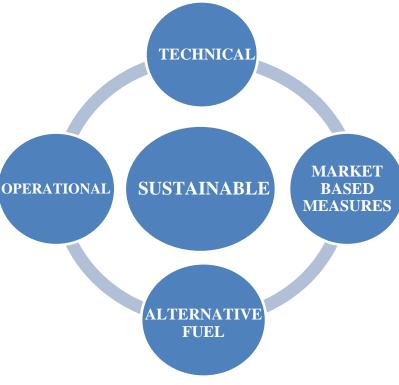
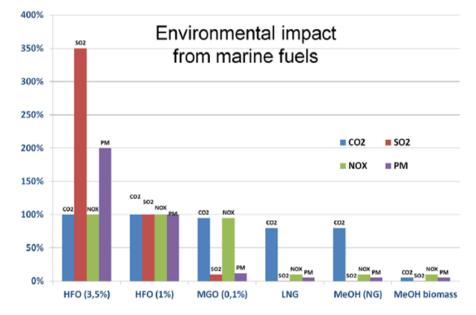


DECISION FRAMEWORK FOR SHIPOWNERS TO COMPLY WITH AIR EMISSION REDUCTION MEASURES – A CASE STUDY OF METHANOL AS A FUEL



- By: Aditya Srivastava Dr. Aykut Ölcer
 - **Dr. Fabio Ballini**

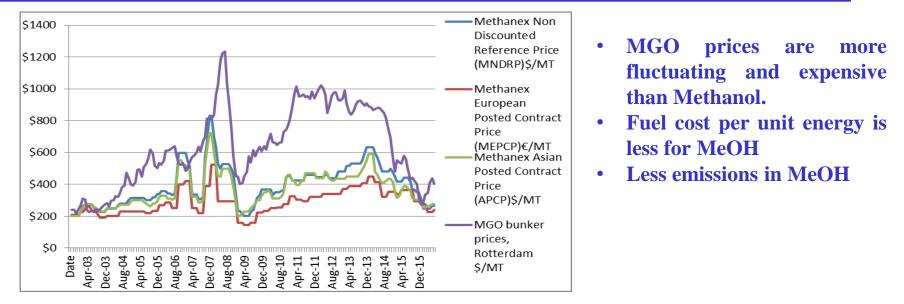
World Maritime University, Malmö, Sweden 24 – 25 January, 2017



MEASURES AVAILBLE

LIMITED COMPLIANCE OPTIONS

- 1. HFO with Scrubber.
- 2. Low Sulphur Marine Gas Oil.
- 3. Selective Catalytic Reduction.
- 4. Exhaust Gas Recirculation.
- 5. Dual fuel engine (Liquefied Natural Gas and Methanol).

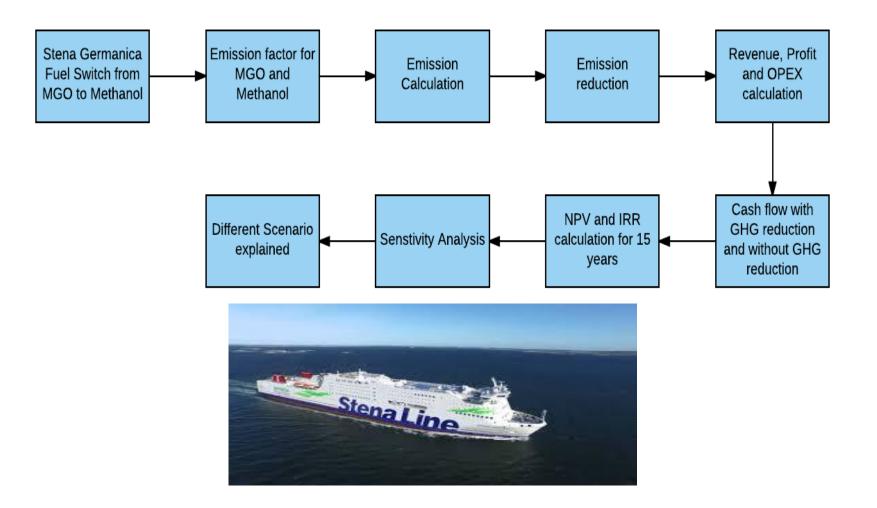

Source: Environmental Assessment of present and future marine fuels (Brynolf, 2014)

- 1. Globally, 100,000 Vessels consuming 372 Million of fuel (HFO and MGO) leading to emissions.
- 2. 60,000 deaths per year and \$330 bn were spent on health costs around the world.
- 3. Danish Health Service report \$5 bn health cost and 1000 died prematurely.

Source:https://www.theguardian.com/environment/2009/apr/09/shipping-pollution

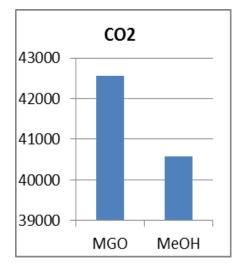
ALTERNATIVE FUEL- COMPARISON BETWEEN MGO, LNG & MeOH

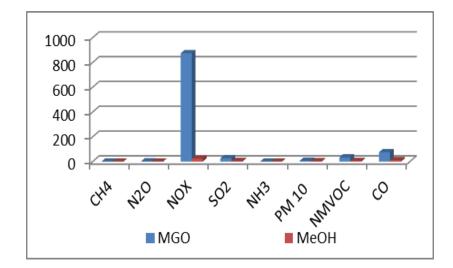
Source: Methanex and Clarkson database


 At lower loads LNG produces Methane gas which has 25 times more Global warming potential

	МеОН	LNG
CAPITAL COST	Less	More
MAINTENANCE COST	Less	More
STORAGE COST	400000 euros	50 million euros
RETROFIT COST	250-350 euro/Kw	1000 euro/Kw
BUNKER VESSEL	1.5 million euros	30 million euros

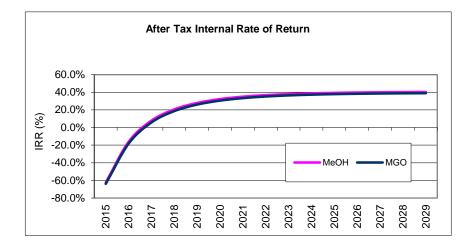
Source: Methanol as a marine fuel report (FCBI Energy, 2015)


CASE STUDY OF METHANOL- STENA GERMANICA



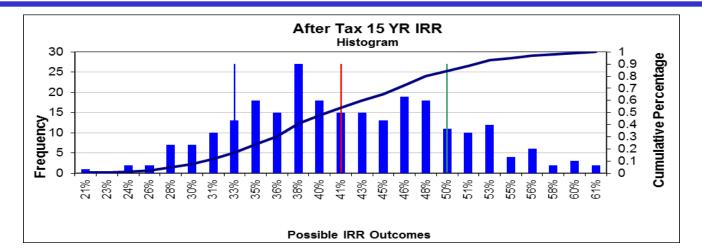
ENVIRONMENTAL BENEFIT

Air emissions when using MGO	43576.91 tCO ₂ e
Air emissions when using MeOH (85%) + MGO(15%)	40623.21 tCO ₂ e
Total reduction in air emissions in one year	2953.70 tCO ₂ e
Carbon tax (Sweden)	126.85 € / tCO ₂



Emission Reduction

ECONOMIC BENEFIT


STENA GERMANICA	After Tax	NPV (Euros)	Payback (year)
	IRR		
MGO	38.9%	5,01,32,044.5	4
MeOH (85%) + MGO(15%)	40.3%	5,25,21,783.1	4

IRR for Next 15 years for MGO and MeOH for Stena Germanica

SCENARIO AND SENSITIVITY ANALYSIS - MONTE CARLO SIMULATION

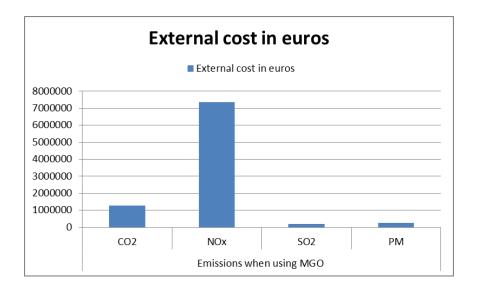
Scenario Analysis for price	MGO €/mmbtu	MeOH €/mmbtu	IRR	
fluctuation of fuel				
Scenario 1	5.14	12.75	51.27%	
Scenario 2	14.89	13.20	22.57%	
Scenario 3	7.24	8.58	45.03%	
Scenario 4	10.20	14.10	36.34%	
Sensitivity Analysis Results				
Confidence Level	0.95	0.9	0.8	
Max Expected IRR	55.18%	52.29%	48.95%	
Min Expected IRR	19.20%	22.10%	25.43%	

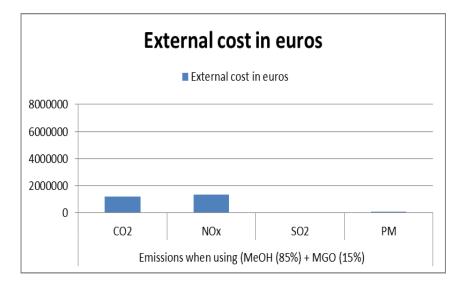
DECISION MAKING CRITERIA FOR SHIPOWNERS FOR AIR EMISSION REDUCTION MEASURES

CRITERIA	WEIGHT	RANK
Capex (C1)	0.58	1
Opex (C2)	0.12	3
Payback period (C3)	0.25	2
Carbon tax (C4)	0.05	4

AHP RESULT	VALUE
Consistency Index	0.07
Random Index	0.90
Consistency Ratio	0.07236

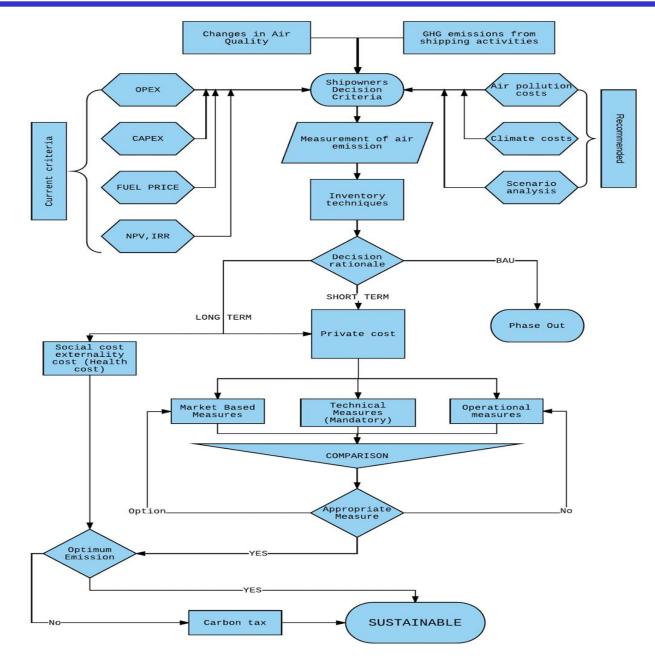
GAPS IN DECISION FRAMEWORK	RECOMMENDED CRITERIA
Future Scenarios	Impact Assessment
Environmental Implications	Health Cost Analysis, Climate Change Cost
Market Based Measures	Carbon Tax
Measurement of Air Emissions	Inventory Techniques


RANKING OF MEASURES AVAILABLE TO SHIPOWNERS THROUGH TECHNIQUE FOR ORDER PREFERENCE USING SIMILARITY TO IDEAL SOLUTION (TOPSIS)


MEASURES	CRITERIA		REFERENCE		
ALTERNATIVES	C1 (Euros)	C2 (Euros)	C3(Year)	C4(euros)	
	0.58	0.12	0.25	0.05	Weighting through ahp
A1	22,000,000	25,000	4	374,656	Case study
A2	5,554,839	20,000	10	210,000	IMO EEDI appraisal tool
A3	5,483,870	182,500	3	60,000	IMO study

	MEASURES	CLOSENESS INDEX	RANKING
A1	Alternative Fuel (Methanol)	0.36	3
A2	Technical (Waste Heat Recovery)	0.88	1
A3	Operational (Scrubber)	0.64	2

EXTERNALITY COSTS



Reduction in Climate change cost in		
euros	CO ₂	69956
	_	
Reduction in Health cost in euros	$\rm NO_{X}, SO_{2}, PM_{10}$	6346376

PROPOSED DECISION FRAMEWORK

FINDING AND CONCLUSION

- 1. Environment benefit: CO_2 , CH_4 , N_20 , NO_X , SO_2 , PM_{10} emissions reduced by 5%, 85%, 85%, 99%, 85% and 52%, respectively.
- 2. Economic benefit: Reduced OPEX .NPV, IRR evaluated positive and payback period is 4 years.Carbon tax avoided 374676.84 euros.
- 3. Scenario Analysis : IRR lies between 22.57% to 51.27% (Monte Carlo Simulation).
- 4. Sensitivity Analysis : At 95 to 80% confidence level Min IRR = 19.20% and Max IRR = 55.18%.
- 5. Externality costs : Reduction in Climate change cost: 69956 euros. Reduction in Health cost: 6346376 euros.
- 6. Ranking for Measures available to Shipowners (TOPSIS):
 - 1. Technical.
 - 2. Operational.
 - 3. Alternative fuel.
- 7. Proposed Criteria for Shipowners to include in decision framework towards SUSTAINIBILITY and profitability.
 - a) Health cost.
 - b) Climate change cost.
 - c) Future Scenarios.

METHANOL A STEP TOWARDS THE ZERO EMISSION VISION

THANK YOU

