

Energy Consumption of Small Scale Fishing Vessel Operations in Indonesia A Case Study in Palabuhanratu, Indonesia

Vita R KURNIAWATI Richard W BIRMINGHAM Alan J MURPHY School of Marine Science and Technology Newcastle University, United Kingdom

Presented in MARENER 2017, World Maritime University Malmo, Sweden 24 – 25 January 2017

Introduction

- Energy intensive food production
 - Fuel use for fishing:
 - Global: 1,2% of world fuel consumption and emitted 1.7 ton of CO2/ton landed catch;
 - Japan: third highest national consumption
 - Indonesia: 5,87% of national consumption
 - Major cost component

ewcastle

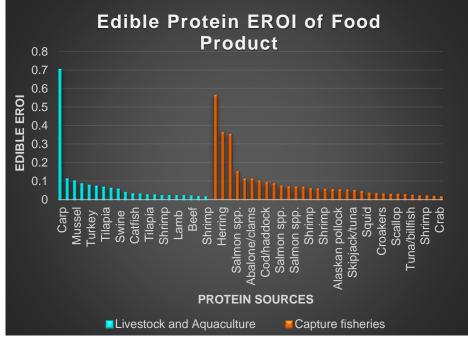


Fig. 1 Edible Protein EROI

Low edible protein energy return on investment (ep - EROI)

Introduction

- Small scale fishing vessels
 - Accounted for 79% of the global fishing fleet
 - Deal with uncertainty
 - Mostly operated in developing countries
- Indonesian fisheries:
 - 89% of fishing vessel less than 10 GT
 - supported 54% of animal protein intake
 - accounted for 2% of employment level
 - increased the fishermen's prosperity index by 2.44%

Introduction

- Objectives
 - Assess the energy consumed by small scale fishing vessel operation
 - Formulate improvement strategies

- Case study location
 - Palabuhanratu fishing port, West Java Province, Indonesia.

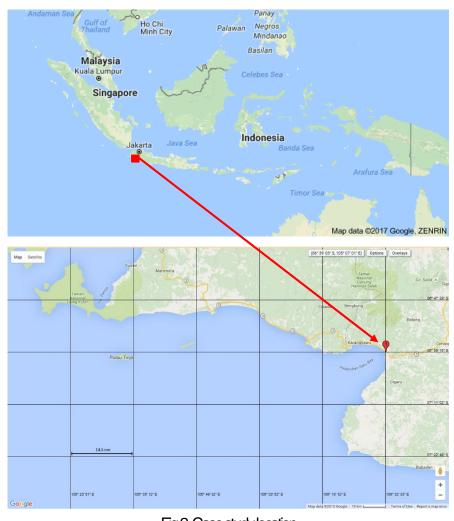


Fig 2. Case study location

Method

- 1) Main data sources:
 - Indonesian fisheries statistical reports
 - Statistical reports from location of study
 - Survey
- 2) Comparative studies
 - Pelagic Danish seiner
 - Hand liner
 - Trammel netter
 - Lift net ferry
- 3) Energy consumption

(calculated in kJ/kg catch and kJ/GBP revenue)

Energy inputs on fishing

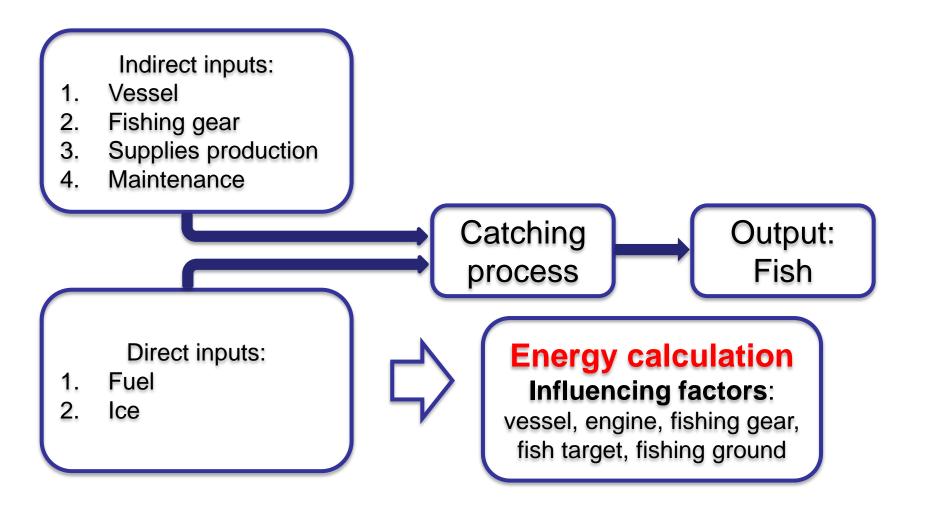
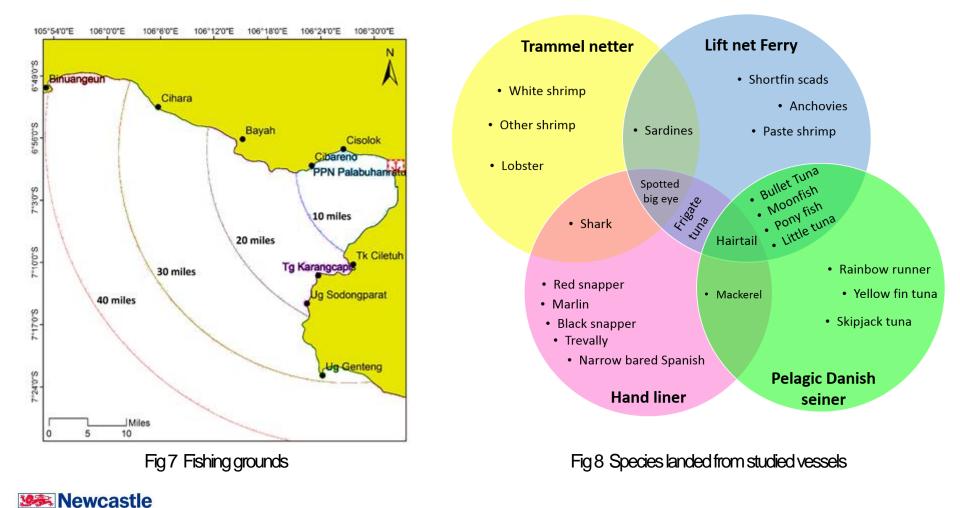


Fig 3. Pelagic Danish Seiner

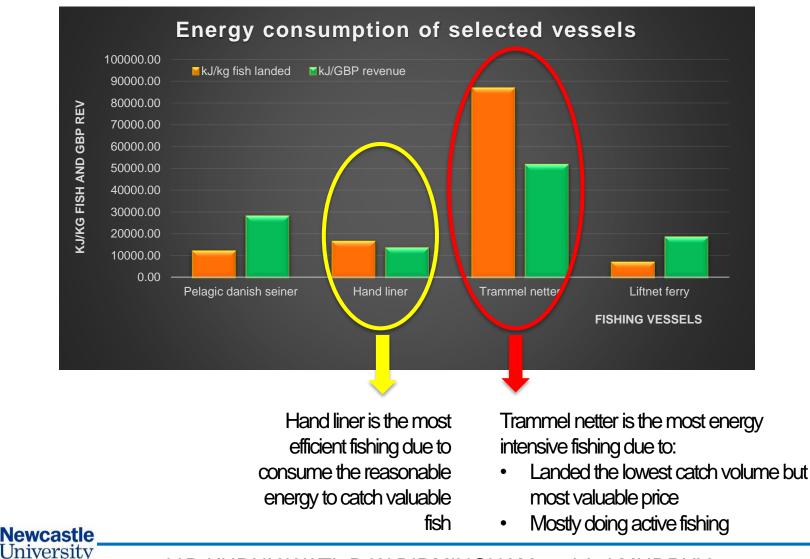
Fig 4. Hand liner

Fig 5. Trammel netter


Fig 6. Lift net ferry

Characteristic of studied vessels

Fishing vessels	Pelagic Danish Seiner	Hand Liner	Trammel netter	Lift net ferry
GT	5	2	4	5
Power	Outboard 40 HP	Outboard 10 – 15 HP	Inboard 22 HP	Inboard 100 HP
Fishing gear	Pelagic Danish seine 1 unit	Hand line 2 units	Trammel net 1 - 2 units	Lift net 8 – 10 units
Operation profile	Day time Active	Mostly night time Passive	Day time Mostly Active	Night time Passive
Crew	10 – 15	1 – 2	3 – 4	1 – 2 / vessel 1 – 2 / platform
Main species caught	Small pelagic fish	Hair tail	Prawn, Lobster	Anchovies and paste shrimp
Fleet size	73	244	31	25


Characteristic of studied vessels

V.R KURNIAWATI, R.W BIRMINGHAM and A.J MURPHY

Jniversity

Energy Consumption

Energy Consumption

Studied vessels	Fuel use (litre/kg)	Comparable result				
		Other studies	Fuel use (litre/kg)			
Pelagic Danish seiner	0.27	Danish seiner	0.42 ^d			
			0.32 ^b			
			0.13 ^c			
Hand liner	0.48	Hook	0.18 ^c			
		Hand liner	0.06 ^a			
Trammel netter	2.56	Bottom trawler	3.65 ^d			
			1.65 ^a			
		Shrimp trawler	1.22 ^c			
Lift net ferry	0.18	NA	NA			
Global fuel consumption 0.53 kg fuel/kg fish landed ^e						

Sources: a. Basurko etal (2013); b. Parker et.al (2015); c. Schau etal (2009); d. Thrane etal (2004), e. Tyedmers et.al (2005)

Strategies formulation

SWOT ANALYSIS

Opportunities (O)

• Tourism

Threats (T)

• Open for research

Increasing fuel price

Decreasing fish

production

Newcastle University

Strengths (S)

- Propel coastal economy
- Supportive
 infrastructures
- Good fish quality
- Open to technology

Strategies S-O

- Technical application and research on fuel use
- Develop the variant of seafood product

Strategies S-T

- Speed management
- Fuel substitution

Weaknesses (W)

- High uncertainty
- Limited fishing ground
- Limited skills
- Resist to change fishing habits

Strategies W-O

- Develop tourism in fishing
- Job substitution

Strategies W-T

- Increase the fish value
- Job substitution

Strategies formulation

Potential improvement	Implementation	Status
Technical application and research on fuel use	 Periodic maintenance Encourage more research in fishing efficiency 	 Partly implemented Researched in lift net: Battery to power light fishing
Develop tourism in fishing	Boat hire	Partly implemented
Develop the variant of seafood products	Conducting fish processing workshop	Implemented without successful follow up
Speed management	Slow steaming	Implemented in all vessels
Fuel substitution	Fuel substitution to LPG	Implemented in hand liner
Increase the fish value	 Government involves in deciding the fish selling price Community agreement to increase selling price 	Difficult to be implementedDifficult to be implemented
Job substitution	 Doing another job when low fishing season coming 	 Implemented by some fishers

Conclusion

- Energy inputs: fuel, ice and lubricant oil
- The most energy intensive fishing is trammel netter
- Compared to other fuel consumption in similar yet advanced operation, the fuel consumption in studied vessels is relatively high.
- Potential improvement focus on increasing fuel efficiency which also consider economic priority and fishermen's fishing habit.

Thank You

Contact person: Vita R. Kurniawati (v.r.kurniawati1@ncl.ac.uk) Richard W. Birmingham (r.w.birmingham@ncl.ac.uk) Alan J. Murphy (a.j.murphy@ncl.ac.uk)

Acknowledgment:

- 1. DIKTI, Ministry of Research Technology and Higher Education Indonesia
- 2. LPDP, Ministry of Finance Indonesia

