DIVISION OF MARINE TECHNOLOGY

Analysis of biofouling effect on the fatigue life and energy performance of wave energy converter system

Shun-Han Yang, Jonas W. Ringsberg, and Erland Johnson

Chalmers University of Technology Department of Shipping and Marine Technology Division of Marine Technology

Point absorbing wave energy converter

(Courtesy of Jonas W. Ringsberg)

uaves 4 power

(Source: http://www.waves4power.com/waveel/)

DIVISION OF MARINE TECHNOLOGY

Marine biofouling

(Source: M. Salta, 2014, Biomimetic strategies in antifouling coatings)

(Source: http://www.channelcoast.org/gallery/viewphoto/ equipment/oceanographic_instruments/ directional_waverider/2004)

Objective

- Investigate the influence of biofouling, with respect to
 - Energy performance
 (i.e., power absorption)
 - Fatigue life of mooring lines
 - Fatigue life of power cable

SHIPPING AND MARINE TECHNOLOGY

DIVISION OF MARINE TECHNOLOGY

Methodology

DIVISION OF MARINE TECHNOLOGY

Numerical model of WEC system

- Heave motion of WEC → velocity → energy performance analysis
- Force response of moorings and cable → stress response
 → fatigue damage analysis

Biofouling cases

- Modelled by an increase in the masses and drag coefficients of the moorings and the cable
- Three cases
 - F1: no fouling

- F2: Tiron et al. (2012)

- F3: NORSOK (2007)

Parametric analysis

Mooring configuration

 Three-mooring and four-mooring configuration

Biofouling cases

 No fouling case and another two cases of fouling

Sea states

 Four sea states with various wave heights and wave periods

• Wave and current direction

 Three directions of incoming waves and currents

SHIPPING AND MARINE TECHNOLOGY

DIVISION OF MARINE TECHNOLOGY

Results

CHALMERS UNIVERSITY OF TECHNOLOGY

SHIPPING AND MARINE TECHNOLOGY

DIVISION OF MARINE TECHNOLOGY

Effect of biofouling on

Time-averaged absorbed

SHIPPING AND MARINE TECHNOLOGY

DIVISION OF MARINE TECHNOLOGY

Effect of biofouling on the WEC device

- Fouling condition
 - F1: no fouling on the entire WEC system
 - F3: fouling accumulated only on the cable and moorings
 - F3+WEC: fouling accumulated on the entire WEC system

Effect of biofouling over different time durations

- If the WEC system is assumed to operate during 25 years, the presence of biofouling (F2 case) can lead to:
 - a 10% reduction of absorbed power, and
 - a 20% decrease in fatigue life of the most "fatigued" mooring line

Summary and conclusions

- This investigation studied various factors on the operation of WEC systems: mooring configuration, biofouling accumulation, and environmental load.
- Biofouling has a negative effect on both fatigue life of the mooring lines and power cable, and energy performance of the WEC.
 - a 10% reduction of absorbed power, and
 - a 20% decrease in fatigue life of the mooring line

• Future work

- Validation of numerical models (experiment completed in October 2016)
- Development of a local model for the power cable
- Investigation of different mooring materials

Thank you.

We look forward to fruitful cooperation with both national and international partners.

For detailed project information, please contact:

PhD student Shun-Han Yang (Shunhan.Yang@chalmers.se) Professor Jonas W. Ringsberg (Jonas.Ringsberg@chalmers.se) Adjunct Professor Erland Johnson (Erland.Johnson@sp.se)

p. 14

SHIPPING AND MARINE TECHNOLOGY DIVISION OF MARINE TECHNOLOGY

Coupled hydrodynamic and structural response analyses of the WEC system

- Hydrodynamic response of the WEC buoy
 - Radiation-diffraction panel method and drag effect from Morison equation
 - 6 DOFs rigid body motion
 - DNV Sesam package, including HydroD and SIMO in DeepC

- Hydrodynamic and structural response of the mooring lines and power cable
 - Nonlinear time-domain
 - Nonlinear finite element method
 - Axial force and bending moment
 - DNV DeepC (Riflex)

Nonlinearity in numerical simulation

- Nonlinear finite element method
 - Geometric stiffness (i.e. contribution from axial force to transverse stiffness)
 - Hydrodynamic loading according to the generalized Morison equation expressed by relative velocities
 - Contact problem (i.e. seafloor contact)

- Nonlinear time-domain analysis
 - Step by step numerical integration of the incremental dynamic equilibrium equations, with a Newton-Raphson type of equilibrium iteration at each time step.

Stress and fatigue damage analyses of the mooring lines and power cable

- First-principle design
- Stress analysis
 - Mooring: axial stress
 - Power cable: axial and bending stresses

Simulation time

- Material property: S-N curve
 - Mooring: DNV (2010)
 - Power cable: Nasution et al. (2013)
- Fatigue damage evaluation
 - Stress-based approach
 - Basquin's equation
 - Palmgren-Miner rule
 - Rainflow cycle counting method

Energy performance analysis of the WEC

- Instantaneous absorbed power
 - = PTO linear damping coeff.×(velocity in heave direction)²

Simulation matrix

Ocean environment

Parametric analysis

Mooring configuration (M)

 Three-mooring and four-mooring configuration

Biofouling cases (F)

 No fouling case and another two cases of fouling

Sea states (S)

 Four sea states with various wave heights and wave periods

• Wave and current direction (D)

 Three directions of incoming waves and currents

CHALMERS

SHIPPING AND MARINE TECHNOLOGY

DIVISION OF MARINE TECHNOLOGY

Effect of biofouling and 0 deg 180 deg environmental loads Cable WEC (D3) (D1) Moorings 135 deg (D2) 310 913 274 Time-averaged absorbed Fatigue life of moorings 400 60 300 Ng 200 Ng 100 50 D3 Dз D2 D D1;Hs=7.5m, Tp=8.5s D1; Hs=7.5m, Tp=8.5s $D_{3}^{D1; H_{S=7.5m, T_{p}}} D_{2}^{D1; H_{S=7.5m, T_{p}}} D_{2}^{D1; H_{S=3.5m, T_{p=7.5s}}} D_{2}^{D2} D_{1.1.1}^{D2}$ 40 [year] D2 D1-1/s=3.5m, Tp=7.5s Dg 30 20 03 Dz D1; Hs=2.0m, Tp=5.0s D1; Hs=2.0m, Tp=5.0s 10 Dg Dg D2 0 D2 0 $D_{1; H_{S}=1.5m, T_{P}=13.5s}$ D1; Hs=1.5m, Tp=13.5s F1 F3 F2 F3 F2 F1

Assessment of marine biofouling

Marine biofouling accumulation

• Wave energy converter	Mass [metric tonnes]	Draft [m]	Centre of gravity (x, y, z) [m]
1. no fouling	353.8	27.8	(0, 0, -11.8)
2. NORSOK (2007)	382.1	28.3	(0, 0, -11.9)

 Mooring line 	Mooring line			Power cable		
and power	Mass	Drag coefficient [-]		Mass	Drag coefficient [-]	
cable	[kg/m]	C_{dx}	$m{C}_{dy}$	[kg/m]	C_{dx}	C_{dy}
F1: no fouling	45	0.50	2.50	2	0	1.20
F2: Tiron et al. (2012)	60	1.03	5.13	9	0	2.72
F3: NORSOK (2007) (water depth: 0~40 m & >40 m)	99 & 64	1.75 & 1.13	8.75 & 5.63	27	0	3.80

Effect of biofouling

• Static analysis

Case	Surge [m]	Heave [m]	Pitch [deg]	Force in mooring [kN]
F1: No fouling	-7.273	-0.030	-0.971	64.270
F2: Tiron et al (2012)	-5.418	-0.100	-0.718	74.877
F3: NORSOK (2007)	-4.225	-0.214	-0.287	90.082

Final result

	Case	Time-averaged absorbed power [kW]	Fatigue life of moorings [year]
	F1: No fouling	18.4	7.8
	F2: Tiron et al (2012)	16.8 (-9%)	4.4 (-44%)
20	F3: NORSOK (2007)	16.1 (-13%)	4.9 (-37%)

Effect of mooring configuration

CHALMERS UNIVERSITY OF TECHNOLOGY

SHIPPING AND MARINE TECHNOLOGY

DIVISION OF MARINE TECHNOLOGY

Effect of mooring configuration—static analysis

• Static analysis

Case	Surge [m]	Heave [m]	Pitch [deg]	Force in mooring [kN]
M1: 3-mooring	-7.273	-0.030	-0.971	64.270
M2: 4-mooring	-7.936	-0.026	-1.121	56.349

• Final result

Case	Time-averaged absorbed power [kW]	Fatigue life of moorings [year]
M1: 3-mooring	18.4	7.8
M2: 4-mooring	18.0 (-2%)	6.7 (-14%)

DIVISION OF MARINE TECHNOLOGY

Effect of wind

Wind modelling

Spectrum	NPD
Speed	37.0 m/s
Reference height	10 m
Wind force area	15m ²
Exponent coeff.	0.12
Surface friction coeff.	0.002
Wind force coeff.	10.7 Ns²/m²

Case	Time-averaged absorbed power	Fatigue life of moorings	Fatigue life of power cable
	[kW]	[year]	[year]
No wind	18.4	7.8	2.0×10 ⁴
With Wind	18.0 (-2%)	5.0 (-36%)	1.7×10 ⁴ (-15%)

Modelling of marine biofouling

Modelling of biofouling

• Static analysis

Case	Surge [m]	Heave [m]	Pitch [deg]	Force in mooring [kN]
No fouling	-7.273	-0.030	-0.971	64.270
Change in mass	-5.339	-0.098	-0.737	74.127
Change in drag coeff.	-7.361	-0.031	-0.953	65.080
Change in mass and drag coeff.	-5.418	-0.100	-0.718	74.877
Change in mass, drag coeff., and diameter	-6.294	-0.075	-0.817	72.977

Modelling of biofouling

Energy performance and fatigue evaluation

Case	Time-averaged absorbed power [kW]	Fatigue life of moorings [year]
No fouling	18.4	7.8
Change in mass	18.8 (2%)	15.2 (95 %)
Change in drag coeff.	16.2 (-12%)	2.1 (-73%)
Change in mass and drag coeff.	16.8 (-9%)	4.4 (-44%)
Change in mass, drag coeff., and diameter	13.2 (-28%)	0.9 (-88%)