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Abstract 

The technical upgrades are not the only way to achieve improvements in ship’s energy 

efficiency, changing the crew operation behavior on board can gain cost-free energy 

savings. These potential behavioral savings need to be guided by analyzing the ship 

operational data and distinguish the inherent opportunities in the ship dynamic 

operating environment. However,  achieving an optimized energy-efficient 

performance for ship's operation is an enormous challenge that requires a robust 

mechanism decision support system for the ship operators. 

The thesis aims to employ a non-classical methodology for the ship performance 

prediction; to develop a Decision Support System for energy efficient ship operation.  

The study has proposed an operational Decision Support System (DSS) that comprises 

mainly two primary components, the ship performance prediction Model (PPM) and 

the ship Performance Optimization Model (POM). The (PPM) employed Artificial 

Neural Network and Multi regression analysis methodologies. The (ANN) model has 

been developed by intensive dataset rather Noon Reports as opposed to previously 

published studies.  

The proposed (DSS) has been tested with three case studies, to assess its applicability, 

the results are presented for evaluation. 
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Chapter 1.  

Introduction 

 Background 

The maritime transport is undoubtedly indispensable for securing a sustainable future 

of the global economy.  In 2015 ships carried more than 10 billion tonnes of cargo by 

volume and 2.2 billion passengers, all these figures secured the maritime transport a 

place as the most energy-efficient mode of transporting mass freight. Moreover, based 

on the data collected between 1980 and 2014, a growth of international seaborne trade 

by 265% had observed during that period (UNCTAD, 2016, p. 7). With that critical role 

shipping plays, its share of global GHG emissions represents 2.5% of global GHG 

emissions with around 1000 million tonnes annually according to the  (Third IMO GHG 

study 2014). However, referring to the same study, the shipping share in the global 

carbon dioxide emissions has projected to increase from 50% to 250% as a result of 

the seaborne trade expected expansion and other industries emission reductions. All of 

that may explain why the International Maritime Organization (IMO) chose early to 

join the global efforts to achieve the UNFCC primary objective of maintaining GHG 

concentrations at a safe level to prevent any further dangerous anthropogenic effect 

with the climate system (UNFCCC, Art. 2). 
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By the entry into force of MARPOL Annex VI, Chapter IV, on the 1st of January 2013, 

the IMO established the first mandatory global regime controlling the GHG emissions 

among the entire transport sector.The new chapter included the new design and 

operational standards for new and existing ships. The Energy Efficiency Design Index 

(EEDI) set for new ships as a technical measure, the Ship Energy Efficiency Plan 

(SEEMP) for all ships as an operational measure and the Energy Efficiency 

Operational indication (EEOI) set to be voluntarily applied (Haag, Kleverlaan, & Dispert, 

2015). Additionally, the IMO’s Marine Environment Protection Committee (MEPC) 

adopted mandatory requirements for establishing a new data collection (expected to 

enter into force on 1st of March 2018) for ships bunker fuel consumption as a step of 

building a global database to monitor and verify the precise effectiveness of the applied 

control measures. MEPC also approved a new roadmap (from 2017 through to 2023), 

to develop a new comprehensive IMO strategy on GHG emissions reduction from 

ships. (International Maritime Organization, 2016). 

As a result, the shipping industry is currently stacking between the hammer of reducing 

its emissions in an energy efficient way, and an anvil of being sustainable as it should 

be. In the recent years, the industry has gone through many solutions. The up to now 

developed solutions are belonging to three categories; energy efficiency enhancement 

measures, the adoption of renewable sources and introducing innovative solutions to 

ship’s design. The energy efficiency improvement measures differ in its approaches, 

merely focusing on the main goal of reducing the ship fuel consumption. The proposed 

solutions include the hull form optimisation, propeller configuration to lightweight 

construction for new building ships. While the existing ships solutions embrace 

solutions for machinery system, energy saving devices or ship operation management 

& optimisation (ABS, 2015). 

Meanwhile, for a large vessel, a ship may consume daily up to 100 ton of marine heavy 

fuel oil (HFO) costing 500 to 600 USD per ton at current fuel prices, representing 

around 50% of the ship operating expenses; which explains the dominance of bunker 

fuel cost in the ship operating expenses. (Christiansen, Fagerholt, Nygreen, & Ronen, 
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2013). Additionally, the released emissions are directly proportional to the amount of 

bunker fuel consumed, for example, the mentioned ship with each HFO ton consumed 

emits approximately 3.1144 ton-CO2/ton-fuel  (Psaraftis & Kontovas, April 2009) with 

daily CO2 emissions of  311.4 ton. Therefore, the saving of ship’s bunker fuel 

consumption will reduce both the ship operational cost and its released emissions.  

All of that led the shipping companies to aim to reduce their fleet fuel consumption to 

cope with the increasingly stringent environmental protection regulations and hence 

improve their competitive advantage in the market. Such an aim requires a behavioral's 

transformation of how their fleet operates with the day to day operational decisions. 

However, the needed transformation demanded a deep analysis of the operational data 

combined with the available practical alternatives and validated prediction methods 

for the effect of applying each alternative. Besides, many recent publications 

highlighted the need for a full-scale ship performance analysis. The Ship performance 

analysis mainly associated with the ship speed-power interaction from one side and 

corresponding fuel consumption from the other side. Such an approach could provide 

for instance the platform needed to predict the required ship propulsion power at 

various routes, weather conditions, the resulted speed loss and hence the appropriate 

action necessary to achieve better performance (Bialystocki & Konovessis, 2016).  

To sum up, the need for the appropriation of this approach becomes even more 

compelling with the new IMO data collection scheme, where an extensive data set 

related to each sea voyage will be available and ready for deep analysis and hence 

achieve a higher shipping energy efficiency performance. 

 The dissertation 

The rationale behind this thesis is related to both environmental and economic aspects. 

The environmental perspective mainly based on the direct relationship between energy 

efficiency as a measure and ship’s emission reduction, especially the GHG emissions. 

The IMO’s environmental protection regulations are becoming stricter year after year 

which justifies the need for a more energy efficient shipping operations. 
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The economic perspective based on the fact that fuel cost represents more than 50% 

of the ship’s operational cost. Despite the current relatively low ship’s bunker prices, 

the fuel prices historically showed volatile behavior and projected to increase in the 

future.  

1.2.1 Dissertation objectives 

The main research objectives of this dissertation are : 

1. Employ a non-classical methodology to predict the ship power performance in 

seaways to; 

2. Develop a ship performance prediction model that can predict the ship 

performance in various seaways scenarios, and  

3. Build a ship performance optimization model that can solve single-objective 

optimization problems, then 

4. Integrate both models into an operation Decision Support System to maximize 

the ship energy efficiency during a sea voyage. 

The system should be able to provide the ship’s operators with a means to set the 

voyage energy efficiency objective and advise the optimum operational variables that 

lead to minimizing the power requirements, the least fuel consumption, thereby less 

emissions. 

1.2.2 Methodology 

The non-classical approach employed in this study based on the adaptation of Artificial 

Neural Network (ANN) to predict the ship power requirements at seaways combined 

with the use of Multi Regression (M.R) analysis to obtain other performance variables 

to conclude a precise forecast for the ship fuel consumption. Then, assessing the ship 

performance with various voyage scenarios to recommend the best available solutions 

for the ship operator. 

In this dissertation, different software utilized to model the proposed system. A 

licensed version of Microsoft Office Excel used for organizing, calculating and 
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processing the obtained data set. Then, A licensed version of Matlab used to develop 

the ANN and M.R models. So finally, an Oracle Crystal Ball software employed to 

design the optimization model. 

1.2.3 Dataset 

The research was limited to the obtained data from NAPA. Only two detailed sea 

voyages data sets ( in Excel sheet format) for a particular ship were available for this 

study due to their legal commitment to their clients and AIS provider. However, the 

given data sets were quite enough to present an ideal model of the proposed system 

under the specified conditions.  

1.2.4 Dissertation outline 

 Chapter 2 describes the factors influencing the ship’s fuel consumption during 

a seaway voyage. The chapter also analyzes the effect of these factors on the 

ship fuel consumption. The chapter illustrates the available operational energy 

efficiency measures in the context of the dissertation flow. Measures like slow 

steaming, draught optimisation, route and weather routing are discussed in 

details. 

 Chapter 3 demonstrates in details the developed research methodology 

supported by a presentation of the designed models for the proposed DSS. The 

chapter further explains how the data sets have been managed, analyzed and 

processed. Then, a description of the developed DSS accompanied by a 

discussion of how the system components integrated together to achieve the 

main objective behind it. Finally, the effect of the voyage environmental state 

on the ship performance has been analyzed and linked to the discussion 

established in the previous chapter.  

 Chapter 5 illustrates three case studies premeditated to validate the DSS to 

improve the ship performance in a sea voyage. The obtained result analyzed, 

justified, and discussed case by case in the context of the dissertation's main 

objective. 
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 Chapter 6 sums up the thesis conclusion and lessons learned throughout the 

research followed by recommendations for the subject related future research. 

Finally, Figure 1-1 shows the dissertation workflow in stepwise illustration. 

 

Figure 1-1 Dissertation workflow

Conclusion & Recommendations

Weather routing optimization problems - application of proposed DSS

ANN - M.R modelling

Review of ANN
Data collection and 

analysis
case study-ANN 

power prdictor model
JIT Scenario 
assessment

The Operational Decision Support System DSS

Ship's performance anlysis

Crew operational behavior Speed 
Trim and 
draught

Voyage 
Environment

Introduction and problem statement

Global trade growth &
projected shipping expansion

The need for GHG reduction and more energy 
efficcient shipping



 

 

 

Chapter 2.  

Energy efficiency operational measures 

 introduction 

The variables that influence the ship’s performance during a sea voyage are numerous. 

These variables are ship's specific and vary according to the voyage executed seaway. 

Some of these variables are controllable like ship’s speed, draught, trim, engine 

condition, and Hull cleanliness, while other variables are uncontrollable such as 

weather condition and shallow water effect (Pedersen & Larsen, 2009). However, the 

weather and route optimization techniques can improve ship performance to 

accommodate these uncontrollable variables. 

  

Figure 2-1 Factors affecting ship's fuel consumption 

The operational energy saving techniques differ from one operator to another based on 

their operational mode. Ship’s operational modes can be divided into three categories; 
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liner; industrial; and tramp shipping. Liner shipping usually has a fixed route with 

predetermined schedules to maximize profit, more like a public bus service.  While 

industrial owned ships, both the ship and the cargo are owned and controlled by the 

same operator aiming to minimize the transportation cost of their cargo as much as 

possible. Meanwhile, tramp shipping operation is more likely similar to private taxi 

services; ships follow the available cargoes to maximise their profit. 

Each operational mode has its own characteristics that influence their operational 

behavior. For instance, LNG shipping in tramp mode has an insufficient number of 

berths and ships arrival has to be coordinated due to the hazardous cargo nature  

(Christiansen, Fagerholt, Nygreen, & Ronen, 2013). 

The second IMO GHG study had proposed different technologies and practices that 

valid for all ships to improve their energy efficiency. These OEEMs focus on three 

dimensions, fleet management, voyage optimization and energy management. The 

assessed potential CO2 emissions reductions are illustrated in Table 2-1.  (Second 

IMO GHG study 2009) 

Table 2-1 Potential CO2 emissions reduction assessment from shipping by using operational 

measures, Source: (Second IMO GHG study 2009) 

Operational Energy Efficiency Measure OEEM Saving (%) of CO2/tonne.mile combined 

Fleet Management, logistics and incentives 5-50%** 

5-50%** Voyage Optimisation 1-10% 

Energy Management 1-10% 

** Reduction at this level may require speed reduction 

Notwithstanding of the mentioned study assessment, and according to the energy 

management report released from DNV-GL, most shipping companies are selecting 

their energy-efficiency measures EEMs based on financial considerations like payback 

period, vessel age, investment and ongoing costs. The report also revealed that more 

than the half of surveyed companies were driven by information availability of the 

selected EEM which reflects the lack of trusted information and verification data for 

some these measures. On the answer to another survey question, where the candidate 

can choose three answers about the top techniques that contributed the most of the 
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company fleet's fuel reduction in 2014, 68% of the examined companies chose by far 

slow steaming, then 44% went for hull and propeller cleaning. Both selected measures 

represent the traditional measures used in the industry. It can be concluded from above 

discussion that the uncertainty is still dominating further techniques like trim 

optimisation or hull retrofitting for example  (DNV-GL, 2015).  

The chapter will discuss in more details the available OEEMs to maximize the ship 

energy efficiency, their potential savings and the challenges for their application. Some 

measures will have more focus than others to line up with the scope of this dissertation 

and the chosen case study scenarios in the following chapters. 

 Fleet Management 

According to the second IMO GHG study, Fleet management concept is a more 

logistic measure that depends on distributing as much as possible seaborne cargo 

through larger ships, while the smaller sized ships should be used to assist in onward 

distribution. Larger ships have much less specific fuel consumption than smaller 

vessels, and hence it is more energy efficient. The concept also includes the speed 

reduction combined with extending the voyage time and better-synchronized port 

scheduling time with economic incentives. Such measures combined according to the 

study could achieve globally up to 50% fuel consumption and CO2 emissions 

reduction, Table 2-1  (Second IMO GHG study 2009). 

2.2.1 Ship’s speed 

Fuel cost represents from 50 to 60% of the total operating cost of ships according to 

the World Shipping Council report in 2008. The fuel consumption is known to be the 

third power function of ships speed. In simple words, if ship’s speed increased two 

times, the power requirements to achieve such a speed will increase six times. In 

contrast, the speed reduction of 10% will reduce the fuel consumption by about 27%  

(Besikci, Arsalan, & Olcer, 2014) (Second IMO GHG study 2009). Therefore, many 

international shipping companies had employed slow steaming to reduce their 

operating cost, especially during economic crisis times. 
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Figure 2-2 illustrates the M/T Orthis Speed Over Ground (SOG) relationship with the 

propulsion power delivered to the propeller during an individual voyage and a loading 

condition. The curve shows propulsion power nonlinearity relation to the change of 

ship speed.  

 
Figure 2-2 Actual voyage Speed and  Propulsion Power relationship at different seaway 

conditions - [ MT/ Orthis, 2017] 

Meanwhile, The Brake Specific Fuel Consumption (B.S.F.C) decreases as the engine 

brake power output rises as Figure 2-3 shows due to better achieved thermal efficiency 

(up to a certain limit) at higher engine speeds. However, the total ship fuel 

consumption indeed increases in a nonlinear proportion as illustrated in Table 2-2 & 

Figure 2-3. 

 
Figure 2-3 Relationship of Brake Power and B.S.F.C with ship SOG for M/T Orthis at 

particular voyage [by author, MT/ Orthis, 2017] 
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For example, At a ship’s speed of 12 kn, the corresponding average brake power was 

around 7600 kW, while at 13 kn the required propulsion power would be around 9200 

kW with an increase of 21.3% of power. The propulsion power for 14 kn speed was 

11,600 kW with a power increase of 25.8% which illustrates the nonlinear relationship 

between the ship’s speed change and the associated power requirements. 

Table 2-2 Comparison of power and fuel savings at different ship SOG reductions [by author, 

MT/ Orthis, 2017] 

Ship 

SOG (kn) 

*Average Brake 

Power (kW) 

*Average B.S.F.C 

(gr/kW.hr) 

** Daily F.C 

(mt) 

Speed 

reduction 

% 

Power 

saving % 

Fuel 

saving 

% 

14 11594.5 183.6 51.1 Base case 

13 9222.4 185.2 41.0 7.7% 20.5% 19.8% 

12 7611.6 186.4 34.1 8.3% 17.5% 16.9% 

11 5900.0 187.4 26.5 9.1% 22.5% 22.1% 

10 4790.3 188.1 21.6 10.0% 18.8% 18.5% 

9 3388.1 188.9 15.4 11.1% 29.3% 29.0% 

8 2630.5 189.3 12.0 12.5% 22.4% 22.2% 

*   Average values taken as the corresponding power values differ according to the seaway conditions 

** All values of F.C and power values are dependence on the voyage, loading, and hull fouling conditions. 

Chang and Chang (2013) had studied the influence of a speed reduction of 10%, 20%, 

and 30% of different sized bulk carriers (Chan & Chia-Hong, 2013). They investigated 

the fuel consumption reduction, CO2 emission reductions, and resulted fleet operating 

cost. The results showed that Speed reductions of 10 %, 20%, and 30% reduced fuel 

consumption by 27.1%, 48.8%, and 60.3% and CO2 emissions by 19%, 36%, and 

51%, respectively. However, the study concluded that despite the fuel cost savings, the 

operational cost due to low-speed charter contract increased. For fleet operations, a 

fleet of 9 Capesize vessels operating at 14.53 knots, more ships are required as 

illustrated in Figure 2-4  with each speed reduction scenario. 

Moreover, the second IMO GHG study highlighted that a global reduction in the 

scheduled speed would certainly increase the industry’s energy efficiency. If 10 

percent reduction of global maritime speeds, carbon dioxide savings would rise to 19 

percent, but such a reduction will result in more ships demanded by the market 
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Figure 2-4 Fleet’s number of ships required for each speed reduction scenario, 

 source: (Chan & Chia-Hong, 2013)   

It is imperative at this point to distinguish the difference between the speed 

optimisation as a design measure and slow steaming as an operational decision. While 

design speed is initially chosen by ship’s owner after an economic analysis as will 

discuss below, speed optimization is more technical related with a precise fine-tuning 

of hull-propeller-engine interrelation. Slow steaming from the other hand, refers to 

running a ship at a significantly lower speed than its design speed combined with a 

derated main engine with some of its parts exchanged with retrofitted ones to suit the 

new operational speed (MAN, 2012). 

2.2.2 Speed optimisation as a design measure 

Ship’s Speed as a parameter is a dominant aspect of the ship in its design phase. Ship’s 

design speed determination mainly is governed by several factors representing the 

expected operational map of the ship. These factors include but are not limited to 

market condition; operation mode; required speed to maintain regular service; needed 

sea margins for the planned service; cargo value; maximising efficiency; current and 

future forecast fuel price; and regulatory requirements such as EEDI. 

The optimum design speed estimation usually calculated from an economic analysis 

such as Required Freight Rate (RFR) analysis. The RFR analysis for an individual 

service considers the annual expected cargo quantity, a target fuel cost, number of 

ships to meet freight demand at some speed, capital costs, and operating expenses. 

Such an analysis provides a convenient way to evaluate a range of designs economic 
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efficiency. By performing RFR analysis for a range of potential fuel costs, optimum 

outset speed could quickly be concluded (ABS, 2015). 

For example, Maersk’s mew 18,000 TEU ‘Triple-E’ container ships have less design 

speed of 17.8 knots from the industry’s normal range of 23 knots. Maersk claims that 

by such a speed optimization, a reduction of 20% less CO2 per container is obtained 

from their previous largest container vessel, the Emma Maersk (MAERSK, 2014).  

    

Figure 2-5 Comparison of GHG emissions under high and moderate trade growth scenarios, 

and varying uptake of different measures, (DNV-GL-2017) 

In a recent study published by DNV-GL analyzes the current GHG emissions from 

global shipping and aims to explore the possibilities for realistic reduction towards 

2050, the study used two scenarios for predicting the models result. A moderate and 

high trade growth models developed with different measures of reducing GHG 

emissions. The study claims that the rate of global growth will directly determine the 

sea trade, and hence to a large extent the fleet growth, fuel consumption and emissions 

in the next few decades. The study results used to evaluate the uptake of applying 

energy efficiency, alternative fuels and speed reduction measures. The speed reduction 

assumed to commence from 2020 and to increase gradually to reach a level of 20% 

reduction by 2050. Figure 2-5 shows that under the moderate growth scenario, the 

emissions’ level in 2050 will be significantly lower than the high growth scenario 

when the same measures are applied. In both scenarios, the speed reduction has the 
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highest potentiality among other measures to reduce global maritime GHG emissions 

(DNV-GL, June, 2017). 

However, low-powered ship designs may seem attractive from an economic and 

environmental point of view, but it still has to align with the minimum power 

requirements to fulfill the safety criteria especially in high seas regions. Such a trade-

off between economics, environment, and safety must be dealt with carefully from 

both ship owners and ship designers. 

2.2.3  Slow steaming  

It is common sense that ships with slower speeds consume less than faster ships. This 

simple logic historically drove existing ship’s operators to use it, especially during 

market failures or sudden fuel price rise to reduce their operational cost and minimise 

their loss.  

At ship lower speeds, the frictional resistance dominates, and the propulsion power is 

proportional to the third power of speed. The wave making resistance increases with 

higher speeds to become prominent, and the additional resistance makes the demand 

of power greater than the third power of speed. Thus, speed reduction for faster ships 

like container results in a considerable energy saving. However, ships speed from an 

operational point of view is highly sensitive to transport capacity and freight rates as 

increasing ship speed is a standard procedure to meet a shortage in transport capacity 

or greater rates  (Second IMO GHG study 2009). Therefore, it can be justly stated that 

economic considerations mainly drive operational speed in the first place.  

 Voyage optimization 

Voyage optimization could be defined as the optimization of ship’s operations that the 

master can achieve within the constraints that imposed by logistics, scheduling, 

contractual arrangements and other limitations. It includes measures such as Just In 

time arrival (JIT), weather routing, trim and ballast optimization. The potential CO2 
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emissions savings if these measures applied up to 10%  (Second IMO GHG study 2009)  

(ABS, 2015). 

2.3.1 Just In Time arrival (JIT) 

It is fundamentally uneconomical practice for a ship to steam at high speed to its 

destination where it has to drop an anchor or drift for days waiting for cargo handling 

permission. The second IMO GHG study stated based on the IMO 2000 study that a 

saving between 1 to 5 % could be achieved by applying just in time arrival. However, 

it stipulated the potential saving to several economic considerations, like contractual 

agreements and incentives and penalties for inefficient arrival.  

The ship speed decision may not be an absolute operational choice as it depends on 

the charter party nature. For instance, time charter party, the speed, and fuel cost are 

managed by the charterer, and consequently the delay consequences. While in voyage 

charter party, the ship operator sets ship’s speed and also eligible to demurrage in case 

of port operation delay due to overcrowding. In such a scenario, ship operator will 

accelerate his ship if he has a new cargo order or at least to be compensated by the 

demurrage, especially that often demurrage rates are higher than extra fuel cost. 

Therefore, with voyage charter party, the ship's operator intends to sail at high speed 

and to arrive as early as possible  (Second IMO GHG study 2009). 

 

Figure 2-6 Typical Vessel Operational Profile by Mode  (Target, 2014, p. 22)  

Figure 2-6 demonstrates the operational profile of a bulk carrier based on one-year 

voyage data providing the ship various operating modes by percentage. Anchorage and 
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drifting time represented 15% of the ship total time. This proportion could be justified 

by several reasons like congestion at cargo handling terminals, delays due to weather 

conditions, storage space or cargo availability. From above, we conclude that the 

potential energy savings from voyage optimization are a case specific. The potential 

savings are directly related to the ship type, its operational profile, and the ship 

contractual nature which could cause split incentives between different contract parties 

(Target, 2014). To sum up, obtaining an energy efficiency gain from such a measure 

necessitates the complete cooperation of various key players including ship’s operator (or 

the charter), ship’s master, port authorities in addition to the promotion of energy 

awareness amongst all of them. 

2.3.2 Wheather routing 

Ships are designed to transport cargo and people from one port to another safely. The 

ship through its sea voyage has to navigate with sufficient speed and intact stability in 

a volatile weather environment. Another crucial determinant added to ship's mission 

in recent years, to be energy efficient and cope with national and international 

environmental regulations.  From a naval architecture viewpoint, the main concern is 

to design a ship floats upright in the calm water and to ensure its stability 

characteristics in different seaway conditions within an acceptable safety margin 

(Bhattacharyya, 1978). From an energy-efficiency viewpoint, the foremost objective is 

to minimise the ship energy consumption and to advocate weather variables to achieve 

such a goal.  

Traditionally, during the ship design phase,  the calm water state's resistance 

calculations are the main concerns of the ship's designer. There are several reasons 

behind that approach; first, the shipyard’s guarantee usually is based on calm water 

performance. Second, the added resistance due to sea state is comparatively small to 

the total resistance, normally less than 10 %. Third, the speed loss estimation due to 

weather impact is complicated with a high uncertainty level.  Finally, the architect 

trade-off alternatives for performance improvement in high seas are usually confined 

or overridden by other safety-related constraints. Thus, performance drop in Seaways 
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typically judged for by applying a sea margin with a traditional value between 10 and 

25%. This sea margin mimics the power raise for hull fouling and weather impact 

(ABS, 2015). Usually, the sea margin is chosen based on ship's type, the predicted trade 

routes, owner expertise and the importance of maintaining ship's operation schedule. 

When the ship is sailing with full-power against a severe weather, the resistance 

increment causes a speed loss, a  rise in fuel consumption and an extended voyage 

time. Thus, if the ship tends to maintain the same engine RPM and torque, the engine 

tends to be overloaded with a high probability of violent slamming, propeller rise, 

racing and high accelerations induced by pitch and roll motions. The Ship's master in 

such a condition has to commence a slowdown governed by the engine load diagram 

and allowable sea margin  (Basic Principles of ship propulsion). 

The weather routing could be categorized into two types, route optimization, and in-

operation speed optimization. The route optimization tends to select alternative 

waypoints with more favorable conditions with reference to weather hindcast data. 

Meanwhile, in-operation speed optimization between two seaway points refers to 

deriving the most optimum speed to accommodate Main Engine's load within the 

allowable sea margin, the vessel loading condition, and hull roughness status. The 

weather optimization problem may have multiple criteria such as; ship's safety, 

passenger comfort, arrival time and ship's fuel consumption. Consequently, it may 

require a multi-objective optimization approach to solve it (Perera & Soares, 2017).  

Therefore, each criterion should be weighted to the ship operator preferences. For 

instance, some shipping companies favor arriving on time with shorter transit time 

over fuel consumption reduction. For other companies, having a higher environmental 

ranking is much more valuable. Consequently, the objective should be set according 

to the operators' preferences based on their ultimate aims. Finally, The main challenges 

for the optimization process as many studies revealed are weather forecast accuracy, 

ship performance model quality, and the availability of alternative route especially in 

short voyages or restricted seaways (Bal Besikci, Arslan, Turan, & Olcer, 2016) (ABS, 

2015) (Perera & Soares, 2017)  (Lu, Turan, Boulougouris, Banks, & Incecik, 2015). 
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2.3.3 Trim optimization 

Traditionally, the ship’s hull form is designed at various drafts values with zero trim 

assumption. The flow pattern at ship's bow and stern then tuned with care to achieve 

as minimum resistance as possible. Any change to the ship's trim than the design point 

will positively or negatively affect the ship resistance.  The still water ship resistance 

according to ITTC standards can be expressed by the following equation (ITTC, 2014): 

𝑅𝑇 =
1
2ൗ . 𝜌. 𝑉𝑠

2. 𝑆. 𝐶𝑇  ( 1 ) 

Therefore, the ship total resistance (𝑹𝑻) is a function of the ship speed (𝑽𝒔), the wetted 

service area (𝑺), total resistance coefficient (𝑪𝑻), and sea water density (𝝆). The 

wetted surface area and total resistance coeffecient are influenced by ship’s trim and 

have to be reduced to obtain a gain  from trim optimization (Reichel, Minchev, & Larsen, 

2014). 

The technical reports had evaluated the potential saving of trim optimization between 

1 to 2 % of the ship's fuel consumption. Such a gain can justify ship owner’s 

investment in model tests, CFD simulation or full-scale measures. Additionally, the 

payback-time could be within months especially for ships with high-power 

consumption and long voyages range (ABS, 2015). 

 Other operational measures 

2.4.1 Autopilot settings optimization 

It is well-known from a naval architecture basics, that rudder movement adds drag to 

the ship hull and increases the ship’s total resistance  (Bhattacharyya, 1978) (MAN). 

Conventional autopilot systems built on the direct linear relation between rudder angle 

and ship’s heading change rate. These systems aim to maintain ship’s course using a 

simple proportional action on the heading error angle. Such a relation may be suitable 

for stable hull forms and small rudder angle. Technically, a good performance 

autopilot system should produce no more than six to ten small rudder movements per 

minute (ABS, 2015). If the ship during its voyage exposed to severe weather 
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conditions, it may require large rudder angle with more frequent rudder movements to 

maintain its course. 

For optimal energy efficient use of the autopilot system, a fine tuning of its parameters 

is required with best practice in shipboard procedures. The crew should be aware of 

how to configure the system settings. The shipboard procedure should include 

recommendations for an optimal number of rudder movements and corresponding 

angles in various loading and weather situations in line with the system manufacturer 

instructions. Figure 2-7 illustrates two system configurations. Ship 1 with the track 

control activated that tends to generate very steady course line but will use excessive 

large angle rudder with high-frequency movements, which result in high resistance 

and higher fuel consumption. In ship 2, the system configured with a small deviation 

in ships course that allowed the system to use a smoother rudder movements to 

maintain the set course line. The second adaptive system has less resistance and is 

more energy efficient  (DNV-GL, GLOMEEP, 2014). 

 

Figure 2-7 PID and adaptive autopilot systems, Source: adapted from  (DNV-GL, 

GLOMEEP, 2014) 

The measure is mostly cost-free for ships installed with linear autopilot systems 

integrated with system configuration adjustment. However, the cost for fully adaptive 

autopilot suitable for directionally unstable ships or heavy weather conditions may cost 

more than 20,000$  (ABS, 2015). The potential savings differs from 0.25 to 1.55 % 

fuel savings depending on the shipping route, ship loading and weather conditions 

within these routes (DNV-GL).  



Ch. (2)                                  E.E operational measures 

20 

2.4.2 Ballast optimization 

The second IMO GHG study defined the ballast optimization as determining optimal 

ballast by avoiding unnecessary ballast. However, it highlighted the importance of 

taking into consideration ballast effect on the ship safety, crew comfort, and trim 

optimization  (Second IMO GHG study 2009). The concept also includes the execution 

of ballasting operation in a more energy efficient way by using various techniques such 

as gravity assisted ballast exchange and sequential ballast exchange as it requires less 

water to displace  (Bannstrand, Jonsson, Karlsson, & Johnson, 2016). 

In a specific case study by DNV-GL of tanker operations, a saving of 0.6% of the ship 

fuel consumption was estimated for both trim and ballast optimization. Higher figures 

may be only relevant for a particular ship type that carries significant ballast during 

most of its operation time (Second IMO GHG study 2009). 

2.4.3 Hull roughness management 

The marine biofouling was always a great challenge for both economic and 

environmental perspectives to the efficient ship operations. Hard-shelled fouling can 

cause a significant rise in the ship's frictional resistance, and hence its fuel 

consumption. Therefore, Marine coating paints are used to improve and maintain the 

hull surface smoothness, and if combined with a proper cathodic protection system it 

may prevent corrosion from ship's hull (Demirel, Turan, & Incecik, 2017). According 

to FoulXSpel project, the use of antifouling coatings provided globally a $60 billion 

of fuel saving and 384 million tonnes reduction in carbon dioxide emissions annually  

(FoulXSpel).   

 

Figure 2-8 Biofouling organisms, adapted from,  (Demirel, Khorasanchi, Turan, & Incecik, 2013) 
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The number of marine organisms’ types may exceed 25000. Some of them can attach 

to ship’s hull, settle and grow. These species are classified by size into micro and 

macro as shown in Figure 2-8  (Demirel, Khorasanchi, Turan, & Incecik, 2013). 

The ship’s hull fouling has an extended effect on the ship operational performance 

(Figure 2-9). The increased drag resistance of the ship’s hull will cause a higher fuel 

consumption to achieve the normal speed. The severely fouled hull leads to ship's 

speed reduction to avoid the main engine’s overload and a shorter drydock intervals, 

which will increase the ship maintenance cost. Environmentally, the ship while in 

operation is transferring the attached spices to its hull to foreign territories and could 

cause extensive damage to the aquatic ecosystem and marine biodiversity. 

 

Figure 2-9 Biofouling effect on ships operation  

Finally, applying a good hull management was always an evidence of the ship 

performance good practice. Now with the need to maximize the ship’s  energy 

efficiency, hence the need to adopt such measures becomes more imperative. 

Especially, with the potential fuel savings from applying an appropriate antifouling 

coating with a suitable hull cleaning which can achieve an average reduction of 4% of 

the ship's fuel consumption. While re-coating a rough hull can yield 10 to 12 % 

reduction in fuel costs  (ABS, 2015). 
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 Chapter summary 

In this chapter, different EEOMs has been analyzed with their potential fuel 

savings guided by the second IMO GHG study. The study had estimated a 50% 

possible fuel savings with the application of the EEOMs combined, which seems to be 

misleading and lacks the needed accuracy. The study estimation was based on the 

assumption of a slow steaming scenario with at least 10% ship’s speed reduction. 

Contrary as discussed in section 2.2.3, ship’s operational speed mainly governed the 

market demand and the ship's bunker prices, i.e., the economic concerns. Some of the 

proposed energy efficient operation measures, like slow steaming and hull cleaning, 

were historically well-established by ship’s operators to reduce ship’s operation cost 

far before the propagation of the energy efficiency concept. Consequently, counting 

on the application of these two measures as an indication of the industry response to 

the new energy efficiency requirements sounds disingenuous.  

 

Figure 2-10 Cost-effective operational measures average implementation rate,  

Source: (Rehmatulla & Smith, 2015) 

Moreover,  (Rehmatulla & Smith, 2015) found after measuring the 

implementation the rate of the energy efficiency measures that had been implemented 

in the industry, that the average implementation rate of cost-effective operational 

measure is 50% of their sample respondents. The study further accounted the reasons 
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for the low implementation rate of measures like trim and ballast optimization to the 

lack of available practical information of the potential gain, the high level of 

uncertainty of the applicability, and the split incentives among the shipping 

stakeholders. Besides, the DNV-GL studies (2014,2015) showed that only minority of 

shipping companies had set and accomplished their ambitious targets for maximizing 

their fleet energy efficiency  (DNV-GL, 2015).  

Therefore, the author is highly confident that the barriers that slow down the 

implementation of energy efficiency measures, must be overcome to perceive a 

noticeable improvement in the industry’s energy efficiency collectively. Thus, 

providing a Decision Support System (DSS) based on the ship’s operational data that 

can predict, assess and optimize the operation of the energy efficiency measures is 

beneficial and provide a step forward with the needed momentum to achieve a better 

energy efficiency implementation rate shortly. 

 

 

 



 

 

 

Chapter 3.  

Development of the methodology for 

energy efficiency ship operation 

 The research methodology 

Traditionally, the prediction of the ship performance in calm water had been the focus 

of many types of research in the past. The still water resistance is usually estimated 

according to the classical method of (Holtrop & Mennen), which is an approximate 

procedure that was popularly used at the initial design stage of the ship  (Holtrop & 

Mennen, 1982). However, when a ship advances in a seaway, she faces additional 

resistance caused by the actual sea state condition. The extra power is usually 

accounted for by a Sea Margin of the total engine power with a value of 15% is usually 

used as previously explained in Section 2.3.2. The added resistance and ship motion 

problem in waves had widely studied through several approaches from experiments, 

statistical, numerical simulations using potential flow theory to the computational fluid 

dynamics CFD  (Kim, Hizir, Turan, Day, & Incecik, 2017). 

However, one of the research goals is to use a non-classical approach to predict the 

ship’s propulsion power, and hence its fuel consumption. Therefore, the adaptation of 
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the Artificial Neural Network in forecasting the ship’s performance in seaway 

confirms the novelty of the proposed methodology.  

Figure 3-1 illustrates the method that employed (ANN) in forecasting the ship’s power 

based on a set of input variables. The input variables in the proposed system include: 

 The Ship’s Speed over ground (SOG) 

 The ship’s course 

 Seawater Depth 

 Weather hindcast data (Wind, Wave, Current, and swell parameters) 

Ideally, the ANN could include more variables that may reflect the ship behavior such 

as ship’s mean draft or ship’s trim. However, for the scope of this dissertation, the 

mentioned variables were only considered due to the data limitation. The ANN can 

accommodate more inputs as long as its relevant to the network output, which will be 

discussed in detail in Chapter 4.  

The developed ANN model should be able to predict the ship’s propulsion power. 

Then, the propeller RPM and engine S. F. C. can be estimated by fitting in the ANN 

output to Multiple Regression M.R analysis models.  

 

Figure 3-1 Proposed operation performance assessment method 

Still, it is critical to understand the nature of ANN and M.R analysis, and their 

characteristics befoe discussing how the models have been built.  
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3.1.1 The Artificial Neural Network (ANN) 

3.1.1.1 The origin 

The Artificial Neural Network is relatively a new approach that mainly had been 

derived from neurobiology science. Humans and other animals are able to process the 

information through their neural networks. These networks are contained trillions of 

neurons (nerve cells) that exchanging brief electrical pulses called action potentials. 

Computer algorithms that mimic these biological structures are formally called 

Artificial Neural Networks. The ANN field has been grown gradually from the 

modeling of simple processing elements or neurons to massively parallel neural 

networks, which paved the way to advanced artificial intelligence and machine 

learning applications.  

ANN could be practically defined as a group of interconnected neurons that 

progressively has learned from their environment (data) to obtain linear and nonlinear 

trends in complex data. It is flexible enough to reliably predict for new situations 

containing noisy or even partial information. Neurons are the core computing units 

that perform local data processing inside a network. These neurons form massively 

parallel networks, whose function defined by the network structure (i.e., how neurons 

organized and linked to each other), the connection strengths between neurons, and the 

processing performed at neurons. Neural networks perform a variety of tasks, 

including prediction or function approximation, pattern classification, clustering, and 

forecasting (Samarasing, 2006, p. 12). 

 

Figure 3-2 Communication between biological and artificial neurons, Source: (Samarasing, 2006) 
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3.1.1.2 How does it work? 

ANN is a computing system that was made with some highly connected neurons. 

These neurons are processing information, operate in parallel and are connected in a 

network shape through weights (w). ANN can learn by acquiring the knowledge of the 

data in the process, which is then reflected on the weight values to capture the essential 

features of the problem and minimize the error. Figure 3-3 shows an ANN structure 

with (𝒏) input variables (𝒙𝒏). Each neuron receives inputs 𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … . 𝒙𝒏., attached 

with a weight 𝒘𝒊𝒋 which indicates the connection strength for a particular input for 

each connection. Then it multiplies every input by its corresponding weight of the 

neuron connection. A bias (𝒃𝒊)can be defined as a type of connection weight with a 

constant nonzero value added to the summation of inputs and corresponding weights  

(Bal Besikci, Arslan, Turan, & Olcer, 2016)  (Samarasing, 2006)  (Smith S. W., 1997)   

 

Figure 3-3 Basic Artificial Neural Network structure 

Then, the neuron’s network inside activity (𝑢𝑖)can be expressed as following: 

𝑢𝑖 = 𝑤𝑖𝑗𝑥𝑗 + 𝑏𝑖

𝑛

𝑗=1

 

         ( 2 ) 

Where, 𝑤𝑖𝑗  is the weight value of the i layer, 𝑥𝑗 is the output value of the j layer, and 

n is the number of the neurons. Then, the neuron output will be processed through a 

nonlinear activation function ϕ to obtain the output 𝑦𝑖.i.e the output 𝑦𝑖can be 

mathematicaly expressed as follows: 

𝒙𝟏
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𝑦𝑖 =   (𝑢𝑖) =  [𝑤𝑖𝑗𝑥𝑗 + 𝑏𝑖

𝑛

𝑗=1

] 

                     ( 3 ) 

 

Figure 3-4 Nonlinear neuron activation functions: (a) logistics, (b) hyperbolic tangent, (c) 

Gaussian, (d) Gaussian complement, (e) sine function, Source: (Samarasing, 2006) 

The neurons activation function could take different shapes as illustrated in Figure 3-4. 

The activation functions with its nonlinearity makes it possible for neural networks to 

do the nonlinear mapping between inputs and outputs (Samarasing, 2006, p. 73).  

3.1.1.3 Multilayer feedforward neural networks 

The ANN structure differs according to the nature of the problem to be solved. A 

simple problem may require a simple single layer feed forward network with only one 

layer of neurons as shown in Figure 3-3. For more complicated problems that require 

a significant number of neurons to solve, and the complex nonlinear relation between 

its multiple inputs, a multilayer feedforward neural network seems more suitable for 

more accurate results  (Samarasing, 2006, p. 113).   

 

Figure 3-5 Multilayer feed-forward neural network, adapted from several sources 
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Each layer can apply a different activation function to the previous layer to produce a 

linear transformation output followed by a squashing nonlinearity. Such complex 

calculations smoothed by nonlinearity in hidden neurons whose features are controlled 

by the network weights.  

Figure 3-5 shows the most commonly used ANN structure. The network has three 

layers, called the input layer, hidden layer, and output layer. Each layer consists of one 

or more neuron, the lines between the nodes indicate the information flow from one 

neuron to the next. In this type of network, the information flows from the input to the 

output, other types of neural networks may have more complicated connections with 

feedback paths.  

The variables: 𝒙𝟏 are representing the input nodes, and they are passive, which means 

that they don’t modify their values, while hidden layer nodes are active. the values 

entering a hidden node are then multiplied by weights, a set of predetermined numbers 

stored in the program. The weighted inputs are then added to produce a single number. 

The first layer weights 𝒘𝟏could be expressed  as following: 

𝑤1 =

ۏ
ێ
ێ
ێ
ێ
ۍ
𝑤111 𝑤121 𝑤1𝑛1

𝑤112 𝑤122 𝑤1𝑛2

⋮ ⋮ ⋮

𝑤11𝑚 𝑤12𝑚 𝑤1𝑛𝑚ے
ۑ
ۑ
ۑ
ۑ
ې

 ( 4 ) 

Before leaving the node, this single number has to pass through the first layer bias 𝒃𝟏, 

and the nonlinear function. 

The variables 𝒙𝟐 represent the outputs from the hidden layer: Just as before, each of 

these values 𝒙𝟐𝟏, to 𝒙𝟐  are multiplied by weights and bias then applied to the next 

layer. The active nodes of the output layer combine and modify the data to produce 

the two output values of this network, 𝒙𝟑𝟏 and 𝒙𝟑  

Similarly, to (4), the second layer weights w2 could be expressed as follows: 
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𝑤2 =

ۏ
ێ
ێ
ێ
ێ
ۍ
𝑤211 𝑤221 𝑤2𝑚1

𝑤212 𝑤222 ⋮

⋮ ⋮ ⋮

𝑤21𝑘 𝑤22𝑘 𝑤2𝑚𝑘ے
ۑ
ۑ
ۑ
ۑ
ې

 ( 5 ) 

Neural networks can have any number of layers, and any number of nodes per layer. 

Most applications use the three-layer structure with a maximum of a few hundred input 

nodes (Samarasing, 2006)  (Smith S. W., 1997) 

3.1.1.4  ANN training and Back Propagation algorithm 

The weights values needed for a neural network to perform a particular task can be 

obtained by a learning algorithm. The term "learning" is widely used in the neural 

network field to explain this process. However, a more precise description might be: 

determining an optimised set of weights based on the statistics of the data set  (Smith 

S. W., 1997). The most commonly used training algorithm for the multilayer 

perceptron (MLP) is a back-propagation algorithm (BPA).  Multilayer ANN trained 

with BP usually is chosen because of its proven ability to model any function.  

The algorithm proceeds by iterations through multiple epochs. Epoch can be referred 

to as a completed iteration of the training procedure.  With each epoch, the training 

results are submitted to the network and predicted target compared with actual values, 

and the error is then calculated. Both the error and error surface gradient is used to 

optimize the weights values, and hence the training repeated, and error minimized. The 

initial ANN weight values are random, and the training stops when epochs lapse or 

when the error stops improving  (Electronic Statistics Textbook, 2013). The back-

propagation algorithm has become the most popular one for training the multilayer 

perceptron. It is compositionally very efficient. (Samarasing, 2006).  (Basheer & 

Hajmeer, 2000) 
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3.1.1.5 ANN application in ship’s performance  prediction 

Since (McCulloch and Pitts, 1943) had formed their computational model for neural 

networks based on mathematical algorithms, the neural network's research paved the 

way through to many applications.  Applications like machine learning, quantum 

chemistry, medical diagnosis,  data mining, e-mail spam filtration,  face identification, 

gaming, financial and business applications had widely used ANN for building models 

that helped to solve many problems that couldn't be solved with traditional 

methods.These applications have a broad range of diversity mainly because of the 

ANN ability to model nonlinear processes as discussed in the above section (Basheer 

& Hajmeer, 2000).  

However, only tow studies were found in the literature that employed ANN as a non-

classical methodology to forecast the ship performance. Starting with  (Pedersen & 

Larsen, 2009) which were the first to test the ANN methodology to predict a full-scale 

propulsion power. In their study, they had used onboard measurement, Noon report 

data, and hindcast weather data. The study also compared between different linear and 

non-linear methods with the ANN method and found that ANN has a significantly 

better performance over other tested methods. Then,  (Bal Besikci, Arslan, Turan, & 

Olcer, 2016) study that employed the ANN to predict the ship fuel consumption to 

develop a decision support tool. The study counted on the ship’s noon data with seven 

input variables to their ANN model. The study concludes with ANN can learn the 

relationship between input variables and ship fuel consumption accurately. 

Furthermore, the study highlighted the ANN superior performance when compared to 

the results derived using an M.R model. 

However, the ANN training dataset used in the mentioned studies based on Noon 

reports, which are logged in by ship’s crew in  24 hours intervals. Such a log data only 

reflects a time capture or mean values of the ship’s parameters and doesn’t represent 

the ship's operational behavior realistically. Despite the fact that it was an excellent 

attempt, the alternative should be a high-frequency data that indicates the ship’s 

operational changes during its voyage through an automatic data acquisition system.  



Ch. (3)                                      Development of the methodology for E.E ship operation 

32 

ANN models by nature are susceptible to the training dataset quality to identify the 

correlation between input variables and the output. Therefore the obtained highly 

intensive dataset may satisfy the former argument, also it will provide an opportunity 

to validate the ANN model with an entirely different voyage dataset that wasn’t used 

for training the model. Such a validation should increase the confidence level of the 

used methodology. 

3.1.2 Multiple Regression analysis (M.R) methods 

"The regression analyses" as Pearson first used it as a term in 1908, aims to analyze 

the correlation between several independent or predictor variables. Multiple regression 

disciplines are widely used in scientific research. In this section, only linear and 

Polynomial regression methods are described as they have been employed to develop 

an M.R model.   

3.1.2.1 Linear regression analysis method 

If a set of data of two variables (x) and (y) plotted in a scatterplot, then one of the 

variables (x) represents an independent, while the other variable (y) accounts for a 

dependent. The line in two-dimensional space could be represented  by the following 

equation: 

𝑦 = 𝑎 + 𝑏𝑥 ( 6 ) 

Where (a) is a constant number, sometimes referred to as the intercept, while (b) relates 

to the regression coefficient (β) or the line slope. When there is more than one 

independent variable, i.e., a multivariate case, then the multiple regression analysis 

could be expressed  by the following linear equation: 

y = β0 + β1x1 + β2x2……+ βnxn  ( 7 ) 

The resulted regression line represents the best prediction concerning the given 

equation to a variable (y) at a given variable (x), however usually there is a substantial 

variation of the actual points around the fitted regression line. That deviation of a 

particular point from regression line is called the residual value. The coefficient of 

determination, also known as  𝑅2, is commonly used in statistics to evaluate the model 
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fit and its value lays between 0 and 1.  To determine the 𝑅2 value, the ratio of residual 

variability is subtracted by 1. Thus, the 𝑅2 value of 1 means that there is no residual 

variance and the ratio of variance would be 0.0, i.e., it indicates that the regression 

function have been accounted for almost all of the variability with the model specified 

variables  (Electronic Statistics Textbook, 2013). 

 
Figure 3-6 Linear regression example 

Figure 3-6 illustrates a linear regression example between two variables x and y. the 

linear regression equation as found by Microsoft excel was: 

𝑦 = −2126.7 + 1113.9𝑥 

With the intercept (a) value = -2126.7 and regression coefficient (β) = 1113.9 and 

(𝑅2) = 0.88, which means that only 12% of residual variability were left. 

3.1.2.2  Polynomial regression analysis method 

The polynomial method is a regression analysis method that suits a nonlinear 

correlation between the independent variable (x) and the dependent variable (y). The 

model formed by multiple degree polynomials in (x). Additionally, polynomial 

regression as a statistical evaluation problem is linear as the regression function is 

linear in the unknown parameters that calculated from the data, which explains why 

polynomial regression is considered a special case of M.R analysis (Electronic 

Statistics Textbook, 2013). The resulted function could be expressed by the following 

equation: 

𝑦 = 𝑓(𝑥) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥
2 + 𝛽3𝑥

3 +⋯+ 𝛽𝑛𝑥
𝑛  ( 8 ) 

R² = 0.8781
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With the application of the previous function to the example illustrated in section 

3.1.2.1, the  obtained results showed in  Figure 3-7 with a highest 𝑅2 value had been 

found at  n = 3. 

The curve equation is then:  

𝑦 = −66.7 + 608.9 𝑥 + 105.6 𝑥2 + 15.8 𝑥3 

𝑅2 = 0.999, which means that only 0.6% of residual variability were left, thus the 

polynomial method had fitted a more accurate curve for the given variables set. 

 

Figure 3-7 Polynomial regression  example 

3.1.2.3 Error analysis 

For the error estimation and model quality analysis, the following formulas used: 

1. Mean Absolute Error (MAE): which is a measure of the difference between 

two continuous variables. 

𝑀𝐴𝐸 =
1

𝑚
ȁ𝑦𝑖 − 𝑦𝑖

~ȁ

𝑚

𝑖=1

 

                   ( 9 ) 

2. Mean Square Error (MSE): measures the average of the squares of the errors 

or deviations. 

𝑀𝑆𝐸 =
1

𝑚
(𝑦𝑖 − 𝑦𝑖

~)2
𝑚

𝑖=1

 

                  ( 10 ) 

R² = 0.9997
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3. Root Mean Square Error (RMSE): is the distance, on average, of a data point 

from the fitted line, measured along a vertical line. 

RMSE = ඩ
1

m
(y − y 

~)2
m

 =1

 

                ( 11 ) 

 Operational Decision Support System (DSS) 

Energy efficiency measures, in general, can be categorized into operational 

based and design based measures  (Second IMO GHG study 2009). In the previous 

chapter, available OEEMs discussed in details with its potential energy savings. The 

DNV-GL (2015) survey of shipping companies implementation of energy efficiency 

measures had shown the shipping companies favourability of reducing their fleet’s fuel 

consumption through operational measures rather than the adoption of new technology 

investments of energy efficiency designs  (DNV-GL, 2015). However, some of the 

operational measures need a decision support system (DSS) that provides several 

alternatives necessary to support the ship’s navigators to achieve the potential savings 

targets safely.  

The advisory system should be able to sense the actual sea state variables and 

analyzes their effect on the ship’s performance. Also, it has to forecast the propulsion 

power needed throughout the voyage route's conditions. Then the system should assess 

the ship’s fuel consumption of the various decision alternatives. Furthermore, it should 

advise the ship operator with the optimum values of the operational parameters achieve 

optimum performance in a real-time voyage condition. The success of such a system 

requires a comprehensive, validated performance prediction model integrated with a 

reliable performance optimization model. 

Figure 3-8 manifests the components of the proposed Operational Decision Support 

System (DSS) illustrating the interaction between system’s elements. The system tends 
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to achieve voyage optimisation management (VOM) by utilizing certain energy 

efficiency measures as should be decided by the operator preferences.  

 

Figure 3-8 The Proposed operational Decision Support System (DSS) 

The system mainly consists of two major models, the ship operational performance 

prediction model (PPM) and the ship performance optimization model (POM). Both 

models should be designed to run on a particular ship with its specific preferences. The 

PPM model includes two ANN and M.R sub-models to estimate the ship’s power, 

B.S.F.C, and RPM. The PPM when initially designed should employ the ship’s 

specifications with its historical voyage dataset to line up with the proposed 

methodology. Such a dataset should be used to train the ANN model to build up its 

knowledge about the ship behavior in different operational scenarios.   
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Additionally, the PPM can update itself automatically with the ship performance 

degradation as the ANN has the power to learn from the training data pattern. For 

example, if the ship’s performance deteriorated due to the hull fouling effect, the 

model as continuously fed with the ship performance data, the ANN model can 

recognize the ship performance new trend. 

The PPM after validation can be exploited to predict the ship response to a particular 

voyage scenario or during the voyage itself to assess several available alternatives to 

improve the voyage's performance. To achieve such an objective, the performance 

optimization model (POM) should be fed with the performance forecast results to 

supply the needed advice to the ship's master.  

The nature of the POM depends on the optimization problem's nature. For the scope 

of this dissertation, only single-objective optimization model was valid. 

After setting up the POM with the operator’s preferences, the model should be able to 

evaluate the results according to the set criteria. If the criteria not met, the model will 

change the available voyage variables, and the results should be obtained 

spontaneously from PPM till the required criteria met.    

Finally, the system as illustrated is dynamic and requires a full integration between its 

components for an efficient running. 



 

 

 

Chapter 4.  

The Decision Support System modeling 

 Dataset  

Ship performance-related studies traditionally collect data either through Noon reports 

or onboard high-frequency automatic data acquisition systems. Onboard Data logging 

had been developed in the recent years to become more computerized with client-

server software that replaced logbooks with electronic operational reports received 

continuously from shore's side. Furthermore, many classification societies in 

cooperation with software solutions providers had offered real-time monitoring 

systems with an automatic feature voyage reports creation. Figure 4-1  (NAPA),  

(DNV-GL). The current technology development in monitoring the ship performance 

during sea voyage had provided ship’s operators with massive real-time data that 

should be efficiently exploited. 

 

Figure 4-1 Class NK and NAPA joint ship Green monitoring tool, Source: www.napa.fi 

    

file:///C:/Users/ghang/Desktop/www.napa.fi
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However, the question arises about the certainty and reliability level of automatic 

Continuous Monitoring systems (CM) and traditional Noon Reporting (NR) method.  

(Aldous, T.Smith, R.Bucknall, & P.Thompson, 2015) Conducted a study of the 

uncertainty level of ship performance monitoring, and presented a method to quantify 

the overall uncertainty in a ship performance indicator. The study results indicated the 

substantial uncertainty benefit of CM data over NR data; up to 90% decrease in the 

uncertainty level. In other words, the CM data has much more reliable and reflects the 

ship behavior pattern during the sea voyage. 

4.1.1 Data description 

The case studies in this dissertation are based on the operational data of two sea 

voyages of M/T ORTHIS, a double-hulled VLCC, built at the end of 2011. More 

details of the ship particulars shown in Table 4-1. The study data contains two files 

obtained from NAPA in excel sheet format demonstrate the operational and weather 

hindcast condition of two sea voyages at the same loading condition (DWT-mean 

draught).  

Table 4-1 Study case ship particulars, Source: IMO website 

VESSEL'S NAME: ORTHIS 

IMO NUMBER: 9480837 

DATE DELIVERED: 1-Dec-11 

BUILDER (WHERE BUILT): DMSE, Okpo, Korea 

TYPE OF VESSEL: Oil Tanker 

TYPE OF HULL: Double Hull 

LENGTH OVERALL (LOA): 333.00 m 

LENGTH BETWEEN PERPENDICULARS (LBP): 320.00 m 

EXTREME BREADTH (BEAM): 60.00 m 

DRAFT (LOADED) 21.03 m 

FREEBOARD 6.14 m 

DISPLACEMENT 337354.50 mt 

DEADWEIGHT 293415.80 mt 

 

The company declared that it is currently cooperating with Tidtech for the weather 

forecast and VesselTracker as the AIS data provider. The given voyage dataset 

includes operational values, like ship’s speed, propeller RPM, brake power, instant 

https://www.tidetech.org/
https://www.vesseltracker.com/app


Ch. (4)                                        DSS modeling 

40 

fuel consumption at each sampling point. It additionally contains  route and weather 

hindcast related information such as water depth, wind, wave, swell and current 

absolute values (Figure 4-2) 

 

Figure 4-2 Dataset variables as obtained from NAPA 

The obtained data were extracted from the ship’s automatic continuous monitoring 

system, the AIS and weather hindcast information with an intensive samples pattern. 

However, The data sample points have uneven time intervals. This may occur due to 

the shortage of AIS and weather forecast coverage in some areas along the voyages. 

From Figure 4-3, can observe the sampling frequency in the first voyage is better 

distributed along ship’s route than the second voyage.  

Figure 4-3 and Table 4-2 reviews both voyages general information, while Figure 

4-4 is showing the SOG histogram for both voyages.  The graph shows the average 

speed difference between the two voyages. The first voyage had an average speed of 

12.47 kn, whereas the second voyage had a mean speed of 11.90 kn with the exclusion 

of the drifting period. The average speed difference is mainly due to the voyage routes 

variances. The second voyage route as shown in Figure 4-3 had many maneuvering 

passages that require speed reduction for the ship navigation safety. It is worth 

mentioning that both voyages had the same loading condition, i.e., the same  DWT of 

298762 mt and same mean draft of 21 m. 

Table 4-2 Case study voyages overview 

Voy. 

No 

Departure 

Port 

Arrival 

Port 

No. of 

data 

samples 

V. time 
(dd:hh:mm) 

Route 

length 
(nm) 

Total Fuel 

Cons. (mt) 

F.Cons 

(mt/nm) 

(1) 

Sultan 
Qaboos 

(Oman) 

Ain 

Sukhnah  

(EGY) 
1142 09:03:34 2801 367.9 0.131 

(2) 
Sidi Kerir 

(EGY) 

Rotterdam 

(NTH) 
2562 12:14:21 3215 437.7 0.136** 

** Drifting period excluded from the calculations 
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Figure 4-3 Sea voyages route illustration 

 

Figure 4-4 SOG Histogram for both voyages 

4.1.2 Data analysis 

The second voyage dataset was chosen to be used in designing the structure of the 

ANN and M.R models, mainly because it has a larger dataset. However, the second 

voyage has one day drifting before the arrival to Rotterdam for waiting for the berthing 

instructions (note Figure 4-4 for second voyage SOG histogram, as it shows 200 

samples with < 1 kn speed), which caused a high noise in the dataset during that period. 

Thus, the drifting period data set excluded from ANN training dataset to reflect the 

actual voyage sea time. 

  

   

 

Voyage (1) Voyage (2) 
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 Weather modeling 

Many calculations had been carried out on the voyages dataset to understand the effect 

of the voyage variables, especially the effect of the sea state on the ship’s performance. 

The first step was to obtain the true values of the apparent wind speed, wave, swell 

and current on ship’s direction. The steps used for processing weather was as follows: 

1. Ship’s heading (𝜽𝒔): 

𝜃𝑠 = 𝑡𝑎𝑛−1 2 (𝑠𝑖𝑛 ∆𝜆 ∗ 𝑐𝑜𝑠 𝜑2, 𝑐𝑜𝑠 𝜑1 ∗ 𝑠𝑖𝑛 𝜑2 − 𝑠𝑖𝑛𝜑1 ∗ 𝑐𝑜𝑠 𝜑2 ∗ 𝑐𝑜𝑠 ∆𝜆)      ( 12 ) 

Where 𝜑1, 𝜆1 are the start point’s Lat and Long, while 𝜑2, 𝜆2 are the end point’s Lat 

and Long, and ∆𝜆 is the difference in longitude. For excel, DEGREE(ATAN2) 

function used with the radian Lat and Long coordinates. The results examined against 

online map service and the used formula showed high accuracy  (Veness, 2017)  

(Bukaty & Morozova, 2013). 

2. The true wind angle (𝜽𝒕𝒘): 

𝜃𝑡𝑤 = ȁ𝜃𝑤 − 𝜃𝑠ȁ  ( 13 ) 

Where, 𝜃𝑤 is the wind angle. 

 Then,  the following excel argument used  to contain the true wind angle between (0-

180) range instead of (0-360) range as studying the wind effect on ship’s power will 

not be affected if the wind is heading from the port or starboard side of the ship: 

  𝜽𝒕𝒘` =IF(𝜃𝑡𝑤>180,ABS(𝜃𝑡𝑤-360),IF(𝜃𝑡𝑤<-180,ABS(𝜃𝑡𝑤+360),ABS(𝜃𝑡𝑤))) 

Similarly, the relative angle for waves, sea current, and the swell has been found. 

Meanwhile, Figure 4-5 illustrates the correlation between the wind and wave angles 

in both voyages. The figure shows a high correlation between both variables. It is well 

known from fluid dynamic principles the high correlation between wind and wind-

generated waves in a sense that justifies the high correlation factors found in the 

mentioned graph  (Wright, Colling, & Park, 1999). Thus, only one angle was used to 

represent both the wave and wind angles, usually denoted in the dissertation with 

Wind/Wave encounter angle. 
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Figure 4-5 Wind and wave angles correlation 

3. The Apparent wind angle (𝜽𝑨𝒘): 

𝜃𝐴𝑤 = [180 ∗ 𝑡𝑎𝑛−1{(𝑠𝑖𝑛 ቀ𝜋 ∗
𝜃𝑡𝑤

180
ቁ ∗ 𝑆𝑤)/(𝑆𝑂𝐺 + 𝑐𝑜𝑠 ቀ𝜋 ∗

𝜃𝑡𝑤

180
ቁ ∗ 𝑆𝑤}]/𝜋  ( 14 ) 

Where (SOG) is the ship speed over ground, and (𝑆𝑤) refers to the wind speed in m/s 

and (𝜋) refers to the ratio of a circle's circumference to its diameter, equals a constant 

value of 3.1416. 

4. The apparent wind speed (𝑺𝑨𝒘): 

𝑆𝐴𝑤 = ටቂ𝑠𝑖𝑛 ቀ𝜋 ∗
𝜃𝑡𝑤
180

ቁ ∗ 𝑆𝑤ቃ
2
+ ቂ𝑆𝑂𝐺 ∗ 𝑐𝑜𝑠 ቀ𝜋 ∗

𝜃𝑡𝑤
180

ቁ ∗ 𝑆𝑤ቃ
2
   ( 15 ) 

5. The  apparent wind speed on ship’s heading (𝑺𝑨𝑯): 

𝑆𝐴𝐻 = 𝑆𝐴𝑤 ∗ 𝑐𝑜𝑠( 𝜃𝐴𝑤 ∗
𝜋

180
) 

          ( 16 ) 

4.2.1 Beaufort  number and sea state: 

The Beaufort scale was initially established by Sir. Francis Beaufort in the early 19th 

century. The scale estimates the wind strength without measurement, and it still 

currently in use for the same purpose to indicate the weather condition such as wind 

strength, sea state, wave height with a simple figure. The used BF.No scale excel 

argument was based on the  (National Oceanic and Atmospheric Administration 

(NOAA), 2015) and  (Wright, Colling, & Park, 1999) as follows: 
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BF.No=IF(𝑆𝑤≥32.7,12,IF(𝑆𝑤≥28.5,11,IF(𝑆𝑤≥24.5,10,IF(𝑆𝑤≥20.8,9,IF(𝑆𝑤≥17.2,8,IF(𝑆𝑤≥13.9,7,IF

(𝑆𝑤≥10.8,6,IF(𝑆𝑤≥8,5,IF(𝑆𝑤≥5.5,4,IF(𝑆𝑤≥3.4,3,IF(𝑆𝑤≥1.6,2,IF(𝑆𝑤≥0.3,1,0)))))))))))) 

To understand the wind effect on the ship’s performance, we have to analyze the wind 

direction whether it was heading, beam or on the ship’s tail. The following excel 

argument used for analysis 

Win_dir =IF(θtw<=60, "Head",IF(θtw<=120, "Beam",IF(θtw<=180,"Tail","error!"))) 

 

Figure 4-6 The classification of  Wind/Wave direction with reference to ship’s heading 

Finally, for the sea state number, the following values were used as a reference  (Lu, 

Turan, Boulougouris, Banks, & Incecik, 2015):  

Table 4-3 Sea state scale’s reference values 

Sea state Wind speed (m/s) Wave significate height (m) Wave significant period (s) 

0 0 0 0 

1 0.9 0.1 1.22 

2 2.3 0.4 2.44 

3 4.4 0.8 3.45 

4 6.7 1.5 4.73 

5 9.4 2 5 

6 12.6 3 6.67 

7 15.5 4.5 8.19 

𝑉𝑠, 𝜃𝑠

𝑆𝑤, 𝜃𝑤

Beam sea (60-120º)
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4.2.2 The weather effect on ship’s performance 

 

Figure 4-7 The histogram for both voyages Beaufort number 

Figure 4-7 illustrates histograms for both voyages Beaufort number. The chart clearly 

shows that the second voyage had rougher weather as the ship was exposed to BF.No 

3,5, 6 and 7 for the more extended period. While voyage (1), the ship went through 

BF.No 4 and 5 for the most of the voyage time. However, to understand the effect of 

the wind on the ship performance, we have to analyze the wind direction whether it 

was heading, beam or on the ship’s tail. The illustration in Figure 4-6 was used for 

this analysis, and the analysis results are shown in Error! Reference source not found..   

 

Figure 4-8  The histogram of the Wind/Wave direction to ship’s course 

Notwithstanding the ship was exposed to a tougher weather condition in the second 

voyage as concluded before, the highly correlated wind and wave directions were 

mostly on tail during that voyage as illustrated in Figure 4-8. Thus, the weather 

condition, in that case, maybe in favor of reducing the ship fuel consumption. 

  

   1       2      3       4       5       6    1     2      3     4      5     6     7 

Voyage (1) BF.No Voyage (2) BF.No 

 

     Head            Beam             Tail     Head            Beam            Tail 
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However, to clearly understand the dynamic sea states effect, the ship performance at 

different sea states and different directions need further analysis. 

Therefore,  the ship’s speed was plotted against the ship’s propulsion power at various 

weather circumstances. Figure 4-9 shows the trend lines of the three classified 

wind/wave directions in different sea states. The Ship's power consumption while the 

wind/wave direction to the tail has a marginal less power consumption for a certain 

speed.  The figure also shows that the weather effect on ship performance raises as the 

ship speed increases. 

 

Figure 4-9  Ship’s speed-power relationship at different wind/wave encounter angles 

Further analysis has shown in that the ship may consume less at tougher weather 

conditions if the ship is heading in the right direction relative to the wind/wave 

encounter angle. For example, the voyage data shown in Figure 4-10 illustrates the 

ship performance at different sea states only with the wind/wave direction to the ship's 

tail. From the graph, if the ship sails at 12.5 kn speed with sea state (1), the delivered 

propulsion power was around 8800 kw, while in sea state (5) was 7950 kw. Thus, the 

power difference represents 9.66% although the ship was sailing in harsher weather 

environment, it was to the favor of the ship’s movement. 
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Figure 4-10 Ship’s speed-power relationship at different sea states with wind/wave in tail 

direction 

Finally, Figure 4-11 comparing the ship’s performance at sea state (1) with beam/head 

wind/wave direction and sea state (4) with tail wind/wave direction. The propulsion 

power consumed at sea state (4) with tail direction is marginally less than sea state (1) 

at beam/head direction.  

 
Figure 4-11 Comparison of the ship performance at sea state 1 & 4 with different wind/wave 

direction 

To sum up, the previous examples verify the potential energy savings of the weather 

routing as discussed in section 2.3.2. Still, The main challenges if the measure to be 
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used in optimization scenarios for voyage planning is the accuracy of the forecast 

weather data, the quality of the vessel performance model, and the availability of 

alternative route especially in short voyages or navigation restricted seaways. 

 Fuel consumption calculations 

To accurately assess the ship performance model, the ship fuel consumption must be 

calculated at each sampling point. The obtained sampling points as Figure 4-12 shows, 

an example of the dataset fuel consumption. The entries divided into patterns as the 

figure shows.  

 

Figure 4-12 (Part-1) Dataset Fuel consumption illustration  

The pattern changes with each ship’s course value change (green highlighted) with a  

new set of values (note that the new data row has the same time and location but 

different ship parameters like speed and power). For fuel consumption calculations, 

the Brake Specific Fuel Consumption (B.S.F.C) calculated at each power point as 

follows: 

𝐵. 𝑆. 𝐹. 𝐶 =  𝐹. 𝑅𝑓𝑢𝑒𝑙 ∗
3600

𝐵.𝑃∗1000
 ( 17 ) 

Where (𝐹. 𝑅fuel) is the fuel flow rate in kg/sec, while (B.P) is the Brake power in kw 

and (B.S.F.C) in gr/kw.hr.  

   
Figure 4-13 ( Part-2) Dataset Fuel consumption illustration 

 

Index Time stamp Lat Long
sample 

time

Time from 

departure

Sample 

distance      

(nm)

distance 

travelled      

(nm)

course
Speed      

(knots)
Rpm

Brake 

Power 

(kw)

Fuel Mass 

Flow 

(kg/sec)

S.F.C 
g/kw.hr

1 3/8/2017 4:27 23.67 58.63 00:00 00:00:00 0 0 45.28 3.44 16.22 247.867 0.0131 190.7815

2 3/8/2017 4:32 23.67 58.64 00:05 00:00:05 0.33 0.33 45.28 3.44 16.20 246.75 0.0131 190.7821

3 3/8/2017 4:32 23.67 58.64 00:00 00:00:05 0.00 0.33 39.42 5.17 23.28 706.2946 0.0374 190.5028

4 3/8/2017 4:36 23.68 58.64 00:03 00:00:09 0.30 0.64 39.42 5.17 23.21 699.6607 0.0370 190.5069

5 3/8/2017 4:36 23.68 58.64 00:00 00:00:09 0.00 0.64 36.90 6.87 30.18 1509.929 0.0797 190.0138

6 3/8/2017 4:41 23.68 58.65 00:05 00:00:14 0.63 1.26 36.90 6.87 30.17 1509.384 0.0797 190.0141

7 3/8/2017 4:41 23.68 58.65 00:00 00:00:14 0.00 1.26 35.05 8.29 36.04 2548.185 0.1340 189.3808

8 3/8/2017 4:47 23.70 58.66 00:06 00:00:20 0.83 2.09 35.05 8.29 36.05 2550.946 0.1342 189.3791

9 3/8/2017 4:47 23.70 58.66 00:00 00:00:20 0.00 2.09 35.57 9.32 40.24 3521.401 0.1847 188.7862

10 3/8/2017 4:51 23.70 58.66 00:03 00:00:24 0.52 2.62 35.57 9.32 40.24 3523.37 0.1848 188.785

11 3/8/2017 4:51 23.70 58.66 00:00 00:00:24 0.00 2.62 41.24 10.40 44.48 4711.605 0.2461 188.0567

 

Actual 

Engine 

Revolution 

<rpm>

Actual Brake 

Power 

<kW/hr>

SFC    
gr/kw.hr

Comsumed 

energy 

<kw>

sample F.C 

(mt)

16.22 247.87 190.78 0.0 0.00E+00

16.20 246.75 190.78 23.9 8.78E-03

23.28 706.29 190.50 0.0 0.00E+00

23.21 699.66 190.51 41.0 1.23E-02

30.18 1509.93 190.01 0.0 0.00E+00

30.17 1509.38 190.01 137.5 3.51E-02

36.04 2548.18 189.38 0.0 0.00E+00

36.05 2550.95 189.38 255.8 5.76E-02

40.24 3521.40 188.79 0.0 0.00E+00

40.24 3523.37 188.78 197.7 4.35E-02

44.48 4711.60 188.06 0.0 0.00E+00
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Then, the fuel consumption at each sampling row calculated with simple math by 

calculating the sample time and the consumed energy during this period (Figure 

4-12 and Error! Reference source not found.) 

  

Figure 4-13 ( Part-2) Dataset Fuel consumption illustration 

 

 The Dataset correlation analysis 

In this section, the dataset parameters analyzed by regression analysis to obtain their 

correlation factors and to deeply understand the interrelationship between them.  

 
Figure 4-14 Sample of dataset analysis 

The correlation analysis results contained in Table 4-4 with color code from green to 

red. Green values reflect a positive correlation between their variables, while red 

values indicate a negative correlation. The ship’s speed has a correlation factor of 

(0.90) with the engine’s brake power (B.P) which will certainly benefit the inclusion 

of the SOG as an ANN input. Both the engine (S.F.C) and Propeller revolutions (RPM) 

have a linear correlation with the  Brake power (B.P) with correlation factors of 0.99 

and 0.90 respectively. Such a relation could justify the use of M.R analysis for both 

 

Actual 

Engine 

Revolution 

<rpm>

Actual Brake 

Power 

<kW/hr>

SFC    
gr/kw.hr

Comsumed 

energy 

<kw>

sample F.C 

(mt)

16.22 247.87 190.78 0.0 0.00E+00

16.20 246.75 190.78 23.9 8.78E-03

23.28 706.29 190.50 0.0 0.00E+00

23.21 699.66 190.51 41.0 1.23E-02

30.18 1509.93 190.01 0.0 0.00E+00

30.17 1509.38 190.01 137.5 3.51E-02

36.04 2548.18 189.38 0.0 0.00E+00

36.05 2550.95 189.38 255.8 5.76E-02

40.24 3521.40 188.79 0.0 0.00E+00

40.24 3523.37 188.78 197.7 4.35E-02

44.48 4711.60 188.06 0.0 0.00E+00
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values (S.F.C & RPM) to estimate their values from the Engine Brake Power (B.P). 

As a result, the initial multiple regression results for both RPM and B.S.F.C with the 

Engine B.P are shown in Figure 4-15. 

Table 4-4 Data variables correlation factors 

 

 

Figure 4-15 Initial M.R analysis between RPM and B.S.F.C with Engine RPM 

Meanwhile, The ship Various SOG values plotted against engine brake power 

illustrated in Figure 4-16-(a). 

 

Vs D Saw Hws Tw Ɵen Hss Ts Ɵs Sc Ɵc RPM BP SFC

Vs 1.00

D 0.43 1.00

Saw 0.13 0.34 1.00

Hws 0.15 0.33 0.35 1.00

Tw 0.12 0.24 0.34 0.98 1.00

Ɵen 0.25 0.16 -0.29 0.45 0.43 1.00

Hss 0.16 0.13 0.16 0.51 0.56 0.08 1.00

Ts 0.19 0.08 0.16 0.57 0.61 0.13 0.88 1.00

Ɵs -0.04 -0.29 -0.32 -0.16 -0.18 0.04 0.08 0.16 1.00

Sc -0.04 -0.08 0.24 -0.25 -0.23 -0.26 -0.22 -0.19 -0.20 1.00

Ɵc 0.35 0.29 0.12 -0.23 -0.27 -0.12 -0.27 -0.49 -0.25 0.15 1.00

RPM 0.99 0.42 0.16 0.11 0.08 0.18 0.15 0.18 -0.06 0.01 0.37 1.00

BP 0.90 0.53 0.27 0.07 0.04 0.09 0.06 0.01 -0.22 0.02 0.53 0.90 1.00

SFC 0.62 0.12 0.05 0.09 0.08 0.07 0.19 0.27 0.02 0.01 0.13 0.66 0.38 1.00
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Ɵen: Wave/Wind encountre angle; Hss: Swel significant height; Ts: Swel significant period; Ɵs: Swel true angle; Sc: Current 

speed; Ɵs: Swel true angle; RPM: propeller revolutions per miutes; B.P: Brake Power; SFC: Specific Fuel Consumption 



Ch. (4)                                        DSS modeling 

51 

Figure 4-16 (a) Ship speed and (b) Water depth relation with Engine brake power 



Ch. (4)                                        DSS modeling 

52 

Figure 4-16 (part-a) demonstrates the high variation of B.P values with the SOG 

while its values increases. This variation can be justified by the weather influence as 

it rises when the ship’s speed increases. Additionally, the figure at (part-b) shows the 

sea water depth high correlation factor of 0.53 with the ship's power. It can be 

explained by the fact that the ship while sailing is usually slowing down as it 

approaches the restricted waterways (low-depth) and speeds up as the ship commences 

to the deep sea passage. Besides, the shallow water causes the squat-effect which is a 

combination of parallel sinkage and trim. Also, it increases the total resistance of the 

ship (viscous and wave-making resistance) which lead to a speed drop and less 

propulsion efficiency. The effect is limited to a certain value usually referred to the 

ratio between the wave height and wavelength to be less than 1/20. After that limit, the 

effect of the seawater depth vanishes (Havelock, 1922).  

However, as the ANN gathers its knowledge by detecting the patterns and relationships 

in the dataset, therefore water depth addition to the ANN model input variables will 

be advantageous due to its high correlation factor with the ANN output, i.e., the B.P. 
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 The Performance Prediction Model (PPM) 

One of the study goals was to maximize the benefit of the obtained dataset to enhance 

the outcome results as much as possible. Figure 4-17 summarizes the data 

classification process to build the Performance Prediction Model (PPM). The figure 

also shows that part of the data used for different purposes, like calculating the 

Beaufort number or the sea state number to analyze the weather effect.  

 

Figure 4-17 Dataflow 

In this section, the procedure used to build the PPM will be thoroughly explained with 

its two sub-models, the ANN model, and M.R model. 

4.5.1 The Artificial Neural Network (ANN) model  

The ANN model in this study mainly aims to predict the ship B.P in different seaway 

conditions from a set of input variables. As discussed in section 3.1.1, ANN can take 

several structures based on the complexity of the dataset and the level of accuracy to 
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be obtained from the model. In this study, the ANN model has one hidden layer with 

16 neurons as illustrated in Figure 4-18.  

 

Figure 4-18 ANN model structure layout 

The ANN model input variables include 11 variables as : 

 Ship’s speed 

 Seawater depth 

 Apparent wind speed on ship’s direction, which is highly correlated to the ship 

heading angle. 
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Therefore, any change in the ship’s heading angle will influence the values of inputs 

number 3, 6, 9, and 11. It is important that the architecture of this model based on the 

literature and try and trial of the results. 

A feed-forward backpropogation type network selected with a training function that 

updates weight and bias values according to Levenberg-Marquardt optimization. 

Figure 4-19 shows the ANN model structure with the transfer functions for layers 1 

and 2 of logistic and hyperbolic tangent functions respectively. 

  
Figure 4-19 Screenshot of the ANN structure  

The ANN input variables normalized to be within the range of [0,1], as illustrated in 

Table 4-5.  The second voyage dataset used to train and validate the structured model. 

Table 4-5 ANN model input variables range values 

 𝒊𝟏 𝒊𝟐 𝒊𝟑 𝒊  𝒊  𝒊  𝒊  𝒊  𝒊  𝒊𝟏  𝒊𝟏𝟏 

Min 

Max 

0.122 

0.851 

0.001 

0.98 

0.0 

0.921 

0.0 

0.974 

0.002 

0.664 

0.0     

0.9 

0.0 

0.823 

0.0 

0.849 

0.0003 

0.854 

0.005 

0.658 

0.0 

0.937 

4.5.2  ANN-model performance 

The model has used the cross-validation method with a random division of the dataset 

to 70% for training, 15% for validation, and 15% for testing.  Furthermore, one of the 

case studies was dedicated to testing the model accuracy by predicting the first voyage 

B.P values as will be shown in the next chapter. The ANN model performance assessed 

by the regression analysis and the mean squared error (MSE) of the results. The ANN 

model trained for 556 iterations with the best-achieved validation performance at 

epoch 456 with an MSE value of 8.97e-6, and overall R-square value of 0.99 as shown 

in Figure 4-20. The blue line represents the training data MSE, the green line for the 
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validation data MSE, while the red line represents the test data MSE  against the epochs 

count number. 

 

Figure 4-20 ANN model performance 

4.5.3 The Multiple Regression (M.R) models 

For this model, the Matlab curve fitting tool had been used to identify the regression 

function that suits the highly correlated brake power with RPM and B.S.F.C. The 

second voyage related data fed to the tool, then several functions had been tested to 

achieve the highest R-square value with minimum RMSE (section 3.1.2.3.). Finally, 

the first voyage data used to validate the selected function. 

4.5.3.1 The Brake power (B.P) - RPM function 

The Matlab curve fitting tool contains several fitting functions, the best results 

obtained with the power function as following:    

𝑅𝑃𝑀 = 𝑓(𝑥) = 𝑎 × 𝑥𝑏 + 𝑐    ( 18 ) 

Table 4-6 Coefficients of RPM M.R function 

 (x) (a) (b) (c) 

B.P variables 3.263 0.3161 −2.742 
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The selected function validated with the first voyage dataset to predict the RPM values 

corresponding to B.P values. By recalling Equation  ( 16 ) and (17), The validation 

results are as follows: 

Table 4-7 Goodness to fit and prediction results for RPM M.R model 

Case SSE R-Square RMSE 
Residuals (g/kw.hr) 

Mean err Min err Max err 

Voyage (2) 262.7 0.9985 0.3339 0.26 4.14E-05 2.39 

Voyage (1) 438.61 0.9964 0.619735 0.51 7.42E-04 2.46 

 

Figure 4-21 Voyage (1) RPM fitting and prediction regression analysis 

4.5.3.2 Brake power – B.S.F.C  function 

The B.S.F.C best fitting function achieved with the Polynomial function to the power 

seven.  

𝐵. 𝑆. 𝐹. 𝐶 = 𝑓(𝑥) = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2 + 𝛽3𝑥

3 + 𝛽4𝑥
4+𝛽5𝑥

5+𝛽6𝑥
6 + 𝛽7𝑥

7   ( 19 ) 

Where (x) is normalized by the mean value of 7847 and an std. Deviation value of 

3276, while (βn) coefficients are as follows: 

Table 4-8 B.S.F.C  Polynomial function coefficients 

𝛃  𝛃𝟏 𝛃𝟐 𝛃𝟑 𝛃  𝛃  𝛃  𝛃  

186.3 -1.929 -0.2785 -0.1988 0.04687 0.03975 -0.00263 -0.00208 

The selected function validated with the first voyage dataset to predict the B.S.F.C 

values corresponding to B.P values. The results are illustrated in Table 4-9 
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Table 4-9 Goodness to fit and prediction results for B.S.F.C results 

Case SSE R-Square RMSE 
Residuals (g/kw.hr) 

Mean err Min err Max err 

Voyage (2) 1.9168 0.9998 0.0285 0.05 5.58E-03 0.67 

Voyage (1) 1.5394 0.9995 0.0367 0.06 3.63E-03 0.18 

 

Figure 4-22 Voyage (1) B.S.F.C fitting and prediction regression analysis 

From the previous results, the B.S.F.C estimation showed a higher accuracy with an 

average error of o.o6 g/kw.hr through 1142 of the first voyage sampling points, while 

the RPM calculation results had  0.51 mean error within the same sampling points. 

Both models showed excellent results that can be count on the DSS model. 

 The Performance Optimization Model (POM) 

Majority of maritime-related problems include multiple conflicting criteria for 

selecting the optimum choice; therefore marine designers are required to have the 

utmost careful consideration of these criteria conflict (Parsons & Scott, 2004). 

Nevertheless, the aim of this dissertation only focused on operational measures with 

the energy efficiency criteria as a reference. For a more representative result, future 

developed models should include the ship safety aspect with a higher level decision-

making tool. Thus, the optimization in this model will focus only on a single objective 

approach with two optimization variables, ship’s speed, and ship’s heading angle to 

the best energy efficient ship operation. The ship operator then has to compromise 

(trade-off) between them to achieve better results. 
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The proposed POM employed the  Oracle Crystal Ball add-in software to  Excel. The 

tool could be used when planning for a new voyage with its simulation tool. The 

software has the capability of performing a random simulation based on a probabilistic 

approach with a user-defined probability fit function and correlation coefficients 

between the variables (the second case study). 

For the single-objective optimization problem, the software incorporates the OptQuest 

tool. The tool uses a form of adaptive memory to remember which solutions worked 

well before and recombines them into new, better solutions. Initially, the tool requires 

the user to define the optimization model by setting the problem decision variables. 

Optionally, if the problem requires a probabilistic simulation, then additional 

assumption variable cells need to be identified with a defined or random probability 

fit function. Then the tool requires the user to determine the optimization problem by 

defining the objective and the problem's constraints. 

The tool invokes the optimization model to evaluate random or user-defined sets of 

decision variable values. Then the tool assesses the predicted variables and analyzes 

them with previous simulation run results, and specify new decision variable values to 

be evaluated by iteration.  Consequently, not all value sets improve the objective, but 

it provides a solid trajectory to a better solution (Oracle, 2017) 

  



 

 

 

Chapter 5.  

Case studies 

In this chapter, three case studies are presented to demonstrate the proposed DSS 

applicability as a support tool that allows enhancing the voyage performance. The first 

case study simply employed the developed PPM to forecast a full ship voyage fuel 

consumption. The second case study assessed the potentiality of JIT measure if 

applied in the second voyage. Model simulation supports the results joined with a 

simple benefit analysis. Finally, the third case study examines the DSS ability to solve 

a single-objective voyage optimization problem with various approaches.  
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  (Case study – 1) Voyage Performance forecast 

The developed PPM is used to predict the first Voyage fuel consumption and the 

results validated with the actual measured values. The ANN model results of Brake 

Power prediction showed high accuracy with an R-square value of 0.9734 and a mean 

error value of 333.75 kw as illustrated in Figure 5-1 and Figure 5-2. 

 

Figure 5-1 Voy (1) ANN model performance regression (Actual B.P against Predicted B.P) 

 

Figure 5-2 Error histogram of Voyage (1) ANN model power prediction 
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The predicted B.P values are then fed to the M.R model to obtain RPM and B.S.F.C 

values at 1124 sampling points. The results showed consistently high accuracy with 

R-square values of 0.98 and 0.97 for RPM and B.S.F.C respectively.The overall 

voyage performance prediction summarized in Table 5-1 showing high total fuel 

consumption precision with 99.7 % accuracy. 

Table 5-1 Voyage performance prediction rsults 

 Actual Prediction  

Total route distance  2801.12 nm 

Sailing time 09:03:34 dd:hh:mm 

Average ship speed 12.47 knots 

Total energy consumed 1,982.7 1,978,4 MW 

Total voyage fuel consumed 367.9 366.8 mt 

Total 𝐶𝑂2 emissons 1166.243 1162.756 ton 

Total voyage fuel Cost (349.99$/mt) 128,761.3 128,376.3 $ 

Average propulsion power 9067.72 9177.00 kw.hr 

Average B.S.F.C 185.35 185.20 g/kw.hr 

Average RPM  53.77 54.18  

Daily fuel consumption 41.14 40.09 mt/day 

Fuel consumption per nm 0.131 0.131 mt/nm 

In Figure 5-2 the B.P prediction error was plotted against the predicted B.P values. 

The overall results showed an accurate performance. However, the error variation (red 

color) along the sampling points fluctuated and showed high values at sampling points 

ranges 681-783 and 1021-1055. This can be justified that the ANN model is trained by 

the variables of the second voyage dataset. As discussed before in section 3.1.1, it is 

essential for the ANN to train itself with sufficient wide spectrum of the dataset 

variables. If the test dataset contains a different pattern that the ANN has not been 

trained by, then the error values increases (Figure 4-7 shows the dataset variation in 

both voyages’ Beaufort number). Finally, it is important to stress that both voyages 

had the same loading condition.  
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 (Case study – 2)  Slow steaming scenario based on JIT 

assumption 

In this section, the developed prediction tool is used to assess the  Just In Time (JIT) 

potential energy savings for the second voyage, if applied. By evoking the analysis of  

Figure 4-4 and section 4.1.2, it was shown that the ship had to drift for one day waiting 

for port authority berthing instructions. The scenario is built on the assumption that 

the ship operators have given the latest berthing time instructions before commencing 

the voyage, and hence a new voyage plan designed with a new average speed and new 

ETA. The second assumption that the ship sails in the same route positions (Lat-Long) 

through the same weather conditions to use the original dataset. The new ship speed is 

estimated with the navigational considerations of slowing down at restricted seaways 

as shown in Figure 5-3.  

 
Figure 5-3 (a)- Slow steaming with JIT scenario at the same route conditions, 

(b)- JIT scenario time-series 
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The forecast results of the potential operational energy efficiency benefit of JIT 

scenario as specified is summarized in table Table 5-2. 

Table 5-2 JIT scenario forecast results 

Criteria Base Case JIT scenario  unit 

Total route distance  3215.50 nm 

Sailing time 11:13:00 12:14:20 dd:hh:mm 

Driftting time 01:01:20 0.0 dd:hh:mm 

Total voyage time 12:14:20 12:14:20 dd:hh:mm 

Average ship speed 11.9 ** 10.57 knots 

Average propulsion power 7928.9 ** 5720.9 kw.hr 

Average B.S.F.C 186.04 ** 187.43 g/kw.hr 

Average RPM  51.99 ** 47.04 revs 

Daily fuel consumption 34.51 ** 24.38 Mt/day 

Fuel consumption per nm 0.135 0.097 mt/nm 

Total energy consumed 2,355.8 1,669,57 Mw 

Total voyage fuel consumed 434.8 312.8 mt 

Speed reduction percentage 11.16% % 

Total 𝐶𝑂2 emissons savings 380.16, (28.1%) Ton, % 

Total voyage fuel cost savings (349.99$/mt) 42,686.6, (28.1%) $, % 

** Values calculated with a drifting period exclusion for realistic evaluation. 

The results have shown high consistency level with the potential energy saving of slow 

steaming analysis discussed in section 2.2.1. The model has predicted that with a speed 

reduction of 11.16%, the fuel consumption dropped by 28.1% and 380 ton of 

𝐶𝑂2 emissions is eleminated. However, and as discussed before, the improvement of ship’s 

operation energy efficency  requires the cooperation and involvement of the various key 

players, ship’s operator (or the charter), ship’s master, port authorities and the pormotion 

of energy awareness amongst  all parties.  
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 (Case study – 3)  Voyage optimization Management 

The main goal of the case study is to assess the proposed DSS explained in Chapter 

3 to solve simple operational optimization problems. The proposed system is 

diagrammatically illustrated in the following figure; the figure shows the data flow 

through different system component platforms. 

 

Figure 5-4 Proposed-DSS information flow 

The designed Performance Prediction Model (PPM) and Performance Optimization 

Model (POM)  are integrated and run simultaneously with each other. The system 

functionality is assessed against two scenarios. The first is a  simulation scenario, while 

the second scenario aims to deterministically optimize the ship performance in a 

defined sea state by finding the optimum course direction and/or ship speed within the 

scenario conditions. 

5.3.1 Scenario-a A voyage  Monte Carlo simulation  

The simulation used the Monte Carlo simulation to simulate different sea conditions 

(from Beaufort number one to three) by probabilistic functions limited by the scenario 

parameters range shown in Table 5-3. The related cells identified as assumption 

variables, with uniform fit function and their correlation coefficient set as previously 
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found in Table 4-4. The aim is to simulate the ship performance in different 

probabilistic sea conditions and to validate the system ability to forecast the ship 

performance under these circumstances. Additionally to validate the system ability to 

recognize the pattern between various variables and to produce the results accordingly. 

Table 5-4. summarizes the obtained forecast results 95% certainty level after 1000 

iterations. 

Table 5-3 The simulation scenario variables range 

Variables Upper value Lower value unit 

Ship speed Constant (11.2) kn 

Ship course 359 0 deg 

Wind/Wave direction  359 0 deg 

Wind speed 5 0.79 m/s 

Wave significant height 1.05 0.9 m 

Wave significant period 3 1 s 

Swell significant height 0.6 0.3 m 

Swell significant period 4.5 1 s 

Swell true angle  359 0 deg 

Current speed 0.25 0.1 m/s 

Current true angle 359 0 deg 

Figure 5-5 shows a  noticeable variation in the consumed power at the same loading 

condition and ship speed, mainly because of weather effect disparity. 

Table 5-4 Probabilistic scenario simulation results summary 

Output Minimum Maximum Mean Std div unit 

Brake power 6063.9 8223.5 6778.3 420.3 Kw 

B.S.F.C 185.98 187.21 186.81 0.24 g.kw.hr 

RPM 48.47 53.64 50.28 1.03 revs 

Fuel consumption/day 27.25 36.7 30.39 1.84 mt/day 

  

Figure 5-5 The Simulation scenario weather state histogram 

Head Beam Tail Bf. No (1) Bf. No (2) Bf. No (3)
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Figure 5-6 The simulation scenario B.P and B.S.F.C forecast result  

Meanwhile, The sensitivity analysis of brake power showed highest correlation with 

the ship heading, wind direction and wind speed respectively. Finally, the fuel 

consumption analysis has shown (with 90% certainty) that its value will be 30 to 33 

mt/day within the specified scenario conditions. 

  
Figure 5-7 Predicted brake power sensitivity analysis and fuel consumption trend. 

To sum up, the previous scenario results supported the proposed DSS ability to 

investigate and to provide a comprehensive analysis outcomes of the ship performance 

at several simulated sea state conditions. Moreover, If the weather forecast data of the 

ship future's voyage available, then the system can accomplish a precise prediction 

analysis with high confidence level, which then could lead to the final step, the 

optimization. 

5.3.2 Scenario-b Voyage performance optimization  

Now, the DSS will be used to optimize the voyage performance. The voyage 

performance standard varies with the ship operator priority preferences. In some 

situations, the preference may oscillate to gain extra ship speed to arrive in time, while 

in other circumstances it may be preferable to operate the ship in a more energy-

efficient way. In both situations, the ship operators have to trade off between both 

objectives to achieve their aim. 

 

Daily fuel consumption trend 
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The scenario has been divided into two parts; the first part has the main objective set 

to minimize the ship brake power and is constrained by a minimum ship speed in a 

certain voyage conditions. In the second part, the objective is traded to maximize the 

ship speed, but with a constraint of a particular brake power in the identical voyage 

conditions. The voyage base-case conditions set as follows:  

Table 5-5 Base-case voyage conditions 

Parameter Base case Value unit 

Ship speed 11 kn 

Ship course 00.00 deg 

Brake power 8787.62 kw 

RPM 54.84 revs 

B.S.F.C 185.6 g/kw.hr 

Fuel consumption 39.15 Mt/day 

Beaufort no. 7  

Wind speed 14 m/s 

Wind/Wave angle 348 deg (Heading) 

Water depth 1387.98 m 

5.3.2.1 Part-1 “Minimize the ship brake power” objective 

 Run preferences: Deterministic optimization (without simulation) 

 Number of iterations: 201 

 Requirement: maintain ship speed at 11 kn 

 Constraints: Ship’s heading as a decision variable with 20 deg range (discrete 

with 0.1 deg step) 

 

Figure 5-8 Optimization process screenshot while running 
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Figure 5-9 Part-1 optimization performance 

The simulation ran for 2 minutes, and the attained optimization results as follows: 

Table 5-6 Part-1  optimization results summary 

Obj. best results rank Heading angle 
Objective 

B.P (kw) 

B.P diff 

(kw) 

B.P 

savings %  

Fuel Cons. 

(mt/day) 

Base Case 0.00 8787.62 --- 39.27 

01 (best) 19.20 8173.83 613.8 6.98% 36.53 

02 18.20 8198.91 588.7 6.70% 36.64 

03 17.30 8224.98 562.6 6.40% 36.76 

04 16.30 8251.96 535.7 6.10% 36.88 

05 15.10 8279.75 507.9 5.78% 37.00 

06 14.30 8308.27 479.4 5.45% 37.13 

07 13.10 8337.46 450.2 5.12% 37.26 

08 12.10 8367.25 420.4 4.78% 37.39 

09 11.30 8397.57 390.1 4.44% 37.53 

10 10.40 8428.38 359.2 4.09% 37.66 

11 9.10 8459.62 328.0 3.73% 37.80 

12 8.20 8491.24 296.4 3.37% 37.95 

13 7.40 8523.21 264.4 3.01% 38.09 

14 6.10 8555.49 232.1 2.64% 38.23 

15 5.20 8588.05 199.6 2.27% 38.38 

16 4.30 8620.85 166.8 1.90% 38.52 

17 3.50 8653.86 133.8 1.52% 38.67 

18 2.10 8687.07 100.6 1.14% 38.82 

19 1.20 8720.45 67.2 0.76% 38.97 

20 0.50 8753.97 33.7 0.38% 39.12 
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Figure 5-10 Part-1 optimization results 

The results exposed a semilinear relationship between the obtained power saving and 

ship's heading adjustment to the starboard side as shown in Figure 4 14. The 

wind/waves were heading the ship with an encounter angle of 12 degrees. As the ship 

course alters, the wave/wind encounter angle increases and the wave relative direction 

changes to the ship's beam, which reduces the additional ship's resistance. However, 

the results are only representing the particular scenario conditions.  

To conclude, the previous example showed the potentiality of weather routing as 

discussed before in chapter 2 with a fuel savings up to 7% under the terms of this 

particular scenario. 

5.3.2.2 Part-2 “Maximize the ship speed” objective 

 Run preferences: Deterministic optimization (without simulation) 

 Number of iterations: 3000 

 Requirement: maintain the brake power less than or equal to 8800 kw. In other 

words, any fuel savings obtained from heading angle change to be traded with 

a ship speed gain. 

 Constraints: Ship’s heading as a decision variable with 20 deg range (discrete 

with 0.1 deg step) 
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Figure 5-11 Part-2 optimization performance 

The simulation ran for 37 minutes, and the attained optimization results as follows: 

Table 5-7 Part-2 optimization results summary 

Objective best results rank Heading angle 
Objective 

Vs (kn) 

B.P  

(kw) 
Vs gain %  

Fuel 

Cons. 

(mt/day) 

Base Case 00.00 11 8787.62  39.27 

01 19.00 11.23 8747.70 2.10% 39.09 

02 14.00 11.22 8691.98 2.00% 38.84 

03 13.00 11.21 8758.50 1.91% 39.14 

04 10.00 11.17 8790.4 1.56% 39.28 

05 01.40 11.16 8774.15 1.50% 39.21 

 

Figure 5-12 Part-2 optimization results 



Ch. (5)    Case Studies 

72 

The results uncovered a nonlinear relationship between the obtained the ship’s speed 

gain and the ship's heading angle adjustment as shown in Figure 5-12. The scenario 

tested for several times, and the results always showed the same trend. The justification 

may arise due to the different nature of the optimization problem than the Part-1 

problem. In this scenario, the brake power requirement argument is set with an upper 

limit and not as a constant value like the ship speed in the part-1 problem. It is 

important also to understand that changing the ship heading angle, will change the 

swell and the current relative angles, which will influence their net effect on the ship 

resistance. Meanwhile, with the exclusion of the green circled point, the other solution 

points will have a better common trend (dashed blue line). 

Now, concerning the results revealed in Table 5-7, the decision-making process has 

become more challenging than part-1 scenario, especially if this scenario is approached 

in a real-time domain with multiple alternatives and a short time frame for the decision. 

Solving such a problem may demand the implementation of a higher rank decision-

making method with weights associated with each criterion to address the problem 

efficiently. Still, for the specific illustration in the table, solution ranked 5 in the table 

may become favored too as it requires only a change in ship's course by 1.40 degree, 

while the obtained speed gain represents 1.50% of the base case ship speed combined 

a slight fuel consumption reduction.Generally, the results showed a high reliability of 

the developed system.  



 

I 

Chapter 6.  

Conclusion  

The maritime transport is currently have been accounted for 2.5% of global 

GHG emissions with a forecast for this share to expand by 50% to 250% in 2050.  

(Third IMO GHG study, 2014) Thus, The IMO’s environmental protection regulations 

are becoming stricter year after year which justifies the need for a more energy 

efficient shipping.Consequently, The shipping is currently stacking between the 

hammer of reducing its GHG emissions in an energy efficient way, and an anvil of 

being sustainable as it should be.  

In the meantime, the technical upgrades are not the only way to achieve improvements 

in the ship energy efficiency, changing the crew operation behavior on board can gain 

cost-free energy savings. These potential behavioral savings need to be guided by 

analyzing the ship operational data and distinguishing the inherent opportunities in the 

ship dynamic operating environment. However,  achieving an optimized energy-

efficient performance for ship's operation is an enormous challenge that requires a 

robust mechanism of decision support system. The advisory system should assess the 

ship’s fuel consumption of the various decision alternatives. Furthermore, it should 

advise the ship operator with the optimum values of the operational parameters to 

achieve optimum performance ideally in a real-time voyage condition. The success of 

such a system requires a comprehensive, validated performance prediction model 

integrated with a reliable performance optimization model.  



 

II 

The traditional ship's performance prediction methods have been used in the ship 

design phase with several methodologies applied throughout the years. However, for 

an effective DSS, there is a need to a prediction model that sense the actual 

environmental variables and analyzes their effect on the ship’s performance. Also, it 

has to forecast the propulsion power needed throughout the voyage route under its 

dynamic conditions. Meanwhile, the Artificial Neural Networks has proven its 

applicability in many fields to forecast systems outputs that have many nonlinear 

relationships between its components.  

All the above have motivated the research to aim to employ ANN as a non-classical 

methodology to predict the ship performance in seaways and to be integrated to  a DSS 

that supplies the ship operator to maximize the ship energy efficiency during sea 

voyages.  

The study has proposed an operational Decision Support System (DSS) that comprises 

mainly two primary components, the ship performance prediction Model (PPM) and 

the ship Performance Optimization Model (POM). Both models have been designed 

to run on a particular ship with its specific preferences. The PPM model includes two 

ANN and M.R sub-models to estimate the ship’s power, B.S.F.C, and RPM 

respectively. The PPM  is designed to use the ship’s specifications with its historical 

voyage dataset to line up with the proposed methodology. Such a dataset is used to 

train the ANN model to build up its knowledge about the ship behavior in different 

operational scenarios.  Finally, the proposed DSS has a dynamic nature and requires a 

full integration between its components for an efficient running.   

The dataset used in this dissertation contains two sea voyages of M/T ORTHIS that 

had been extracted from the ship’s automatic continuous monitoring system (CM), the 

AIS and weather hindcast information in an intensive samples pattern. The dataset 

correlation analysis results in many useful relations that were beneficial in classifying 

the dataset to determine the structure of the PPM. Moreover, the dataset has been 

deeply analyzed to recognize the relationship among its variables, especially the effect 

of the sea state on the ship’s performance.  The weather analysis demonstrated the 
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potential cost-free energy savings in executing techniques like weather and route 

optimization as an operational measure.  The given an example showed a 9.66% 

possible propulsion power gain by adopting a sea state number five to the favor of the 

ship movement when compared to a calm sea state one but heading the ship movement. 

The developed ANN model aims to predict the ship B.P in different seaway conditions 

from a set of 11 input variables. The ANN input variables included ship's speed, sea 

water depth, and nine variables representing the weather and sea state environment. 

The ANN is A feed-forward backpropogation type network selected with a training 

function that updates weight and bias values according to Levenberg-Marquardt 

optimization.  

The developed PPM can be exploited to predict the ship response to a particular voyage 

scenario or during the voyage itself to assess several available alternatives to improve 

the voyage's performance. To achieve such an objective, the performance optimization 

model (POM) should be fed with the performance forecast results to supply the needed 

advice to the ship's master. 

The nature of the POM depends on the optimization problem nature. For the scope of 

this dissertation, only single-objective optimization model is aimed. The proposed 

POM employed the  Oracle Crystal Ball add-in software to  Excel. The tool could be 

used when planning for a new voyage with its simulation tool. The software has the 

capability of performing a random simulation based on a probabilistic approach with 

a user-defined probability fit function and correlation coefficients between the 

variables (the second case study). The study also has examined the system capability 

to perform a Monte Carlo simulation to the voyage environmental variables, and assess 

the ship propulsion power to the simulated scenario. 

Three case studies are presented in this thesis to demonstrate the proposed DSS 

applicability as a support tool that allows enhancing the voyage performance: 

1. The first case study aims to validate the PPM ability for forecast the ship fuel 

consumption for an entire voyage. The forecast result has shown high accuracy 

estimation of the consumed fuel. The ANN prediction error is highly related to the 
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training dataset quality which emphasizes the importance of using the ship 

continuous monitoring dataset over noon reports.  

2. The second case study was designed to  apply a slow steaming scenario based on 

just in time (JIT) assumption. The main purpose of the case study is to test the 

system capacity to estimate the fuel savings if such a scenario applied. The result 

is consistent to the well known the discussed relation between the speed reduction 

and corresponding fuel saving.  The ship was slowed down by 11.16 %, and the 

PPM predicted the potential fuel savings of 28.1%.  

3. The third case study is presented to demonstrate the DSS applicability as a 

support tool that assists the ship operator to maximize the ship energy efficiency.  

The case study also aims To test the ability of the DSS components to perform 

their functions in full complementarity between them.  

I. The first scenario exercised the POM to run a full Monte Carlo simulation 

to mimic the sea voyage environmental condition. The scenario result shows 

the DSS ability to investigate and to provide a comprehensive analysis 

outcomes of the ship performance at several simulated sea state conditions. 

Moreover, If the weather forecast data of the ship future's voyage available, 

then the system can accomplish a precise prediction analysis with high 

confidence level, which then could lead to the final step, the optimization. 

II. The second scenario is used to optimize the voyage performance in a 

predetermined sea state condition.  The scenario was divided into two problems 

with two different objectives, 

a. Part-1: The objective is set to minimize the ship's brake power while 

maintaining the ship's speed variable by altering the ship's heading angle 

variable . However, the heading angle set as a constraint with a maximum 

value of 20 degrees.  The DSS optimization results is ranked relative to the 

objective. The best result is obtained at heading angle 20 degrees with a 

power savings of 7%. The problem represents a simple optimization 

problem that can provide a simple result to the ship's master to enhance the 

ship voyage performance. 
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b. Part-2: The objective is set to maximize the ship's speed while maintaining 

the ship's brake power less than a certain value. The problem constraint is 

kept similar to the previous problem. The optimization result this time is 

more challenging. According to the objective best result, the highest speed 

gain (2.1 %) is obtained at the largest ship heading angle alteration (19.0 

degree). However, the fifth rank result with a small heading angle alteration 

(1.4 degrees) achieved less speed gain with a narrow margin (0.6 %).  Thre 

result requires a trade-off from the ship's captain to choose the optimum 

solution according to his preferences. However, there is no trade-off 

between safety and energy efficiency, as safety standards must be fulfilled 

first. In this dissertation, weather hindcast data is analyzed regarding its 

effect on the ship power and fuel consumption. Nevertheless, its effect on 

the ship safety and ship stability is beyond the scope of this dissertation. 

Nevertheless, for more holistic results, its influence on ship's stability must 

take into consideration. 

Finally, the methodologies used in this thesis have been successfully applied in many 

domains, however integrating them together to accommodate the proposed DSS makes 

the proposed methodology novel. Additionally, the developed methodology has the 

following features: 

1. developed an (ANN) model by using intensive dataset with a higher quality 

extracted from the ship continuous monitoring system unlike traditional Noon 

Reports used by previous studies. 

2. The proposed (DSS) if integrated properly onboard, can be easily used in a 

real-time domain, which allows the system to identify the ship performance. 

3. The proposed (DSS) can update itself automatically with the ship performance 

degradation as the (ANN) has the power to learn from the training data pattern. 

The system  as continuously fed with the ship performance data on a real-time 

basis, the ANN can recognize the ship performance new trend.   

4. The proposed DSS can be applied in any other ship regardless its type and size. 
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Recommendations for future work 

The research that has been undertaken for this thesis has highlighted some topics on 

which further research would be beneficial. 

 The dataset in this thesis is limited, however to develop a general performance 

prediction model, a massive dataset is required to train the model at different 

loading conditions with the addition of variables like trim and  DWT to the 

(ANN) input variables. 

 The addition of new variables like, the ship trim will allow the application of 

trim optimization with the DSS. 

 The second scenario of the third case study has evoked the need to a higher 

decision-making tool especially, if the safety criterion is added to the system 

objectives. Then a multi-objective optimization model is needed with a 

propriate Decision Making Method (DMM). 
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Appendixes 

1- ANN model performance results 
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2- Screenshot of the JIT scenario evaluation 
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