, 

and averages 76.52% on the 19 programs (ranges from 59.71% to 99.25% accuracy). The 

numbers show that the neural network Classifier is adequately accurate. 

6.3.2 Prediction Result 

To test the n-gram Predictor, both the Classifier and Predictor components are used. 

CRUD operation sequences of the 19 programs are input to the Classifier to produce data 
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structure sequences for the Predictor to learn and predict. Each program is set to run in 

loops for multiple iterations simulating that real-world programs/algorithms can be 

executed repeatedly multiple times. The graphs in Figure 27(a) display prediction accuracy 

results of a trigram predictor from running 4 of the 19 simulated and real-word programs. 

The y-axis of the graphs represents the accuracy in percentage and the x-axis shows the 

first four iterations of the looped execution of a program. The accuracy numbers indicate 

how many data structures in each predicted sequence match with the corresponding ground 

truth. The graphs display the accuracy results by data structure group as indicated by the 

graph legend at the top of the figure. As we can see, the predictions on C5 data structures 

in ICollection, ICollectionBag and ICollectionSet are more accurate than that of ones in 

IList, IListBag and IListSet. However, there are some programs, such as the simulated 

program #2 and Huffman Encoder, for which the trigram Predictor produces very accurate 

predictions for all groups. 

We also notice some low accuracy in the IList and IListSet groups when executing 

the A* Path Finder programs. After further investigation, we found that the inaccuracy is 

due to the limited size of the training dataset, and the uniform coverage therein. As a result, 

the workloads represented in the training dataset do not adequately sample those produced 

by these particular programs. We validate this by also training the Classifier with two of 

the five A* Path Finder programs, and then testing the Predictor with the other three 

remaining programs. The accuracy of the test programs in these data structure groups 

improves significantly, to more than 90%. Therefore, to improve the accuracy of the 

Predictor, it is crucial that the Classifier is trained with either more granular data points, or 
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with a data set that contains data points that are representative of the programs expected to 

execute in the system.  

 

(a) 

 

(b) 

Figure 27.  Prediction Accuracy Results: (a) Accuracy Results by Program using a Trigram 

Predictor and (b) Averaged Accuracy Results of All 19 Programs using Bigram and 

Trigram Predictors 

We also conduct some misprediction analysis. One interesting result revealed in the 

mispredictions of a bigram Predictor is that, even if the prediction is incorrect, the energy 

savings from the mispredicted data structure is still more than 56%, compared to the worst 

data structure choice. Therefore, absolute accuracy is not always necessary to gain 
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advantages from the approach, especially when data structure choices are made in an 

uninformed manner. 

Overall prediction accuracy results are displayed in the graphs in Figure 27(b). The 

graphs display average prediction accuracy of the bigram and trigram predictors when 

executing all 19 programs. For each data structure group, while incremental online learning 

is in progress, the accuracies of the two predictors are increasing in every iteration of 

program execution, and start to converge at iteration 4. The values stay unchanged after 

iteration 4, implying a steady state in the underlying model. Overall, the prediction for data 

structures in the ICollectionBag group gives the highest accuracy, converging at about 

98%. On the other hand, ones in the IList and IListSet groups give the lowest prediction 

accuracy, primarily due to the poor performance in the A* program.  For the top 4 interface 

groups (ICollection, ICollectionBag, ICollectionSet and IListBag), the average accuracy 

converges above 70%. Since the performance is not significantly different, a bigram 

Predictor should be sufficient. A bigram Predictor will predict the next energy efficient 

data structure by only looking at the current data structure in the sequence. According to 

Mandery [127], one of the limitations of n-grams is that as number of n grows, the memory 

requirements grow rapidly due to dimensionality. A lower n number is better and makes 

the Predictor component lightweight. With this reason, along with the adequate prediction 

accuracy, a bigram-based predictor is used in the implementation of our GreenC5 data 

structure. 
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CHAPTER 7: GREEN DATA STRUCTURE IMPLEMENTATION 

This chapter discusses in more detail the implementation of our adaptive green data 

structure prototype, the GreenC5. The implementation represents a possible machine 

learning based data structure of an adaptive green data structure. In addition to the 

Classifier and Predictor, this chapter focuses more on the remaining implementations of 

the Green component, the Decision Maker and the data structure transformation and 

switching process. 

7.1 GreenC5 Architecture  

The GreenC5 is an enhanced version of the CRUD-based C5 Collection. It is 

implemented in C# and intended to be used in .NET programming. The main difference 

between this data structure and the original C5 data structures is its internal mechanism 

that makes the data structure smart, adaptive and energy-aware. The following section 

describes some features of our GreenC5 prototype class library. 

7.2 Main Features 

Main features of the GreenC5 data structure are highlighted below: 

1) Smart, adaptive and energy-aware: the GreenC5 data structure can be 

trained to classify, predict and intelligently adapt for energy efficiency at runtime. 

2) Easy-to-use: only one GreenC5 type is needed for each instantiation in a 

program. When fully functional, the usage is similar to the C5 data structure with few extra 
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installations and configurations. GreenC5 can potentially be used in multiple platforms 

with similar performance results without the need for calibrations. 

3) Lightweight: the green data structure has less than 3% overhead when 

compared to the original C5 data structures. 

7.3 Class Diagrams 

Appendix A and B are the class diagrams of the CRUD-based C5 Collection and 

GreenC5 data structure, respectively. The diagrams detail out all properties, methods and 

events of the green data structure classes. In Appendix A, the CRUD-based C5 Collection 

class is a factory class of the 9 C5 generic data structures. The class implements the 

ICrudable interface so that it contains only 4 CRUD public methods of C5 data structures, 

while other operations are ignored and inaccessible. Using a Factory design pattern [28], 

the class has the ability to manufacture different data structures at runtime. The Factory 

pattern deals with the instantiation of objects without exposing the instantiation logic. A 

factory is actually a creator of objects that have a common interface. The creation of each 

object is done by calling the factory method rather than by calling a constructor.  

The InternalC5DataStructure property is the actual internal data structure that 

holds and stores the data and is declared as ICollection<T> type of the C5 Collection 

libraries. The CreateInstanceOfInternalC5DataStructure method of the 

C5CollectionFactory class is called when a new instance of a data structure is to be created 

and it returns the data structure of choice to the InternalC5DataStructure property. The 

data structure transformation process takes place in this class. For every transformation and 

switching process, the Copy-To methods are called to copy the existing data of the current 
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data structure to a new data structure. The TransformCompleted event is then raised when 

each transformation is completed.   Because the 9 data structures implement the same 

ICollection interface, Factory design pattern enables the class to have the ability to switch 

to different data structures at runtime. 

Appendix B depicts our GreenC5 class library. The diagram contains three main 

component classes (GreenC5, Green and DecisionMaker) and three utility classes 

(CrudCounter, FeatureRegisteredEventArgs and TransformNotifiedEventArgs). The 

CrudCounter class is for counting CRUD operations. It also contains an event to be raised 

when the combined CRUD operation counts reach some count threshold. In this prototype, 

the CRUD count threshold (CrudLengthThreshold property) is set to a default of 10,000, 

the same as the length L of our CRUD subsequences in Figure 21. In this case, for every 

10,000 CRUD operations, a vector set of data structure features is to be registered to the 

Classifier. For the other two EventArgs type classes, the FeatureRegisteredEventArgs is to 

hold registered feature and state information when the feature register event is raised; and 

TransformNotifiedEventArgs is to hold the name of a C5 data structure to be transformed 

to, when it notifies the GreenC5 object. The rest are some event handlers and enumerations 

used in the implementation. As proposed in      Figure 20, the Event Listener and X-Value 

Translator component is not explicitly implemented here but its capabilities are actually 

embedded in the GreenC5, Green and CrudCounter classes. 

There are four enumerations that explain some capabilities of our GreenC5 

prototype—DataStructureMode, DataStructureGroup, TransformationMode and 

ActiveStatus. For DataStructureMode, it is an enumerated type that contains three 
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application run modes of the GreenC5—Static, Silent and Dynamic. When the GreenC5 is 

set to run in a Static mode, each instance has a static internal C5 data structure and its Green 

component is disabled. There is no internal mechanism running so it is considered least 

overhead. For a Silent mode, each Green5 instance has its Green component enabled and 

the internal mechanisms such as the classification, prediction, decision making, event and 

notification processes running normally. However, the internal data structure stays 

unchanged and the actual data copy and transformation processes never take place even 

though it is notified by the Green component. In contrary, the Dynamic mode enables the 

GreenC5 to run in fully operational mode where all the internal mechanisms are running 

normally, including the data copy and the transformation of its internal data structure. 

When running in this mode, the transformation and switching to different data structures 

can take place anytime dynamically and automatically. Therefore, the Dynamic mode has 

highest overhead. It is also the default mode of the GreenC5. 

 The DataStructureGroup enumeration represents available choices of feature G 

(data structure group). Users can change the values at the program level from the available 

choices. In the implementation, ICollection is the default value and it is set in 

InterfaceAndSetBagProperty property of the GreenC5 class. Every time the property value 

is changed, the values of the CurrentDataStructure and InternalC5DataStructure 

properties are automatically changed to a proper C5 data structure. In this case, they are 

automatically set to a HashSet by default (most preferable C5 data structure in ICollection 

group, see Figure 23). The TransformationMode enumeration contains two modes of data 

transformation—Immediate or WhenIdle. However, in this version, the WhenIdle mode is 
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not implemented. GreenC5 defaults to Immediate mode, meaning that GreenC5 

immediately transforms when notified by the Decision Maker. As the result, GreenC5 is 

assumed to always be in Active status in this implementation. 

GreenC5 is a generic data structure class that is inherited from 

CRUDBasedCollection generic class and implements the INotifyPropertyChanged 

interface.  Therefore, the available public methods of data structure operations are only 

those of the four CRUD operations. Also, the INotifyPropertyChanged interface allows 

PropertyChanged events to be raised when public property values have been changed. For 

example, when the RunMode property is changed to Static or another mode, the event is 

raised so that the Green component is enabled or disabled automatically, and some other 

default values are also changed to proper values.  

GreenC5 class is considered a dynamic data structure because it has a C5 data 

structure as the internal data storage. The class consists of two main components and are 

declared as private fields—the CrudCounter and Green components. However, the two 

components are enabled/instantiated only when the run mode is set to Silent or Dynamic. 

The CrudCounter tracks and counts numbers of CRUD methods being called and notifies 

the Green component to register a feature vector value for every 10,000 CRUD operations 

it observes. The Green component is the brain of the GreenC5. It is composed of an ANN-

based Classifier, a bigram-based Predictor and a Decision Maker sub-component. The 

functionalities and implementation detail of the Classifier and the Predictor are already 

explained in the previous chapters. This section will explain more on the processes of the 

latter two sub-components—decision making and data structure transformation processes. 
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7.4 Data Structure Transformation and Adaptation 

Self-adaptation in our GreenC5 is the process of transforming its internal data 

structure to different C5 data structures. The runtime process takes place in the CRUD-

based C5 Collection instance, and only when it is notified by the Green component or when 

the value of the InterfaceAndSetBagProperty property of the GreenC5 object is changed. 

This process allows GreenC5 to adapt itself to the workload, environment and 

requirements, for energy efficiency.  However, the overhead of each transformation 

process is considered high since it involves instantiating a new C5 data structure, copying 

over existing data to the new one and the disposal of the old one. Therefore, it is important 

that GreenC5 handles the transformation process properly in order to maximize the overall 

energy saving and avoid unnecessary overheads. 

7.5 Decision Maker 

The component that controls the transformation process and decides when to 

transform, and to which data structure, is the Decision Maker component. This component 

has a crucial task because a wrong decision can sometimes cause the green data structure 

to perform worse than the original C5 data structure choices, or the actual energy savings 

is not at the maximum level possible. Also, to avoid high overhead, its internal logic and 

codes should also be as simple as possible. In this implementation, our goal is to make the 

component lightweight. Therefore, having a simple decision making logic with adequate 

accuracy is the key of the implementation. 

Our methodology for the decision making is basically to answer when it is worth 

to transform, and how often, so that the overall energy consumption can be minimized. 
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Each transformation can take place any point in time and as many times during the CRUD 

operations. The goal is to maximize the number of overall energy savings. Therefore, the 

transformations should take place only when it is necessary so that overall energy savings 

is at the maximum level possible. The number of transformations should be at some optimal 

point because the higher number of transformations the higher overhead and the lower 

number of transformations the higher chance of the energy saving opportunity to be missed. 

One way to answer the decision making question is by looking back at how many 

CRUD operations have been performed since the start of the program execution or since 

the last data structure transformation. This is the same as counting how many feature 

vectors are registered to the Classifier; how many data structures have been registered to 

the Predictor; and how many prediction has been made. In this case, each count of the 

events means that 10,000 CRUD operations have been performed and one feature 

registration and one online prediction have been made. We use the sequence registration 

count (labeled as SC) as the first decision making criteria. For example, the criteria can be 

SC >= k1, where k1 is a constant integer representing how far to look back or how many 

data structure has been registered to the Predictor or how many times the predictions has 

been made. By assigning the criteria with some k1 values (inside the Decision Maker in 

Figure 28), the SC criteria can control the GreenC5 when to transform and how many times 

during each program execution. For example, for SC >= 5 criteria, the transformation can 

take place only when the predictions have been made at least five times or the CRUD 

operations have been performed at least 50,000 times.  So, for a program with 400 × 103 

operations, the maximum number of transformations that can take place is 8.  
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       Figure 28. Flow Chart Diagram of the GreenC5 
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In this implementation, our first default decision making criteria is SC >= 5. The 

value of k1 = 5 is derived from a hand-tuned process that, when combined with the other 

criteria (to be mentioned next), gives highest overall energy savings. From what we 

discovered, the lower numbers can sometimes result in higher number of transformations 

causing higher overheads and lower energy savings. The higher numbers can sometimes 

result in lower energy savings. If the number is too high, the transformation sometimes 

never take place. 

Another decision making criteria is for deciding whether it is feasible or worth to 

switch to a different data structure. This criteria gives us some level of confidence for each 

decision. We look at the percentage probability value produced by the Predictor during 

each prediction (labeled as PD). In this implementation, the Predictor is bigram-based. The 

Predictor predicts the next energy-efficient data structure (DSi+1) from the current data 

structure (DSi). When the Predictor predicts for DSi+1, the bigram-based predictor also 

returns the probability value associating to the predicted C5 data structure. This probability 

value is used in the second decision making criteria; PD >= k2, where k2 is the percentage 

probability threshold value produced by the Predictor component when performing a 

prediction. For example, for PD >= 50%, the transformation can take place only when the 

bigram predictor produces the probability value (PD) or relative frequency value of 50% 

or above. Base on Jurafsky and Martin [34], the probability value created by an n-gram is 

called “relative frequency”. One method to estimate the probabilities is by getting counts 

from a data structure history, and then normalizing the counts so that they lie between 0 

and 1. Our method for producing the PD values is based on the n-gram algorithm by 
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Millington [22]. The actual PD values of our implementation are expected to fall between 

1/n to 1, where n is the number of the C5 data structures in each of the structure group G. 

However, for simplicity, our PD values are in percentage instead. In our n-gram algorithm, 

to compute a particular bigram probability of a DSi+1 given a previous data structure DSi, 

we compute the count of the bigram C(DSi,DSi+1) and normalize by the sum of all the 

bigrams that share the same DSi: 

                              𝑃(𝐷𝑆𝑖+1| 𝐷𝑆𝑖)  =  
𝐶(𝐷𝑆𝑖,𝐷𝑆𝑖+1) 

∑ 𝐶(𝐷𝑆𝑖,𝐷𝑆)𝐷𝑆
                               (3) 

Intuitively, the higher k2 value of PD criteria should also give us higher level of 

confidence for decision making. It also tells us that it is worth to transform to DSi+1 because 

the data structure has been seen most of the times in the history compared to other choices. 

Therefore, for higher k2 value, it is more feasible to transform and there is higher possibility 

to gain more energy savings. The second decision making criteria is default to PD >= 60%. 

The default k2 value of 60% is selected mainly because the smallest number of C5 data 

structure choices in IListBag group is two. Therefore, the probability value should be 

greater than 50% and should not be too high or too low. Based on some trial and error 

experiments, 60% is a good and reasonable number to start with. The lower the value, the 

higher the number of transformations that can take place. 

Together, the default two decision making criteria of our GreenC5 data structure 

are SC>=5 and PD >= 60%. Both criteria controls how often and when the transformations 

can take place disregarding how many features are registered and how many data structures 

are predicted. Even though, these decision making criteria values (k1, k2) might not be the 

optimal ones, they represent a good starting point for further exploration. In this 
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dissertation, a full exploration of the decision criteria values is conducted as one of our 

additional case studies presented in chapter 8. Figure 28 displays the flow chart diagram 

that shows some logic, data and process flows of the GreenC5 data structure. The dashed-

line boxes underneath the flow chart diagrams indicate the areas inside GreenC5 

components where each process takes place. 

7.6 Usage of the GreenC5 Data Structure 

Ultimately, the GreenC5 data structure should preserve all properties and 

capabilities of the original C5 data structures including the usage. It should be easy-to-use 

and require minimum learning curve, configurations or extra installations. The followings 

are some examples of the usage of our GreenC5. There are at least three important class 

libraries to be installed in the target machine and included on the top of each 

program/project: 

using C5;  
using CrudBasedCollection;  
using GreenCrudBasedCollection; 
 

To create an instance of a GreenC5 data structure, programmers can instantiate it 

the same way as instantiating any of the C5 generic data structures. The below lines of code 

is an example of creating a new GreenC5 instance object to store string objects. By default, 

the data structure will run in a Dynamic mode unless specified by the programs.  In 

Dynamic mode, the data structure automatically and dynamically transforms itself to 

different C5 data structures in the ICollection group for better energy efficiency. The code 

example demonstrates how to add 10,000 string objects to a GreenC5 instance and then 

update, retrieve, print and delete the strings.  As already tested, the code section results in 

less energy consumption than using a LinkedList (the least preferable C5 data structure in 



 

138 

ICollection group). This example forces the GreenC5 instance to start as a LinkedList. 

However, by the end of the code execution, the internal data structure of the GreenC5 has 

automatically and correctly been transformed to a HashSet and consume less energy than 

the LinkedList and other C5 data structures. 

GreenC5<string> ds = new GreenC5<string>();               
ds.CurrentDataStructure = C5DataStructure.LinkedList; 
//force it to start as a LinkedList 
ds.CreateNewInstanceOfInternalC5DataStructure(C5DataStructure.LinkedList); 
 
for (int i = 0; i < 10000; i++)//Create 
{ 
  ds.Create("Hello" + i);                 
} 
for (int i = 0; i < 10000; i++)//Update 
{ 
  ds.Update("Hello" + i);                 
} 
for (int i = 0; i < 10000; i++)//Retrieve 
{ 
  ds.Retrieve("Hello" + i);                 
} 
for (int i = 0; i < 10000; i++)//Print 
{ 
  Console.WriteLine(ds.Retrieve("Hello" + i)); 
} 
for (int i = 0; i < 10000; i++)//Delete 
{ 
  ds.Delete("Hello" + i);                 
} 
 

7.7 Code Release  

The GreenC5 project is set to be an open-source project. Therefore, some 

fundamental projects and the source code have been released to the public via a GitHub 

website [141]. The main goal is for research purposes and to provide some power metering 

tools for green software development projects and for future development of the GreenC5. 

All released projects are in C# language and combined in a single project called DUGreen 

project. The released projects include: 
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1. Watts Up? Framework: this framework contains APIs for power measurement 

using a Watts Up? Pro meter. 

2. Intel Power Gadget Framework: this framework contains APIs for power 

measurement using the Intel Power Gadget with other required libraries. 

3. CRUD-Based Collection Energy Profiling: this project contains a program for 

creating training and program validation datasets using a Watts Up? Pro power 

meter. 

4. Machine Learning Framework: this project contains two implementations of an 

Artificial Neural Network and N-Gram. 

5. CRUD-Based C5 Collection: this project contains a wrapper/factory class of the 

C5 data structures. 

6. Green CRUD-Based C5 Collection: this project contains the GreenC5 data 

structure class, Green component and other utility classes. 

7. GreenC5 Simulator: this project is the implementation of our GreenC5 simulator 

to allow users to interact with the GreenC5 in different use-case scenarios and 

settings. The project also contains code examples of how the GreenC5 is used and 

the implementations of Watts Up? and Intel Power Gadget power profilers.
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CHAPTER 8: GREEN DATA STRUCTURE EVALUATIONS 

This chapter explains the evaluation of the GreenC5 data structure along with the 

results and analysis. It also includes several additional case studies to further evaluate the 

green data structure.  

8.1 Experimental Setup 

 

Figure 29. GreenC5 Evaluation Process 

Figure 29 shows the overall process to evaluate the performance and overhead and 

to calculate the estimated and actual potential energy savings of GreenC5. There are three 

computers used in this study, labeled as COMP1-3 with different specifications, based 
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power consumption and versions of Windows operating system. List of the computers is 

displayed in Table 4. COMP1 is used to perform the energy profiling, training and creating 

the a priori energy model, as already explained in previous chapters. The other two 

machines are used to test GreenC5 data structure embedded with the same a priori model 

created by COMP1. 

Table 4. List of Test Computers with Specifications and Based Power Consumption 

Computers Specifications 

Base Power 

Consumption 

(Watts) 

COMP1 
HP Envy PC, model h8-1520t with Intel Core i7 

CPU@3.4 GHz 10GB RAM and Windows 8.1 Pro 

35 

COMP2  
HP Probook 4720s with Intel Core i7, CPU@2.67 

GHz, 8GB RAM and Windows 7 Pro 

30 

COMP3 

Acer Aspire R14 with 6th-Generation Intel Core i5 

CP-6200U, 8GB DDR3 RAM, 256GB SSD Drive 

and Windows 10 Home edition 

9 

 

The purpose of the experiment is to investigate whether our a priori model created 

during the energy profiling and offline learning processes in the first machine can be used 

in other machines; and whether they produce similar results. We want to see if the model 

can potentially be universal where only one single model is needed and can be used in 

many other machines. The purpose is to avoid a repeated machine calibration process when 

using GreenC5. In real world, the number of machines in the experiment can be increased 

for better results. However, in our study, the number is limited to 3 machines. Also, to 

improve accuracy in this evaluation process, the total number of observations of the 

training dataset is expanded to 38,826. This dataset includes observations of the original 

training dataset and the ones from two of the five A* Path Finder programs. Therefore, the 
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remaining 17 of the 19 validation programs are used to evaluate GreenC5. The following 

evaluation results are based on the 17 validation programs. 

8.2 GreenC5 Evaluation Results 

According to the experimental setup in Figure 29, there are two tests needed to 

validate the GreenC5 prototype—overhead and energy saving tests. This section explains 

the preliminary results showing that GreenC5 can help minimize the energy consumption 

of the base systems. 

8.2.1 Overhead Testing Results 

When enhancing application objects and components, more code is normally added 

to the programs. More complex code normally means higher overhead that can sometimes 

undesirable.  This experiment is to see how much overhead in term of energy consumption 

is added to GreenC5 when compared with the original C5 data structures. The method is 

straight forward. We run 17 validation programs on each of the two test computers 

(COMP2 and COMP3), by inputting CRUD sequences of the validation programs to each 

of the 9 C5 data structures. The energy consumptions from running each of the programs 

are captured and saved by the energy profiler for analysis. 

The same process is also done on the GreenC5 data structure in a Silent mode. In 

this mode, the GreenC5’s internal data structure is set statically to each of the C5 data 

structures. The Silent mode activates all internal mechanisms and enables the Green 

component, but no actual transformation takes place. When a GreenC5 is running in a 

Silent Mode, it acts like a C5 data structure running with an active Green component 

attached to it.  By comparing the energy consumption of the original C5 data structures 
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with the GreenC5 running in a Silent mode, the energy differences can tell us how much 

additional energy consumption caused by the Green component. The following overhead 

results are based on data collected from executing each validation program for two runs on 

each computer. Both computers are executed in a controlled environment, where some 

system processes of Windows operating systems such as Wifi and Internet connection are 

turned off to minimize noises. Note that we do not include the adaptation and 

transformation processes in this overhead testing because the cost is high and vary 

depending on the types of C5 data structures. Instead, these processes are managed by the 

Decision Maker component to maximize system’s energy efficiency.  

The overhead results are quite surprising. We expect to see high overhead in term 

of energy consumption since the added code of the green component is rather complex. 

Instead, the average energy differences are quite small. For most programs, GreenC5 

consumes more energy than the original C5 data structures. Only few experiments show 

that GreenC5 consumes less energy than the original ones. The percentage energy 

differences range from small decimal numbers for most program executions and up to the 

twenties for few program executions. This is due to the fluctuations of the system power 

consumption. However, on average, the energy differences or overhead of GreenC5 for all 

programs in both computers are less than 3% (2.62% and 2.14% for COMP2 and COMP3 

respectively).  Since, the numbers are small, we consider the GreenC5 data structure as 

lightweight. 
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8.2.2 Potential Energy Saving Results 

Next test is to compare the energy consumption of programs running the least 

preferable C5 data structures of each data structure group with ones running the GreenC5 

data structure in Dynamic mode. Our goal is to see how well the green data structure can 

adapt for energy efficiency and what are the actual potential energy savings from 

dynamically transforming its internal data structure to different C5 data structures at 

runtime. 

To achieve the goal, the energy consumption data of the C5 data structures are used 

as the base to compare with that of GreenC5 running in Dynamic mode. For each of the 

program, we seek the best and worst C5 data structures in each of the data structure groups 

when running each of the validation programs (Min and Max lines in    Figure 30). The 

energy consumptions of the two data structures are set as the lower and upper bounds of 

each group. Next, we execute the programs with the GreenC5 data structure in Dynamic 

mode with different values of InterfaceAndSetBagProperty property (data structure group 

G), simulating different interface and set/bag semantic requirements. We start each 

execution by setting the initial internal data structure of the GreenC5 to the worst choice in 

each group, found in Figure 23. For example, the GreenC5 data structure is set to start with 

a LinkedList for ICollection, ICollectionBag, IList and IListBag groups. The CRUD 

workload of each program is then input to the green data structure. If the GreenC5 adapts 

correctly, the energy consumption of the GreenC5 is expected to fall in between the Min 

and Max points in each data structure group and by the end of each execution, the internal 

data structure of the GreenC5 should be transformed to a better energy-efficient C5 data  
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       Figure 30. GreenC5’s Potential Energy Savings by Data Structure Group by Program 
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structure in each group.    Figure 30 shows some experimental results of the potential 

energy savings of GreenC5 by data structure group per program conducted in COMP2 and 

COMP3. 

In    Figure 30, the energy consumption data of both computers are normalized so 

that the Max points or upper bound are always at 100 (Y axis). The dots on Min and Max 

dash lines represent the maximum and minimum energy consumption points of C5 data 

structures by data structure group per program, respectively.  The dots on GreenC5 lines 

represent the energy consumption of Dynamic-mode GreenC5. The closer to the bottom 

lines the better energy efficiency and the higher potential energy saving. The energy 

differences between the Min and Max points are called expected energy savings.  While, 

the actual energy savings of the GreenC5 are the energy differences between the GreenC5 

and the Max points. As you can see, the GreenC5 points lie between the top and bottom 

lines as expected. Only few that lies above the top or below the bottom lines (in the IList 

group of Simulated Program #3, for example). 

Surprisingly, GreenC5 performs quite well as you can see that most of its energy 

consumptions are close to or almost lie on top of the Min lines and mostly in between the 

Min and Max lines. This means that our Predictor can predict accurately and the Decision 

Maker can notify GreenC5 to transform and adapt correctly with minimum overhead. 

Moreover, the results from both computers are almost identical even though their base 

power consumption and system specifications are significantly different. This is another 

unexpected result. This means that our a priori model can potentially be a universal model 

that can be used in multiple computer platforms. As a result, only one model is needed for 
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GreenC5 and there is no need for system calibration, making GreenC5 even more user 

friendly. 

 

 

 

 

 

 

Figure 31.  Average Potential Energy Savings of GreenC5 by Data Structure Group 
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For the overall picture, Figure 31 shows the graphs of average actual potential 

energy savings of GreenC5 in the 17 validation programs on COMP2 and COMP3, 

respectively. The numbers indicate the percentage energy savings, representing how much 

energy can actually be saved from using GreenC5, by data structure group. Again the two 

graphs are almost identical and are in the ranges as estimated during the energy profiling 

process (Figure 24). GreenC5 performs very well in the ICollection and ICollectionBag 

groups—more than 95% potential energy savings when compare to the worst C5 data 

structure choices. IListBag group produces the least potential energy savings (little above 

18%). For all data structure groups, the median potential energy savings are 61.19% and 

60.56% for COMP2 and COMP3 respectively. The numbers show that GreenC5 can adapt 

for energy efficiency and can potentially help the computer systems consume less energy. 

8.3 Threats to Validity 

There are many other aspects that need to be considered in order to develop a fully 

functional adaptive green data structure. This section explains several validity threats to 

the design of our study and the implementation of the GreenC5 prototype. For the creation 

of a priori knowledge of our green data structure, the model is based on C5 dynamic data 

structures that implement the ICollection interface, and is based only on the selected data 

structure features. Because the training dataset does not cover all possible workloads, our 

predictive model has some limitations. First, the predictive model is limited to common 

operations that map to the CRUD operations. Other operations are ignored. Second, the 

feature N is also limited to 50K elements and the length of CRUD subsequences is fixed at 

10K. The workloads, %C, %R, %U and %D, are also limited at some level of granularity. 
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We do not consider whether the CRUD workloads in the training dataset are 

feasible. For example, we include a workload with 90% of delete operations and 10% of 

add operations; such a scenario will never realize. Also, our models (ANN and bigram) are 

selected mainly because they can be used to solve energy-efficient data structure 

classification and sequence prediction problems and the source codes and algorithms for 

developing the models are available. Some of them are hand-tuned without full exploration 

of all possible solutions. They are not claimed to be the best solutions for these problems. 

Other machine learning methods such as Recurrent Neural Network (RNN), SVM, Logistic 

Regression and HMM are among the possible candidates for solving the energy-efficient 

data structure classification problems. 

The energy profiling is a key process in creating the a priori knowledge for our 

predictive model. The energy data collection process is done with a power meter that can 

read power consumption at 1 sample per second. The result can be more accurate if we can 

measure power consumption data at a finer grain and on different parts of the system, such 

as CPU, memory, display, etc. Our power measurement is at the system level, and may 

have overhead and noise. The energy collection process is designed to collect energy data 

on a fixed setting as described in the algorithm presented in Figure 21. We claim that the 

priori knowledge is potentially universal. Our claim is based on only two Windows 

machines and mainly because the results from both computers are almost identical. More 

tests can be done on more programs and computers to make the claim more legitimate. 

Lastly, the version of our GreenC5 data structure is mainly for research purpose 

and is implemented as a prototype of an adaptive green data structure only. It is not a fully 



 

150 

functional green data structure that can replace the C5 data structures in existing programs. 

There is much more work to be done to make it fully functional. The internal mechanism 

and logic of the Green component, the decision maker and transformation process are as 

described in Figure 28. The energy saving results are based on the fixed decision making 

criteria values (SC >=5 and PD >=60%). Even though, an exploration for better decision 

making criteria values is conducted in one of the case studies, the better optimal criteria 

values produced from the experiment are not used in any of the mentioned experiments. 

Also, the potential energy savings are evaluated from the 17 program workloads created 

from 3 real-world and 8 simulated programs. More workloads from more programs are 

also needed and the testing should be conducted more extensively on more platforms for 

better results. 

8.4 Additional Analysis and GreenC5 Simulator Implementation 

The purpose of the additional analysis is to further evaluate the GreenC5 prototype 

in different use-case scenarios and to answer some of the additional research questions that 

are considered threats to the validity of our experiment. The following questions are to be 

answered in the case studies: 

1) What are the optimal values for the decision making criteria in the decision 

maker (values of k1 and k2)? 

2) Are there any other alternative power measurement tools that can be used in 

GreenC5, possibly for reinforcement and online learning in the future work? 

3) What is the energy efficiency improvement in other use-case scenarios? For 

example, how the GreenC5 affects the system energy consumption when 
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multiple instances are being executed sequentially in a single thread and 

asynchronously in separate threads/programs? 

8.4.1 Additional Analysis #1: Alternative Power Profiling Tool and GreenC5 Simulator 

Implementation 

To answer some of the additional research questions related to our GreenC5 

prototype, we develop a GreenC5 and demonstrate how GreenC5 can be used in different 

use-case scenarios and settings, and how it can help software applications to save energy. 

The simulator also integrates both Watts Up? and Intel Power Gadget power monitoring 

tools for comparison. Intel Power Gadget is selected as an alternative power profiling tool 

because it can potentially be used for online learning of GreenC5 in our future research 

projects. This section explains features and the implementation of the GreenC5 simulator 

and the integration of the Intel Power Gadget with the simulator. 

8.4.1.1 GreenC5 Simulator Implementation 

The main goal of the GreenC5 simulator is to allow users to interact with the 

GreenC5 data structure. The simulator is implemented in C# and is intended to run on 

Windows machines with 2nd or later generation of Intel Core processors. It utilizes the C5 

collection and the GreenC5, Watts Up? and Intel Power Gadget class libraries. Using the 

graphical user interface of the simulator, users can add GreenC5 instances to application 

threads, change the settings, execute the program in different use-case scenarios and see 

how the program is performing and how much energy is being consumed, interactively. 

Users can set GreenC5 to run in static mode, silent or dynamic mode. Users can also select 

a program from the 19 validation programs and set the decision making criteria values for 
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the GreenC5 instances. The real-time power consumption data from both Watts Up? and 

Intel Power Gadget power are displayed side-by-side for comparison. The simulator is 

designed to be used for one of experiments in the additional analysis. The results will be 

explained in the following sections. 

Figure 32 is a screenshot of our GreenC5 simulator. The screenshot contains three 

main areas of the simulator application. In the first area, the top part of the window, are the 

live power consumption graphs (in watts) of the two power monitors. The second area, the 

bottom left part, is the simulated application area; users can add application threads and 

GreenC5 instances to each thread and set the GreenC5 setting properties, simulating 

different application use-case scenarios. The last area, the bottom right, is the application 

information and setting area. The area contains settings of the simulated application and 

the decision making criteria of the added GreenC5 instances, and the user controls for 

controlling the simulator. It also displays live power number readings, live energy 

consumption (in joules and watt hours) and productivity (number of executions per joule) 

of the application simulation. At the top of this area, a live number of normalized 

correlation of the two graphs is also displayed. The number indicates how much the two 

graphs are correlated. This number can also tell us whether Intel Power Gadget tool can be 

used as an alternative power monitoring tool for the future GreenC5 projects. 

 



 

 

1
5
3
 

    

 

  

Figure 32. A Screenshot of the GreenC5 Simulator Application 

 



 

154 

One way to determine whether two power monitoring tools are similar, can provide 

similar results and can be substituted for each other in GreenC5 and green software 

development projects is to measure the graph correlation of their power readings. One 

limitation of the Intel Power Gadget is that the power consumption data it provides is for 

the CPU only, while Watts Up’s power readings are for the computer system (CPU, GPU, 

Wi-Fi, display and others). As seen in Figure 32, the power reading samples of the two 

graphs are different so they need to be normalized before computing the graph correlation. 

In the implementation, the power sample rate of the Intel Power Gadget is set to 100 

milliseconds/sample. However, the maximum power sample rate of the Watts Up? is at 1 

sample/second. So, when plotting graphs and calculating the graph correlation, we adjust 

the power sample rate of the Watts Up? graph to have the same rate of 100 

milliseconds/sample as of the Intel Power Gadget, to make it easy for comparison. The 

additional power reading samples are duplicated from numbers of the most recent readings 

in each time interval. We use a method used in signal processing called normalized 

correlation of discrete signals [104], as a measure of similarity of the two signals. The 

calculation is based on the following formula: 

        Norm Corr X,Y = 
∑ 𝑋[𝑛]𝑌[𝑛]𝑁−1

𝑛=0

√∑ 𝑋2[𝑛] ∑ 𝑌2[𝑛]𝑁−1
𝑛=0

𝑁−1
𝑛=0

                                                (4) 

where, X and Y are the power datasets of Intel Power Gadget and Watts UP? being used to 

plot the graphs, respectively. N is the number of samples of X and Y datasets. X[n] and Y[n] 

is a power data sample in each of X and Y datasets. The top part of the formula, the 

numerator term, is for calculating the correlation of the two graphs. To get the normalized 
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correlation number, the top term is normalized by the denominator term. The denominator 

term normalizes and scales the weight of power data of both graphs to be at the same 

weight. The normalized correlation value is expected to fall between -1 and 1. A value 

closer to 1 indicates higher positive correlation of the two graphs. 

8.4.1.2 Intel Power Gadget Evaluation Method 

As described in Figure 33, we conduct experiments using our GreenC5 simulator 

running on COMP3 (with 6th-Gen Intel Core i5). Each of the 17 validation programs is 

executed with the same set of three use case scenarios. The graph correlation values of each 

execution will be recorded for the analysis. 

 

Figure 33. Intel Power Gadget Evaluation Process 
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8.4.1.3 Experimental Results  

The total of 51 use-case scenarios are manually executed using the GreenC5 

simulator. The average normalized correlation value of the two graphs is above 0.98. This 

value is very close to 1. The number indicates a strong positive correlation, meaning that 

the two graphs or power sample readings have a strong positive linear relationship. Even 

though the graphs have different weight of power readings (CPU vs. system), the two 

graphs seem to behave almost exactly the same and produce the same pattern of power 

readings when executing the same programs. As a result, we can conclude that Intel Power 

Gadget can be used as an alternative power measurement tool for future GreenC5 projects 

and any CPU-intensive program development. 

8.4.2 Additional Analysis #2: A Performance Evaluation of Multiple Instances in 

Multiple Programs  

The purpose of this additional case study is to see how GreenC5 performs and 

affects the system energy consumption in other use-case scenarios where multiple instances 

of the GreenC5 are executed sequentially in a single thread and asynchronously in separate 

threads/programs. We also want to compare its performance with the most and least 

preferable C5 data structures in each data structure group. 

8.4.2.1 Experimental Setup 

We create a project to simulate the use of C5 and GreenC5 data structures in 

different use-case scenarios on COMP3. Each use case and instance of the data structures 

are set to run either sequentially in a single thread or asynchronously in multiple threads. 

The energy consumption of each execution is captured by the Intel Power Gadget profiler 
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for analysis. We select 5 CRUD workloads from the 17 programs for the simulation, to be 

input to each of the data structure instances—2 simulated programs, 1 A* Path Finder, 1 

Huffman Encoding and 1 Genetic Algorithm programs. Figure 34 depicts the evaluation 

process and steps of the experiment: 

1. 5 use-case scenarios are created for the experiment—labeled as UseCase#1, 

UseCase#2, UseCase#3, UseCase#4, UseCase#5, where 1, 2, 3, 4, 5 instances of 

the C5 and GreenC5 data structures are initiated respectively.  

2. Each use case is set to run on the least preferable C5 data structure instances, most 

preferable C5 data structures and dynamic-mode GreenC5 instances. For each 

GreenC5 instance, its data structure group property is set to each of different data 

structure groups. The initial C5 data structure property is set to start as the least 

preferable C5 data structure in each group and the default decision making criteria 

is set to SC>=5 and PD >=60%. 

3.  The use cases are set to run sequentially in a single thread application and 

asynchronously in different thread application. In the experiment, we utilize the 

.NET’s Task Factory class library for parallel executions of the C5 and GreenC5 

data structures. 

4.  The energy consumption of each execution is recorded using Intel Power Gadget 

for analysis. The total number of 2 runs are performed in this experiment. 

5. The data analysis, graph plotting and energy savings are calculated against the least 

and most preferable C5 data structures in each data structure group.  
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Figure 34. The Evaluation Process of GreenC5 in Different Use-Case Scenarios (Multiple 

Instances and Multiple Threads) 

8.4.2.2 Experimental Result 

The energy consumption data of the program executions from the two runs are 

averaged and normalized so that the numbers range from 0 to 100. Also, for better 
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comparison, the energy consumption data of the most and least preferable C5 data 

structures are plotted together in the same graphs with GreenC5. The energy data are 

averaged and grouped by program and data structure group and displayed by sequential 

and parallel executions, side-by-side for comparison. Figure 35 shows some of the energy 

consumption graphs. The left and right-side graphs display the energy data of the sequential 

and parallel executions respectively. Figure 35(a) displays the graphs of the overall 

executions of all 5 programs. Figure 35(b) shows three of the six energy consumption 

graphs by data structure group—from the top down, ICollection, ICollectionSet and 

IListBag respectively. The top legends in the figure, from left to right, represent energy 

consumption of the least, the most preferable C5 data structures and the GreenC5 data 

structure, respectively. In each graph, the y-axis is the average normalized energy 

consumption (in joules) of program executions. The x-axis represents program executions 

of different use cases—in which 1, 2, 3, 4 and 5 instances of the data structure are executed. 

Overall, the energy consumption of the C5 and GreenC5 data structures are 

increasing when the number of instances increases. The trend is similar in both sequential 

and parallel executions. This shows that the GreenC5 seems to funtion well similar to the 

original C5 data structures when multiple instances are executed together. However, 

parallel executions tend to use less energy than sequential executions. This can be seen in 

the slopes of the right-side graphs in Figure 35 that are lower than that of the left-side 

graphs. To support this, Table 5 shows the average energy savings of parallel executions 

of the GreenC5 data structures versus sequential executions per number of instances. 

Executing one instance of the data structure in a separate thread is not normally done and   
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(a) 

 

(b) 

Figure 35. Energy Consumptions of Sequential and Parallel Executions of GreenC5 and 

C5 Data Structures, (a) All Data Structure Groups and (b) ICollection, ICollectionSet and 

IListBag Groups. 
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it does not gain any energy savings, so it is not included in the table. The percentage 

numbers show the extra energy savings or energy efficiency improvement gained by 

parallel executions against sequential executions. For multiple instances, when the number 

of instances increase, the energy efficiency improvement tends to also increase. From the 

data, at five instances, the energy efficiency improvement of parallel executions can reach 

almost 11%. Therefore, we recommend parallel executions over sequential executions of 

the data structures whenever possible for maximum energy savings. Moreover, even 

though the net energy consumption seems to be lower for parallel executions, but if we 

look at the execution time and power consumption data, parallel executions normally take 

less time to complete but consume more power to run than sequential executions. 

Table 5. The Energy Efficiency Improvement of Parallel Executions vs. Sequential 

Executions of GreenC5 by Number of Instances 

Number of Instances Energy Efficiency Improvement 

2 6.35% 

3 7.18% 

4 9.26% 

5 10.70% 

 

Additionally, from the graphs in Figure 35, the energy consumptions of the 

GreenC5 data structure, as expected, falls between the energy consumptions of the least 

and most preferable C5 data structures in each data structure group. The overall potential 

energy savings of the GreenC5 for all numbers of instances (the energy differences between 

the worst or least preferable C5 data structures and the GreenC5) about 47% and 45%, on 

average, for sequential and parallel executions respectively (see Figure 35a and the last 
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row of Table 6). The graphs also show that, for all number of instances, potential energy 

savings in ICollection, ICollectionBag and ICollectionSet are higher than that of the IList, 

IListBag and IListSet groups. These can be seen by the wider gaps between the least 

preferable lines and the GreenC5 lines in the graphs and the higher numbers shown in Table 

6. Also, for multiple-stance executions, the data structures in ICollection and 

ICollectionBag provide the highest numbers of potential energy savings while ones in 

IListBag provide the lowest potential energy savings. Also, from the data, it seems that 

GreenC5 is also scalable just like the original C5 collection. GreenC5 seems to continue to 

function and perform well when the number of instances and threads increase. However, 

to make the assumption more valid, more evaluations should be conducted with higher 

numbers of instances and application threads. In addition, the results produced by Intel 

Power Gadget data seem to be correlated with ones produced by Watts Up? power meters 

in the previous experiments. This supplemental result also confirms that the Intel Power 

Gadget tool is a good alternative energy profiler tool for our future GreenC5 projects. 

Table 6. Average Potential Energy Savings of Parallel and Sequential Executions of 

GreenC5 for All Numbers of Instances by Data Structure Group 

Data Structure Group Sequential Parallel 

ICollection 84.51% 85.54% 

ICollectionBag 84.30% 85.91% 

ICollectionSet 61.66% 62.33% 

IList 22.68% 16.45% 

IListBag 5.78% 3.17% 

IListSet 24.91% 12.63% 

Average 47.31% 44.43% 
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8.4.3 Additional Analysis #3: An Initial Exploration of Decision Making Criteria  

The key functionality of the decision maker is to control the number of the 

transformations and timing of each transformation during each program execution so that 

the overall energy saving is at the maximum level. If there is no decision making 

mechanism to control the transformations, the number of transformations can be as high as 

the number of predictions made by the predictor component. If the transformations take 

place too many times, the overhead and energy cost of the transformations can be too high, 

making the GreenC5 perform worse than the original C5 data structure and the energy 

saving opportunity windows to be missed. The decision maker’s main role is therefore to 

control the transformations to take place only when necessary in order to maximize energy 

savings. The main mechanism is the controlling of k1 and k2 values in the SC>=k1 and 

PD>=k2 decision making criteria. 

The purpose of this additional analysis study is to systematically explore for the 

optimal decision making criteria of the Decision Maker component that can control the 

number and timing of GreenC5’s transformations so that the overall energy savings are at 

the maximum level. Also, the purpose is to see how the criteria values impact the energy 

savings and how the GreenC5 transforms and adapts when the criteria change. The ultimate 

goal is to find the optimal values of k1 and k2 that can be used as the default decision 

making criteria in the GreenC5 data structure. In this case study, the goal is not to explore 

all possible values, but to explore the values of k1 and k2 only at some granularity, in order 

to understand and get some general ideas of how the decision making criteria impact the 

potential energy savings and transformation and adaptation behaviors of the GreenC5. The 
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study is also to demonstrate how an exploration of decision making criteria can be 

conducted. 

8.4.3.1 Experimental Setup  

By utilizing the GreenC5 and Intel Power Gadget class libraries, a new 

experimental project is created and executed on COMP3. The project is to automate the 

use of GreenC5 with different values of decision criteria parameters. The goal is to search  

 

Figure 36. Decision Making Criteria Exploration Process 
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for k1 and k2 values that make GreenC5 instances perform with highest potential energy 

savings. The energy savings are calculated by comparing with the base energy consumption 

of the least favorable C5 data structures in each of the data structure groups. The 

experimental method is described in Figure 36. In the method, the 17 validation programs 

are used as the input workload to both the C5 data structures and GreenC5. For GreenC5, 

the decision making criteria are varied with different values of k1 and k2 in each the 

program execution. The energy consumption data are captured by the Intel Power Gadget 

and the internal data structure transformations of the GreenC5 are also traced for analysis. 

In this experiment, to speed up the energy profiling process, only the first 120,000 

CRUD operations of the 17 programs are used in each execution. Because of the limited 

size of the CRUD operations, the values of k1 to be explored are only from 1 to 6. The 

values of k1 and k2 are varied at the following granularity: 

k1 = {1, 2, 3, 4, 5, 6} 

k2 = {0%, 20%, 40%, 60%, 80%, 100%} 

For example, for k1 = 6, the maximum number of transformations can take place is 2 

because the prediction and decision making are made every 10,000 observed CRUD 

operations (value of L). For k1 =1, the maximum number of transformation can take place 

is 12. On the other hand, the percentage values of k2 are multiples of 20. Together, values 

of k1 and k2 thresholds in the decision making criteria controls the number of 

transformations that can result in different amount of overall potential energy savings.  
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8.4.3.2 Experimental Result  

From all program executions, we found that the number of actual transformations 

of the GreenC5’s internal data structure ranges from 0 to 6. There are few program 

executions with some values of k1 and k2 that cause zero transformation during the 

program executions—for example, in program executions of simulated program #1 and #2, 

where the values of k1 and k2 are set to 4 and 100% and 6 and 100% respectively. This is 

due to the fact that, during the program executions, there is no window in the CRUD 

sequence that the prediction probability values (PD) produced by the predictor component 

reaches 100%. Also, there are many of the program executions, mostly in ICollection, 

ICollection and ICollectionBag groups that have at least 1 program transformation, In this 

case, it is mainly because that GreenC5 instances are set to start as the worst data structure 

choices in each data structure group. And, the GreenC5 instances are able to 

adapt/transform to the more energy-efficient data structures. Also, there is no additional 

transformation during each program execution because either the predictor predicts the 

same energy-efficient data structure or because there is no window for the transformation 

made by the decision maker. On the other hand, there are also many program executions 

that shows multiple transformations during the program executions of the first 120K 

CRUD operations. Many can be seen in IList, IListBag and IListSet data structure groups. 

These result examples with multiple transformations demonstrate that the transformations 
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of the GreenC5 data structure are indeed dynamic. To see dynamic transformations of the 

GreenC5, users can also use our GreenC5 simulator to simulate the scenarios. 

To understand the dynamic transformation and adaptation process in our GreenC5 

data structure, Figure 37 shows one example of the actual program executions from our 

experiment showing how the dynamic transformation and adaptation process work. The 

figure depicts program executions of the Simulated Program # 9 in the IList data structure 

group. It explains how and when the predictions and transformations take place and how 

different decision making criteria can change the pattern and number of transformations 

that results in different amount of energy consumption and potential energy savings. From 

the figure, the program workload sequence contains 120,000 CRUD operations that can be 

sub-divided into 12 L-long subsequences, where L = 10,000 operations. Each subsequence 

has different features of %C, %R, %U, %D, N and G that can be observed by the Green 

component of the GreenC5. The observed features are, at runtime, then sequentially input 

to the ANN Classifier component and translated/mapped into a sequence of 12 energy-

efficient C5 data structures in the IList group. Among the choices in the IList group, in this 

example, the Classifier identifies HashedLinkedList and HashedArrayList as the energy-

efficient data structures to best perform different subsequences of the program workload. 

The classified data structure sequence is also shown in the figure (one that is produced by 

the ANN Classifier). 

The IList group has 5 available choices of C5 data structures—ArrayList (AL), 

LinkedList, (LL) HashedArrayList (HAL), HashedLinkedList (HLL) and SortedArray 

(SA). Among the choices in this group, we have already identified that LinkedList is the 



 

168 

least preferable data structure because it consumes highest energy consumption when 

performing the same operations. So, LinkedList is used as the base data structure for 

comparing with the GreenC5 and calculating the potential energy savings. In this example, 

LinkedList uses about 332.41 joules on COMP3 to perform the program’s workload. To 

search for an optimal decision making criteria in this experiment, GreenC5 is varied with 

different values of k1 and k2 in the decision making criteria. The bottom three sequences 

in the figure show actual transformations of the internal data structure with different 

decision making criteria. In the first sequence with the SC>=1 && PD>=60% decision 

making criteria, there are total of 3 transformations that take place dynamically and form a 

GreenC5’s internal data structure sequence of LL, HAL and HLL data structures. The 

sequence or the transformation/switching pattern of internal data structure consumes 

72.61% less energy than just staying statically as a LinkedList. With different decision 

criteria, the numbers of transformations and the switching patterns of the GreenC5 are also 

different, consuming different amount of energy. In the second sequence of SC>=5 && 

PD>=60% decision criteria, there are total of 2 transformations that form another 

transformation/switching pattern, consuming 66.80% less energy than the LinkedList. This 

pattern has lower potential energy saving than the previous one. The last sequence is when 

the decision making criteria being set to SC>5 && PD>=100%. This criteria makes no 

change in the transformation and switching pattern. So, the GreenC5 stays statically as a 

LinkedList. In this case, there is no gain in energy saving. The potential energy saving 

number of -2.55% in the figure indicates some overhead in the GreenC5 and energy 

fluctuations of the base system. Also, as you can see in the three sequences, different 
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                   Figure 37. GreenC5's Internal Dynamic Transformation Example 
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transformation pattern and different timing of each transformation do impact the energy 

consumption of the dynamic-mode GreenC5 data structure. The decision making criteria 

of the one with highest potential energy saving should be selected as the optimal decision 

making criteria. The goal of this additional case study is to do a brute-force search in a 

larger solution space for better decision making criteria. 

Ultimately, a full exploration of the decision making criteria should be done with 

wider range and higher granularity of k1 and k2 values. However, it will take a very long 

time for the exhaustive search to be completed. Therefore, in this exploration, the search is 

limited by some values of k1 and k2 as specified in the previous section. From the two runs 

of program executions, the energy data of all 17 program executions are averaged, analyzed 

and plotted into surface graphs of potential energy savings as shown in Figure 38 and 

Figure 39. The x and y-axis of the graphs are the k1 and k2 values of the decision making  

 

Figure 38. Overall Potential Energy Savings by Decision Making Criteria 



 

171 

criteria, while the z-axis are the percentage potential energy savings produced by each 

combination of the two decision making criteria. The legends beneath the graphs present 

different ranges of potential energy saving numbers and areas on each graph surface. 

Figure 38 shows the overall potential energy savings by decision making criteria. 

The energy saving values are the overall average of all program executions. Overall, in 

Figure 38, the combination of SC and PD criteria (k1 and k2 values) clearly impact the 

potential energy savings because the graph clearly shows uneven surface. From the 

experiment, the overall average potential energy savings, ranging from 19% to almost 62%, 

are plotted on the graph. To determine the optimal decision criteria, we select ones in the 

ranges of k1 and k2 values that produce the highest potential energy savings and ones in 

the highest areas on the graph surface. Also, for the PD criteria (the probability value of a 

prediction), the k2 values are also limited by the number of available data structure choices 

in each data structure group. Because the PD value is produced by a bigram-based 

predictor, the PD values are always in the range between the percentage of 1/n and 1, where 

n is the number of data structure choices in each data structure group. This criteria is also 

used in the selection of a proper optimal decision making criteria. Overall, by looking at 

the energy saving data and graph surface, our estimated decision making criteria is 

determined to be SC>=4 && SC<=5 and PD>=60%. This criteria values are clearly in the 

top area of the surface graph in Figure 38 (60-80 area). These optimal criteria are to be set 

as the default decision making criteria of our GreenC5 data structure. Surprisingly, our 
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previous random-select decision-making criteria of SC>=5 && PD >=60% falls right on 

this optimal area. 

 

Figure 39. Potential Energy Savings by Decision Making Criteria and Data Structure Group 
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In addition, Figure 39 presents surface graphs of GreenC5’s potential energy 

savings by decision making criteria and by data structure group. These six graphs when 

combined together will becomes the graph shown in Figure 38. Clearly, the surface graphs 

and potential energy savings by data structure are different. The graphs of ICollection, 

ICollectionBag and IList groups look similar. For these three graphs, it seems that the PD 

criteria (k2 values) do not have much impact on the energy savings. As you can see along 

the k2-axis, the potential energy savings changes minimally when k2 values change. In 

contrary, along the k1-axis, the energy savings change more dramatically when k1 values 

change. From these three graphs, the higher amount of energy savings can mostly be made 

when values of k1 are smaller. For the other three graphs, both k1 and k2 parameters have 

some impact on the GreenC5’s transformation patterns and potential energy savings. In 

particular, for the graphs of ICollection and IListSet graphs, the optimal areas can clearly 

be spotted on the graph surface. 

Table 7. Recommended Optimal Decision Making Criteria by Data Structure Group 

Data Structure 

Group 

# of Data 

Structure Choices 

Decision Making Criteria 

Criteria 1 (k1) Criteria 2 (k2) 

ICollection 9 SC>=1 && SC<=2 PD>11% 

ICollectionBag 4 SC>=1 && SC<=2 PD>=25% 

ICollectionSet 5 SC=4 PD>=60% 

IList 5 SC>=1 && SC<=2 PD>=20% 

IListBag 2 SC>=2 && SC<=3 PD>=50% 

IListSet 3 SC<=4 && SC<=5 PD>=60% 

Overall (default)  SC>=4 && SC<=5 PD>=60% 
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Finally, for better energy savings, we recommend that the decision making criteria 

of GreenC5 should be different by the data structure group property. The list of our 

recommended decision making criteria by data structure group is presented in Table 7. 

These optimal decision making criteria are derived from both analyzing the potential 

energy saving data and looking at the surface graphs. They are not considered to be the 

best optimal criteria but certainly valid for future version of our GreenC5 collection. From 

the result, our previous decision making criteria of SC>=5 && PD >= 60% is still 

considered valid and can still be used as the default criteria.  If you notice the k2 values in 

the PD criteria column, the bigram probability value criteria of 1/n and 1 is also used in 

determining the criteria. This is the reason why the k2 values are always not less than the 

percentage of 1/n, where n is the number of data structure choices by group (shown in the 

second column). 
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CHAPTER 9: CONCLUSION AND FUTURE WORK 

9.1 Conclusion 

With a vision to see smart and adaptive green objects and components be part of 

green software programs in the future, we have detailed a concept, an architecture and 

prototype for building adaptive green data structures that can intelligently adapt for energy 

efficiency. We provide empirical evidence that there exists energy saving opportunities in 

C5 dynamic data structures, which may be present in other interface-based, object-oriented 

dynamic data structures as well. Using a “select the right data structure for the right 

workload” approach, we demonstrate how the C5 data structure selection process can be 

automated with machine learning tools such as Artificial Neural Networks and n-gram 

based predictors. The results show that the models can accurately classify and predict data 

structures for energy efficient computing. 

Our green data structure prototype, GreenC5, demonstrates how the concept can 

actually be implemented. Our simple technique of decision making can help the GreenC5 

to decide when to transform dynamically for energy efficiency. The predictive model can 

help the data structure know how to adapt by correctly transforming to different data 

structure choices. The result shows that the GreenC5 can efficiently adapt for energy 

efficiency with minimum overhead. The a priori knowledge can potentially be universal 

where only one single model is needed and can be used in different machines, improving 

the user-friendliness of the data structure. The work could also be applied in other interface-
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based objects as well and is an essential groundwork for building fully functional adaptive 

green data structures in the future. 

Along with the adaptive green data structure, we also include an additional study 

of the cache system on an FPGA development board and demonstrate an in-depth manual 

process of a power-performance tradeoffs using the Pareto optimality principle. The results 

suggest that the Pareto optimal configurations do exist in the cache configurations and 

some optimal configurations might not be as expected when analyzing the live power 

consumption data. We observe that the optimal configurations are sparse in the cache 

design space, are inconsistent across the benchmark and counterintuitive in many cases, 

making power-performance optimization processes hard to implement without analysis 

from actual data. From this study, we learn that even something very low-level like the 

cache system can impact the power-performance analysis significantly and unpredictably. 

This might not be captured if the analysis is done using data from a power model. As a 

result, we also suggest the need for tools and methodologies that operate directly on data 

gathered from the systems themselves. 

9.2 Future Work 

This dissertation proposes a working prototype of an adaptive green data structure, 

the GreenC5. However, the processes of gathering power data and machine learning are 

done in an offline manner. The analysis is done on the power data gathered by a hardware-

based meter, in which might not be practical in real life and is limited only to the offline 

learning capability. Our future work will therefore focus on incorporating the green data 

structure with alternative, more accurate, finer-grained and more practical power meters. 
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One of the alternative tools that will be used in our future GreenC5 projects is the Intel 

Power Gadget as described in one of our additional case studies. With a more accurate 

software-based meter, the future work can include adding the reinforcement and online 

learning capabilities to the adaptive green data structure, in which the data structure can 

learn and adapt to the workload automatically with minimal or no base knowledge. The 

future work can also include searching for better architectures and designs of the adaptive 

green data structure, with different methods of dynamic selection, decision making and 

self-adaptation and transformation for energy efficiency. We also suggest that the concept 

is to be applied in other data structures of different programming languages and platforms 

and other interface-based software components and objects.
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APPENDICES 

Appendix A: CRUD-Based C5 Collection Class Diagram 
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Appendix B: GreenC5 Class Diagram 
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Appendix C: Learning Algorithms 

Algorithm C.1: Offline Supervised Learning and Accuracy Testing of the ANN Classifier 

Input: Training sets, additional test sets, program validation sets  

Output:  Weights and biases (a priori model), Gaussian Normalization Values, Accuracy 

Results and X and Y decoded value dictionaries 

 

 //procedure accuracy testing for the testData using winner-takes all strategy 

 procedure Accuracy(testData) 

        begin 

  // Percentage correct using a winner-takes-all method 

 numCorrect := 0 

 numWrong := 0 

 for each row in testData do 

  xValues := the first numInput items of row// Get x-values, first 10 

  tValues:= the last numOutput items of row// Get target values (actual y-value vector) 

  yValues := NN.ComputeOutputs(xValues) //get the computed y-value vector from NN 

  maxIndex := Helpers.MaxIndex(yValues) // Which cell in yValues has the largest value?  

  if tValues[maxIndex] =1.0  then 

    numCorrect := numCorrect + 1 

  else 
    numWrong := numWrong+ 1 

  end if 

             end for 

             return numCorrect  / (numCorrect + numWrong);  

        end 

 procedure Main(); 

begin 
//1. Read data from dataset files 

trainingSet := read Training set from a file 

 testSets := read Additional Test sets and program validation sets from files 

  

//2. Encode non-numeric Y value of datasets to numeric values using 1-of-N dummy encoding 

//and save the encoded dictionary for Y values 

 Helpers.EncodeFile(trainingSet, 6, “dummy”, out encodedYDictionary) 

 foreach set in testSets do 

 Helpers.EncodeFile(set, 6, “dummy”, encodedYDictionary)//column 6 in the training set 

//(0based) 

 end for 

 

//3. Encoded non-numeric X values of all datasets to numeric values using 1-of-(N-1) effects 

//encoding and save the encoded dictionary for X values 

Helpers.EncodeFile(trainingSet, 0, “effects”, out encodedXDictionary)//column 0 in the 

//training set 

foreach set in testSets do 

 Helpers.EncodeFile(set, 0, “effects”, encodedXDictionary)//col 6 in the training set 

//(0based) 

 end for 

 

 //4. Normalize numeric X values of datasets using Gaussian Normalization (normalize number 

//to between -10 and 10) on columns 5,6,7,8,9 (number columns got expanded after the 
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//encoding above) 

Helpers.GaussNormal(trainingSet, 5, out gaussStdvX2_ElmSize, out gaussMeanX2_ElmSize) 

         Helpers.GaussNormal(trainingSet, 6, out gaussStdvX3_C, out gaussMeanX3_C) 

         Helpers.GaussNormal(trainingSet, 7, out gaussStdvX4_R, out gaussMeanX4_R) 

         Helpers.GaussNormal(trainingSet, 8, out gaussStdvX5_U, out gaussMeanX5_U) 

         Helpers.GaussNormal(trainingSet, 9, out gaussStdvX6_D, out gaussMeanX6_D) 

 foreach set in testSets do 

 Helpers.GaussNormal(set, 5, gaussStdvX2_ElmSize, gaussMeanX2_ElmSize) 

           Helpers.GaussNormal(set, 6, gaussStdvX3_C, gaussMeanX3_C) 

           Helpers.GaussNormal(set, 7, gaussStdvX4_R, gaussMeanX4_R) 

           Helpers.GaussNormal(set, 8, gaussStdvX5_U, gaussMeanX5_U) 

           Helpers.GaussNormal(set, 9, gaussStdvX6_D, gaussMeanX6_D) 

 end for 

  

 //5. Split training set to 80% train set and 20% test set (Hold-Out validation method) 

// shuffle the order of training set rows randomly and split them to two sets  

 Helpers.MakeTrainTest(traininSet, out trainData, out testData); 

 

 //6. Create a 10-15-9 Neural Network 

 numInput := 10 

numHidden := 15 

numOutput := 9 

 NeuralNetwork NN := new NeuralNetwork(numInput, numHidden, numOutput); 

 

 //7. Start training the NN on the trainData  (80% of the training set) with these parameters 

 maxEpochs := 3000 

         learnRate := 0.02 

         momentum: = 0.01 

 stopError:= 0.04 

NN.Train(trainData, maxEpochs, learnRate, momentum, stopError) 

 

 //8. Get the weights and biases (contains both) 

 weights := NN.GetWeights() 

 

 //9. Accuracy testing on the testData (20% of the Training set) 

 testAccuracy := Accuracy(testData) 

 

 //10. Accuracy testing on the remaining additional test sets and program validation sets 

foreach set in testSets do 

 testAccuracies := Accuracy(set) 

 end for 

 

 //11. Save all the weights and biases, Gaussian Normalization means and standard deviation 

//values, accuracy results and others info to a file 

 results := { numInput, numHidden, numOutput, encodedXDictionary , encodedYDictionary 

,weights, gaussStdvs, gaussMeans, testAccuracy, testAccuracies} 

 Helpers.SaveToFile(results) 

 end 

 

 

  



 

195 

Algorithm C.2: Online learning, classifying and predicting the most energy efficient C5 

data structure and prediction accuracy testing  

Input: NNValues, Additional test sets, program validation sets, program CRUD sequences 

Output:  Accuracy results 

 
 //procedure to compute accuracy for the predicted DS sequence with the actual one 

 procedure ComputeAccuracy(predictedDSSeqList, actualDSSeqList) 

        begin 

  numCorrect := 0 

 totalCount := actualDSSeqList.Count 

 index := 0 

 for each ds in actualDSSeqList do 

  if predictedDSSeqList[index] = ds then 

   numCorrect := numCorrect + 1 

  end if 

  index := index+ 1 

             end for 

             return numCorrect  / totalCount 

        end 

 procedure Main()  

        begin 

 //1. Read all parameter values for the NN classifier 

NNResults := read NN results from the result file 

 numInput := NNResults.numInput,  numHidden:= NNResults.numHidden 

numOutput:= NNResults.numOutput 

 weights:= NNResults.weights 

 gaussMeanX2 := NNResults.gaussMeanX2, gaussStdvX2:= NNResults.gaussStdvX2 

gaussMeanX3 := NNResults.gaussMeanX3,  gaussStdvX3:= NNResults.gaussStdvX2 

 gaussMeanX4  := NNResults.gaussMeanX4, gaussStdvX4:= NNResults.gaussStdvX2 

 gaussMeanX5 := NNResults.gaussMeanX5, gaussStdvX5:= NNResults.gaussStdvX2 

gaussMeanX6 := NNResults.gaussMeanX6, gaussStdvX6:= NNResults.gaussStdvX2 

 encodedXDictionary := NNResults.encodedYDictionary 

encodedYDictionary := NNResults.encodedYDictionary 

  

//2. Create a Neural Network with the same set of the tuned weights and biases 

NeuralNetwork NN := new NeuralNetwork(numInput, numHidden, numOutput); 

 NN.SetWeights(weights) 

  

 //3. Encoded the X1 (Interface) values to numeric data 

 x1Interfaces:= {ICollecction, ICollectionBag, ICollectionSet, IList, IListBag, IListSet} 

 x1EncodedValues := {} 

 for each x1 in x1Interfaces do 

  //this will encode x1 value to numeric values using 1-of-(N-1) effects encoding 

  x1EncodedValue :=Helpers.Encoded(x1, “effects”, encodedXDictionary) 

  add x1EncodedValue to x1EncodedValues 

 end for 

  

 //4. Create a N-Gram predictor 

 nValue := 2 //bi-gram 

 NGramPredictor PREDICTOR = new NGramPredictor(nValue) 

 

//5. Start by reading program CRUD sequences from files (19 progCRUD files each contains 

//full CRUD sequences from start to end of the program) 
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 maxIteration := 5 //control how many times of each program sequence to be running 

 iteration : = 0 

for each x1EncodedValue in x1EncodedValues do       //loop through each encoded Interface  

     while iteration < maxIteration do 

 for each programSeq in progCRUDSeqFiles do  //this will ignore the last remainder  

  startSize :=0 //assume each data structure always start with size 0 

  endSize := 0 

  nGram := new List() //this is for storing N-gram sequence 

  n-1Gram := new List() //this for storing N-1 sequence for predicting 

  actualDSSeqList := read from program sequence file 

  classifiedDSSeqList := new List() //to store the computed DS by the classifier 

  predictedDSSeqList := new List() //to store the predicted DS sequence 

  for each 10KSeq in programSeq do  //this will ignore the last remainder 

   xValuesNoX1 := translateToXValues(10KSeq, startSize , out endSize) 

   //normalize the X values 

   x2Normal:= (xValuesNoX1[0] - gaussMeanX2 )/ gaussStdvX2 

   x3Normal:= (xValuesNoX1[1] – gaussMeanX3)/ gaussStdvX3 

   x4Normal:= (xValuesNoX1[2] – gaussMeanX4)/ gaussStdvX4 

   x5Normal:= (xValuesNoX1[3] – gaussMeanX5)/ gaussStdvX5 

   x6Normal:= (xValuesNoX1[4] - gaussMeanX24)/ gaussStdvX4 

xEncodedNormalizedValues :=   

{x1EncodedValue} combines with { x2Normal, x3Normal, 

x4Normal, x5Normal, x6Normal} 

   yValues := NN.ComputeOutputs(xEncodedNormalizedValues)  

   maxIndex := Helpers.MaxIndex(yValues)  

   computedDs :=  encodedYDictionary[maxIndex] 

   classifiedDSSeqList.Add(computedDs) 

   nGram := get the last nValue items in classifiedDSSeqList 

   n-1Gram := get the last nValue-1 items in classifiedDSSeqList 

   if nGram.Count = nValue then //register the sequence to N-Gram  

    PREDICTOR.Register(nGram.ToArray()); 

    nGram.Clear() 

   end if 

 

   if n-1Gram.Count = nValue-1 then 

    predictedDs := PREDICTOR.PredictNext(n-1Gram)   

    n-1Gram.Clear() 

   else 

    predictedDs := “Unknown” 

   end if 

   predictedDSSeqList.Add(predictedDs) 

   startSize:= endSize 

  end for 

  accuracy := ComputeAccuracy(predictedDSSeqList, actualDSSeqList) 

 end for 

 save accuracy result of each Interface and iteration to a file 

     end while 

end for 

 end 
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