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Abstract

    Asthma is one of the most common chronic conditions in the United States. 

Asthma affects about one in fifteen people. It affects children more than adults and blacks 

more than whites. People with asthma experience attacks of wheezing, breathlessness, 

chest tightness, and coughing. Asthma can be fatal and the costs for the disease (direct 

and indirect) are approximated to be tens of billions of dollars each year. 

    There is no cure for asthma. However; for most people if asthma is controlled 

well they can lead normal, active lives. Therefore asthma controllability is a main factor 

in clinical practice. In order to control asthma, the disease has to be completely 

understood. Asthma is very heterogeneous and this makes the exact diagnosis and control 

procedures difficult. To better evaluate and study asthma, mathematical tools can be very 

beneficial. 

    In this study we first develop a complete system for lung impedance analysis of 

laboratory models of asthma. Our designed system is capable of precisely diagnosing the 

diseased models and predicting the severity of their condition. We also evaluate the 

treatment progress in mouse models of asthma.  We then study an asthma database of 

humans including measurements of four related laboratory parameters and cluster 

patients based on inherent properties of the study variables.  This mathematical approach 
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clustered patients with specific characteristics and segregated the unstable asthmatic 

patients in a single group. Our method is very promising in predicting the instability of 

asthma, which is highly correlated with frequent asthma attacks and increased utilization 

of care.
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Chapter 1

INTRODUCTION

1. 1 Background

Asthma is a lifelong disease with several symptoms such as wheezing, 

breathlessness, chest tightness, and coughing. Asthma limits the patient’s life quality and 

activities Asthma continues to be a serious and common public health problem. The 

Centers for Disease Control and Prevention (CDC) statistics show that 25.7 million 

people, including approximately 7.1 million children, have asthma. Asthma; accounts for 

over fifteen million physician office, hospital outpatient department visits and nearly two

million emergency room visits every year. Asthma is one of the most common serious 

chronic diseases of childhood and the third-ranking reason for young children

hospitalization (EPA, http://www.epa.gov/asthma/pdfs/asthma_fact_sheet_en.pdf).

Asthma affects about 5% of adults and about 10% of children. Half of the people 

with asthma develop it before age 10 and most develop it before age 30. The number of 

people diagnosed with asthma grew by 4.3 million from 2001 to 2009 among all ages, 

races, and gender groups; however, it is slightly more common in blacks and Hispanics

than in whites. Asthma was linked to 3,447 deaths (about nine per day) in 

2007(http://www.cdc.gov/VitalSigns/pdf/2011-05-vitalsigns.pdf).
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Asthma is very heterogeneous and can be difficult to diagnose, as its symptoms are 

sometimes similar to other conditions such as allergic rhinitis, lung infection, and even 

cardiac problems. 

1.2 Problem Statement

Asthma specialists are trying hard to prevent, control and treat asthma with 

medications and teach patients how to avoid triggers of asthma attacks. In this process 

and by the help of new technologies they are generating large databases of their patients’ 

clinical information on a daily basis. There is something equally significant that 

mathematicians and biomedical engineers could do to shed more light on asthma

unknowns. Studying these databases and establishing mathematical models that are

simple and practical is of great importance and can contribute significantly to the areas of 

asthma diagnosis, asthma categorization, treatment evaluation and prediction of a

patient’s future condition. As one of the strong mathematical tools, modeling approaches 

have been widely utilized in studying the respiratory system in both human and animal

models.

Asthma is a disease that affects the lung and immune system. In order to perform 

complete study of this disease, we have to take both aspects into considerations. 

In animal models, respiratory system impedance (as a representation of lung 

function) has been extensively studied and there are well established models capable of 
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differentiating between airway and tissue mechanics in the lung. We propose a simple 

linear model capable of investigating the severity of lung conditions and also evaluating 

the treatment progression. We confirm the effectiveness of the analysis technique with 

experimental findings.

In humans, despite the existence of several clustering studies of asthma

(parameters that are related to the lung function and the immune system response), an 

appropriate clustering methodology capable of reflecting heterogeneity of asthma and 

asthma instability is missing. We propose a new model that predicts asthma instability 

probability based on very well known asthma related clinical parameters.

1.3 Objective

This research focuses on the mining of data and modeling of asthma in general. 

Specifically, we tackle asthma modeling from two aspects of asthma. As mentioned, 

asthma affects the lung function and mechanics and also involves the immune system. In

the first modeling, we model the mechanical effects of asthma in mouse models and in 

the second analysis, we model both aspects by studying a database of human asthma. The 

datasets were both collected at National Jewish Health (NJH), Denver, Colorado. 

The mouse database was produced by Nicholas Goplen at Dr. Alam’s lab at NJH.

The human database includes measurements from NJH clinic patients.



4

For the mouse lung impedance study we develop a linear parametric model. The

objective is to better define asthma severity through the use of lung mechanics. 

In our second modeling, we apply several mathematical approaches including 

principal component analysis (PCA) and self-organizing maps (SOM) to cluster our 

patients into groups that represent them by their stability status of the disease.

1.4   Scope of Research Work

The focus of this research is on exploring and applying advanced mathematical 

analysis and data mining techniques to asthma databases. The goal is to have a thorough 

and multi-dimensional analysis of asthma modeling and clustering that would benefit the 

patients and physicians in understanding asthma and its stages and categories by the use

of the currently available technologies and laboratory data. 

1.5 Methodology

To achieve our objectives we apply several data mining approaches to our asthma 

databases including:

-  identification approaches more specifically, linear parametric modeling and 

impulse response simulation;

-  clustering methodologies such as PCA, SOM, and hierarchical clustering;
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-  statistical methodologies such as correlation analysis, chi square test, and 

ANOVA.

1.6 Organization of the Dissertation

Chapter 2 of this dissertation introduces data mining approaches. Major tasks of 

data mining are explained and the roots of data mining are explored. Following Chapter 

2, the rest of the dissertation is divided into two parts. The first part presents mouse lung 

impedance analysis. The second part is on the analysis of the human asthma database. 

Chapter 3 provides the details of the mouse lung impedance study. It discusses the 

techniques we apply to model the impedance in detail. Chapter 4 examines the human 

asthma database and introduces the methodologies applied in this study. The results of 

the analyses introduced in Chapters 3 and 4 are provided in Chapter 5.

In Chapter 6 we provide the discussion and conclusion of our two models and 

provide our suggestions for future work.
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Chapter 2

DATA MINING

2.1 Background

In recent years advances in medical technologies have resulted in the generation of 

extensive amounts of data which requires extraction and analysis for clinical use. 

Traditional manual data analysis is currently inadequate and new analysis methods are 

required. Due to this demand a new branch of science has developed called data mining. 

Han et al(2001), Hand et al. (2001) and Roiger et al. (2003) define data mining as 

extracting or mining knowledge from large database or more briefly as knowledge 

discovery in databases (KDD).

Medical data mining is the process of applying mathematical methodologies to 

discover information from data that is then convertible to medical knowledge applicable 

for medical doctors.

In the mining of data, one iteratively searches for new information in a database. 

The major goals of data mining are prediction and description (Kantardzic, 2011).
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In predictive data mining, one uses some variables of a data set to predict unknown 

or future values of variables of interest. This type of data mining generates a model of the 

system. In descriptive data mining, one tries to find patters in the dataset to make the data 

interpretable to doctors or others. This type of data mining generates new knowledge for 

the medical society (Kantardzic, 2011). 

2.2 Data Mining Tasks

The primary data mining tasks include:

Classification – the discovery of a predictive learning function that maps 

(classifies) a data item into one of several predefined classes (Weiss and Kulikowski,

1991). Among classification techniques are the Neural networks (NNs), probability 

approaches, Naive Bayes and Adaptive Bayes Network supporting decision trees. There 

are two steps in classification. In the first step we build a classification model which 

contains a set of classes. In the second step, the model is used for prediction of new or 

future data. Han et al. (2001) defined classification as a model used for describing a pre-

specified set of data classes. Roiger et al. (2003) defined classification as a technique 

with categorical output variable. The common point in all the definitions is the “building 

of a model for assigning data to categorical classes”. (Kantardzic, 2011). 

Regression/prediction – the discovery of a predictive learning function that maps a 

data item to a real-value prediction variable (Kantardzic, 2011).
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Clustering - a descriptive task in which one uses unsupervised learning (unlike 

classification), such as associations and clustering algorithms, to find appropriate 

groupings of elements for a dataset without any a priori assumption.

A cluster is therefore a collection of objects which are “similar” but are 

“dissimilar” to the objects belonging to other clusters (Tayal and Raghuwanshi, 2010).

According to Berger (2004) and Berry et al. (2000) clustering is the segmenting of 

a diverse group into a number of more similar subgroups or clusters. Contrary to 

classification, clustering does not rely on predefined classes. (Mdzingwa, 2005). 

Summarization - a descriptive task to find a compact description for a dataset

(Kantardzic, 2011).

Dependency Modeling – finding a local model capable of describing the significant 

dependencies between variables in a dataset (Kantardzic, 2011).

Change and Deviation Detection – includes discovering the most significant 

changes in a dataset (Kantardzic, 2011).

Because of the roots of data mining in statistics, machine learning and control 

theory, there is emphasis on models and algorithms. The problem of determining a 

mathematical model for an unknown system by observing its input-output data is called

system identification. 
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System identification generally involves two steps (Kantardzic, 2011):

1. Structure identification - In the first step, a class of models that is most 

suitable to our system is determined. This class of models is denoted by a 

parameterized function y = f(u,t), where y is the model's output, u is the input 

vector, and t is the parameter vector. The function f depends on the problem, and 

the function is related to the designer's expertise and the natural laws governing

the  system.

2. Parameter identification - In the second step, the structure of the model is 

known and we need to seek for the optimal parameters, such that the newly 

defined model can appropriately and precisely (based on an error criteria) 

describe the system.

In general, system identification, including both structure and parameter 

identification, needs to be done repeatedly until a satisfactory model is found. 

2.3. Medical Applications of Data Mining

Raw medical data are voluminous and heterogeneous. Medical data is collected 

through several different means such as diagnostic tests, laboratory data, images, 

interviews with the patient, and the physician’s observations and interpretations. Every 

day gigabytes of data are generated.
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Review of literatures shows that various fields of medical sciences have benefited 

from data mining and many medical breakthroughs have occurred by the application of 

this analytical method. Data mining has the potential to be applied to healthcare for 

objectives such as diagnosis, treatment progression evaluation, management of 

healthcare, and predictive medicine. 

Below are some of the effective medical studies that have applied data mining 

approaches (Khajehei and Etemady, 2010).

- (Li et al., 2004) used data mining techniques for the detection and 

diagnosis of cancer. They applied genetic algorithm based methods for feature 

selection and were able to differentiate those with ovarian cancer from healthy 

subjects.

- (Tiffin et al., 2005) described a bioinformatics approach that selects 

candidate disease genes according to their expression profiles. They successfully 

selected the known disease gene for fifteen out of seventeen diseases and reduced 

the candidate gene set to 63.3% (±18.8%) of its original size. They declared that 

the data mining approach facilitated direct association between gene expression 

data and the disease phenotype, and successfully prioritized candidate genes 

according to their expression in disease-affected tissues.
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- (Coulter et al., 2001) used data mining (Bayesian method) to study the 

relation between antipsychotic drugs and cardiac disease and showed that data 

mining was capable of finding relationships and identifying the potentially risky 

drugs.

- (Breault et al., 2002) used the classification tree approach and regression 

trees with a binary target to study a diabetes database. They declared that data 

mining could discover novel associations that would be very useful to clinicians 

and administrators. 

- (Kusiak et al., 2005) used data preprocessing, data transformations, and a 

data mining approach to study patients’ survival on hemodialysis. These rules 

were used by a decision-making algorithm, which predicted survival of new 

unseen patients. Important parameters identified by data mining were interpreted 

for their medical significance. They showed their analyses were useful for 

survival prediction of dialysis patients.

In Chapter 3 we will take advantage of identification for modeling the lung 

impedance in mice. In Chapter 4 we will utilize data clustering. 
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Chapter 3

MOUSE RESPIRATORY IMPEDANCE

3.1 Introduction and Problem Statement

Breathing is a spontaneous mechanical process. Thorax and abdomen muscles work 

under the control of the brain and produce the pressures required to expand the lung to 

suck the air in. These pressures must overcome the lung and the chest wall tendency to 

recoil. Pressure also drives air along the pulmonary airways beginning at the mouth and 

ending deep in the lungs at the point where air and blood exchange oxygen and carbon 

dioxide. The mechanical properties of the lung determine the relation between lung 

volume, muscular pressures and airway flow. In other words, it determines how much 

effort is needed to take in a breath and how comfortable it is to breathe. Therefore, these 

properties have an important bearing on how we experience our daily lives (Bates, 2009).

Assessment of respiratory mechanics is the process of uncovering relationships 

between pressures, flows, and volumes measured at appropriate sites. Appropriate 

assessment of the lung mechanics can play a crucial part in disease diagnosis and 

evaluation of the treatment progression (Bates, 2009).
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Our knowledge of lung mechanical function is completely dependent on what we 

can measure. A great deal is known about lung mechanical function, due to the ongoing 

efforts of scientists beginning in the late 1800s. In the beginning, lung mechanics was 

largely of interest to   physiologists and physicians. Over the past several decades 

however,the field has become highly quantitative by the help of electronic sensors and 

digital computers. These devices have provided accurate experimental data related to 

lung function which is very appealing to scientists equipped with sophisticated methods 

of data analysis. This means that the lung mechanic field is now attracting the attention of 

biomedical engineers, physicists, and mathematicians (Bates, 2009).

For the purpose of assessing the lung system we need to use the system 

identification (inverse modeling) approach because the lung system is not known a priori 

and the approach needs to be built based on input output data from measured experiments

with the help of insights gained through previous research. 

The structure of an inverse model has to correspond to the structure of the real 

system. This means that when the model mimics the behavior of the original system, this 

similarity in behavior has to be related to the system’s internal mechanisms responsible 

for that behavior. Determination of model structure is much related to the experience and 

knowledge of the system modeler. Modeling is a dynamic process. Models of complex 

systems, such as the lung, are constantly being tested and improved in the light of new 

knowledge and new data(Bates, 2009).
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Assuming the lung to be a linear dynamic system, the mechanical properties of the 

lung can be encapsulated in terms of its input impedance. Conventionally, the input 

impedance is achieved by measurements of pressure and flow made at certain sites. Input 

impedance is then interpreted using an appropriate mathematical model. Animal models 

are frequently used to measure input impedance. Among animal species, mice are more 

often used because of the advantages they provide (Tu et al., 1995).

Extensive research has been done over the past thirty years to find appropriate 

mathematical models for the interpretation of the input impedance of the mouse lung. 

Several experts from different fields have applied different methodologies. Some have 

proposed complicated nonlinear models of the lung (Tomalak et al., 1993) or just linear 

models (Diong et al. 2009). Some people have used fractional approach (Ionescu et al. 

2011), or recursive least squares method (Lauzon and Bates 1991), or modeling with an 

electrical circuit (Baswa et al. 2005, Bates and Allen 2006, Goldman et al. 2010). These 

models are all appropriate models from a specific aspect.

Mathematical models do not need to be complicated in order to be useful. In fact,

inverse models are rather simple as the number of adjustable parameters is limited. Due 

to this fact, the lung models achieved so far are not capable of encapsulating everything 

we know about the organ. Yet, they are still capable of mimicking many of the details of 

its global behavior. An example of a very simple yet acceptable model of lung mechanics 

is an elastic balloon sealed over a rigid pipe. The balloon represents the expandable lung 
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tissues and the pipe is the representative of the pulmonary airways (Fig. 3.1). A real lung 

is a lot more complicated than this, even though it still embodies much that is key to the 

ventilation process (Bates, 2009). 

Figure 3.1 The simplest model of lung is an elastic balloon at the end of a rigid pipe. The 
balloon represents the tissues and the pipe represents the airways.

In general, an inverse model should always be considered as a work in progress,

and lung mechanic identification is not an exception. Any model, no matter how 

successful   will have some shortcomings. The ideal outcome is that our model could 

serve adequately for a particular purpose. Very accurate fits to measured impedance 

spectra below 20 Hz in a variety of species, including the mouse, have been achieved 

with the so-called constant-phase model (CPM) of impedance (Hantos et al., 1992). CPM 

has been widely applied in the frequency domain analysis but it is very difficult: 1) to 

analyze the respiratory system in the time domain (Moriya et al., 2003); and 2) to 
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compare the qualitative behavior of the lung for disease diagnosis and evaluation of the 

treatment progression.

In Figure 3.2 the real and imaginary portions of the mouse respiratory impedance

data for  laboratory models of asthma (Goplen et al., 2009) in frequency domain are 

shown. In this research, the goal is to analyze the data from these mouse models of 

asthma and establish a simple but practical technique for evaluation of disease severity as 

well as treatment progression. We want our technique to be applicable in time domain

analysis and to human data.

We also want to be able to simulate different inputs of interest through our model 

rather than do the experiment in reality, to find the response of the lung system to that 

input. For this purpose, a linear-parametric model in discrete frequency domain is 

established based on pole-zero approximation of the data. This model enables us to 

predict the time response of the lung system to various test signals, and to study the 

dynamic changes developing in the lung caused by a disease or a treatment. 
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(a)

(b)

Figure 3.2 (a) Real portion of mouse lung impedance (Zin) and (b) Imaginary portion of 
mouse lung input impedance (Zin) for the four models developed in the laboratory in 
experiment 1.

In this chapter we will introduce the methods for modeling the lung impedance. In 

Chapter 5 we will provide the result of the analysis of different laboratory models of 

asthma in mice, and show that the technique is capable of differentiating between 
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different models of asthma as well as stages of treatment. This established technique has 

the potential for application to human lung impedance.

3.2 Forced Oscillation Technique and Constant Phase Model

There are several invasive and non-invasive techniques for measuring the input 

impedance including the interrupter technique, impulse oscillometry, and forced 

oscillation technique (FOT) (Schuessler and Bates, 1995; Jablonski et al., 2011; 

Cavalcanti et al., 2006). 

In impedance measurement there is a compromise between accuracy, 

noninvasiveness, and convenience. This means that the precision and the invasiveness of 

a method are correlated with each other. The less invasive the measurement technique 

applied, the less possibility of producing precise, reproducible data (Bates and Irvin, 

2003)..

FOT is a general name for any approach that evaluates the breathing mechanics by 

superimposing small external pressure on the spontaneous breathing of the subject. FOT 

was developed over 50 years ago and is the subject of numerous studies (Peslin and 

Fredberg, 1986, Zwart and Woestijne, 1994). FOT requires minimum cooperation by the 

subject and no respiratory maneuvers. FOT is applied to the mice that have been 

anesthetized, paralyzed, and tracheotomized for measurement of their complex “lung 

input impedance Z(f)”. The low-frequency input impedance Z(f) reflects the frequency 
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dependency of the airway and lung tissue compartments separately. Estimates of Z(f) 

achieved by FOT can be considered the most detailed measurements of pulmonary 

mechanics currently available (Glaab et al., 2007). 

In Figure 3.3 the set up for mouse lung impedance measurement is shown. In a 

platform similar to Figure 3.3 in Dr. Alam’s lab at National Jewish Health, all the input 

impedance data were collected by (Goplen et al., 2009). 

Figure 3.3 The experimental set up for measuring the mouse lung impedance in the lab, 
Image source: http://phenome.jax.org/grpdoc/Berndt2/imgs/FlexiVent.jpg

The machine used for the impedance measurements is called Flexivent (Scireq, 

Montreal). A simple block diagram of the machine is shown in Figure 3.4. The flexivent 

is capable of producing:

- sine wave oscillations in the flow to the lungs to determine R and E;
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- broad-band oscillations in the flow to the lungs to determine impedance Z;

- step changes in the volume to the lungs to determine the pressure-volume curve.

Figure 3.4 A simplified block diagram of forced oscillation maneuvers by flexivent, 
Image source: mbi.osu.edu/2006/tutmaterials/Mechanics%20Course_4.ppt

In FOT controlled broad-band perturbations (Figure 3.5) in flow (V ) are applied to 

the lungs via the trachea while the pressure (P) is measured. Consequently, the input 

impedance, (which is measured at the entrance to the lung) Z(ω), is achieved by the ratio
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


Vi
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Z                          (3.1)

where ω is angular frequency and P(ω) and V(ω) are the Fourier transforms of P(t) 

and V(t), respectively. V(t) typically consists of a sum of discrete sinusoidal components 

spanning the frequency range of interest. The ratio in (3.1) is calculated between average 

cross-power and auto-power spectral densities determined by dividing the volume and 

flow data sets into a set of overlapping windows. The frequencies of the input sinusoids 



are chosen to be mutually prime in or

can arise as a result of system nonlinearities

Figure 3.5 A sample of the broad band flow input to the mouse lung, Image source:
mbi.osu.edu/2006/tutmaterials/Mechanics%20Course_4.

Impedance data can 

this technique through assessment of oscillatory data from measurements of 

mechanics airway and tissue mechanical components

Constant-phase model of impedance

                           

and hence

RN is a Newtonian resistance that has been shown to closely approximate resistance 

of the airway tree.

I is an inertance due to the mass of the gas in the central airways, and plays a 

21

are chosen to be mutually prime in order to reduce the harmonic distortion in 

ult of system nonlinearities.

Figure 3.5 A sample of the broad band flow input to the mouse lung, Image source:
mbi.osu.edu/2006/tutmaterials/Mechanics%20Course_4.ppt

ta can then be analyzed by applying the Constant Phase Model

this technique through assessment of oscillatory data from measurements of 

mechanics airway and tissue mechanical components are identified. (Hantos et al., 1992). 

model of impedance is given by 
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is a Newtonian resistance that has been shown to closely approximate resistance 

is an inertance due to the mass of the gas in the central airways, and plays a 

der to reduce the harmonic distortion in Z(ω) that 

Figure 3.5 A sample of the broad band flow input to the mouse lung, Image source:

Constant Phase Model. In 

this technique through assessment of oscillatory data from measurements of pulmonary 

(Hantos et al., 1992). 

   

                                                  (3.3)

is a Newtonian resistance that has been shown to closely approximate resistance 

is an inertance due to the mass of the gas in the central airways, and plays a 
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negligible role in Z for mice below 20 Hz. G and H are parameters that characterize, 

respectively, the elastic and dissipative properties of the lung tissue. The ratio of the real 

to the imaginary parts of the tissue component of Z (i.e. G/H) is independent of 

frequency, so tissue impedance has constant phase. CPM was briefly introduced as a 

fundamental model of the field but will not be utilized for our analysis. Next we will 

describe the process of acquiring the real data from mouse lung.

3.3 Experimental Procedures and Data Acquisition

Two sources of data were analyzed in this dissertation. Both are measurements of 

input impedance measured through FOT by use of Flexivent (Scireq, Montreal, Quebec). 

In order to demonstrate various applications of our method, data from Experiment 1 is 

used to compare the severity of the disease in a number of asthma models qualitatively, 

whereas the data from Experiment 2 is used for analyzing the treatment efficacy. The 

experimental procedures are described in detail in the following section.

    

3.3.1 Experiment 1

The development of chronic and tolerant models of asthma and their airway 

functional and histopathological findings in (Goplen et al., 2009) were reported 

previously.  We used the data from those experimental models provided by Nicholas 

Goplen from Dr. Alam’s lab for the mathematical analyses of this research. A brief 

outline of the models is given below.   
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  - Saline control group: The development of asthma in mice requires 

subcutaneous sensitization with an allergen usually in conjunction with an adjuvant such 

as alum.  The adjuvant boosts the immune response to the allergen.  Following 

sensitization, the mice are exposed to the allergen intranasally and then examined for the 

presence of airway inflammation and hyperreactivity.  As a negative control for these 

experiments, another group of mice is simultaneously immunized with saline in alum and 

then exposed to intranasal saline.  The treatment of mice with saline in alum does not 

induce airway inflammation or alter airway mechanics.  In our negative control 

experiments, we treated mice subcutaneously with saline in alum and challenged 

intranasally twice per week for eight weeks with saline.  The mice were rested for 21 

days and then used to measure airway hyperreactivity in response to increasing doses of 

methacholine (a bronchoconstrictor) inhalation using the Flexivent apparatus.

  - Chronic asthma model: This is a model of asthma that is severe in intensity and 

lasts weeks and months after the allergen exposure.  We have reported that mice 

sensitized and then chronically exposed to a single allergen develop tolerance (see 

tolerant model). In contrast, mice sensitized and chronically exposed to multiple allergens 

resist tolerance and develop chronic asthma—i.e. sustained inflammation and airway 

hyperreactivity longer than three to four weeks after discontinuation of the allergen 

exposure.  The specific approach for this protocol was as follows: mice were immunized 

with a combination of three allergens (dust mite, ragweed and Aspergillus extract) with 
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alum and challenged intranasally with the same allergens twice per week for eight weeks, 

rested for 21day and then subjected to the airway hyperreactivity measurement.

   - Acute asthma model: This is a model of asthma that is severe in intensity but 

resolves in seven to ten days.  We applied a commonly used protocol where mice develop 

acute asthma after sensitization and exposure to a single allergen.  The model is called 

acute because airway inflammation and hyperreactivity resolve usually within seven to 

ten days after the last allergen exposure. The specific protocol is as follows:  mice 

immunized with Alum plus Aspergillus allergen, challenged intranasally twice per week 

for two weeks, rested 72 hrs, and then subjected to the airway hyperreactivity 

measurement.

  - Tolerant asthma model: This is a model where asthma develops during the 

initial phase of allergen exposure but then resolves despite further exposure to the 

allergen.  As mentioned above, we induce tolerance by repeated exposure to a single 

sensitizing allergen.  Mice are immunized with a single allergen, Aspergillus extract in 

alum, challenged intranasally with the allergen twice per week for eight weeks, rested

21days, and then used for airway hyperreactivity measurement. We studied six to ten 

mice per group for these experiments. The differences in airway inflammation and airway 

resistance to methacholine among the study groups were statistically significant 

(ANOVA and paired t test) as reported previously (Goplen et al., 2009).    
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3.3.2 Experiment 2

In this experiment, laboratory models of chronic asthma underwent a treatment.We

are seeking the evaluation of treatment using the mathematical model of the lungs. The 

significance of this mathematical model is that sometimes in the laboratory models the 

treatment effects are not significant enough to be confirmed. However, a mathematical 

model is sensitive enough to differentiate between the treated groups and the untreated 

ones and to predict the efficiency of the treatment.

Various external factors and endogenous mediators activate cells through 

stimulation of the mitogen-activated protein kinase (MAPK) signaling pathway.  A major 

member of the MAPK family is the extracellular signal-regulated kinase 1/2 (ERK1/2).  

The latter is activated by MEK1/2 (MAP ERK kinase 1/2).  In order to determine if 

signaling from the MAPK pathway is important for induction of chronic asthma, we 

applied U0126, an inhibitor of MEK1/2.  This inhibitor was given intranasally 

10µg/mouse daily for five consecutive days in week 10, two weeks after the last allergen 

exposure.  Dimethyl sulfoxide (15uL) was used as the vehicle for U0126 and was given 

intranasally to a control group of five mice.  The airway hyperreactivity in response to 

methacholine was measured three days later. The difference in airway resistance between 

U0126- and vehicle-treated groups was statistically significant.     

Complete dose-response studies with methacholine in Experiment 2 were done in 

the laboratory.  The difference between the U0126- and vehicle-treated groups reached a 
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statistical difference only at the highest dose of mehacholine (50 mg/ml).  For this reason 

we used FOT data for this dose in our analysis. The in-vivo experiments are complicated 

by the bioavailability of the medication.  We expected to see a significant inhibition of 

airway resistance at the lower doses of methacholine following the treatment of mice 

with higher doses of U0126.

3.4 Methods 

In this section we will go through the mathematical approach of developing our 

model of the impedance, and the design for simulating our model.

3.4.1 Linear Parametric Identification of Lung Input Impedance

System identification is a method to build a model to mathematically describe the 

relation between observed input and output data while estimating the transfer function. A 

model is useful for a variety of applications including prediction, simulation, and 

diagnostics. An important step in assessment of the lung mechanics is identification of a 

“suitable” model for representing the lung input impedance from the measured data.  

What suitable means depends strongly on the application, but constructing simple models 

with acceptable accuracy of fit between the model and the real system is always the 

primary concern.
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Figure 3.6 General linear model structure.

There are generally two approaches for identifying the lung input impedance;

nonparametric and parametric.  In nonparametric approaches, the frequency response is 

obtained directly from the experimental data. This model is very effective in the 

controller design. However, it is rarely used for the purpose of analysis in the respiratory 

system. The parametric identification approach is an iterative process which starts from 

the definition of the purpose of the model and uses existing knowledge to choose an 

appropriate framework to propose a first model structure. Given such structure and the set 

of experimental data, the objective of parametric identification is to estimate the non-

measurable parameters, so as to reproduce the experimental results in the best possible 

way. In parametric identification the problem is formulated as a nonlinear optimization 

problem, where the objective is to find a set of parameters to minimize the function 

quantifying the goodness of the fit subject to the lung dynamics. The appropriateness of 

the mathematical model is best tested with a set of validation data which is different from 

the data used when the model was initially built.
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This approach is widely used in the respiratory system where the general goal is to 

analyze and correlate these parameters with lung disorders.

Figure 3.7 Lung system identification.

In this research, the objective of the parametric identification is to estimate a 

relation between input u(t) = )(tV and output of lung dynamic system y(t) = P(t) by 

means of a polynomial equation. The general linear model structure, shown in Fig. 3.7, 

can be written in terms of the time-shift operator q. Note that this q description is 

completely equivalent to the Z-transform form.     

                

Consider the following discrete-time difference equation (Ljung and Glad, 1994; 

Ljung, 1987; Söderström and Stoica , 1989; Li et al., 2009).             
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where the polynomials A, B, C, D, and F  are
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u is the input, nk is the input delay that characterizes the delay response time, and 

ν(t) is the white noise. It should be noted that t is the time instant at which the data is 

measured; so t = N·Ts + t0 andwhere N is integer, Ts is the sampling time and t0 is the initial 

time. 

The structure given by (3.4) is stochastic and is able to incorporate random effects. 

Such effects are very common and often are the best available way to describe the 

difference between the ideal model and real observations known as identification error. 

This error depends on both the random noise and the choice of identification parameters 

(Franklin et al., 1998).

As shown in Figure 3.7, this model is able to represent a variety of parametric 

model structures, such as Auto Regressive Model with External Input (ARX), Average 

Model with External Input (ARMAX), Box-Jenkins (BJ), and Output Error (OE). These 

models, which differ by the number of included polynomials, provide insight into the 

system’s physics and compact model structures. These structures can be achieved by the 

following substitutions correspondingly:
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The ARX structure is obtained for A(q) = C(q) = D(q) = 1 

                               )()()()()( tntuqBtyqF k                                           (3.10)

The ARMAX structure corresponds to A(q) = C(q) = 1

    )()()()()()( tqDntuqBtyqF k                                    (3.11)

The Output-Error model is obtained for F(q) = C(q) = D(q) = 1
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The Box-Jenkins model is obtained for F(q) = 1
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Generally speaking, different structures provide varying levels of flexibility for 

modeling the dynamics and noise characteristics. It is often beneficial to test a number of 

structures to determine the best model. This   process can be performed by evaluating 

several factors, such as simplicity, the relative order, and wellness of the fit between 

measured and predicted values. 

In the respiratory system of mouse noise is usually not strongly coupled to the 

dynamics.Therefore, compared to ARMAX and BJ structures, which incorporate the 

noise dynamics, OE and ARX structures are considered better and simpler choices for 

modeling mouse respiratory system. The selection between ARX and OE can be 

quantitatively done by evaluating the following FIT function: 
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Where ŷ is the predicted value, y is the mean value of  y, and║ ║ denotes the 

norm. Here, as the data we work with is real data measured from mice, we accept 

precision of  90% and above as being significant.

Based on evaluating 3.14 for the four asthma models in Experiment 1, the OE 

structure is selected as the base model for the analysis of the mouse respiratory system.  

A comparison of the performances from ARX and OE type based on 3.14 is provided in 

Figure 3.6. The OE structure outperformed the ARX model in three out of four mouse 

models of asthma. The laboratory models, other than normal, have been specifically 

manipulated based on a specific protocol to induce asthma. This could be a possible 

cause for the higher estimate accuracy in these models compared to the normal group.
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Figure 3.8 Comparison of the FIT function for OE and ARX structures for the four mouse 
models from experiment 1.

3.4.2 Semi- Impulse Response of the Respiratory System

The impulse response of a dynamic system is its reaction to an impulse signal (δ(t)) 

by which all modes of the system are stimulated. In real systems however, it is not 

possible to produce the exact impulse waveform. Therefore brief pulses, as 

approximations for δ(t), are used to stimulate the system. Provided that these pulses are 

short enough compared to the ideal impulse signal, the results will be acceptable 

approximations of the theoretical impulse response.

Inspiring from δ(t), we establish a semi-impulse input within the corresponding 

frequency range (from fmin  to fmax). This will guarantee the tolerable speed of the signal 

for the respiratory system within which the laboratory models of asthma are valid. The 

semi-impulse will be used as the inputs for the OE model discussed previously. The OE 
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model’s response to the semi-impulse is then found through simulation. This response can 

provide the basis for quantitative evaluation of lung diseases and treatment progression. 

The ideal impulse response does not start from zero, since the input impulse gives 

initial conditions to the system’s modes at t = 0+. The response is similar to the natural 

system’s reaction to a specific initial condition which is created by ideal impulse input. 

The semi-impulse response starts from zero since, in the respiratory system, the 

input cannot use an ideal impulse. The reason is that the model is valid only within a 

certain frequency range. We illustrate this effect by Figure 3.9.

Figure 3.9 Realistic versus ideal impulse response.

The semi-impulse wave form is generated by 
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where ]2[int minmax ffN  , fmax= 20.5 Hz and fmin= 1 Hz respectively. Figure 3.10

illustrates the proposed semi-impulse waveform.

Figure 3.10 The semi-impulse waveform.

It should be noted that modeling the respiratory impedance with 3.12 makes it 

possible to study the time domain response of the system to not only the semi-impulse 

waveform but also any other input containing only the frequency components within the 

valid range for the laboratory models. The results of modeling experimental data from 

Experiments 1 and 2 with 3.12 and the simulation with the semi-impulse waveform are  

provided and discussed in Chapter 5.
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Chapter 4

HUMAN DATABASE

4.1 Background

Asthma was long believed to be a relatively homogenous disease. It was 

characterized by mast cell– and eosinophil-dominant inflammation and its responsiveness 

to corticosteroids. Asthma severity was classified primarily by measures of airflow 

obstruction. This way severe asthma was a subtype of a disease with severe allergic 

inflammation and it required high dose corticosteroid treatment. Cellular or molecular 

defects in steroid responsiveness was thought to be responsible for poor or no response to 

high doses of steroids. This way the possibility that some asthma phenotypes could have 

airway pathology insensitive to steroids was neglected. Asthma now is considered a 

heterogeneous multidimensional disease in which, impairment and risk are the major 

determinants of the severity of the disease. Although eosinophilic asthma is still an 

important asthma phenotype characterized by systemic and airway markers of 

eosinophilia, subepithelial fibrosis, and corticosteroid responsiveness, importance of non-

eosinophilic asthma is now well emphasized. Non-eosinophilic asthma is characterized 

by absence of eosinophilia and subepithelial fibrosis and poor responsiveness to

corticosteroids. T-helper type 2 (Th2) cytokines have been proposed as the upstream 

molecular regulators of eosinophilic asthma. The molecular mechanism of

noneosinophilic asthma is not well known however (Fahy, 2010).
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Asthma can also be distinguished based on clinical features such as obesity, 

baseline lung function (low vs. high FEV1), degree of reversibility, presence or absence 

of confounding co-morbidities such as allergic rhinitis, chronic sinusitis with and without 

NSAID (non-steroidal anti-inflammatory drugs) sensitivity, and response to various 

treatment modalities such as leukotriene receptor antagonists, and inhaled and systemic 

steroids.   Asthma within each sub-phenotype can be mild and severe.  Furthermore, both 

mild and severe asthma can be clinically unstable despite being on proper controller 

medications.    A major challenge has been to identify patients that are at risk of having 

an unstable clinical course of asthma.  

Because of the complexity of etiology and pathogenesis, efforts have been made to 

apply unsupervised mathematical approaches to analyze multidimensional asthma 

parameters and group them into smaller clusters (phenotypes) based upon their 

interrelationship.  Indeed, a number of studies have been published that applied 

unsupervised mathematical approaches to classifying asthma phenotypes (Haldar et al 

2008, Moore et al 2010, Braiser et al 2008, Braiser et al 2010, Fitzpatrick et al 2011, 

Siroux et al 2011, Southerland et al 2012).  These studies have identified not only new 

phenotypes but also illustrated the complexities of each phenotype. In one of the earliest 

clustering studies, Haldar and colleagues performed k-means cluster analyses of an 

asthma database separately in a primary and a secondary care setting (Haldar et al 2008).  

In the secondary care setting, the analysis identified four clusters of patients from a total 
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of 187 asthmatic patients.  The clusters differed among themselves in  age, sex, body 

mass index (BMI), reversibility, sputum eosinophils, fractional exhaled nitric oxide 

(FENO), dose of inhaled steroids, and number of steroid bursts.  This study specifically 

identified and focused on two interesting clusters: one early onset symptom-dominant 

and another late onset inflammation-dominant. Both represented relatively refractory 

asthma. Inflammation-guided treatment adjustment allowed for the reduction in 

exacerbation and dose of inhaled steroid in these patient populations. This study did not 

include any airway hyperreactivity measurement (e.g. PC20 for methacholine) in the 

analysis.      

In one of the most robust database analyses of severe asthmatic patients by Moore 

and colleagues a cluster analysis grouped patients in five clusters (Moore et al 2010).  

The major disease variables that determined the assignment of patients to the clusters 

came from the pulmonary function test (six variables—FVC, FEV1, FEV1/FVC at 

baseline and the best from the database), patient age, duration of disease, gender, and 

composite medication score.  Two clusters concentrated patients with the highest health 

care utilization, i.e. patients with frequent steroid bursts, ER visits, and hospitalizations.  

These two clusters also had the lowest PC20 and one of the clusters had the highest 

sputum neutrophil count.  Sputum and blood eosinophil counts and FENO did not show 

any difference among the clusters.  
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4.2 Problem Statement 

The Global INitiative for Asthma (GINA); launched in 1993 produces guidelines 

called “Global Strategy for Asthma Management and Prevention” based on the evidence 

and recent publications. Reviewing the initial GINA guideline published in 1993, we 

observe that its emphasis was based on disease severity grading: intermittent; mild 

persistent; moderately persistent; and severely persistent asthma. Since then several 

studies have shown that “asthma control” defined by the GINA guideline is achievable in 

most patients. Achievement of good control in patients improves their health condition 

(Bateman et al. 2007, Pedersen et al. 2007, Pauwels et al. 2003). Therefore, in 2006 the 

global strategy for asthma management and prevention was revised to emphasize the 

management of the disease based on the level of asthma control rather than clustering the 

disease based on its severity. Thus, in our research, we concentrated on clustering the 

patients based on how "controllable" their asthma is rather than how "severe" it might be. 

The controllability of a patient's asthma is more informative about how he or she will be 

doing in the near future in comparison to how severe the disease currently is.

Asthma control takes into account the patient’s recent clinical state with respect to 

parameters such as day time and night time symptoms, frequency of rescue medication 

use, and lung function. Asthma control also considers a patient’s future potential risk for 

experiencing exacerbations, accelerated decline in lung function, -treatment-related side 

effects, or loss of control. Some pathologic and physiologic measures, independent of the 

level of current clinical control, also influence future risk (Reddel et al., 2009).
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Based on Bateman et al. 2008, the components of control include daytime 

symptoms, limitations of activities, nocturnal symptoms/awakening, the need for rescue 

medication, lung function, and exacerbations. 

The concept of asthma controllability (stability) - is a complicated one.

Mathematical tools could significantly help physicians in understanding and clustering 

asthmatic patients based on this concept. Previously, researchers have tried to cluster 

asthmatic patients as discussed in the introduction of this chapter. However those studies 

did not focus on the controllability and stability of asthma and only identified the 

phenotypes of asthma. Patients with unstable asthma were scattered in different clusters.

For our study, we accessed the electronic research database at National Jewish 

Health. The protocol for this study was approved by the institutional Review Board.  The 

initial query with the keyword “asthma” identified 3,000 patients.  In our study, we 

selected only four very commonly available clinical parameters that had been known to 

highly correlate with asthma. These parameters are introduced in Section 4.3 of this 

chapter. A total of 174 patients with measurements for the selected four parameters were 

available in the National Jewish Health database.  We determined the number of possible 

clusters within the study population by a dendrogram generated using Ward’s minimum 

variance algorithm. We performed a cluster analysis by principal component analysis 

(PCA) and the application of the self-organizing maps (SOMs).  We then assigned scores 
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to the major qualitative factors that determined asthma instability.  Overall, the 

combination of our methods, PCA, SOM, and stability scoring generated an asthma 

stability analysis system predicting the possibility of a patient having only unstable 

asthma based on four very well known clinical parameters.

4.3 Parameter Selection

There are many laboratory parameters that tend to broadly correlate with the 

diagnosis of asthma but the correlation is rather poor and its positive predictive value is 

low. We focused on four laboratory parameters that were quantitative in nature — FEV1 

(forced expiratory volume in 1 second), PC20 (provocative concentration 20) for 

methacholine, peripheral blood eosinophil count, and serum total IgE.

First measurement corresponds to Forced Expiratory Volume (FEV1). FEV1 is the 

amount of air that one can forcibly blow out in one second. It is measured in liters. FEV1 

is considered one of the primary measures of lung function. A spirometer is the machine 

that the patient blows into (Figure 4.1). The machine predicts an FEV1 value for the 

person according to his age, height, and weight. The real value is then measured. The

result is two numbers; an absolute FEV1 value between 0 and 6 L; and a percentage 

showing the ratio of the real FEV1 over the predicted value. For a normal person the 

FEV1 percentage is above 80%. 
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Figure 4.1 A patient is blowing into a spirometer under supervision, Image source: 
http://www.nhlbi.nih.gov/health/health-topics/topics/copd/diagnosis.html

The second measurement corresponds to the Methacholine Challenge test. The

Methacholine test is a breathing test that detects bronchial hyper reactivity that occurs in 

asthma. It is usually ordered after a routine pulmonary function test (FEV1) has been 

completed and the patient has shown a normal FEV1, yet has symptoms. In this test, the 

patient breathes in nebulized methacholine chloride through a mouthpiece. The patient is 

then asked to blow forcefully into a spirometer. A person with asthma reacts to lower 

doses of inhaled methacholine. A PC20 (provocative concentration 20) for methacholine 

test results below 8 mg is considered asthmatic and above 8 mg is normal.  An alternative 

approach to diagnose asthma is to demonstrate a reduced baseline FEV1, which is 

reversed by a bronchodilator treatment. The latter approach is used more frequently.  
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The third measurement is the eosinophil count. Eosinophils are the white blood 

cells of the immune system that are associated with parasitic infections and allergic 

diseases such as asthma. A Eosinophils count requires a blood test.

The last measurement is immunoglobulin E (IgE). IgE is a class of antibodies that 

plays an important role in allergy and is especially associated with type 1 hypersensitivity 

(which occurs in asthma). IgE is capable of triggering the most powerful allergic 

reactions. IgE level is also deternined through a blood test.

Due to skewed distributions of Methacholine, IgE and Eosinophils we applied 

transformations to shift them closer to normal distributions. For PC20, a natural log was 

used, and for IgE and eosinophils, log10 was applied.

The histogram plots for the four parameters for males and females separately and 

the whole study population is shown in Figure 4.2.
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(c)

Figure 4.2 Histograms of the four parameters for the (a) male patients, (b) female 
patients, (c) whole population.
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patients form. In the next step, we estimated the number of possible clusters by a 

hierarchical clustering tree (dendrogram). We then applied self-organizing maps from the 

neural network field to find the clusters resulted from PCA. We pre-specified the number 

of clusters achieved through generation of the dendrogram for the SOMs. 

4.4.1 Principal Component Analysis 

PCA (principal component analysis) is a modern tool for data analysis. PCA is 

non-parametric and extracts relevant information from large databases by linearly 

reducing the dimension of the data. The goal of PCA is to identify the most meaningful 

basis and transform the original dataset to this new basis. We expect this new basis to 

filter out noise and redundancy and reveal the hidden interesting data patterns. PCA can 

form clusters of data that can be used for making predictive models (Shlens, 2009). The

main features of PCA are:

- principal components (PCs) are linear combinations of the original variablese; 

- all of the principal components are orthogonal to each other. Therefore, there is no 

redundancy in principal component space; 

- each principal component may replace several  original variables as it is a linear 

combination of those original variables;

- the first component extracted in a PCA accounts for a maximal amount of total 

variance in the observed variables and the second PC will be correlated with some of the 
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observed variables that did not display strong correlations with PC1. The second PC will 

also be uncorrelated with the first component;

- the remaining PCs that are extracted in the analysis display the same two 

characteristics: each PC accounts for a maximal amount of variance in the observed 

variables that was not accounted for by the preceding components; and it is uncorrelated 

with all of the preceding PCs;

- total variance of the data set equals the number of original variables.

PCA involves the calculation of the eigenvalues of the data co-variance matrix or 

singular values of the data matrix after mean centering the data for each attribute. In our 

study, we implemented the PCA algorithm in Matlab based on finding the eigenvalues of 

the covariance technique. The fundamental mathematical concepts involved in PCA

include:

Variance: is the original statistical measure of the spread of data in a dataset with 

mean x

)1(
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Covariance:  The covariance matrix is a symmetrical matrix presenting the 

variation of two vectors with respect to each other. The covariance of a vector with itself 

is its variance.
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                                (4.2)

A positive value of covariance indicates that the two vectors increase or decrease 

together, whereas a negative value indicates that when one increases the other decreases. 

A zero covariance means that the two vectors are independent of each other. 

Eigenvalues and Eigenvectors: consider the equation Ax=λx

Certain exceptional vectors x are in the same direction as Ax. Those are the 

“eigenvectors” of matrix A. Multiply an eigenvector by A, and the vector Ax is a number 

λ times the original x; λ is called an eigenvalue of A. To find the solution one should 

solve:

det (A-λ.I) =0                                                 (4.3)

The steps in calculation of the principal components (PCs) are as following

1. data scaling: if the data are not normalized, a variable with a large 

variance will dominate. Therefore we have to scale the data. The most common 

scaling technique is the Unit variance scaling. Next we mean center the data;
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2. the calculation of the covariance matrix.

3. the calculation of eigenvalues and eigenvectors of the covariance 

matrix. The covariance matrix is a symmetric matrix and the eigenvectors will be 

orthogonal;

4. the eigenvectors with the largest eigenvalues correspond to the 

dimensions that have the strongest correlation in the dataset. Choose the 

significant PCs and discard the rest;

5. map the data to the selected (significant) principal components’ 

space. 

Several criteria have been proposed for determining how many PCs should be 

investigated and how many should be ignored (step 4 in PCA).  One common criterion is 

to ignore principal components at the point where the next PC shows little increase in the 

total variance explained. A second criterion is to include all those PCs up to a 

predetermined total percent variance explained, such as 90%.  A third standard is to 

ignore components whose variance explained is less than one when a correlation matrix 

is used or less than the average variance explained when a co-variance matrix is used, 

with the idea that such a PC has less than one variable’s worth of information.  A fourth 

standard is to ignore the last PCs whose variance explained is all roughly equal. In our 

case we stopped at the point that the variance explained by a PC dropped below one.
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4.4.2 Hierarchical Clustering

Optimal clustering can be defined as the one of all possible combinations of 

groupings, which provides the most meaningful associations in the clusters. In the context 

of our research, target groups (clusters) should reflect asthma heterogeneity identifiers.

Evaluation of clustering performance is a fundamental and difficult problem. As 

defined in Chapter 2, clustering is done without a priori understanding of the internal 

structure of the data. 

If we use a fixed SOM size, the output of the SOM will only be a reduced 

representation of the input data. Depending on the network size and the data structure,

some SOM nodes can remain unoccupied after the training. The original topological 

relations between target groups are preserved in the SOM output. This implies that the 

output of SOM depends on both the differences among groups and on the sizes of the 

groups. As a result we need to further process the SOM clustering to find a right number 

of clusters (Lehmann and Khawaja 2011).   

Agglomerative hierarchical (bottom-up) clustering is usually used to determine the 

possible number of clusters in a population to be fed to the SOM algorithm. 

Agglomerative hierarchical clustering performs as follows (Lehmann and Khawaja 

2011):

1. find the two closest clusters by using an appropriate distance measure;

2. merge these clusters and recalculate centroids and cluster measures;
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3. go back to step one until only one cluster is left. 

For this algorithm we used Ward's linkage. This method uses the incremental sum 

of squares, i.e. the increase in the total within-cluster sum of squares as a result of joining 

two clusters. The within-cluster sum of squares is defined as the sum of the squares of the 

distances between all objects in the cluster and the centroid of the cluster. 

We apply the possible number of clusters generated by Ward’s dendrogram to our 

SOM algorithm introduced in Section 4.4.3.

4.4.3 Self-Organizing Maps

Self-organizing maps (SOMs) is a very famous and powerful category of 

unsupervised (the correct answer is unknown) neural networks with competitive and 

cooperative learning abilities. They were developed in 1982 by Tuevo Kohonen. They are 

called “self organizing” because they learn on their own through unsupervised 

competitive learning. They are called “maps” because they try to map their weights to 

conform to the input data (Guthikonda, 2005).

SOM nodes try to become like the input data presented. The SOM algorithm is 

useful for extracting implicit, valuable information from large datasets. The principal 

advantages of SOM include the identification of clusters of similar sequences, projection 

and visualization of high dimensional data spaces to one or two dimension space, and the 

preservation of topological relationships between data vectors.  The fact that SOM is 
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based on neural networks confers a series of advantages that makes it suitable to the 

clustering of large amounts of noisy data with outliers.

Retaining principal features of the data is an important property of SOMs. The 

topological relationships between input data are preserved when mapped to a SOM 

network. SOMs works similar to K-Means with the difference of not only choosing the 

size but also the shape for the network of clusters (to fit our data into). Similar to K-

Means clustering, one should choose an initial value for expected number of clusters in 

the SOM algorithm.

SOM first populates its nodes by randomly sampling the data and then refining the 

nodes in a systematic fashion similar to K-means.  However; SOM does not require the 

number of clusters and nodes to be the same. This means when the map is complete some 

nodes may remain without any associated items. SOM provides information on similarity 

between nodes which is another difference with K means (Schlosser and Wagner, 2004).

The SOM has an input layer fully connected to the output layer.  When an input is 

received output nodes compete with each other to form the pattern. The winner node is 

the one that has the closest weight vector to the input pattern. The winner and 

surrounding nodes are updated for generating closer weight vector to the input pattern.

This causes the close nodes to represent similar patterns and distant nodes to represent 
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distinct patterns as the training progresses. The clusters that are more dissimilar will be 

mapped in the SOM output layer further apart (Schlosser and Wagner, 2004).
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Chapter 5

RESULTS AND DISCUSSIONS

5.1 Mouse Lung Impedance

In Chapter 3 we introduced the mouse lung impedance which is usually measured 

between 1 and 20.5 Hz.  For this frequency range, the FIT function for Output Error (OE) 

and Auto Regressive Model with External Input (ARX) structures of the same orderwere 

evaluated. Based on the average FIT for each mouse group the OE model was proven to 

result in a better fit (Figure 3.8). The corresponding OE model can be written as 
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The modeling process of experimental data with (5.1) is first performed for data 

from Experiment 1 (details in 3.3.1; i.e. Saline, Chronic asthma, Acute asthma, and 

Tolerant asthma models) and the results are provided in section 5.1.1. Section 5.1.2 

corresponds to the results of analysis of experimental data from Experiment 2 (details in 

3.3.2; Chronic asthma, Normal, and MEK treated models) with (5.1). 

After estimating the real data with the third order model of (5.1), each model is 

simulated with the semi-impulse waveform (Figure 3.8) in the time domain. The results 
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of simulations for Experiments 1 and 2 is provided in 5.1.1 and 5.1.2 respectively. The

discussion of these results is provided in Section 5.1.3. The results of mouse lung 

impedance modeling has been published in: Hanifi, A., Goplen, N., Matin, M., Salters, R. 

E., and  Alam, R. (2012).  “A Linear Parametric Approach for Analysis of Mouse 

Respiratory Impedance,” IEEE Trans. Biomed. Circ. Sys., vol. 6 no. 3, pp. 287-294.

5.1.1 Experiment 1: Model Development

Table V.I presents the (5.1) coefficients of (αi, βi) for each mouse group and each 

dose of methacholine from Experiment 1, i.e. saline, chronic asthma, acute asthma, and 

tolerant asthma models. Studying Table V.I one can observe that the poles of the 

respiratory system in all of these four models are located in approximately the same 

location. But the zeros are changing locations with the methacholine dose change in each 

group (asthma model) and also are changing from one asthma model to another. This 

implies that the modes of the lung system are not changing as the system transitions from 

normal to any other asthma state.

     

Figures 5.1 to 5.4 show the bode plots from MATLAB for the model fitting 

process of data from Experiment 1. The red stars in the figure represent the real data from 

measurements of impedance in laboratory models. The dashed green lines correspond to 

the corresponding estimated third order linear model fit from (5.1). With the coefficients 

provided in Table V.I, the identification errors of the proposed linear parametric models 

lie in an acceptable range. Please note that we deal with a stochastic model, so the 
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identification problem is much more complicated in this case compared to that of the

deterministic systems (Ljung, 1987; Franklin et al., 1998). 

Group
Meth. 
dose

β0 β1 β2 β3 α1 α2

Normal

0 0.694 -1.45 0.869 -0.12 -1.98 0.977
3 0.723 -1.28 0.464 0.095 -1.98 0.978
6 1.285 -2.86 1.948 -0.37 -1.98 0.977
12 1.133 -2.02 0.738 0.148 -1.98 0.977
25 0.686 -0.57 -0.81 0.693 -1.98 0.98

Acute

0 0.897 -2.3 1.951 -0.55 -1.97 0.973
3 1.56 -3.95 3.301 -0.91 -1.97 0.97
6 3.613 -9.18 7.681 -2.12 -1.97 0.97
12 6.038 -15.4 12.98 -3.6 -1.97 0.972
25 12.47 -32.5 28.11 -8.03 -1.97 0.972

Tolerant

0 0.422 -0.65 0.088 0.136 -1.98 0.982
3 0.466 -0.64 -0.04 0.215 -1.98 0.981
6 -0.35 2.425 -3.62 1.552 -1.98 0.981
12 -0.47 3.358 -5.02 2.135 -1.98 0.983
25 -2.5 10.54 -13.1 5.095 -1.99 0.988

Chronic

     0 1.534 -3.65 2.77 -0.66 -1.98 0.976
3 1.344 -2.93 1.915 -0.33 -1.98 0.976

6 1.432 -2.84 1.495 -0.09 -1.98 0.977

12 2.381 -5.08 3.205 -0.5 -1.98 0.976

25 1.661 -2.45 0.178 0.615 -1.98 0.977

Table V.I. Linear parametric models (5.1) coefficients for Normal, Acute, Tolerant  and 
Chronic Asthma models, Hanifi et al. 2012
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Figure 5.1: Bode plots of the real data (R *) and estimated transfer function (G --) for 
chronic asthma model Hanifi et al. 2012.
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Figure 5.2: Bode plots of the real data (R *) and estimated transfer function(G --) for 
Acute asthma model, Hanifi et al. 2012.
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Figure 5.3: Bode plots of the real data (R *) and estimated transfer function (G --) for 
Tolerant asthma model, Hanifi et al. 2012.
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Figure 5.4: Bode plots of the real data (R *) and estimated transfer function (G --) for
Normal model, Hanifi et al. 2012
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Figure 5.5 the result of simulation of a) Chronic b) Acute c) Tolerant d) Normal with 
semi-impulse waveform at the baseline Hanifi et al. 2012

Figure 5.6 The result of simulation of a) Chronic b) Acute c) Tolerant d) Normal  with 
semi-impulse waveform at dose 3.125 mg/ml of methacholine Hanifi et al. 2012.
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Figure 5.7 The result of simulation of a) Chronic b) Acute c) Tolerant d) Normal  with
semi-impulse waveform at dose 12.5 mg/ml of methacholine Hanifi et al. 2012.

Figure 5.8: the result of simulation of a) Chronic b) Acute c) Tolerant d) Normal models 
with semi-impulse waveform at dose 25 mg/ml of methacholine Hanifi et al. 2012.
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Figures 5.5 to 5.8 present the simulation results from MATLAB of models from 

Table V.I with the semi- impulse waveform shown in Figure 3.10. Figure 5.5 shows the 

simulation results of the four mouse models at baseline methacholine level (0mg/ml). At 

the baseline level the four models respond very closely and similarly to the semi-impulse. 

In Figure 5.6 the methacholine dose is increased to 3.125 mg/ml and the responses

remain fairly close. Once the methacholine reaches 12.5 and above however; the models 

differentiate behaviors. 

One can see that the Normal model is the one with the steadiest response with 

respect to the increase of methacholine dose among the four laboratory models from 

Experiment 1. Next is the Tolerant model. This model, when compared to Acute and 

Chronic models, is closest in behavior to a normal lung. The reason some of the 

responses (especially those with higher methacholine doses) show oscillations, or contain 

damped sinusoidal waveforms is that the semi-impulse input, given by 3.15 and 

illustrated by Figure 3.10 contains low frequency harmonics. Please note that the results 

verify that the respiratory system with higher methacholine doses reacts faster to the 

input pulse. 

Another way to investigate the results shown in Figures 5.5 to 5.8 is to categorize 

the semi-impulse responses based on the asthma models (Figures 5.9 to 5.12) rather than 

the dose of methacholine. There is a great deal of information hidden in these figures. 
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Figure 5.9 Semi-impulse responses for the Chronic asthma model, a) 0 mg/ml b) 3.125 
mg/ml c) 6.25 mg/ml d) 12.5 mg/ml e) 25 mg/ml.

Figure 5.10 Semi-impulse responses for the Tolerant asthma model a) 0 mg/ml b) 3.125 
mg/ml c) 6.25 mg/ml d) 12.5 mg/ml e) 25 mg/ml
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Figure 5.11 Semi-impulse responses for the Normal model, a) 0 mg/ml b) 3.125 mg/ml c) 
6.25 mg/ml d) 12.5 mg/ml e) 25 mg/ml

Figure 5.12 Semi-impulse responses for the Acute asthma model, a) 0 mg/ml b) 3.125 
mg/ml c) 6.25 mg/ml d) 12.5 mg/ml e) 25 mg/ml.
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To interpret and compare the semi-impulse responses from different mouse models 

and to visualize the information from Figures 5.9 to 5.12, we define an arbitrary quantity 

as  

  base

basepeak
p amp

ampamp
a


                                        (5.2)

where amppeak corresponds to the amplitude of the first peak of the semi-impulse

responses for any dose other than the 0 mg/ml, and ampbase corresponds to the amplitude 

of the first peak of the semi-impulse response of the 0 mg/ml dose.

In Figure 5.13 ‘ap’ is shown for each asthma model based on increasing the 

methacholine dose. Interestingly enough, the parameter ‘ap’ is capable of predicting the 

severity of asthma for the mouse models developed in the laboratory. In other words, it 

shows that the degree of similarity to the normal mouse decreases from ‘Tolerant’ to 

‘Acute’ to ‘Chronic’. Thus, this mathematical index provides quantitative information 

about the severity of the disease and it preserves all the information from the semi-

impulse responses.

5.1.2 Experiment 2: Model Validation

The third order linear model from (5.1) was fitted to Normal, Chronic and the MEK 

inhibitor-treated mouse models from Experiment 2 at two available doses of 

methacholine (0 and 50 mg/ml).
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Methacholine dose (mg/ml)
Figure 5.13 The ‘ap’ for each mouse model dose-wise a) Chronic, b) Acute, c) Tolerant, 
d) Normal Hanifi et al. 2012.

In Figure 5.14 the semi-impulse response at the baseline level shows that the 

Normal model and the MEK inhibitor-treated have a similar pattern and they are slightly 

different from the Chronic asthma model. After the methacholine challenge, one can 

observe that the three models show more discrimination. The methacholine challenge 

magnified the difference in behavior. The result is interesting because it shows that the 

treatment has shifted the Chronic asthma model to a state that is closer to the Normal 

model.

The significance of analysis provided in Experiment 2 is 1) it validates our 

proposed model and, 2) the model is applicable to a single dose of methacholine. This 
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can be very promising for human studies where the complete methacholine dose-response 

frequently cannot be measured due to the poor lung condition of the patients. 
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Figure 5.14 Semi-impulse response for the mouse models from experiment 2, a) 
Normal; b) Chronic c) MEK inhibitor- treated at baseline Hanifi et al. 2012.

Figure 5.15 Semi-impulse response for the mice groups from experiment 2, a) 
Normal; b) chronic, c) MEK inhibitor- treated at dose 50 mg/ml Hanifi et al. 2012.
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5.1.3 Discussion

In Section 5.1, we designed a complete new analysis system for studying the mouse 

lung impedance. We:

- identified the respiratory impedance of mouse with a linear parametric model of order 

3 (5.1) that fits the data from Experiment 1 and 2 precisely in MATLAB;

- designed a semi-impulse waveform that would represent the impulse in the valid

frequency range for a mouse lung system; 

- simulated the mathematical models with the semi-impulse in MATLAB;

- designed a parameter ‘ap’ to interpret the results of time domain simulations of

models with semi-impulse based only on the peak values.

We showed that ‘ap’ and the time domain responses are capable of providing 

valuable insight into the systems’ behavior. It was concluded that the low order model 

and the simple time domain analyses are mathematically predictive of the severity of 

asthma and its response to treatment. 

5.2 Human Database 

In this part, the results of analysis of human database based on the methods 

described in Chapter 4 are provided.  

5.2.1 PCA

PCA as introduced in Chapter 4, follows two major objectives: 
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- reducing the number of variables of a dataset while retaining as much variability as 

possible;  

- revealing the hidden patterns in the data, and classifying them according to how much 

information they account for.

In this research, the main objective for applying the PCA has been to discover the 

possible hidden pattern of the original databases before clustering them with a secondary 

method. This results in better clustering of the data compared to the case of clustering the 

dataset with only a method like K-means or SOMs. Also, for a practical clustering system 

it is essential to suitably visualize the clustering results.

As stated in Chapter 4, the output of the PCA algorithm includes three matrices in 

the new space defined by the PCs, coefficient matrix, score matrix and variance vector: 

Coefficient matrix – contains coefficients summarizes the linear combinations of 

the original variables which generate the principal components. It represents the new 

space and its relation to the original space. Here, it is a 4 by 4 matrix. Table V.II shows 

the coefficient matrix:

PC1 PC2 PC3 PC4

1. FEV1 0.14 0.97 -0.13          0.067

2. PC20 0.54 -0.14 -0.68 -0.45
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3.Eosinophils -0.62 -0.14 -0.008 -0.77

4. IgE -0.54 -0.04 -0.71 0.43

TableV.II. Coefficient matrix from PCA in MATLAB

Scores matrix - This matrix contains the coordinates of the original data in the new 

coordinate system defined by the principal components. This matrix has the same size as 

the input data matrix. Figure 5.16 is a plot of the first three columns of scores. It

showsthe patients’ data projected onto the first three principal components. 

Figure 5.16: Scores in the space of the first three principal components in MATLAB.
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Variance vector:  This vector contains the variance which is explained by each of

the principal components.  Each column of scores has a sample variance equal to the 

corresponding element of variances. Figure 5.17 shows the percentage of variance 

(variance (i) over the sum of variances) measured by each principal component.

Figure 5.17 Variance vector in MATLAB.
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5.2.2 Hierarchical Clustering

As described in the SOM introduction, this algorithm needs the number of clusters 

as an input. To find an appropriate number for the possible clusters we generated a 

dendrogram shown in Figure 5.18. The dendrogram was generated by the Ward’s 

minimum variance algorithm. As seen on the dendrogram a good choice for number of 

clusters is five. 

Figure 5.18 Dendrogram generated using Ward’s minimum variance algorithm in 
MATLAB.
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their asthma condition cluster together. In Figure 5.19 the five clusters that are 

automatically generated by the SOM algorithm in MATLAB are manually separated 

from each other by circles. The circles aim to include the majority of the population and 

are drawn solely for the purpose of visualizing the relative location of clusters with 

respect to each other. This solely indicates that the patients out of the circle have not been 

close to the majority of population. In the case of increasing the number of patients under 

investigation, we expect the size of the circles to increase as well.

Figure 5.19 clusters of patients generated by SOMs in the space of SOM weight vectors
in MATLAB.

Cluster 0: Normal healthy subjects
Cluster 1: Mild asthma 
Cluster 2: Non-atopic female-dominant asthma
Cluster 3: Poorly reversible asthma 
Cluster 4: Poor lung function- and eosinophilia-associated asthma
Cluster 5: High IgE and hyperreactive airway-associated asthma
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5.2.4 Scoring System

In order to find a clinical relevance for the mathematically generated clusters we 

designed a scoring system. The scoring system is based upon parameters related to the 

patients’ ability to control   asthma. The details of scoring system are provided in Table 

V.III.

Each of the clusters from Figure 5.19 was then analyzed based on the 

corresponding patients’ instability score. Each patient was assigned an instability score 

based on Table V.III. A patient with an instability score above three is considered an 

unstable asthmatic patient. The average instability score for each cluster, as well as 

unstable asthmatic percentage for each cluster, is computed. The average instability score 

and the instability percentage in clusters are highly correlated. Cluster 5 which includes

the subjects with highly eosinophilic asthma has the highest percentage of instability and 

highest average score. The results of  the analyses are summarized in Table V.IV.
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Table V.III: Asthma instability scoring system 
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Table V.IV Asthma instability score and ACT score by clusters and treatment with 
omalizumab
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Figure 5.20 The distribution of FEV1 in each cluster

Figure 5.21 The distribution of PC20 for methacholine in each cluster



80

Figure 5.22 Total serum IgE distribution for each cluster

Figure 5.23 Blood eosinophil count in each cluster
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Cluster 1 2 3 4 5
N 30 35 42 33 28
Age Mean 33.96 58 50.1 52 48.35

Median 33 61 50 55 49.5
Female 55.5% 91% 71.2% 68.5% 50%
BMI Mean 31.6 30.5 27.68 28.65 30.7

Median 32 28.75 28 28 30
FEV1 (L) Mean 3.43 1.8 2.35 1.39 2.26

Median 3.44 1.85 2.37 1.42 2.2
Reversibilit
y (%)

Mean 9.3 11.7 11 23.93 19.11
Median 6 12 9 19.5 17

PC20 for 
Mch 
(mg/ml)

Mean 1.58 3.6 1.89 1.4 0.67
Median 1.08 3.21 1.76 0.51 0.39

IgE KIU/L Mean 114.5 9.25 83 263.95 811.03
Median 78 7 74.5 152 552

Eosinophils 
K/L

Mean 0.33 0.20 0.31 0.44 0.44

Median 0.25 0.2 0.2 0.4 0.3
Skin 
test/RAST

30% 30% 40% 53% 86%

FENO (ppb) Mean 16.6 35 32.5 38 50
Median 17 35 30 37 47

Descriptive 
Name of the 
Cluster

Mild 
asthma

Low IgE 
& female 
dominant 
asthma

Poorly 
reversible 
asthma

Poor lung 
function- & 
eosinophilia 
associated 
asthma

High IgE-, 
eosinophilia-
& 
hyperreactive 
airway-
associated 
asthma

Table V.V Comparison of baseline characteristics of the five asthma clusters.
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In Figures 5.20 to 5.23, the distribution of patients within each of the five clusters 

is shown for each of the four clinical parameters by help of a boxplot. The upper and 

lower margins of the box represent the 75th and 25th percentile of the data.  The patients 

residing outside this percentile range are shown with plus signs.  The line inside the box 

represents the median value.  This demographical presentation helps with understanding 

how the natural distribution for each of the four clinical parameters is different from each 

other.

                                               Mean                          Median
Age                                        48.59                            50
Gender                                   68% female
BMI                                       29.28                            28.75
FEV1                                     2.22                               2.15
PC20                                     1.97                               1.1
IgE                                        226.4                             90
Eosniophils                           0.33                              0.2
Reversibility

Table V.VI Demographics of the population study

5.2.5 Discussion

Through the application of PCA and SOMs we identified five different clusters of 

asthmatic patients based upon four quantitative variables of asthma—FEV1, PC20 for 

methacholine, eosinophil count and total IgE.  The cluster analysis identified five

clinically distinguishable subtypes of asthma: 1) Mild asthma; 2) Low IgE and female-

dominant asthma; 3) Poorly reversible asthma; 4) Poor lung function- and eosinophilia-

associated asthma; and 5) High IgE-, eosinophilia- and hyperreactive airway-associated 

asthma.  The first two subtypes had stable asthma.  Despite poor reversibility, cluster 3 
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patients also had largely stable asthma.  Asthma instability was increased in cluster 4 

with poor lung function- and eosinophilia-associated asthma.  However, the highest 

percentage (80%) of unstable asthmatic patients was segregated in cluster 5, which was 

associated with high IgE, eosinophilia and hyperreactive airways. Thus, our mathematical 

approach was able to identify patients, who had poorly controlled asthma.  The baseline 

FEV1 of cluster 5 patients was in the middle range for our patient cohort.  Cluster 5 also 

showed the second best reversibility.  The foregoing findings suggest that these patients, 

despite being highly unstable, did not have severely remodeled airways.           

Clinical Relevance for our mathematical cluster analysis: we have used the 

arbitrary score of four variables, weekly usage of rescue bronchodilators, annual systemic 

steroid usage, ER visits and hospitalization, and frequency of >20% drop in FEV1, to 

generate a composite annual score of instability.  The annual instability score was 

generated from a retrospective observation period of three or more years. The first three 

variables are frequently used as a measure of asthma severity.  Peak flow variability is 

also used as a measure of unstable asthma.  We used a threshold instability score of 3 

from a scale of 0-12 to define unstable asthma.  Increasing or decreasing the threshold by 

one point did not significantly alter the dominant feature of cluster 5 in representing 

unstable asthma. The ACT score is a validated measure of asthma stability.  About 35% 

of our study patients had ACT score available in the database for analysis.  We examined 

the ACT score in the clusters and compared it with our composite instability score.  The 

ACT score was highest in cluster 1 with mild asthma and lowest in cluster 5.  The ACT 
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score negatively and strongly correlated (r = -0.98, p = 0.001, Pearson correlation test) 

with the composite instability score( Table V.IV).  The composite instability score of 

asthma correlated (r = 0.93, p = 0.01, Pearson correlation test) with the frequency of 

omalizumab treatment in the clusters.  The frequency of current omalizumab treatment 

was 3%-4% in clusters 1 through 4.  In contrast, 46% of cluster 5 patients were on active 

omalizumab treatment and 18% of patients tried the treatment but discontinued it due to 

lack of benefits.  The omalizumab treatment reflects physician’s judgment about the 

refractoriness of their patients.  Its strong correlation with the instability score provides 

further evidence that the PCA and SOMs based analysis is a powerful approach to 

identifying patients with unstable patients.    

     

A low PC20 for methacholine and a high eosinophil count have traditionally been 

considered high risk factors for severe and unstable asthma (Moore et al., Woodruff et 

al.).  Our mathematical model confirmed this tenet.  Table V.V presents the most unstable 

group with the highest eosinophils count and lowest PC20 value.  Asthma is generally 

considered to be associated with mildly elevated IgE.  High total IgE is generally 

associated with allergic bronchopulmonary aspergillosis (ABPA), atopic dermatitis, food 

allergy, Churg-Strauss syndrome and parasitic illnesses.  Outside the foregoing 

conditions, a high total IgE level is not widely considered a risk factor for unstable 

asthma.  However, epidemiological studies have shown that an increased total of IgE 

highly correlates with airway hyperreactivity (low values of PC20 for methacholine) 

(Burrows et al.).  Our results are in agreement with a recent study of steroid therapy-
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resistant asthma in children (Bossley et al.).  The steroid therapy-resistant unstable 

asthmatic patients in this cohort had elevated IgE (386 KIU/L) and mild eosinophilia 

(4.1%), which is similar to what we observed in cluster 5.  The major function of an IgE 

antibody is to activate mast cells.  The airway smooth muscle-associated mast cell 

number has been reported to be increased in asthma (Brightling et al.).  Thus, it is 

possible that IgE contributes to asthma instability primarily by increasing airway 

hyperreactivity.  The seminal role of IgE in controlling asthma stability is supported by 

the clinical efficacy of omalizumab.  Our result suggests that an increase in total IgE 

above 300 KIU/L (25th percentile of cluster 5) PC20 for methacholine below 0.7 mg/ml 

(75th percentile of cluster 5) and an eosinophil count above 200/L (25th percentile of 

cluster 5) put the patient at risk of having unstable asthma.   

Mathematical evaluation of the clustering efficacy with k fold cross validation:

Mathematical evaluation of a predictive model can be done through cross 

validation. It includes methods such as: holdout method, k-fold cross validation and leave 

one out cross validation. In K-fold cross validation the data set it divided into k subsets 

and every time one of these subsets is kept for test and the other k-1 sets are considered 

as training sets. At last the average error for all test sets is computed. k fold cross 

validation has good performance and not much complexity. For mathematical validation 

of our clustering accuracy, we performed k fold cross validation. It is very common for to 

select k = 10 in k fold cross validation. The numerical error returned by this algorithm for 
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k = 10 in our study is 0.057. This means that our clustering analysis has high accuracy in 

practice as the error values are significantly low.
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Chapter 6

CONCLUSIONS and FUTURE WORK

In the presented research we were able to provide an analysis approach for the 

mouse lung impedance. We developed a linear model for the mouse lung system and 

tested the model with several sets of real data from laboratory mouse models of asthma.

This technique does the diagnosis and treatment evaluation by simulation of mouse 

impedance data and through defining an index called ‘ap’. It is simple and provides the 

possibility of time domain analysis that was not previously available. In comparing the 

proposed method with the previously reported methods, we observe that the previously 

reported methods, such as CPM, often study a group of parameters for evaluating the 

disease severity. Whereas the method we propose is a novel approach in which, by 

defining a single parameter called ‘ap,’ it can predict the disease severity and treatment 

response. 

Our method also provides the possibility of investigating the time domain response 

for input tests, such as semi-impulse, while in the previously reported methods, the time 

domain analyses is a very complicated procedure, if at all possible. 

This analysis can be extended to human data because similar measurements have 

been achieved through FOT in humans. In humans the lung input impedance is also 
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measured in the frequency domain. Using the general model given by (3.4) one can 

identify the impedance with a different ordered model compared to the mouse model. The 

proposed technique of predicting semi-impulse response can also be applied for analysis 

of efficacy of a treatment intervention. It would be interesting to generate a GUI based on 

our analysis for diagnosis and evaluation of treatment.

In human studies, asthma has traditionally been classified based upon clinical and 

laboratory features.  However, these classifications do not always predict the therapeutic 

response or long-term clinical stability.  Attempts have been made to analyze 

multidimensional clinical and laboratory data by mathematical approaches to identify 

asthma subtypes.  Clustering data through unsupervised learning approaches is a popular 

approach.  Clustering methods partition data into subsets (clusters) that are thought to 

exhibit internal cohesion and/or external isolation.  

The use of SOMs in our approach identified a single cluster of patients that is 

distinct not only in baseline disease severity but also in instability.  This is different from 

other previous studies.  Severe refractory patients were distributed in more than one 

cluster in the foregoing studies (Haldar et al., Moore et al.).  The identification of a single 

cluster with unstable asthma is important because it will have therapeutic and 

management implications.  It is of note that all four variables that we used in our analyses 

were also used in the k-means cluster analyses in the Haldar study.  Therefore, the input 
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data alone cannot explain the difference.  There are two major differences between our 

study and the previous studies with regards to the mathematical analysis as well as the 

evaluation of the clusters. First, we used a PCA- and SOMs-based cluster analysis 

method.  Second, we applied an annual composite score for unstable asthma.  

Unlike other studies, we focused only on a few highly studied clinical parameters.

The future stability or controllability of a patient’s asthma is a major question for doctors. 

In this study, by designing a scoring system for our mathematically driven clusters we 

assigned an instability score to each patient. We used a threshold of 3 from a scale of 0-

12 to define unstable asthma.  Increasing or decreasing the threshold by one point did not 

significantly alter the dominant feature of cluster 5 in representing unstable asthma.      

A major weakness of this study is its relatively low database size.  Increasing the 

study population size could further strengthen the correlation and the level of statistical 

significance. Adding normal people to our study is also of great importance for cluster 0.  

A future goal would be to follow the patients from cluster 5 and prospectively assess their 

clinical course.  Of note, patients from cluster 5 had the second highest median eosinophil 

count in addition to the highest level of total IgE.  Nearly half of the patients from cluster 

5 are treated with omalizumab and 18% failed to respond to this treatment.  Those who 

partially benefitted remain unstable despite being on omalizumab.  An anti-IL5 antibody 

has been shown to improve asthma control in refractory eosinophil-rich asthma.  It would 
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be of interest to determine if an anti-eosinophil intervention would reduce the risk of 

instability in this patient population.
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Appendix B
Mouse Lung impedance modeling, MATLAB codes.

clc;clear;
close all;
load realZ.mat;
load imagZ.mat;
f = [1 1.5 2.5 3.5 5.5 6.5 8.5 9.5 11.5 14.5 15.5 18.5 

20.5];f = 2*pi*f;
meth = [0 3.125 6.25 12.5 25];
Ts = 0.001;
mag0  =sqrt( meth0R.^2  + meth0I.^2);
mag3  =sqrt( meth3R.^2  + meth3I.^2);
mag6  =sqrt( meth6R.^2  + meth6I.^2);
mag12 =sqrt( meth12R.^2 + meth12I.^2);
mag25 =sqrt( meth25R.^2 + meth25I.^2);
magBL =sqrt( BLpostR.^2 + BLpostI.^2);
ph0  = atan(meth0I ./meth0R) .* 180/pi;
ph3  = atan(meth3I ./meth3R) .* 180/pi;
ph6  = atan(meth6I ./meth6R).* 180/pi;
ph12 = atan(meth12I./meth12R).* 180/pi;
ph25 = atan(meth25I./meth25R).* 180/pi;
phBL = atan(BLpostI./BLpostR).* 180/pi;
magSaline = 

[mag0(:,4),mag3(:,4),mag6(:,4),mag12(:,4),mag25(:,4)];
magDRA = 

[mag0(:,1),mag3(:,1),mag6(:,1),mag12(:,1),mag25(:,1)];
magAcute = 

[mag0(:,2),mag3(:,2),mag6(:,2),mag12(:,2),mag25(:,2)];
magTol = 

[mag0(:,3),mag3(:,3),mag6(:,3),mag12(:,3),mag25(:,3)];
subplot 121
mesh((magSaline),'EdgeColor','black');hold on; 
mesh((magDRA),'EdgeColor','green');
mesh((magAcute),'EdgeColor','red'); 
mesh(magTol,'EdgeColor','yellow');title('magnitudes of 

the four 
groups');legend('Normal','DRA','Acute','Tolerance');

phSaline = 
[ph0(:,4),ph3(:,4),ph6(:,4),ph12(:,4),ph25(:,4)];

phDRA = 
[ph0(:,1),ph3(:,1),ph6(:,1),ph12(:,1),ph25(:,1)];

phTol = 
[ph0(:,3),ph3(:,3),ph6(:,3),ph12(:,3),ph25(:,3)];
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phAcute = 
[ph0(:,2),ph3(:,2),ph6(:,2),ph12(:,2),ph25(:,2)];

subplot 122
mesh((phSaline),'EdgeColor','black');hold on;
mesh((phDRA),'EdgeColor','green');
mesh((phAcute),'EdgeColor','red');
mesh(phTol,'EdgeColor','yellow');title('phases of the 

four groups');legend('Normal','DRA','Acute','Tolerance');
%%
%set(gca,'DefaultLineLineWidth',10) 
set(0,'DefaultAxesLineStyleOrder','-|--|:|-.');
%set(0,'DefaultAxesColorOrder',[0 0 0],...
%       'DefaultAxesLineStyleOrder','-|--|:|-.')
set(0,'defaultaxesfontsize',12);
close all;

%% DRA
zfr= meth0R(:,1)+ i* meth0I(:,1);
dra0= oe(idfrd(zfr,f,Ts),[4 2 0],'Focus','Stab');
bode(dra0,'g--',{1 ,1000});
h = findobj(gcf,'type','line'); set(h,'linewidth',2); 
subplot 211
title('DRA methacoline dose 0');hold 

on;semilogx(f,(mag0(:,1)),'r*-');
subplot 212
hold on;semilogx(f,ph0(:,1) ,'r*-');current_axis = 

gca;h = findall(gcf,'type','axes','visible','on');
set(h,'linewidth',2.0);
axes(current_axis);
%%
figure
zfr= meth3R(:,1)+ i* meth3I(:,1);
dra3 = oe(idfrd(zfr,f,Ts),[4 2 0],'Focus','Stab');
bode(dra3,'g--',{1 ,1000});
h = findobj(gcf,'type','line');set(h,'linewidth',2);
subplot 211
title('DRA methacoline dose 3');hold 

on;semilogx(f,(mag3(:,1)),'r*-');
subplot 212
hold on;semilogx(f,ph3(:,1) ,'r*-'); current_axis = 

gca;  h = findall(gcf,'type','axes','visible','on'); 
set(h,'linewidth',2.0); axes(current_axis);
%%
figure
zfr= meth6R(:,1)+ i* meth6I(:,1);



101

dra6= oe(idfrd(zfr,f,Ts),[4 2 0],'Focus','Stab');
bode(dra6,'g--',{1 ,1000});
h = findobj(gcf,'type','line');set(h,'linewidth',2);
subplot 211
title('DRA methacoline dose 6');
hold on
semilogx(f,(mag6(:,1)),'r*-');
subplot 212
hold on;semilogx(f,ph6(:,1) ,'r*-'); current_axis = 

gca;  h = findall(gcf,'type','axes','visible','on'); 
set(h,'linewidth',2.0); axes(current_axis);
%%
figure
zfr= meth12R(:,1)+ i* meth12I(:,1);
dra12= oe(idfrd(zfr,f,Ts),[4 2 0],'Focus','Stab');
bode(dra12,'g--',{1 ,1000});
h = findobj(gcf,'type','line'); 
set(h,'linewidth',2);
subplot 211
title('DRA methacoline dose 12');hold 

on;semilogx(f,(mag12(:,1)),'r*-');
subplot 212
hold on;semilogx(f,ph12(:,1) ,'r*-'); current_axis = 

gca;  h = findall(gcf,'type','axes','visible','on');
set(h,'linewidth',2.0); axes(current_axis);
%%
figure
zfr= meth25R(:,1)+ i* meth25I(:,1);
dra25= oe(idfrd(zfr,f,Ts),[4 2 0],'Focus','Stab');
bode(dra25,'g--',{1 ,1000});
h = findobj(gcf,'type','line'); 
set(h,'linewidth',2);
subplot 211
title('DRA methacoline dose 25');
hold on
semilogx(f,(mag25(:,1)),'r*-');
subplot 212
hold on
semilogx(f,ph25(:,1) ,'r*-'); current_axis = gca;  h = 

findall(gcf,'type','axes','visible','on'); 
set(h,'linewidth',2.0); axes(current_axis);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%
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%%
% Acute
figure
zfr= meth0R(:,2)+ i* meth0I(:,2);
acute0= oe(idfrd(zfr,f,Ts),[4 2 0],'Focus','Stab');
bode(acute0,'g--',{1 ,1000});
h = findobj(gcf,'type','line'); 
set(h,'linewidth',2);
subplot 211
title('Acute methacoline dose 0');
hold on
semilogx(f,(mag0(:,2)),'r*-');
subplot 212
hold on
semilogx(f,ph0(:,2) ,'r*-'); current_axis = gca;  h = 

findall(gcf,'type','axes','visible','on'); 
set(h,'linewidth',2.0); axes(current_axis);
%%
figure
zfr= meth3R(:,2)+ i* meth3I(:,2);
acute3= oe(idfrd(zfr,f,Ts),[4 2 0],'Focus','Stab');
bode(acute3,'g--',{1 ,1000});
h = findobj(gcf,'type','line'); 
set(h,'linewidth',2);
subplot 211
title('Acute methacoline dose 3');
hold on
semilogx(f,(mag3(:,2)),'r*-');
subplot 212
hold on
semilogx(f,ph3(:,2) ,'r*-'); current_axis = gca;  h = 

findall(gcf,'type','axes','visible','on'); 
set(h,'linewidth',2.0); axes(current_axis);
%%
figure
zfr= meth6R(:,2)+ i* meth6I(:,2);
acute6= oe(idfrd(zfr,f,Ts),[4 2 0],'Focus','Stab');
bode(acute6,'g--',{1 ,1000}); h = 

findobj(gcf,'type','line');  set(h,'linewidth',2);
subplot 211
title('Acute methacoline dose 6');
hold on
semilogx(f,(mag6(:,2)),'r*-');
subplot 212
hold on
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semilogx(f,ph6(:,2) ,'r*-'); current_axis = gca;  h = 
findall(gcf,'type','axes','visible','on');

set(h,'linewidth',2.0); axes(current_axis);
%%
figure
zfr= meth12R(:,2)+ i* meth12I(:,2);
acute12= oe(idfrd(zfr,f,Ts),[4 2 0],'Focus','Stab');
bode(acute12,'g--',{1 ,1000}); h = 

findobj(gcf,'type','line');  set(h,'linewidth',2);
subplot 211
title('Acute methacoline dose 12');
hold on
semilogx(f,(mag12(:,2)),'r*-');
subplot 212
hold on
semilogx(f,ph12(:,2) ,'r*-'); current_axis = gca;  h = 

findall(gcf,'type','axes','visible','on'); 
set(h,'linewidth',2.0); axes(current_axis);
%%
figure
zfr= meth25R(:,2)+ i* meth25I(:,2);
acute25= oe(idfrd(zfr,f,Ts),[4 2 0],'Focus','Stab');
bode(acute25,'g--',{1 ,1000}); h = 

findobj(gcf,'type','line');  set(h,'linewidth',2);
subplot 211
title('Acute methacoline dose 25');
hold on
semilogx(f,(mag25(:,2)),'r*-');
subplot 212
hold on
semilogx(f,ph25(:,2) ,'r*-'); current_axis = gca;  h = 

findall(gcf,'type','axes','visible','on');
set(h,'linewidth',2.0); axes(current_axis);
%%
% Tolerance
figure
zfr= meth0R(:,3)+ i* meth0I(:,3);
tol0= oe(idfrd(zfr,f,Ts),[4 2 0],'Focus','Stab');
bode(tol0,'g--',{1 ,1000}); h = 

findobj(gcf,'type','line');  set(h,'linewidth',2);
subplot 211
title('Tolerance methacoline dose 0');
hold on
semilogx(f,(mag0(:,3)),'r*-');
subplot 212
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hold on
semilogx(f,ph0(:,3) ,'r*-'); current_axis = gca;  h = 

findall(gcf,'type','axes','visible','on'); 
set(h,'linewidth',2.0); axes(current_axis);
%%
figure
zfr= meth3R(:,3)+ i* meth3I(:,3);
tol3= oe(idfrd(zfr,f,Ts),[4 2 0],'Focus','Stab');
bode(tol3,'g--',{1 ,1000}); h = 

findobj(gcf,'type','line');  set(h,'linewidth',2);
subplot 211
title('Tolerance methacoline dose 3');
hold on
semilogx(f,(mag3(:,3)),'r*-');
subplot 212
hold on
semilogx(f,ph3(:,3) ,'r*-'); current_axis = gca;  h = 

findall(gcf,'type','axes','visible','on'); 
set(h,'linewidth',2.0); axes(current_axis);
%%
figure
zfr= meth6R(:,3)+ i* meth6I(:,3);
tol6= oe(idfrd(zfr,f,Ts),[4 2 0],'Focus','Stab');
bode(tol6,'g--',{1 ,1000}); h = 

findobj(gcf,'type','line');  set(h,'linewidth',2);
subplot 211
title('Tolerance methacoline dose 6');
hold on
semilogx(f,(mag6(:,3)),'r*-');
subplot 212
hold on
semilogx(f,ph6(:,3) ,'r*-'); current_axis = gca;  h = 

findall(gcf,'type','axes','visible','on'); 
set(h,'linewidth',2.0); axes(current_axis);
%%
figure
zfr= meth12R(:,3)+ i* meth12I(:,3);
tol12= oe(idfrd(zfr,f,Ts),[4 2 0],'Focus','Stab');
bode(tol12,'g--',{1 ,1000}); h = 

findobj(gcf,'type','line');  set(h,'linewidth',2);
subplot 211
title('Tolerance methacoline dose 12');
hold on
semilogx(f,(mag12(:,3)),'r*-');
subplot 212



105

hold on
semilogx(f,ph12(:,3) ,'r*-'); current_axis = gca;  h = 

findall(gcf,'type','axes','visible','on'); 
set(h,'linewidth',2.0); axes(current_axis);
%%
figure
zfr= meth25R(:,3)+ i* meth25I(:,3);
tol25= oe(idfrd(zfr,f,Ts),[4 2 0],'Focus','Stab');
bode(tol25,'g--',{1 ,1000}); h = 

findobj(gcf,'type','line');set(h,'linewidth',2);
subplot 211
title('Tolerance methacoline dose 25');
hold on
semilogx(f,(mag25(:,3)),'r*-');
subplot 212
hold on
semilogx(f,ph25(:,3) ,'r*-'); current_axis = gca;  h = 

findall(gcf,'type','axes','visible','on'); 
set(h,'linewidth',2.0); axes(current_axis);
%%
% Normal
figure
zfr= meth0R(:,4)+ i* meth0I(:,4);
normal0= oe(idfrd(zfr,f,Ts),[4 2 0],'Focus','Stab');
bode(normal0,'g--',{1 ,1000}); h = 

findobj(gcf,'type','line');set(h,'linewidth',2);
subplot 211
title('Normal methacoline dose 0');
hold on
semilogx(f,(mag0(:,4)),'r*-');
subplot 212
hold on
semilogx(f,ph0(:,4) ,'r*-'); current_axis = gca;  h = 

findall(gcf,'type','axes','visible','on'); 
set(h,'linewidth',2.0); axes(current_axis);
%%
figure
zfr= meth3R(:,4)+ i* meth3I(:,4);
normal3= oe(idfrd(zfr,f,Ts),[4 2 0],'Focus','Stab');
bode(normal3,'g--',{1 ,1000}); h = 

findobj(gcf,'type','line');  set(h,'linewidth',2);
subplot 211
title('Normal methacoline dose 3');
hold on
semilogx(f,(mag3(:,4)),'r*-');
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subplot 212
hold on
semilogx(f,ph3(:,4) ,'r*-'); current_axis = gca;  h = 

findall(gcf,'type','axes','visible','on');
set(h,'linewidth',2.0); axes(current_axis);
%%
figure
zfr= meth6R(:,4)+ i* meth6I(:,4);
normal6= oe(idfrd(zfr,f,Ts),[4 2 0],'Focus','Stab');
bode(normal6,'g--',{1 ,1000}); h = 

findobj(gcf,'type','line');  set(h,'linewidth',2);
subplot 211
title('Normal methacoline dose 6');
hold on
semilogx(f,(mag6(:,4)),'r*-');
subplot 212
hold on
semilogx(f,ph6(:,4) ,'r*-'); current_axis = gca;  h = 

findall(gcf,'type','axes','visible','on');
set(h,'linewidth',2.0); axes(current_axis);
%%
figure
zfr= meth12R(:,4)+ i* meth12I(:,4);
normal12= oe(idfrd(zfr,f,Ts),[4 2 0],'Focus','Stab');
bode(normal12,'g--',{1 ,1000}); h = 

findobj(gcf,'type','line');  set(h,'linewidth',2);
subplot 211
title('Normal methacoline dose 12');
hold on
semilogx(f,(mag12(:,4)),'r*-');
subplot 212
hold on
semilogx(f,ph12(:,4) ,'r*-'); current_axis = gca;  h = 

findall(gcf,'type','axes','visible','on');
set(h,'linewidth',2.0); axes(current_axis);
%%
figure
zfr= meth25R(:,4)+ i* meth25I(:,4);
normal25= oe(idfrd(zfr,f,Ts),[4 2 0],'Focus','Stab');
bode(normal25,'g--',{1 ,1000}); h = 

findobj(gcf,'type','line');  set(h,'linewidth',2);
subplot 211
title('Normal methacoline dose 25');
hold on
semilogx(f,(mag25(:,4)),'r*-');
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subplot 212
hold on
semilogx(f,ph25(:,4) ,'r*-'); current_axis = gca;  h = 

findall(gcf,'type','axes','visible','on');
set(h,'linewidth',2.0); axes(current_axis);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%
%%
close all
t = -8:.001:4;
% k = size(t);
ut=t.*0;

for k=1:.05:20
     
ut = ut+cos(2*pi*k*t);
end
% xx=0;
% %  gy=16/.001+1;
% %  for jj=1:gy
% %       
% %  ut(jj) = xx+1*ut(jj);
% %  xx=ut(jj); 
% %  end
% % ut=-ut;
% 
figure
plot(t,ut);
%  ut = 1/1*sin(2*pi*1*t)+ 1/3* sin(2*pi*3*t)+ 

1/5*sin(2*pi*5*t) ...
%     +1/7*sin(2*pi*7*t)+ 1/9* sin(2*pi*9*t)+ 1/11* 

sin(2*pi*11*t)...
%         +1/13* sin(2*pi*13*t) + 1/15* 

sin(2*pi*15*t)...
%      +1/17*sin(2*pi*17*t)+ 1/19* sin(2*pi*19*t) ...
%       +1/21*sin(2*pi*21*t)+ 1/23* sin(2*pi*23*t);
%   
ut = cos(2*pi*1*t)+ cos(2*pi*2*t) + cos(2*pi*3*t)+ 

cos(2*pi*4*t)+ cos(2*pi*5*t)+cos(2*pi*6*t) ...
    +cos(2*pi*7*t)+ cos(2*pi*8*t) + cos(2*pi*9*t)+ 

cos(2*pi*10*t)+ cos(2*pi*11*t)...
        +cos(2*pi*12*t)+ cos(2*pi*13*t) + 

cos(2*pi*14*t)+ cos(2*pi*15*t)+ cos(2*pi*16*t)...;
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     +cos(2*pi*17*t)+ cos(2*pi*18*t) + cos(2*pi*19*t)+ 
cos(2*pi*20*t)...

     
     + cos(2*pi*1.5*t)+ cos(2*pi*2.5*t) + 

cos(2*pi*3.5*t)+ cos(2*pi*4.5*t)+ 
cos(2*pi*5.5*t)+cos(2*pi*6.5*t) ...

    +cos(2*pi*7.5*t)+ cos(2*pi*8.5*t) + 
cos(2*pi*9.5*t)+ cos(2*pi*10.5*t)+ cos(2*pi*11.5*t)...

        +cos(2*pi*12.5*t)+ cos(2*pi*13.5*t) + 
cos(2*pi*14.5*t)+ cos(2*pi*15.5*t)+ cos(2*pi*16.5*t)...

     +cos(2*pi*17.5*t)+ cos(2*pi*18.5*t) + 
cos(2*pi*19.5*t)+cos(2*pi*20.5*t); 

% % xx=0;
%  gy=9/.001+1;
%  for jj=1:gy
%       
%  ut(jj) = xx+1*ut(jj);
%  xx=ut(jj); 
%  end
% ut=-ut;
%  

ut = ut*.01;
gg=size(t);
gg =8000-8;
%%
figure
subplot 321
plot(t(gg:end),ut(gg:end),'m-

','LineWidth',2);title('test input');axis tight;grid on
subplot 322
ydra0 =     sim(dra0,ut');      

plot(t(gg:end),ydra0(gg:end),'r.-','LineWidth',2);hold on; 
%axis([0 10 -200 200])

yacute0 =   sim(acute0,ut');    
plot(t(gg:end),yacute0(gg:end),'g--','LineWidth',2);hold 
on; %axis([0 10 -400 400]) 

ytol0 =     sim(tol0,ut');      
plot(t(gg:end),ytol0(gg:end),'b-','LineWidth',2);hold on; 
%axis([0 10 -200 200]) 

ynormal0 =  sim(normal0,ut');   
plot(t(gg:end),ynormal0(gg:end),'c--','LineWidth',2);hold 
on; %axis([0 10 -100 100])

title('Baseline');axis tight;grid on% legend(' dra0',' 
acute0','tolerance0','normal0');



109

legend(' dra',' acute','tolerance','normal');
% figure
subplot 323
ydra3 =     sim(dra3,ut');      

plot(t(gg:end),ydra3(gg:end),'r.-','LineWidth',2);hold on; 
%axis([0 10 -200 200])

yacute3 =   sim(acute3,ut');    
plot(t(gg:end),yacute3(gg:end),'g--','LineWidth',2);hold 
on; %axis([0 10 -400 400]) 

ytol3 =     sim(tol3,ut');      
plot(t(gg:end),ytol3(gg:end),'b--','LineWidth',2);hold on; 
%axis([0 10 -200 200]) 

ynormal3 =  sim(normal3,ut');   
plot(t(gg:end),ynormal3(gg:end),'c--','LineWidth',2);hold 
on; %axis([0 10 -100 100])

% legend(' dra3',' acute3','tolerance3','normal3');
title('Dose 3mg');axis tight;grid on
% figure
subplot 324
ydra6 =     sim(dra6,ut');      

plot(t(gg:end),ydra6(gg:end),'r.-','LineWidth',2);hold on; 
%axis([0 10 -200 200])

yacute6 =   sim(acute6,ut');    
plot(t(gg:end),yacute6(gg:end),'g--','LineWidth',2);hold 
on; %axis([0 10 -400 400]) 

ytol6 =     sim(tol6,ut');      
plot(t(gg:end),ytol6(gg:end),'b--','LineWidth',2);hold on; 
%axis([0 10 -200 200]) 

ynormal6 =  sim(normal6,ut');   
plot(t(gg:end),ynormal6(gg:end),'c--','LineWidth',2);hold 
on; %axis([0 10 -100 100])

% legend(' dra6',' acute6','tolerance6','normal6');
title('Dose 6mg');axis tight;grid on
% figure
subplot 325
ydra12 =    sim(dra12,ut');     

plot(t(gg:end),ydra12(gg:end),'r.-','LineWidth',2);hold on; 
%axis([0 10 -200 200])

yacute12 =  sim(acute12,ut');   
plot(t(gg:end),yacute12(gg:end),'g--','LineWidth',2);hold 
on; %axis([0 10 -400 400]) 

ytol12 =    sim(tol12,ut');     
plot(t(gg:end),ytol12(gg:end),'b--','LineWidth',2);hold on; 
%axis([0 10 -200 200]) 
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ynormal12 = sim(normal12,ut');  
plot(t(gg:end),ynormal12(gg:end),'c--','LineWidth',2);hold 
on; %axis([0 10 -100 100])

% legend(' dra12',' acute12','tolerance12','normal12');
title('Dose 12mg');axis tight;grid on
% figure
subplot 326
ydra25 =    sim(dra25,ut');     

plot(t(gg:end),ydra25(gg:end),'r-','LineWidth',2);hold on; 
%axis([0 10 -200 200])

yacute25 =  sim(acute25,ut');   
plot(t(gg:end),yacute25(gg:end),'g--','LineWidth',2);hold 
on; %axis([0 10 -400 400]) 

ytol25 =    sim(tol25,ut');     
plot(t(gg:end),ytol25(gg:end),'b--','LineWidth',2);hold on; 
%axis([0 10 -200 200]) 

ynormal25 = sim(normal25,ut');  
plot(t(gg:end),ynormal25(gg:end),'c--','LineWidth',2);hold 
on; %axis([0 10 -100 100])

% legend(' dra25',' acute25','tolerance25','normal25');
title('Dose 25mg');axis tight;grid on
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%

%%
%figure
% subplot 221
% ydra0 = sim(dra0,ut'); plot(t(k(2)-

4000:k(2)),ydra0(k(2)-4000:k(2)),'r--','LineWidth',2);hold 
on; 

% ydra3 = sim(dra3,ut'); plot(t(k(2)-
4000:k(2)),ydra3(k(2)-4000:k(2)),'g.-','LineWidth',2);

% ydra6 = sim(dra6,ut');plot(t(k(2)-
4000:k(2)),ydra6(k(2)-4000:k(2)),'c--','LineWidth',2);

% ydra12 = sim(dra12,ut');plot(t(k(2)-
4000:k(2)),ydra12(k(2)-4000:k(2)),'y-','LineWidth',2);

% ydra25 = sim(dra25,ut');plot(t(k(2)-
4000:k(2)),ydra25(k(2)-4000:k(2)),'b-','LineWidth',2);

figure
% subplot 321

ydra0 = sim(dra0,ut'); plot(t(gg:end),ydra0(gg:end),'r-
-','LineWidth',2);hold on; 
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ydra3 = sim(dra3,ut'); 
plot(t(gg:end),ydra3(gg:end),'g.-','LineWidth',2);%axis([0 
10 -50 50])

% subplot 323
ydra6 = sim(dra6,ut');plot(t(gg:end),ydra6(gg:end),'c--

','LineWidth',2);%axis([0 10 -50 50])
% subplot 324
ydra12 = 

sim(dra12,ut');plot(t(gg:end),ydra12(gg:end),'y-
','LineWidth',2);%axis([0 10 -50 50])

% subplot 325
ydra25 = 

sim(dra25,ut');plot(t(gg:end),ydra25(gg:end),'b-
','LineWidth',2);%axis([0 10 -50 50])

title('DRA dose response to u(t)');legend(' dra0',' 
dra3','dra6','dra12','dra25');

grid on;

% figure
% subplot 222
% yacute0 = sim(acute0,ut'); plot(t(k(2)-

4000:k(2)),yacute0(k(2)-4000:k(2)),'r--
','LineWidth',2);hold on; 

% yacute3 = sim(acute3,ut'); plot(t(k(2)-
4000:k(2)),yacute3(k(2)-4000:k(2)),'g.-','LineWidth',2);

% yacute6 = sim(acute6,ut');plot(t(k(2)-
4000:k(2)),yacute6(k(2)-4000:k(2)),'c--','LineWidth',2);

% yacute12 = sim(acute12,ut');plot(t(k(2)-
4000:k(2)),yacute12(k(2)-4000:k(2)),'y-','LineWidth',2);

% yacute25 = sim(acute25,ut');plot(t(k(2)-
4000:k(2)),yacute25(k(2)-4000:k(2)),'b-','LineWidth',2);

% yacute0 = sim(acute0,ut'); plot(t,yacute0,'r--
','LineWidth',2);hold on; 

% yacute3 = sim(acute3,ut'); plot(t,yacute3,'g.-
','LineWidth',2);

% yacute6 = sim(acute6,ut');plot(t,yacute6,'c--
','LineWidth',2);

% yacute12 = sim(acute12,ut');plot(t,yacute12,'y-
','LineWidth',2);

% yacute25 = sim(acute25,ut');plot(t,yacute25,'b-
','LineWidth',2);

figure
% subplot 321
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yacute0 = sim(acute0,ut'); 
plot(t(gg:end),yacute0(gg:end),'r--','LineWidth',2);hold 
on; %axis([0 10 -400 400])

% subplot 322
yacute3 = sim(acute3,ut'); 

plot(t(gg:end),yacute3(gg:end),'g.-
','LineWidth',2);%axis([0 10 -400 400])

% subplot 323
yacute6 = 

sim(acute6,ut');plot(t(gg:end),yacute6(gg:end),'c--
','LineWidth',2);%axis([0 10 -400 400])

% subplot 324
yacute12 = 

sim(acute12,ut');plot(t(gg:end),yacute12(gg:end),'y-
','LineWidth',2);%axis([0 10 -400 400])

% subplot 325
yacute25 = 

sim(acute25,ut');plot(t(gg:end),yacute25(gg:end),'b-
','LineWidth',2);%axis([0 10 -400 400])

title('Acute dose response to u(t)');legend(' acute0',' 
acute3','acute6','acute12','acute25');

grid on;

% %%
% % figure
% % subplot 223
% % ytol0 = sim(tol0,ut'); plot(t(k(2)-

4000:k(2)),ytol0(k(2)-4000:k(2)),'r--','LineWidth',2);hold 
on; 

% % ytol3 = sim(tol3,ut'); plot(t(k(2)-
4000:k(2)),ytol3(k(2)-4000:k(2)),'g.-','LineWidth',2);

% % ytol6 = sim(tol6,ut');plot(t(k(2)-
4000:k(2)),ytol6(k(2)-4000:k(2)),'c--','LineWidth',2);

% % ytol12 = sim(tol12,ut');plot(t(k(2)-
4000:k(2)),ytol12(k(2)-4000:k(2)),'y-','LineWidth',2);

% % ytol25 = sim(tol25,ut');plot(t(k(2)-
4000:k(2)),ytol25(k(2)-4000:k(2)),'b-','LineWidth',2);

% % ytol0 = sim(tol0,ut'); plot(t,ytol0,'r--
','LineWidth',2);hold on; 

% % ytol3 = sim(tol3,ut'); plot(t,ytol3,'g.-
','LineWidth',2);

% % ytol6 = sim(tol6,ut');plot(t,ytol6,'c--
','LineWidth',2);

% % ytol12 = sim(tol12,ut');plot(t,ytol12,'y-
','LineWidth',2);
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% % ytol25 = sim(tol25,ut');plot(t,ytol25,'b-
','LineWidth',2);

figure
% subplot 321
ytol0 = sim(tol0,ut'); plot(t(gg:end),ytol0(gg:end),'r-

-','LineWidth',2);hold on; %axis([0 10 -400 400])
% subplot 322
ytol3 = sim(tol3,ut'); 

plot(t(gg:end),ytol3(gg:end),'g.-','LineWidth',2);%axis([0 
10 -400 400])

% subplot 323
ytol6 = sim(tol6,ut');plot(t(gg:end),ytol6(gg:end),'c--

','LineWidth',2);%axis([0 10 -400 400])
% subplot 324
ytol12 = 

sim(tol12,ut');plot(t(gg:end),ytol12(gg:end),'y-
','LineWidth',2);%axis([0 10 -400 400])

% subplot 325
ytol25 = 

sim(tol25,ut');plot(t(gg:end),ytol25(gg:end),'b-
','LineWidth',2);%axis([0 10 -400 400])

title('Tolerance dose response to u(t)');legend(' 
Tolerance0',' 
Tolerance3','Tolerance6','Tolerance12','Tolerance25');

grid on;
% % figure
% % subplot 224
% % ynormal0 = sim(normal0,ut'); plot(t(k(2)-

4000:k(2)),ynormal0(k(2)-4000:k(2)),'r--
','LineWidth',2);hold on; 

% % ynormal3 = sim(normal3,ut'); plot(t(k(2)-
4000:k(2)),ynormal3(k(2)-4000:k(2)),'g.-','LineWidth',2);

% % ynormal6 = sim(normal6,ut');plot(t(k(2)-
4000:k(2)),ynormal6(k(2)-4000:k(2)),'c--','LineWidth',2);

% % ynormal12 = sim(normal12,ut');plot(t(k(2)-
4000:k(2)),ynormal12(k(2)-4000:k(2)),'y-','LineWidth',2);

% % ynormal25 = sim(normal25,ut');plot(t(k(2)-
4000:k(2)),ynormal25(k(2)-4000:k(2)),'b-','LineWidth',2);

% % ynormal0 = sim(normal0,ut'); plot(t,ynormal0,'r--
','LineWidth',2);hold on; 

% % ynormal3 = sim(normal3,ut'); plot(t,ynormal3,'g.-
','LineWidth',2);

% % ynormal6 = sim(normal6,ut');plot(t,ynormal6,'c--
','LineWidth',2);
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% % ynormal12 = sim(normal12,ut');plot(t,ynormal12,'y-
','LineWidth',2);

% % ynormal25 = sim(normal25,ut');plot(t,ynormal25,'b-
','LineWidth',2);

figure
% subplot 321
ynormal0 = sim(normal0,ut'); 

plot(t(gg:end),ynormal0(gg:end),'r--','LineWidth',2);hold 
on; %axis([0 10 -400 400])

% subplot 322
ynormal3 = sim(normal3,ut'); 

plot(t(gg:end),ynormal3(gg:end),'g.-
','LineWidth',2);%axis([0 10 -400 400])

% subplot 323
ynormal6 = 

sim(normal6,ut');plot(t(gg:end),ynormal6(gg:end),'c--
','LineWidth',2);%axis([0 10 -400 400])

% subplot 324
ynormal12 = 

sim(normal12,ut');plot(t(gg:end),ynormal12(gg:end),'y-
','LineWidth',2);%axis([0 10 -400 400])

% subplot 325
ynormal25 = 

sim(normal25,ut');plot(t(gg:end),ynormal25(gg:end),'b-
','LineWidth',2);%axis([0 10 -400 400])

title('Normal dose response to u(t)');legend(' 
Normal0',' Normal3','Normal6','Normal12','Normal25');

grid on;

Human data modeling, MATLAB codes

data=[data(:,1),log(data(:,2)+1),log10(data(:,3)+1),(lo
g10(1+data(:,4)))];

%%
categories = {'FEV1','Methacholine','Total 

IgE','Eosinophils'};
ave     = mean(data);
data = data- repmat(ave,length(data),1);
stdr    = std(data);



115

sr      = data./repmat(stdr,length(data),1);
[coefs,scores,variances,tt] = princomp(sr);
figure(4)
scatter(scores(:,1),scores(:,2),'r');
xlabel('First Principal Component');
ylabel('Second Principal Component');
title('Principal Component Scatter 

Plot');%gname(comdiagnosis);
% gname();
figure(5)
vlabs = categories;
biplot(coefs(:,1:3),'scores',scores(:,1:3),'varlabels',

vlabs);
figure(6)
percent_explained = 100*variances/sum(variances);
pareto(percent_explained);
xlabel('Principal Component')
ylabel('Variance Explained (%)');grid;
%
[pc, zscores, pcvars] = princomp(data);
pcvars./sum(pcvars) .* 100;
cumsum(pcvars./sum(pcvars) * 100)
figure(7)
scatter(zscores(:,1),zscores(:,2));
xlabel('First Principal Component');
ylabel('Second Principal Component');
title('Principal Component Scatter Plot');%gname();

corrDist = pdist(data, 'corr');
clusterTree = linkage(corrDist, 'average');
clusters = cluster(clusterTree, 'maxclust', 4);

figure
for c = 1:4
    subplot(2,2,c);
    plot(data((clusters == c),:)');
    axis tight
end
%%
rand('state',0);
[cidx, ctrs] = kmeans(data, 6, 'dist','corr', 

'rep',2,'disp','final');
figure
for c = 1:6
    subplot(2,3,c);
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    plot(data((cidx == c),:)');
    axis tight
end
suptitle('K-Means Clustering of Profiles');
suptitle('Hierarchical Clustering of Profiles');
figure
for c = 1:6
    subplot(2,3,c);
    plot(ctrs(c,:)');
    axis tight
    axis off    % turn off the axis
end
suptitle('K-Means Clustering of Profiles');
%%
% clustergram(data)
% figure;
% Y = pdist(data(:,1:end),'seuclidean');
% Z = linkage(Y,'average');
% [H,T] = dendrogram(Z,'colorthreshold','default');
% set(H,'LineWidth',2)

%%
P = zscores(:,1:2)';
net = newsom(P,[2 2]);
net = train(net,P);
figure
plot(P(1,:),P(2,:),'.g','markersize',20);
hold on
plotsom(net.iw{1,1},net.layers{1}.distances);
hold off
distances = dist(P',net.IW{1}');
[d,cndx] = min(distances,[],2);
% cndx gives the cluster index
figure
gscatter(P(1,:),P(2,:),cndx); legend off;
hold on
plotsom(net.iw{1,1},net.layers{1}.distances);gname(ori(

:,3))
hold off

%%
orindx = [ori,cndx];
sum1 = []; sum2 = []; sum3 = []; sum4 = []; sum5 = []; 

sum6 = [];
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num1 =0;num2 =0;num3 =0;num4 =0;num5 =0;num6 =0;
ind1=[];ind2=[];ind3=[];ind4=[];ind5=[];ind6=[];
for i = 1 : length(ori)
    if orindx(i,5) ==1
        sum1 = [sum1; ori(i,:)];
        num1 = num1+1;
        ind1 = [ind1;i];
    elseif orindx(i,5) ==2
        sum2 = [sum2 ; ori(i,:)];
        num2 = num2+1;
        ind2 = [ind2;i];
    elseif orindx(i,5) ==3
        sum3 = [sum3 ; ori(i,:)];
        num3 = num3+1;
        ind3 = [ind3;i];
    elseif orindx(i,5) ==4
        sum4 = [sum4 ; ori(i,:)];
        num4 = num4+1;
        ind4 = [ind4;i];
    elseif orindx(i,5) ==5
        sum5 = [sum5 ; ori(i,:)];
        num5 = num5+1;
        ind5 = [ind5;i];
    elseif orindx(i,5) ==6
        sum6 = [sum6 ; ori(i,:)];
        num6 = num6+1;
        ind6 = [ind6;i];
    end     
end
clus1 = (sum(sum1, 1))/num1;
clus2 = (sum(sum2, 1))/num2;
clus3 = (sum(sum3, 1))/num3;
clus4 = (sum(sum4, 1))/num4;
clus5 = (sum(sum5, 1))/num5;
clus6 = (sum(sum6, 1))/num6;
[clus1;clus2;clus3;clus4;clus5;clus6]
%%

fevgroups = [fev11;fev12;fev13;fev14;fev15];
pcgroups  =  [pc201;pc202;pc203;pc204;pc205];
igegroups = [ige1;ige2;ige3;ige4;ige5];
eosgroups = [eos1;eos2;eos3;eos4;eos5];
fevnames = {names1{:,1},names2{:,1}, 

names3{:,1},names4{:,1},names5{:,1}};
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pcnames  = {names1{:,2},names2{:,2}, names3{:,2}, 
names4{:,2}, names5{:,2}};

igenames = {names1{:,3},names2{:,3}, names3{:,3}, 
names4{:,3}, names5{:,3}};

eosnames = {names1{:,4},names2{:,4}, names3{:,4}, 
names4{:,4}, names5{:,4}};

[p1,anovatab1,stats1] = anova1(fevgroups',fevnames);

[p2,anovatab2,stats2] = anova1(pcgroups',pcnames);
[p3,anovatab3,stats3] = anova1(igegroups',igenames);
[p4,anovatab4,stats4] = anova1(eosgroups',eosnames);
%[p5,anovatab5,stats5] = anova1(eosgroups',eosnames);
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