University of Denver

Digital Commons @ DU

Electronic Theses and Dissertations Graduate Studies

1-1-2009

Computational Studies on the Effective Properties of Two-Phase
Heterogeneous Media

Elyas El Arbi Tawerghi
University of Denver

Follow this and additional works at: https://digitalcommons.du.edu/etd

6‘ Part of the Computer-Aided Engineering and Design Commons

Recommended Citation

Tawerghi, Elyas El Arbi, "Computational Studies on the Effective Properties of Two-Phase Heterogeneous
Media" (2009). Electronic Theses and Dissertations. 642.

https://digitalcommons.du.edu/etd/642

This Thesis is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital
Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu.


https://digitalcommons.du.edu/
https://digitalcommons.du.edu/etd
https://digitalcommons.du.edu/graduate
https://digitalcommons.du.edu/etd?utm_source=digitalcommons.du.edu%2Fetd%2F642&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/297?utm_source=digitalcommons.du.edu%2Fetd%2F642&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.du.edu/etd/642?utm_source=digitalcommons.du.edu%2Fetd%2F642&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jennifer.cox@du.edu,dig-commons@du.edu

COMPUTATIONAL STUDIES ON THE EFFECTIVE PROPERTIESFQWO-PHASE

HETEROGENEOUS MEDIA

A Thesis

Presented to
the Faculty of Engineering and Computer Science

University of Denver

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
Elyas E. Tawerghi
June 2009

Advisor: Dr. Yun-Bo Yi



©Copyright by Elyas E. Tawerghi 2009

All Rights Reserved



Author: Elyas Tawerghi
Title: COMPUTATIONAL STUDIES ON THE EFFECTIVE PROPERTSEOF TWO
PHASE HETEROGENEOUS MEDIA
Advisor: Dr. Yun-Bo Yi
Degree Date: June 2009
ABSTRACT

The effective elastic modulus and conductivity of a two phase rabsgdatem are
investigated computationally using a Monte Carlo scheme. The continoatairs
circular, spherical or ellipsoidal inclusions that are either umifpror randomly
embedded in the matrix. The computed results are compared to thelalppétfective
medium theories. It is found that the random distribution, permeadildyparticle aspect
ratio have non-negligible effects on the effective material ptigge For spherical
inclusions, the effective medium approximations agree well witlsithalation results in
general, but the analytical predictions on void or non-spherical inolsisire much less
reliable. It is found that the results for overlapping and nonoverlappahgsions do not
differ very much at the same volume fraction. The effect ofpdrécle morphology is
also investigated in the context of prolate and oblate ellipsoidal particles.

The geometric percolation thresholds for circular, elliptical, sgaad triangular
disks in the three-dimensional space are determined precisely djeMCarlo
simulations. These geometries represent oblate particles immibheof zero thickness.
The normalized percolation points, which are estimated by extraqgptae data to zero

radius, arenc=0.96140.0005, 0.864%0.0006 and 0.729%.0006 for circles, squares

and equilateral triangles, respectively. These results showhthabncircular shapes and



corner angles in the disk geometry tend to increase the intelpartinnectivity and
therefore reduce the percolation point. For elliptical plate, theofadion threshold is
found to decrease moderately when the aspectgasidoetween 1 and 1.5 but decrease
rapidly for ¢ greater than 1.5. For the binary dispersion of circular disks with tw
different radii,nc is consistently larger than that of equisized plates, witméramum

value located at around/r, =0.5.
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CHAPTER 1 INTRODUCTION

Composite materials exist in almost every aspect in oufrtifa pencils to space
stations. Basically, these composites are made of at ilgastdmponents stiff, strong
components embedded in a softer constituent. For illustration, concretaf, thh@emost
widely used building materials in the world, are made of two compgnesrsent and
aggregate. The green cement, in fresh or not hardened form, is susked soft part,
matrix, and the aggregate are used as the stiff and strong cartgpoft@s combination
makes it possible to build complex structures.

Heterogeneous materials are designed for many purposes to takéagdsaof
both strength and stiffness of reinforcement materials and ligighivof the matrix.
Composite materials have withessed great attention since daBrorafe Age. Over the
last few decades reinforcement materials have been developedngniewels as the
technology advanced and new applications emerged. The differencesrbetec®anical
properties of fillers and host materials such as polymer maimkorced with filler such
as glass fiber, epoxy resin, carbon fiber, or polypropylene, etc raalyg varied.
Therefore, Developing appropriate theories and models to predict gotiveffproperties
of heterogeneous materials is of utmost importance to desigrerffaomponents (Lee,

& Paul, 2005).



Material properties can be modeled in three different scéhes:continuum
macroscopic scale of engineering, the atomic scale, and intetenesgsoscopic scale
where microstructure is treated as systematic constituentofQhe widest approaches to
define effective properties on mesoscopic scale is effectivdiumetheories (Choy,
1999). Chapter 2 in this work discusses some of these theories in rteoréndaddition
to major mechanical properties of heterogeneous materials.

Modeling and numerical simulation of heterogeneous materialgnevwang area
especially after the outstanding development in computational toolsermst of
processing (number of operations that can computer operate per secondAlEnd
(Random Access Memory) capacity. However, without super computaponedr such
as multiprocessors, parallel computers, and massive RAM simupaberedures become
time consuming and hard to manage. In addition, modeling complex strucauredbe
accomplished by conventional finite element software. Thereforefjrfteobjective of
this work is to develop a new approach to model heterogeneous matefddapter 3.
Furthermore, effective medium theories were evaluated in compatessimulation
results.

Based on the close relationship between mechanical properties gbgitan
materials and percolation theory, the geometry effect on the pgocothresholds of 2D
particles in 3D domain was investigated in Chapter 4. Scaling #sea@md linear
regressions were employed to estimate the percolation threshb&lsirulation results,
moreover, are presented and discussed in this chapter. Finally, Chdptgdights the

major conclusions that were derived from this work.



CHAPTER 2.1 BACKGROUND AND LITERATURE REVIEW

2.1 Heterogeneous Materials

Nature produces disordered materials, and over the last few dedaties,
become obvious that these materials have the optimum structure. Humgs bhave
realized these phenomena, and composites and heterogeneous materialgniesged
widespread applications throughout the history. Even though engineers andlsate
scientists can employ sophisticated methods to grow pure crggfasimentally, in the
real world, they are still dealing with composites and mixtuiegenmals. The term
heterogeneous materials can be defined as the apparent randomhessonphology of
materials. Topology, the interconnectiveness of its individual elemants geometry,
the shape and size of these individual elements are the mainsaspdee morphology

(Sahimi, 2003; Choy, 1999).

2.2 Effective Properties of Heterogeneous Materials
The main focus of this work is to understand the effective propetispecific
heterogeneous materials and their relevance to both numerical aytttahalodels. The
effective electrical, thermal conductivity and the effectivaset moduli are the

predominant properties of interest.



Due to the fact that the mathematical analogy of the formulatfothe thermal and
electrical conduction in heterogeneous materials is the sametethe effective

conductivity refers to both properties in this work (Sahimi, 2003).

2.2.1 The Effective Conductivity
For a two-phase heterogeneous linear materglsand g, are the thermal
conductivities for a matrix phase 1 and inclusion phase 2. In stedadyestaduction, the
governing equation is:

V.q(x) = 0, For both phases
(2-1)

where q is the local heat flux and the local thermal conductivitgnms of the flux q is
defined by the Fourier law,
q(x) = —q(x)VT(x), for both phase
(2-2)
Where T(x) and q(x) are the local temperature and thermal conductivity at point x
respectively.

For a large number of samples,

() = —ge(VT(x)),
(2-3)

whereg, is effective conductivity tensor.



2.2.2 The Effective Elastic Moduli
In the same manner, for isotropic linear heterogeneous matasiadssting of phase 1
and 2 with elastic bulk modul{;andK, and shear modluyi; and,.

V.o(x) = 0, for both phases

wherea(x) is the symmetric, local stress tensor

o(x) = Ax)tr[e(x)]U + 2u(x)e(x), for both phases
(2-4)

e(x) = %[Vu(x) +Vu®)T],
(2-5)

Here e(x) is the symmetric, second-rank local strain tensgix) is the local
displacementA(x) and p(x) are the local Lame constant, u is the unit dyadic, and
superscript T denotes transpose operation on the tensor. And, tr dendtaseha the

tensor.

(0(x)) = Ce.(e(x)),
(2-6)

The effective stiffness tensdl, can be expressed in terms of only two independent

effective elastic moduk, andp,

(009) = Ko = 252 tr. (U + 21 (e),
(2-7)

where d is the dimensionality of the system.



2.3 2D and 3D Material Properties
Young modulus, bulk modulus, shear modulus and Poisson’s ratio for a d-
dimensional linear isotropic homogeneous materials are specifi@dhK @D, G and
v(@_ The two-dimensional moduli and the three-dimensional moduli can be cedisct
making one of the following assumptions either plane-strain or plasssstlasticity. In
the first oneg,,=€,, = €;53 equal 0, for d=3 (Torquato, 2002).

v 1+v

&j = — ¢ Tl + 5 Tj
(2-8)
(1, i=j o
Wheres;; = { 0, otherwise (The Kroneker delta), i, j=1,.....d
The previous equation with d=3 can be correlated with d=2 to obtain
3)
E(z) = E
[1—v®3][1+ vB)]
(2-9)
(3)
v@ = Y
1—v®
(2-10)
In the same manner, for
Ti]' = ?\skkﬁi]- + ZGSi]'
wherel is the lame constant
K® =K® 4+ G®/3
(2-11)

G@ =g®
6



In case of plane-stress elasticity, = 0,, = 6,3 = 0 in the previous stress and strain

tensors expression with d=3 and comparing with d=2 we obtain

E(Z) = E(3)’ V(Z) = V(3)

9K® g3

K® = — —
3K®) 4+ 4G®)

(2-12)
G® =G®,

2.4  Prediction of the Effective Properties of Heterogeneous Materials

Over the past few decades many models have been developed to elltistrat
effective properties of heterogeneous materials. Nevertheledsjnjube last three
decades these models have been developed to incorporate comprehensivelstruct
properties such as the distribution of particles’ heterogeneities.

In spite of the fact that the computational power of these daysputans is
relatively strong, predicting the exact properties of simplerbgémeous materials is not
an easy task to achieve. However, the various properties of compaséealis can be
estimated by employing efficient computational algorithms and paWweoimputational
tool.

Yet, in order to estimate effective properties of heterogeneotesiailg, popular
effective-medium approximation theories can be employed for this myrposl the
following section describes popular approximation theories and shows rttagar

applications.



2.5 Effective-Medium Approximations

It is well known that the effective medium theories (EMTS) lbarused to estimate
effective properties of multiphase materials of a wide rangevadime fractions
(Toroquato, 2002). Wei and Srivastava (2004) applied, for example, one of tbhe bas
linear rules of mixing in their work to find properties of carbon nano{@d€r) polymer
composite. In addition, Mondescu and Muthukumar (1999) manipulated EMTs to derive
closed form solutions for randomly disturbed particles at low voluaetibn. More
application will be discussed in the following sections. Since thsremany methods
used to approximate effective properties of heterogeneous materialss work, we
focused our research on the most popular theories for spherical inclasmsling to
Toroquato (2002). The theories that we are going to describe are theveMa
approximation (Maxwell, 1873), the self-consistent approximation (@Gakier &

Krumbansl, 1975), and the differential effective medium theory (Mclaughlin, 1977).

251 Effective Conductivity of Multiphase Media

2.5.1.1 Maxwell approximations for spherical inclusion

Maxwell (1873) derived the d-dimensional generalization of the apprtivima

scheme for the case d=3. Figure 2-1 shows a schematic correspandvaxwell’s



approximation. A sphere of radiug contained number (N) of smaller spheres of radius

R and conductivityr, in a matrix of conductivity, in d spatial dimensions is shown The

volume fraction of the inclusion (small spheresyis= N(RE)C1 . At r distance larger

thanR,, the field E(r) at r distance is the superposition of the fislé aesult of small

sphere, and it can be explained by the following expression.

Rd
E(r) = Eo + #[dnn - I]-EO

(2-13)
where .E; is a constant intensity fieldf3,; is the polarizability, and n is radial unit

normal. Since the intensity field which it produces at a larger distance

Rd
E(r) = Eo + # [dnn —1IJ. Eg
(2-14)
n = r/|r| Radial unit normal
_ Op_0q

Ber = o +(d — 1)oy

(2-15)
By assuming expressigh; = 0,821, We get,
o,— 0, y o,— 0,

o, +(d-1o, "l o,+(d-1o,

(2-16)



Equation (2-16) defines as Maxwell's approximation of the singlessnah field.
It equals to the lower bound of Hashin-Shtrikman bounds when o, and the similar

upper bound wheas, < o;.

In the case where,/o; = o (the spheres are superconducting comparative to
the matrix).
WhenO'z/O'l = 00

(5} - 1- @2
(2-17)
WhenGZ/O'l = O
o, (d—D(d-0))
04 B d— @1
(2-18)

For multi phase composite contains M-1 number of different types of sphiénes
volume fractiong, ...... , Oy the general expression of Maxwell's expression is shown in

expression (2-19).

M

Oe_01 z s 0j_0y
o,+(d — 1oy o Toj+(d —1)oy

(2-19)

2.5.1.2  Self-consistent approximations for spherical inclusion
For M different types of suspensions macroscopic isotropic sphamnabkion
with volume fraction @;...... , @y and conductivitieso;...... , oy, the effective

conductivity o, by the self-consistency can be described by this formula.
10



- 0;_C
ji-%
Z®]0]+(d— Do, =0

j=1
(2-20)

The expression (2-21) shows the self-consistent (SC) approximatiotwder

phase.

_a+Ja?+4(d — o0,
e = 2d-1)

(2-21)

With ¢ = 0,(d®, — 1) + 0,(d®, — 1)
(2-22)

According to Torquato, (2002) SC approximation may lead to poor prediction of
effective conductivity since the theory assumed that the effeptivperties exist just
outside the inclusion phase; moreover, the information about the distributiiociusgion
is not included.

In the case of superconducting spherical inclusions in whiglo, = o, the
effective conductivity is shown in expression (2-23). And in the opposte tae second
phase is insulating spherical inclusions in comparison to phase 1, fféaive

conductivity can be expressed in formula (2-24).

O 1
o, 1-do,
(2-23)

11



(2-24)

2.5.1.3 Differential effective-medium approximations for spherical inclusion

Bruggeman (1935) was the first to introduce the differential ®ffeenedium
(DEM). In case of two- phase composite, the phase 1 indicatesatnx phase with
volume fraction®,, and phase 2 indicates the inclusion phase (spherical inclusion) with
volume fraction @,. The differential equation of d-dimensional spherical inclusions can

be expressed in the following explicit formula.

(D2 + A(D2) — 0.(0;) = Ue((az)[ GZ(Q)Z)]IAQZ

>+ d — 1o 11— Q)z
(2-25)
In the limitA@, — 0, this expression becomes the differential equation
0-2 - O-e
@ ) d(z)z — e [02+(d - 1)ae]
(2-26)
By analytical integration with initial conditio@, = 0
_ 1/d
<O‘2 Ue) <ﬂ) =1- @,
02—02/ \Og
(2-27)

12



In case of superconducting phase 2, this expression simplifies to:

o 1
2] a (1- Q)z)d
(2-28)
03
— =00
01

25.2 Effective Elastic Moduli of Multiphase Media

2.5.2.1 Maxwell approximations for spherical inclusion
In a similar approach to Maxwell’s effective conductivity, Makvwaetermined
the effective bulk modulu&, by applying a hydrostatic strain at infinity wheeg =

gol/d. The strain fielce(r) at distance r larger thak, is defined by the superposition of

the field.

Q)ZngZl

e(r) =g + B — [don —1]- €9

(2-29)

wherek,; is the bulk modulus polarizability. The strain at large distande ei¥fective

bulk modulusK, can be expressed as follow

R(c:}kel [

e(r) = g +r_d dyn — 1] &

(2-30)

13



where,

k.. = K. — Ky
el — _
(2-31)
S'nCEkel = @21(21
K. — K4 _ g K; — K4
— - Y2 —
(2-32)

In term of shear moduli, Maxwell approximation leads to the following exmressi

Ge_G1 _¢ GZ_Gl
G.,+H, "% G,+H,

(2-33)

whereK, is the effective shear moduli of suspensions of identical spl&resdG, are

the shear moduli of the spherical inclusion and the matrix respectively.

H, = G [dK, /2+(d +1)d -2)G, /d]’ 12
K, +2G

(2-34)

This method also has special cases in which thereplare rigid comparing to phase 1

(G, /G; = ) as shown in expression (2-35).

14



d
G_e_1+7®2

G, 1-0, 2-35)

if K, /G; = K, /G, = o both phases are incompressible, &8h¢/G; = o
Moreover, when the spheres are holes in incompnlessnatrix, the Maxwell

approximation for this case is shown in expres§#a6).

Ge _ d(1— 0,)

G, d+20, 2-36)

The general formula for Maxwell approximation forMdifferent types of spheres with

volume fractions and moduli can be described as

M
Ge — Gy _Zw G — Gy
G +H, 4L TG +H,

=1

(2-37)

2.5.2.2 Self-consistent approximations for sphéreausion
Similar to the effective conductivity, (SC) appnmstions were derived firstly by
Budiansky (1965) and Hill (1965). For M differentpes of suspensions macroscopic
isotropic spherical inclusion with volume fraction...... , Oy , bulk modulik, ...... kv,
and shear modulia; ...... , Gy the effective elastic she&f, by the self-consistency can

be explicit by this formula.

15



(2-38)

where

b GeldK, 72+ (d +1)d -1)G, /d]
° K, +2G,
(2-39)

In the case of two incompressible phases in wKichG; = K, /G, = o, the

expression (2-40) yields to

G._G G._G
(Z)ldGe 1 +®2 dGe 2 — O
28+Gl Te‘l‘Gz

(2-40)

In the case were phase 2 is void, and phase 1 agstmmbe incompressible then

the simple expression of SC approximations in¢hse is shown in expression (2-41).

_d[(d-1)-(d +1)g, ]
d(d -1)-2¢,

Ge
G,
(2-41)

WhereKz = Gz = O, Kl /Gl = 00,

16



2.5.2.3 Differential effective-medium approximatscior spherical inclusion
In similar approach to (DEM) for effective condwdty, the differential effective
medium approximations for bulk or shear mod{li andG, for two phase composite of

d-dimensional spherical inclusions is expressddnmula (2-42).

.o, )& C:

(1_¢2) ¢2 - G2+He

(2-42)

and, in the case were phase 2 is perfectly rigidtive to phase 1, the DEM

approximations yield to.

Ge 1
G. (d+2)
Lo(1-0y) 2
(2-43)
WheI'EKl /Gl = Kz /Gz = 00, andGZ /Gl = 00,
2.6 Images Processing and Finite Elements Modeling

Over the last few decades there has been a retumterest in predicting the
effective material properties of advanced heteregaa composites (Hashine, 1963;
Torquato, 1991, 2002; Chen, 2008). The main intdras been focused on the maximum
achievability of both elastic modulus and conduttjvby employing either analytical

approach or numerical modeling. A number of medtaniphysical and mathematical

17



principles were employed to derive approximate tamhs to estimate the effective
properties of heterogeneous material (Hashin, 1888n, 2008).

In addition to analytical approaches described ke tprevious sections,
computational and numerical modeling methods weldely used to investigate the
problem, and perhaps the most widespread methtte iderived finite element analysis
using digital images of 2-D and 3-D composite mater(Garboczi, 1995). This method
requires a particular error analysis in deriving thsults. An application of this method
was explored by Roberts and Garboczi who studieehti elastic properties of random
porous composites with various microstructures. elmv, reduction in local maximum
errors, particularly at material boundaries, is goéranteed. In an alternative approach,
there is no need to take x-rays of composite ma$eto obtain digitalized images which
are meshed by using conventional finite elementsto®his approach is based on
building and simulating composite materials by emgplg advanced commercial tools to
analyze the morphology and properties of compasitectures.

In their research, Garboczi and Berryman (2001)lieggghe same concept to
study elastic modui of a material containing conmgosiclusions in comparison with
modified differential effective medium theory (D-BY In their modeling method,
digital images were used to generate finite elemsrdels. Square lattice or cubic pixel
images were obtained sporadically to generate éimelam microstructure, and each
square lattice or cubic pixel represents bi-lineartri-linear element in 2D or 3D
respectively. Furthermore, the authors argue thdtef element method has to be
evaluated in terms of accuracy and reliability sitizere are no precise analytical data to

be compared with the numerical results. Thus, ptssiources or errors were evaluated
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and considered in their results such as finite sffect, digital resolution, and statistical
variation.

The composite inclusion particles were dispersadaomly by random sequential
adsorption in which larger particles were placest in the domain and overlapping is not
allowed. Even though the limitation of the D-EMTuatjons to be compatible to the
microstructure of composite, Garboczi et all sudeeleto modify this method to match
the numerical model. Figure 2-2 shows the D-EMTultefor K and G compared to the
numerical results for two-size sphere 3D model.

Chen, Jaian, Xu, Limei and Li Hui (2008) recentlyestigated a direct modeling
strategy to predict the effective moduli of comp®smaterials under finite element
method. In their work, a numerical model was depetb base on the composites of
experimental or numerical digital images. These gesawere processed by Object
oriented finite element method (OOF) which is saitevdeveloped by NIST (National
Institute of Standards and Technology, USA) and ki Henerate finite element models.
According to NIST, this software was designed ttp hreaterials’ scientists to calculate
macroscopic properties from images of real or siateal microstructures. Figure 2-3
shows an example of a planar specimen construdtedive direct modeling strategy for
glass (light shading) and epoxy (dark shading)amdlume fraction of 50-50.

In another work that was conducted by Cai, Tu, &ad (2005), a more modern
method doesn't involve digital imaging was implert@ehto model what was called “the
optimal design of physical properties” of polytéuaroethylene or (PTFE) composites
with random 3-D inclusion. This model was usednweestigate thermal conductivity of

PTFE composites. However, their model was limitedhe composites of unidirectional
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fibers. The main objective of their work was todstuhe thermal conductivity of PTFE
composites reinforce with single-phase and two @hamforcement. Figure 2-4 shows 3-
D FE model of two phase reinforcement, and figuw® shows 3-D FE model of one-
phase reinforcement. Moreover, a comparison betwiegte elements results and
experimental values are shown on figure 2-6 arsthatws good agreement between both
values.

Modeling two-phase composite contains symmetricahdomly distributed
particles without using digitalization imaging take lot of effort to achieve by any
means. However, modeling inclusions with no axesywhmetry such as fibers and
ellipsoids is a more challenging task. Lee and P2005) developed an analytical model
for composites containing three-dimensional elligabinclusions; however, their model
is limited for unidirectional aligned inclusionshi§ limitation makes it possible to
employ Eshelby’'s equivalent tensor with a Mori-Tlkenanodel. Figure 2-6 shows a
schematic of a three dimensional ellipsoidal indaosand its radiia,, a,, a;. The
elements of the model are shown on figure 2-7 wiuchsists of two constituent the

oriented ellipsoidal inclusions and the infinitagtic matrix.

2.7 Percolation and Effective Properties
Percolation threshold of composite materials hasigaificant effect on the
behavior of effective properties. Near percolattbreshold, the behavior of effective

transport and elastic properties of materials igkearthose for pure materials. Extensive
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mathematical and numerical models have been des@ltipunderstand this phenomena
and its effect on materials properties. In foremmesent work, for example, Yi and Sastry
(2002) derived an analytical approximation of 2-Bda3-D dimensional percolation
threshold for fields of overlapping ellipses. YiO(b) also studied the void percolation
problem of a medium containing overlapping ellipsoi These results are useful in
predicting the minimum amount of material needed achieve conductivity or
mechanical strength. In addition to the predictiohgpercolation threshold, the elastic
modulus and conductivity of fibrous (Berhan et &Q04; Zhang, & Yi, 2008) or
particulate systems (Wang, Yi, & Sastry, 2004) watso studied computationally.
Chapter 4 provides literature review regards petam and its application in addition to

the second objective of this work.

2.8 Universal Scaling Laws for Percolation quagsit
The microscopic details of a system affect the moakvalue of any percolation
guantity; however, near percolation thresh@ldmost percolation quantities follow
scaling laws in which the network structure andnisroscopic details have insignificant
effect (Sahimi, 1994). This low is applicable foamy of percolation quantities such:
1. Percolation probability P (p), this is the probapithat, when the fraction of
occupied bonds is p, a given site belongs to thaite cluster of occupied

bonds.

P(p)~(p — pc)Pr
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2. Correlation lengtly, (p), for p<p, this is the typical radius of the connected
clusters, and the length scale is macroscopicaijdgeneous. For pz, L,
system’s linear size, must be larger than the tairoa length for the result of

any Monte Carlo simulation to be independent of L.

Ep(P)~(p—pc) P

3. Effective electrical conductivityg. , this is the electrical conductivity of a
random resistor network in which a fraction p ohts is conducting and the
rest are insulating.

ge~(p —po)*

4. Effective elastic modului G. G can be defined as éhastic modui of the

network in which a fraction p of the bonds are ttaslements and the rest are

soft or voids elements.
G~(p — po)f

The topological exponentf, and v, are totally universal, and they depend on the

dimensionality of the system and indecent of therasicopic structure. The same case

for the transport exponent and; however, in some cases this condition may beatedl.
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Figure 2-1 A schematic corresponding to Maxwelppm@ximation. A composite sphere
of radiusR, , composed of spherical particles (phase 2) im@irm(phase 1), is
immersed in an infinite matrix of phase 1.
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Figure 2-2 The D-EMT results for K and G compam@the numerical results for the
two-phase 3D model.
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Figure 2-3 An example of a planar specimen contduwith the direct modeling
strategy for glass (light shading) and epoxy (ddr&ding) and a volume fraction of 50-
50.

25



D FE model of two phase reinforcemen

Figure 2-4 A 3
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Figure 2-5 A 3-D FE model of one-phase reinforcetmen
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Figure 2-6 A comparison of FE results and experiadaralues

28



flow direction

> Q-

(b) side view (c) front view

Figure 2-7 Schematic views of a three dimensiotigkeidal inclusion, along with its
side and front view.
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CHAPTER 3 EFFECTIVE PROPERTIES OF TWO-PHASE HETERENEOUS

MEDIA

Dealing with the finite element modeling of a mplttase material system is not in
the slightest an easy task since the inclusionnatgere interconnected with the matrix.
The persistent obstacles to mesh automation of leongructures are well known and no
individual commercial code is capable of handling problem of interest. In the current
work, a new, direct simulation method that doesmnedt on digitization of the material
phase was employed, thus allowing more accurateehmgd of the interconnected
structures. The method is based on the Direct Dalatessellation scheme, i.e. a general
triangulation method from scattered points. Seveoahmercial codes worked jointly in
the model development: Matlab® (2005), Comsol Mhyisics® (2006) and Abaqus®
(2006) as well as a standalone code written in @y@mming language for particle
dispersion. The analytical approximations have dsen obtained from the effective
medium theories for both validation and comparigorposes.

For realistic multiphase composites, the interfagffect could play an important
role. For example, Torquato and Rintoul (1995) ¢lgved rigorous bounds on effective
conductivity for the interfacial surface effect Wween spherical inclusions and matrix,

and this work was later extended for other problessell (Miloh, & Benvensite, 1999;
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Benvensite, 2006).In addition, the mechanical adieoblems were also investigated in

the context of random media recently (Yi, 2008).

3.1 Methodology

3.1.1 Two Dimensional Computational Models

Matlab® and Comsol® were directly used to creanétdi element models in a
unit size rectangular domain required for the sgbeat mechanical analysis. In
particular, a dynamic collision algorithm was apglito randomly deploy nonoverlapping
voids or fillers. The material properties, meshamgl analysis procedure were conducted
using the graphic user interface of the progranmtefest.

Three different cases were investigated as foll@ese 1 Arrays of circular voids
were uniformly dispersed in the matrix with the gamspacing in both x- and y-
directions. The voids had the same size with adfiradius of 0.05 (normalized unit).
Figure 3-1 (a) shows the meshed model, which wasrgéd via the built in optimized
mesh quality in Comsol ®, and number of triangali@ments in the model was 6800. In
the second case, the circular voids were randomtyilguted in the domain. “Random”
here is referred to as a Poisson process followingiform probability density. Figure 3-

1 (b) shows an example of randomly distributedutacvoids with 7447 elements. In the
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last case, the circular voids in Case 2 were replday disk-shaped circular fillers, and

therefore two dissimilar materials were involvedhrs case.

3.1.2 Boundary Condition and Analysis Parameters

A prescribed displacement of 0.01 was applied altreg y-direction, and an
isotropic linear elastic analysis was performeddetermine the reaction forces. The
effective elastic modulus of the system was esghaly taking the ratio of the resulting
stress to the preset strain. According to the sgaheories, the result computed in this
way is a function of the simulation domain. Howewehen the ratio of the domain size
to the size of inclusions is sufficiently largee tresult will approach the asymptotic limit.
Several physical assumptions and mathematical Hiogpions were made: (1) for
circular fillers, the two phases had the same Baisgatio (0.3) in order to minimize the
number of variables in the model; (2) The interfabetween dissimilar materials were
bonded by either adhesives or special chemicalherntal treatment; therefore, no
contact surfaces were modeled; (3) The simulatesults were normalized against the

properties of the matrix, and hence the moduluaductivity was dimensionless.

3.1.3. Three-Dimensional Computational Models
In the 3-D simulations, a different scheme was em@nted to automate the
modeling process due to the difficulties in a diremnulation using the commercial
software. The procedures involve a three-step pligee first, a similar collision
algorithm was employed to generate overlappingasrornerlapping inclusions. Second,

the obtained geometric data was used to generfitgetea element mesh by a standard
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Delaunay Tessellation scheme. In the last stepptiteut data of the code bundle was
written into a script file readable by ABAQUS® fdhe subsequent finite element
analysis.

Three different models were investigated: (1) ayqgping spherical inclusions, (2)
nonoverlapping spherical inclusions, and (3) norlapping ellipsoidal inclusions.
Since the problem involving void inclusions wasealty studied in the 2-D cases, here
our attention was focused on the continuum problam$ the inclusions in all three
models were assumed to be fillers.

In the first model, all the spheres were identi@atl had a radius of 0.1 (the
simulation domain remains as a unit cell). Thedeesgs were deployed randomly in the
matrix following an algorithm similar to the oneeasin the 2-D models. The tetrahedron
finite element mesh was generated via a 3-D Delatessellation scheme in Matlab®.
The volume fraction of spheres was obtained by sungitine volume of each individual
element that was located in the interior of attlea® of the spheres. Figures 3-2 (a) and
(b) show models of the mid-plane cross sectiongsveflapping spheres. The last step is
meshing procedures. The mesh information was exgdootan ABAQUS® input file.

In addition to mechanical analysis, the effectivanductivity of the material
system was also evaluated by a steady state eafdr analysis. More specifically, unit
temperature difference was applied on two oppasites of the unit cell and the reactive
heat flux was computed. The total heat transfer bgtsumming the nodal heat flux is the
effective conductivity of the system. Regardlesstltd physical distinction between

thermal and electrical conduction, the normalizesult can be interpreted as either the
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thermal conductivity or electrical conductivity laese of the mathematical analogy
between the two phenomena.

Nonoverlapping spheres were modeled in a stratdgyilas to that for
nonoverlapping circular disks except that the psecavas more computationally
intensive. Figure 3-3 (a) shows a computer-gengrsystem of nonoverlapping random
spheres.

In addition to spherical inclusions, a specific mbo@vas developed to model
ellipsoidal inclusions. Two types of ellipsoidalpeles, oblate (disk-shaped) and prolate
(cigar-shaped) were modeled and investigated. €igg#3 (b) shows a computer-
generated random system of oblate ellipsoidal gdasti All the ellipsoids were assumed
to be impermeable. The locations and geometric d@t&llipsoidal particles were
generated in the same way as that used for spheacticles. Although a generalized
ellipsoid would be a tri-axial particle, here weedised on ellipsoids of revolution only.
As a result, only two parameters were needed terah@te the geometric shape of each
particle: namely, minor axis length and major d&iggth. To generate random ellipsoidal
particles, the center point locations were disteduandomly, and the Euler angles of the

axes also followed the appropriate density funatiohprobability.
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3.2 Simulation Results and Discussion

3.2.1 Circular Inclusions

First of all, the effect of circular voids on effee elastic modulus of circular
voids was investigated. Figure 3-4 shows a plahefsimulated elastic modulus obtained
from the finite element analysis for the followibgo cases: (1) uniformly distributed
circular voids and case (2) randomly distributegtudar voids. It can be seen that the
effective elastic modulus decreases with the vaxume fraction in both cases. In
addition, the modulus of the material containingfarmly distributed circular voids is
greater than that of the material containing ranglodmstributed voids. In the second
case, the reason could be the effect of the higihess concentration in the regions where
the voids are located very close to each othethdnsame figure, the simulation result is
also compared to the effective medium theoriesutholg the Maxwell approximation
and the SC approximation. Even though the assumptee is that the matrix is assumed
to be incompressible, the Maxwell approximationvgsi@ similar pattern to uniformly
distributed voids. The SC approximation also shagieement with the simulations for
both uniform and random distributions at lower vo&ifractions. However, there is a
significant discrepancy at higher volume fractio@serall, the simulation results roughly
fall between the Maxwell approximation and the $Braximation results.

To investigate the effect of a two phase materatesn, the void spaces in the
previous model were replaced by elastic circulakslin figure 3-5 (a), where the results

are shown for the effective elastic modulus of atelcontaining randomly distributed
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disks. A comparison has been made between theaiongd and those predicted by the
linear rules of mixing. In parts (a), (b) and (¢)figure 3-5, the normalized modulus of
the inclusions varies from 2, 5 to 7, respectiveliiereas the normalized modulus of the
matrix material is fixed to the unit value. It cha seen that the simulation results fall
between the upper and lower limits of linear rudésnixing. In addition, the difference
between the upper and lower limits increases viighmodulus of the disks. Apparently,
the effective modulus of the composite materiataases with both the volume fraction
and the modulus of the embedded particles. For pkanthe effective moduliE(¢)
increases by 40% at 50% volume fraction of diskéh &/E;=2. At the same volume
fraction, E.¢ increases by 100 % and 130 % ®yWE,=5 and 7, respectively. Similar
results have also been obtained for uniformly disted disk-like inclusions.

Figure 3-6 (a) shows the comparison between thte felement simulation and
the effective medium theories. The simulation medadbng with all the assumptions
remain the same as those used in figure 3-5.deén that the effective modulus of the
system falls between the Maxwell and the SC appratons. In figure 3-6 (a) where
E,/E,=2, an excellent agreement can be seen betweeaeshks for the entire range of
volume fraction. Using either of the approximattbeories would yield an error less than
2% in the predicted elastic modulus. In figure®.®) and (c) wheré&,/E,=5 and 7,
respectively, the simulation result shows good emgent with the approximation theories
at a volume fraction below 40%. At a volume frastiabove 40%, the results deviate

slightly from the approximation theories. Neverdsd, the Maxwell theory and the SC
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approximation consistently provide a lower and qpar bound for the simulation

results, respectively.

3.2.2 Spherical Inclusions

The above work was extended to the three-dimeniseas® in which the matrix
contains randomly distributed spherical particlestead of circular disks. Figure 3-7
shows a comparison of the elastic modulus betweesimulation and the approximation
theories. The spheres are allowed to overlap & ¢hse andi,/E,=4 is assumed. The
Poisson’s ratio is fixed to 0.23 in both phasegalt be seen that the simulation results
fall between the Maxwell and the SC approximatibeories. Apparently, the effective
modulus increases with the sphere volume fracédso, it has been noticed that the SC
approximation generally yields much better resihlgs the Maxwell approximation.

In addition to the mechanical analysis, we alsofgoered the conductivity
analysis for overlapping spheres as shown in fi@i8 The dimensionless conductivity
of the matrix material and the conductivity of 8gherical inclusions are assumed to be 1
and 4, respectively. The simulation results are gamed to the three different effective
medium solutions: Maxwell, SC and DEM. It is se@attthe effective conductivity
increases with the sphere volume fraction accortiing power-law form similar to the
elastic modulus. All three approximations agreeywsell at lower volume fractions,

especially below 20%. However, differences amoniIFEEM and Maxwell can clearly
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be seen at higher volume fractions. In comparisgh the simulation results, the SC
solution once again presents the best solution grttenthree approximation methods.

The above work was further extended to nonovertapgpherical inclusions,
which are believed to represent more realistic rmeteystems. The predicted effective
elasticity modulus and conductivity are shown gufes 3-9 and 3-10 respectively. In the
case of mechanical analysis, figures 3-9 (a), @i &) show the effective elastic
modulus for three cases whétgE,=2, 4 and 0.25 respectively. In figure 3-9 (axan
be seen that the simulation results are in exdetigreement with the approximations. In
figure 3-9 (b), the difference is discernable, bat quite significant. At lower volume
fractions, the SC solution is closer to the simatatesults whereas at the higher volume
fraction the Maxwell approximation tends to be elosThis is somewhat different from
the results of overlapping particles. A comparisbfigure 3-7 and figure 3-9 (b) shows
that the effective modulus does not differ sigmifily between the overlapping and
nonoverlapping inclusions. In figure 3-9 (d.; decreases with the sphere volume
fraction since the spheres are “softer” than theriman this case. The comparisons
between the EMTs and the simulations generally dbstmow good agreement here,
particularly at higher volume fractions. For exaempihen the sphere volume fraction is
50%, the simulation, the Maxwell solution, and 8 solution predict results of 2.3, 2.0
and 2.1, respectively. One reason for that couldrddated to the limitation of the
approximation theories for predicting the effectimeduli of composite materials.

The corresponding conductivity analysis was alsdopmed on nonoverlapping

spheres as shown in figure 3-10. Again, we choserdhio of the conductivities of the
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matrix and the spheres to be 1:4 for consistendgany, the simulation results fall
between the SC solution and the DEM solution whilee Maxwell solution

underestimates the conductivity. The effectivedtmtivity increases nonlinearly as the
sphere volume fraction increases. For example,0&% @olume fraction, the effective
conductivity increases by approximately 150%. Idifon, by comparing figure 3-8 and
figure 3-11, it was found that the conductivity dasot differ very much between the

overlapping and nonoverlapping conditions.

3.2.3 Ellipsoidal inclusions

As mentioned previously in the method section, types of ellipsoidal particles,
namely Oblate and Prolate, were investigated ia Work, and the outcomes of these
simulations were compared to the EMTs. Figure 3l@ws the mechanical analysis of
two-phase composite containing nonoverlapping ®ligal inclusions which is either
oblate or prolate. The aspect ratio for both typésellipsoids is 1.4. Again, the
correlation is excellent between the simulationsl @ine analytical predictions. The
Maxwell approximation exhibits close correlationdibth types of ellipsoidal particles at
volume fractions below 20%. It has also been ndtitteat the results of the prolate
particles and oblate particles are nearly the sanh@ver volume fractions, yet they start
to deviate from each other at a volume fractionvab#0%. This deviation increases with
the volume fraction, and it is expected that atdlesed-packing limit, there should be an
appreciable difference between the two cases.hdnconductivity analysis as shown in

figure 3-13, it is again seen that the SC approfongprovides a better prediction of the
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results compared to other theories. In additioa,abmposite containing prolate particles
have a higher conductivity than those containinigtebparticles although the difference
is less than 5% at a volume fraction below 60%.

The effect of aspect ratio on the effective elastmdulus is presented in figures
3-14 (a) and (b). The “aspect ratiw”js defined as the ratio of the major axis lentgth
the minor axis length. The geometry is assumedet@ Iprolate ellipsoid of revolution,
and hence the two minor axes have the same lehigghnumber of ellipsoids used in the
simulation varies from 170 to 1,020 depending @auwblume fraction of particles. From
the figure, it is seen that the effective modulfighe composite is a function of the
particle aspect ratio. In figure3-14 (a), the meadius of particles is 0.1, and it is seen
that the maximum modulus of ellipsoidal particlesteyn is 5% higher than that of
spheres at the same volume fraction. In figure 8b)4vhere the mean radius of particles
is 0.05 and at the same volume fraction, the mamimwalue of the modulus is
approximately 10% higher than that of a spherieatiple system. Although none of the
effective medium solutions agrees with the simatasj the SC approximation yields a
closer result. More interestingly, evidence showat tthe relationship between the
modulus and the aspect ratio is not monotonic. &attie result oscillates when the
aspect ratio varies. More specifically, the effeetimodulus decreases in the range
e=1~2, and then increases for2~4. The maximum value occurs &t4, and then it
decreases again. Further increase of the aspextieats to only a mild change of the
result: from figure 3-14, it can be seen that theduii for e=4 and 10 are not far away

from each other. It is conjectured that the spatisiribution of the stress concentration
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zones may play a role in this oscillatory resultit hhe exact reason behind the
phenomenon is not clear yet.

Finally, it should be pointed out that for a gehdveo-phase elastic material
system involving four distinct parameteis, (v1, E,, v2), Dundurs, (1969) proved that
the stress field can be written in terms of onlyg parameters. Therefore, if the Poisson’s
ratios of dissimilar materials are of interest, yomine extra parameter needs to be

included in the mechanical analysis accordingly.
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Figure 3-1 (a) Finite element model of a unit sgyalate containing uniformly
distributed circular voids with 19.6% void volunradtion
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igure 3-1 (b) Finite element m
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Figure 3-2 (a) 3-D finite element model in a unibical domain for overlapping
spherical particles, and (b) cross section aloegiid plane of the matrix with
spheres removed.
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Figure 3-2 (b) 3-D finite element model in a unibecal domain for a cross section along
the mid plane of the matrix with spheres removed.
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Figure 3-3 (a) Computer generated model of nonaperhg spheres.
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Figure 3-3 (b) Computer generated models of noapping ellipsoids.
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Figure 3-4 Comparison of normalized elastic modbletsveen simulations and effective
medium approximations for both uniform and randoroutar void models.
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Figure 3-5 (a) Comparison of normalized elastic atasl between simulations and linear
rules of mixing for models containing nonoverlagpmndom circular
inclusions, withE, =2.
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Figure 3-5 (b) Comparison of normalized elastic aolog between simulations and linear
rules of mixing for models containing nonoverlagpmndom circular
inclusions, withE,=5.
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Figure 3-5 (c) Comparison of normalized elastic olod between simulations
and linear rules of mixing for models containinghaverlapping random
circular inclusions wittg,=7.
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Figure 3-6 (a) Comparison of normalized elastic ntasl between simulations and
effective medium solutions for models containinguoxerlapping random
circular inclusions wittg,=2.
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Figure 3-6 (b) Comparison of normalized elastic aolog between simulations and
effective medium solutions for models containinguoxerlapping random
circular inclusions wittg,=5.
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Figure 3-6 (c) Comparison of normalized elastic alog between simulations and
effective medium solutions for models containinguoxerlapping random
circular inclusions wittg,=7.
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Figure 3-7 Comparison of normalized elastic modbletsveen simulations and effective
medium solutions for models containing overlappizgdom spheres, with
E,=4.
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Figure 3-8: Comparison of normalized conductivigpeeen simulations and effective
medium solutions for models containing overlappizgdom spheres, with
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Figure 3-9 (a) Comparison of normalized elastic ntasl between simulations and
effective medium solutions for models containinguoxerlapping random
spheres, witlk,=4.
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Figure 3-9 (b) Comparison of normalized elastic aolog between simulations and
effective medium solutions for models containinguoxerlapping random
spheres, witlk,=4.
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Figure 3-9 (c) Comparison of normalized elastic olog between simulations and
effective medium solutions for models containinguoxerlapping random
spheres, witlk,=4.
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Figure 310 Von Mises stress distribution on the cross seaiong the mi-plane of the
model studied in Fig. 9.
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Figure 3-11 Comparison of normalized conductiviggvieen simulations and effective
medium solutions for models containing nonoverlagpiandom spheres, with
(52:4.

62



| —o— Oblate .
—7— Prolate

------ Maxwell soltuion
—— SC solution L,

N
o))

N
K-S
T
1

N
N
T

N
T

Effective modulus
> o

—_
NN
T

1.2

10 10 20 30 40 50 60

Volume fraction (%)

Figure 3-12 Comparison of normalized elastic mosllletween simulations and
effective medium solutions for models containinguoxerlapping random
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Figure 3-13 Comparison of normalized conductivigjvieen simulations and effective
medium solutions for models containing nonoverlagpiandom ellipsoids,
with 6,=4 ande=1.4.
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CHAPTER 4 GEOMETRIC PERCOLATION THRESHOLDS OF

INTERPENETRATING PLATES IN THREE-DIMENSIONAL SPACE

4.1 Introduction and Literature review

Around 1940s, Floy and Stockmayer applied the gonckpercolation theory to
explain the formation of macromolecules from sniminches of molecules. Broadbent
and Hammersley (1957) introduced the percolati@oyhin more mathematical fashion
namely in Hammersley publication “Percolation Stowes and Processes” (Deutscher,
1983). The percolation theory and its emphasig®ugritical phenomena was developed
sine 1970s according to Essam and Gwilym (197 XcdPaion or similar words appears
almost in a hundred publications yearly, yet patioh theory is not easy to deal with
even though its principle is quite simple.

Fundamentally, percolation phenomena can be intediby the following simple
explanation. Figure 4-1 shows a computer genersaeaple of 60x 50 square lattice,
array of squares, with probability 3 0.6 one cluster, group of neighbor dots, extends
from one side to the other side. The point wheeepiith from top to bottom or form left

to right exist or formed, percolating cluster, edllcritical phenomena or percolation
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thresholdp. (Stauffer, D. & Aharony, A., 2003). To illustrateis phenomenon from
simulation point of view, one can show figure 4a2which percolation path or paths are
generated spontaneously from the left side toigta side in a stochastic network system
(Yi, & Sastry, 2002). These particles representatreductive part in conductive media.
Even though the inclusion part may vary, the cohoépercolation is still the same.

In other words, percolation is referred to as anpheenon where at least one
domain spanning pathway exists in a physical syskeis closely related to the transport
of mechanical properties of multiphase materialegd®dless of the interfacial contact
among different material phases, measurement ajgbmetric percolation threshold, i.e.
the minimum amount of materials required for peatioh, is often one of the
fundamental tasks in design and optimization of¢hmaterials (Mohanty, & Sharma,
1991,Yi, 2008). Mathematically, general percolagmwacesses and phenomena have been
studied in the past decades, via development aft@xaapproximate solutions in a finite
or infinite field (Torquato, 2002). The fact thagher aspect ratio phases percolate at
lower volume or area fractions in both two-dimensio(2-D) and three-dimensional (3-
D) systems has been well documented, but the datwei determination of the
geometric effects on noncircular or nonsphericatiglas were relatively recent, due to
the intensive computation demanded in the work.

Among the two primary means of estimating percoflatpoints, namely the
analytical approximation (Coniglio, Deangelis, famil & Lauro, 1977; Quintanilla, &
Torquato, 1996), and the Monte Carlo simulatiokéP& Seager, 1974; Dhar, 1990), the

latter has proved more computationally effectivepesially for 3-D systems. Extensive
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work on circular plates or spheres exists in therdiure, including the measurement of
the percolation threshold for fully penetrable diskK the same size using the frontier-
walk method For example, in their study of the p&tion threshold for fully penetrable
discs, for efficiently, Quintanilla and TorquatoO@D) applied the frontier method to
calculate the percolation threshold, the gap-trarsal method and the frontier-walk
method. In the first one, an initial disc is lochteear the right-hand edge, and discs are
generated gradually to the left until reachingftiatier in three steps Figure 4-3 exhibits
the arcs generated in the boundaries of interiadsvdn the second method, Frontier-
walk method, a frontier of arbitrary length is deshby cycling through the unit square.
The advantage of this approach is that the geperati separate realizations process is
no longer needed. It was found that the resultswahn figure 4-4 and table 4-1, are in
agreement with previous estimates of the percaldahoeshold.

In addition, the determination of the critical tbiheld and exponents for
hyperspheres was investigated, and it was found tthex percolation threshold was
considerably smaller than the reported values fioaller systems. This disagreement is
related to the fact that the previous works’ estioma were too high (Rintoul, &
Torquato, 1997). Percolation problems for disksspheres of different radii were
investigated by a binary mixture of particles (Qamlla, 2001; Consiglio, Baker, Paul,
& Stanley, 2003). One interesting finding of thesarks is that the percolation threshold
of such a system is typically very close to thaeqtiisized particles. For example, for a
half-and-half mixture of smaller and larger padgl the difference in the percolation
threshold is lower than 1% for both spheres andutar disks. Quintanilla and Ziff

(2007) investigated asymmetry in the percolatioregholds of fully penetrable disks
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with two different radii. It was shown that the pelation threshold as a function of

volume fractionv and fixed ratioZ .is nearly symmetric and there is no theoretical
expiations regards this issue. Figure 4-5 exhibgsismates of the percolation threshold
for disks’ aspect ratio range from 0.1 to 0.35, &ydanalyzing the symmetry in the

graph, it was reported that the curves are sligiglymmetric.

Additionally, the research activities on percolatiaf disks and spheres were not
only limited to solid material phases but also estxl to void phases, namely “void
percolation” (Yi, 2006). More complex geometriegatlving additional parameters have
also been studied, including solid or hollow fibargl tubes (Berhan, Yi, Sastry, Munoz,
Selvidge, & Baughman, 2004). It was reconfirmedt tthee percolation threshold is
strongly dependent on the particle aspect ratiglyimg that much fewer materials are
needed for percolation of fibers or other high aspatio particles, thus merit the use of
material inclusions of elongated shapes. For @ptparticles, simulation results were
obtained from circles to needles, and an interpolatormula was developed that was
believed superior to all other effective-mediumattes (Xia, & Thorpe, 1988; Yi, &
Stastry, 2002). For ellipsoids, interests were erexat on ellipsoids of revolution in which
two parameters are needed to define the geométjmes(Garboczi, Snyder, Douglas, &
Thorpe, 1995). The extreme oblate limit of platelparticles to the extreme prolate limit
of needle-like particles was studied extensively dheir asymptotic solutions were
derived from curve fitting. The effect of dimensadity, i.e. the crossover from 2-D to 3-
D ellipsoidal systems, was also investigated coatprtally (Yi, Wang, & Satry, 2004).

Finally, the continuum percolation for interpengtrg squares and cubes were also
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studied using the Monte Carlo method, and the spmeding percolation threshold
accurate to three decimal places was reported (B&ke Paul, G., Sreenivasan, S., &
Stanley, H., 2002).

Regardless of these important works in the areslltseare missing for a special
category of the particulate geometry, i.e. 2-D sliskiented in the 3-D space. It is of
particular interest because circular disks areliinging cases of oblate ellipsoids of
revolution when their thickness approaches zeromgzwmed to their ellipsoid
counterparts, disk-shaped particles can percolate rauch lower volume fraction and
therefore have potential applications in enginggpractice. In addition, elliptical disks
in the 3-D orientation correspond to a limiting €ashere the generalized triaxial
ellipsoids have a degenerate axis. Discussionsherpércolation threshold of triaxial
ellipsoids (as opposed to ellipsoids of revolutjoparticularly in their degenerate
scenarios, have never been attempted in the literatMoreover, realistic material
inclusions can rarely have perfect circular, sptaror ellipsoidal shapes. Instead they
may possess corner angles and facets. How theseegi@ofactors alter the percolation
properties remains unknown. It is our intentiortha present work to fill in this gap. We
target the geometric effects on the percolatioresholds of disk-like particles by
introducing four fundamental shapes: circles, sl triangles and squares (as shown in
figure 4-6). We first establish the intersectioreria for such geometries and then apply
the scaling theories and linear regressions tomes#i the percolation thresholds.

Comparisons will then be made to infer the effeftgeometry on the results.
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4.2. Methods and Simulation Procedures

4.2.1 Percolation Detection

A standard computational algorithm for percolatiammecking has been
implemented. In particular, random disk-like pdesc were generated in a unit cell
domain (figure 4-7). The interparticle connectivig well as the particle-boundary
connectivity was checked using the appropriatecat The system percolates if there is
a connected cluster across the entire domain. Tdeesgs is intrinsically probabilistic for
a finite system and the probability of percolatiwas determined as simply the ratio of
the percolation to the total number of simulatiopsrformed. The disk number
corresponding to a percolation probability of 50%swrecorded as the percolation
threshold. This was achieved by a linear interpmtaiof the percolation probability
against the disk number. Results for each conditeported in the current study were
generated using at least 5 separate realizatianse $he probabilistic variation of the
results depends on the disk size or the total wiskber, an algorithm was developed to
make the process more efficient. In particular, nhenber of realizations was variable
depending on the disk size. For larger disks, thimber was set to a few hundred,
whereas for smaller disks, it was set to between dind ten. This treatment was able to
greatly reduce the variation in the results thusaase the solution accuracy.

The percolation threshold can in, principle, beregped in terms of either area
fraction for 2-D patrticles or volume fraction forCBparticles. In the current work where

disks are oriented in 3-D, because of percolatweshold should be consistent with that
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of the equivalent 3-D system instead of 2-D sydfeenpercolation threshold definition
should be consistent with that of the equivale 8ystems. We define the following

variable to measure the percolation threshold:

(4-1)

wherer is the radius and is the total disk humber. For triangles and squarés the
equivalent radius of the circular disk having thens area. Whenapproaches to zern,
will become infinite for percolation, but the valoé » will approach an invarianty,
which is defined here as the “percolation threshaltl the system throughout this

chapter.

4.2.2 Intersection Criteria
For circular disks, given two arbitrary disks witddii rj, normal vectorsy and
center locationsx(, yi, z) wherei=1, 2. Definel5 as the position vector from 1 to 2 and

also define the following variables:

cosa = h, -h,;
(4-2)
&= Is-rql/sina;
(4-3)
R =Bk
(4-4)
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_ Tk g2
X, __|Hc|_+ ry—<&°,
(4-5)
R-A 5
X =—|R|—— =&,
(4-6)
R-(R xh
— ( l>< c))_g(ﬁ)l 82);
Ay x|
(4-7)
2 2
Xp =\ -y,
(4-8)
then in the following two cases, the two circulaksg will intersect:
Caselr; —&2>0 and (X2 + Y <rlorx? + y* <17},
(4-9)
Case 2:r22 — fz >0 and|y| < r, and {(X, — X, )(X, = X,) <0or
(X, +X,)(X, +X,) <0}
(4-10)

For elliptical disks, there is no closed-form aib@ available for checking
geometric intersection. The computational strategye is to take one disk (plaig¢ as a
reference disk and choose the frame of referencle hat the major and minor axes of
the disk are aligned withx- and y- axes of the global coordinate system. The
circumference of the other disk (pldtgis then divided into a number of small segments
in search of the intersection point between thendawy of platgl and the plane formed
by platea.

Case 1: assume there are no intersections poitiede the line segments and plate

and then the two disks do not intersect.
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Case 2: assume there are two points of intersettion) and &, y,) and

X, — VY, X
yo — ya b yb a ,
Xy = Xa
(4-11)
Kk = Yo = VYa.
X, — X4
(4-12)
1 k? 2y k Yoo
A:?'l‘g, B= bg ,C:b—g—l,
(4-13)
A=B?-4AC;
(4-14)
—B++A —B-A
Xp =, Xq —
2A 2A
(4-15)

wherea andb are the half lengths of the major and minor axeBisk o, respectively.

Then, in the following case, the two disks intetsec

A>0 and {(x, —x,)(X, —X,) <0 or (X, — %, )(%, —X,) <0}.
(4-16)
In all other situations, the disks do not intersect
The same strategy is applicable to square andgtriandisks that is, we choose
one plate as the reference disk and discretizeosdary into line segments to find the

points of intersection between these segmentshengdlane formed by the other disk. It is
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then followed by examining the relative positiorigh@se intersection points with respect
to the square or triangular surface. However, thtal thumber of the required line
segments is greatly reduced here: only four lirggreants are needed for a square and
three segments for a triangle, as opposed to atlgasty or thirty such segments needed
for an ellipse. Hence the computational efforts bangreatly reduced for squares and
triangles compared to elliptical plates.

The above intersection criteria have been valid@tedraphically realizing the
particles in the 3-D space followed by an inspectod their physical connectivity. A
minimum of a hundred random realizations were erathibefore they were actually
implemented for percolation checking.

For the binary dispersion of disks of different iratve focus our interest in
circular disks of two different radiy, andr, wherer,<r,. Assume the two types of disks
have the same number and thereft#@.5 wheref represents the fraction of smaller

disks. Define r as the mean radius, ize(r1+rp)/2, andi=r/r,, 0<A<L1, then

24r 2r

Y1427 % 142

(4-17)

Further, we fix the total disk number in this byaystem while choosing the
valuer such that the correspondingdefined in Eq. (4-1) is maintained the same as tha
of the equisized disk system. If the equisized slisi&ve radiusy, then the relationship

betweernr andrg is
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_ @+

fa@+ 2%)

(4-18)
Based on these assumptions, simulations can berped in a procedure similar to

equisized disk systems and the resulting percoldticesholds;. can be evaluated.

4.3 Error Analysis
The numerical error associated with the extrapdlatéical percolation point
can be estimated in the following method: assuraeetls a data array containingairs

of r andz (ri, ), according to the linear regression theory, wesha

=a,+ar,
(4-19)
Where
nZ(rinl anm
_ =1 i=1 =1
a = N2
an ( rlj
(4-20)
and,




(4-21)

The corresponding confidence intervalsdgy ando,; are

n
.r
i=1

(4-22)
and
n
O-al h GO n n 2
ny r?- [Z r j
i=1 i=1
(4-23)
wherewe assume that all the data points have the sanfelence intervalg, and
1 L 2
Op = \/EZ[M —(a +ax)]” -
i=1
(4-24)

Clearly, the critical percolation poinf. atr=0 is equal ta, and the associated standard

deviation is equivalent t6.

4.3. Results and Discussion
The percolation algorithm was first validated agaihe equisized spheres system
whose solution is well known. The simulation reswdre presented in figure 4-8. The

percolation threshold was computed from nine dgifiéradii ranging from 0.007 to 0.04.
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The total number of particles was from approximaf10,000 to 1,300, accordingly. To
minimize the numerical error, the simulations wepeated 50 to 1,000 times for each
particle radius and the computational time was @yprately 70~150 Pentume (D) CPU
hours for each radius. A linear regression wasoperéd to estimate the percolation
threshold corresponding to spheres of zero radiuddse extrapolated solution
Nn=0.34120.0003. This result corresponds to a volume fractd 28.91%, which is
fairly close to the currently most accurate solt&8.9573% obtained by Lorenz and Ziff
(2001). This preliminary work can therefore be ¢demed as a validation process for the
percolation algorithm developed in the presentystud

The same algorithm was subsequently applied to gaia circular plates in the
3-D space, and the results are shown in figure Z4ese results were computed from 8
different radii ranging from 0.01 to 0.04, with thetal number of particles ranging
between 230,000 and 3,800, accordingly. The exiatgub solution i3).=0.9614-0.0005.
It should be pointed out that this result is naldg lower than that reported by Garboczi,
et al (Berhan, L., Yi, Y. B., Sastry, A. M., Munog,, Selvidge, M., & Baughman, R.,
2004) They studied the oblate and prolate ellipsaidd provided an asymptotic solution
for oblate particles of zero aspect ratio (thatzex;o dimension through the thickness),
which should be identical to the solution for clemudisks. However, their prediction was
1.27a/b in terms of the volume fraction of particles wheres the radius of revolution

anda is the semi-axis length. Applying

f =1-exp(nV) ~ nVv =gn7zab2, whena — 0,
(4-25)
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wheref represents the volume fractionjs the volume of each individual particle, amd
is the particle number, we have the formula

1. :gnﬂb3 — 127,
(4-26)

which is obviously much higher than the result ptedl in the current study (0.9614).
The reason behind this discrepancy is yet unkndtvmvas noticed in the past that
Garboczi's solutions for the percolation thresholofs overlapping ellipsoids were
consistently higher than those predicted by othethods (Yi, & Sastry, 2004), and
therefore it is not surprising to see the discrepan the comparison here.

For square-shaped disks in the 3-D space, thetseard shown in figure 4-10.
The maximum number of disks involved is 150,000 Téxtrapolated percolation
threshold at zero size of squarex#0.864240.0006. Clearly, this value is lower than
that for circular plates, indicating that fewer tpes are needed for percolation. This is
because the corner angles of squares make it dasiéne disks to touch each other,
therefore reducing the percolation point. This @ngistent with the corner effects
elucidated in Baker et al.’s work regarding thetocarum percolation of 2-D squares and
3-D cubes (Baker, Paul, Streenivasan, & Stanle§2R0

The results for equilateral triangles are showrfigure 4-11. The maximum
number of disks is around 430,000, and the predligbercolation threshold is

Nn=0.729%0.0006. Compared to the square-shaped disks,i#mgles have slightly more

elongated shape at the corners°(@bgles in triangles as opposed td® @hgles in
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squares), therefore facilitating the interpartictennectivity. As a result, the percolation
threshold is further reduced. The above resultduding the mean values and standard
deviations for various geometries, are tabulateGainle 4-2.

The investigation on elliptical disks revealed thhe percolation threshold
monotonically decreases with the disk aspect fa@jioe 4-12. Ate=5, n¢ is only half the
value ate=1, meaning that much fewer particles are needeeaich percolation at higher
aspect ratios. This is consistent with both thelytical and computational results
reported in the literature. In addition, the resghow that the reduction in the percolation
threshold is not significant when the aspect retibelow 1.5 but experiences a relatively
sharp decrease beyond that point. This agrees théhpredicted trends from other
elongated particles such as ellipsoids reportethénliterature (Garboczi, & Berryman,
2001). A maximum of 30,000 patrticles were realigethe simulations. Each aspect ratio
was run for three different radii 0.02, 0.03 an@40for linear extrapolation. Particles with
aspect ratio greater than 5 were not studied duket@xtremely intensive computation.
However, it is expected that the percolation thoé&shwill follow the same monotonic
relationship with the aspect ratio beyond that poin

For the binary dispersion of circular disksyas maintained to be 0.5 akdvas
varied from 0.1 to 0.9 with an increment of 0.ltle simulations. Notice that boi*0
andi=1 correspond to disks of the same size. Fourrdiffemean radii were examined to
extrapolate the percolation threshold for each evadfi L. The estimated percolation

thresholds along were errors are listed in Tabld. £learly, n. increases at the

beginning, reaches a peak valye0.9815 around.=0.5, and then decreases. At the two
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ends where) is close to 0 or 1y is approaching 0.9616. It is seen that for thérent
range ofi, the deviation of\c from the equisized disk solution is noticeably Bnaot
more than 2%. A close inspection also shows thet@xce of the asymmetry in the result
with respect to the midpoiit=0.5. These results are consistent with Quintasillgork

on the binary dispersion of disks on a 2-D planaii@nilla, & Ziff, 2007) although a

different peak value locatioi£0.4 wherf=0.5) was reported for 2-D disks.
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Figure 4-2 A Schematic depiction of the simulatidgorithm for identifying percolation
in a stochastic network system.
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Figure 4-3 A simulated frontier for I=400 with aX680 grid of subsquares.
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Average location of frontier, ¢.(1)
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Figure.4-4 The average location of the frontigi(1)
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Roberts [13]

Domb [14]

Pike and Seager [15]
Fremlin [16]

Haan and Zwanzig [17]
Gawlinski and Stanley [18]
Rosso [4]

Lorenz er al [19]
Quintanilla and Torquato [1]
Present work

0.62

0.67
0.675(2)
0.667(2)
0.683(3)
0.676(2)
0.6766(5)
0.6764(9)
0.67637(5)
0.676 339(4)

Table 4-1 Estimates of the percolation threshldor fully penetrable disks
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Figure 4-5 Estimates of the percolation threslglfv, 1) for,0.1 < 1 < 0.35.
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Figure 4-6 Four fundamental geometries of diskseumu/estigation
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Figure 4-7 Computer realization of 100 random disksircular shape in 3-D.
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Table 4-2 Estimates of the percolation thresholds for
different geometries in 3-D

spheres circular plates  square plates triangular plates
Ne 0.3412 0.9614 0.8647 0.7295
error +0.0003 +0.0005 +0.0006 +0.0006

96



Table 4-3 Estimates of the percolation thresholds for
binary dispersion of circular plates in 3-D

A 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Ne 0.9612 0.9688 0.9734 0.9756 0.9815 0.9788 0.9703 0.9640 0.9616
error +0.0007 +0.0005 +0.0007 +0.0006 +0.0005 =+0.0007 +0.0004 +0.0006 =+0.0006
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CHAPTER 5 CONCLUSIONS AND FUTURE WORK

5.1 Effective Properties of Two-phase Media
In this work, a finite element modeling approactswsaccessfully implemented to
investigate the elastic modulus and conductivitheterogeneous composites containing
particulate inclusions. Both 2-D and 3-D models eveeveloped and the simulation
results were compared to the existing analyticabreamation theories. Several
important conclusions can be drawn from this study:

(1) Randomness in the particle distribution has an ahpa the properties of a two-
phase particulate material system. For solid inchss the effective medium theories
are capable of predicting the material propertieeqwell, but the predictions on
void inclusions are much less reliable.

(2) Among the various approximation methods, the SQtsw yields much better
results than the other methods including the Maksadution, the DEM solution and
the rules of mixing. However, the SC approximai®tess accurate in the following
two situations: (a) particulate inclusions of laggpect ratios, and (b) soft inclusion
material (namely, the modulus of the matrix is leigthan that of the inclusions).

(3) Both the effective elastic modulus and conductivithow relatively weak

dependence on the permeability of the particulatdusions- that is, at the same
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volume fraction, the overlapping particles and namtapping particles almost yield
the same results.

(4) Investigation of the morphological shape of thelusons reveals that at higher
volume fractions, the prolate particles yield aheigelastic modulus and a higher
conductivity than the oblate particles. Howevelrtddferences are not significant.

(5) There is no monotonic relationship between the gmogs of material containing
ellipsoidal inclusions and the particle aspecioralihe exact locations of the maxima
depend on the properties of both material phases.

It should be pointed out that the 3-D models anthoublogies developed in this
paper may provide a convenient way to study mecharand transport properties of
multiphase composites for not only spherical arighsgdidal inclusions, but also short

fibers and filler contents of other shapes.

5.2 Geometric percolation thresholds of platethiae-dimensional space

The geometric percolation involving plates in thd® 3pace has been studied
using a Monte Carlo simulation method. Four différgeometries are studied: circles,
ellipses, squares and triangles, which represengéometric limits of oblate particles
when one of the axes degenerates to zero. Theg&teintersection criteria for the four
geometries are established analytically. The patiowl probability at various equivalent
radii is computed and the percolation thresholesismated at the limit of zero radius by

linear extrapolation. An error analysis is sucaddsfapplied to estimate the solution
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tolerance. Comparisons among different geometrieswsthat the global or local
curvatures tend to increase the interparticle cctiniy and thus reduce the percolation
point. For elliptical plates, the percolation threlsl has been found as a monotonic
function of the particle aspect ratio, which is sistent with the results for ellipsoids or
planar ellipses. When disks of two different raglie mixed together, the percolation
threshold does not change significantly, with akpealue located where the ratio of the
two radii is approximately 0.5. Some results hadge Aeen compared to the data reported
in the literature. The results and methods usdéddarcurrent study are useful in predicting
conduction and percolation characteristics of mpblse material systems containing

oblate particles of thin thickness.
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