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Abstract 

 

The protein Tau is found in neurofibrillary tangles in Alzheimer’s disease and 

over 20 other neurodegenerative diseases. An assay has been developed to detect minute 

amounts of fibrils from human brain tissue. This assay subjects brain tissue extract and 

recombinant Tau to several rounds of sonication and incubation. Incubation allows 

recombinant Tau to add itself to the ends of the existing fibrils in brain tissue extract. 

Sonication breaks the existing fibrils in the brain tissue extract offering more ends for 

Tau to add onto. Cycles of sonication and incubation have been shown to allow for 

amplification of Tau fibrils from Alzheimer’s disease tissue. This assay can be used not 

only for detection, but also to note differences between tauopathies and to look at various 

agents that have been shown to block fibril growth. 
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Chapter One: Introduction 

1.1 Protein Aggregation Diseases 

1.1.1 Discovery of Diseases of Protein Aggregation 

Protein aggregates in the form of amyloid plaques and neurofibrillary tangles 

(NFTs) have been observed in Alzheimer’s Disease (AD) since 1906 when Alois 

Alzheimer first described the disease, which was later named for him1. The identified 

amyloid plaques were eventually discovered to be composed of the peptide Amyloid-β 

(Aβ)2 and the tangles consist of the protein Tau3. The cause of these plaques and tangles 

was unknown, but they were seen repeatedly in the brain tissue of AD patients, along 

with significant neurodegeneration and loss of grey matter and white matter4.  

The discovery of Prion protein (PrP) aggregates in scrapie sheep introduced the 

idea that protein aggregates could be the infectious agent in disease5. Prion diseases occur 

in a variety of mammals including chronic wasting disease in cervid populations6, bovine 

spongiform encephalopathy (BSE) in cows7, and scrapie in sheep. Creutzfeldt-Jakob 

disease (CJD), fatal familial insomnia (FFI), kuru and other prion diseases are known to 

occur in humans8. For many years, prion diseases were thought to be caused by a “slow 

virus” 9. First scrapie and then Kuru were identified as infectious diseases with long 

incubation times and similar pathologies9. The evidence provided was that an injection of 

scrapie infected material into the brain of a healthy sheep caused infection, but only over 
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time. The rationale was that this is caused by a virus with an incubation time of months to 

years. In 198610, Ashley T. Haase suggested that AD was similar in progress and lengthy 

incubation time to these other slow viruses, but was unable to identify a specific 

infectious agent, thus suggesting the term “unconventional agent” be used for the 

infectious particle. 

Prion diseases have more recently been identified as protein misfolding diseases. 

They are acquired either iatrogenically or by ingesting misfolded Prions (PrPSC) among 

the same species. Kuru occurred after the Fore people of Papua New Guinea would 

consume the brains of the deceased in a religious ceremony11. Occasionally prions can be 

infectious across species. Although rare, humans who have eaten meat from cows with 

BSE have been diagnosed with variant CJD (vCJD)12. This infectious protein has an 

incubation time of many years, and most people who have eaten the same meat never 

have any symptoms of vCJD. Not all prion diseases are infectious. FFI is inherited in an 

autosomal dominant manner13, but is still considered a prion disease because it involves 

misfolding and aggregation of the prion protein. 

While not necessarily infectious, many proteins show templating behavior and 

can be recruited to aggregate and adopt the conformation of the aggregate instead of the 

functional structure. These aggregates are frequently seen in connection with 

neurodegenerative diseases. Aβ aggregates in the form of amyloid plaques in AD, α-

synuclein aggregates into Lewy Bodies in Parkinson’s Disease and Lewy Body 

Dementia14, and Tau aggregates into neurofibrillary tangles found in AD, Progressive 
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Supranuclear Palsy (PSP), Chronic Traumatic Encephalopathy (CTE) and more than 20 

other diseases, which are collectively known as tauopathies15,16,17. 

1.1.2 Tauopathies 

Although all tauopathies contain fibrillar aggregates of Tau, the causes and 

symptoms of tauopathies are diverse. AD is the most common tauopathy and affects more 

than 5,000,000 people in the United States18. As the population ages, this number will 

continue to increase causing strain on caregivers, medical professionals, and insurers. 

Symptoms begin to appear as difficulty learning new things, and progress to memory 

loss, speech loss, and eventually loss of motor control.  

While AD is the most common tauopathy, there are many more which have a 

variety of symptoms and causes of onset. Difficulty with balance and eye movement are 

initial clinical symptoms of PSP. This progresses with continually decreased motor 

function and cognitive decline in typical PSP. Atypical PSP presents with many of the 

typical PSP symptoms while cognitive decline is not present19. Pick’s Disease (PiD) 

affects the frontal lobe and executive function marked with a change in mood and 

personality. This leads to difficulty with language and eventually an inability to speak at 

all15. 

Tauopathies can be initiated by several different pathways. Although AD occurs 

sporadically in most cases, less than 5% of cases are linked to a small number of gene 

mutations; however, these gene mutations virtually guarantee AD onset late in life20.  

Similarly, PSP and PiD are typically sporadic with a small number of mutations 

contributing to a genetic factor for disease. Frontotemporal Dementia with Parkinsonism 
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linked to Chromosome 17 (FTDP17) is a purely genetic disease. CTE is a tauopathy 

which is initiated by significant or repeated head trauma, recently highlighted in a study 

of deceased players from the National Football League, as well as high school and 

college atheletes21. 

Interestingly, Tau tangles and Aβ plaques are also found in nearly all people with 

Down Syndrome (DS) above the age of forty22. For most with DS, Tau aggregates begin 

showing up in their 30s, with essentially 100% of people with DS over the age of 60 

showing Tau tangles and Aβ plaques. Tau is also hyperphosphorylated in DS the same 

way hyperphosphorylation occurs in AD23. The protein aggregates follow a progression 

identical to AD. However, not all of those with DS have clinically diagnosable AD. 

1.2 Tau Protein 

1.2.1 Structure and Function 

The microtubule associated protein (MAP) Tau is an intrinsically disordered 

protein that is primarily found in the brain. Tau has between 352 and 441 amino acids 

(AAs) in its primary sequence. The MAPT gene encodes for Tau and contains 16 exons, 

three of which are responsible for the six isoforms found in the adult human brain24,25. 

Exons 2 and 3 dictate the inclusion of zero, one, or two N-terminal inserts. Exon 10 

determines the presence or absence of the second of four semi-conserved amino acid 

repeat regions near the C-terminal end of the protein. Tau is frequently classified as 

three-repeat (3R) or four-repeat (4R) when describing the protein (Figure 1A). Tau’s 

primary function is to bind and stabilize microtubules. This binding occurs at the repeat 
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regions of the protein26. Even when bound to microtubules, the N- and C-terminal ends of 

the protein still exhibit disordered behavior27. 

The two isoforms of full length Tau used in this research are hTau23, which has a 

mass of 36,760 Da, and hTau40, which has a mass of 45,850 Da28. Truncated Tau has 

also been used to mimic the aggregation of Tau in vitro. Truncated Tau consists of just 

the repeat regions with the C- and N-terminal ends removed. The lack of the N- and C-

terminal ends allows aggregation to occur faster. K18 refers to the 4R truncated Tau, and 

3R truncated Tau is K1929.  

In this work, native cysteines have been removed and replaced by serines at 

positions 291 and 322 in hTau40 and position 322 in 3R isoforms. The cysteines were 

removed to inhibit dimerization by disulfide bonds in 3R and 4R isoforms, which could 

cause spontaneous nucleation to occur quicker30. Intramolecular disulfide bonding could 

create compact monomers in 4R Tau making aggregation more difficult31,32. When the 

cysteines are present, it would be necessary to use a reducing agent to prevent disulfide 

linkages. By mutating the residues to serine, this additional step is not necessary. The 

isoforms commonly used in this work are the cysteine-less versions of hTau23 

(hTau23cl) and hTau40 (hTau40cl). 

1.2.2 Tau Protein in Disease 

In disease, Tau undergoes aggregation and spreading throughout the brain. There 

are two phases in protein aggregation. Nucleation occurs when a minimum number of 

monomers and cofactors interact and allow an initial nucleus to form33. Nucleation is the 

slow step in the process. Tau has an overall positive charge and requires an anionic 
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Figure 1: Protein Isoforms. (A) The first three isoforms are the 4R Tau protein isoforms 

which contain two, one, and zero N-Terminal inserts. Then the 3R isoforms are shown, 

which also have two, one, or zero N-Terminal inserts. The truncated Tau isoforms K18 

and K19, follow. (B) shows the truncated isoforms of MAP2d (4R) and MAP2c (3R). (C) 

show the proteolytic cleavage products of the two fragments of APP found in disease 

(Aβ40 and Aβ42) TR refers to the 12 or 14 AA transmembrane region.           

A 

B 
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cofactor for nucleation to occur.  In vitro, the polyanionic glycosaminoglycan heparin is 

frequently used34. In vitro processes show a long lag phase before nucleation occurs. 

Once a nucleus is formed, growth can begin. During the elongation phase, monomer adds 

to the ends of the nucleus to form fibrils of parallel, in-register, cross β-sheets35,36,37.  

1.3 MAP2 

MAP2 is a second group of microtubule associated proteins that are also found in 

the human brain38. Like Tau, MAP2 binds and stabilizes microtubules39. MAP2c and 

MAP2d are the shorter isoforms of MAP2 and contain either three (MAP2c) or four 

(MAP2d) microtubule binding repeats40. The MAP2 gene contains 19 exons and is 

responsible for the expression of each of the isoforms of MAP241. Notably, alternative 

splicing of exon 7 differentiates between MAP2c and MAP2d. Like Tau, the MAP2 

proteins are intrinsically disordered, and in this work truncated forms of MAP2c and 

MAP2d have been used consisting of only the binding repeat regions. These constructs 

will be referred to as trMAP2c, which has a molecular mass of approximately 11 kDa and 

trMAP2d which has a mass of about 14 kDa (Figure 1B). 

1.4 Amyloid-β 

In addition to Tau, the 40 to 42 AA protein fragment Aβ (Aβ40 or Aβ42) also 

aggregates in AD forming amyloid plaques (Figure 1C). These amyloid plaques are 

extracellular aggregates. Aβ is a proteolytic fragment of the Amyloid Precursor Protein 

(APP) caused by proteolytic cleavage by β-secretase at residue 671 and γ-secretase on the 

C-terminal end42. APP is a transmembrane protein and the Aβ fragment consists of the 28 
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residues just before the transmembrane region and the first 12 or 14 AAs inside the 

transmembrane region. This work uses Aβ42, which has a molecular mass of 4.5 kDa. 

1.5 Tauopathy Pathology and Diagnosis 

1.5.1 Classification of Tauopathies 

Tauopathies can be classified by the make-up of the fibrils found in diseased 

tissue. Three-repeat tauopathies contain fibrils made up of the three 3R isoforms of Tau. 

The diseases that fall under this category include frontotemporal dementias such as PiD43. 

PSP and CBD are examples of four-repeat tauopathies, which contain only the 4R 

isoforms of Tau44. Diseases like AD and CTE are mixed fibril tauopathies37. The 

aggregates of mixed fibril tauopathies contain all six isoforms.  

1.5.2 Pathology 

AD Pathology. In AD, Tau is not the only protein to aggregate, but Tau follows a 

much more predictable course than Aβ. Tau aggregates begin to form in the locus 

coeruleus and transentorhinal cortex, slowly spreading to the hippocampus and the 

neocortex45.  The spread of Tau aggregates closely correlates with mental decline, this is 

not true for Aβ46. AD can be assessed based on the Braak Stage of the spreading of Tau. 

In stages I and II, the tangles are relatively few and only in the cerebral cortex. No 

symptoms are present. In stages III and IV, NFTs have spread to the hippocampus and 

some memory loss has occurred. By stages V and VI, aggregates are seen throughout the 

brain tissue and clinical diagnosis is possible. NFTs in AD contain all six isoforms of 

Tau23, and individual synthetic fibrils have been shown to contain both 3R and 4R Tau37. 

Gradual cognitive decline is the primary outward symptom of this disease. 
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Misfolded Tau has been shown to propagate between neurons and recruit 

endogenous Tau proteins onto their ends47. While the mechanism is not fully understood, 

direct protein to protein interactions have been suggested48. The intercellular spread of 

Tau pathology has been suggested as the primary mechanism of aggregation, and 

synaptic transmission appears to be the most likely culprit49. Recent research has 

suggested that an increase in synaptic activity can lead to faster spreading of aggregates50. 

PSP Pathology. The brain tissue of people with PSP only contains fibrils of 4R 

Tau44. Symptoms include unsteadiness and a drifting gaze and in some instances, mental 

decline occurs19. Pathologically, these Tau aggregates start in the subcortex and for 

patients with no dementia, the aggregates mostly remain in that area51. Those who do 

have mental decline along with PSP show some aggregates in the cerebral cortex, 

consisting of Braak Stage I and II as seen in AD. Much less common in PSP are Braak 

Stages of III through VI. 

Clinical Diagnosis. Clinical diagnosis of tauopathies is achieved by various 

physical exams, psychological exams, and caregiver or self-assessments. This frequently 

leads to misdiagnosis among tauopathies. For example, CBD can be clinically diagnosed 

as PSP as much as 50% of the time51. Currently, the only way to confirm the diagnosis of 

a tauopathy is by looking at brain pathology at autopsy. 

1.5.3 Current Detection Methods 

Antibodies. Currently, there are several ways to detect the presence of Tau in 

tissue, but there are problems with these methods. Antibodies exist to detect different 

forms of Tau in tissue. These include “whole Tau” or all isoforms of Tau52, Tau with 
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specific phosphorylation sites53,54, and Tau with specific truncation sites55, among other 

posttranslational modifications. These antibodies can be used in assays including ELISA, 

Western Blotting, and immunohistochemistry. The methods require a relatively small 

amount of tissue. However, the problem with many antibodies is that monomers and 

fibrils cannot be differentiated. 

 Amyloid Sensitive Dyes. Certain dyes have been shown to differentiate between 

fibrils and monomer in vitro. These dyes can also be used to detect amyloid-like protein 

aggregation in vivo. Congo Red (CR) is a dye used since the 1920s to detect amyloids in 

brain tissue56. A more recently discovered dye, Thioflavin T (ThT) is much brighter and 

more sensitive than CR57. The structures of ThT respond to the β-sheet structure present 

in amyloids, but ThT does not differentiate between various proteins58. Prion, α-syn, and 

Tau aggregates all respond to amyloid dyes in a similar manner. The dyes also require a 

larger amount of Tau fibrils than are required for antibodies in order to be identified. 

1.6 Cofactors 

Polyanionic cofactors such as heparin, described above are required for aggregation 

of Tau59. Other known cofactors include single and double stranded RNA and Poly 

Glutamate, each also polyanionic60. It has been shown that each of these potential 

cofactors allow for aggregation in vitro and can be used in various aggregation assays. 

Heparin is a long chain sugar with each of the sulfate arms measuring approximately 5.7 

Å from one another61. The measurement between the phosphate groups in single stranded 

RNA is 3.4 Å62. The same measurement holds for the double stranded RNA PolyA/U, 

however single stranded RNA can have more complicated tertiary structure while double 
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stranded RNA forms a double helix due to the interaction of the base pairs with one 

another63. Poly Glutamate is a peptide with the side chains carrying the negative charges. 

Due to flexibility of the side chains, the distance between negative charges can change 

depending upon the folding of the peptide. Given that the distance between Tau 

monomers in fibrils is about 4.7 Å35, cofactors could interact with aggregates in different 

ways. 

 Polyamines, which have an overall positive charge could have a place in 

aggregation as well. Tau has an overall positive charge, but contains both negatively and 

positively charged residues throughout. It is possible that the positive charges on the 

polyamines can interact with the negatively charged AAs in the sequence and stabilize 

the structure allowing nucleation and growth to occur. In this work the polyamines used 

were small molecules with between two and four amines on a carbon backbone (Figure 

2). Agmatine contains two primary amines and a secondary amine at the first carbon and 

a primary amine on the fifth carbon. Putrescine is a four-carbon chain with a primary 

amine on the first and fourth carbon. Spermidine has three amines including a primary 

amine at carbon one, a secondary amine between carbon three and four, and a primary 

amine at carbon seven. Spermine is the longest polyamine with primary amines at 

carbons one and ten and secondary amines between carbons three and four as well as 

carbons seven and eight. 
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Figure 2: Polyamines. The polyamines were used as potential cofactors for Tau and Aβ 

aggregation. Their single bond structure allows polyamines to rotate freely and adapt to 

the length most beneficial to aggregates. 
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1.7 Amplification Assay 

1.7.1 Prion Amplification 

Within the prion field, an assay to detect PrPSC was developed by Soto et al64. 

This procedure combined extract from PrPSC hamster brains with healthy hamster brain 

extract, as a source of natively folded PrP. The solution is then subjected to several 

rounds of sonication and incubation. Incubation allows PrP to add itself to  

the ends of the PrPSC in brain tissue extract (Figure 3). Sonication breaks the existing 

aggregates in the brain extract offering more ends for PrP from the undiseased extract to 

add on to. In the case of PrP, this assay is sensitive enough to detect PrPSC in pre-

symptomatic animals including hamsters and cattle65. 

1.7.2 Application of Assay to Tau Amplification 

The PrPSC assay described above has been adapted to detect minute amounts of 

Tau fibrils from human brain extract. This assay relies on the addition of approximately 

4% by volume of homogenized brain extract to recombinant Tau monomer. Repetition of 

cycles of sonication and incubation cause amplification of a lower quantity of seeds in a 

much faster manner than had previously been accomplished66. When developing this 

amplification assay a negative control was required. In this assay, an unseeded control 

was maintained to ensure that spontaneous nucleation did not occur.  

Various conditions of the experiments were adjusted to suppress nucleation, while 

still allowing growth. The prion field also introduced another amplification assay with 

what it titled “Real-Time Quaking Induced Conversion” or RTQuIC67. In this assay, 

cycles of vigorous shaking followed by resting replace the sonication/incubation scheme.  
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Figure 3: Amplification Schematic. The above figure shows the amplification process. 

Starting with one fibril, the fracture step breaks it up into several shorter fibrils while the 

growth step allows monomer in solution to grow onto the shorter fibrils. This is repeated 

over n-cycles causing amplification 
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These cycles cause faster growth of PrPSC and could possibly be adapted for use with Tau 

to detect aggregates in biological samples. Because both nucleation and growth occur 

earlier67, the shaking assay may decrease experimental time and allow for faster results. 

Environmental conditions were also investigated. NaCl concentrations were altered to see 

how electrostatic interactions would influence nucleation and/or growth of Tau. High salt 

concentrations would increase the amount of positive and negative charges in solution, 

possibly interfering with the positive charge on Tau and negative charge of Heparin, 

decreasing the likelihood of nucleation68. Heparin was replaced with various cofactors to 

determine if a structurally unique cofactor would have an effect on nucleation and/or 

growth.  

1.7.3 Thesis Objective 

The following work outlines the steps that have been taken to develop an 

amplification assay with the sensitivity to detect fibrils from biological samples. 

Improvement to the sensitivity and specificity for various biological samples is sought 

and applications of the assay’s capability are demonstrated. Future application and 

development of this assay could lead to detection of Tau fibrils in blood samples leading 

to earlier diagnosis and treatment of AD and other tauopathies. 
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Chapter Two: Methods 

2.1 Transformation 

Between 100 pg and 1 ng of the plasmid of interest was combined with 20 μL 

BL21(DE3) competent Escherichia coli (E. coli) cells (Agilent) and incubated on ice for 

30 min, followed by heat shock for 30 s at 42°C and recovery on ice for 2 min. One mL 

of NZY medium (10 g/L NZ-amine, 12.5 mM MgSO4, 12.5 mM MgCl2, and 20 mM 

glucose) was added and mixture was then incubated while shaking at 37°C for 1 hour. 

Cells were plated on a Luria-Bertani (LB) broth (Difco) agar plate with 20 mg/L 

kanamycin (Gold Biotechnologies) and incubated at 37°C overnight. A single colony was 

selected and combined with LB Miller broth at a concentration of 20 mg/L with 

kanamycin at a final concentration of 140 μM. Culture was incubated at 37° overnight 

and a glycerol stock was created by combining culture and sterile glycerol in a 1:1 ratio. 

The glycerol stock was stored at -80°C. 

2.2 Expression  

For protein expression, overnight cultures were made using glycerol stocks of 

transformed BL21(DE3) competent cells in LB broth at a concentration of 20 mg/L with 

kanamycin at a final concentration of 140 μM. Cultures were incubated at 37°C for 17 

hours. The overnight culture was added to LB broth and kanamycin in a ratio of 1:100 

and incubated at 37°C until the optical density at 600 nm (OD600) reached 0.75-1.00. 



 

17 

 

Upon reaching the optimal OD600 expression was induced using isopropyl β-D-1-

thiogalactopyranoside (IPTG, Gold Biotechnologies) at a final concentration of 1mM and 

incubated for an additional 3.5 to 4 hours. Cells were centrifuged at 4000 x g for ten 

minutes and resuspended in a buffer containing 20 mM piperazine-N,N’-bis(2-

ethanesulfonic acid) (PIPES, J.T. Baker), 500 mM Sodium Chloride (NaCl, Fisher 

Scientific) and 5 mM ethylenediaminetetraacetic acid (EDTA, J.T. Baker) and frozen at    

-80°C until purification steps. 

2.3 Purification 

2.3.1 Purification of Full Length Tau 

Ion Exchange Chromatography Following expression, the bacterial suspension 

was heated in a water bath at 80°C for 30 minutes and transferred to an ice bath for 5 

minutes. Samples were then sonicated with a probe sonicator (Thermo-Fisher) for one 

minute at 50% amplitude and centrifuged at 15,000 x g for 30 minutes. Fifty-five percent 

weight/volume ammonium sulfate (MP Biomedicals, LLC) was added to the supernatant 

and shaken at room temperature for not less than one hour. After the salt was completely 

dissolved, the solution was centrifuged for ten minutes at 15,000 x g, the supernatant was 

decanted and the pellets were centrifuged again with the same settings. The pellets, with 

all supernatant carefully removed were resuspended in nanopure water with 2mM 

dithiothreitol (DTT, Gold Biotechnologies) and sonicated for one minute at 50% 

amplitude. The solution was then filtered using a 0.45 μm Acrodisc GxF/GHP membrane 

filter (Pall Life Sciences). The sample was then loaded on to a Mono S 10/100 GL cation 

exchange column (GE Healthcare).  Protein was eluted via a linear salt gradient (50−1000  
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Figure 4: Cation Exchange Chromatography Output. Following the UV trace at 280 

nm the peak can be seen between fractions 11-17. These are the fractions that were 

chosen to run on an SDS-PAGE gel (figure 5).  
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mM NaCl, 20 mM PIPES, pH 6.5, 2 mM DTT). Fractions 11 through 17 were collected 

as determined by figure 4 and run on SDS-PAGE (figure 5) to determine the fractions 

with the highest concentration of protein. 

SDS-PAGE.  SDS-PAGE gels were prepared with a 4% bis-acrylamide stacking 

gel and a 12% bis-acrylamide separating gel. Running buffer containing 25 mM Tris 

Base, 190 mM Glycine and 0.1% SDS was added to the gel cassettes and the running 

box. Samples were added to dilute the 4x sample buffer with 40% sucrose, 240 mM Tris, 

pH 6.8, 8% SDS, and 0.1% bromophenol blue to 1x and 6 μL were loaded into each well. 

Gels were run at 20 mA per gel for approximately 50 min, or until the blue running front 

was at the bottom of the gel. Gels were stained with 0.1% Coomassie brilliant blue R250 

(ThermoFisher), 50% methanol (ThermoFisher) and 10% glacial acetic acid 

(ThermoFisher) for one hour and destained in solution made with 40% methanol and 

10% glacial acetic acid for 1 hour. Gels were imaged using the Epson Scan V750 PRO. 

As seen in figure 5, the fractions chosen would have been 14, 15 and 16. 

Size Exclusion Chromatography. After cation exchange, size exclusion 

chromatography was performed. A buffer containing 20 mM Tris pH 7.4, 1 mM EDTA 

and 100 mM NaCl was used to run samples over a Superdex 200 gel filtration column 

(GE Healthcare). As seen in figure 6, fractions 57 through 61 were collected and 50% 

volume/volume methanol (Fisher Scientific) was added along with 2 mM DTT and stored 

on ice overnight. Precipitated protein was centrifuged at 15,000 x g for 10 minutes, the 

supernatant was removed and 1 mL of supernatant was used to transfer the precipitate 

into a smaller tube. The suspension was centrifuged at 11,000 x g for 10 minutes, and the  
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Figure 5: Ion Exchange Gel. This 12% SDS-PAGE gel stained with Coomassie blue 

stain demonstrates fractions 11-17 from one sample of cation exchange chromatography. 

The fractions selected for further purification of hTau40cl would be 14, 15 and 16.  
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Figure 6: Size Exclusion Chromatography Output. (A) The dark blue line shows the 

absorbance at 280 nm for the sample that was run over the size exclusion column. (B) 

Fractions 54-64 were chosen for a 12% SDS-PAGE gel stained with Coomassie blue 

Stain to asses purity. Fractions 57-61 were selected. 

A 

B 
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supernatant was removed and replaced with 1 mL methanol with 2 mM DTT. The pellet 

was washed with methanol and stored at -80°C until needed. 

To monomerize the protein, methanol was removed from the pellet and 8 M 

Guanadine Hydrochloride (GdnHCl, ThermoScientific) was added to dissolve the pellet. 

Two or three pellets were combined resulting in 200 μL pellet dilutions. The 200 μL were 

added to a PD-10 column (GE Healthcare) followed by 1.8 mL of assembly buffer 

containing 10 mM HEPES, pH 7.4, 100 mM NaCl, 0.5 mM EDTA and 0.1 mM sodium 

azide (NaN3). An additional 2.0 mL of assembly buffer was added to the column and 

collected. Protein was quantified via the bicinchoninic acid (BCA) assay 

(ThermoScientific). 

2.3.2 Purification of Truncated MAP2 

Truncated MAP2 was expressed and purified by a coworker in the laboratory 

identically to full length Tau with the following exceptions: Before cation exchange 

chromatography, the filtered protein solution was diluted with 2 M Urea (Fisher 

Scientific) and eluted in later fractions. Fifteen percent bis-acrylamide gels were used to 

determine the purity of the truncated protein upon completion of cation exchange 

chromatography. After size exclusion chromatography, selected fractions were split in 

three equal amounts and a four-fold excess of acetone was added, along with 2 mM DTT. 

MAP2 pellets were stored in acetone until monomerized. 
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2.4 Amplification Assay 

2.4.1 Preparation of Seeds 

Recombinant Seeds. Seeds for hTau23cl and hTau40cl were created using 25 

μM Tau and 12.5 μM heparin. Buffer containing 100 mM NaCl, 10 mM HEPES, pH 7.4 

was added for a total volume of 500 μL. An Eppendorf Thermomixer R with 1.5 mL tube 

holder attachment was used to shake seeds at 1,000 RPM at 37°C with one minute cycles 

consisting of 30 s shaking and 30 s resting. Seeds were created using these settings for 48 

hours unless otherwise stated. 

Tissue Homogenate Seeds. Brain tissue from the cerebral cortex, provided by 

University of California Alzheimer’s Disease Research Center and Medical University of 

South Carolina Brain Bank, Carroll A. Campbell, Jr. Neuropathology Laboratory, was 

combined with a buffer containing 10 mM HEPES at pH 7.4, 5 mM EDTA, 150 mM 

NaCl, 0.1% Triton X-100 and Halt Protease Inhibitor (Thermo Scientific) in a 1:10 

weight/volume ratio. The mixture was homogenized on ice in a Potter-Elvehjiem tissue 

grinder (Wheaton) at 250 rpm using SteadyStir Digital (Fisher Scientific) for 5 minutes, 

followed by centrifugation for 20 minutes at 5,500 x g at 4°C. The BCA assay was 

performed on a 1:10 dilution of the supernatant to gain an approximate total protein 

concentration. The supernatant was then aliquoted, flash frozen and stored at -80°C until 

needed. 

2.4.3 Amplification of Synthetic Tau Fibrils. 

Sonication cycles (the number of cycles depended on experiment and is specified 

in the Results section) were achieved using a bath sonicator in which a water-filled 
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microplate horn was coupled to an ultrasonic processor (QSonica). A single cycle 

consisted of 5 s sonication pulses at 5% amplitude. The water temperature was held 

constant at 37 °C using a recirculating chiller for the incubation cycles, which were 30 

min. The reactions were contained within Nunclon 96-well plates (Thermo Scientific) 

and were covered with BioDot Microplate sealing tape (Dot Scientific). Each well in the 

microplate corresponded to an individual experiment.  Thioflavin T (ThT, Sigma), when 

appropriate, was used as the fluorescent indicator of fibril growth. The following were 

added to each well: 10 μM Tau monomer (htau40 or htau23), 40 μM heparin (Celsus, 

average MW ≈ 5000), 5 μM ThT (when appropriate), indicated concentration of seeds, 

and additional buffer (100 mM NaCl, 10 mM HEPES, pH 7.4) to make the total sample 

volume 200 μL.  

In some experiments, heparin was replaced with other anionic cofactors. These 

include the single strand RNAs PolyA and PolyU (Sigma Aldrich), the double strand 

RNA PolyA/U (Sigma Aldrich) and poly-glutamate (Sigma Aldrich). These alternative 

cofactors were substituted at a concentration of 50 μg/mL. Various polyamines (Sigma 

Aldrich) were also used as cofactors in the concentrations provided in the results section. 

Some experiments were performed with NaCl concentrations other than 100 mM. Results 

will indicate when a different concentration of NaCl is used. 

Control wells were run alongside each experiment. A monomer control contained 

all components except seeds to show that aggregation in the reaction wells occurred 

through amplification, not through spontaneous nucleation. All microplate experiments 

involved diluting the initial seeds which were added to reactions prior to incubation or 
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sonication cycling and were present according to the molar percentage of seed per 

monomeric Tau, 10 μM for all experiments.  

Buoyant bulbs were attached to either side of the microplates to prevent sinking 

into the sonicator bath. Following amplification, the plate was centrifuged at 1650 x g for 

2 min to remove condensation from the sealing tape. If ThT was added, fluorescence was 

immediately measured using a Tecan Infinite M1000 microplate reader. ThT was excited 

at 440 nm, and spectra were collected by scanning emission at 480 nm. The Z position of 

the plate within the reader was kept constant. Tau aggregation was determined by ThT 

emission at 480 nm. 

In addition to ThT as a fluorescent readout, fibrils were sedimented and analyzed 

on an SDS-PAGE gel with Coomassie staining to monitor amplification over successive 

cycles. Experiments were performed by preparing three microplate wells with the same 

components. Following ThT measurement, these wells were pooled and centrifuged at 

100,000 x g for 30 min at 10°C. Pellets were dissolved in indicated concentration of 1× 

SDS-PAGE sample buffer, and run on a corresponding gel. 

2.4.4 Amplification of Tau Fibrils from Brain Homogenate. 

Experimental parameters were altered for use on brain tissue to account for 

interference from extracellular components. Reactions were carried out with 10 μM 

hTau40cl or hTau23cl and 40 μM heparin in buffer (100 mM NaCL, 10 mM HEPES, pH 

7.4). Brain tissue homogenate was prepared for amplification as described above. The 

homogenate was then sonified in the bath sonicator at 10% amplitude for 60 s. A total 

weight of 20 μg of brain tissue extract (protein mass) was added to each 200 μL final 
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reaction volume. Using the same power settings as those with recombinant material, 30 

cycles of sonication and incubation were performed. 

2.4.5 Blockage Using Seeds from AD Extract. 

Blockage reactions using brain homogenate were carried out with 10 μM htau40, 

40 μM heparin, 0.5 mM Tris(2-Carboxyethyl)phosphine Hydrochloride (TCEP, Gold 

Biotechnology) and either 10 μM trMAP2c or 5 μM trMAP2d in buffer (100 mM NaCl, 

0.1 mM NaN3, 10 mM HEPES, pH 7.4). Brain tissue homogenate was prepared for 

amplification by sonication in a bath sonicator with a water-filled microplate horn 

coupled to an ultrasonic processor at 10% amplitude for 60 s. A total weight of 30 μg of 

brain tissue extract was added to each 200 μL final reaction volume and 30 cycles of 

sonication and incubation were performed as described above. 

Controls were run alongside each experiment. The positive control consisted of all 

components except trMAP2 being added to the wells to show standard amplification of 

AD extract. The negative control consisted of undiseased, tangle-free control extract 

replacing AD extract in the presence of Tau and heparin, displaying that no growth 

occurred. Each 200 μL experiment was run in triplicate and combined to be centrifuged 

for 30 minutes at 100,000 x g. The supernatant was removed and the pellet taken up in 

100 μL 1x sample buffer and run on an SDS-PAGE gel with Coomassie staining. Gels 

were then analyzed using ImageJ software and plotted in GraphPad. 

2.5 Seeded Reactions 

Seeds, either recombinant and formed as described above or the product of 

amplification from diseased tissue, were used in seeded reactions. All seeds were 



 

27 

 

sonicated with a probe sonicator (Thermo-Fisher) for 30 seconds at 20% amplitude prior 

to the dilution. The following were added to each well of a 96 well plate: 10 μM Tau 

monomer (hTau40cl or hTau23cl), 40 μM heparin (Celsus, average MW = 5000), 5 μM 

ThT (when appropriate), indicated concentration of seeds, and additional buffer (100 mM 

NaCl, 10 mM HEPES, pH 7.4) to a final volume of 200 μL. These plates were incubated 

at 37°C for the time indicated. If ThT was added, the reaction was monitored in a 

FLUOstar Omega (BMG Labtech) at 37°C with excitation at 440 nm and emission at 480 

nm for the indicated length of time. 

2.6 Negative Stain Transmission Electron Microscopy 

200-mesh carbon-coated copper grids were placed for 1 min onto 10 μL drops of 

sample (10 μM of fibrils based on monomer concentration) and then for 30 s onto 10 μL 

drops of 2% uranyl acetate. The grids were air-dried on filter paper. Images were taken 

with a Philips/FEI Tecnai-12 electron transmission microscope at 80 keV, equipped with 

a Gatan CCD camera. Electron microscopy for trMAP2 blockage experiments was 

performed by Michael Holden. 

2.7 Shaking Assay 

 Monitoring for spontaneous nucleation occurred by using the same concentrations 

of Tau and heparin (or other cofactors) that were used in the sonication and incubation 

amplification assay. The shaking and resting cycles were varied as mentioned in the 

results, as were the speed of shaking and the temperature of incubation. To determine 

nucleation, two different methods were used. Initially, using the Thermomixer R, after a 

set amount of time, the reactions were centrifuged at 100,000 x g for 30 minutes. The 
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pellets were dissolved in an equivalent amount of 1x sample buffer as total supernatant. 

Pellets and supernatants were then run on an SDS-PAGE gel. The protein that shows up 

in the pellet implies nucleation. Any protein left in the supernatant has not yet been added 

to the aggregates, which suggests that it is still monomeric.  

Alternatively, nucleation could be monitored in real time using the FLUOstar 

Omega (BMG Labtech). Aggregation was monitored by adding ThT to the reaction 

described above at a concentration of 10 μM. Shaking occurred at varying times, RPMs, 

and temperatures. Excitation occurred at 440 nm and emission was read at 480 nm. Data 

points were taken every two minutes. This method was used for monitoring the 

aggregation of Tau as well as Aβ42 which was purchased from Bachem. 

2.8 Proteolysis 

Proteolysis was performed with the enzyme Proteinase K (PK). Fibrils were 

grown on 5% seeds taken after amplification. The final concentration of 25 μM Tau, and 

12.5 μM heparin was incubated at 37°C for 16 hours. Following the incubation, a portion 

of the fibrils were centrifuged at 100,000 x g for 30 minutes at 10°C. A BCA assay was 

run on the supernatant to determine the concentration of fibril monomer equivalents (ME) 

in the solution.  A dilution of AD and PSP derived fibrils was made so that each of the 

solutions had a final concentration of 10 μM hTau40. The indicated concentration of PK 

was added to fibrils grown from seeds derived from AD and PSP tissue and allowed to 

incubate at room temperature for 30 minutes. To end the proteolysis, a final concentration 

of 4 mM phenylmethane sulfonyl fluoride (PMSF, Sigma) was added to the solution. The 
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reactions were immediately run on an SDS-PAGE gel with Coomassie staining for 

analysis. 

2.9 Analysis of SDS-PAGE Gel by ImageJ 

 SDS-PAGE gels were analyzed using ImageJ freeware (National Institutes of 

Health, USA, public domain). Previously scanned gels were opened in ImageJ and the 

rectangular selection tool was used to select the first lane followed by selecting 

“Analyze”, “Gels”, “Select First Lane”. The first rectangle drawn was dragged to the next 

lane followed by selecting “Analyze”, “Gels”, “Select Next Lane” for as many additional 

lanes as were needed. With lanes chosen, “Analyze”, “Gels”, “Plot Lanes” were selected. 

This provided density line plot with higher values corresponding to more band density. A 

line was drawn across the bottom of the desired peak to separate that peak from the 

background of the gel. The wand (tracing) tool was then selected and used to click under 

the selected peaks which provided an area under the curve in number of pixels. The areas 

were transferred to Excel (Microsoft) and percentage growth was calculated by using the 

total of the pellet and supernatant areas to divide the area of the pellet and multiplied by 

100.
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Chapter Three: Results 

3.1 Recombinant Seeds are Amplified Using Sonication/Incubation Cycles 

 Cycles of sonication and incubation have been shown to allow for amplification 

of Tau fibrils from AD brain extract, and no amplification is shown from undiseased 

control brain extract66. When recombinant full-length Tau is incubated at 37°C in the 

presence of decreasing amounts of seeds for 15 hr, the limit of detection can be 

determined. Without repeated sonication steps, that limit is 500 nM ME seeds for 

hTau23cl and 100 nM ME seeds for hTau40cl (figure 7). In order to improve upon this 

limit, 30 cycles of 5 s sonication followed by 30 min incubation for a total experimental 

time of 15 hours was introduced. With repeated sonication, the limit is reduced to 10 pM 

seeds in both hTau23cl and hTau40 (figure 7). 

3.2 Tau Fibrils Are Amplified from Diseased Tissue 

3.2. 1 Brain Tissue Background 

 One of the greatest strengths of repeated cycles of sonication and incubation is the 

ability to amplify protein aggregates from biological samples66. Prior to amplification, 

brain tissue was homogenized and analyzed for protein content. Tangle free control 

tissue, as well as diseased tissues with pathologically diagnosed tauopathies were 

compared using SDS-PAGE. Figure 8 shows that each of the different homogenized  
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Figure 7: Quiescent vs. Amplified Seeded Reactions. (A) When a dilution series of 

recombinant hTau40cl seeds are offered to 10 μM hTau40cl monomer and incubated 

quiescently for 15 hours growth is not detected until 100 nM ME seeds are provided. 

When an identical solution of hTau40cl monomer and seeds are subjected to 30 cycles of 

sonication and incubation, for a total experiment time of 15 hours, growth can be seen 

with as few as 10 pM ME seeds. (B) During 15 hours of quiescent growth, hTau23cl 

begins to show growth at 100 nM ME seeds, but only at 500 nM can strong growth be 

seen. (C) After 30 cycles of sonication and incubation, growth of hTau23cl can be seen 

with 10 pM ME seeds. All SDS-PAGE gels are 12% bis-acrylamide and stained with 

Coomassie blue stain.  

A 

B 
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Figure 8: Brain Tissue Background Comparison. (A) shows the SDS-PAGE gel stained 

with Coomassie blue stain, (B) shows the density analysis of the SDS-PAGE gel from 

ImageJ. Both show that there are no discernable differences between diseased and 

undiseased tissue homogenate. Sample 1 is undiseased tissue, 2 is AD, 3 is PiD, and 4 is 

PSP.  
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tissues have comparable protein content: there is no observable difference between 

homogenized tissue from undiseased tissue, AD tissue, PiD tissue, and PSP tissue. 

3.2.2 Amplification 

To demonstrate amplification of fibrils from extract using Tau protein, AD brain 

and undiseased brain were homogenized, diluted, and then added to recombinant 

hTau40cl or hTau23cl. Next, the samples were subjected to 30 cycles of amplification, 

with each cycle consisting of 5 s of sonication and 30 min of incubation at 37 °C. Only 

the sample that contained AD extract was able to template growth of both hTau23cl and 

hTau40cl (Figure 9A). Importantly, spontaneous nucleation could be excluded, as neither 

hTau40cl nor hTau23cl in the presence of undiseased brain caused aggregation. The 

fibrillar nature of the amplified protein aggregates was verified by electron microscopy 

(EM) (Figure 9B and 9C). Combined, the findings indicate that Tau fibrils can be 

selectively amplified from Tau seeds inherent in the crude AD brain extract. 

3.2.3 Variability in Amplification 

Identical reactions performed in multiple wells in the microplate displayed 

varying amounts of amplification. Emission spectra indicate that the variability in 

amplification can arise, sometimes deviating due to a single reaction. It is possible that 

this variability originates due to an uneven force distribution in the bath, a finding that 

was suggested previously69. Slight variability was also seen in the power output between 

experiments using the same bath sonicator and among different bath sonicators. 

 

 



 

34 

 

 

 

       

Figure 9: Amplification of Seeds from Brain Tissue. (A) The SDS-PAGE gel with 

Coomassie blue staining shows that aggregation does not occur when using tissue from 

undiseased brain using either hTau23cl or hTau40cl, but both grow when in the presence 

of AD tissue. Wells marked with “p” are pellets after a high-speed centrifugation, Wells 

marked with “s” are the corresponding supernatants. B show an electron micrograph of 

hTau23cl amplified from AD extract. Scale bar = 200 nm. C shows hTau40cl amplified 

from AD tissue. Scale bar = 500 nm. 

  

A 
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3.3 Other Factors Affect Nucleation and Growth of Tau 

 Aggregation of Tau takes place in two basic phases. Nucleation is the required 

first step for aggregation to occur. This involves the creation of the smallest template  

which can be used for templating fibril growth, which is the second phase. In order to 

create a more sensitive assay, conditions were screened to determine which could best 

suppress nucleation, while still allowing for fibrillar growth in a reasonable time frame. 

3.3.1 Shaking Assay 

 Development of Shaking Assay. While suppression of nucleation did not occur, 

shaking gave rise to faster nucleation. Traditionally, recombinant full-length Tau seeds 

require eight days of stirring to develop fully formed seeds66. When using identical 

concentrations, but subjecting the monomer protein to cycles of shaking and resting, 

growth can be identified as early as five hours, with complete growth in 48 hours. 3R and 

4R Tau grew differently under shaking conditions: hTau23cl aggregated efficiently at 

800 RPM shaking, and hTau40cl grew well with shaking speeds of 1200 RPM. When 

using the Thermomixer R 1000 RPM was seen to efficiently aggregate both hTau23cl 

and hTau40cl (Figure 10). 

 When monitoring aggregation in the FLUOstar Omega by ThT, shaking was used 

at a different rate. This instrument has double orbital shaking with a max speed of 800 

RPM. The 700 RPM double orbital setting was used to monitor whether or not 

polyamines would allow for nucleation and growth of hTau40cl and Aβ42. Shaking was 

used for faster nucleation of recombinant material. Heparin clearly allowed for nucleation 

to occur in Tau, while the polyamines had less success (Figure 11). Growth was barely  
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Figure 10: Nucleation Using Different Shaking Speeds. After 48 hours of incubation at 

37°C with cycles of 30 seconds shaking and 30 seconds resting show that (A) with a 

shaking speed of 800 RPM, hTau23cl was fully aggregated, but hTau40cl was not. (B) 

Both hTau23cl and hTau40cl fully aggregated at 1000 RPM. (C) at 1200 RPM, hTau40cl 

fully aggregated, but hTau23cl did not. Each experiment was run 3 times with results 

consistent with the gels shown.  
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Figure 11 : Nucleation of hTau40cl by Shaking in Presence of Polyamines. (A) The 

12% SDS-PAGE run after shaking at 700 RPM double orbital at 37° for 16 hours. In the 

presence of heparin, hTau40cl nucleated as can be seen on the gel stained with 

Coomassie blue stain. (B) Densities of the bands were quantified using ImageJ software. 

Any band above 10% of the growth of hTau40cl and heparin, indicated by the dashed 

line, is considered nucleation. Since this experiment was only performed once, the 

reliability of these results has not been assessed.  
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Figure 12: Monitoring Growth by ThT Fluorescence. Using the FLUOstar Omega, 

fluorescence of ThT was monitored at 30°C and 700 RPM shaking using different 

concentrations of polyamines as a cofactor for Aβ. (A) was using 100 μM and (B) used 

20 μM.  
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Figure 13: Growth of Aβ42. After the growth was monitored by fluorescence, the 

reactions were given a high-speed spin and (A) run on a 15% SDS-PAGE gel and stained 

with Coomassie blue stain. (B) Analysis of the densities of the gel bands were quantified 

using ImageJ software. Polyamines did increase aggregation of Aβ42, specifically 100 

μM of Agmatine and Putrescine.   

B 
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able to be detected for 100 μM Spermidine, 20 μM and 100 μM Spermine, and 20 μM 

Putrescine, but strong growth did not occur. 

Because Tau requires a cofactor, and Aβ42 is more hydrophobic, the nucleation of 

Aβ42 is an event that happens more readily than that of Tau70. When performing the 

shaking assay, Aβ42 was incubated at 30°C instead of the typical temperature of 37°C 

(Figure 12). Since Aβ42 is a much smaller peptide and difficult to see on a 15% gel 

(Figure 13), ThT fluorescence was monitored on the FLUOstar Omega and a picture of 

improved aggregation appears with the addition of polyanions.  

Limitations to Shaking Assay. When using the shaking assay to amplify Tau 

fibrils out of AD tissue homogenate, a limitation of the assay appeared. While shaking for 

five hours in the presence of recombinant hTau40cl seeds showed amplification, shaking 

with AD tissue homogenate present showed limited amplification and while shaking an 

unseeded reaction resulted in spontaneous nucleation (Figure 14). A paired t-test showed 

that there was no significant difference between reactions seeded with tissue extract and 

unseeded reactions (n=5, p=0.4622). There was a significant difference between 

monomer and 1% seeded amplification (p=0.0148) and between 1% seeded amplification 

and AD extract seeded amplification (p=0.0109).  

3.3.2 Salt Concentrations 

 Because of the electrostatic interactions between Tau and the polyanionic cofactor 

used, altering salt concentrations could influence the way Tau nucleates and grows in 

vitro71, 59. Although higher NaCl concentrations suppress nucleation, as the concentration 

of NaCl increases, growth is diminished (figure 15A). When looking at lower  
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Figure 14: Limitation of Shaking Assay. Using AD brain homogenate showed a 

limitation of the shaking assay. (A) Quantification of percent growth on SDS-PAGE gels 

stained with Coomassie blue stain and calculated with ImageJ for monomer only control, 

1% seeded reaction, and AD seeded reaction (n=5, error bars represent standard 

deviation). There is no significant difference between monomer nucleation and AD 

seeded growth (p=0.4622). (B) A representative SDS-PAGE gel used for quantification.  
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Figure 15: Varying NaCl Concentrations. (A) and (B) show the spin down after 40 

cycles of sonication and incubation run on a 12% SDS-PAGE gel and stained with 

Coomassie blue stain. The graph (C) is the ThT flourescence at the end of 40 cycles 

Excitation at 440 nm, emission at 480 nm, n=4. Error bars are standard deviation. Two 

out of four wells of 50 mM NaCl underwent spontaneous nucleation. Only one of four of 

the 0 mM NaCl experienced spontaneous nucleation. 
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concentrations of NaCl growth occurs quickly but spontaneous nucleation of the 

monomer occurs in about 50% of the individual wells for zero and 50 mM NaCl (figure 

15B). This data confirms that the standard concentration of 100 mM NaCl is an 

appropriate concentration for allowing growth while suppressing nucleation of hTau40cl 

monomer. 

3.3.3 Cofactors 

 Polyanionic cofactors are necessary to allow for aggregation of Tau33, which has 

an overall positive charge under physiological conditions72. The single strand RNAs 

Poly(U) and Poly(A), double strand Poly(U/A) RNA, and Poly-glutamate peptides were 

all compared to heparin during a seed formation experiment. The reactions included 10 

μM hTau40cl and one of the five mentioned cofactors. After 24 hours of shaking in 

cycles of 30 seconds at 1000 RPM followed by 30 seconds of resting, the reactions were 

centrifuged and compared to one another by assessing the percentage of Tau present in 

the pellet, or fibrillar Tau. All five cofactors provided similar degrees of aggregation 

(between 50% and 75%) as seen in figure 16. 
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Figure 16: Anionic Cofactors. After 24 hours of shaking, all cofactors induced 

nucleation and showed similar amounts of growth. (A) shows the 12% SDS-PAGE gel 

stained with Coomassie blue stain and (B) shows the quantification of the gel bands using 

ImageJ. 
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3.4 Applications of Amplification 

3.4.1 Differences Among Tauopathies 

 This assay can be used not only for detection, but also to differentiate between 

diseases. AD is known to be a tauopathy that aggregates with all six Tau isoforms and 

PSP aggregates only contain the three 4R Tau isoforms. Undiseased brain tissue as well 

as AD and PSP tissue were subjected to 30 rounds of sonication and incubation in the 

presence of hTau23cl or hTau40cl. These reactions were run on an SDS-PAGE gel and 

the particular isoforms that aggregate are shown in figure 17. The control tissue shows no 

aggregation for either hTau23cl or hTau40cl. AD shows aggregation in both hTau23cl 

and hTau40cl. PSP, a 4R tauopathy, shows aggregation of only hTau40cl, and not 

hTau23cl. Using seeds derived from these aggregation reactions, a seeded assay was 

monitored for 125 min using ThT. In figure 18, 10% seeds from the amplified AD tissue 

show reliable growth for both hTau40cl and hTau23cl, while PSP amplified seeds only 

show growth of hTau40cl in a 125-minute interval. A final difference can be shown in the 

degradation of fibrils by proteolysis. The aggregates templated by seeds from amplified 

hTau40cl on AD tissue degrades much more quickly by Proteinase K proteolysis than the 

hTau40cl aggregates with seeds from PSP extract (Figure 19). 
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Figure 17: Amplification of AD vs. PSP. (A) After 30 cycles of sonication and 

incubation, a difference in the growth patterns is shown via a 12% SDS-PAGE gel with 

Coomassie blue staining. (B) Undiseased control extract shows no growth compared to 

the growth of AD in the presence of hTau23cl and hTau40cl (p<0.001). PSP extract 

seeded hTau40cl significantly better than hTau23cl (p=0.004). There was no significant 

difference between the growth of hTau23cl on PSP and on undiseased control extract 

(n=11). 
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Figure 18: Seeded Reaction of Amplified Fibrils. 10% seeds from hTau40cl amplified 

on AD and PSP were added to solutions of both hTau23cl and hTau40cl and incubated at 

37° for 125 minutes. Excitation occurred at 440 nm and emission at 480 nm. All seeded 

reactions show growth except hTau23cl on seeds from PSP amplification. Error bars 

represent standard deviation, n=3. 
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Figure 19: Proteinase K Digestion of AD and PSP Amplified Fibrils. When amplified 

fibrils from tissue extracts are subjected to proteolysis, the selected conformation of 

amplified AD fibrils degrades at a faster pace than the selected conformations of 

amplified PSP fibrils. 10 μM hTau40cl was subjected to PK digestion at the indicated 

concentrations and run on a 12% SDS-PAGE gel stained with Coomassie blue stain.  



 

49 

 

3.4.2 Blockage of Aggregation 

 This assay can also be used to further investigate proteins that have promise in 

blocking fibril growth of recombinant Tau. MAP2 has been shown to block the growth of 

recombinant fibrils formed in vitro. In work unpublished as of this date, Michael Holden 

with the Laboratory of Martin Margittai has shown that trMAP2c and trMAP2d can block 

growth of K18 when incubated quiescently with recombinant K18 seeds. To determine 

the effect trMAP2c and trMAP2d have on seeding of authentic fibrils, they were 

subjected to 30 cycles of amplification in the presence of homogenized AD tissue. Two 

different AD samples (AD21 and AD110) were used, both from the cerebral cortex. The 

source from which each brain sample originated was pathologically diagnosed with AD. 

When subject to amplification cycles in the presence of trMAP2c and trMAP2d 

decreased capability for aggregation is shown (Figure 20). For AD21 amplified in the 

presence of trMAP2c, aggregation was only 22% (±6) of the growth of hTau40cl on 

AD21 and in the presence of trMAP2d aggregation was 17% (±5) of said growth. For 

AD110 amplified in the presence of trMAP2c, aggregation was 53% (±8) of the growth 

of hTau40cl on AD110 and in the presence of trMAP2d aggregation was 206% (±7) of 

said growth. In each of the cases, the difference is statistically significant (p<0.0001). In 

comparison, undiseased extract shows no amplification when subjected to the same 

number of cycles.  
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Figure 20: Blockage of Tau Aggregation by MAP2. (A) A representative 15% SDS-

PAGE gel stained with Coomassie blue showing the blockage of AD21 by MAP2c and 

MAP2d. EM images of negatively stained Tau samples showing growth in the absence of 

MAP2 (B), in the presence of MAP2c (C), and in the presence of MAP2d (D) Scale bars 

= 500nm. (E) the accumulation of data showing significant blockage of Tau growth using 

MAP2c and MAP2d with two different AD extract samples (p<0.0001).  
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Chapter Four: Discussion 

4.1 Amplification Using Sonication 

Seeded reactions with fibrils sonicated only once at the beginning of the process 

and incubated can show growth, with enough seeds present (Figure 7). Using hTau40cl, 

seeds must be at 100 nM to be able to see that a seeding event has taken place. Seed 

concentrations of 100 nM identify some growth in hTau23cl, while higher concentrations 

show better results. When additional sonications are added to the process, growth occurs 

much more rapidly and seeds as low as 10 pM can be amplified in both hTau23cl and 

hTau40cl (Figure 7). This significant increase in seeding is likely due to the increased 

number of seed ends available to the monomer on which to grow. If the seeds are 

uniformly sonicated initially, a static number of ends will be available for the monomer 

to add on to, with fibrils growing longer and longer. Adding periodic sonications to the 

incubations allow the fibrils to grow in the 30-minute incubation period and fractures the 

fibrils offering an increase in available ends for monomer to add on to. Each successive 

sonication adds even more ends on which monomer can grow, allowing for amplification 

of as few as 400,000 fibril seeds. 

The rational for this follows. The amount of seed added is 0.0001% of 10 μM in 

200 μL wells, which will be in the range of 10-15 moles, or around a fmol or 108 monomer 

units. When seeds are sonicated for two minutes at the beginning of an experiment, they 
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are broken down into fibrils about 60 nm long on average, with a positively skewed 

distribution containing fibril seeds of up to 400 nm73. The above experiments began with 

a 30-second sonication. If the estimate is that each monomer in a fibril is 0.5 nm apart 

and there are two monomers per layer74, there would be approximately 250 monomers 

per fibril. Thus 108 monomer units divided by 250 monomers per fibril gives 400,000 

fibril seeds. Due to the shorter seed sonication, this number could be considerably lower. 

 Aggregation of hTau23cl requires a larger number of seeds because hTau23cl 

does not aggregate as readily as hTau40cl75. The minimum detectable amount of seeds 

for hTau23cl in quiescent incubation for 15 hours is 100 nM. When cycles of sonication 

and incubation are added, the detection limit of hTau23cl is considerably improved with 

10 pM seeds showing growth, and full growth seen with as few as 100 pM seeds.  

The difference in the aggregation behavior of hTau23cl and hTau40cl is not 

surprising because the 3R and 4R Tau isoforms have long been shown to have different 

aggregation patterns both in disease and in vitro76,16. The truncated isoforms of Tau have 

long been shown to have an asymetric seeding barrier with K18 being competent to grow 

on seeds of K19, but K19 not able to grow on K18. Tauopathies are considered either 3R, 

4R, or mixed fibril diseases. PSP preferentially grows 4R Tau and 3R Tau is aggregated 

in PiD also indicating that some differences in aggregation are expected. 

Using a biological sample for amplification offered a new set of possible 

complications. The homogenized tissue contains more components than the highly 

purified recombinantly seeded reactions. These additional components include a variety 

of additional proteins, RNA, DNA, metal ions, small molecules, and lipids. The 
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membranes were disrupted using the detergent Triton X-100 and sonication during the 

homogenization step allowing the contents of the individual cells to become part of the 

solution. All tissue used in the assay are from the cortex and showed indistinguishable 

banding patterns on an SDS-PAGE gel, but the tissues were pathologically different. 

Undiseased brain tissue was pathologically determined at autopsy to have no Tau fibrils 

and be confirmed Braak stage 0 and AD tissue used was pathologically determined at 

autopsy to have tangles of Braak stage V or VI.  

Amplification of hTau40cl and hTau23cl over 30 cycles show amplification in 

tissue from AD tissue and minimal to no amplification from undiseased tissue. The 200 

μg/mL of total protein concentration from the tissue that is included in the solution 

contains enough seeds to be reliably amplified after the cycles were complete. When the 

amplified fibrils are looked at with EM, the fibrils that have grown typically appear to be 

attached to debris from the brain tissue homogenate (Figure 9B and C). In vivo these 

fibrils could be attached to specific cellular components, or the homogenization process 

could have caused this effect. EM images of fixed AD tissue show fibrils contained in 

neuropil threads to be surrounded by debris77. 

Occasionally undiseased tissue would show growth after the completion of the 

cycles (Figure 21). The assay, being sensitive enough to detect a small number of 

recombinant seeds might suggest that though the undiseased tissue was pathologically 

determined not to contain fibrils, some tissues did in fact have small amounts of 

aggregates. This false positive could also be attributed to contamination or spontaneous 

nucleation. AD tissue that is taken from the cortex can be reliably amplified, however  
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Figure 21: Occasional Growth with Control Tissue Extract. (A) Representative SDS-

PAGE gel stained with Coomassie blue showing growth in undiseased control tissue 

extract. (B) Percent growth of Ctrl extract was calculated from densities on SDS-PAGE 

gel shown. 
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Figure 22: Amplification from Hippocampus Extract is Inconsistent. (A) Percent 

growth of AD extract from hippocampus extract from a single biological source was 

calculated from densities on SDS-PAGE gels with Coomassie blue stain using ImageJ 

(n=5, error bars are standard deviation). Representative gel showing no growth (B) and 

moderate growth (C).  
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tissue from the hippocampus shows some evidence of amplification, but not consistently 

(Figure 22). 

4.2 Areas of Improvement 

4.2.1 Shaking 

In developing the shaking assay, the shaking conditions used were different for 

each instrument. For the Thermomixer R, a shaking speed of 1000 RPM was settled upon 

for optimal growth and on the FluoStar Omega, 700 RPM double orbital was the most 

efficient setting used. Shaking was not ideal for biological samples (figure 14). Growth of 

recombinant protein in the presence of recombinant seeds was robust and showed full 

growth in 4 hours of shaking cycles. Spontaneous nucleation of unseeded material occurs 

before the detection of amplification in the AD seeded reactions. The extra components 

present in the AD tissue homogenate could prevent shaking from amplifying the fibrils, 

or sonication, being a more aggressive disruption could break apart the brain derived 

fibrils more efficiently than shaking. 

The shaking worked very well for monitoring for nucleation of recombinant protein. 

Nucleation of hTau40cl in the presence of heparin was successful and occurs at a much 

faster pace than the traditional stirring method for making seeds. Shaking is a more 

aggressive mixing than stirring and likely allows for more opportunities for the necessary 

meeting of protein and cofactor required for nucleation to occur and shortening the lag 

phase. Tau fibrils created in this way are likely fractured more often, offering more ends 

for the monomer to grow onto.  
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Positively charged polyamines were less successful than heparin as cofactors in 

the nucleation of hTau40cl however, some effect was seen (Figure 11). Polyamines with 

Aβ42 however, do increase the rate of nucleation with spermidine and spermine being the 

most efficient cofactors (Figure 11, 12). This is interesting because it has been shown that 

natural polyamine levels change in AD78. These two polyamines are the longest of those 

tested and they contained three and four amines respectively separated by either three or 

four carbon atoms on a flexible backbone. 

4.2.2 Salt Concentrations 

Varying the salt concentration strongly affected nucleation. At higher 

concentrations, nucleation was prohibited, which was promising however, growth was 

also restricted. At lower concentrations, spontaneous nucleation was increased and 

growth was abundant. When looking for spontaneous nucleation, both the salt free 

reactions and the 50 mM NaCl reactions showed some growth. The higher aggregation in 

the 50 mM reaction can be explained due to the fact that nucleation is a spontaneous 

event (Figure 15). At lower NaCl concentrations, nucleation can occur more easily71. 

There are fewer anions and cations in solution which could interfere with the attraction of 

positively charged Tau and negatively charged heparin. In this experiment, the nucleation 

of the 50 mM NaCl reaction occurred slightly faster than that of the no NaCl reaction. 

The important thing to note at lower NaCl concentrations is that spontaneous nucleation 

is more likely to occur, and are not ideal for amplification of small amounts of seeds. 

 As NaCl concentration increases, the ability for growth decreases. Nucleation is 

more difficult at high concentrations likely due to the increase in charge distribution of 
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the solution. More ions in solution can prevent the positive charge of Tau and the 

negative charges on heparin from lining up in a manner which creates the nucleus. At 

very high salt concentrations, one would predict that each of the positive or negative 

charges along the protein and cofactor would be neutralized with a corresponding anion 

or cation in solution. This allows for a greater number of cycles to occur, however, 

seeded reactions at concentrations of NaCl higher than 200 mM also show no growth. 

NaCl concentrations between 100 mM and 150 mM appear to be ideal for this assay. 

4.3 Application of Assay 

4.3.1 Differences in Disease Fibrils 

 The amplification assay can be used in a variety of ways. Showing differences 

between different brain tissues is the first. When subjected to repeated cycles of 

sonication and incubation pathologically different tissue extracts show different patterns 

of amplification. As shown above, undiseased, tangle free tissue homogenate does not 

amplify hTau23cl or hTau40cl. Since Tau fibrils are not seen in undiseased tissue, this is 

the expected outcome. AD extract is shown above to amplify both isoforms of Tau. Tau 

fibrils in AD contain both 3R and 4R tau, so this result is also expected. Amplification of 

PSP also lined up with the hypothesis and hTau40cl was amplified while the 

amplification of hTau23cl was minimal. In the late 1990s, Buée et al suggested that 

specific mutations in the MAPT gene caused Exon 10 to produce a higher level of 4R 

Tau79. This idea led to the belief that 4R Tau was recruited into aggregates in PSP 

because there was more 4R Tau available. In the first decade of the 2000s, it was shown 

that 3R tau and 4R tau are present in similar concentrations in the brains of those with 
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PSP80,81.  Most recently, cell lines expressing 3R Tau did not show aggregates when 

exposed to fibrils isolated from PSP tissue, but cell lines expressing 4R Tau showed 

robust growth82. This points to a mechanism where the conformation of PSP fibrils are 

able to recruit only 4R and not 3R Tau. The data presented in the present work agrees 

with prior work that a conformational preference for 4R Tau in PSP fibrils exists. This 

preference, which is present in PSP and absent in AD point to differences in aggregation 

behavior between the two diseases. 

It is possible that amplification shows a preference for specific fibril 

conformations in diseased brain tissue. This preference does not negate the fact that 

conformational differences exist in tissue. Repeated sonications and incubations likely 

select for the most fragile or faster growing conformations73. If two diseases have a 

similar population of fibrils, one would expect the amplified conformations to also be 

similar. In the case of AD and PSP, the amplified conformations appear to be quite 

different.  To investigate this difference further, the amplified fibrils of hTau40cl on AD 

and hTau40cl on PSP were used as seeds for a second reaction. This reaction was 

monitored via ThT fluorescence. Again, the seeding barrier occurred showing that 

hTau23cl was prevented from growing on seeds derived from PSP brain while allowing 

hTau40cl to grow. Growth of both hTau23cl and hTau40cl occurred on seeds amplified 

from AD tissue. 

Amplified fibrils of hTau40cl from each disease source were also subjected to 

proteolysis. Proteinase K is a protease which selectively cleaves proteins at aliphatic and 

aromatic AA residues. When similar fibril concentrations were subjected to proteolysis, 
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the PSP derived fibrils were more quickly degraded than those from AD (Figure 19). This 

suggests that the fibrils amplified out of AD tissue have more protease resistance than 

those amplified from PSP tissue. This is likely due to a structural difference between the 

amplified conformations, however additional experiments are needed to verify the 

reproducibility of these results. 

4.3.2 Blockage of Growth 

Blockage can be seen consistently when samples of AD extract and recombinant 

hTau40cl are subjected to cycles of incubation and sonication in the presence of trMAP2c 

and trMAP2d. Each of the diseased tissues amplified reliably when no MAP2 was 

present, and the undiseased tissue failed to amplify. When amplified in the presence of 

trMAP2c and trMAP2d, less aggregation occurs (Figure 20). More blockage occurs in the 

presence of trMAP2c and trMAP2d with AD21 extract than the analogous experiments 

with AD110. There are several possible explanations for this difference. It is possible that 

the number of aggregates in the AD110 tissue was greater those found in the AD21 

tissue. More ends would be offered to the monomer for amplification and amplification 

could begin before MAP2 has a chance to block fibrillar growth. Structural differences in 

the amplified conformations could also account for differences. If the selected 

conformation amplified from AD110 was more fragile or faster growing, more 

amplification could be occurring before MAP2 can act. Regardless of the reason for 

differences between tissue samples, there is a significant difference in the aggregation of 

Tau in the presence and absence of each of the MAP2 isoforms. Of note, trMAP2d at a 

1:2 ratio to hTau40cl blocks better than an equimolar amount of trMAP2c:hTau40cl. 
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Chapter Five: Summary 

5.1 Assay Development and Application 

 In the above work, an assay to detect tau fibrils from small amounts of diseased 

tissue was developed. The assay can be reliably reproduced using recombinant fibrils to 

detect fibrils at concentrations as small as 10 pM. This assay can detect fibrils from 20 μg 

of homogenized cerebral cortex brain tissue. Beyond detection, this assay can show 

differences in available fibril populations and the efficiency of blocking agents. 

5.2 Improving Detection and Differentiation 

While developing the assay, several environmental variables were investigated to 

find conditions that would allow for elongation while suppressing spontaneous 

nucleation. By using the same solution and subjecting it to shaking instead of sonication, 

the experimental time to convert PrP to PrPSC was decreased67. When the same concept 

was applied to Tau, spontaneous nucleation occurred more quickly and fibrils were not 

amplified from brain tissue. The shaking assay can be used to monitor nucleation and 

form seeds more quickly than the traditional stirred method. 

Salt concentration affected both nucleation and growth. Concentrations below 100 

mM NaCl allowed for rapid growth, but did not suppress spontaneous nucleation. 

Concentrations above 200 mM NaCl successfully blocked nucleation, but also prevented 

efficient growth. The ideal concentration of NaCl for amplification is between 100 mM 
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and 150 mM. Cofactors were also investigated. Each of the proposed anionic cofactors 

worked nearly identical to heparin. Since the standard conditions in the Margittai 

laboratory are 100 mM NaCl and heparin as a cofactor, no changes were made. Other 

environmental possibilities that could be tested include incubation temperature, pH, and 

sonication strength and duration. Paul Dinkel and Virginia Meyer did much of the 

optimization of sonication strength and duration in a previously published work66. Going 

forward, these conditions could be modified and combined to find an even more sensitive 

method.  

Using this assay to look at differences between other diseased tissue samples is 

another possible direction. Accumulating a variety of samples from multiple diseased and 

undiseased tissues could begin to shed light on the similarities and differences among 

tauopathies. It has been shown in this work that AD and PSP recruit hTau23cl and 

hTau40cl differently in amplification and that AD21 and AD110 have different blockage 

patterns when amplified in the presence of MAP2. In the future, additional diseases such 

as PiD, CTE and CBD can be subjected to amplification to determine if the 3R 

tauopathies, 4R tauopathies, and mixed fibril tauopathies recruit only the isoforms in their 

classification. Subjecting different areas of the same diseased brain to amplification and 

comparing the results to one another can also give information about spreading in 

disease. Finally, comparing the amplification products of different brain tissue with the 

same pathological diagnosis to one another could offer information about similarities and 

differences within a single disease. 



 

63 

 

5.3 Applying Assay to More Accessible Biological Samples 

The assay developed here shows promise for detecting even the smallest amounts 

of fibrils in solution. Exosomes are small vesicles secreted by cells, including neurons, 

which contain various proteins and RNA83. Exosomes are used in signaling and removing 

unwanted proteins from the cell, frequently ending up in the blood stream84. Using 

antibodies, the Granholm lab has shown that phosphorylated Tau is present in higher 

concentrations in the blood derived exosomes of those with DS than exosomes from 

undiseased patients85. The Tau identified was identified using antibodies and it was not 

specified whether the Tau was fibrillar or not. Upon acquiring exosomes from the 

Granholm lab, they were subjected to amplification, and preliminarily DS exosomes 

show amplification after 30 cycles (Figure 21). Like the brain tissue, the background of 

the exosomes was indistinguishable between undiseased and DS exosomes. This is 

promising because exosomes can be purified from more accessible biological samples. 

As this assay becomes more sensitive, several positive and negative outcomes 

could be possible. With detection at single fibril levels, it may be possible to use a simple 

blood draw to detect tauopathies. Since Tau begins aggregating in AD decades before the 

first symptoms are seen, an early detection method might allow for treatment at earlier 

stages than ever before. 
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Figure 23: Amplification of Fibrils from Exosomes. (A) The background of undiseased 

control exosomes is indistinguishable from those of a DS patient. The dark band shown 

in the exosomes is not Tau. Since the exosomes were purified using a pull-down assay, 

the most prominent band is likely the pulldown target85. (B) The exosomes from DS have 

shown promising capability of amplification compared to undiseased control exosomes.
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