

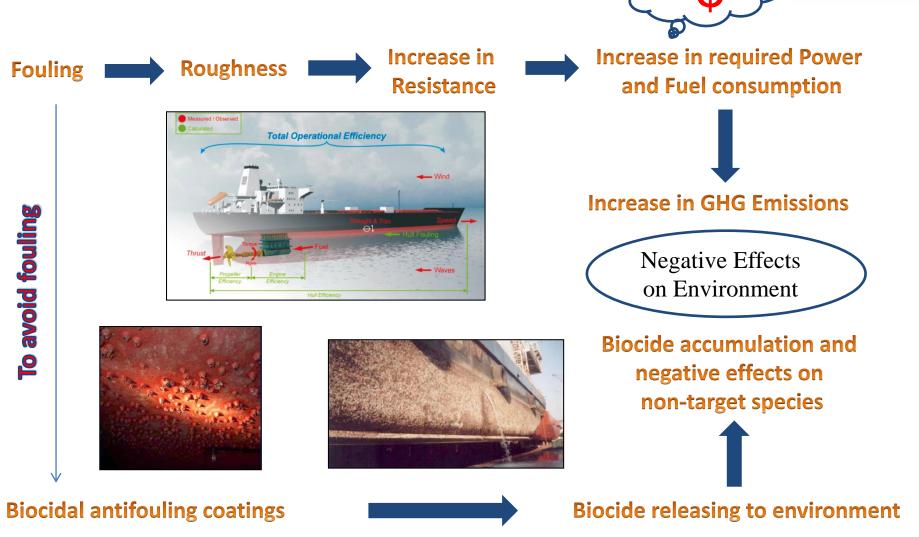
LIFE CYCLE ASSESSMENT OF MARINE COATINGS APPLIED TO SHIP HULLS

Yigit Kemal Demirel*, Dogancan Uzun, Yansheng Zhang and Osman Turan University of Strathclyde, Glasgow

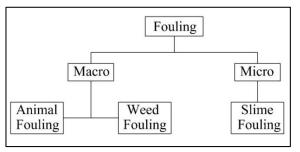
by

Dr Yigit Kemal Demirel

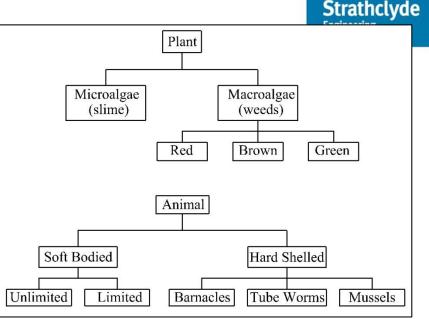
yigit.demirel@strath.ac.uk


Content

- 1. Introduction
- 2. Marine coatings to prevent biofouling
- 3. EU FP7 FOUL-X-SPEL Project
- 4. LCA Model
- 5. Coating Application
- 6. Fuel Consumption Model
- 7. Case Study
- 8. Conclusions



Introduction


Marine coatings to prevent biofouling

Fouling organisms, adapted from Taylan (2010)

"...the arsenic and sulfur have been well mixed with the Chian oil that you brought back on your last voyage, and the mixture evenly applied to the vessel's sides, that she may speed through the blue waters freely and without impediment."

Aramaic papyrus

University of

Classification of marine foulers, adapted from Atlar (2008)

"All ships' bottoms were covered with a mixture of tallow and pitch in the hope of discouraging barnacles and teredos, and every few months a vessel had to be hove-down and graved on some convenient beach. This was done by careening her alternately on each side, cleaning off the marine growth, re-pitching the bottom and paying the seams."

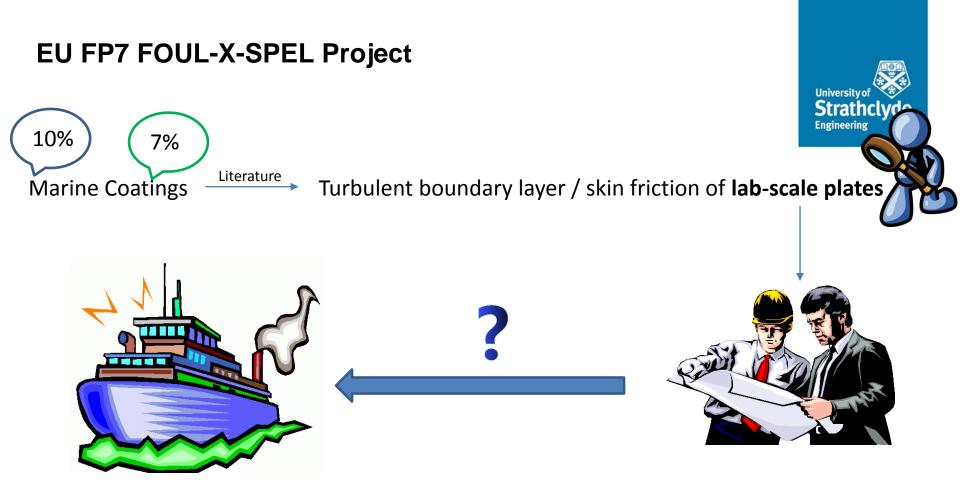
Christopher Columbus

Marine coatings to prevent biofouling

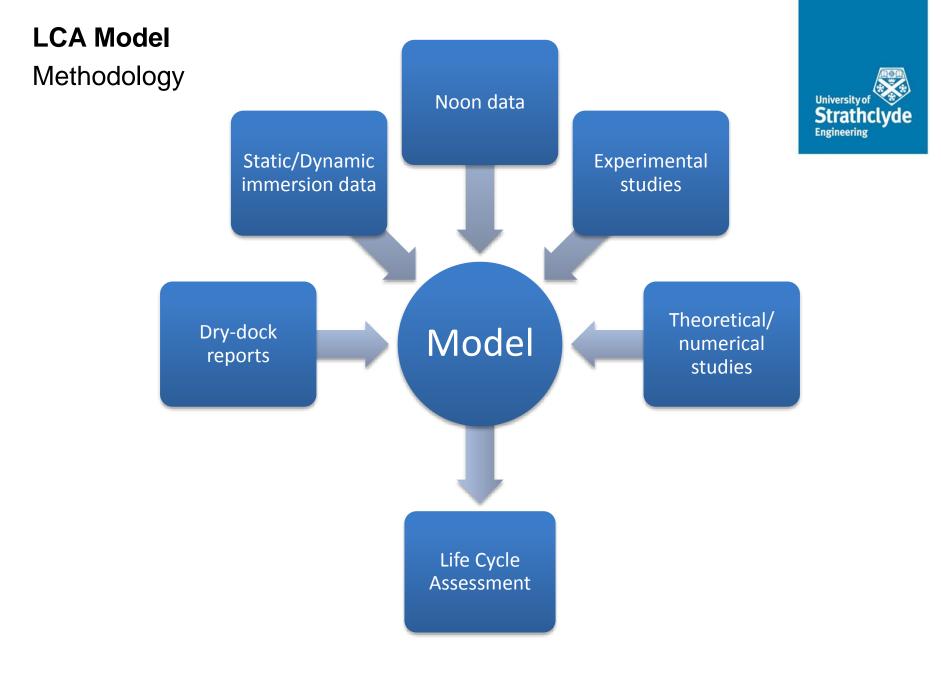
Historical development of antifouling strategies, adapted from Dafforn et al. (2011)

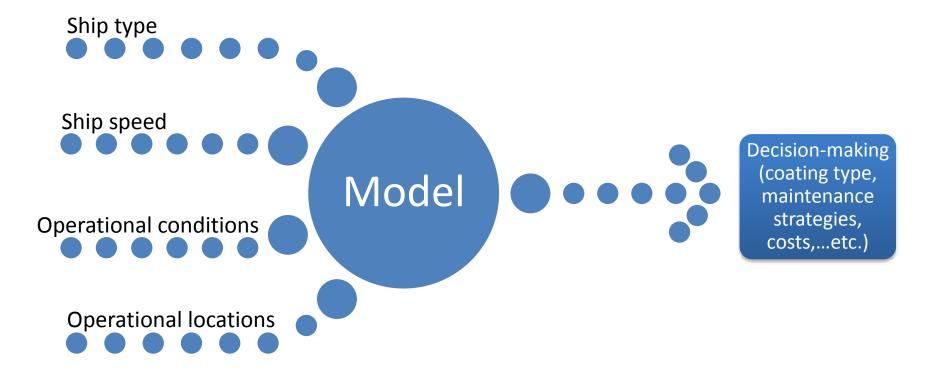
Timeline	Major events		
1500-300 BC	Use of lead and copper sheets on wooden vessels		
1800-1900s	Heavy metals (copper, arsenic, mercury) incorporated into coatings		
1800s-present	Continued use of copper in AF coatings		
1960s	Development of TBT conventional coatings		
1974	Oyster farmers report abnormal shell growth		
1977	First foul release AF patent		
1980s	Development of TBT SPC coatings allowed control of biocide release rates		
1980s	TBT linked to shell abnormalities in oysters (Crassostrea gigas) and imposex		
	in dogwhelks (Nucella lapillus)		
1987-90	TBT coatings prohibited on vessels <25 m in France, UK, USA, Canada,		
	Australia, EU, NZ and Japan		
1990s-present			
	elsewhere e.g. California, USA		
2000s	Research into environmentally friendly AF alternatives increases		
2001	International Maritime Organization (IMO) adopts "AFS Convention" to		
	eliminate TBT from AF coatings from vessels through:		
	2003 – prohibition of further application of TBT		
	2008 – prohibition of active TBT presence		
2008	IMO "AFS Convention" comes into force		

EU FP7 FOUL-X-SPEL Project FOUL-X-SPEL ***********


"Environmentally Friendly Antifouling Technology to Optimise the Energy Efficiency of Ships" (FOUL-X-SPEL). "The basic idea concerns the modification of usual hulls by providing a new antifouling coating, by fixing bioactive molecules, which can provide biocide activity, in order to avoid leaching and to promote a long-term effect of surface protection"

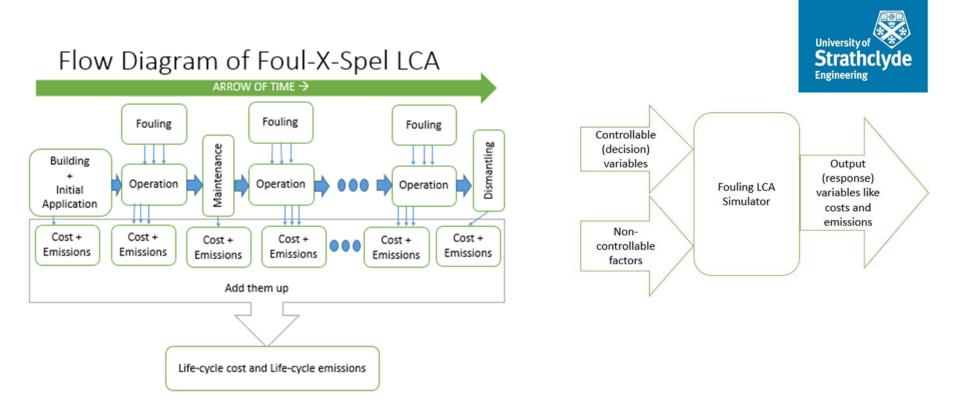
Partners


- Instituto Superior Tecnico
- Estaleiros Navais De Peniche, S.A.
- Hempel A/S
- Fundacion Tekniker
- University of Strathclyde
- Instituto De Soldadura E Qualidade
- Carnival Plc
- Lloyd's Register EMEA
- University of Southampton
- National Technical University of Athens



"How might the roughness of coatings and biofouling be related to full-scale ship resistance and powering?"

LCA Model


Stages

Major stages of LCA of an AF coating.

	Stage	Activities
1.	Production of AF coatings	Activities related to the extraction and acquisition of natural resources, including mining non-renewable material required to produce the different system components and transporting this materials to processing facilities.
2.	Application	Application of antifouling coatings on ship hulls.
3.	Operation of ships with AF coatings	Extra fuel is consumed due to the effects of antifouling coatings/fouling
4.	Maintenance of ships (Hull cleaning and recoating)	System maintenance activities (dry-dock and in water hull cleaning).
5.	End-of-Life	Dismantling of a ship

LCA Model

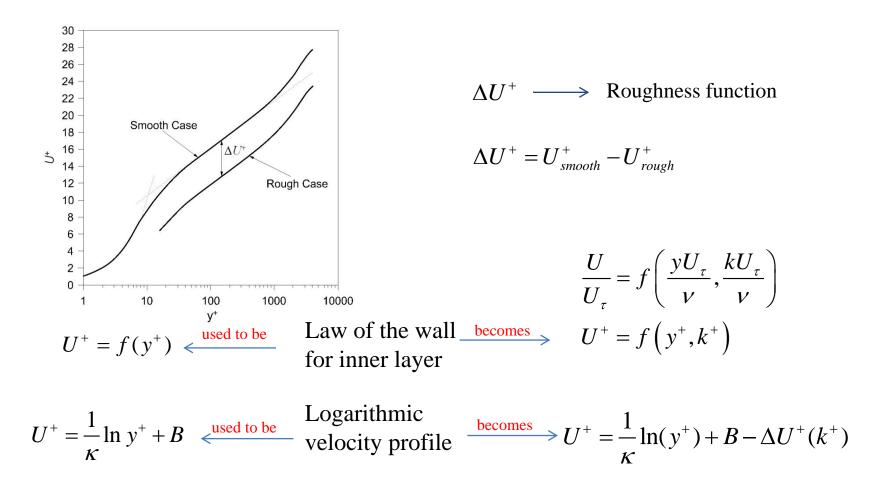
- 1. A representation of voyages and anchorages of the ship in question. The representation should describe the time and location of the ship over its lifetime.
- 2. Model of temperature-dependent and time-dependent growth of fouling.
- 3. Model of variation of sea-temperature with location.
- 4. Model of the costs and effects of hull maintenance activities.
- 5. Model of fuel-consumption behaviour of the ship.

Production stage of antifouling

Production and marketing of the paint					
Item Emission Energy Selling rate Size of unit application area I		Density			
Anticorrosive					
Tiecoat					
Antifouling					

Application of antifouling to a new building ship

Application in New Building					
Item	How many coats	Cost	Emission	Energy	
Hull surface preparation					
& Painting					
Full Grit Blasting to Sa2.5	N/A				
Full coat anticorrosive					
Full coat tiecoat					
Full coat antifouling					


Application of antifouling to a ship in Dry-dock

Dry-dock				
Item	How many coats	Cost	Emission	Energy
Hull surface preparation & Painting				
High pressure fresh water washing	N/A			
Wash down after first coat	N/A			
Ph0 cleaning and washing	N/A			
Sa1 Spot Blasting	N/A			
Sa2 Spot Blasting	N/A			
Touch up coat anticorrosive				
Touch up coat Tiecoat				
Touch up coat antifouling				
Full coat antifouling				
Topside masking	N/A			
Hose connection for maindeck and cooling water overboards	N/A			
Blanking all overboard	N/A			

Fuel Consumption Model

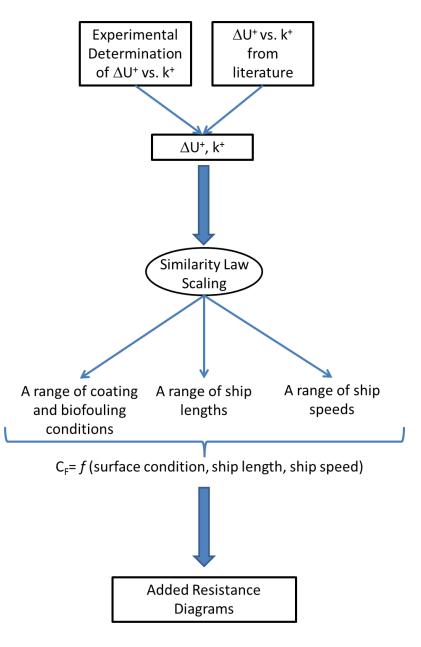
University of Strathclyde Engineering

Roughness Effect on Flow

Fuel Consumption Model

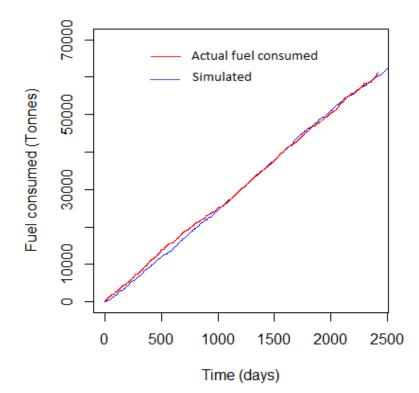


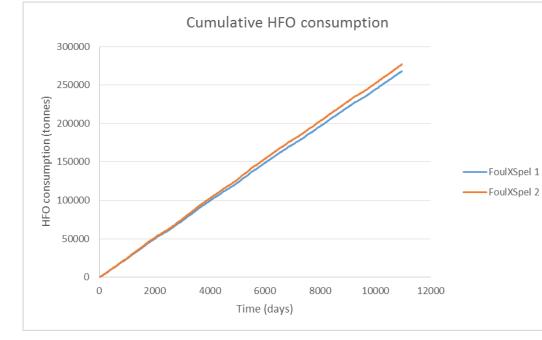
Table I. A range of representative coating and fouling conditions. The Naval Ships' Technical Manual (NSTM) rating is a fouling index used by the US Navy based on Naval Ships' Technical Manual (2002). The values of equivalent sand roughness height (k_s) and average coating roughness (Rt_{50}) are based on the measurements of Schultz (2004).


Description of condition	NSTM rating*	<i>k</i> _s (μm)	<i>Rt</i> ₅₀ (µm)
Hydraulically smooth surface	0	0	0
Typical as applied AF coating	0	30	150
Deteriorated coating or light slime	10 - 20	100	300
Heavy slime	30	300	600
Small calcareous fouling or weed	40 - 60	1000	1000
Medium calcareous fouling	70 - 80	3000	3000
Heavy calcareous fouling	90-100	10,000	10,000

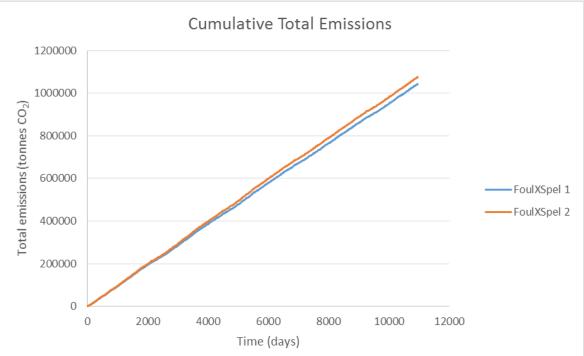
*NSTM (2002).

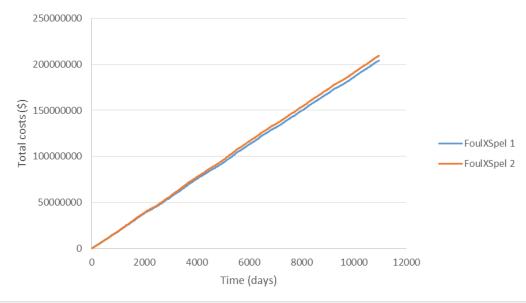
(Schultz, 2007)

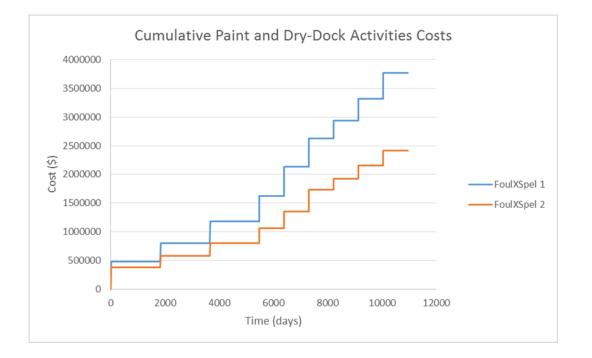

Fuel Consumption Model

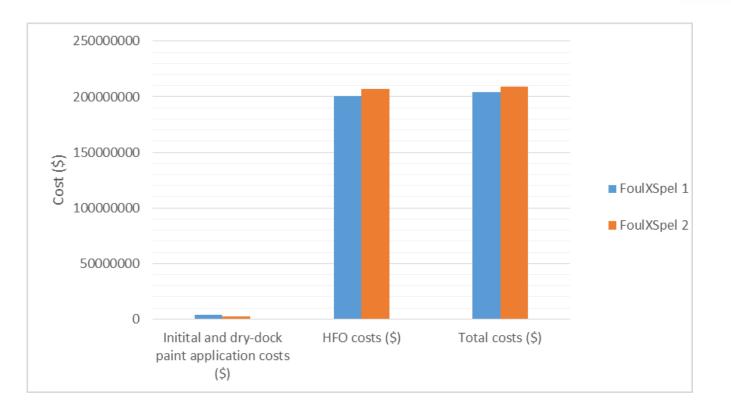


An existing tanker (~115000 DWT)


- a fouling release coating (FoulXSpel 1) and
- a tin free self-polishing antifouling paint (FoulXSpel 2).






Cumulative Total Costs

Overall (30 years)

The use of Silicone-based paint;

- 2.5% saving in cost
- 3.17% saving in HFO
- 3% saving in emissions

Conclusions

- A new Life Cycle Costs and Environmental Impact Assessment model was developed for the assessment of marine coatings applied to ship hulls. For this reason, a new methodology is also proposed within the model.
- Initial application and periodic renewal of a coating system may incur higher capital costs than others, but the benefits might outweigh the costs once the costs are amortised over the entire life-cycle. The real impact of a coating can only be assessed through LCA of the coating systems in question.
- This model can be used as a decision making tool which determines the suitable coating type for particular types of ships.
- It may also be used to decide the best maintenance and/or hull cleaning activities and/or intervals.
- Techno-economic feasibility study of a new coating can be carried out using this LCA model.

Acknowledgement

The authors gratefully acknowledge that the research presented in this paper was partially generated as part of the EU funded FP7 project FOUL-X-SPEL (Environmentally Friendly Antifouling Technology to Optimise the Energy Efficiency of Ships, Project number 285552, FP7-SST-2011-RTD-1).

The authors would like to thank Prof. Michael P. Schultz for kindly providing his data.

Thank you for your attention

Dr Yigit Kemal Demirel

yigit.demirel@strath.ac.uk

The University of Strathclyde is a charitable body, registered in Scotland, with registration number SC015263