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ABSTRACT 

The effective elastic modulus and conductivity of a two phase material system are 

investigated computationally using a Monte Carlo scheme. The continuum contains 

circular, spherical or ellipsoidal inclusions that are either uniformly or randomly 

embedded in the matrix. The computed results are compared to the applicable effective 

medium theories. It is found that the random distribution, permeability and particle aspect 

ratio have non-negligible effects on the effective material properties. For spherical 

inclusions, the effective medium approximations agree well with the simulation results in 

general, but the analytical predictions on void or non-spherical inclusions are much less 

reliable. It is found that the results for overlapping and nonoverlapping inclusions do not 

differ very much at the same volume fraction.  The effect of the particle morphology is 

also investigated in the context of prolate and oblate ellipsoidal particles. 

The geometric percolation thresholds for circular, elliptical, square and triangular 

disks in the three-dimensional space are determined precisely by Monte Carlo 

simulations. These geometries represent oblate particles in the limit of zero thickness. 

The normalized percolation points, which are estimated by extrapolating the data to zero 

radius, are ηc=0.9614±0.0005, 0.8647±0.0006 and 0.7295±0.0006 for circles, squares 

and equilateral triangles, respectively. These results show that the noncircular shapes and 



iii 

 

corner angles in the disk geometry tend to increase the interparticle connectivity and 

therefore reduce the percolation point. For elliptical plate, the percolation threshold is 

found to decrease moderately when the aspect ratio ε is between 1 and 1.5 but decrease 

rapidly for ε greater than 1.5. For the binary dispersion of circular disks with two 

different radii, ηc  is consistently larger than that of equisized plates, with the maximum 

value located at around r�/r� =0.5. 
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 CHAPTER 1  INTRODUCTION 

 

 

 Composite materials exist in almost every aspect in our life from pencils to space 

stations. Basically, these composites are made of at least two components stiff, strong 

components embedded in a softer constituent. For illustration, concrete, one of the most 

widely used building materials in the world, are made of two components, cement and 

aggregate. The green cement, in fresh or not hardened form, is used as the soft part, 

matrix, and the aggregate are used as the stiff and strong components. This combination 

makes it possible to build complex structures.  

 Heterogeneous materials are designed for many purposes to take advantages of 

both strength and stiffness of reinforcement materials and light weight of the matrix. 

Composite materials have witnessed great attention since dawn of Bronze Age. Over the 

last few decades reinforcement materials have been developed on many levels as the 

technology advanced and new applications emerged. The differences between mechanical 

properties of fillers and host materials such as polymer matrix reinforced with filler such 

as glass fiber, epoxy resin, carbon fiber, or polypropylene, etc are greatly varied. 

Therefore, Developing appropriate theories and models to predict the effective properties 

of heterogeneous materials is of utmost importance to design efficient components (Lee, 

& Paul, 2005). 
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  Material properties can be modeled in three different scales: the continuum 

macroscopic scale of engineering, the atomic scale, and intermediate mesoscopic scale 

where microstructure is treated as systematic constituent. One of the widest approaches to 

define effective properties on mesoscopic scale is effective medium theories (Choy, 

1999). Chapter 2 in this work discusses some of these theories in more detail in addition 

to major mechanical properties of heterogeneous materials. 

 Modeling and numerical simulation of heterogeneous materials is a growing area 

especially after the outstanding development in computational tools in terms of 

processing (number of operations that can computer operate per second) and RAM 

(Random Access Memory) capacity. However, without super computational power such 

as multiprocessors, parallel computers, and massive RAM simulation procedures become 

time consuming and hard to manage. In addition, modeling complex structures can’t be 

accomplished by conventional finite element software. Therefore, the first objective of 

this work is to develop a new approach to model heterogeneous materials in Chapter 3. 

Furthermore, effective medium theories were evaluated in comparison to simulation 

results.  

 Based on the close relationship between mechanical properties of composite 

materials and percolation theory, the geometry effect on the percolation thresholds of 2D 

particles in 3D domain was investigated in Chapter 4. Scaling theories and linear 

regressions were employed to estimate the percolation thresholds. The simulation results, 

moreover, are presented and discussed in this chapter. Finally, Chapter 5 highlights the 

major conclusions that were derived from this work.  
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 CHAPTER 2.1  BACKGROUND AND LITERATURE REVIEW 

 

2.1 Heterogeneous Materials 

Nature produces disordered materials, and over the last few decades, it has 

become obvious that these materials have the optimum structure. Human beings have 

realized these phenomena, and composites and heterogeneous materials have witnessed 

widespread applications throughout the history. Even though engineers and materials 

scientists can employ sophisticated methods to grow pure crystals experimentally, in the 

real world, they are still dealing with composites and mixture materials. The term 

heterogeneous materials can be defined as the apparent randomness in the morphology of 

materials. Topology, the interconnectiveness of its individual elements; and geometry, 

the shape and size of these individual elements are the main aspects of the morphology 

(Sahimi, 2003; Choy, 1999). 

 

2.2  Effective Properties of Heterogeneous Materials 

The main focus of this work is to understand the effective properties of specific 

heterogeneous materials and their relevance to both numerical and analytical models. The 

effective electrical, thermal conductivity and the effective elastic moduli are the 

predominant properties of interest.  
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Due to the fact that the mathematical analogy of the formulation of the thermal and 

electrical conduction in heterogeneous materials is the same, the term effective 

conductivity refers to both properties in this work (Sahimi, 2003).  

  

2.2.1 The Effective Conductivity 

For a two-phase heterogeneous linear materials, �� and �� are the thermal 

conductivities for a matrix phase 1 and inclusion phase 2. In steady-state conduction, the 

governing equation is: 

�. q�x� � 0,  For both phases 
(2-1) 

 

where q is the local heat flux and the local thermal conductivity in terms of the flux q is 

defined by the Fourier law, 

q�x� � �q�x��T�x�,  for both phase 
(2-2) 

 

Where �� � and !� � are the local temperature and thermal conductivity at point x 

respectively. 

For a large number of samples, 

"q�x�# � �g%"�T�x�#, 
(2-3) 

where �& is effective conductivity tensor. 
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2.2.2 The Effective Elastic Moduli 

In the same manner, for isotropic linear heterogeneous materials consisting of phase 1 

and 2 with elastic bulk moduli K�and K� and shear modlui µ� and µ�. 
�. σ�x� � 0,  for both phases 

where *� � is the symmetric, local stress tensor 

σ�x� � λ�x�tr-.�x�/U 1 2µ�x�.�x�, for both phases 
(2-4) 

.�x� � �� -�u�x� 1 � u�x�4], 

(2-5) 
 

Here .�x� is the symmetric, second-rank local strain tensor, u�x� is the local 

displacement, λ�x� and µ�x� are the local Lame constant, u is the unit dyadic, and 

superscript T denotes transpose operation on the tensor. And, tr denotes the trace of the 

tensor. 

"σ�x�# � C%. ".�x�#,   
(2-6) 

 
The effective stiffness tensor C% can be expressed in terms of only two independent 

effective elastic moduli K% and µ% 

 

"σ�x�# � K% � 2 µ%d  tr. ".#U 1 2µ%".#,   
(2-7) 

 
where d is the dimensionality of the system.  

 

 



6 

 

 

 

2.3 2D and 3D Material Properties 

Young modulus, bulk modulus, shear modulus and Poisson’s ratio for a d-

dimensional linear isotropic homogeneous materials are specified by  E�8�, K�8�, G�8� and 

v�8�. The two-dimensional moduli and the three-dimensional moduli can be connected by 

making one of the following assumptions either plane-strain or plane-stress elasticity. In 

the first one, .��=.�� � .�; equal 0, for d=3 (Torquato, 2002). 

ε=> � � vE τ@@δ=> 1 1 1 vE τ=> 
(2-8) 

 

 Where δ=> � B1,                      i � j0,         otherwise J  (The Kroneker delta), i, j= 1,…..d 

The previous equation with d=3 can be correlated with d=2 to obtain 

 

E��� � E�;�-1 � v�;�/-1 1 v�;�/ 
(2-9) 

 

v��� � v�;�1 � v�;� 
(2-10) 

 
In the same manner, for  

τ=> � λε@@δ=> 1 2Gε=> 
where λ is the lame constant  

K��� � K�;� 1 G�;�/3 
(2-11) G��� � G�;� 
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In case of plane-stress elasticity, σ�� � σ�� � σ�; � 0 in the previous stress and strain 

tensors expression with d=3 and comparing with d=2 we obtain 

 

E��� � E�;�, v��� � v�;� 
 

K��� � 9K�;�G�;�3K�;� 1 4G�;� 
(2-12) G��� � G�;�,   

 

2.4 Prediction of the Effective Properties of Heterogeneous Materials 

Over the past few decades many models have been developed to illustrate the 

effective properties of heterogeneous materials. Nevertheless, just in the last three 

decades these models have been developed to incorporate comprehensive structural 

properties such as the distribution of particles’ heterogeneities. 

In spite of the fact that the computational power of these days’ computers is 

relatively strong, predicting the exact properties of simple heterogeneous materials is not 

an easy task to achieve. However, the various properties of composite materials can be 

estimated by employing efficient computational algorithms and powerful computational 

tool.  

Yet, in order to estimate effective properties of heterogeneous materials, popular 

effective-medium approximation theories can be employed for this purpose, and the 

following section describes popular approximation theories and shows their major 

applications. 
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2.5 Effective-Medium Approximations 

It is well known that the effective medium theories (EMTs) can be used to estimate 

effective properties of multiphase materials of a wide range of volume fractions 

(Toroquato, 2002). Wei and Srivastava (2004) applied, for example, one of the basic 

linear rules of mixing in their work to find properties of carbon nanotube (CNT) polymer 

composite. In addition, Mondescu and Muthukumar (1999) manipulated EMTs to derive 

closed form solutions for randomly disturbed particles at low volume fraction. More 

application will be discussed in the following sections. Since there are many methods 

used to approximate effective properties of heterogeneous materials, in this work, we 

focused our research on the most popular theories for spherical inclusions according to 

Toroquato (2002). The theories that we are going to describe are the Maxwell 

approximation (Maxwell, 1873), the self-consistent approximation (Gubernatis & 

Krumbansl, 1975), and the differential effective medium theory (Mclaughlin, 1977).  

 

2.5.1 Effective Conductivity of Multiphase Media 

 

2.5.1.1 Maxwell approximations for spherical inclusion 

Maxwell (1873) derived the d-dimensional generalization of the approximation 

scheme for the case d=3. Figure 2-1 shows a schematic corresponding to Maxwell’s 
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approximation. A sphere of radius MNcontained number (N) of smaller spheres of radius 

R and conductivity O� in a matrix of conductivity O� in d spatial dimensions is shown The 

volume fraction of the inclusion (small spheres) is �� � N� QRS�8 . At r distance larger 

than MN, the field E(r) at r distance is the superposition of the field as a result of small 

sphere, and it can be explained by the following expression. 

E�r� � ET 1 R�8β��r8 -dVV � I/. ET 

(2-13) 
 

where . ET is a constant intensity field,  β�� is the polarizability, and n is radial unit 

normal. Since the intensity field which it produces at a larger distance is  

E�r� � ET 1 R�8β%�r8 -dVV � I/. ET 

(2-14) 
 X � Y |Y|⁄  Radial unit normal 

 

β%� � O&\O�O&1�] � 1�O� 

(2-15) 
 

By assuming expression β%� � ��β��, we get,  

 

( ) ( ) 








−+

−
=

−+

−

12

1
2

1

1

11 σσ
σσ

φ
σσ

σσ
dd

e

e

e   

(2-16) 
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Equation (2-16) defines as Maxwell’s approximation of the single-inclusion field. 

It equals to the lower bound of Hashin-Shtrikman bounds when σ� ^ σ� and the similar 

upper bound when σ� � σ�.  

  

In the case where σ� σ� � ∞⁄  (the spheres are superconducting comparative to 

the matrix).  

when σ� σ� � ∞⁄  

O&O� � 1 1 �] � 1� ��1 � ��  

(2-17) 
when σ� σ� � 0⁄  

O&O� � �] � 1��] � ��� ] � ��  

(2-18) 
 

For multi phase composite contains M-1 number of different types of spheres with 

volume fraction ��……, �` the general expression of Maxwell’s expression is shown in 

expression (2-19). 

O&\O�O&1�] � 1�O� � a �b c Ob\O�Ob1�] � 1�O�de
>f�  

(2-19) 
 

 

2.5.1.2 Self-consistent approximations for spherical inclusion 

For M different types of suspensions macroscopic isotropic spherical inclusion 

with volume fraction ��……, �` and conductivities O�……, O`, the effective 

conductivity  O& by the self-consistency can be described by this formula.  
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a �b
e

>f�
Ob\O&Ob1�] � 1�O& � 0 

(2-20) 
 

The expression (2-21) shows the self-consistent (SC) approximation for two-

phase. 

 

O& � g 1 hg�14�] � 1�O�O�2�] � 1�  

(2-21) 
 
 

With g � O��]�� � 1� 1 O��]�� � 1�   
 (2-22) 

 
 

According to Torquato, (2002) SC approximation may lead to poor prediction of 

effective conductivity since the theory assumed that the effective properties exist just 

outside the inclusion phase; moreover, the information about the distribution of inclusion 

is not included. 

In the case of superconducting spherical inclusions in which σ� σ� � ∞⁄ , the 

effective conductivity is shown in expression (2-23). And in the opposite case, the second 

phase is insulating spherical inclusions in comparison to phase 1; the effective 

conductivity can be expressed in formula (2-24). 

 

O&O� � 11 � ]��  

(2-23) 
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O&O� � 1 � d] � 1 �� 

(2-24) 
 

 

2.5.1.3 Differential effective-medium approximations for spherical inclusion 

Bruggeman (1935) was the first to introduce the differential effective-medium 

(DEM). In case of two- phase composite, the phase 1 indicates the matrix phase with 

volume fraction  ��, and phase 2 indicates the inclusion phase (spherical inclusion) with 

volume fraction  ��. The differential equation of d-dimensional spherical inclusions can 

be expressed in the following explicit formula. 

 

O&� �� 1 Δ� ��� � O&� ��� � O&� ��� j O� � O�� ���O�1�] � 1�O&k  Δ��1 �  �� ] 

(2-25) 
 

In the limit Δ�� l 0, this expression becomes the differential equation 

 

�1 �  ��� ]O� ]�� � O& j O� � O&O�1�] � 1�O&k ] 

(2-26) 
 

By analytical integration with initial condition  �� � 0 

mO��O&O��O�n mO�O&n�/8 � 1 �  �� 

(2-27) 
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In case of superconducting phase 2, this expression simplifies to: 

 

O�O� � 1�1 �  ���8 

(2-28) 

O�O� � ∞ 

 

2.5.2 Effective Elastic Moduli of Multiphase Media 

 

2.5.2.1 Maxwell approximations for spherical inclusion 

In a similar approach to Maxwell’s effective conductivity, Maxwell determined 

the effective bulk modulus K% by applying a hydrostatic strain at infinity where  oT �
εTp/d. The strain field ε�r� at distance r larger than R� is defined by the superposition of 

the field.  

ε�r� � εT 1  ��R�8k��r8 -dVV � I/. εT 

(2-29) 
 
 

where k�� is the bulk modulus polarizability. The strain at large distance with effective 

bulk modulus K% can be expressed as follow 

ε�r� � εT 1 R�8k%�r8 -dVV � I/. εT 

(2-30) 
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where, 

k%� � r& � r�r&1 2�] � 1�] s�
 

(2-31) 
Since k%� �  ��k��  

 

r& � r�r&1 2�] � 1�] s�
�  �� t r� � r�r�1 2�] � 1�] s�

u 

(2-32) 
 

In term of shear moduli, Maxwell approximation leads to the following expression. 

 

 








+

−
=

+

−

12

12
2

1

1

HG

GG

HG

GG

e

e φ  

(2-33) 
 

where r& is the effective shear moduli of suspensions of identical spheres. s& and s� are 

the shear moduli of the spherical inclusion and the matrix respectively.  

 

 
( )( )[ ]

ii

iii
i GK

dGdddKG
H

2

/212/

+

−++
≡ , 2,1=i  

(2-34) 
 
 

This method also has special cases in which the spheres are rigid comparing to phase 1  

( G� G�⁄ � ∞) as shown in expression (2-35). 
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G% G� � 1 1 d2  �� 1 � ��  

 (2-35) 
 

 
if K� G�⁄ � K� G�⁄ � ∞ both phases are incompressible, and  G� G�⁄ � ∞ 

Moreover, when the spheres are holes in incompressible matrix, the Maxwell 

approximation for this case is shown in expression (2-36). 

 

G% G� � d�1 �  ��� ] 1 2��  

(2-36) 

 

The general formula for Maxwell approximation for M-1 different types of spheres with 

volume fractions and moduli can be described as  

G% � G� G� 1 H� � a  �� G> � G� G> 1 H�
e

>f�  

(2-37) 
 
 

2.5.2.2 Self-consistent approximations for spherical inclusion 

Similar to the effective conductivity, (SC) approximations were derived firstly by 

Budiansky (1965) and Hill (1965). For M different types of suspensions macroscopic 

isotropic spherical inclusion with volume fraction ��……, �` , bulk moduli w�……, w`, 

and shear moduli  s�……, s` the effective elastic shear s& by the self-consistency can 

be explicit by this formula.  
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a �b
e

>f�
sb\s&sb 1 x& � 0 

(2-38) 
 

where    
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(2-39) 

 

In the case of two incompressible phases in which K� G�⁄ � K� G�⁄ � ∞, the 

expression (2-40) yields to 

 

�� s&\s�]s&2 1 s�
1�� s&\s�]s&2 1 s�

� 0 

(2-40) 
 
 

In the case were phase 2 is void, and phase 1 assumed to be incompressible then 

the simple expression of SC approximations in this case is shown in expression (2-41). 

 

( ) ( )[ ]
( ) 2

2

1 21

11

φ
φ

−−

+−−
=

dd

ddd

G

Ge

 
(2-41) 

 
where K� � G� � 0, K� G�⁄ � ∞, 
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2.5.2.3 Differential effective-medium approximations for spherical inclusion 

In similar approach to (DEM) for effective conductivity, the differential effective 

medium approximations for bulk or shear moduli K%, and G% for two phase composite of 

d-dimensional spherical inclusions is expressed in formula (2-42).  
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21
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 (2-42) 

 
 

and, in the case were phase 2 is perfectly rigid relative to phase 1, the DEM 

approximations yield to.   

G%G� � 1
�1 � ����8y���  

(2-43) 
 

where K� G�⁄ � K� G�⁄ � ∞, and G� G�⁄ � ∞. 

 

 

2.6  Images Processing and Finite Elements Modeling 

Over the last few decades there has been a recurrent interest in predicting the 

effective material properties of advanced heterogeneous composites (Hashine, 1963; 

Torquato, 1991, 2002; Chen, 2008). The main interest has been focused on the maximum 

achievability of both elastic modulus and conductivity, by employing either analytical 

approach or numerical modeling. A number of mechanical, physical and mathematical 
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principles were employed to derive approximate solutions to estimate the effective 

properties of heterogeneous material (Hashin, 1983; Chen, 2008).  

In addition to analytical approaches described in the previous sections, 

computational and numerical modeling methods were widely used to investigate the 

problem, and perhaps the most widespread method is the derived finite element analysis 

using digital images of 2-D and 3-D composite materials (Garboczi, 1995). This method 

requires a particular error analysis in deriving the results. An application of this method 

was explored by Roberts and Garboczi who studied linear elastic properties of random 

porous composites with various microstructures. However, reduction in local maximum 

errors, particularly at material boundaries, is not guaranteed. In an alternative approach, 

there is no need to take x-rays of composite materials to obtain digitalized images which 

are meshed by using conventional finite element tools. This approach is based on 

building and simulating composite materials by employing advanced commercial tools to 

analyze the morphology and properties of composite structures.  

In their research, Garboczi and Berryman (2001) applied the same concept to 

study elastic modui of a material containing composite inclusions in comparison with 

modified differential effective medium theory (D-EMT). In their modeling method, 

digital images were used to generate finite element models. Square lattice or cubic pixel 

images were obtained sporadically to generate the random microstructure, and each 

square lattice or cubic pixel represents bi-linear or tri-linear element in 2D or 3D 

respectively. Furthermore, the authors argue that finite element method has to be 

evaluated in terms of accuracy and reliability since there are no precise analytical data to 

be compared with the numerical results. Thus, possible sources or errors were evaluated 
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and considered in their results such as finite size effect, digital resolution, and statistical 

variation.  

The composite inclusion particles were dispersed randomly by random sequential 

adsorption in which larger particles were placed first in the domain and overlapping is not 

allowed. Even though the limitation of the D-EMT equations to be compatible to the 

microstructure of composite, Garboczi et all succeeded to modify this method to match 

the numerical model. Figure 2-2 shows the D-EMT result for K and G compared to the 

numerical results for two-size sphere 3D model. 

Chen, Jaian, Xu, Limei and Li Hui (2008) recently investigated a direct modeling 

strategy to predict the effective moduli of composite materials under finite element 

method. In their work, a numerical model was developed base on the composites of 

experimental or numerical digital images. These images were processed by Object 

oriented finite element method (OOF) which is software developed by NIST (National 

Institute of Standards and Technology, USA) and MIT to generate finite element models. 

According to NIST, this software was designed to help materials’ scientists to calculate 

macroscopic properties from images of real or simulated microstructures. Figure 2-3 

shows an example of a planar specimen constructed with the direct modeling strategy for 

glass (light shading) and epoxy (dark shading) and a volume fraction of 50-50.  

In another work that was conducted by Cai, Tu, and Tao (2005), a more modern 

method doesn’t involve digital imaging was implemented to model what was called “the 

optimal design of physical properties” of polytetrafluoroethylene or (PTFE) composites 

with random 3-D inclusion. This model was used to investigate thermal conductivity of 

PTFE composites. However, their model was limited to the composites of unidirectional 
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fibers. The main objective of their work was to study the thermal conductivity of PTFE 

composites reinforce with single-phase and two phase reinforcement. Figure 2-4 shows 3-

D FE model of two phase reinforcement, and figure 2-5 shows 3-D FE model of one-

phase reinforcement. Moreover, a comparison between finite elements results and 

experimental values are shown on figure 2-6 and it shows good agreement between both 

values. 

Modeling two-phase composite contains symmetrical randomly distributed 

particles without using digitalization imaging takes a lot of effort to achieve by any 

means. However, modeling inclusions with no axes of symmetry such as fibers and 

ellipsoids is a more challenging task. Lee and Paul (2005) developed an analytical model 

for composites containing three-dimensional ellipsoidal inclusions; however, their model 

is limited for unidirectional aligned inclusions. This limitation makes it possible to 

employ Eshelby’s equivalent tensor with a Mori-Tanaka model. Figure 2-6 shows a 

schematic of a three dimensional ellipsoidal inclusion and its radii  z�, z� , z;. The 

elements of the model are shown on figure 2-7 which consists of two constituent the 

oriented ellipsoidal inclusions and the infinite elastic matrix.   

 

 

2.7  Percolation and Effective Properties 

Percolation threshold of composite materials has a significant effect on the 

behavior of effective properties. Near percolation threshold, the behavior of effective 

transport and elastic properties of materials is unlike those for pure materials. Extensive 
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mathematical and numerical models have been developed to understand this phenomena 

and its effect on materials properties. In foremost recent work, for example, Yi and Sastry 

(2002) derived an analytical approximation of 2-D and 3-D dimensional percolation 

threshold for fields of overlapping ellipses. Yi (2006) also studied the void percolation 

problem of a medium containing overlapping ellipsoids. These results are useful in 

predicting the minimum amount of material needed to achieve conductivity or 

mechanical strength. In addition to the predictions of percolation threshold, the elastic 

modulus and conductivity of fibrous (Berhan et al., 2004; Zhang, & Yi, 2008) or 

particulate systems (Wang, Yi, & Sastry, 2004) were also studied computationally. 

Chapter 4 provides literature review regards percolation and its application in addition to 

the second objective of this work.  

 

 

2.8  Universal Scaling Laws for Percolation quantities 

The microscopic details of a system affect the numerical value of any percolation 

quantity; however, near percolation threshold p� most percolation quantities follow 

scaling laws in which the network structure and its microscopic details have insignificant 

effect (Sahimi, 1994). This low is applicable for many of percolation quantities such:  

1. Percolation probability P (p), this is the probability that, when the fraction of 

occupied bonds is p, a given site belongs to the infinite cluster of occupied 

bonds. 

P�p�~�p � p��~�  
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2. Correlation length ξ��p�, for p<p�, this is the typical radius of the connected 

clusters, and the length scale is macroscopically homogeneous. For p>p�, L, 

system’s linear size, must be larger than the correlation length for the result of 

any Monte Carlo simulation to be independent of L.  

 ξ��p�~�p � p��\�� 

 

3. Effective electrical conductivity  g% , this is the electrical conductivity of a 

random resistor network in which a fraction p of bonds is conducting and the 

rest are insulating. 

g%~�p � p��µ 

4. Effective elastic modului G. G can be defined as the elastic modui of the 

network in which a fraction p of the bonds are elastic elements and the rest are 

soft or voids elements.  

G~�p � p��� 
The topological exponents β� and v� are totally universal, and they depend on the 

dimensionality of the system and indecent of the microscopic structure. The same case 

for the transport exponent µ  andf; however, in some cases this condition may be violated.  
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Figure 2-1 A schematic corresponding to Maxwell’s approximation. A composite sphere 
of radius  R� , composed of spherical particles (phase 2) in a matrix (phase 1), is 

immersed in an infinite matrix of phase 1. 
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Figure 2-2 The D-EMT results for K and G compared to the numerical results for the 
two-phase 3D model. 
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Figure 2-3 An example of a planar specimen constructed with the direct modeling 
strategy for glass (light shading) and epoxy (dark shading) and a volume fraction of 50-

50. 
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Figure 2-4 A 3-D FE model of two phase reinforcement 
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Figure 2-5 A 3-D FE model of one-phase reinforcement. 
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Figure 2-6 A comparison of FE results and experimental values 
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Figure 2-7 Schematic views of a three dimensional ellipsoidal inclusion, along with its 
side and front view. 
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Figure 2-8 A composite formed from aligned ellipsoidal inclusion with aspect ratio 

of two. 
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CHAPTER 3  EFFECTIVE PROPERTIES OF TWO-PHASE HETEROGENEOUS 

MEDIA 

 

Dealing with the finite element modeling of a multiphase material system is not in 

the slightest an easy task since the inclusion materials are interconnected with the matrix. 

The persistent obstacles to mesh automation of complex structures are well known and no 

individual commercial code is capable of handling the problem of interest. In the current 

work, a new, direct simulation method that does not rely on digitization of the material 

phase was employed, thus allowing more accurate modeling of the interconnected 

structures. The method is based on the Direct Delaunay tessellation scheme, i.e. a general 

triangulation method from scattered points. Several commercial codes worked jointly in 

the model development: Matlab® (2005), Comsol Multiphysics® (2006) and Abaqus® 

(2006) as well as a standalone code written in C programming language for particle 

dispersion. The analytical approximations have also been obtained from the effective 

medium theories for both validation and comparison purposes. 

For realistic multiphase composites, the interfacial effect could play an important 

role. For example, Torquato and Rintoul (1995) developed rigorous bounds on effective 

conductivity for the interfacial surface effect between spherical inclusions and matrix, 

and this work was later extended for other problems as well (Miloh, & Benvensite, 1999; 
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Benvensite, 2006).In addition, the mechanical contact problems were also investigated in 

the context of random media recently (Yi, 2008).   

 

 

 

3.1  Methodology 

 

3.1.1  Two Dimensional Computational Models 

Matlab® and Comsol® were directly used to create finite element models in a 

unit size rectangular domain required for the subsequent mechanical analysis. In 

particular, a dynamic collision algorithm was applied to randomly deploy nonoverlapping 

voids or fillers. The material properties, meshing and analysis procedure were conducted 

using the graphic user interface of the program of interest.  

Three different cases were investigated as follows: Case 1 Arrays of circular voids 

were uniformly dispersed in the matrix with the same spacing in both x- and y- 

directions. The voids had the same size with a fixed radius of 0.05 (normalized unit). 

Figure 3-1 (a) shows the meshed model, which was generated via the built in optimized 

mesh quality in Comsol ®, and number of triangular elements in the model was 6800. In 

the second case, the circular voids were randomly distributed in the domain. “Random” 

here is referred to as a Poisson process following a uniform probability density. Figure 3-

1 (b) shows an example of randomly distributed circular voids with 7447 elements. In the 
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last case, the circular voids in Case 2 were replaced by disk-shaped circular fillers, and 

therefore two dissimilar materials were involved in this case.  

 

3.1.2  Boundary Condition and Analysis Parameters 

A prescribed displacement of 0.01 was applied along the y-direction, and an 

isotropic linear elastic analysis was performed to determine the reaction forces. The 

effective elastic modulus of the system was estimated by taking the ratio of the resulting 

stress to the preset strain. According to the scaling theories, the result computed in this 

way is a function of the simulation domain. However, when the ratio of the domain size 

to the size of inclusions is sufficiently large, the result will approach the asymptotic limit. 

Several physical assumptions and mathematical simplifications were made: (1) for 

circular fillers, the two phases had the same Poisson’s ratio (0.3) in order to minimize the 

number of variables in the model; (2) The interfaces between dissimilar materials were 

bonded by either adhesives or special chemical or thermal treatment; therefore, no 

contact surfaces were modeled; (3) The simulation results were normalized against the 

properties of the matrix, and hence the modulus or conductivity was dimensionless. 

 

3.1.3. Three-Dimensional Computational Models 

In the 3-D simulations, a different scheme was implemented to automate the 

modeling process due to the difficulties in a direct simulation using the commercial 

software. The procedures involve a three-step procedure: first, a similar collision 

algorithm was employed to generate overlapping or nonoverlapping inclusions. Second, 

the obtained geometric data was used to generate a finite element mesh by a standard 
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Delaunay Tessellation scheme. In the last step, the output data of the code bundle was 

written into a script file readable by ABAQUS® for the subsequent finite element 

analysis.   

Three different models were investigated: (1) overlapping spherical inclusions, (2) 

nonoverlapping spherical inclusions, and (3) nonoverlapping ellipsoidal inclusions.  

Since the problem involving void inclusions was already studied in the 2-D cases, here 

our attention was focused on the continuum problems and the inclusions in all three 

models were assumed to be fillers.  

In the first model, all the spheres were identical and had a radius of 0.1 (the 

simulation domain remains as a unit cell). These spheres were deployed randomly in the 

matrix following an algorithm similar to the one used in the 2-D models. The tetrahedron 

finite element mesh was generated via a 3-D Delaunay tessellation scheme in Matlab®. 

The volume fraction of spheres was obtained by summing the volume of each individual 

element that was located in the interior of at least one of the spheres. Figures 3-2 (a) and 

(b) show models of the mid-plane cross sections of overlapping spheres. The last step is 

meshing procedures. The mesh information was exported to an ABAQUS® input file.  

In addition to mechanical analysis, the effective conductivity of the material 

system was also evaluated by a steady state heat transfer analysis. More specifically, unit 

temperature difference was applied on two opposite sides of the unit cell and the reactive 

heat flux was computed. The total heat transfer rate by summing the nodal heat flux is the 

effective conductivity of the system. Regardless of the physical distinction between 

thermal and electrical conduction, the normalized result can be interpreted as either the 
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thermal conductivity or electrical conductivity because of the mathematical analogy 

between the two phenomena. 

Nonoverlapping spheres were modeled in a strategy similar to that for 

nonoverlapping circular disks except that the process was more computationally 

intensive. Figure 3-3 (a) shows a computer-generated system of nonoverlapping random 

spheres. 

In addition to spherical inclusions, a specific model was developed to model 

ellipsoidal inclusions. Two types of ellipsoidal particles, oblate (disk-shaped) and prolate 

(cigar-shaped) were modeled and investigated. Figure 3-3 (b) shows a computer-

generated random system of oblate ellipsoidal particles. All the ellipsoids were assumed 

to be impermeable. The locations and geometric data of ellipsoidal particles were 

generated in the same way as that used for spherical particles. Although a generalized 

ellipsoid would be a tri-axial particle, here we focused on ellipsoids of revolution only. 

As a result, only two parameters were needed to determine the geometric shape of each 

particle: namely, minor axis length and major axis length. To generate random ellipsoidal 

particles, the center point locations were distributed randomly, and the Euler angles of the 

axes also followed the appropriate density functions of probability.  
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3.2  Simulation Results and Discussion 

 

3.2.1  Circular Inclusions 

First of all, the effect of circular voids on effective elastic modulus of circular 

voids was investigated. Figure 3-4 shows a plot of the simulated elastic modulus obtained 

from the finite element analysis for the following two cases: (1) uniformly distributed 

circular voids and case (2) randomly distributed circular voids. It can be seen that the 

effective elastic modulus decreases with the void volume fraction in both cases. In 

addition, the modulus of the material containing uniformly distributed circular voids is 

greater than that of the material containing randomly distributed voids. In the second 

case, the reason could be the effect of the higher stress concentration in the regions where 

the voids are located very close to each other. In the same figure, the simulation result is 

also compared to the effective medium theories including the Maxwell approximation 

and the SC approximation. Even though the assumption here is that the matrix is assumed 

to be incompressible, the Maxwell approximation shows a similar pattern to uniformly 

distributed voids. The SC approximation also shows agreement with the simulations for 

both uniform and random distributions at lower volume fractions. However, there is a 

significant discrepancy at higher volume fractions. Overall, the simulation results roughly 

fall between the Maxwell approximation and the SC approximation results.  

To investigate the effect of a two phase material system, the void spaces in the 

previous model were replaced by elastic circular disks in figure 3-5 (a), where the results 

are shown for the effective elastic modulus of a plate containing randomly distributed 
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disks. A comparison has been made between the simulations and those predicted by the 

linear rules of mixing. In parts (a), (b) and (c) of figure 3-5, the normalized modulus of 

the inclusions varies from 2, 5 to 7, respectively, whereas the normalized modulus of the 

matrix material is fixed to the unit value.  It can be seen that the simulation results fall 

between the upper and lower limits of linear rules of mixing. In addition, the difference 

between the upper and lower limits increases with the modulus of the disks. Apparently, 

the effective modulus of the composite material increases with both the volume fraction 

and the modulus of the embedded particles. For example, the effective moduli (E%��) 
increases by 40% at 50% volume fraction of disks with E2/E1=2. At the same volume 

fraction, E%�� increases by 100 % and 130 % for E�/E�=5 and 7, respectively. Similar 

results have also been obtained for uniformly distributed disk-like inclusions.  

Figure 3-6 (a) shows the comparison between the finite element simulation and 

the effective medium theories. The simulation models along with all the assumptions 

remain the same as those used in figure 3-5. It is seen that the effective modulus of the 

system falls between the Maxwell and the SC approximations. In figure 3-6 (a) where 

E�/E�=2, an excellent agreement can be seen between the results for the entire range of 

volume fraction. Using either of the approximation theories would yield an error less than 

2% in the predicted elastic modulus.  In figures.3-6 (b) and (c) where E�/E�=5 and 7, 

respectively, the simulation result shows good agreement with the approximation theories 

at a volume fraction below 40%. At a volume fraction above 40%, the results deviate 

slightly from the approximation theories. Nevertheless, the Maxwell theory and the SC 
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approximation consistently provide a lower and an upper bound for the simulation 

results, respectively.  

 

 

3.2.2  Spherical Inclusions 

The above work was extended to the three-dimensional case in which the matrix 

contains randomly distributed spherical particles instead of circular disks. Figure 3-7 

shows a comparison of the elastic modulus between the simulation and the approximation 

theories. The spheres are allowed to overlap in this case and E�/E�=4 is assumed. The 

Poisson’s ratio is fixed to 0.23 in both phases. It can be seen that the simulation results 

fall between the Maxwell and the SC approximation theories. Apparently, the effective 

modulus increases with the sphere volume fraction. Also, it has been noticed that the SC 

approximation generally yields much better results than the Maxwell approximation.  

In addition to the mechanical analysis, we also performed the conductivity 

analysis for overlapping spheres as shown in figure 3-8. The dimensionless conductivity 

of the matrix material and the conductivity of the spherical inclusions are assumed to be 1 

and 4, respectively. The simulation results are compared to the three different effective 

medium solutions: Maxwell, SC and DEM. It is seen that the effective conductivity 

increases with the sphere volume fraction according to a power-law form similar to the 

elastic modulus. All three approximations agree very well at lower volume fractions, 

especially below 20%. However, differences among FEM, DEM and Maxwell can clearly 



39 

 

be seen at higher volume fractions. In comparison with the simulation results, the SC 

solution once again presents the best solution among the three approximation methods.  

The above work was further extended to nonoverlapping spherical inclusions, 

which are believed to represent more realistic material systems. The predicted effective 

elasticity modulus and conductivity are shown in figures 3-9 and 3-10 respectively. In the 

case of mechanical analysis, figures 3-9 (a), (b) and (c) show the effective elastic 

modulus for three cases where E�/E�=2, 4 and 0.25 respectively. In figure 3-9 (a), it can 

be seen that the simulation results are in excellent agreement with the approximations. In 

figure 3-9 (b), the difference is discernable, but not quite significant. At lower volume 

fractions, the SC solution is closer to the simulation results whereas at the higher volume 

fraction the Maxwell approximation tends to be closer. This is somewhat different from 

the results of overlapping particles. A comparison of figure 3-7 and figure 3-9 (b) shows 

that the effective modulus does not differ significantly between the overlapping and 

nonoverlapping inclusions. In figure 3-9 (c), E%��  decreases with the sphere volume 

fraction since the spheres are “softer” than the matrix in this case. The comparisons 

between the EMTs and the simulations generally do not show good agreement here, 

particularly at higher volume fractions. For example, when the sphere volume fraction is 

50%, the simulation, the Maxwell solution, and the SC solution predict results of 2.3, 2.0 

and 2.1, respectively. One reason for that could be related to the limitation of the 

approximation theories for predicting the effective moduli of composite materials.  

The corresponding conductivity analysis was also performed on nonoverlapping 

spheres as shown in figure 3-10. Again, we chose the ratio of the conductivities of the 
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matrix and the spheres to be 1:4 for consistency. Clearly, the simulation results fall 

between the SC solution and the DEM solution while the Maxwell solution 

underestimates the conductivity.  The effective conductivity increases nonlinearly as the 

sphere volume fraction increases. For example, at 60% volume fraction, the effective 

conductivity increases by approximately 150%. In addition, by comparing figure 3-8 and 

figure 3-11, it was found that the conductivity does not differ very much between the 

overlapping and nonoverlapping conditions. 

 

 

3.2.3  Ellipsoidal inclusions 

As mentioned previously in the method section, two types of ellipsoidal particles, 

namely Oblate and Prolate, were investigated in this work, and the outcomes of these 

simulations were compared to the EMTs. Figure 3-12 shows the mechanical analysis of 

two-phase composite containing nonoverlapping ellipsoidal inclusions which is either 

oblate or prolate. The aspect ratio for both types of ellipsoids is 1.4. Again, the 

correlation is excellent between the simulations and the analytical predictions. The 

Maxwell approximation exhibits close correlations to both types of ellipsoidal particles at 

volume fractions below 20%. It has also been noticed that the results of the prolate 

particles and oblate particles are nearly the same at lower volume fractions, yet they start 

to deviate from each other at a volume fraction above 40%. This deviation increases with 

the volume fraction, and it is expected that at the closed-packing limit, there should be an 

appreciable difference between the two cases.  In the conductivity analysis as shown in 

figure 3-13, it is again seen that the SC approximation provides a better prediction of the 
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results compared to other theories. In addition, the composite containing prolate particles 

have a higher conductivity than those containing oblate particles although the difference 

is less than 5% at a volume fraction below 60%.  

The effect of aspect ratio on the effective elastic modulus is presented in figures 

3-14 (a) and (b). The “aspect ratio”,ε  is defined as the ratio of the major axis length to 

the minor axis length. The geometry is assumed to be a prolate ellipsoid of revolution, 

and hence the two minor axes have the same length. The number of ellipsoids used in the 

simulation varies from 170 to 1,020 depending on the volume fraction of particles.  From 

the figure, it is seen that the effective modulus of the composite is a function of the 

particle aspect ratio. In figure3-14 (a), the mean radius of particles is 0.1, and it is seen 

that the maximum modulus of ellipsoidal particle system is 5% higher than that of 

spheres at the same volume fraction. In figure 3-14 (b) where the mean radius of particles 

is 0.05 and at the same volume fraction, the maximum value of the modulus is 

approximately 10% higher than that of a spherical particle system. Although none of the 

effective medium solutions agrees with the simulations, the SC approximation yields a 

closer result. More interestingly, evidence shows that the relationship between the 

modulus and the aspect ratio is not monotonic. Rather, the result oscillates when the 

aspect ratio varies. More specifically, the effective modulus decreases in the range 

ε=1~2, and then increases for ε=2~4. The maximum value occurs at ε=4, and then it 

decreases again. Further increase of the aspect ratio leads to only a mild change of the 

result: from figure 3-14, it can be seen that the moduli for ε=4 and 10 are not far away 

from each other. It is conjectured that the spatial distribution of the stress concentration 
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zones may play a role in this oscillatory result, but the exact reason behind the 

phenomenon is not clear yet. 

Finally, it should be pointed out that for a general two-phase elastic material 

system involving four distinct parameters (E�, ν1, E�, ν2), Dundurs, (1969) proved that 

the stress field can be written in terms of only two parameters. Therefore, if the Poisson’s 

ratios of dissimilar materials are of interest, only one extra parameter needs to be 

included in the mechanical analysis accordingly. 
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Figure 3-1 (a) Finite element model of a unit square plate containing uniformly 

distributed circular voids with 19.6% void volume fraction 
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Figure 3-1 (b) Finite element model of a unit square plate containing randomly 

distributed circular voids with 38.5% void volume fraction. 
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Figure 3-2 (a) 3-D finite element model in a unit cubical domain for overlapping 
spherical particles, and (b) cross section along the mid plane of the matrix with 

spheres removed. 
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Figure 3-2 (b) 3-D finite element model in a unit cubical domain for a cross section along 
the mid plane of the matrix with spheres removed. 
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Figure 3-3 (a) Computer generated model of nonoverlapping spheres. 
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Figure 3-3 (b) Computer generated models of nonoverlapping ellipsoids. 
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Figure 3-4 Comparison of normalized elastic modulus between simulations and effective 

medium approximations for both uniform and random circular void models. 
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Figure 3-5 (a) Comparison of normalized elastic modulus between simulations and linear 
rules of mixing for models containing nonoverlapping random circular 

inclusions, with E� =2. 
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Figure 3-5 (b) Comparison of normalized elastic modulus between simulations and linear 
rules of mixing for models containing nonoverlapping random circular 

inclusions, with E�=5. 
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Figure 3-5 (c) Comparison of normalized elastic modulus between simulations 
and linear rules of mixing for models containing nonoverlapping random 

circular inclusions with E�=7. 
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Figure 3-6 (a) Comparison of normalized elastic modulus between simulations and 
effective medium solutions for models containing nonoverlapping random 

circular inclusions with E�=2. 
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Figure 3-6 (b) Comparison of normalized elastic modulus between simulations and 
effective medium solutions for models containing nonoverlapping random 

circular inclusions with E�=5. 
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Figure 3-6 (c) Comparison of normalized elastic modulus between simulations and 

effective medium solutions for models containing nonoverlapping random 
circular inclusions with E�=7. 
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Figure 3-7 Comparison of normalized elastic modulus between simulations and effective 
medium solutions for models containing overlapping random spheres, with E�=4. 
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Figure 3-8: Comparison of normalized conductivity between simulations and effective 
medium solutions for models containing overlapping random spheres, with 

σ2=4. 
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Figure 3-9 (a) Comparison of normalized elastic modulus between simulations and 
effective medium solutions for models containing nonoverlapping random 

spheres, with E�=4. 
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Figure 3-9 (b) Comparison of normalized elastic modulus between simulations and 
effective medium solutions for models containing nonoverlapping random 

spheres, with E�=4. 
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Figure 3-9 (c) Comparison of normalized elastic modulus between simulations and 
effective medium solutions for models containing nonoverlapping random 

spheres, with E�=4. 
 
 

  



Figure 3-10 Von Mises stress distribution on the cross section along the mid
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10 Von Mises stress distribution on the cross section along the mid

model studied in Fig. 9. 
 

 

 

10 Von Mises stress distribution on the cross section along the mid-plane of the 
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Figure 3-11 Comparison of normalized conductivity between simulations and effective 
medium solutions for models containing nonoverlapping random spheres, with 

σ2=4. 
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Figure 3-12 Comparison of normalized elastic modulus between simulations and 
effective medium solutions for models containing nonoverlapping random 

ellipsoids, with E�=4 and ε=1.4. 
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Figure 3-13 Comparison of normalized conductivity between simulations and effective 
medium solutions for models containing nonoverlapping random ellipsoids, 

with σ2=4 and ε=1.4. 
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Figure 3-14 (a) Effect of ellipsoid aspect ratio on effective elastic modulus for equivalent 
spherical radius=0.1. 
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Figure 3-14 (b) Effect of ellipsoid aspect ratio on effective elastic modulus for equivalent 
spherical radius=0.05. 
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CHAPTER 4  GEOMETRIC PERCOLATION THRESHOLDS OF  

 INTERPENETRATING PLATES IN THREE-DIMENSIONAL SPACE 

 

 

4.1 Introduction and Literature review 

 

Around 1940s, Floy and Stockmayer applied the concept of percolation theory to 

explain the formation of macromolecules from small branches of molecules. Broadbent 

and Hammersley (1957) introduced the percolation theory in more mathematical fashion 

namely in Hammersley publication “Percolation Structures and Processes” (Deutscher, 

1983). The percolation theory and its emphasis on its critical phenomena was developed 

sine 1970s according to Essam and Gwilym (1971). Percolation or similar words appears 

almost in a hundred publications yearly, yet percolation theory is not easy to deal with 

even though its principle is quite simple.  

Fundamentally, percolation phenomena can be introduced by the following simple 

explanation. Figure 4-1 shows a computer generated sample of 60 × 50 square lattice, 

array of squares, with probability p ^ 0.6 one cluster, group of neighbor dots, extends 

from one side to the other side. The point where the path from top to bottom or form left 

to right exist or formed, percolating cluster, called critical phenomena or percolation 
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threshold p� (Stauffer, D. & Aharony, A., 2003). To illustrate this phenomenon from 

simulation point of view, one can show figure 4-2 in which percolation path or paths are 

generated spontaneously from the left side to the right side in a stochastic network system 

(Yi, & Sastry, 2002). These particles represent the conductive part in conductive media. 

Even though the inclusion part may vary, the concept of percolation is still the same.  

In other words, percolation is referred to as a phenomenon where at least one 

domain spanning pathway exists in a physical system. It is closely related to the transport 

of mechanical properties of multiphase materials. Regardless of the interfacial contact 

among different material phases, measurement of the geometric percolation threshold, i.e. 

the minimum amount of materials required for percolation, is often one of the 

fundamental tasks in design and optimization of these materials (Mohanty, & Sharma, 

1991,Yi, 2008). Mathematically, general percolation processes and phenomena have been 

studied in the past decades, via development of exact or approximate solutions in a finite 

or infinite field (Torquato, 2002). The fact that higher aspect ratio phases percolate at 

lower volume or area fractions in both two-dimensional (2-D) and three-dimensional (3-

D) systems has been well documented, but the quantitative determination of the 

geometric effects on noncircular or nonspherical particles were relatively recent, due to 

the intensive computation demanded in the work.  

Among the two primary means of estimating percolation points, namely the 

analytical approximation (Coniglio, Deangelis, Forlani, & Lauro, 1977; Quintanilla, & 

Torquato, 1996), and the Monte Carlo simulation (Pike, & Seager, 1974; Dhar, 1990), the 

latter has proved more computationally effective, especially for 3-D systems. Extensive 



69 

 

work on circular plates or spheres exists in the literature, including the measurement of 

the percolation threshold for fully penetrable disks of the same size using the frontier-

walk method For example, in their study of the percolation threshold for fully penetrable 

discs, for efficiently, Quintanilla and Torquato (2000) applied the frontier method to 

calculate the percolation threshold, the gap-transversal method and the frontier-walk 

method. In the first one, an initial disc is located near the right-hand edge, and discs are 

generated gradually to the left until reaching the frontier in three steps Figure 4-3 exhibits 

the arcs generated in the boundaries of interior voids. In the second method, Frontier-

walk method, a frontier of arbitrary length is created by cycling through the unit square. 

The advantage of this approach is that the generation of separate realizations process is 

no longer needed. It was found that the results, shown in figure 4-4 and table 4-1, are in 

agreement with previous estimates of the percolation threshold.  

In addition, the determination of the critical threshold and exponents for 

hyperspheres was investigated, and it was found that the percolation threshold was 

considerably smaller than the reported values for smaller systems. This disagreement is 

related to the fact that the previous works’ estimationa were too high (Rintoul, & 

Torquato, 1997). Percolation problems for disks or spheres of different radii were 

investigated by a binary mixture of particles (Quintanilla, 2001; Consiglio, Baker, Paul, 

& Stanley, 2003). One interesting finding of these works is that the percolation threshold 

of such a system is typically very close to that of equisized particles. For example, for a 

half-and-half mixture of smaller and larger particles, the difference in the percolation 

threshold is lower than 1% for both spheres and circular disks. Quintanilla and Ziff 

(2007) investigated asymmetry in the percolation thresholds of fully penetrable disks 
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with two different radii. It was shown that the percolation threshold as a function of 

volume fraction � and fixed ratio � .is nearly symmetric and there is no theoretical 

expiations regards this issue. Figure 4-5 exhibits estimates of the percolation threshold 

for disks’ aspect ratio range from 0.1 to 0.35, and by analyzing the symmetry in the 

graph, it was reported that the curves are slightly asymmetric. 

Additionally, the research activities on percolation of disks and spheres were not 

only limited to solid material phases but also extended to void phases, namely “void 

percolation” (Yi, 2006). More complex geometries involving additional parameters have 

also been studied, including solid or hollow fibers and tubes (Berhan, Yi, Sastry, Munoz, 

Selvidge, & Baughman, 2004). It was reconfirmed that the percolation threshold is 

strongly dependent on the particle aspect ratio, implying that much fewer materials are 

needed for percolation of fibers or other high aspect ratio particles, thus merit the use of 

material inclusions of elongated shapes. For elliptical particles, simulation results were 

obtained from circles to needles, and an interpolation formula was developed that was 

believed superior to all other effective-medium theories (Xia, & Thorpe, 1988; Yi, & 

Stastry, 2002). For ellipsoids, interests were centered on ellipsoids of revolution in which 

two parameters are needed to define the geometric shape (Garboczi, Snyder, Douglas, & 

Thorpe, 1995). The extreme oblate limit of plate-like particles to the extreme prolate limit 

of needle-like particles was studied extensively and their asymptotic solutions were 

derived from curve fitting. The effect of dimensionality, i.e. the crossover from 2-D to 3-

D ellipsoidal systems, was also investigated computationally (Yi, Wang, & Satry, 2004). 

Finally, the continuum percolation for interpenetrating squares and cubes were also 
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studied using the Monte Carlo method, and the corresponding percolation threshold 

accurate to three decimal places was reported (Baker, D., Paul, G., Sreenivasan, S., & 

Stanley, H., 2002). 

Regardless of these important works in the area, results are missing for a special 

category of the particulate geometry, i.e. 2-D disks oriented in the 3-D space. It is of 

particular interest because circular disks are the limiting cases of oblate ellipsoids of 

revolution when their thickness approaches zero. Compared to their ellipsoid 

counterparts, disk-shaped particles can percolate at a much lower volume fraction and 

therefore have potential applications in engineering practice. In addition, elliptical disks 

in the 3-D orientation correspond to a limiting case where the generalized triaxial 

ellipsoids have a degenerate axis. Discussions on the percolation threshold of triaxial 

ellipsoids (as opposed to ellipsoids of revolution), particularly in their degenerate 

scenarios, have never been attempted in the literature. Moreover, realistic material 

inclusions can rarely have perfect circular, spherical or ellipsoidal shapes. Instead they 

may possess corner angles and facets. How these geometric factors alter the percolation 

properties remains unknown. It is our intention in the present work to fill in this gap. We 

target the geometric effects on the percolation thresholds of disk-like particles by 

introducing four fundamental shapes: circles, ellipses, triangles and squares (as shown in 

figure 4-6). We first establish the intersection criteria for such geometries and then apply 

the scaling theories and linear regressions to estimate the percolation thresholds. 

Comparisons will then be made to infer the effects of geometry on the results. 
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4.2. Methods and Simulation Procedures 

 

4.2.1  Percolation Detection 

A standard computational algorithm for percolation checking has been 

implemented. In particular, random disk-like particles were generated in a unit cell 

domain (figure 4-7). The interparticle connectivity as well as the particle-boundary 

connectivity was checked using the appropriate criteria. The system percolates if there is 

a connected cluster across the entire domain. The process is intrinsically probabilistic for 

a finite system and the probability of percolation was determined as simply the ratio of 

the percolation to the total number of simulations performed. The disk number 

corresponding to a percolation probability of 50% was recorded as the percolation 

threshold. This was achieved by a linear interpolation of the percolation probability 

against the disk number. Results for each condition reported in the current study were 

generated using at least 5 separate realizations. Since the probabilistic variation of the 

results depends on the disk size or the total disk number, an algorithm was developed to 

make the process more efficient. In particular, the number of realizations was variable 

depending on the disk size. For larger disks, this number was set to a few hundred, 

whereas for smaller disks, it was set to between five and ten. This treatment was able to 

greatly reduce the variation in the results thus increase the solution accuracy.   

The percolation threshold can in, principle, be expressed in terms of either area 

fraction for 2-D particles or volume fraction for 3-D particles. In the current work where 

disks are oriented in 3-D, because of percolation threshold should be consistent with that 
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of the equivalent 3-D system instead of 2-D system.the percolation threshold definition 

should be consistent with that of the equivalent 3-D systems. We define the following 

variable to measure the percolation threshold: 

 

 3

3

4
rnπη =    

(4-1) 
 

where r is the radius and n is the total disk number. For triangles and squares, r is the 

equivalent radius of the circular disk having the same area. When r approaches to zero, n 

will become infinite for percolation, but the value of η will approach an invariant ηc, 

which is defined here as the “percolation threshold” of the system throughout this 

chapter. 

 

 

4.2.2  Intersection Criteria 

For circular disks, given two arbitrary disks with radii ri, normal vectors ni and 

center locations (xi, yi, zi) where i=1, 2. Define R
ρ

 as the position vector from 1 to 2 and 

also define the following variables: 
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then in the following two cases, the two circular disks will intersect: 

Case1: 022
2 >−ξr  and {

2
1

22 ryxa ≤+ or
2

1
22 ryxb ≤+ };  

(4-9) 

Case 2: 022
2 >−ξr  and 1ry <  and { 0))(( <−− pbpa xxxx or

0))(( <++ pbpa xxxx }. 

 (4-10) 
 
 

For elliptical disks, there is no closed-form criterion available for checking 

geometric intersection. The computational strategy here is to take one disk (plate α) as a 

reference disk and choose the frame of reference such that the major and minor axes of 

the disk are aligned with x- and y- axes of the global coordinate system. The 

circumference of the other disk (plate β) is then divided into a number of small segments 

in search of the intersection point between the boundary of plate β and the plane formed 

by plate α.  

Case 1: assume there are no intersections points between the line segments and plate α, 

and then the two disks do not intersect. 
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Case 2: assume there are two points of intersection (xa, ya) and (xb, yb) and  
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where a and b are the half lengths of the major and minor axes of Disk α, respectively. 

Then, in the following case, the two disks intersect: 

 

 

 ∆>0 and { 0))(( <−− pbpa xxxx  or 0))(( <−− qbqa xxxx }.  

(4-16) 
 
 

In all other situations, the disks do not intersect. 

The same strategy is applicable to square and triangular disks that is, we choose 

one plate as the reference disk and discretize its boundary into line segments to find the 

points of intersection between these segments and the plane formed by the other disk. It is 
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then followed by examining the relative positions of these intersection points with respect 

to the square or triangular surface. However, the total number of the required line 

segments is greatly reduced here: only four line segments are needed for a square and 

three segments for a triangle, as opposed to a least twenty or thirty such segments needed 

for an ellipse. Hence the computational efforts can be greatly reduced for squares and 

triangles compared to elliptical plates. 

The above intersection criteria have been validated by graphically realizing the 

particles in the 3-D space followed by an inspection of their physical connectivity. A 

minimum of a hundred random realizations were examined before they were actually 

implemented for percolation checking. 

For the binary dispersion of disks of different radii, we focus our interest in 

circular disks of two different radii r1 and r2 where r1<r2. Assume the two types of disks 

have the same number and therefore f=0.5 where f represents the fraction of smaller 

disks. Define r as the mean radius, i.e. r= (r1+r2)/2, and λ=r1/r2, 0≤λ≤1, then   
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Further, we fix the total disk number in this binary system while choosing the 

value r such that the corresponding η defined in Eq. (4-1) is maintained the same as that 

of the equisized disk system. If the equisized disks have radius r0, then the relationship 

between r and r0 is 
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Based on these assumptions, simulations can be performed in a procedure similar to 

equisized disk systems and the resulting percolation thresholds ηc can be evaluated. 

 

 

4.3  Error Analysis 

The numerical error associated with the extrapolated critical percolation point ηc 

can be estimated in the following method: assume there is a data array containing n pairs 

of r and η (ri, ηi), according to the linear regression theory, we have 
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(4-21) 
 

The corresponding confidence intervals for σa0 and σa1 are 
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where we assume that all the data points have the same confidence interval, σ0 and  
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Clearly, the critical percolation point ηc at r=0 is equal to a0 and the associated standard 

deviation is equivalent to σa0. 

 

 

4.3.  Results and Discussion 

The percolation algorithm was first validated against the equisized spheres system 

whose solution is well known. The simulation results are presented in figure 4-8. The 

percolation threshold was computed from nine different radii ranging from 0.007 to 0.04. 
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The total number of particles was from approximately 240,000 to 1,300, accordingly. To 

minimize the numerical error, the simulations were repeated 50 to 1,000 times for each 

particle radius and the computational time was approximately 70~150 Pentume (D) CPU 

hours for each radius. A linear regression was performed to estimate the percolation 

threshold corresponding to spheres of zero radiuses. The extrapolated solution 

ηc=0.3412±0.0003. This result corresponds to a volume fraction of 28.91%, which is 

fairly close to the currently most accurate solution 28.9573% obtained by Lorenz and Ziff 

(2001). This preliminary work can therefore be considered as a validation process for the 

percolation algorithm developed in the present study. 

The same algorithm was subsequently applied to permeable circular plates in the 

3-D space, and the results are shown in figure 4-9.  These results were computed from 8 

different radii ranging from 0.01 to 0.04, with the total number of particles ranging 

between 230,000 and 3,800, accordingly. The extrapolated solution is ηc=0.9614±0.0005. 

It should be pointed out that this result is noticeably lower than that reported by Garboczi, 

et al (Berhan, L., Yi, Y. B., Sastry, A. M., Munoz, E., Selvidge, M., & Baughman, R., 

2004) They studied the oblate and prolate ellipsoids and provided an asymptotic solution 

for oblate particles of zero aspect ratio (that is, zero dimension through the thickness), 

which should be identical to the solution for circular disks. However, their prediction was 

1.27 a/b in terms of the volume fraction of particles where b is the radius of revolution 

and a  is the semi-axis length. Applying 

 2

3

4
)exp(1 abnnVnVf π=≈−−= , when 0→a ,  

(4-25) 
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where f represents the volume fraction, V is the volume of each individual particle, and n 

is the particle number, we have the formula  

 27.1
3

4 3 →= bnc πη ,  

(4-26) 
 
 

which is obviously much higher than the result predicted in the current study (0.9614). 

The reason behind this discrepancy is yet unknown. It was noticed in the past that 

Garboczi’s solutions for the percolation thresholds of overlapping ellipsoids were 

consistently higher than those predicted by other methods (Yi, & Sastry, 2004), and 

therefore it is not surprising to see the discrepancy in the comparison here. 

For square-shaped disks in the 3-D space, the results are shown in figure 4-10. 

The maximum number of disks involved is 150,000. The extrapolated percolation 

threshold at zero size of squares is η=0.8647±0.0006. Clearly, this value is lower than 

that for circular plates, indicating that fewer particles are needed for percolation. This is 

because the corner angles of squares make it easier for the disks to touch each other, 

therefore reducing the percolation point. This is consistent with the corner effects 

elucidated in Baker et al.’s work regarding the continuum percolation of 2-D squares and 

3-D cubes (Baker, Paul, Streenivasan, & Stanley, 2002). 

The results for equilateral triangles are shown in figure 4-11. The maximum 

number of disks is around 430,000, and the predicted percolation threshold is 

η=0.7295±0.0006. Compared to the square-shaped disks, the triangles have slightly more 

elongated shape at the corners (60° angles in triangles as opposed to 90° angles in 
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squares), therefore facilitating the interparticle connectivity. As a result, the percolation 

threshold is further reduced. The above results, including the mean values and standard 

deviations for various geometries, are tabulated in Table 4-2. 

The investigation on elliptical disks revealed that the percolation threshold 

monotonically decreases with the disk aspect ratio figure 4-12. At ε=5, ηc is only half the 

value at ε=1, meaning that much fewer particles are needed to reach percolation at higher 

aspect ratios. This is consistent with both the analytical and computational results 

reported in the literature. In addition, the results show that the reduction in the percolation 

threshold is not significant when the aspect ratio is below 1.5 but experiences a relatively 

sharp decrease beyond that point. This agrees with the predicted trends from other 

elongated particles such as ellipsoids reported in the literature (Garboczi, & Berryman, 

2001). A maximum of 30,000 particles were realized in the simulations. Each aspect ratio 

was run for three different radii 0.02, 0.03 and 0.04 for linear extrapolation. Particles with 

aspect ratio greater than 5 were not studied due to the extremely intensive computation. 

However, it is expected that the percolation threshold will follow the same monotonic 

relationship with the aspect ratio beyond that point. 

For the binary dispersion of circular disks, f was maintained to be 0.5 and λ was 

varied from 0.1 to 0.9 with an increment of 0.1 in the simulations. Notice that both λ=0 

and λ=1 correspond to disks of the same size. Four different mean radii were examined to 

extrapolate the percolation threshold for each value of λ. The estimated percolation 

thresholds along were errors are listed in Table 4-3. Clearly, ηc increases at the 

beginning, reaches a peak value ηc≈0.9815 around λ=0.5, and then decreases. At the two 
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ends where  λ is close to 0 or 1, ηc is approaching 0.9616. It is seen that for the entire 

range of λ, the deviation of ηc from the equisized disk solution is noticeably small- not 

more than 2%. A close inspection also shows the existence of the asymmetry in the result 

with respect to the midpoint λ=0.5. These results are consistent with Quintanilla’s work 

on the binary dispersion of disks on a 2-D plane (Quintanilla, & Ziff, 2007) although a 

different peak value location (λ=0.4 when f=0.5) was reported for 2-D disks.  
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Figure 4-1 Example for percolation on a 60×50 square lattice, occupied squares are 

shown as *, empty squares are ignored. 
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Figure 4-2 A Schematic depiction of the simulation algorithm for identifying percolation 

in a stochastic network system.  
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Figure 4-3 A simulated frontier for l=400 with a 60×60 grid of subsquares.  
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Figure.4-4 The average location of the frontier  ���l�  
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Table 4-1 Estimates of the percolation threshold �� for fully penetrable disks 
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Figure 4-5 Estimates of the percolation threshold ����, �� for , 0.1 � � � 0.35. 
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Figure 4-6 Four fundamental geometries of disks under investigation.
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Figure 4-7 Computer realization of 100 random disks of circular shape in 3-D. 
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Figure 4-8 Determination of percolation threshold for spheres.
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Figure 4-9 Determination of percolation threshold for circular disks in 3-D.
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Figure 4-10 Determination of percolation threshold for square disks in 3-D.
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Figure 4-11 Determination of percolation threshold for triangular disks in 3-D.
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Figure 4-12 Percolation threshold as a function of the aspect ratio of elliptical disks in 3-D.
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spheres circular plates square plates triangular plates

ηc 0.3412 0.9614 0.8647 0.7295

error ±0.0003 ±0.0005 ±0.0006 ±0.0006

Table 4-2 Estimates of the percolation thresholds for 
different geometries in 3-D
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λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ηc 0.9612 0.9688 0.9734 0.9756 0.9815 0.9788 0.9703 0.9640 0.9616

error ±0.0007 ±0.0005 ±0.0007 ±0.0006 ±0.0005 ±0.0007 ±0.0004 ±0.0006 ±0.0006

Table 4-3 Estimates of the percolation thresholds for 
binary dispersion of circular plates in 3-D
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CHAPTER 5  CONCLUSIONS AND FUTURE WORK 

 

5.1  Effective Properties of Two-phase Media 

In this work, a finite element modeling approach was successfully implemented to 

investigate the elastic modulus and conductivity of heterogeneous composites containing 

particulate inclusions. Both 2-D and 3-D models were developed and the simulation 

results were compared to the existing analytical approximation theories. Several 

important conclusions can be drawn from this study:  

(1) Randomness in the particle distribution has an impact on the properties of a two-

phase particulate material system. For solid inclusions, the effective medium theories 

are capable of predicting the material properties quite well, but the predictions on 

void inclusions are much less reliable. 

(2) Among the various approximation methods, the SC solution yields much better 

results than the other methods including the Maxwell solution, the DEM solution and 

the rules of mixing. However, the SC approximation is less accurate in the following 

two situations: (a) particulate inclusions of large aspect ratios, and (b) soft inclusion 

material (namely, the modulus of the matrix is higher than that of the inclusions). 

(3) Both the effective elastic modulus and conductivity show relatively weak 

dependence on the permeability of the particulate inclusions- that is, at the same 
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volume fraction, the overlapping particles and nonoverlapping particles almost yield 

the same results.  

(4) Investigation of the morphological shape of the inclusions reveals that at higher 

volume fractions, the prolate particles yield a higher elastic modulus and a higher 

conductivity than the oblate particles. However their differences are not significant.  

(5) There is no monotonic relationship between the properties of material containing 

ellipsoidal inclusions and the particle aspect ratio. The exact locations of the maxima 

depend on the properties of both material phases.  

It should be pointed out that the 3-D models and methodologies developed in this 

paper may provide a convenient way to study mechanical and transport properties of 

multiphase composites for not only spherical and ellipsoidal inclusions, but also short 

fibers and filler contents of other shapes.  

 

 

5.2  Geometric percolation thresholds of plates in three-dimensional space  

The geometric percolation involving plates in the 3-D space has been studied 

using a Monte Carlo simulation method. Four different geometries are studied: circles, 

ellipses, squares and triangles, which represent the geometric limits of oblate particles 

when one of the axes degenerates to zero. The plate-plate intersection criteria for the four 

geometries are established analytically. The percolation probability at various equivalent 

radii is computed and the percolation threshold is estimated at the limit of zero radius by 

linear extrapolation. An error analysis is successfully applied to estimate the solution 
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tolerance. Comparisons among different geometries show that the global or local 

curvatures tend to increase the interparticle connectivity and thus reduce the percolation 

point. For elliptical plates, the percolation threshold has been found as a monotonic 

function of the particle aspect ratio, which is consistent with the results for ellipsoids or 

planar ellipses. When disks of two different radii are mixed together, the percolation 

threshold does not change significantly, with a peak value located where the ratio of the 

two radii is approximately 0.5. Some results have also been compared to the data reported 

in the literature. The results and methods used in the current study are useful in predicting 

conduction and percolation characteristics of multiphase material systems containing 

oblate particles of thin thickness. 
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