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Abstract 
Title of Dissertation: Tanker accidents: Double Hull is not the only viable alternative       

Degree:                  MSc 

This dissertation is a study of the international maritime regime relating to the mitigation 

of pollution from oil tankers in the event of collision or stranding. The study focuses on 

issues that have evolved as a result of various amendments to relevant Conventions 

adopted in the recent years.  

 

A brief review of the development of maritime regulations for prevention of pollution of 

sea from ships is undertaken.  The backgrounds to the enactment of the US OPA 90 and 

the adoption of regulations I/13G and I/13F to MARPOL 73/78 are discussed, and the 

phase out programmes of existing single hull tankers in both cases are examined. 

 

Regulatory features of the double hull tanker are discussed, and the potential design, 

construction, operation problems and the risks involved are analysed.  Alternative 

double hull designs to overcome some of the problems and risks have been discussed. 

 

Accidental outflow of oil from tankers can be reduced by the use of double hull, reduced 

tank size, and the use of outflow prevention measures inside a tank.  Whether the Mid-

deck and Coulombi Egg concepts are superior to the double hull solution to limit the 

total amount of oil spilled, are examined.   

 

The concluding chapter evaluates the findings of the research on double hull tanker and 

alternative design concepts, and makes certain recommendations and suggestions aimed 

at relevant authorities.  

KEYWORDS: Alternative, Amendment, Disaster, Pollution, Prevention, Regulation.  
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CHAPTER 1 

 

Introduction 
 

In the wake of the Exxon Valdez tanker disaster in 1989, which polluted the 

environmentally sensitive coastal areas of Alaska, the social and political climate in the 

United States at that time demanded action and the US Congress introduced the Oil 

Pollution Act 1990 (OPA 90) requiring double hull for new tank vessels and specifying 

a phasing out schedule for existing single hull tank vessels operating in US waters.  

Further, the International Maritime Organisation (IMO) adopted amendments to the 

MARPOL 73/78 to put an end to catastrophic oil spills caused by tanker accidents as a 

result of the worldwide political pressure.  Following the Erika disaster and with the 

mounting concerns, the phasing out schedule of single hull tankers was revised by the 

IMO in April 2001.   

 

1.  Objective of the Research 

 
The dissertation focuses mainly to reveal the problems and difficulties faced during 

design, construction and operation of double hull tankers as compared to other 

alternatives and also to discuss some of the alternative design concepts with its merits in 

mitigating oil pollution.  It emphasises the need for careful consideration of all aspects 

by the concerned authorities before taking decisions such as to implement design 

changes to phase out single hull tankers, which has far reaching dimensions and 

resulting implications.  It also points out the technological freeze created for developing 

alternatives to double hull design by the tough stand taken by the United States.  
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2.  Research Methodology 

 
In this dissertation the development of international regime for control of marine 

pollution is examined.  The requirements emanated out of the unilateral decision by the 

United States to implement the OPA 90 and the international regime by the MARPOL 

73/78 are critically analysed.   Literature research on the subject including conceptual 

design has been carried out.  Information was also collected from the Internet sources.  

Interviews were held; contacts were established with the people related to the design, 

construction and operation of various types of tankers and information collected.  The 

effectiveness of the present regulations regarding the design, construction and operation 

of double hull tankers are addressed with respect to problems faced and some alternative 

tanker designs are suggested.  Opinions of many critics regarding numerous potential 

operational problems are critically analysed.  Advantages and disadvantages of various 

designs have been examined.   

 

During the course of collecting data for preparation of this dissertation, many 

experienced surveyors from various maritime administrations and classification societies 

were interviewed and their expert opinions were obtained.  Almost 17 years of the 

writer’s experience as a marine engineer on board ships after graduation in engineering 

and about 9 years of experience as maritime administration surveyor with the 

government of India with the active involvement in shipbuilding and ship repair has 

been of added advantage for analytical assessment of the subject. 
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CHAPTER 2 

 

Tanker Accidents: its Influence in Developing  

International Regulations 
 
1.  Introduction 

 
Between 1970 and 1984 oil tankers spilled about 3,824,000 tons of oil worldwide.  

During the next 14-year period, from 1985 to 1998, the quantity of oil spilled was 

reduced to 1,535,000 tons; a 60% reduction despite an 80% increase in tanker activity 

(‘Strong improvement’, 1999, p.5).  (See Fig.1).  The main causes for tanker accidents 

that have led to large oil spills include groundings on reefs, collisions with other vessels, 

and fires and explosions emanating from cargo.  Statistics from ITOPF (2001, pp.1-3) 

show that the number of oil spills per year during the periods 1970-’79, 1980-’89 and 

1990-’99 were 24.1, 8.8 and 7.3, respectively, and that the maximum of 34 spills were in 

the year 1979.  Patin (1999, p.2) states that the quantity of oil spilled by tanker accidents 

in 1989 and 1990 were 114,000 and 45,000 tons, respectively, whereas the average 

volume of oil pollution caused by marine oil transportation was 500,000 tons per year.   

 

The world’s first oil tanker carrying kerosene started operating in the late 19th century.  

However, marine oil pollution from ships was felt to be a problem requiring attention 

only during World War I (IMO, 2000, p.2).  The first International Conference on Oil 

Pollution Prevention at Sea was convened in the United Kingdom in May 1954, which 

adopted the International Convention for the Prevention of Pollution of the Sea by Oil, 

1954 (OILPOL 1954).  It recognized the potential of oil to pollute the marine 
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environment from shipboard operations.  The Convention prohibited discharge of oily 

wastes within a certain distance from land and in designated ‘special areas’, and required 

the provision of reception facilities for oil waste from ships in ports and terminals (IMO, 

1997a, p.1).  

 

This chapter focuses on the background that led to the adoption and implementation of 

international conventions for the control of oil pollution from ships.  It will also touch on 

the development of the international regime following some of the major oil spills from 

tankers, namely, the Torrey Canyon, the Amoco Cadiz and the Exxon Valdez.      

 
Fig.1.  99.996% of world oil transported safely 

(Source: Intertanko Houston Tanker Event, April 1999, p.5) 

2.  Marine Pollution  
 

When the Inter-governmental Maritime Consultative Organization (IMCO)1 became 

operational in 1959, marine pollution was regarded as a relatively minor problem.  

                                                 
1 An International Conference held by United Nations adopted the Convention establishing IMCO on 6 
March 1948. The Convention entered into force on 17 March 1958. The name IMCO was changed to the 
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OILPOL 1954 was amended in 1962 to include ships of lesser gross tonnage and to 

enlarge the prohibited zones.  In 1967, however, the scenario changed when the 

supertanker Torrey Canyon ran aground on Seven Stones Reef while entering the 

English Channel and spilled2 95,000 tons of crude oil.  This caused massive oil pollution 

affecting the French and British shores with major ecological consequences (Patin, 1999, 

pp. 2-3).    It was the biggest marine pollution disaster in history at the time.  

 

The Torrey Canyon incident revealed that deficiencies prevailed in the existing system 

for mitigating oil spills from ships, and providing compensation to victims of pollution 

damage.  Also, there was inadequacy of shipping traffic lanes. It was primarily this 

incident that led to the adoption of the following International Conventions: 

•  International Convention for the Prevention of Pollution from Ships, 1973 

(MARPOL 1973); 

•   The International Convention Relating to Intervention on the High Seas in Cases 

of Oil Pollution Casualties (INTERVENTION), 1969;  

•   The International Convention on Civil Liabilities for Oil Pollution Damage 

(CLC), 1969; and 

•   The International Convention on the Establishment of an International Fund for 

Compensation for Oil Pollution Damage (FUND), 1971.            (IMO, 1998, p.3) 

 

Although tanker accidents caused significant oil spills and environmental pollution, it 

was recognized that most of the oil entering the sea resulted from routine tanker 

operations.  OILPOL 1954 was further amended in 1969, which entered into force in 

1978. The amendment introduced the ‘load on top’ procedure. After discharging cargo, a 

tanker needs to take seawater as ballast in some of its tanks to maintain the minimum 
                                                                                                                                                
International Maritime Organization (IMO) by amending the original Convention in 1975,which entered 
into force in 1982. 
2 IMO document shows the quantity of oil spilled as 120,000 tons, whereas, ITOPF statistics shows the 
quantity as 119,000 tons. The quantity shown by Patin (1999) is 95,000 tons. 
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seagoing draft condition during the ballast voyage. When seawater is taken into some 

empty cargo tanks it mixes with oil residues in the tank and becomes ‘dirty ballast’, 

which is unsuitable for discharging to sea at the loading terminal. The load on top 

method involves the following procedure (Marton, 1984, pp. 194-195). 

1. During the ballast voyage some empty cargo tanks are cleaned at sea and filled 

with clean ballast water, which can be pumped back to the sea without risk of 

pollution when the tanker reaches the loading terminal. The oily washings from 

the tank cleaning are pumped into a designated tank called the ‘slop tank’.  

2. In the ‘dirty ballast’ tanks, the oil floats to the top and the clean water under the 

oil is discharged to the sea and the oily layer on top is transferred to the slop 

tank. 

3. In the slop tank, the dirty washings and the oil from dirty ballast settle into a 

layer of oil floating on clean seawater. This clean water under the oil is carefully 

pumped back into sea and the oily waste is left on board. The next cargo is 

loaded on top of the remaining oil and all of it is discharged when the tanker 

berths at the discharge terminal.                                            

The load on top procedure has the advantages of reducing operational pollution and 

saving oil cargo (IMO, 2000, p.3; IMO, 2001b, FAQs) 

 

3.  MARPOL 73/78   
 

The enormous growth in the size of oil tankers with the consequent carriage of huge 

quantities of oil by sea, the development and increase of chemical tankers, and the 

growing concern for the world’s environment during the end of 1970s, made many 

countries feel that OILPOL 1954 was inadequate despite the various amendments which 

had been incorporated.  As a result, an International Conference on Marine Pollution 

was convened by IMO in 1973.  In this Conference the International Convention for the 
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Prevention of Pollution from Ships, 1973 (MARPOL 1973) was adopted, covering 

various ship-generated sources of pollution contained in the five annexes3 as below: 

Annex I       Regulations for the prevention of pollution by oil 

Annex II      Regulations for the control of pollution by noxious liquid substances in bulk 

Annex III    Regulations for the prevention of pollution by harmful substances carried by                             

sea in packaged form 

Annex IV    Regulations for the prevention of pollution by sewage from ships 

Annex V     Regulations for the prevention of pollution by garbage from ships. 

   

Most of OILPOL 1954 together with its amendments are incorporated in Annex I.  The 

Convention requires continuous monitoring of oily water discharges from oil cargo 

spaces and machinery spaces.  State Parties are required to provide reception and 

treatment facilities for slops and oily water from ships at oil terminals and ports.  A 

number of additional ‘special areas’ are also established.  Regulation 13 of Annex I 

requires segregated ballast tanks (SBT)4 on new tankers over 70,000 tons dwt.  A 

proposal by the United States for a requirement for double bottoms was not accepted by 

the Convention (IMO, 2000, p.4). 

 

A State could become party to the MARPOL 1973 only by ratifying Annexes I and II. 

Annexes III to V were optional. The Convention required ratification by 15 States with a 

combined merchant fleet of not less than 50% of the world shipping gross tonnage, to 

enter into force.  The prerequisite to comply with the provisions of Annex II along with 

Annex 1 made it difficult for many States to ratify the MARPOL 1973 Convention.  

This became a major concern.  A series of tanker accidents occurred in 1976-1977, 

                                                 
3 The International Conference of Parties to MARPOL 73/78 held at London in September 1997 adopted 
the Protocol of 1997 to amend MARPOL 73/78, which sets out in its annex the new Annex VI - 
Regulation for prevention of air pollution from ships. 
4 Segregated ballast tanks are those ballast tanks exclusively used for carrying clean ballast water.  
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mostly in and around the United States waters.  For example, in December 1976 an oil 

tanker Argo Merchant ran aground and broke apart southwest of Nantucket Island, 

spilling her entire cargo of 7.6 million gallon fuel oil (Fact Monster, 2001).  Other major 

oil spills were 100,000 tons from the Urquiola at La Coruna, Spain and 95,000 tons 

from the Hawaiian Patriot 300 nautical miles off Honolulu (ITOPF, 2001, p.4)  

 

The increasing awareness of the disastrous effects of oil pollution on the coastal 

ecology, coupled with dramatic media coverage, led to an enormous public outcry in the 

United States. With mounting pressure from maritime states affected by the oil pollution 

and at the initiative of the United States, IMO convened the Conference on Tanker 

Safety and Pollution Prevention (TSPP) in 1978 and adopted Protocols to MARPOL 

1973 and SOLAS 1974. The Protocol to MARPOL 1973 includes the following 

requirements: 

•   New crude oil tankers of 20,000 tons dwt and above and new product carriers of 

30,000 tons dwt and above are to be constructed with segregated ballast tanks in 

protectively located5 areas.  

•   New crude oil tankers of 20,000 tons dwt and above are to be fitted with crude 

oil washing6 (COW) system.   

•   Existing tankers of 40,000 tons dwt and above are to be fitted with either SBT or 

COW systems.  

The Protocol provides for an interim period and for certain type of tankers to use 

dedicated clean ballast tanks7.  MARPOL 73/78, which includes the protocol of 1978, 

entered into force on October 2, 1983 (IMO, 2000, p.5). 

 
                                                 
5 Protective location means that the ballast tanks of the ship are positioned where the impact of collision or 
grounding is likely to be greatest.  In this way the amount of cargo spilled after such an accident will be 
greatly reduced. 
6 Crude Oil Washing is the cleaning or washing of cargo tanks with high-pressure jets of crude oil. By the 
use of this system, the quantity of oil remaining on board after discharge is reduced. 
7 Dedicated clean ballast tanks - specific cargo tanks dedicated to carry only clean ballast water. 
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Additional safety measures for tankers were incorporated in the TSPP 1978 Protocol to 

the International Convention for the Safety of Life at Sea, 1974 (SOLAS 74). It includes 

the requirement for an Inert Gas System8(IGS) for tankers of 20,000 tons dwt and above. 

(IMO, 1997a, p.3). The 1978 TSPP Protocol relating to SOLAS 1974 entered into force 

in May 1981. 

 

The world did not have to wait long to witness another major oil spill from a tanker. On 

March 16, 1978, just one month after the TSPP Conference, the supertanker Amoco 

Cadiz ran aground and broke into two, off the north- west coast of France, near Portsall, 

and spilled its entire 230,000 tons of crude oil cargo that resulted in a major 

environmental disaster between the coastal towns of Port Bano and Le Conquet 

(Cheeseman, 2001, p.1). Another oil spill from a tanker occurred in 1978 in the Shetland 

basin. The tanker Esso Bernica was holed while mooring and spilled 1,100 tons of heavy 

oil into the coastal waters (Patin, 1999, p.3). 

 

While operational oil pollution from ships has been reduced considerably, accidental 

pollution continued, requiring continuous review of the provisions of MARPOL 73/78 

and its amendments.  The 1983 amendments to the Convention banned the carriage of 

oil in forepeak tanks (IMO, 1997a, p.5).  The 1984 amendments mainly dealt with 

subdivision and stability of oil tankers and the 1991 amendments introduced a new 

chapter requiring ships to carry shipboard oil pollution emergency plan (SOPEP) (IMO, 

2000, p.7) 

 

Some of the major oil spills from tankers during the period 1979 to 1989 are as below. 

Ship name                     Year     Location                                                 Oil lost in tons 

Atlantic Empress          1979     off Tobago, West Indies                             287,000 

                                                 
8 The inert gas system- In this system the flammable gases in tanks are replaced by cleaned exhaust boiler 
flue gases with a low oxygen content and thus incombustible. 
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Independenta                1979     Bosphorus, Turkey                                     95,000 

Castillo de Bellver       1983      off Saldanha Bay, South Africa                 252,000 

Assimi                           1983      55 NM off Muscat, Oman                         53,000 

Odyssey                        1988      700 NM off Nova Scotia, Canada             132,000 

Khark 5                        1989      120 NM off Atlantic coast of Morocco      80,000 

Exxon Valdez               1989      Prince William Sound, Alaska, USA          37,000 

Aragon                         1989     on transit from Mexico to Spain                  25,000 
(Source: ITOPF, 2001, p.4) 

In the wake of the Exxon Valdez disaster, the social and political climate in the United 

States at the time demanded action and the US Congress introduced a new Act in 1990.  

This event also led to some of the most important changes in MARPOL 73/ 78.   

                                                      

4.  The Exxon Valdez Disaster 

 

On March 24, 1989 the U.S. flag tanker Exxon Valdez ran aground at Bligh Reef in 

Prince William Sound, Alaska.  After receiving 53 million gallons of crude oil cargo, the 

vessel sailed from Valdez pipeline terminal on 23rd March at 2126 hours for Long 

Beach, California.  The weather that night was conducive for sailing although some 

growlers had drifted from the Columbia glacier.  While manoeuvring through Prince 

William Sound, the vessel did not turn sharply enough and on 24th March at 0004 hours 

it grounded on Bligh Reef.   The Exxon Valdez was one of the largest oil tankers at the 

time, built in 1986 and operating at a speed of 15 knots per hour (TED, 2000, pp. 1-2). 

 

The impact of the grounding was so severe that the ripped cargo tanks spilled tons of oil 

into the sea so quickly that it created waves of oil about one meter above the water level. 

An estimated 11 million gallons of crude oil leaked into the environmentally sensitive 

Prince William Sound creating the worst oil spill in American history (TED, 2000, p.2).  

The spill spread over an area of more than 1,000 miles of the coast, and travelled nearly 
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470 miles Southwest from Bligh Reef.  The oil coated the coastline of Alaska 

contaminating a national forest, four national wild life refuges, three national parks, five 

state parks, five state critical habitant areas, and a state game sanctuary (McFarland, 

2000, p.2). 

 

According to the oil response plan submitted by Alyeska, one of the conditions for the 

construction of the Trans Alaska Pipeline was that they would be at the site with 

response equipment within five hours of the spill.  However, at the time of the Exxon 

Valdez spill the oil-containment equipment was not ready.  It took ten hours for the clean 

up crew to reach the site and by that time oil slick had spread for miles (TED, 2000). 

 

The clean up operations were carried out under the co-ordination of the ship owner and 

the US Coast Guard.  The oil spill response consisted of the booming of environmentally 

sensitive areas, skimming corralled oil, cleaning up oil-laden beaches, wildlife rescue, 

and waste management.  The oil spill response, salvage, and clean up efforts were 

extensive, time consuming and costly.  It was conducted over a period of three years 

from 1989 to 1992 as a result of northern climatic conditions (McFarland, 2000, p.2). 

 

Disasters like the Exxon Valdez grounding are news worthy and accessible to the media.  

Television and newspapers regularly provide the public with minute information 

(Griffin, 1999, p.1).  The pictures of blackened beaches and oil soaked birds galvanize 

the minds of viewers of the harm done to the ecosystem.  As a result, the public put 

pressure on national governments to take stronger measures to prevent future spills. 

 

It was reported in Trade Environment Database (2000, p.2) that Alaska natives, 

fishermen and environmentalists have always been suspicious of the oil industry’s 

foothold in the region for the potential risk of an oil spill. The Exxon Valdez incident 

sparked off a battle between the native Alaskans and the oil industry in the courtroom 
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and the press.  The battle was over the responsibility for the accident as well as on the 

future of the region, the future of oil transportation and the oil spill response readiness.   

 

A settlement was reached between the state of Alaska, the federal government, and 

Exxon Corporation in 1991.  It was agreed that Exxon would pay the state of Alaska and 

the United States USD 900 million over a ten-year period in response to civil damage 

claims and USD 250 million in relation to criminal charges. Exxon had already spent 

over USD 2.1 billion on clean up costs.  However, in October 2000, the US Supreme 

Court refused to release Exxon from the obligation to pay USD 5 million in punitive 

damages (Artic/ North Culture, 1999, pp. 1-2). 

 

5.  The Oil Pollution Act 1990 (OPA 90) 

 

In the wake of the Exxon Valdez oil spill the US Congress passed the Oil Pollution Act 

1990 (OPA 90). It was signed into law on August 18, 1990. With regard to the Exxon 

Valdez oil spill, and the subsequent legislation and implementation of OPA 90, Pang and 

Williams (2001, p.1) state-  

The Exxon Valdez spill caused legislators to act because of the size of the 

spill, its remote location, and its ecological impact. This legislation brought 

stricter regulations to the shipping and oil industries and led to the 

implementation of new regulations, for example the double-hulled tanker 

requirement.   
 

The objectives of OPA 90 are prevention of oil spills, a comprehensive response regime 

for clean up in case of an oil spill, the assessment of penalties and liabilities to be paid 

by polluters for the damages caused, and punishment to polluters when appropriate 

(Loy, 1999, pp.1-2). A summary of the major provisions of the Act is set out below 

(OSIR, 2000, p.1): 
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5.1.  Emergency response plans  

Owners of vessels are required to develop plans detailing the steps that they will take to 

respond to an oil spill.  These plans must include contractual arrangements with the US 

based oil spill clean up organizations. Foreign ship owners must have their qualified 

designated persons based in USA.  The vessel must be in possession of an emergency 

response plan approved by the US Coast Guard. 

5.2.  Double hull for tank vessels & single hull phase out 

Section 4115 of OPA 90 contains the double hull requirements and a phase out schedule 

for single hull tank vessels operating in US waters.  According to this provision, all 

newly constructed tank ships must meet the double hull requirements. The phase-out 

dates for single hull tank ships of 5,000 GT and above are specified as a function of two 

variables with different dates. They are size groups with either double bottom or double 

hull construction. The size groups are: 5,000 – 15,000 GT, 15,000 – 30,000 GT, and 

30,000 GT and above. In the present phase-out period single hull vessels up to 40 years 

of age are permitted for the two small sizes, with an additional five years for either 

double-hull or double-bottom.  But a single hull vessel may not operate in US waters 

after January 1, 2010 and a vessel with only double bottom or double sides after January 

1, 2015.  (See Fig. 2). The double hull requirements do not apply to foreign vessels 

engaged in innocent passage. 

5.3.  Liability  

OPA 90 does not hold cargo owners liable for oil spills.  Ship owners are subject to 

liability limits of USD 1,200 per gross ton of oil spill.  The operators of such vessel are 

also rendered liable for oil pollution damage.  The use of the term “operator” is very 

significant in that it could cover a whole host of potential defendants, including a pilot, a 

ship-management company and a mortgagee in possession. 

5.4.  OSLT fund  

OPA 90 has established a one billion dollar Oil Spill Liability Trust Fund (OSLTF).  

The federal government raises the fund from a five cent per barrel tax on oil. Third party 
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victims of an oil spill can submit claims against the fund.  The US Coast Guard has 

access to the fund for distribution in case it is unable to locate the party responsible for 

the spill. 

5.5.  Navigational measures & State pre-emption  

The Act requires a study of navigational measures undertaken by the US Coast Guard 

with the object of reducing oil spills.  This may require prohibition of tanker movements 

in certain areas.  The provisions of OPA 90 allow states in the U.S. to legislate and 

implement more stringent laws than the federal government, to protect their territories 

from oil pollution, to prevent occurrences and to deal with them in cases of oil pollution, 

in addition to imposing heavier penalties. Accordingly, many states have enacted more 

stringent laws in their jurisdictions. 

 

6.  MARPOL Regulations 13G AND 13F  

 

After several spectacular tanker accidents, such as the Exxon Valdez, the Khark 5, the 

Mega Borg, political pressure started building up worldwide to put an end to 

catastrophic oil spills.  Some of the major oil spills from tankers occurring during 1989 

to 1992, which have influenced IMO to amend MARPOL 73/78 are noted below:  

Ship name              Date                               Location                 Oil lost in million gallons                      

Khark 5                  December 19, 1989        Atlantic ocean 185 KM                   20 

                                                                      away from Moroccan coast  

Cibro Savannah     March 6, 1990                Linden, New Jersey                  not known 

Mega Borg             June 8, 1990                   86 KM south west of                        5.1 

                                                                      Galveston, Texas    

Haven                    April 11, 1991                 Genoa, Italy                                      42 

ABT Summer          May 28, 1991                 Atlantic ocean 1287 KM                  15 

                                                                       off Angola                        (Source: OSIR, 2000)  
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Under the circumstances, the double hull amendments proposed by the United States in 

1990 were accepted into MARPOL 73/78 with certain modifications.  Alternative 

methods of design and construction ensuring the same level of protection against 

pollution in a collision or stranding were also incorporated  (Griffin, 1999, pp. 12-14). 

 

On March 6, 1992 amendments to MARPOL 73/78 were adopted, which added 

regulations 13F and 13G concerning the design and construction of both new9 and 

existing tankers to Annex 1.  The amendments came into force in July 1993.  The 

essence of Regulation 13F is as follows: 

•  New oil tankers of 600 tons dwt and above are to be fitted with double hull, mid-

deck or an other approved10alternative method of design and construction at least 

equivalent to double hull to prevent oil spills in the event of collision or stranding.   

•  Double hull tankers of 5,000 dwt and above, must be fitted with double bottoms 

and wing ballast tanks or spaces other than cargo and fuel oil tanks extending the 

full depth of the ship’s side and the entire cargo tank length for the protection of 

cargo tanks.   

•  For mid-deck tankers, in addition to providing wing tanks as non-cargo spaces, the 

cargo and vapour pressure exerted on the inside of the bottom shell plating, 

forming a single boundary between the cargo and the sea, does not exceed the 

external hydrostatic water pressure.   

•  Oil tankers of 20,000 tons dwt and above have to comply with the damage 

assumptions prescribed to meet the assumed bottom raking damage.   

•  Oil tankers of less than 5,000 tons dwt must be fitted with double bottom tanks and 

the capacity of each cargo tank is limited to 700 cubic meters, unless they are fitted 

with double hulls. 
                                                 
9 New oil tanker means a tanker for which the building contract was placed on or after July 6, 1993, or the 
keel was laid on or after January 6, 1994 or the delivery of which was on or after July 6, 1996. 
10 Approved means approved by Marine Environment Protection Committee (MEPC) based on the 
guidelines developed by IMO.  
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Regulation 13G, containing the IMO phase-out requirements for existing crude oil 

tankers of 20,000 tons dwt and above and product carriers of 30,000 tons dwt and above, 

took effect from July 6, 1995.  It does not apply to tankers complying with regulation 

13F.  (See Fig. 2).  The main provisions of regulation 13G are as follows: 

•  Existing oil tankers must be subject to an enhanced program of inspection (EPI), 

which must at least comply with the guidelines in IMO resolution A.744 (18), as 

amended.   

•   An oil tanker not meeting the TSPP 1978 requirements, must not operate later than 

25 years after the date of delivery, unless it complies with the requirements of 

regulation 13F. However, an additional life of five years is possible, provided the 

tanker adopts either approved alternative operational arrangements, such as 

‘hydrostatic balance loading’ (HBL), or meets the protective location requirements 

of paragraph 4 of the regulation.  

•   An oil tanker meeting the TSPP 1978 requirements, must not operate later than 30 

years after the date of delivery, unless it complies with the requirements of 

regulation 13F.  

 

Gray (1997, p.2) states that - 

Regulation 13G, and its companion 13F requiring double hull, mid-deck or 

equivalent for new-building tankers, were developed in a group of feverish 

sessions at IMO which sought to reconcile the unilateral demands of the 

United States to impose OPA chapter and verse on the international fleet, 

and at the same time to deal with tanker design and construction features, 

both new and existing, on more rational and technically-based grounds that 

existed during U.S. Development of OPA.   

 

While deliberating on the issue, the MEPC had the benefit of detailed studies conducted 

following the Exxon Valdez disaster.  These included the results obtained from the 
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implementation of OPA 90 as well as the National Research Council’s (NRC) study 

“Tanker Spills: Prevention by Design”.  The MEPC also conducted a comprehensive 

study on oil tanker design, which had participants from among the world’s leading 

tanker design experts, shipyards and major classification societies. 

 

 

                            
Fig. 2.  Phasing out of single hull tankers under OPA 90 and MARPOL 73/78 

(Source: DNV Paper series No. 97-P003, 1997) 
The concept of ‘enhanced program of inspection (EPI)’ for oil tankers is called 

‘Enhanced Survey Program (ESP)’ by the classification societies.  Gray (1997, p.3) 

stresses that the concept, which was proposed by the tanker industry led by Intertanko, 

the International Chamber of Shipping (ICS), and the Liner Shipping Conference (LSC) 

in 1991, is clearly the most effective pollution prevention measure for dealing with 

existing substandard tankers.  The basic principle of ESP is to have an extremely 

detailed and regular inspection of structure conducted by surveyors of the classification 
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societies with records of results maintained on board and available to interested parties 

such as Port State Control officers, charterers etc.  

 

Although conversion of pre-TSPP 1978 single hull tankers to meet the protective 

location requirement of regulation 13G(4) can increase the life of a tanker to 30 years, it 

may require retrofitting partial bulkheads in cargo tanks, which can involve huge 

expenditure.  Operation of such tankers without retrofitting and keeping large volumes 

of wing tanks empty or exclusively for ballast to meet the rule requirements may not be 

economically viable.  As a result, ship owners may opt to scrap such single hull tankers 

rather than converting them, or adapting them to any other acceptable measures. 

 

HBL is based on the principle that the hydrostatic pressure at the cargo tank bottom of 

the cargo oil column plus the ullage space inert gas overpressure remains equal to or less 

than the hydrostatic pressure of the outside water column, thereby mitigating the outflow 

of the oil in case of bottom damage.  When grounded, the high pressure of the seawater 

pushes it into the tank forcing the cargo upwards and forming a seawater layer in the 

lower part of the tank. (See Fig. 3).  Acceptance of this method by the administrations is 

based on the guidelines of IMO resolution MEPC 64(36).  According to Gray (1997, 

p.4), the National Research Council report “ Tanker Spills: Prevention by design” speaks 

in a guarded way about HBL and expresses cautions.  The report states that - 

  The effectiveness of hydrostatic control depends on operator’s strict 

adherence to rules, rather than on a permanent feature of vessel design and 

construction; and 

  Hydrostatic control does not provide complete protection against oil outflow 

due to tidal variations or wave action following a grounding.  

 

It is this indent that the NRC is not favourably disposed towards hydrostatically 

balanced design options for new tank vessels. 
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The Exxon Valdez disaster, OPA 90 and Annex 1 regulations 13F and 13G of MARPOL 

73/78 have altered the attention more towards tanker operational measures.  It has 

brought in awareness in the shipping industry of the importance of safer ships and 

environment friendly ship performance.  

 
Fig. 3.  Hydrostatically Balanced Loading   

(Source: DNV Paper series No. 97-P003, 1997) 
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CHAPTER 3 

 

The Erika Disaster and its Aftermath 
 

1.  Introduction 

 
Elimination of sub-standard ships and protection of the marine environment are issues, 

which have been discussed seriously by the shipping world in the past three decades.  

While operational and accidental pollution from ships have been reduced, with the 

increase in size and number of ships, the accidental pollution continues to occur.  The 

international community creates hue and cry over any accidental oil pollution, which 

causes misery to the local population or affects the coastal ecosystem, and demands 

higher level of protection and preservation of the environment.  The Erika disaster has 

caused such reverberations.  The causes of the sinking of the Erika, the main players 

who contributed to the disaster, the reaction by the French authorities, the proposed 

European Commission directives and finally the changes adopted in the IMO single hull 

tanker phase-out schedule will be discussed in this chapter. 

 

2.  The Erika Disaster 

 

The 37,238 tons dwt tanker Erika broke into two in heavy seas, off the coast of Brittany, 

France, on December 12, 1999 while carrying approximately 30,000 tons of heavy fuel 

oil, and spilled about 15.000 tons of cargo.  The entire crew of 26 was saved.  The two 

sections of the vessel sank in 120 meters of water about 100 km from the mouth of the 
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river Loire.  The spilled oil cargo was blown towards the French coast and polluted a 

400 km long coastline, from Brittany to La Rochelle (�The Erika accident�, 2000, p.2) 

The 24-year old tanker Erika sailed under the Maltese flag.  It was owned by the 

Savarese family of Sorrento in Italy through Teverse Shipping Company based at 

Valletta and Panship Management  & Services, an Italian company, operated it.  The 

Erika was classed with Registro Italiano Navale (RINA).  The vessel was in possession 

of valid statutory and classification certificates issued by RINA after it carried out the 

five-year special survey in June 1998 and annual survey two weeks before the disaster.  

Prior to carrying out the special survey, the classification society of the ship was 

changed from Bureau Veritas (BV) following a change of ownership.  On the fateful 

voyage, the Erika was under charter to TotalFinaElf carrying a cargo of heavy fuel oil 

from Dunkirk in northern France to Livorno in Italy.  It was inspected under Port State 

Control (PSC) in Porto Torres in May 1999 and no deficiencies were reported.  Also, 

PSC authorities in the port of Novorossiysk, Russia inspected it in November 1999 and a 

few deficiencies were noted (�Erika- principal�, 2000, p.2). 

 

The Malta�s Maritime Authority (MMA) and the French Marine Accident Investigation 

Bureau (BMER) conducted separate official investigations into the cause of the Erika 

disaster.  The MMA reported the cause for the loss as follows (Björkman (2000, p.1):  

The loss was the result of several factors acting concurrently or occurring 

simultaneously� The most likely reasons for the loss were corrosion, 

cracking and local failure, vulnerabilities in the design of the ship, and the 

prevailing sea conditions� In 1998 the tanker underwent repairs at the 

Bijela shipyard in Montenegro...The low quality of the Bijela repairs could 

have contributed to the initial local failure, leading to the final collapse... 

The ship's managers were in attendance when these repairs were carried out, 

yet they failed to identify and/or address areas of significant local corrosion, 

nor did they monitor the repairs correctly.   
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From this part of the report, it can be seen that the MMA had identified local structural 

problems resulting from corrosion as the most probable cause of the sinking.  Further, 

they criticized the shipyard repair in 1998 as minimal and in all probability insufficient. 

The shipyard�s poor quality could have contributed to the initial local failure, leading to 

a final collapse (�French say�, 2001, p.2).  

 

The BMER investigation report has described the discovery of a serious loss of 

thickness of up to 30 % in hull plating and the replacement of 16mm plate with 12mm 

when the ship was repaired in the Bijela yard in Montenegro in August 1998. The repair 

work played a determining role in the chain of events that led to the accident.  General 

rusting was widespread, and there were many patches of deep corrosion (�French say�, 

2001, p.2).  The report states �  

The Erika resembled a patchwork of metal sheets of different thickness and 

varied quality.  The vessel would not have fallen apart if it had been as 

seaworthy as it was claimed to be by the classification society as late as 20 

days before it broke up on December 12, 1999.  There was excessive 

corrosion, beyond norms that are considered acceptable by classification 

societies. 

 

Sub-standard welding was also noted on the ship. The existing state of the ship is 

summarized in the report as �In short, the state of the ship and its rapid deterioration in 

the final hours were such that there was no possibility of avoiding the catastrophe� 

(�Tanker so corroded�, 2001, p.1; Parry, 2000, p.1).   

 

Both reports criticized RINA, the Italian classification society.  The BEMR discounted 

RINA�s argument that the master of the vessel was partly to blame.  They instead 

pointed to the areas of general corrosion, and the localized deep corrosion that led to the 

break up of the hull in tank No.2 starboard (Parry, 2000, p.1).  From the investigation 
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reports of MMA and BMER, it can be concluded that the causes for the Erika 

catastrophe were corrosion and botched repairs, aggravated by rough sea conditions.  

 

 Many consider the Erika disaster to be the catalyst for a lookout to newer tankers to 

carry the world's oil production to the market. Older ships, of age 15-20 and more, are 

generally considered to be a liability for companies to charter them. 

 

3.  Fact or fiction 

   

The Erika spilled 15,000 tons of cargo oil when she broke into two, which was only 

6.5% of the oil spill caused by the Amoco Cadiz in 1978 when it ran aground and broke 

into two in the same region.  But the Erika disaster has stirred media interest and 

shipping industry repercussions more than that caused by the spill 22 years ago, as it 

broke apart while underway at sea.  The French authorities have taken up the issue with 

IMO as well as with the European Union for immediate stringent measures to avoid 

recurrence of such incidents (�Erika provokes�, 2000, p.2).  The adequacy of the safety 

regime and the role of the main players responsible for the disaster are discussed below. 

 

The quantity of oil spilled by the tanker Erika was not so large.  But the disaster raises 

the question whether the present international maritime regime is adequate, or there 

exists weaknesses in the maritime safety rules that have contributed to the loss of the 

Erika.  Intertanko is of the opinion that the provisions governing the design, equipment 

and operation of tankers are amongst the most rigorous of all IMO requirements (�Erika 

provokes�, 2000, p.2; �The Erika accident�, 2000, p.3).  Existing IMO conventions cover 

all the design and operation aspects of the Erika that could have contributed to the ship�s 

sinking.  The investigation reports of MMA and BMER point to the fact that the Erika 

accident occurred because the responsible parties were not implementing the safety 
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regime properly.  The vessel was allowed to deteriorate to the point of break up. In the 

opinion of this writer, the responsibilities for the mishap lies firstly with the ship owners, 

followed by the classification society, flag state, and the charterer, which is discussed in 

the following paragraphs. 

   

3.1.  Shipowners 

Shipowners are responsible to maintain and operate ships in such a way that their ships 

are at least in compliance with the relevant IMO requirements and without diluting their 

obligations regarding safety, and protection of marine environment.  Investigation 

reports of the Erika reveal that these norms have not been strictly adhered to. Renewing 

the hull plating by 12mm instead of 16mm thick plates, allowing wasting of hull plates 

to the extent of 30%, doing patchwork at plating areas of deep corrosion, etc. confirms 

the irresponsibility of the shipowners. 

 

3.2.  Classification societies 

Classification societies develop and administer the technical standards for the design, 

construction, and periodical surveys of ships, which are called the �Rules�.  The Rules 

are developed and updated on the basis of many years of experience from thousands of 

ships in service and on advanced research, theoretical and practical knowledge gained 

from experiments, and reflect the views of the whole industry (Abe, 1990, pp. 3-4).   

 

Classification societies claim that they are independent and non-profit making third 

party organizations.  It is this writer�s opinion that generally, classification societies do 

their job well.  But it cannot be denied that some of them play easy with shipowners, in 

order to procure more business and thereby more gross tonnage under their class.  They 

compromise rigour by sharing the risk and responsibility with ship owners, for example, 

by allowing vessels to operate with existing deficiencies for a period of time.  In many 

cases it is observed that when a ship is detained under PSC for any major structural 
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defect, the classification society of the ship issues condition of class to be dealt with in a 

short period, after the ship has carried out temporary repairs, which enables the ship to 

continue its operation.  This may be a practical solution.   But there is no reason for such 

a major deficiency to occur when the entire ship structure is subject to a systematic 

inspection at scheduled intervals.  Secondly, in any case of a major deficiency, it has to 

be dealt with immediately.  

 

Another factual observation is that some of the classification societies have dual 

standards even though they do not admit, as their rules are the same for all.  Their 

standards vary from ship to ship depending on the owners, the flag of the ship, the area 

of operation of the ship, etc.  This writer believes that often these factors contribute to 

the occurrence of disasters.   

 

A third observation is about the regional standards of some of the classification 

societies.  Classification society surveyors, sometimes, follow regional standards and 

practices, which may be below the standards set up by their rules.  Finally, shortage of 

experienced, trained and qualified surveyors may also be a contributing factor. 

 

3.3.  Flag States   

In various IMO Conventions it is made clear that the flag state, which is signatory to the 

Convention, has full and formal responsibility for taking all measures deemed necessary 

to give the Convention full and complete effect.  According to Article 1 of SOLAS 

1974, the Administration is obliged to promulgate all laws, decrees, orders and 

legislation and to take all other steps, which may be necessary to ensure that a ship is fit 

for the service for which it is intended.  The Administration is responsible for taking the 

necessary measures to ensure that ships flying its flag comply with the provisions of 

relevant Conventions. The Administration may delegate the execution of its obligation 
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to others, for example to classification societies, to carry out statutory surveys but it 

cannot delegate nor absolve the responsibility for shouldering it (Jönsson, 2000, pp.1-4).   

 

3.4.  Port States   

In the past two decades, PSC inspections have helped to eradicate the operation of 

substandard ships to some extent.  Under various regional Memoranda of understanding 

(MOU) covering all the oceans and sea, PSC has created a sense of awareness among 

shipowners and operators that they have to properly maintain their ships to avoid being 

detained in ports.  But PSC inspections have their limitations.  As a normal inspection 

under port state control takes only two to four hours, it may not reveal a serious 

structural defect when the ship�s records and classification listings do not reveal it. The 

ship may appear good superficially, and it may not be practicable to inspect all the 

ballast or cargo spaces, unless the Port State Control Officer (PSCO) suspects a defect or 

receives such information.  Co-operation of the crew is essential for a successful PSC 

inspection, which may not be easily available due to various constraints.  In the 

condition and circumstances explained, it is this writer�s opinion that a PSC inspection 

of the Erika might also not have revealed its serious structural deficiencies. 

 

To substantiate this writer�s view on the above, a specific PSC inspection is narrated 

below.  In 1994, a gas carrier named Coral Star of Panama flag called at Port of Cochin 

in India to receive drinking water and provision for the crew.  It was built in 1972, 

owned by an Italian shipping company and classed with RINA.  The PSCO, who was 

suspicious of the circumstances of the vessel�s call to the port, boarded the ship for an 

inspection.  All the vessel�s records were found to be in order, fire fighting arrangement 

and life saving equipment were in satisfactory condition, and the engine room spaces 

and machinery were properly maintained.  Also, crew did not inform the PSCO of any 

defects. The master informed the PSCO that the ship had encountered cyclonic weather 
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during the voyage, had exhausted the supply of drinking water and provisions, and had 

therefore called into the port.  

 

The PSCO observed that the classification surveyor had carried out a safety equipment 

survey about two weeks earlier and the vessel had undergone dry-docking repairs 

recently. However, just by sheer coincidence, the PSCO inspected the void space in the 

cargo area.  To his dismay, the ship�s double bottom ballast tank tops were found 

corroded and transversally cracked at a few places.  The collision bulkhead was also 

corroded and leaking.  If the cracks on the tank tops, which were adjacent to the hull 

plating, had travelled to the hull with the stresses induced by rough seas, it could have 

ended up in a disaster.   

 

3.5.  Charterers   

The charterers have an obligation to recognize and support quality shipping by doing 

everything in their power to identify substandard ships and avoid any association with 

them (�Erika provokes�, 2000, pp.2-3; �The Erika accident�, 2000, p.4).  Charterers can 

effect improvements to the current safety regime by tightening their vetting and approval 

procedures during selection of ships for chartering. 

 

Therefore, in order to eradicate substandard ships, shipowners, classification societies, 

flag states, port states, charterers, and ship�s crew must all cooperate. 

 

4.  Aftermath in Europe 
4.1.  The French action   

The Government of France, in a unilateral move, have introduced rigorous new national 

tanker shipping safety rules in its drive for tighter European Rules.  TotalFina, Elf and 

the French subsidiaries of BP, Shell and Esso signed a voluntary tanker shipping safety 

charter sponsored by the French Government, which promises to introduce stricter 
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checks on tankers over 15 years of age and to cease using single hull tankers by 2008. A 

number of other French shippers� organizations, Ship owner�s Central Committee and 

Bureau Veritas have also signed (IRI, 2000. p.1). 

 

4.2.  The European Commission directives  

The public outcry over the pollution damage caused by the Erika disaster has provoked a 

massive and radical reaction from the European Commission (EC), the French 

Government, classification societies, environmental campaigners and others.  The 

reaction was so strong that it was felt that nearly every aspect of pollution law might 

undergo radical change within few years.  Many felt that the reaction was abrupt and 

hasty.  Following the energetic representation of the French Government, the EC 

proposed legislation, which was described as �more wide ranging and more draconian 

than the US OPA 90� and hence dubbed as �Eur OPA 2000� (Leech, 2000, pp. 1-3). 

 

4.2.1.  Erika I-package  

The post-Erika package labelled as �Erika I-package� was presented by the EC in March 

2000. It contains amendments to the existing EC directives on Port State Control, 

classification societies, and new scheme for faster phasing out of single hull tankers in 

European trades (�The Erika accident�, 2000, pp. 5-6).   

 

The proposed amendment on PSC includes enhanced surveys for tankers over 15 years, 

increased flow of information between classification societies, PSC and flag states, 

listing of the charterer in a PSC detention data and banning of vessels older than 15 

years which have been detained more than twice.  The proposed directive on 

classification societies includes the increased possibility for the Commission to prevent 

non-performing classification societies from doing statutory work for member states, an 

increased surveillance of their quality standards and for a harmonized European system 

for liability of classification societies.   
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The proposal for accelerated phasing out of single hull tankers in European waters, 

based on OPA 90, basically contains the following elements: 

● Phasing-out of single hull non-TSPP 1978 tankers by 2005, single hull TSPP 

1978 tankers by 2010, and single hull tankers below 20,000 tons dwt by 2015;  

●  Removal of the provision for HBL made under the MARPOL Convention; and 

●   Introduction of financial incentives for operating double hull tankers or tankers 

exhibiting similar safety characteristics. 

Many issues on this list of amendments are creating difficulties for the EU Commission, 

the Council and the Parliament to reach a common view.  As regards the proposal for the 

accelerated phasing-out of single hull tankers, the IMO has gone a long way to 

accommodate the EU�s positions. In view of the decisions emanating from the 46th 

session of the MEPC in April 2001, it seems highly likely that the regional rules in 

Europe will be avoided (The Indian Mariner�s News Desk, 2000a, p.1; The Indian 

Mariner�s News Desk, 2000b, p.1; �In the wake� 2000, p.1; �The Erika accident�, 2000, 

pp. 5-6). 

 

4.2.2.  Erika II-package   

The second package presented by the Commission on 6th December 2000, contains the 

following new far reaching proposals: 

● Improved VTS1 in European waters 

● Establishment of European Maritime Safety Agency 

● International oil compensation regime  

● Increased transparency (EQUASIS2)  

                                                 
1 Vessel Traffic Services contribute to the safety of life at sea, safety and efficiency of navigation and 
protection of maritime environment, adjacent shore areas, work sites and offshore installation from 
possible adverse effects of maritime traffic.  IMO resolution 857(20), SOLAS regulation V/ 12, MSC 
circular 952, IALA recommendation V/ 103, and Maritime and Coast Guard Agency � MGN 109 (M+F) 
are the existing instruments dealing with the requirement of VTS. 
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 These proposals will have to undergo the decision making process of the Council as 

well as the Parliament, as in the case of the �Erika I-package�.  The Erika II-package is 

also bound to confront the tanker industry with far reaching practical and tactical 

challenges (The Indian Mariner�s News Desk, 2000b, p.1; EU � EP, 2001, pp. 1-2). 

 

5.  Single-hull phase out – Revised timetable 
 

At the 46th session of the MEPC held in April 2001, IMO agreed to a revised timetable 

for elimination of single-hull tankers by 2015 or earlier.  The new phase-out timetable 

will be included by amending regulation 13G of Annex 1 of MARPOL 73/78 and will 

enter into force in September 2002. The content of the revised timetable is as follows 

(IMO, 2001b, pp. 1-2; True, 2001, pp. 68-69):    

 

5.1.  Three categories of tankers   

The new regulation identifies three categories of tankers as below: 

Category 1 - oil tankers of 20,000 tons dwt and above carrying crude oil, fuel oil, heavy 

diesel oil or lubricating oil as cargo, and of 30,000 tons dwt and above carrying other 

oils as cargo, which do not comply with the PL/ SBT requirements. 

Category 2 - oil tankers of 20,000 tons dwt and above carrying crude oil, fuel oil, heavy 

diesel oil or lubricating oil as cargo, and 30,000 tons dwt and above carrying other oils, 

which comply with the PL/ SBT requirements. 

Category 3 - oil tankers of 5,000 tons dwt and above but less than the tonnage specified 

for Categories 1 and 2.  

                                                                                                                                                
2 On January 28, 2000, the maritime administrations of France, United Kingdom, Spain, Singapore, US 
Coast Guard and European Commission signed an agreement to set up a ship safety database formally 
known as Equasis information system that is aimed at eradicating dangerous vessels.  Equasis will be 
collecting safety-related information on the world�s merchant fleet from both public and private sources 
and making it easily accessible on the Internet.  This database will include information of Port State 
Control inspections as well as detention information from France, Far East, and United States, along with 
industry details such as classification, insurance and participation in inspection schemes (Equasis, 2000) 
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5.2.  Exemption   

With the revised regulation I/13G of MARPOL, although 2015 is set as the new cut-off 

date for phasing-out single hull tankers, the flag administration may allow some newer 

single hull ships registered with them and conformed to certain technical specifications, 

to continue trading until the 25th anniversary of their delivery.  However, any port state 

can deny entry of such single hull tankers to their ports or offshore terminals, but they 

must communicate their intention to IMO (IMO, 2001b, p.2). 

 

5.3.  Condition Assessment Scheme (CAS)  

MEPC in its 46th session adopted a resolution on the Condition Assessment Scheme, 

which will be applied to all Category 1 vessels continuing to trade after 2005 and all 

Category 2 vessels after 2010.  The requirements of the CAS include enhanced and 

transparent verification of the reported structural condition of the ship and verification 

that documentary and survey procedures have been properly carried out and completed.  

Further, the scheme requires that compliance of CAS be addressed during the ESP 

concurrent with intermediate or renewal surveys as required by resolution A.744 (18), as 

amended (IMO, 2001b, p.2). 

 

6.  Other Post-Erika Amendments 
 

In October 2000, the IMO adopted amendments to the CLC and the IOPC Fund 

Convention and raised the limits of compensation by 50%, payable to victims of 

pollution by oil from tankers.  In December 2000, amendments to the guidelines on the 

EPI3 during surveys of bulk carriers and oil tankers in relation to the evaluation of the 

longitudinal strength of the hull girder of oil tankers were also adopted.  In response to 

                                                 
3 Amendments to resolution A.744 (18) Guidelines on the enhanced program of inspection during surveys 
of bulk carriers and oil tankers, 1993. 
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the Erika incident, the IMO has taken action on several other operational matters aimed 

at enhancing safety and minimizing the risk of oil pollution (IMO, 2001b, p.2). 

 

To summarise, even though the international maritime regime does cover the entire 

spectrum of safety in design, construction and operation of ships, safety of people and 

environment, the accidents still occur mainly because some responsible parties are not 

properly implementing the safety regime.  Accidents, like the sinking of the Erika, occur 

due to the casual and irresponsible attitude of some ship owners, operators, classification 

societies, flag states, charterers, etc.  Most of the accidents pave way to public outcry 

and become a whip in the hands of the lawmakers to adopt and implement the new laws, 

mostly to satisfy the aroused public.  This indeed becomes punishment to the innocent 

and responsible shipowners and operators.   

 

In the IMO accelerated phasing-out or �Dead Drop� requirements of single-hull tankers, 

even many well-maintained tankers will have to accept premature death and go to the 

graveyard before completing the normal life span. The consequences of such hasty 

actions may seed direct and indirect harm to the shipping industry.  The oil price may 

shoot up.  The shipowners may hesitate to buy stronger and costlier ships. 
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CHAPTER 4 

 

Design Characteristics of Double Hull Tankers  
 
1.  Introduction 
 

Since June 1990 the OPA 90 has required all new tankers trading in USA to have double 

hull, and since July 1993 the IMO has set out a phased program requiring all new 

tankers trading worldwide to have double hull or equivalent design.  Magelssen (1997, 

p.2) states-  

By introducing these Rules it is concluded by the Rule-makers that a 

possible oil spill after a collision or grounding will be reduced for a double 

hull tanker. 

 With the introduction of these rules, the world tanker fleet has been changing slowly to 

double hull in the beginning and then gathering momentum gradually.  The statistics 

published by Intertanko (�Tanker transport�, 1999, p.4) show that the majority of the 

world tanker fleet is still made up of single hull, but the proportion of the double hull 

tankers has increased from 4% in 1990, to 10% in 1994, and some 27% in 1999. They 

have estimated that by 2002 double hull tankers will account for 50% of the world 

tanker fleet. 

 

The effectiveness of the present regulations regarding the construction and operation of 

double hull tankers is the main concern both from an environmental as well as a 

commercial perspective.  In this chapter, first the salient points of the double hull tanker 

regulations will be addressed, then the problems faced in double hull tanker design and 
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construction will be discussed, and finally, some of the alternative double hull tanker 

designs will be briefly presented. 

 

2.  Regulatory features  
 

We have seen in Chapter 2 that the OPA 90 and the regulation 13F of Annex I 

[I/13F(3)]1 of MARPOL 73/78 require construction of all new oil tankers of 5,000 tons 

dwt and above to be double hull.  Regulation I/13F(3) requires that the entire cargo tank 

length is to be protected by ballast tanks or spaces other than cargo and fuel oil tanks, in 

addition to stipulating the minimum height, depth and width of these tanks and spaces. 

The requirements are summarized as follows: 

●  the wing tanks or spaces are to be extending either for full depth of the ship�s 

side or from the top of the double bottoms to the uppermost deck; 

●  the minimum width at any point of the wing tanks or spaces shall not be less than 

calculated from the formula given in the regulation or two meters which ever is 

less, but not less than the minimum value of one meter; 

●  the double bottom tanks or spaces are to be extending either from side shell to 

side shell, or from side tank or space to side tank or space; 

●  the minimum depth at any cross-section of the double bottom tanks or spaces 

shall not be less than B/15 (meter) or 2 m which ever is less, but not less than one 

meter; 

●  if the side tanks are common to the double bottom or a portion of it, the tanks are 

generally J or L tanks in order to comply with the regulation I/25A. 

 

Regulation I/25A, which came into force on February 1, 1999, practically requires 

longitudinal central bulkheads in order to comply with the intact stability criteria.  

                                                 
1 Regulation I/13F(3) means regulation 13F(3) of Annex 1 
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Regulation 13F(3) also deals with other details such as turn of the bilge area, aggregate 

capacity of ballast tanks, suction wells in cargo tanks, and ballast and cargo piping.  Oil 

tankers of less than 5,000 tons dwt must at least be fitted with double bottom tanks or 

spaces having a depth of B/15 (meter) with a minimum value of 0.76 m.  The regulations 

do not mention the requirement of side tanks or space for oil tankers of this size 

category.  However, the capacity of cargo tanks cannot exceed 700 m 3  unless fitted with 

wing tanks or space complying with the requirements stated earlier. 

 

3.  Design & Construction problems 
 

The double hull concept simply means that the cargo oil tanks are separated from the 

outer hull by means of a space large enough to absorb low-speed impacts.  Fig 4 shows 

midship section with nomenclature of a typical double hull tanker.  Björkman (1992, 

p.321) says that the most obvious structural solution to this requirement is to build the 

double hull of sandwich panels.  The sandwich panels mean that the webs and stiffeners 

of inner and outer shells will be inside the double hull. 

 

With the implementation of double hull regulations, the geometrical structure of oil 

tankers has undergone changes.  According to Magelssen (1996, p.2), the change in 

length/draught (L/D) is from approximately 11.5 to 10, with considerable reduction in 

scantling.  Particularly with the use of high tensile steel (HTS), the critical buckling 

stresses will often exceed the acceptable corrosion limit applicable to pre-MARPOL 

designs.  A double hull ship built with HTS in deck and bottom area will have a ratio of 

30-40 % between HTS and mild steel. 

 

For small size double hull tankers the regulation requires more ballast volume than that 

for single hull ships of the same size.  Magelssen (1996, p.2) clarifies that the 

requirement for more ballast volume reduces with the increase in size of the vessel, and 
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                               Fig. 4.  Typical double hull midship section nomenclature 

(Source: Tanker Structure Co-operative Forum) 

 

for ships of 80- 100,000 tons dwt, there may not be any difference.  But the area exposed 

for ballast will be between 2-3 times more in double hull tankers than in single hull 

tankers of the same size. This means that more area is exposed to possible corrosion 

requiring protection by coating and access to the structure, involving additional 

expenditure. 

 

Magelssen (1996, p.2) foresees that for large double hull tankers, ballast conditions 

involving filling up of all ballast tanks may give rise to a high still-water bending 

moment.  To reduce this effect, forepeak tanks may have to be only partially filled.  For 
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tankers designed without longitudinal bulkheads and built before regulation 25A entered 

into force, stability will be another area requiring attention. 

 

In a conventional double hull tanker, because of the mandatory even distribution of 

cargo oil tanks and ballast water tanks, hull girder bending moments are higher than for 

single hull tankers in both the loaded and ballast conditions (Hah and Akiba, 1994, 

p.268).  This results in high hull girder bending stresses throughout the ship�s life. 

 

Björkman (1992, p.321) explains the difficulties associated with the design of a double 

hull tanker with a small distance between inner and outer shell plates, which houses the 

webs and stiffeners as follow: 

●  complex task to calculate the combined stresses and buckling strength as static 

and dynamic loads stress the shell plates longitudinally, transversally and 

laterally;  

●  cumbersome to carry out the manual welding due to the restricted access for 

welding stiffeners to webs inside the double hull space; 

●  corrosion protection by coating and anodes for the double hull space, used to 

carry ballast water, becomes a major concern due to the maximum structure 

inside the space; 

●  easy access and ventilation are to be incorporated to facilitate removal of ballast 

water sediments, for general cleaning, maintenance and inspection, and for 

monitoring presence of gas leak within the sandwiched double hull space. 

 

It is difficult to carry out proper welding in the narrow space between the inner and outer 

shell congested with webs and stiffeners.  A welder may not be able to position himself 

properly at many locations in order to carry out welding.  There may not be sufficient 

ventilation in the space and the smoke and heat generated by welding cannot escape 

easily.  Further, access for welding to many areas may be difficult.  The welder will feel 
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fatigued soon.  All these factors can result in poor workmanship and welding quality.  

Another factor requiring consideration is the amount of welding to be carried out in the 

congested double skin space.  As there is an additional hull compared to a single hull 

tanker, the welding length in the double hull space is almost double.  The amount of 

work for the yard quality control department, statutory surveyors and classification 

surveyors carrying out welding inspection will also increase considerably.  Also, the 

possibility of human error while carrying out tedious inspections in congested space 

cannot be ignored. 

 

4.  Alternative Double Hull designs 

 
In order to overcome some of the major design and construction difficulties, Björkman 

(1992, pp. 321-328) describes the following five pairs of alternative designs complying 

with the double hull regime.  To demonstrate the alternatives, he has used 280,000 tons 

dwt VLCC with the following approximate particulars: Length: 320 m, Breadth: 57.5 m, 

Depth: 30.3 m, Draught: 21 m, Cargo capacity: 330,000 m 3 , Ballast capacity including 

peak tanks: 105,000 m 3 , cargo tank body length: 255 m and web spacing: 5.32 m. 

 

MARPOL cargo tank size limitations are met by the suitable location of longitudinal 

bulkheads.  Each figure from 5 to 14 shows a simple cargo tank layout at the top, a 

transverse web section at the middle, and primary supports on the transverse bulkhead 

and the access trunks to the double bottom tanks at the bottom 
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4.1.  Alternatives A1 and A2 

Figs. 5 and 6 are two alternatives A1 and A2, where the double hull spaces at sides and 

bottom have a uniform distance between inner and outer skins of 3.5 m.  There are four 

pairs of side and double bottom ballast tanks.  The main difference between A1 and A2 

is in the web fitting of the longitudinal bulkhead separating centre and side cargo tanks.  

In A1, the web is fitted at the centre cargo tank side, whereas in A2 it is at the side cargo 

tank side.  The access to the double bottom tank is via trunks incorporated in a vertical 

web on the transverse bulkhead and a longitudinal bulkhead web.  The inner and outer 

side shell stiffeners are located inside the double skin space.  These designs incorporate 

all the four problems, described earlier.   

 

 
                  Fig. 5. Alternative A1                                  Fig. 6. Alternative A2 
                                       (Source: The Naval Architecture, 1992 June, p.321) 
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4.2.  Alternatives B1 and B2 

Figs. 7 and 8 show alternatives B1 and B2, which have 2 m deep double bottom tanks 

and 5 m wide side tanks.  The inner bottom longitudinals are fitted in the cargo tanks.  

As the double bottom is not a sandwich construction, carrying out assembly welding in 

this space is easier.  Further, welding inside the space is limited to upside welding of the 

web and vertical stiffeners to the inner bottom shell.  The inner bottom plate is subject to 

less transverse stresses because its position is close to the neutral axis of the bottom web.  

The bottom web flanges take the maximum stresses.  Access to the double bottom space 

is similar to A1 and A2. 

     

  
               Fig. 7. Alternative B1                                     Fig. 8. Alternative B2 
                                                                 (Source: The Naval Architecture, 1992 June, p.321) 
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Although in B1 the inner side shell stiffeners are located in the ballast tanks, they are not  

sandwich panels as there is sufficient width between inner and outer shells and the two 

panels are joined at the web.  In B2 the inner side shell stiffeners are located in the side 

cargo tank.  The conventional web beams support the inner and outer shells and the 

quantity of steel structure in ballast tanks is reduced.  

 

In B1 and B2 the side ballast tanks can carry about 70% of the ballast.  As these tanks 

are wider in construction, they can be easily cleaned and ventilated.  The double bottom 

tanks may need to carry less quantity of ballast water as peak tanks can also be used for 

ballast.  This facilitates filling of double bottom ballast tanks in the open clean sea and 

avoids ballast sediments collecting in the tanks. 

 
              Fig. 9. Alternative C1                                           Fig. 10. Alternative C2 
                                                                 (Source: The Naval Architecture, 1992 June, p.321) 
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4.3.  Alternatives C1 and C2 

Figures 9 and 10 show alternatives C1 and C2, where the double bottom tanks are 2.33 

meters deep and the double side tanks are 4.66 meters wide.  The difference between C1 

and C2 is in the location of longitudinal bulkhead web between the side and central 

cargo tanks and the construction of double bottom.  In C1, web fitting of the longitudinal 

bulkhead is in the side cargo tank, whereas in C2 it is in the central cargo tank.  

Similarly, the inner bottom longitudinals are fitted in the cargo tanks side in C1, whereas 

it is fitted in double bottom in C2. 

 

4.4.  Alternatives D1 and D2 

 
              Fig. 11. Alternative D1                                        Fig. 12. Alternative D2 
                                                     (Source: The Naval Architecture, 1992 June, p.323) 



 43

Figures 11 and 12 show alternatives D1 and D2.  The alternatives have 2m wide double 

hull with inner shell stiffened in the cargo tanks.  The double bottom is not of a 

sandwich construction, but with two panels fitted on top of each other, similar to B1 and 

B2, with the inner shell plate located close to the transverse web frame neutral axis.  As 

the double hull space used for carrying ballast water has only 2m widths, this space 

alone cannot carry adequate quantity of ballast water to meet the MARPOL 

requirements.  Either one centre tank or a pair of side tanks must be allocated for ballast 

purposes.  Further, it may be possible to arrange four U-shaped ballast tanks in the 

double hull cargo body, meeting the requirements of regulation I/25A.  Such an 

arrangement can facilitate easy ventilation of these tanks from one side to other. 

 

4.5.  Alternatives E1 and E2 

             
            Fig. 13. Alternative E1                                          Fig. 14. Alternative E2 
                                                         (Source: The Naval Architecture, 1992 June, p.323) 
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Figures 13 and 14 show alternatives E1 and E2.  The main difference between E1 and 

E2, and other alternatives is in the design of the double bottom tanks.  Other alternatives 

have transverse webs inside double bottom supporting the outer shell longitudinals.In E1 

and E2, one longitudinal girder with two longitudinal stiffeners replaces the inner and 

outer shell bottom longitudinals.  The unidirectional stiffened double bottom has no 

transverse webs inside the double bottom.  The transverse webs inside the cargo tanks 

support the longitudinal girders.  The difference between alternative E1 and E2 is that in 

the former the longitudinal bulkhead web is in the wing tanks and in the latter it is in the 

centre tank.  

 

The double bottom space consists of five double bottom tanks extending the entire 

length of the tank body.  There are two accesses in each double bottom tank, one at the 

collision bulkhead and the other from the pump room.  The advantages of these designs 

are the ease in cleaning and ventilating the double bottom tanks.  The tanks can be 

ventilated from forward to aft.  Similarly, with an after trim the tanks can be washed to 

the after side and the sediments collecting near to the pump room can be easily pumped 

out. Further, it is easy to fabricate the unidirectional stiffened double bottom with the 

absence of web connections and stiffeners in the space.  As double bottom space does 

not require access in the tank body, the transverse bulkheads are vertically stiffened with 

horizontal stringers as support.  During the ballasting process, the double bottom ballast 

tanks should be ballasted at the last stage in clear seas to avoid collection of sediments.  

It may be possible even to avoid ballasting of double bottom tanks in case the side tanks 

are large enough to take the required ballast. 

 

Even though alternatives E1 & E2 are superior to other alternatives, Björkman expresses 

his dissatisfaction for various reasons.  Many yards and owners go for sandwich panels 

and then try to remedy the difficulties through additional arrangements such as vent/ 

purge pipes in the ballast tanks, fixed gas detection system, etc.  It is known that a 
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double hull tanker requires extra steel for construction as compared to a monohull 

tanker.  But the steel should be arranged to locate high stresses in safe places, facilitate 

access and ventilation and allow collection of sediments in easy locations for removal.  

 

To conclude, double hull for new tankers has become a mandatory requirement by 

amendment to the MARPOL 73/78 Convention and the OPA 90, although alternative 

designs providing equivalent protection are also acceptable under the former.  Basically, 

the double hull concept requires cargo oil tanks to be separated from the outer hull by a 

space large enough to absorb low energy impacts.  MARPOL regulations specify 

minimum dimensional requirements for this space. 

 
With the change in geometrical structure of the hull, there may be considerable 

reduction in scantlings in double hull tankers.  Further, the critical buckling stresses 

often exceed the acceptable corrosion limit, particularly with the use of HTS.  For a 

large double hull tanker on a ballast passage with all ballast tanks full, the condition may 

give rise to a high still water bending moment.   Carrying out welding and quality 

inspection with restricted access inside the double hull space is cumbersome and can 

adversely affect in the quality of welding. In addition to many technical problems and 

difficulties with regard to the design and construction, double hull tankers are costlier 

than single hull tankers with the use of more steel for construction. 
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CHAPTER 5 

 

Double Hull Tanker Concerns 

 
1. Introduction 
 

Long-term preservation of anything that resides in an exposed environment is a difficult 

objective, and this is particularly true for ships operating in the marine environment.  

The old saying � corrosion never sleeps� is definitely true, but Birkholz (1997, pp.1-4) 

opines that this may be a little understated, as corrosion actually appears to go on binges.  

Coatings are the primary line of defence against corrosion as they work to keep the 

oxygen and moisture away from the metal.  Present day coatings available are mostly 

�surface tolerant�1 

 

Many critics have pointed out that a conventional double hull tanker has numerous 

potential operation problems.  Magelssen (1996, pp.2-4) has listed some of them, which 

include cargo leak to ballast tanks from explosion and pollution points of view, 

maintenance of corrosion coating in extended ballast area, difficult pipe replacement, 

problems in ventilating the ballast tanks, difficulties in fire fighting due to less heat 

transfer, and stability problems without longitudinal bulkheads in cargo area. 

 

The focus of this chapter is to discuss various operational problems faced and the risks 

involved in double hull tankers.  First the difficulties for inspection, monitoring, 

                                                 
1 Surface tolerant coatings can be applied over a less than well-prepared surface. 
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cleaning and maintenance of double hull ballast space will be discussed together with 

the effects of free surface and sloshing.  This will be followed by a discussion on 

corrosion and fatigue risks, and finally, an analysis on the structural failures in double 

hull tankers will be presented. 

 

2.  Potential operational problems 
2.1.  Problems relating to ballast space 

The complexities involved in double hull tanker construction, which include a 

proliferation of webs and stiffeners in narrow spaces between double shells, cause many 

operational problems and difficulties.  Hah & Akiba (1994, p.268) point out some of 

them, which are explained in the following five paragraphs.  

 

A double hull tanker has vast boundary areas between the cargo tanks and ballast tanks 

as well as between the sea and water ballast tanks.  Inspection of these entire spaces is 

cumbersome.  The ballast tanks will be humid, wet, dark and slippery, and hence are not 

assessable to proper inspection.  The performance and reliability of oil and vapour leak 

detection systems in double hull spaces have not been proved successful.  Such systems 

are difficult to be kept in proper operational condition in such locations.   

 

It is difficult to remove any oil leaking into the ballast space and the risk of oil pollution 

is high when ballast water is discharged into the sea.  Accumulation of dirt and sand in 

ballast tanks cannot be avoided when the ship has to ballast dirty seawater in order to 

maintain stability and control structural stresses.  Removal of dirt and sand from double 

bottom and narrow double side tanks is difficult. 

 

In a double hull tanker, ballast space surface areas requiring coating protection are 

almost double compared to a single hull tanker of similar size.  Therefore, efforts needed 
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for maintenance of the coated surfaces are double.  A higher risk of coating breakdown 

can also be expected. 

 

Damage to the ballast tank corrosion protection coatings, can occur during inspection of 

the space, repair of valves and welding repairs.  Structural welding repairs at the 

boundary areas between cargo tanks and ballast tanks will damage the coatings in the 

double hull space.  It is difficult to detect and carry out effective repairs of the damaged 

coatings due to the dark, wet and humid conditions inside the double hull ballast tanks. 

 

Double hull space is complex with various structures within a narrow space.  Congestion 

with the presence of webs and stiffeners restricts the airflow during ventilation and gas 

freeing operations.  Problems to ventilate and gas free the double hull space make 

inspection and maintenance difficult and dangerous. 

 

2.2.  Free surface effect & angle of loll 

A ship having a negative initial metacentric height2 (GM) will heel to one side, when an 

external force such as wave or wind acts, to an angle till the centre of buoyancy moves 

out to a position vertically under the centre of gravity and the capsizing moment 

disappears.  The angle of heel at which this occurs is called angle of loll (Derrett, 1990, 

p.45).  According to Lloyd�s Register (LR), sudden lolling during cargo and ballast 

operations experienced on some double hull tankers is caused primarily by the 

occurrence of free surface effects in cargo oil and ballast water tanks (�Double-hull 

concerns�, 2000, p.18).  During loading/unloading and ballasting/deballasting, there can 

be free surfaces in many tanks at the same time and the effects from each tank added 

together will increase the risk of high reduction in GM.  Some double hull tankers are 

                                                 
2 Metacentric height (GM) is the distance from centre of gravity of a ship to its metacentre.  Metacentre of 
a ship is the point at which the verticals through the centres of buoyancy at two consecutive angles of heel 
intersect    
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without longitudinal bulkheads subdividing the cargo tanks, and having tanks of much 

more breadth than that of single hull tankers.  Derrett (1990, p.184) states that doubling 

the cargo or ballast tanks� breadth increases the free surface effect by eight fold.  In a 

ship with a small initial GM, the creation of free surface can cause a virtual loss of GM.  

This can cause the ship to take up an angle of loll, which may be dangerous and, at the 

very least, undesirable (Derrett, 1990, p. 48).   

 

As double hull tanker design generally uses double bottom and side tanks for carrying 

ballast water, the free surface effects associated with these tanks can be very high unless 

filled to the inner bottom level. Problems of critical loss of GM with the presence of free 

surfaces are likely to occur when the ship is close to a fully loaded condition, either 

nearing completion of loading or shortly after commencing discharge operation 

(�Double-hull concerns�, 2000, p.18).  The free surface effects will be extremely high in 

slack3 double bottom tanks extending from side to side.  The international convention on 

ballast water management, due to be introduced by IMO in 2003, might require ships to 

change ballast water at high seas, and the risk of free surface effects could increase 

further ( IMO, 2001c, p.1; IMO, 1997b, pp. 228-231). 

 

Det Norske Veritas (DNV) (1999, pp. 1-2) has published an incident of listing of a 

double hull tanker during cargo operation caused by the free surface effects.  A product 

carrier of 1996 built and 28,000 GT while loading at a terminal, listed heavily to port 

during shifting of ballast, and stabilised at about 16 degrees port list whilst touching the 

bottom. At the time of the incident, the ship was almost at even keel and the draft was 

about 9m.  Investigations concluded that slack cargo tanks with no longitudinal 

bulkheads might have caused large free surface effects and the loss of initial GM, and 

the initial instability might have resulted in heeling the ship to the angle of loll.  It was 

confirmed by sounding that there had been significant asymmetrical distribution of 
                                                 
3 Slack tank means any tank that is not totally empty or full. 
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ballast before the ship listed, which also might have contributed to a high angle of loll 

along with the shifting of ballast water through crossover valves. 

 

          
 Fig.15. Diagrammatic section of a single        Fig. 16. Diagrammatic section of a double  

             hull tanker and its stability curve.                     hull tanker and its stability curve.  
                                            (Source: The Naval Architect, 2000, June, p. 28) 
The diagrammatic sections with stability righting lever curves of a single hull tanker and 

a double hull tanker in fig.15 and fig. 16, respectively, illustrate the essential differences 

in free surface effects in tankers with and without longitudinal subdivision of the cargo 

tanks (�Double-hull concerns�, 2000, p.18).  Comparing the stability curves4 it can be 

observed that a single hull tanker with longitudinal subdivision has high initial GM, 

                                                 
4 Stability curves, also called as GZ curves, provide information of the righting lever about an assumed 
center of gravity at any angle of heel and particular displacement, range of stability, angle of vanishing 
stability, maximum GZ, initial GM, etc. of a ship. 
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maximum GZ, high range of stability and good angle of vanishing stability, whereas a 

double hull tanker without longitudinal subdivision has all the above factors low in 

addition to the negative GZ causing an angle of loll.  

 

2.3.  Sloshing 

In the double hull tankers, partial loading of cargo in centre tanks with large smooth and 

plain bulkhead panels, can cause damage to bulkheads and internal fittings during rolling 

of the ship by sloshing.  The effect of sloshing increases with increase in tank breadth 

and high-density cargo (DNV, 1992, p.1).  An oil tanker of 56,000 GT while carrying 

high-density heavy fuel, suffered structural collapse of cargo pipes inside an oil tank.  

Some cargo tanks, including No.2 tank, were partially filled. When the vessel 

encountered rough weather, steam heating coils in No. 2 tank were lost.  Investigations 

concluded that sloshing created unforeseen forces, which damaged the piping and 

heating coils.  The report referred to the above states that in new double hull tankers 

with smooth centre tanks, the cargo pipe arrangement placed on the tank top would have 

to be protected against sloshing.  Stronger and more closely spaced supports and better 

clamping are among the features to be considered. 

 

3.  Corrosion risks 
 

Statistics indicate that corrosion damage increases when ships are 12-15 years of age.  

Magelssen (2000b, p.1) states that some of the double hull tankers have corrosion 

problems even before reaching this age, as more areas are exposed to ballast water with 

low quality coating and low maintenance level.  Corrosion rates are generally severe on 

horizontal surfaces.  In oil cargo tanks, the residual water from the cargo and from water 

washing will lie on transverse bulkhead horizontal girders and on the inner bottom.  

These areas are generally left uncoated resulting in wastage of the plating, which are 

prominent towards the after end of the tanks due to the trim by stern (TSCF, 1995, p.19). 
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According to Bjarne Thygensen of Ospery Maritime Limited in London, high 

temperature in double hull tankers may be a contributing factor for a relatively high rate 

of corrosion in the upper part of a cargo tank.  Other contributing factors for high 

corrosion rate are sulphur from inert gas, carbonic acid (H 2 CO 3 ) formed by combining 

CO 2  with water, hydrogen sulphide (H 2 S) released from crude oil, and insufficient 

crude oil washing under deck to remove acidic deposits and corrosion products.  The 

corrosion rate multiplies with increasing salinity, temperature, oxygen content, water 

velocity, and content of contaminants promoting corrosion (Magelssen, 2000b, p.7). 

 

3.1.  Pitting 

Pitting is a form of local corrosion within limited areas (Magelssen, 2000b, pp. 10-12).  

According to the Oil Companies International Marine Forum (OCIMF), excessive 

pitting corrosion of up to 2 mm per year was observed in the uncoated bottom plating in 

cargo tanks in new single and double hull tankers. In addition, indication of general 

corrosion up to 0.24 mm per year has been found in vapour spaces.   Magelssen explains 

that severe pitting occurring in the bottom of cargo and ballast tanks or other horizontal 

surfaces may tend to merge to form a long groove or scabies of wide patches with 

resemblance of general corrosion.  Fig. 17 shows a typical grooving corrosion in a 

stiffener connection.  The average corrosion rate in pits and grooves can be very high.  

When grooves occur close to a weld between a longitudinal bulkhead and the deck, it 

may create a higher deformation of the stiffener resulting in an accelerated corrosion rate 

in the groove.  This condition, at times, introduces a �necking effect�.  Fig. 18 shows a 

typical grooving corrosion in stiffener connection. 

 

In 1997 the American Bureau of Shipping (ABS) reported that accelerated pitting 

corrosion rates were discovered in the cargo tank bottom plating of a number of 
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relatively new double hull crude oil tankers.  This evidence suggests that corrosion rates 

for under deck plating in uncoated cargo tanks of double hull tankers can be two to three 

times the normal anticipated rate.  There are several reports of severe pitting corrosion, 

to a depth of 3 to 4 mm, in the inner bottom plating of cargo tanks, which can be 

attributed to the collection of water where there has been a breakdown of natural oil film 

coatings formed from cargo (�Double hull concerns�, 2000, p.18).  Fig. 19 shows severe 

pitting corrosion in the bottom plate of a combined oil/water ballast tank.  

 

      
    Fig. 17. Grooving corrosion in a stiffener connection  (Source: DNV paper series No.2000-P008. p.11) 

 

3.2.  Bacterial corrosion 

Small animals eating steel may sound mythical, but it is a fact that bacteria initiates 

chemical processes resulting in high local corrosion rates.  This is often described as 

�bacterial corrosion� or �microbial corrosion� or more correctly �microbial influenced 
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                            Fig. 18.  Typical grooving corrosion in stiffener connection  
                                            (Source: DNV paper series No.2000-P008. p.12) 

                 

                 
              Fig. 19. Severe pitting corrosion in the bottom plate in a combined oil/water  

                           ballast tank                              (Source: DNV paper series No.2000-P008. Appendix 1)           
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corrosion (Magelssen, 2000b, p.14).  A mixture of oil, water and heat is a perfect 

breeding ground for bacteria.  Some may require oxygen and others are anaerobic.   

 

Microbial induced corrosion (MIC) associated with the corrosion of steel is from 

sulphate reducing bacteria (SRB) and sulphur oxidizing bacteria (SOB).  Acid is the 

result of a chemical process, and consequently, pitting corrosion at an extreme rate may 

occur.  Double hull tankers are more prone to this corrosion due to the �thermos bottle 

effect�.  On the loaded passage, the ballast tanks provide a buffer between the cargo and 

the sea, acting almost as a thermos flask.  The cargoes retain their heat and bacterial 

growth has been shown to increase dramatically with temperature as crude oil routinely 

has small water content (�First fire�, 2001, p.27).  Fig. 20 is a typical example of 

bacterial corrosion.  Experience indicates that bacterial corrosion occurs at a temperature 

range of 20°C to 50°C with a longer time duration, which explains the reason why long 

trade VLCC are much more exposed to this type of corrosion than other tankers on 

shorter runs (Magelssen, 2000b, p.14).  

 

3.3.  Coating 

The main parameter for a good and safe ship operable over a long period is avoidance of 

the situations giving rise to the need for steel renewal.  To achieve this, Magelssen 

(2000b, pp.16-17) stresses that the factors, viz., coating and anodes, increased scantling, 

design, combination of the above and access are to be taken into account.  Although 

these will increase the new building costs, the life span of the ship will be considerably 

increased.  Fig. 21 shows pitting corrosion in the bottom plate of a ballast tank.  Coating 

is the remedy for avoiding pitting.  Fig. 22 shows protection by good coating in a pitted 

plate.  Increased scantling and coating will reduce general corrosion.  To encourage ship 

owners, classification societies have introduced voluntary class notations for scantling 

and coatings.  DNV has introduced notations such as Increased Corrosion Margins 

(ICM) for increased scantling, COAT-1/2 for coating, etc.    
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Fig. 20.  Bacterial corrosion   (Source: DNV paper series No.2000-P008. p.15)  

 

4.   Fatigue risks 
 

Avoiding fatigue cracks in ship structures has become a priority for safety of ships.  

Such cracks may result in pollution as well.  The VLCCs built in the 1980�s and in the 

beginning of the 1990�s have experienced fatigue damage, which has become an 

industrial problem due the lack of fatigue prevention requirements in the classification 

society rules.  Prior to 1990, Class Rules had only implicit fatigue criteria, expressed in 

the material factor (Dugstad, 2000, p.9).   
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             Fig. 21.  Pitting corrosion with build up of scale rust in the bottom plate  

                           of  a ballast tank             (Source: DNV paper series No.2000-P008. Appendix 1)  

                    
                           Fig. 22.  Coating is the best solution when pitting occurs  
                                          (Source: DNV paper series No.2000-P008. p.21)           
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                       Fig. 23. Fractures/ Cracks statistics.        (Source: DNV paper series No. 2000-P0004, p.5) 

 

 Hull damage may be categorised as damage due to deformation, corrosion/surface 

defects, and fractures/cracks.  Deformation damage has been recorded for less than 10%, 

whereas, corrosion damage accounts for approximately 45% and fracture/crack damage 

for about 40%.  Some damages reported are unspecified (Magelssen, 2000a, pp.1-3).  

Fig. 23 shows fractures/cracks in DNV classed ships during 1989-98.  From this 

statistics, it can be observed that the share of cracks as a fraction of all hull damage for 

the ship types tanker for oil, bulk carrier and container carrier has increased from 

approximately 40% to 50%. 

 

Fatigue life can be expressed by a simple formula: N = C.
3

.
1

��

�
��

�

kσ
             where 

N = fatigue life in years, C = constant including the environment, σ = nominal stress, 

k = stress concentration factor. 
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From this formula, it can be seen that fatigue life is proportional to the third power of the 

stress amplitude.  Magelssen  (2000a, pp. 12-13) & Dugstad (2000, pp. 3-8) explained 

factors affecting fatigue life, which includes the following. 

 

4.1.  Environmental loads & corrosion 

Cyclic loading causes fatigue damage and for ships, high amplitude varying sea waves 

and hull girder wave bending moments are the main contributors.  The most exposed 

areas of a ship for possible fatigue damage are side structures located between the 

loaded and ballast waterline, which is subjected to local dynamic sea pressure, the deck 

to hull girder stress, and bottom structure to a combination of hull girder stress and local 

sea dynamic pressure. 

 

In a corrosive environment if the steel structure is exposed, the lifetime of the steel can 

be reduced by 50% due to fatigue.  Hence it is important to apply a good protective 

coating from new building stage and maintain it during the ship�s lifetime. 

 

4.2.  Steel types  

Fatigue strength of a welded joint is the same for mild steel and HTS, even though yield 

strength for HTS is more.  The lack of fatigue requirement in Class Rules prior to 1990 

instigated ship owners to build ships using a large quantity of HTS in order to reduce the 

lightweight of the ship, increase the dead weight, and thereby reduce the building cost 

and increase the earning cost.  The scantling was reduced too much when HTS was used, 

which was the cause of the majority of fatigue damage cases.  Small scantling will also 

give high deflection and thereby a high risk for coating damage. 

 

4.3.  Trading routes 

Due to different wave environments fatigue life may vary with a factor of two or more.  

Critical environmental areas for fatigue are the North Sea, the North Atlantic ocean and 
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Alaska where fatigue life will be roughly 50% when sailing continuously, compared to 

worldwide trade. 

 

       
    Fig. 24.  Forced deflection                   (Source: DNV paper series No. 2000-P0004, p.16) 

 

4.4.  Relative deflection 

Loads in general for ship design are based on a 20-year return period in the North-

Atlantic.  But when fatigue criteria were introduced, the fatigue load was based on a 

worldwide ship trading.  Fig. 24 illustrates stresses due to forced defection.  Referring to 

the figure, the bending moment (BM) has a peak at the transverse bulkhead, where the 

BM caused by relative deflection and local bending combines to create a peak stress.  

The BM from relative deflection is highly dependent on the flexibility of the web frame 

aft of the transverse bulkhead.  The fatigue life for all the longitudinals and stiffeners is 
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greatly influenced by the stresses due to forced deflection.  As a rule of thumb the 

dynamic load on the side shell is taken as twice the load in the bottom. 

 

4.5.  Hot spot stresses  

As fatigue life depends on the hot spot stresses (σ.k) to the third power, the uncertainties 

in fatigue life calculated can be high.  Examples are underestimated trading patterns, 

stress concentration factor (SCF), etc.  SCF itself can be divided into three main groups, 

viz., due to gross geometry, weld geometry and workmanship.  SCF due to gross 

geometry will vary from 1.5 to 6 depending on the design. Workmanship is based on 

approved yard standards, the influence of which is difficult to judge.  SCF due to weld 

geometry is normally 1.5.  

 

5.  Structural failures in double hull tankers 
 

Fracture/cracks are caused mainly by stress concentrations, which occur at locations 

within primary structure due to specific design configurations or detailed secondary 

design. The Tanker Structure Co-operative Forum (TSCF) (1995, pp. 1-89) has reported 

many structural failures due to stress concentration in double hull tankers of various 

sizes, based on the information received from surveyors of classification societies.  They 

have categorized the failures on the basis of the size and design of the tankers and 

demarcated the areas of stress concentration.  Figs. 25 and 26 indicate the areas within 

the double hull tank structure of a typical large double hull tanker at which higher 

magnitudes of stress will occur on midship sections and transverse bulkheads, 

respectively.      
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          Fig. 25. Areas susceptible to stress concentration and misalignment on midship  

                             of a typical large double hull tanker       (Source: Tank Structure Co-operative Forum, 1995 )     

 

Some typical damages in the tank structure of double hull tankers, reported by TSCF 

along with their proposed repairs, are reproduced below with sketches.  Fig. 27 shows a 

fracture of an inner bottom plate at the weld connection of the bilge hopper plate.  

According to them, contributing factors for the damage are stress concentration at 

juncture of hopper plate to inner bottom shell plate, insufficient welding connection and 

misalignment between the hopper plate, inner bottom and girder.   

 



 63

 

 

 

 
 

Fig. 26. Areas susceptible to stress concentration and misalignment on transverse 

                    bulkheads of a typical large double hull tanker   
(Source: Tank Structure Co-operative Forum, 1995)                                  
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                               Fig. 27. Bilge hopper: Connection of hopper plate to inner bottom                                                                 
                                                                   (Source: Tank Structure Co-operative Forum, 1995) 

 

Fig. 28 shows fracture at the connection of longitudinals to transverse webs in a wing 

ballast tank of a double hull tanker. The causes for the damage are concluded to be the 

asymmetrical connection of the flat bar stiffener resulting in high peak stresses at the 

heel of the stiffener, insufficient area of connection of the longitudinal to the web, high 

bending stresses in the longitudinal, additional torsion stress due to the symmetry of the 
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longitudinal, and stress concentrations at the square angles at heel and toe of the 

connections. 

 

 

                Fig. 28. Wing ballast tank: Connection of longitudinals to transverse webs 
                                                            (Source: Tank Structure Co-operative Forum,1995) 

 

Fig. 29 shows a typical fracture damage of the stiffener connection of a transverse 

bulkhead to the inner bottom shell and the outer bottom shell in a double bottom ballast 

tank.  Contributing factors to the damage are considered to be the misalignment between 

bulkhead stiffener and inner bottom longitudinal, and high stress concentration at the 

points of fractures. 
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 Fig. 29.  Connection of transverse bulkhead: Stiffener to inner bottom and bottom shell 
                                              (Source: Tank Structure Co-operative Forum, 1995) 

 

Fig. 30 indicates the fracture caused at the connection of a tripping bracket with the 

longitudinal bulkhead web in the cargo oil tank.  The causes for the damage are 

concluded as stress concentrations at the toe bracket and high stress in the longitudinal.  

The modification suggested is welding soft toe brackets with longitudinal web and 

tripping bracket as shown in the figure, in addition to fitting an insert. 
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                           Fig. 30. Web frame in cargo tank: Tripping brackets 
                                                       (Source: Tank Structure Co-operative Forum, 1995) 

 

Fig. 31 shows the fractures at the connection of longitudinals to horizontal stringers with 

brackets in an oil cargo tank. The contributing factors for the damage are concluded as 

stress concentration due to inadequate shape of the bracket and relative deflection of 

adjoining transverse web against transverse bulkhead. 
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    Fig. 31. Connection of longitudinals to horizontal stringers in transverse bulkhead 
                                          (Source: Tank Structure Co-operative Forum, 1995) 

 

Fig. 32 indicates damages to the vertical corrugated transverse bulkhead with stools in a 

cargo tank. The factors contributing to the damage are stress concentration due to 

unsupported corrugation web, high through thickness stress, lamellar tearing, weld 

details and dimensions, misalignment, and insufficient thickness of stool side plating in 

relation to corrugated flange thickness.  The proposed repair is bracket in line with 

corrugations of the bulkhead, full penetration welding of lower stool plating and vertical 

corrugated bulkhead with shelf plate, as shown in the figure. 



 69

                

                                   Fig. 32. Vertically corrugated transverse bulkhead stools 
(Source: Tank Structure Co-operative Forum, 1995) 

 

To summarise, due to the complexity involved in the double hull tanker structure, proper 

inspection, monitoring and maintenance of double hull space are difficult.  Further, the 

surface area exposed to ballast water is much more than in single hull tankers, requiring 

protection by coating.  Problems such as sloshing and free surface effects are also 

present.  Cargo tanks are more prone to bacterial corrosion due to the �thermos bottle 

effect�.  As the double hull spaces with sandwich panels can introduce unwanted stress 

concentrations, chances for fracture and cracks are more in double hull tankers. 
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CHAPTER 6 
 

Alternatives to Double Hull Tanker 
 

1.  Introduction 
 

Accidental oil outflow from a tanker can be reduced by one of the three methods, viz., 

use of double hull, reduced tank size, and use of outflow prevention measures inside a 

tank, says Laan (1995a, p.109).  The double hull concept offers protection for minor 

damage, but fails with regard to more serious penetrations.  This is proved by a research 

conducted by Germanischer Lloyd (GL), which has shown definite failure of protection 

by double hull in case of collision at speeds exceeding 3 knots. 

 

The logical solution to limit the oil outflow by smaller tank sizes has already been 

included in regulation I/24 of MARPOL 73/78,which limits the cargo tank size in large 

tankers to 50,000m 3 .  Research by the National Academy of Sciences has shown that 

accidental oil outflow can be limited by design of tanks with half the size (NRC, 1991).  

But this has two disadvantages, comments Laan (1995a, p.109).  Firstly, cost for small 

tanks is high and the maritime industry aims at larger tanks to reduce building and 

operational costs.  Secondly, more and closer bulkheads with smaller tanks increase the 

chances of damage occurring at a bulkhead location, resulting in penetration of two 

tanks.  Laan (1995a, pp.109-110) has opined that the solution by the use of outflow 

prevention measures inside a tank can be roughly divided into three categories, namely, 

hydrostatic balance for bottom damage, emergency cargo transfer for side and bottom 

damage and prevention of replacement outflow for side damage. 
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Creation of a pressure balance between cargo in the tank and water outside can prevent 

the oil outflow.  The cargo pressure depends on the liquid column and the specific 

gravity1.  Water pressure depends on the draught of the vessel.  However, the specific 

gravity of cargo has to be less than that of water outside.  This physical principle of 

hydrostatic balance is applied in mid-deck design and the vacuum system concepts.     

 

Emergency cargo transfer from a damaged tank to an intact tank after tank penetration 

can reduce the oil outflow.  With the ingress of seawater to the ruptured tank without 

losing much of the cargo, the ship’s draught will increase and the higher outboard water 

pressure will reduce the cargo outflow.  The Coulombi Egg design applies this principle. 

 

The concept of hydrostatic balance is based on the assumption of a horizontal damage 

opening.  In case of vertical damage, the outflow will occur until the oil is replaced by 

water below the highest edge of the opening.  The heavier water will flow into the tank 

at the lower edge of the opening replacing the lighter oil flowing out at the higher edge.  

The rate of replacement depends on the size of opening, the specific gravity and the 

viscosity of cargo.  The ECO-bulkhead applies this principle to prevent oil outflow. 

 

This chapter will introduce some of the alternative design concepts to double hull, 

particularly Mid-deck and Coulombi Egg designs.  These two concepts are approved by 

IMO, but not by the United States.  There has not been much progress made in 

developing other concepts, perhaps due to the ‘technological freeze’ created by the 

tough stand taken by the United States for not approving alternative designs. 

 

                                                 
1 The specific gravity of seawater normally falls within the range of 1.0- 1.025 tons/m 3 .  The specific 
gravity of most oils is in the range 0.65-0.99 tons/m 3 .  



 72

2.  MID-DECK DESIGN 
 

Convey (U.S.) and Polviander (Finland) proposed the mid-deck tanker concept 

independently in the 1970’s, as an alternative to double hull in reducing oil spills in 

grounding and collision situations (Cushing, 1994, p.11).  The Mutsubishi Heavy 

Industries (MHI), Japan, developed the concept in order to meet the requirements of 

OPA 90 and IMO regulations (Tamama, 1998, p.1).  The steering committee on 

comparative tanker designs, established by IMO, in its report states- 

The mid-deck and double hull tanker designs offer equivalent protection 

against oil outflow when the whole range of probable groundings and 

collisions is considered cumulatively (IMO, 1992, p.3). 

   

 
Fig. 33. General tank layout of a mid-deck tanker 

(Source: IMO News, Number 1: 1992, p.4) 

In March 1992, the IMO adopted mid-deck and double hull tanker designs as the 

international requirement for tanker new buildings (‘Mid-deck design’, 1993, p.21).  

Fig.33 shows the general tank layout of a mid-deck tanker. Based on the probabilistic oil 
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outflow study of alternative tanker designs by the US Coast Guard, and the model test at 

the David Taylor Model Basin, U.S.A., of fluid dynamics on accidental oil spillage due 

to grounding of mid-deck and double hull tankers, the US Coast Guard recommended 

double hull as the only alternative to prevent the oil outflow in grounding, the prevalent 

type of casualty in US waters. Consequently, the U.S.A. did not approve the mid-deck 

tanker design as an alternative to double hull design (Karafiath & Bell, 1993, pp.1-7).   

 

2.1.   Principal features 

 

The tank construction features a single bottom with side skins and an oil tight horizontal 

bulkhead.  The position of the horizontal bulkhead would be below the minimum 

draught level at a point at which the cargo oil pressure in the lower tank becomes equal 

to the seawater pressure outside.  The maximum specific gravity of oil likely to be 

loaded and inert gas pressure are taken into account.  Lower tanks must not be filled 

more than 98% of the tank capacity (‘The mid-deck supertanker’, 1991, p.445).  

 

The upper cargo tank fittings are essentially similar to conventional oil tankers except 

for the cargo main pipeline.  Situated in the lower cargo tank are cargo oil lines, cargo 

vent and inert gas lines, access trunks, level gauges and fixed tank cleaning machines.  A 

piping system as in conventional tankers for the lower tank is installed on the bottom of 

the tank with branch lines for both upper and lower spaces.  Cargo oil vent and inert gas 

trunks are led from the top of the lower cargo oil tanks to upper deck and are connected 

to the cargo oil tank vent and inert gas main line on the upper deck.  Access trunks from 

upper deck lead to each lower tank forward and aft and are fitted with ladders, while the 

level gauges measure levels through out the tank height.  The access trunks can be used 

for various fittings and services, eliminating the need to pass through the upper tank 

(‘The mid-deck supertanker’, 1991, p.445). Fig. 34 shows the hull section of a 

Mitsubishi 280,000 dwt mid-deck tanker. 
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Fig. 34. Hull section for a Mitsubishi proposed 280,000 dwt mid-deck tanker. 

(Source: Naval Architect, 1991 October, p. 445) 
2.2.  Oil outflow containment 

 

By splitting the cargo tanks into upper and lower spaces with a strategically located 

horizontal mid-deck, the pressure of oil at the bottom plating does not exceed the outside 

seawater pressure.  When grounded, the high pressure of the seawater pushes it into the 

bottom of the ruptured lower tank, forcing the cargo oil upwards and forming a seawater 

layer under the oil.  As the lower tanks will be operated at 98% loaded condition or less 

which will allow the forming of a layer of seawater below the cargo in grounding, the 

effectiveness of hydrostatic balance is enhanced.  With the increase in draught by the 

inflow of seawater, and the water layer formed below the oil and above the rupture will 

greatly reduce the oil outflow from the vessel (‘Mid-deck design’, 1993, p.21). 

 

According to Nobuhara (‘Mid-deck design’, 1993, p.21), occurrence of a secondary oil 

outflow by loss of hydrostatic balance is possible.  The cause can be wave-induced ship 

motion, relative water flow when the ship moves through the water after damage, tidal 

current when the ship is aground, or change in water level caused by tidal drop.  

However, large model tests using oil, carried out in Japan and USA under the 
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supervision of an IMO Steering Committee, quantified that the secondary oil outflow 

and initial exchange loss represented only 1-2% of the cargo tank capacity.  To provide a 

deep layer of seawater in the damaged tank bottom, an emergency suction line can be 

connected to the ballast line allowing the emergency transfer of oil into the ballast water 

tanks.  Fig. 35 shows such an arrangement on the design of the MHI. 

 

 
Fig. 35. An emergency suction line below the mid-deck on MHI’s design. 

(Source: The Motor Ship, 1993 April, p. 21) 

 

The upper and lower cargo tanks can have free surfaces; but with no double bottom, the 

centre of gravity of the cargo oil is lower, states Nobuhara.  This compensates for the 

free surface effects.  Thus the mid-deck tanker has good stability.  The mid-deck tanker 

would be able to meet the damage stability criteria even in extreme cases of upper tanks 

being fully loaded and the lower tanks being empty (‘Mid-deck design’, 1993, p.21). 

 

2.3.  Safety aspects 

 

The space width between the double sides that form water ballast tanks in MHI’s mid-

deck tanker design is twice that of a double hull tanker, which provides extra protection 

to the cargo tanks in the event of collision.  The extra width also facilitates easier 
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inspection and maintenance of the space (‘Mid-deck design’, 1993, p.22).  As there is no 

double bottom (DB) in a mid-deck tanker, risk of oil or cargo vapour leak into the DB 

space that can lead to an explosion is absent.  Further, there are no difficulties associated 

in re-floating the vessel for loss of buoyancy in case of grounding (‘Mid-deck design’, 

1993, p.22).  In the opinion of this writer, with the wide side tanks the chances for 

developing problems as experienced in side tanks of double hull tankers with sandwich 

construction, are less.  For example, the stress concentration and subsequent stress 

induced fatigue could result in cracks in the inner shell structure of a double hull tanker. 

 

The coating protection required in ballast spaces in a mid-deck tanker would be 1.5 

times that of a single skin tanker, whereas a double hull tanker would have an area 2.5 

times greater (‘The mid-deck supertanker, 1991, p.445).  As seen in chapter 4, the 

reduced area exposed to damage during inspection and maintenance and the wide space 

reduce the probability of coating damage.  So the risk of corrosion caused by coating 

damage is reduced in the mid-deck tanker as compared to the double hull. 

 

2.4.  Collision & Grounding  

 

At the request of the IMO Steering Committee on the comparative study on oil tanker 

design, Lloyd’s Register (LR) analysed2 the predicted oil outflow in the case of collision 

and grounding of double hull tankers and mid-deck designs.  The content of analysis is 

as follows: (‘Mid-deck design’, 1993, pp. 22-24). 

 

The normalised oil outflow results derived from the collision methodology show that the 

expected oil outflow is less from mid-deck design compared with the double hull 

configurations.  The increased width of the ballast wing tanks in mid-deck designs 

                                                 
2 The oil outflow methodology and results are published by Dr. David Aldwinckle, Principal Surveyor, 
Safety Technology Department, Lloyd’s Register, in February 1992. 
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provides considerable collision protection to the cargo tanks, as reflected in the report.  

The vertical extent of a collision breach was assumed from the keel upward without 

limit, and the oil outflow reduction provided by the horizontal bulkhead were not 

considered.  Therefore, in collisions involving only breach of upper cargo tanks, the oil 

outflow would be further reduced from the expected quantity. 

 

The normalised oil outflow results derived from the grounding methodology show that 

the mid-deck tanker designs experienced the least expected oil outflow at grounded 

draughts of 0 m, 2 m, and 6 m.  But with a breached bottom plating, tidal fall is likely to 

increase oil outflow even though the designs are to retain cargo in the lower cargo tanks.  

With positioning of mid-deck at low or high to avoid penetration on grounding, the oil 

outflow performance is not significantly affected.  Double hull tankers tend to retain the 

oil remaining in the tank following grounding and a draught reduction by 2 m.  But, the 

oil outflow increases significantly with a draught reduction of 6 m, as the seawater 

cushion is lost from the double bottom. 

 

In the MHI’s mid-deck tanker design, up to a maximum 70% of HTS will be used in 

construction of the hull, especially in the deck and bottom structures, enabling the vessel 

to carry more cargo for the same dimensions as of a mild steel ship. Also, there is more 

fuel economy (‘Mitsubishi’s mid-deck’, 1992, p.481).  The cargo discharge time is 

considered to be similar to conventional tankers (‘The mid-deck supertanker’, 1991, 

p.445).  For tank cleaning, deck mounted guns can be fitted as on conventional tankers.  

In the bottom spaces, guns can be mounted on the tank top.  Two large trunks for inlet 

and exhaust can supply fresh air or inert gas to both upper and lower tanks and model 

tests have shown satisfactory results (‘Mitsubishi’s mid-deck’, 1992, p.481).  

Preliminary estimates for MHI mid-deck designs indicate that for a VLCC the building 

cost will be 1-2% lower than for a double hull design (‘The mid-deck supertanker, 1991, 

p.445). 
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The expected oil outflow calculated by LR from mid-deck design in case of a collision 

or grounding was generally lower than that from corresponding double hull design.  

However, it also depends on the specific cargo tank arrangements in both designs as 

confirmed by analysis.  This gives scope for optimising the designs with a view to 

minimise the expected oil outflow (‘Mid-deck design’, 1993, p.24).  However, the actual 

performance during operation of mid-deck tankers is not known to the shipping world 

due to the absence of such tankers in operation. 

 

3.  COULOMBI EGG DESIGN 

 
Following a meeting held in London on 9th April 1997, the IMO has accepted the 

concept of the Swedish sponsored Coulombi Egg design as an alternative to double hull 

tankers in accordance with regulation I/13F(5), MARPOL 73/78 (‘Coulombi Egg gains’, 

1997).  The design was approved by the MEPC in September 1997. A naval architect 

based in France, Anders Björkman has invented and developed this design. The concept 

is based on the principle that oil is lighter than water (‘Breaking with’, 1996, p.38).

  

3.1.  Basic features   

 
The Coulombi Egg tanker design follows the single hull technology as much as possible 

and introduces some new features developed over the past few years. The bow and stern 

designs are similar to the conventional single hull tanker with forepeak tank, after peak 

tank, collision bulkhead, pump room, and engine room. The basic difference is in the 

cargo and ballast space designs. The general layout and mid-ship cross section of a 

Coulombi Egg tanker are shown in fig. 36 and fig. 37 respectively. 

 

At the mid-ship, it is a single hull design with a stepped mid-deck from side to side.  The 

mid-deck slopes at each side and is connected to the longitudinal cofferdams at each of 
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the hull sides ending at 0.25D above the base line. The wing tank bulkheads are                             

at a point one-fifth of the breadth (B/5) from the shipside.  A mid-deck oil tight 

horizontal bulkhead3 divides all the centre tanks and the wing tanks in the respective 

tanks. The horizontal bulkhead dividing the centre tanks into upper and lower tanks is 

located at a height not more than 55% of the depth (0.55D) above the keel. The centre 

tanks may be either single or divided into port and starboard tanks depending upon the 

size of the ship. Unlike the centre tanks, the wing tanks are divided into upper and lower 

tanks at a height lower than that of the bottom of the upper centre tanks by a bulkhead in 

the following manner. The horizontal bulkhead begins from the inner longitudinal 

bulkhead at a height 0.45D and extends to the side till it slopes downward at an angle of 

45 degrees to meet the cofferdam bulkheads at its upper inward corner situated at a 

height of 0.35D from the base line. The cofferdams are located on both sides of the ship 

in the cargo area at a height extending from 0.25D to 0.35D with a minimum breadth 

B/40 (Björkman, 1997a, pp. 1-3).   

  

The upper wing tanks are segregated ballast tanks.  More than 80% of the cargo is 

carried in the centre tanks, which are inboard of B/5 from both sides and the balance of 

the cargo is in the lower wing tanks.  Slop tanks are located in the aftermost upper cargo 

tanks. No cargo tank has a length greater than 20% of the ship length.  That means, for 

any size of ship the minimum number of centre tanks lower and upper, wing tanks lower 

and upper on port and starboard sides will be at least four numbers each (‘Breaking,’  

1996, p. 38). 

3.2.  Transverse web frames & transverse bulkheads   

 

Fig. 38 shows a typical transverse web frame of a 280,000 dwt Coulombi Egg design.  

The advantages claimed in this design are easy for fabrication as the construction is in 

mild steel and easy for cleaning of lower centre tanks. The side webs are supported by            
                                                 
3 Horizontal bulkhead means the deck between the upper and lower tanks. 
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.                       Fig. 36. General layout of a Coulombi Egg tanker 

                                                                             (Source: Fairplay, 1996, May 9, p.38) 

 

 

 

 
                            Fig. 37. Midship section of a Coulombi Egg design.          
                                                          (Source: The Naval Architect, 1993, May, p.297) 
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     Fig. 38. Transverse web frame construction for a 280,000 dwt Coulombi Egg design 
                                 .  (Source: The Naval Architect, 1993, June, p.295) 

 

mid-deck to reduce deflections. The centre bottom and mid deck webs are connected by 

two vertical struts to distribute the internal and external loads between the webs.  The 

corner brackets are mostly of standard design. Transverse bulkheads are supported by 

vertical webs and are horizontally stiffened. The vertical webs are supported by bottom 

shell, mid deck and main deck (Björkman, 1993, p.295).  

 

3.3.  Fabrication   

 

The tank body can be fabricated in different blocks and assembled at the building yard. 

Fig. 39 shows a proposed split up of a half mid ship section into four blocks during 
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fabrication.  Each block consists of flat plate panels with stiffeners and rectangular open 

webs adapted for fully automatic fabrication and welding in panel and web lines. Corner 

brackets are fabricated in separate lines. Welding and dimensional control along the full 

width mid deck is easy. Application of coating to the ballast tanks can be carried out 

during block assembly or even after assembly (Björkman, 1993, p.295). 

  

      

Fig. 39. A 280,000 dwt Coulombi Egg tanker proposal for building block fabrication 
(Source: The Naval Architect, 1993, June, p.297) 

3.4.  Grounding & collision   

 

The Coulombi Egg design provides protection against grounding and collision. In case 

of grounding and puncture of bottom shell, effective protection against cargo oil outflow 

is provided by the side-to-side mid-deck.  Upper wing tanks, which are ballast tanks, act 
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as emergency receivers for cargo if the lower cargo tanks are punctured.  In case of 

collision, the deep penetration of the side is frequently seen to occur above the water 

line. As the Coulombi Egg tanker has B/5 wide wing tanks, it can absorb a substantial 

amount of collision energy and hence provide more structural protection. The ballast 

tanks and cofferdams operate as crush zones absorbing the impact while preventing any 

breach of cargo tanks. The partial transverse bulkhead subdividing each lower wing tank 

at its half-length is welded to the mid deck bulkhead and extends down to the height of 

bottom edge of cofferdam.  These bulkheads restrict the outflow of oil from the tanks 

trapping it in the deckhouse space4 as shown in Fig. 40 (‘Breaking,’ 1996, pp. 38-39).  

  

For safety measures against leak of oil cargo, automatic cargo transfer is envisaged in 

the event of breached shell plates below the water level. A system of piping and trunk 

connections between different tanks is used for this purpose. All lower wing tanks have 

access trunks at their forward and after ends. A pipeline with a non-return valve is 

connected to each access trunk at a level slightly above the upper level of the tank and 

leads across to the bottom of the upper wing tank on the opposite side. When the tank is 

breached by grounding or collision in a loaded vessel with cargo in the lower wing tank, 

there will be an initial inflow of water under hydrostatic pressure due to the draught that 

will raise the oil up into the access trunks. The force created by pressure due to the oil 

head in the access trunk will open the non-return valve in the crossover pipeline and lead 

cargo oil into the upper wing tank on the opposite side.  Fig. 41 illustrates the process.  

As water displaces the cargo oil from the punctured tank to the ballast tank on the 

opposite side, a list is produced causing the grounded side to come up and assists in re-

floating the vessel, in addition to avoiding oil spill. For lower centre tanks, the protection 

arrangement is similar to that of lower wing tanks, except that the pipelines from the 

access trunks with non-return valves are connected to both the upper wing tanks, as 

                                                 
4 The deckhouse space is the space entrapped by the partial bulkhead below the mid deck bulkhead and 
extends down to the bottom edge of cofferdam. 
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illustrated in Fig. 42 (‘Breaking with’, 1996, p.39). The system works well as long as the 

inflow of water caused by the damage in the side tank does not exceed the capacity of 

evacuation system (Björkman, 1997b, pp. 1-3). 

 

 
                    Fig. 40 Midship section showing the partial bulkhead  

(Source:  IMO, MEPC/ Circ.336) 

  

Even though collision is more likely than grounding, collision between tankers as 

happened in the case of the Venpet/ Veniol disaster off the coast of South Africa is rare. 

Most tanker collisions involve cargo vessels either with head-on collision causing 

damage to the bow or contact at the sides damaging the upper hull. The bow of a 

Coulombi Egg tanker is specially strengthened with forecastle and forepeak tank. The 

upper ballast wing tanks provide similar protection to the upper hull sides. In the 

conventional and double hull tankers collision damage to the upper hull is likely to cause  
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Fig. 41. Breach of wing cargo tank allows inflow of water under hydrostatic pressure  

             forcing oil via the crossover to the ballast tank         (Source: Fairplay, 1996, May 9, p.39) 

           

 
                        Fig. 42. Breach of lower centre tank forces oil to both wing tanks.  

        (Source: Fairplay, 1996, May 9, p.39) 
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an oil spill followed by an explosion and fire, as it happened in the Agrip, Abruzzo, 

British Trent, Haven, Massia, and Independentia incidents. Salvage operations and 

prevention of further pollution are extremely difficult in such accidents in addition to the 

loss of life of crew (‘Breaking with’, 1996, p. 39). 

 

Based on the detailed theoretical and computer modelling studies conducted, it is seen 

that the Coulombi Egg system will work in a range of tidal conditions at different 

draughts. With significant bottom damage, oil outflow is often prevented or minimised 

even in severe tidal conditions (Björkman, 1997b, pp.1-3).  Another benefit claimed is 

that the amount of oil spill, if any, caused by an accident will be 3 to 4 times less 

compared to the double hull design (‘Coulombi Egg Tanker’, 2000, p.1). 

 

3.5.  Cracks & fractures 

 

Cracks and fractures do occur in tanker structure but they should not occur in oil and 

ballast boundary structure causing oil leak into ballast spaces. In Coulombi Egg tankers, 

with the horizontal bulkhead between the upper deck and bottom plating in each 

transverse section in the cargo deck area, the upper part of the longitudinal bulkhead is 

minimally stressed.  Further, the cargo areas are not subjected to the severe threat of 

corrosion and the chances of cracks and fractures are less, when compared to double hull 

design. Any such occurrence can be easily detected, as the leaked oil will be collected at 

the outboard corner of the ballast tank (Björkman, 1993, pp. 295-296). 

 

3.6.  Ballasting & cargo handling 

 

The ballast tanks are not fitted with any pipe connections. These tanks are filled through 

the deck lines from the top and discharged directly through the overboard valves fitted at 

the bottom of the tanks. (‘Breaking with’, 1996, p. 39). 
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Coulombi Egg tanker is suitable for handling three grades of cargo by using the free 

flow method. Cargo suction pipelines can be avoided and the three pumps can take 

direct suction from the aftermost tanks. Submerged machines are to be used for tank 

cleaning of the lower tanks. The structural arrangement in the lower centre tank 

facilitates tank cleaning with a lesser number of machines for 100% coverage. Intact 

stability and damage stability criteria have been analysed for various conditions and 

found to be satisfactory (Björkman, 1993, p.296). 

 

3.7.  Construction cost   

 

According to Björkman (1993, p. 297), even though approximately 10% more steel is 

used in the tank body construction the initial cost will not be 4 to 5% more than that of a 

single hull tanker.  Moreover, with the basic form of a conventional tanker the structure 

is simpler for construction as compared to a double hull vessel. The additional horizontal 

bulkheads increase the overall strength of the vessel. 

 

3.8.  Observations   

 

Even though the concept of the Coulombi Egg design has been approved by the IMO, 

the reliability of the system is yet to be proved, as the maritime industry does not have 

experience in operating such ships.  A leak in any of the non-return valves in the 

pipelines connecting wing ballast tanks with lower cargo tanks, provided for emergency 

cargo transfer, can find entry of ballast water from the ballast tanks to lower cargo tanks 

when the ship is in ballast condition. In loaded condition the lower cargo tank 

atmosphere can find its way to the ballast tank through the leaking valve and make the 

ballast tank atmosphere volatile to combustion, which is a major safety hazard.  The 

provision of sensors and monitoring of the ballast tank atmosphere may be a solution.  
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Another question is whether it will be easy to maintain the non-return valves leak proof.  

Regulation I/13F(3)(f) of MARPOL 73/78 prohibits the passing of cargo piping and 

similar piping to cargo tanks through ballast tanks, except for short lengths on specific 

exemptions.   

 

Another problem is the electrostatic sparks that can occur by the splashing of oil cargo in 

the ballast tanks in case of an emergency cargo transfer.  As the ballast tank atmosphere 

can be prone to combustion, electrostatic sparks during an emergency cargo transfer 

present an explosion risk, even though the Administration can allow such emergency 

cargo transfer under regulation I/23(5) of MARPOL 73/78.  It appears illogical that in 

one regulation oil cargo transfer to ballast tanks is permitted and in another there is 

restriction on any permanent connections between oil cargo and ballast tanks.  It may be 

reiterated that these observations are only possibilities and not probabilities. 

 

Anders Björkman, the designer who invented the Coulombi Egg concept, was contacted 

in order to solicit his view on the above observations.  About the piping connection 

between lower cargo tanks and upper ballast side tanks, the IMO raised the question 

based on the rule, during the design approved in 1997.  Björkman’s argument was that 

each piping connection was always located in dry cargo tank access trunks at a distance 

above cargo surface and would never be subjected to cargo pressure, except if the cargo 

tank was breached in a collision and grounding, when water pressed up oil in the access 

trunk.  However, for approving the design, this connection on spill reduction was 

ignored.   

 

With regard to the leak of the non-return valve from the lower cargo tank and ballast 

tank, Björkman claims that the leak can be easily detected and the ballast tank ventilated 

after lowering the inert gas pressure in the cargo tank.  Further, some valve 

manufacturers have assured him that the valves would never leak.  Another solution 
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seemed to be to add an absolutely tight disc, which would break only under cargo 

pressure and never break under inert gas pressure. The disc, in addition to the valve, 

would assure 100% tightness.   In a ballast passage the non-return valves will be 

screwed down to prevent ballast water flow into the inert and empty cargo tanks.  

Regarding the electrostatic sparks during an emergency cargo transfer in the ballast tank 

atmosphere, he commented that such emergency cargo transfer could be allowed by the 

Administration under the relevant MARPOL regulation.  He opined that IMO might 

have adopted the relevant regulation because such cargo transfer would take place at 

such a slow rate that electrostatic sparks would not occur. 

  

4.  COBO PROPOSAL 
 

The Combination Of Basic Objectives (COBO) design is based on the principle of 

protected small hydrostatically balanced cargo tanks in the vulnerable zone and large 

cargo tanks in the safe zone.  However, the minimum size of the cargo tanks is restricted 

by operational requirements (Laan, 1995b, pp. 358-359).  Fig. 43 shows the objectives 

of tank size and location.  Fig. 44 shows small outflow after side and bottom damage.  

Laan explains the features of the this design as follows: 

 

4.1.  Oil outflow prevention 

 

1. Double side designed for protection (energy absorption) with three stringer 

decks, a crushable horizontal deck of mild steel with increased thickness and 

strong longitudinals, combined with flexible transverses. 

2. Tank walls designed for penetration prevention with strong longitudinal flexible 

material (mild steel). 

3. Facility to inert ballast tanks rapidly, for fire prevention. 
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4. Reduced width and height of cargo tanks by specific arrangement of longitudinal   

bulkheads and horizontal decks. Reduced effective length of the tank for 

reducing the oil outflow by intermediate transverse ECO-bulkheads5.  (Fig. 45). 

5. Prevention of initial outflow by hydrostatic balance.  Reduction of secondary 

outflow by safety margin in hydrostatic balance caused by dynamic and tidal 

effects; emergency cargo transfer system with rupture discs, which rupture 

automatically during collision and allow part cargo transfer to opposite ballast 

tanks.  

 
Fig. 43.  Objective of tank size and location 

(Source: Tanker Technology, 1995, June, p.358)  
4.2.  Salvage & tank cleaning  

 

The limited capacity of ballast tanks restricts the floodable volume and cargo tanks are 

hydrostatically balanced.  The buoyancy loss of ballast tanks can be regained by 

transferring cargo from the centre tank to damaged ballast tank and expelling seawater. 

Tank cleaning is improved by the transverse on the topside.  Purging, venting and gas 

freeing, and accessibility for maintenance are enabled through ECO-bulkhead holes.  

 

4.3.  Building cost 

 

The design has horizontal decks located high in wing tanks in order to locate the neutral 

axis near the half ship depth, which reduces material thickness.  As structural stresses in 

laden condition are small, fatigue damage is reduced.  Loads on mid-deck are reduced 

                                                 
5 ECO-bulkhead, an innovative tanker swash bulkhead, features a watertight structure with a number of 
holes near the bottom and suitable for new and existing hulls (Laan, 1995, February, pp.109-111). 
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with the counter-acting pressure of cargo from the lower tanks and the absence of an 

ullage space with large dynamic sloshing loads, which is achieved by connecting the 

bottom cargo tank to both side bottom tanks by ECO-bulkheads. (See fig. 46).  Efficient 

positioning of longitudinals and transverses reduces coating area approximately by 40% 

as compared to double hull and includes less material loss due to corrosion.  The slope 

of the wing tank horizontal deck shifts the ballast sediments into the narrow double side.  

It is claimed that all these factors contribute to a reduction of the building cost by 5% 

compared to a standard double hull tanker. 

 
Fig. 44. Small outflow after side and bottom damage in the COBO design 

(Source: Tanker Technology, 1995 June, p.358) 
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Fig. 45.  The COBO midship section in three dimensions 

(Source: Tanker Technology, 1995, June, p.359) 

 

 

 
Fig. 46.  Small structural loads of COBO in laden conditions 

(Source: Tanker Technology, 1995, June, p.359) 
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Fig. 47. An economical and ecological comparison 

(Source: Tanker Technology, 1995 June, p.361) 

 

The COBO concept features many advantages over a standard double hull tanker. Major 

advantages claimed are building cost reduction by 5% and oil outflow reduction by 73% 

(Fig. 47). Other advantages are - less area is exposed to corrosion requiring less tank 

coating, improved tank cleaning, purging and venting of bottom cargo tanks, less fatigue 

and sloshing loads, etc.  

 

5.  Other Alternative Concepts 

 
There are many other advanced concepts, in addition to the alternatives to double hull 

design described.  Cushing (1994, pp. 11-14) explains some of the development in 

peripheral tanks and proposed alternatives for new construction; some of them are 

briefly presented here.  The layout of the MARC GUARDIAN series of curved plates, 

shown in fig.48, is a peripheral tank construction.  The EPOCH system developed by 

Hitachi has no longitudinal bulkheads in the cargo area (Fig. 49).  The SKARHAR 

design is a longitudinal framing system developed by the Skaarup Oil Corporation.  A 

variation from the MHI’s mid-deck is the INTERTANKO MID DECK developed by 

Embiricos, which employs the use of rescue tanks in the lower portion of the wing tanks, 

as shown in fig. 50. 
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The UNDER PRESSURE OR VACUUM system is a method that uses the principle of 

gravity to minimize oil outflow (Fig. 51).  In the 1970’s B. Stenstrom of Sweden, 

developed this system, which involves manual or automatic closing of pressure/vacuum 

vent valves to isolate a damaged tank or tanks.  Use of pumps to maintain a vacuum 

above the cargo is another variation.  The SPILLSTOP system, developed by M. 

Husain(U.S.), uses the inert gas system to maintain a negative pressure above the cargo 

in the cargo tanks, thereby simulating a hydrostatic balance with more cargo.  This 

system is also known as the AMERICAN UNDER PRESSURE SYSTEM (AUPS). 

 

  

                                      
Fig. 48.  MARC GUARDIAN                                        Fig. 49.  EPOCH 

 

                                                                   
      Fig. 50. INTERTANKO MID DECK                        Fig. 51.  UNDER PRESSURE 

                              
Fig. 52. IMAGINARY DOUBLE BOTTOM                            Fig. 53. SCOL                                            
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Fig. 54. POLIS                             Fig. 55. POLMIS (UNDER PRESSURE) 

 

                                                       
Fig. 56. POLMIS BALLAST BAG                                 Fig. 57.  DIATANK 

 

                                        
               Fig. 58.  HONYCOMB                              Fig. 59.  STOBBS BRINE SYSTEM 

 
(Source: Marine Log, 1994, April 6) 

In the 1980’s Wasemus of Norway, developed the IMAGINARY DOUBLE BOTTOM 

(IDB) concept (Fig. 52), where a layer of chemically treated seawater is used in the 

bottom of the cargo tanks of single hull tankers.  In the event of grounding, the heavier 

seawater below the cargo oil will gravitate out until hydrostatic balance is reached 

between cargo oil inside the tank and water outside.  In the EMERGENCY RAPID 

TRANSFER SYSTEM (ERTS) oil from damaged cargo tanks gravitate into rescue or 
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ballast tanks or bladders.  The System for Controlled Oil Leakage (SCOL) is an example 

for ERTS (Fig. 53).  In SCOL, ballast tanks act as rescue tanks. Blanked transfer pipes 

between cargo and ballast tanks have the blanks hydraulically sheared in case of an 

accident, permitting oil in damaged cargo tanks to quickly gravitate into rescue tanks.       

 

The Pollution Limitation System (POLIS ) developed by George Paraskevopoulos is a 

rescue tank system intended for retrofitting into existing tank vessels (Fig. 54).  The 

POLMIS system is a combination of the rescue tank system and mid-deck tanker 

concept.  The system has a tapered centre tank (Fig. 55) or a ballast bag in the centre 

tanks (Fig.56).  The EMERGENCY RESCUE SYSTEM (ERS) employs high capacity 

pumps to transfer cargo from damaged tanks into empty ballast tanks or bladders.   

 

The DIATANK system employs the concept of a movable horizontally placed 

diaphragm to restrict the outflow of oil in grounding (Fig. 57).  The HONYCOMB 

system, a multi-cellular system proposed in 1992 by Per Lindstrom of Sweden, utilizes a 

series of horizontal and sloping bulkheads, forming hexagonally shaped tanks (Fig. 58).  

Another unusual proposal by Stobbs of U.S.A. is STOBBS BRINE SYSTEM, which is 

supposed to create a rigid layer of petroleum in the bottom of the cargo tanks (Fig. 59). 

 

To conclude, accidental oil outflow from a tanker can be reduced by the use of double 

hull, reduced tank size, and use of outflow prevention measures inside a tank.  The study 

conducted by the IMO has proved that the mid-deck concept is superior to the double 

hull in limiting total amounts of oil spilled.  The Coulombi Egg concept also provides an 

effective alternative to double hull in mitigating pollution.  Many other technical 

alternatives such as the COBO proposal provide ideas for further advancement.  

However, until the US substantiates its reservations on well-documented scientific 

grounds or withdraws it, progress is effectively closed and the technological freeze will 

continue. 
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CHAPTER 7 

 

Summary, Conclusion and Recommendations 
 

1.  Summary & conclusion 

 
We have seen in the previous chapters that the requirement to fit double hull or 

equivalent arrangements for new oil tankers is one of the most significant amendments 

to MARPOL 73/78.  These amendments were adopted by the IMO in 1992.  The writer 

has also discussed the Exxon Valdez disaster, which was caused by human error, and 

prompted the United States to adopt the OPA 90.  One of the major provisions of the Act 

is the double hull requirement for new tank vessels operating in US waters.  They have 

not approved any other alternative designs to double hull tank vessels. 

 

The aftermath of the sinking of the 25-year old Maltese oil tanker Erika in December 

1999 presented IMO with one of its biggest challenges in recent years. The disaster has 

woken up the international maritime community and in particular, the European Union 

(EU), of its consequences.  The EU even suggested introducing an EC directive 

equivalent or even tougher than the OPA 90.  Two separate regional requirements would 

have put areas outside the US and Europe at increased risk of oil pollution.  It would 

also have seriously undermined the IMO as the only body for setting international 

maritime regulations.  In April 2001, the IMO has agreed to a revised timetable for 

elimination of single hull tankers by 2015 or earlier, as one of the post-Erika measures.  
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Short-term experience of design, construction and operation of double hull tankers has 

presented many problems and risks, in addition to incurring more costs.  With changed 

hull geometry there is a tendency for the reduction in scantling, particularly with the use 

of high-tension steel.  But to fulfil the critical buckling stress requirements, the material 

dimensions must be increased beyond the corrosion limit.  Apart from the above, high 

still water bending moment during ballast passage, high hull girder bending moments 

with evenly distributed cargo oil and ballast tanks, difficult welding in restricted double 

hull spaces, and stress concentrations in the structure with the sandwiched panels are 

some of the design and construction problems.  The operational difficulties include 

inspection and monitoring of vast boundary areas of double hull space, gas freeing, 

ventilation, cleaning and maintenance of ballast space, protection of ballast tank coatings, 

maintaining stability during loading/unloading and ballasting/deballasting operations by 

avoiding excessive free surface effects, and effects of sloshing due to smooth and plain 

bulkhead panels in centre cargo tanks. 

 

Risks due to corrosion and fatigue are higher in double hull tankers.  With more surface 

area exposed to ballast water the corrosion risk is high is double hull tankers.  In cargo 

space, the residual water from cargo and tank washings with the high temperature 

maintained by the ‘thermos bottle effect’, will contribute to high bacterial corrosion.  

The double hull tankers are prone to pitting corrosion caused by collection of water, 

either in uncoated oil tanks where the natural oil film from cargo oil is lost, or in 

damaged coating areas in ballast tanks.  Pitting corrosion may introduce ‘necking effect’.  

Fracture/cracks caused by fatigue are more in double hull tankers.  Forced deflection due 

to stresses, hot spot stresses and corrosive environment are additional factors in double 

hull tankers contributing to fatigue damages.  Reports of explosive atmosphere in ballast 

tanks due to leak of oil cargo and vapour through the cracks in the inner shell of double 

hull tankers are usual in maritime media and a spark in such tank can lead to a major 

catastrophe. 
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Although the IMO has approved the concepts of Mid-deck and Coulombi Egg designs as 

alternatives to the double hull, shipping companies have not yet come forward to order 

ships of these designs.  In the opinion of this writer, the reasons are identified as follows.  

Firstly, the United States accounts for about 30% of the total world waterborne oil 

movement (‘Free competition’, 1999, p.6).  The industry will not dare to make huge 

investments for ships with restricted trade limits, simply because the United States has 

not approved the alternative designs.  Secondly, with the fast changing scenario in 

maritime regulations with every maritime disaster, as it happened with the Torrey 

Canyon, the Exxon Valdez and the Erika disasters, the probability of risk that would be 

taken by the industry with no experience in operating such tankers, will be high.  This 

situation has created a technological freeze in developing alternative designs.  Shipping 

experts around the world have been of the opinion that the political decision to 

implement double hull design as a mandatory requirement was taken in haste, which was 

a major deviation from the existing system developed over many years.   

 

2.  Recommendations 
 

In view of the foregoing discussions with regard to double hull tankers, introduced in 

feverish sessions by the United States and IMO with the intention of mitigating pollution, 

which have generated other serious problems, the following recommendations are 

submitted. 

1. As IMO is the only international body for setting international maritime 

regulations, any actions by member states or regions displacing the decisions of 

IMO will seriously undermine the IMO’s position and should be avoided. 

2.  A decision such as the mandatory requirement of double hull for oil tankers, 

which is a deviation from the design practices developed over years, should be 

implemented only after careful consideration of all aspects, supported by 
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thorough theoretical and practical studies and after ensuring its implications in all 

spheres including the safety and viability in all regions, as well as the financial, 

commercial and economic aspects.   

3.  Implementation of a technical regulation such as double hull design should not 

bear short-term political benefits, nor react to public outcry created by 

catastrophic events like the Exxon Valdez or the Erika disasters, but be based on 

sound technical information and knowledge. 

4.  While implementing a mandatory design by regulation, the authorities should 

encourage the industry to develop better designs by way of incentives and 

financial support, and in no case should a technological freeze be created as it 

happened when the OPA 90 was introduced.  

5.  While adopting any international regulation, such as for prevention of pollution 

at sea, the objective should not deviate from the goal of safer ships and cleaner 

oceans. 

 

Finally, it is submitted that the intention of the writer is not to question the validity of 

double hull designs, but to impress the authorities of certain issues for more careful 

consideration.  Further, in the opinion of the writer, decision to implement the double 

hull design was taken hastily.  Undoubtedly it has far reaching dimensions and resulting 

implications. 
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