

Smart Ships – Paradigm Shift with Data Analytics

Dimitrios Konovessis (Presenter)

Singapore Institute of Technology

Sew Kait Thong APL Co. Pte Ltd, Singapore

MARENER 2017

International Conference on Maritime Energy Management World Maritime University, Malmo, 23-25 January 2017

Presentation Outline

- Data Analytics Maritime Paradigm
- Data Analytics Implementation
- Data Integrity & Data Density Clustering Process
- Algorithms
 - Prediction of operational fuel curves from noon reports
 - Large data sets filtering and clustering speed vs. power curves
 - Trim optimisation
- Conclusions

Maritime Paradigm (Data Analytics)

- Information highway fiber optics / cabling / information or digital technology (ICT) / computing power = maturity
- □ Diagnostic response \rightarrow remote monitoring

Immediate Aspiration – Support Commercial / Marine Operation and Ship Management Intermediate layer : Pragmatic Step. Data Reliability – Monitoring / Verification and / or Calibration for Execution Supports / Test bedding / Feedback to Autonomous Ships Programme.

Building

Blocks

Vision: Technical Aspiration Autonomous Vehicles / Ships

Maritime Paradigm (Data Analytics)

- A journey less travelled (Paradigm / Fear Knowledge Gap)
- Change is slow (Marine Industry / Behaviour)
- Information Gap (Ships' digital divide and cost of communication)

Disruptors in the Digital Worldwide Web / World

- Cloud computing
- Big Data / mobile apps / whatsapp / machine learning
- Wearable devices / mobile technology
- o Internet of things
- Drones / Robotics

Autonomous Vehicles / Ships

Data Analytics Implementation

- □ Maritime Paradigm Shift (Regulatory Change)
- □ Started with Voyage Data Recorder (VDR) Estonia in 1994
- □ Next Move (EU MRV) Monitoring, Reporting and Verification

Dataset : What data etc?

Regulatory Changes bring about small changes but each change, causes disruption with physical activity.

Re-conceptualise the change process.

Why incremental data inclusion, Why not all possible data with data exclusion. Change = software upgrading.

Hence, the journey with a Data Acquisition Server (Integrator)

Data Integrity

Granularity and Database Size ?

Engineering Data

Data Quantity Management

- Data stream: vertical horizontal
- Identify data frequency and period for analysis (5mins intervals, 10 months)

Technical

Solution

Ground Speed

Position

Water Depth

Water Speed

Wind Direction(abs)

Wind Direction(rel)

Wind Speed(abs)

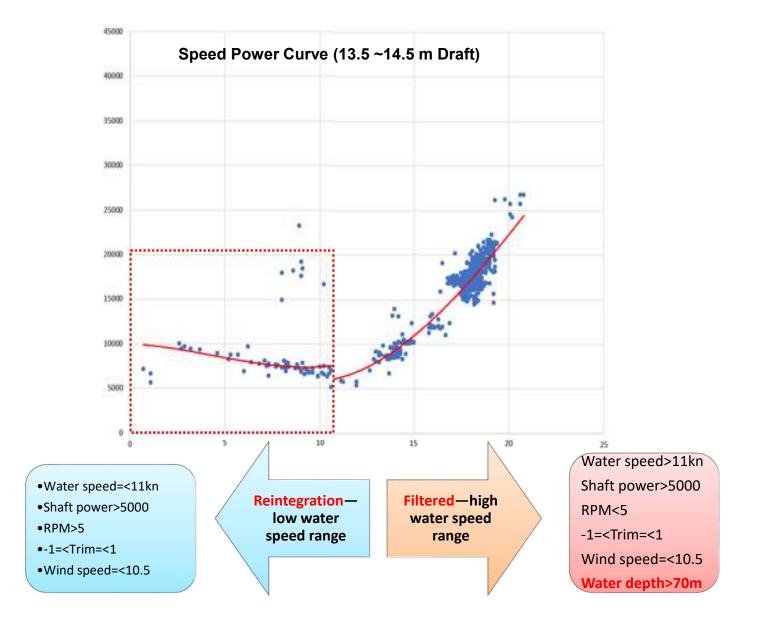
Grand Total

- Create category / grouping / classes

Data Quality Management

- Data holes
 - ✓ Different sensor intervals
 - ✓ Manual human interference
 - ✓ Sensor breakdown

– Data Verification Process


Data Holes

No switching off action Alarm function Filtering out Filling in—ECDIS / average / adjacent data water depth) Wave height and direction info Assumption—water depth holes processing

Match data intervals

_		ıcouver	Grand Total	Priority	Remark
		0	0	16	
e		27	55763	10	Background filling
		43	58641	9	
io		48	58648	8	
ЧI		47	11660	11	
		47	58686	7	
		45	11643	13	
_		52	11660	11	
		43	11659	12	
210		174	12821	15	Background filling
210		128	13876	14	
5778		51985	317644	1	human action
211	114		88462	6	Background program
3186	59056		154355	4	
3185	9	51257	178665	2	Background program
3186	3	59057	155287	3	
3185		51258	118735	5	Background program
3168	2	73381			

Data Density Cluster Process

Algorithms

- Prediction of operational fuel curves from noon reports
- Large data sets filtering and clustering speed vs. power curves
- Trim optimisation

Large Data Sets Filtering & Clustering

- Artificial Neural Network Implementation
 - The training algorithm is based on the fastest and safest method of supervised learning through a back propagation algorithm
 - <u>Input parameters</u>: trim, speed, and draft
 - <u>Output parameter</u>: shaft power
 - The network performs the task of adjusting the weights on the connections between neurons, so that after repeatedly providing the input and output parameters, it is able to recognize this connection.

<u>Step 1</u>: Acquire Database

- An SQL Algorithm was used to extract real time data from the a ship
- Data Set Size: 119,467

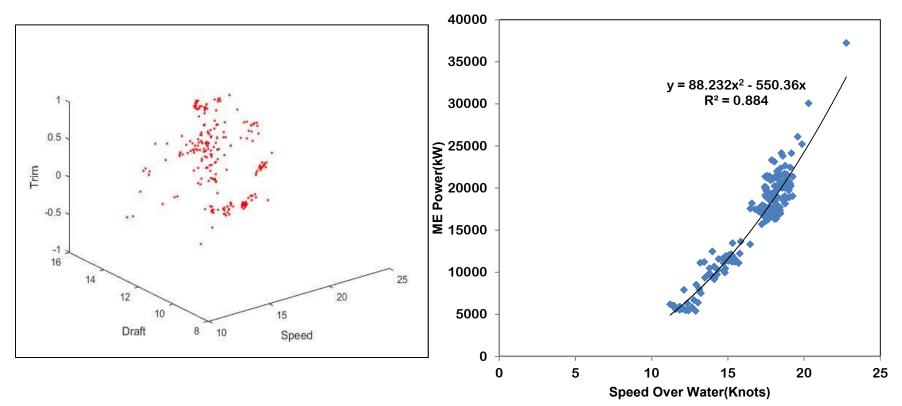
sampletime	POSITION	WATER SPEE	ME FO CONSUMPTIO	ME SHAFT POW	SHAFT SPEED 🦪	SHAFT TORQUE	GROUND SPEE	WATER DEP	COUR -	HEADI	WIND DIRECTION (AB	WIND DIRECTION (RE	WIND SPEED (AB 🔻
2013-10-02 05:35:00.000 +00:00	2122.7130N11414.3740E	17.8	66.96	16570	59.6	2626	17.6	58.2	193.8	193.5	NULL	238.9	NULL
2013-10-02 05:40:00.000 +00:00	2121.2130N11413.9600E	17.9	66.24	16570	59.7	2638	17.7	60.9	194.9	194	NULL	252.1	NULL
2013-10-02 05:45:00.000 +00:00	2119.7200N11413.5520E	17.9	65.52	16450	59.6	2614	17.6	i 61.4	194.4	194	NULL	274.6	NULL
2013-10-02 05:50:00.000 +00:00	2118.2220N11413.1390E	17.9	65.52	16330	59.5	2584	17.7	60.7	194.8	194.5	NULL	265.2	NULL
2013-10-02 05:55:00.000 +00:00	2117.1140N11412.8560E	17.7	69.83	16570	59.7	2632	17.7	60.7	192.7	192.2	NULL	268.4	NULL
2013-10-02 07:00:00.000 +00:00	2115.6000N11412.4960E	17.9	66.23	16330	59.5	2596	17.9	63.2	192.7	192.1	NULL	263.4	NULL
2013-10-02 07:05:00.000 +00:00	2114.0700N11412.1280E	17.9	68.39	16210	59.7	2566	17.8	63.9	192.5	191.9	NULL	281.3	NULL
2013-10-02 07:10:00.000 +00:00	2112.5490N11411.7560E	17.9	66.95	16510	59.6	2620	17.9	64.3	193	192.2	NULL	251.6	NULL
2013-10-02 07:15:00.000 +00:00	2110.9290N11411.4070E	18	65.5	16450	59.6	2614	18	63.2	191	189.4	NULL	246.7	NULL
2013-10-02 07:20:00.000 +00:00	2109.3780N11411.1030E	18.1	67.65	16630	59.6	2638	18	63.3	190.3	189.5	NULL	238.4	NULL
2013-10-02 07:25:00.000 +00:00	2107.8390N11410.8220E	17.8	71.94	16570	59.8	2620	17.7	62.9	194.3	192.8	NULL	269.2	NULL
2013-10-02 07:30:00.000 +00:00	2106.7270N11410.5350E	18	67.62	15910	59.6	2518	17.9	65	192.8	192.3	NULL	291.3	NULL

<u>Step 2</u>: Carry out "Coarse" Filtering

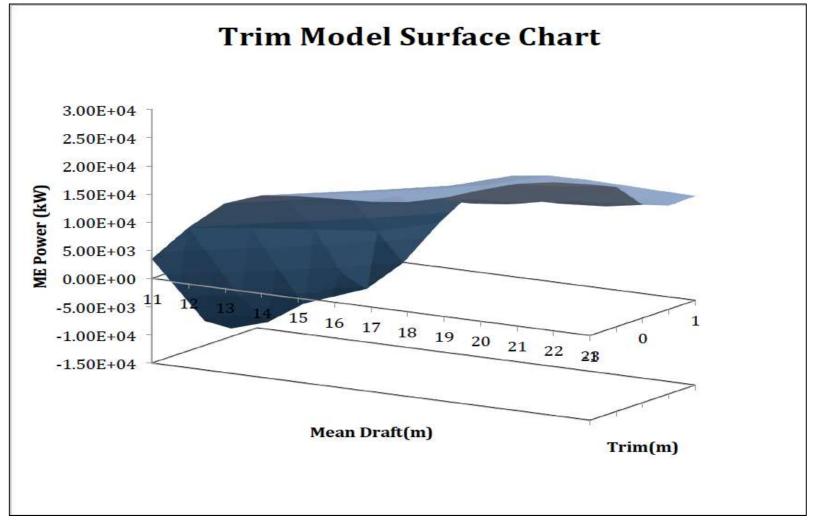
- RPM > 5
- ME Power > 5000 kW
 - -1<= Trim <=1
 - Water Depth > 55m
- Water Speed > 11 knots
- Wind Speed <=10.5 Knots
 - Data Set Size : 18,618

<u>Step 3</u>: Carry out Fine Filtering

• Fine Filtering Criteria was Based on: The data point corresponding to the mean draft was eliminated if


|Draft – Moving Average | >= 0.15m

• Data Set Size : 17,915


<u>Step 4</u>: Cluster the Data Set based on a specialized Clustering Algorithm

• Data Size: 233

Speed vs Power

<u>Step 5</u>: Feed into 2-Layer Neural Network

Conclusions

- An overview on the use of data analytics for the maritime industry has been presented, highlighting the approach adopted and the limitations and challenges present
- Algorithms for the prediction of operational fuel consumption curves have been presented
- Current work focuses on improving the robustness of the algorithms and enhancing their potential with naval architecture domain knowledge

Smart Ships – Paradigm Shift with Data Analytics

Dimitrios Konovessis (Presenter)

Singapore Institute of Technology

Sew Kait Thong APL Co. Pte Ltd, Singapore

MARENER 2017

International Conference on Maritime Energy Management World Maritime University, Malmo, 23-25 January 2017