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Twin and family studies reveal strong environmental and
weaker genetic cues explaining heritability of eosinophilic
esophagitis
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Background: Eosinophilic esophagitis (EoE) is a chronic
antigen-driven allergic inflammatory disease, likely involving
the interplay of genetic and environmental factors, yet their
respective contributions to heritability are unknown.
Objective: To quantify the risk associated with genes and
environment on familial clustering of EoE.
Methods: Family history was obtained from a hospital-based
cohort of 914 EoE probands (n 5 2192 first-degree
‘‘Nuclear-Family’’ relatives) and an international registry of
monozygotic and dizygotic twins/triplets (n 5 63 EoE ‘‘Twins’’
probands). Frequencies, recurrence risk ratios (RRRs),

heritability, and twin concordance were estimated.
Environmental exposures were preliminarily examined.
Results: Analysis of the Nuclear-Family–based cohort revealed
that the rate of EoE, in first-degree relatives of a proband, was
1.8% (unadjusted) and 2.3% (sex-adjusted). RRRs ranged from
10 to 64, depending on the family relationship, and were higher
in brothers (64.0; P 5 .04), fathers (42.9; P 5 .004), and males
(50.7; P < .001) than in sisters, mothers, and females,
respectively. The risk of EoE for other siblings was 2.4%. In the
Nuclear-Family cohort, combined gene and common
environment heritability was 72.0% 6 2.7% (P < .001). In the
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Twins cohort, genetic heritability was 14.5% 6 4.0% (P < .001),
and common family environment contributed 81.0% 6 4%
(P < .001) to phenotypic variance. Probandwise concordance in
monozygotic co-twins was 57.9% 6 9.5% compared with
36.4% 6 9.3% in dizygotic co-twins (P 5 .11). Greater birth
weight difference between twins (P 5 .01), breast-feeding (P 5
.15), and fall birth season (P 5 .02) were associated with twin
discordance in disease status.
Conclusions: EoE RRRs are increased 10- to 64-fold compared
with the general population. EoE in relatives is 1.8% to 2.4%,
depending on relationship and sex. Nuclear-Family heritability
appeared to be high (72.0%). However, the Twins cohort
analysis revealed a powerful role for common environment
(81.0%) compared with additive genetic heritability (14.5%). (J
Allergy Clin Immunol 2014;nnn:nnn-nnn.)

Key words: Eosinophilia, food allergy, medical genetics, twins, im-
mune system diseases, heritability, gene-environment interaction,
drug hypersensitivity, gastrointestinal diseases, skin diseases

Eosinophilic esophagitis (EoE) is a debilitating, chronic
allergic inflammatory disease of the esophagus triggered by
food and ingested antigen sensitization followed by TH2-cell
adaptive immune responses. Although the prevalence of EoE
has increased in both adult1-4 and pediatric populations,5,6

strategies for prevention, management, and risk mitigation are
limited.7 Research on underlying biologic processes has resulted
in new opportunities for treatment, yet risk factors for EoE remain
unclear.

One mechanism for high EoE risk is genetic variation. Indeed,
Blanchard et al8 estimated an 80-fold increase in recurrence risk
in siblings, compared with population prevalence, suggesting a
strong genetic component. The importance of genetic variants
is supported by both candidate gene and genomewide association
studies.9 Genetic variants in CAPN14, TSLP, TSLPR, CCL26, and
FLG have been associated with EoE.10-13 However, these variants
explain only a small portion of EoE cases, leaving a large portion
of the variation unexplained.

There is also substantial evidence that environmental factors
influence the risk of EoE. First and foremost, EoE is an allergic
condition responsive to allergen exposure via respiratory,
gastrointestinal, or cutaneous routes.14-17 For example, EoE is
induced in murine models via respiratory exposure to Asper-
gillus fumigatus antigens,16 and molds, including Aspergillus
and Penicillium, are associated with eosinophilic asthma.18

Recently, early environmental exposures, such as antibiotic
exposure in the first year of life,19 have been implicated. Indeed,
birth season, climate, seasonality,20-24 and Helicobacter pylori
exposure25,26 modify disease susceptibility. Furthermore, epige-
netic regulation27,28 may play a role in altered expression29-31

associated with EoE. Despite these intriguing findings, the rela-
tive roles of genetic and environmental factors in the risk of EoE
are unclear.

The purpose of this study was to estimate the contribution of
genes and the environment to the risk of EoE in susceptible
families. To accomplish this objective, we used a cohort of
nuclear families at the Cincinnati Center for Eosinophilic
Disorders (CCED) at Cincinnati Children’s Hospital Medical
Center (CCHMC) and established a new cohort with histo-
logically confirmed EoE in at least 1 twin/triplet.

METHODS
To quantify the risk of EoE due to genes and the environment in familial

clustering, a retrospective cross-sectional study was conducted using the

Nuclear-Family cohort derived from the CCED database and the newly

created EoE Twins Registry. The study was performed with CCHMC

Institutional Review Board approval and review by the University of

Cincinnati Institutional Review Board. Participants or their parent/guardians

provided written consent. Children older than 11 years provided written

assent.

The CCED database was used for the period August 1, 2008, to April 30,

2013, to identify patients and collect basic demographic characteristics,

clinical testing, and family history. Probands were identified by their CCED

physician. Additional history of related medical conditions for first-degree

relatives was obtained by parent-report or self-report, using a previsit

questionnaire with subsequent physician confirmation, available in CCHMC’s

electronic medical record. Family medical conditions included EoE and other

eosinophilic gastrointestinal diseases, including eosinophilic gastritis,

eosinophilic enteritis, and eosinophilic colitis. CCED probands missing

physician-confirmed family history were excluded. Among the 1366 CCED

patients seen during this time period, 914 (67%) were included.

Established in 2008, the EoE Twins Registry is an international twin/triplet

cohort for EoE and related eosinophilic conditions and was created for this

CCHMC study. Recruitment is from physicians specializing in allergy and

gastroenterology, centers specializing in EoE, patient and parent EoE

interest foundations, and twin social networking groups. Initial screening of

potential participants was by self-/parent-report of EoE and eosinophilic

gastrointestinal disease. EoE Twins are from the continental United States

(n5 57), Alaska (n5 2), andAustralia (n5 4). Information for twins younger

than 18 years was provided by parent report.

Inclusion and exclusion criteria
Eligible participants/parents were asked for reported diagnosis (EoE, other

gastrointestinal conditions, or unaffected). For all participants who reported

EoE, the esophagogastroduodenoscopy pathology report at diagnosis was

reviewed. Pathology slides were requested for all participants with esophageal

eosinophils and reviewed by a single pathologist at the CCED (M.H.C.) for the

area (0.3 mm2) of greatest intraepithelial eosinophil density. Peak counts were

generated (100% of Nuclear-Family; 96% of Twins) to confirm 15 or more

eosinophils per hpf at 4003 magnification. Slides were requested from an

endoscopy performed while the participant was receiving proton pump inhib-

itor therapy but had not received therapy specifically for EoE, such as steroids

and/or diet elimination, as recommended in the EoE consensus guidelines.7

Proton pump inhibitor administration before a positive endoscopy was

confirmed in 52% of Nuclear-Family probands for whom data were available

(55%). Affected Twins diagnostic dates ranged from 2001 to 2012, with 93%

diagnosed before the publication of the current guidelines recommending pro-

ton pump inhibitor screening before diagnostic endoscopy. Participants with

known causes of peripheral blood eosinophilia were excluded. Individuals

with reported EoE without confirmatory pathology reports were excluded.

Registry data included demographic characteristics (race, ethnicity, sex,

age), birth information (gestational age, use of fertility treatments, birth order,

birth weight, birth length), medical history, and family medical history for

each family member. Twins were requested to provide a saliva sample for

DNA collection; Oragene kit (DNA Genotek, Kanata, Ontario, Canada) was

used according to manufacturer’s instructions, with sponges added for

Abbreviations used

CCED: Cincinnati Center for Eosinophilic Disorders

CCHMC: Cincinnati Children’s Hospital Medical Center

DZ: Dizygotic

EoE: Eosinophilic esophagitis

MZ: Monozygotic

RRR: Recurrence risk ratio
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children unable to expectorate, typically 5 years or younger; the prepIT L2P

manual DNA purification protocol was used.

Zygosity
Three tools determined the zygosity of same-sex twins as monozygotic

(MZ) or dizygotic (DZ): (1) genotyping, (2) the pea pod questionnaire,32 and

(3) parent report. To genetically determine zygosity, we estimated the

proportion of identity-by-descent sharing between each pair of genotyped

individuals and compared it with the proportion expected on the basis of

genealogical information.33 The percentage of identical markers was

determined from 94,544 high-quality, polymorphic markers, among 196,524

variants genotyped by Immunochip34 (Illumina, San Diego, Calif). MZ

pairs have identical markers at more than 99% of loci, with observed

identity-by-descent sharing of 0.99 to 1.0. Analysis was limited to same-sex

pairs (n 5 48) with paired DNA samples available (n 5 40). For same-sex

pairs without paired DNA samples, the pea pod questionnaire determined

zygosity. The pea pod questionnaire is a validated survey designed to

determine how alike twins are on the basis of who can tell them apart,32

with 96% accuracy relative to genotyping.35 Genetic zygosity results were

used as the determinant when available.

Data management
Study data were collected and managed using REDCap electronic data

capture tools hosted at the CCHMC.36

Environmental screening
Because EoE often has an early onset, we focused on perinatal

exposures, such as prenatal vitamins, gestational age, breast-feeding, and

birth weight, length, and order. Birth seasons included winter (northern

hemisphere, December 1-March 20), spring (March 21-May 31), summer

(June 1-September 20), and autumn (September 21-November 30).

Participants fromAustralia were coded for southern hemisphere birth seasons.

Environmental data included food and medication allergies. Data for parent/

self-reported factors were obtained from the eosinophilic gastrointestinal

disease database for the Nuclear-Family cohort and by telephone interview for

the Twins cohort and their nuclear families. Penicillin, amoxicillin, and

cephalosporins were grouped together for analysis.

Statistical analysis
Demographic data and EoE risk estimates were analyzed using JMP

Genomics 6.0 (SAS Institute, Cary, NC). Reported P values are 2-tailed with

significance at P <_ .05, unless otherwise specified; exact values at P >_ .001 or

P < .001 were confirmed by permutation test for zero cells.

Demographic characteristics were described using mean 6 SD for

normally distributed continuous traits, median and interquartile range for

non-normally distributed continuous traits, and frequency for discrete traits.

Comparability of subgroups was tested using nonparametric Wilcoxon rank

sum test, parametric t tests, Fisher exact test, or the x2 test, as appropriate.

Recurrence risk ratios and concordance estimates
Recurrence risk ratios (RRRs) were calculated as (number affected/total)/

prevalence, with the point estimate for prevalence set at 5.5 per 10,000.1-3

Given the male preponderance of EoE, sex-adjusted frequencies and sex-strat-

ified RRRs were calculated; prevalence per 10,000 was set at 8.1 for males and

2.8 for females on the basis of the 74%male proband frequency in theNuclear-

Family cohort. RRR estimates were compared using a goodness-of-fit test

(x2
1). Probandwise concordance, which provides an estimate for agreement

of disease state between twins while accounting for ascertainment, was calcu-

lated as 2C/(2C1D),37 whereC is the number of concordant pairs andD is the

number of discordant pairs.

Heritability analyses
To estimate the proportion of variation attributable to genes (heritability),

we used variance components analysis for nuclear families and structural

equations modeling for twins. Because genes and common environment could

not be separated in nuclear families, we denoted this heritability as combined

gene-environment (hgc
2). Details are specified in this article’s Online

Repository at www.jacionline.org.

EoE and environment
EoE risk associated with individual early environmental exposures, such as

parent-/self-report of penicillin allergy, was analyzed. Concordance and early

life environmental exposures were analyzed for paired covariates, such as age.

EoE and non-EoE groups were assumed to be independent; correlation

between the twin sets was ignored because of small sample size. Nonpara-

metric Wilcoxon rank sum test, parametric t tests, or the chi-square test were

used, as appropriate.

RESULTS

Description of Nuclear-Family and Twin cohorts
Of the 6108 individuals in the 1366 nuclear families screened at

the CCED, 914 probands had family history available (67%).
After excluding grandparents (n 5 2391) and twin families
(n5 31), the Nuclear-Family cohort comprised 914 probands and
2192 first-degree relatives (n 5 3106) (Fig 1). Twin recruiting
strategies identified 91 interested families, of whom 63 met study
inclusion criteria and 73% provided family environmental
history. For same-sex pairs, twin zygosity was ascertained with
parent report, the pea pod questionnaire, and genotyping. Of the
40 pairs with both parent report and genotyping, there was
82.5% agreement. Of the 40 pairs with both pea pod and DNA
zygosity, there was 95.0% agreement. One same-sex pair had
parent report of zygosity only. Importantly, recruitment of twin
pairs was random with respect to zygosity and concordance,
and age by concordance was not significantly different for MZ
versus DZ pairs (P 5 .96). There were no significant differences
between MZ and DZ twins with respect to race or ethnicity, but
MZ twins were more likely to be male (P < .001) and older
(P5 .006; Table I). Therewere no significant differences between
the Nuclear-Family and Twin cohorts with respect to sex, race,
ethnicity, or age. The median ages of Nuclear-Family (range,
1.0-64.0 years) and Twin (range, 3.0-51.8 years) cohort probands
were 12.3 to 13.2 years, with interquartile ranges of approxi-
mately 7.7 to 19.1 years. Interestingly, both cohorts had 73% to
74% males, 87% to 94% whites, and 94% non-Hispanics.

Frequency, recurrence, and concordance of EoE
To characterize familial clustering of EoE, we first calculated

the EoE frequency in first-degree relatives of probands. Overall,
1.8% of first-degree relatives had EoE (Table II). Given the higher
rate of EoE in males, we examined sex-adjusted frequency, which
increased to 2.3%. The risk of having another child with EoE was
2.4% in the Nuclear-Family cohort. Fathers (2.4%; P5 .004) and
brothers (3.5%; P <.04) had EoE at significantly higher rates than
did mothers (0.6%) and sisters (1.3%), respectively. The EoE
frequency in both MZ (41.0%) and DZ (22.0%) twins was
significantly higher than in siblings (Fig 2). Surprisingly, the
EoE frequency in DZ twins was higher than in nontwin siblings
from the Nuclear-Family cohort (P < .001, Fig 2).

Compared with the general population, the risk of EoE for first-
degree relatives from the Nuclear-Family cohort (n5 2192) was
increased; the RRR (RRR 5 lR) was highest in brothers (64.0;
P 5 .04) and fathers (42.9; P 5 .004) compared with sisters
(24.0) and mothers (9.9), respectively. Males had higher RRRs
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than did females (50.7 vs 14.7; P < .001) (Table II). Sibling RRR
compared with parent RRR (44.2 vs 25.8; P 5 .09; Table II) was
not significantly higher. Sex-stratified RRRs implicated greatly
increased risk for sisters (adjlR 5 45.5), mothers (adjlR 5 19.1),
and females (adjlR 5 28.2).

Probandwise concordance in MZ co-twins was 57.9%6 9.5%
compared with 36.4% 6 9.3% in DZ twins. Although these
concordances were not significantly different from each other
(P 5 .11), the higher rates of EoE in MZ compared with DZ are
supportive of genetic patterning.

Familial patterning supports non-Mendelian and

complex mode of inheritance
Examining familial patterning in more detail, information can

be gained about the likely mode of inheritance (Fig 3). Traditional
Mendelian inheritance includes dominant, recessive, and
X-linked patterns. In dominant inheritance, transmission between
an affected parent and a child is approximately 50%; however, in
the Nuclear-Family cohort, 98% of the probands have unaffected
parents. Autosomal-recessive inheritance often has children with
unaffected parents, but approximately 25% of probands’ siblings

would also be affected. Overall EoE frequency in affected siblings
is 2.4%, much less than expected in an autosomal-recessive
disorder. Only 1.9% of the families had at least 1 additional
EoE-affected sibling. Last, male predominance of EoE creates
suspicion for X-linked inheritance. However, parent-to-child
transmission was observed from both mothers and fathers,
and father-to-son transmission is not supportive of X-linked
inheritance. Thus, it is reasonable to deduce that EoE has a
complex mode of inheritance.

Contribution of genes and environment to familial

clustering
To quantify the effects of genes and environment, we used both

the Nuclear-Family and Twin cohorts. In the Nuclear-Family
cohort, combined gene-environment ‘‘heritability’’ (hgc

2) was
estimated at 72% (P < .001; SE 5 0.027) of the total phenotypic
variance, suggesting a strong effect from genetics. Because all
twin pairs share common environmental exposures, but MZ and
DZ twins vary in genetic sharing, their phenotypic variance can
further be partitioned into additive genetic (A), common environ-
ment (C) and unique environment/error (E) using the ACEmodel.
Therefore, parallel analyses in twins estimated the combined AE
‘‘heritability’’ (hgc

2) at 99.5% (P <.001). However, the model that
separates genetic heritability and common environment (ACE,
goodness-of-fit P 5 .56) fit the data better than did either the
model with genetics (AE, goodness-of-fit P < .001) or the model
with common environment (CE, goodness-of-fit P5 .006) (Table
III), suggesting that the EoE risk resulted from both genetic and
shared environmental factors. Importantly, the heritability
(estimate 14.5% 6 4%; P < .001; Fig 4, A) changed greatly by
analysis of twins, when accounting for a common environment
component. The reduction in heritability is attributable to the
large proportion of variation explained by common environment
(estimate 81.0% 6 4.0%; P < .001; Fig 4, A). Thus, heritability
estimates are markedly inflated when common environment is
not accounted for (Fig 4, B).

Evidence for shared environmental effects
Given increased EoE rates in DZ twins compared to in nontwin

siblings, we tested environmental factors that may be shared
between twin pairs but not necessarily between siblings.
Although the sample size was limited, greater differences in birth
weight were associated with disease discordance in twin pairs
(P 5 .01; n 5 35; Table IV). Birth season was significantly
different in concordant and discordant twin pairs (P 5 .03;
n 5 63); specifically, birth in fall was associated with EoE
discordance (P 5 .02; n 5 63). Food allergies (P < .001;
n 5 97) were associated with EoE, and penicillin allergies
(P 5 .17; n 5 66) and breast-feeding (P 5 .15; n 5 59) may
influence the risk for EoE.

DISCUSSION
Previous studies reported familial clustering of EoE,8,38-43

suggesting that clustering is attributable to genetics. Indeed, our
large Nuclear-Family cohort demonstrated that family members
are at increased EoE risk compared to the general population
and that inheritance is complex and not Mendelian. The Nu-
clear-Family–based design yielded an inflated heritability

A

B

FIG 1. Recruitment algorithms and case identification for Nuclear-Family

and Twin cohorts. A, Nuclear-Family cohort. B, Twin cohort. A, Nuclear-

Family cohort from the CCED. B, EoE Twins International Registry cohort;

EGD, esophagogastroduodenoscopy; not EoE, unaffected by EoE.
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(proportion of variation explained by genes) estimate. However,
Twins heritability estimates suggest that familial clustering is
due in large part to common, or shared, family environment rather
than genetics. We demonstrated that environmental factors, such
as food and parent-/self-report of penicillin allergies, and greater
difference in birth weight, may affect the EoE risk, whereas fall
birth season and breast-feeding may reduce the risk, supporting
further exploration of early life factors. Thus, we propose that
disease susceptibility in genetically predisposed families may
be potentiated by early life environment. Notably, colonization
by immune-shaping commensal microbiota, in the gut and also
in the esophagus,44-47 could be a key determinant of environ-
mental risk.

First-degree relatives of probands have a higher

rate of EoE than does the general population
In the 1.9% of families in the Nuclear-Family cohort that had at

least 1 additional child with EoE, 2.4% of probands’ siblings also
had EoE. This is a 44-fold increase over the general population
prevalence and consistent with the previously published high
rate.8 Compared with other allergic diseases, such as asthma with

sibling RRR between 1.25 and 2.25,48 the sibling RRR of EoE is
much higher. We also found EoE enrichment in all first-degree
relatives of probands, with fathers and brothers being particularly
at risk. EoE is likely underestimated in pediatric subgroups. In the
Nuclear-Family cohort, the relatively low risk of having at least 1
additional child who also has EoE (1.9%; Fig 3) is not supportive
of an autosomal-recessive inheritance proportion indicative of
carrier parents. Conversely, relatively low parent-to-child
transmission (2.0%), observed for both mothers and fathers,
does not support autosomal-dominant inheritance. Father-to-son
transmission refutes traditional Mendelian X-linked inheritance.
Therefore, these data collectively support EoE having a
non-Mendelian, or complex, pattern of inheritance involving
numerous genetic and environmental factors.

Family studies reveal genetic susceptibility
Enrichment in first-degree relatives, in our study and others,

suggests a genetic component,38 and, indeed, Nuclear-Family
heritability was estimated at 72%. A strong genetic basis for
EoE is further supported by candidate and genomewide
association studies that identified risk variants,9,11-13 as well as

TABLE I. Demographic characteristics of EoE Nuclear-Family and Twin cohorts

Characteristic Nuclear-Family

Twin

All MZ DZ

All families (n) 914 63 28 35

Male sex (%) 74.0 73.4 92.9* 58.3*

Race (%)

White 86.7 93.7 100.0 88.6

Black 3.9 0 0 0

Asian 0.7 0 0 0

AI/AN 0.3 0 0 0

Other 8.4 6.4 0 11.4

Ethnicity (%)

Non-Hispanic 94.2 93.7 96.4 91.4

Hispanic 1.9 3.2 3.6 2.9

Missing 3.9 3.2 0 5.7

Age (y), median (IQR), range 12.3 (7.7-17.2), 1-64 13.2 (8.1-19.1), 3.0-51.8 15.8� (8.3-32.0), 6.2-51.8 10.2� (7.9-16.7), 3.0-34.9

AI/AN, American Indian or Alaska Native; IQR, interquartile range.

*MZ > DZ male sex (P < .001).

�MZ > DZ age (P 5 .006). All others: not significantly different by the chi-square test, Fisher exact test, or Wilcoxon nonparametric test.

TABLE II. Frequency and recurrence risk ratios (lR) in EoE

Nuclear-Family cohort first-degree relatives

First-degree

relative

Frequency

(%)

P

value

Sex-adjusted

frequency

(%)

RRR

(frequency/

prevalence)

Sex-stratified

RRR

All 1.8 32.5 —

Males 2.8* 50.7* 34.3

Females 0.8 <.001 2.3 14.7 28.2

Parents 1.4 25.8 —

Fathers 2.4* 42.9* 29.0

Mothers 0.6 .004 1.9 9.9 19.1

Siblings 2.4 44.2 —

Brothers 3.5* 64.0* 43.2

Sisters 1.3 .04 2.9 24.0 45.5

Prevalence at 5.5/10,000; sex-stratified prevalence per 10,000 was set at 8.1 for males

and 2.8 for females on the basis of the 74% male proband frequency in the Nuclear-

Family cohort.

*Unadjusted P < .05 by x2df 5 1.

FIG 2. Rates of EoE in Twin cohort and Nuclear-Family cohort sibling

nonprobands. Frequency of EoE in DZ nonproband co-twins (n 5 36) and

nonproband Nuclear-Family siblings of proband (n 5 782) compared with

population prevalence by x2df 5 1.
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EoE-specific gene expression profiles.10 However, estimating
heritability from nuclear families has limited interpretation
because genes and family environment cannot be distin-
guished.49,50 Specifically, similar environmental exposures and
risk within the common family environment mimic genetic inher-
itance patterns and confound heritability. Thus, high heritability
estimates in nuclear family study designs may be explained

in part by common environment, in addition to genetic
susceptibility.

Twin, or extended family, study designs disentangle the effects
of genes from those of the common family environment.51,52

Indeed, the heritability estimate from the reduced AE model
(combined gene-environment heritability, which ignores the
common family environment) was inflated (99.5%). This high

FIG 3. Summary pedigrees support a complex mode of EoE inheritance. A, Nuclear-Family cohort. B, Twin

cohort (MZ). C, Twin cohort (DZ). Diamond shape indicates male and/or female, as it represents both

brothers and sisters whose number range by ‘‘Number of proband’s siblings.’’ Frequency (%) is the percent-

age of families with that summary pedigree as a percentage of all families in panels A, B, and C. In the large

Nuclear-Family cohort, families with unaffected parents and at least 1 additional brother or sister with EoE

comprise 1.9%.
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value is not unexpected because twin models often produce
inflated estimates53 because of ascertainment bias. However, by
including common environment in the full model, heritability is
estimated at 14.5%, with common environment accounting for
81.0% of the variation. The importance of common environment

is further supported by our finding that DZ twins are enriched for
EoE compared with nontwin siblings. Thus, using the traditional
nuclear family approach, the proportion of variation expected to
be explained by genetic factors is dramatically overestimated.
This overestimation is a problem because these heritability-
based estimates are often used as a metric for the amount of
variation expected to be explained by single-nucleotide
polymorphisms in traditional genetic association studies. The
failure of single-nucleotide polymorphisms to account for this
variation has been termed ‘‘missing’’ heritability,54-57 and
‘‘phantom’’ heritability is speculated to be the result of genetic
interactions.51 Our results show that the amount of variation
attributed to genetic factors is overestimated because of failure
to account for the common family environment.

Early life exposures likely contribute
Our results suggest that early life exposures likely contribute to

EoE risk. The high concordance of EoE for DZ twins compared
with nontwin siblings is unexpected because both nontwin
siblings and DZ twins share, on average, 50% of their genome;
thus, the inflation of EoE rates in DZ twins is likely not due to
genetic factors. Concomitant timing of exposures during specific
windows of critical early development may have an important
role in EoE pathogenesis.58-61 Preliminary family environmental
data suggest that factors in early life, such as birth season, breast-
feeding, and penicillin allergy are likely to be important given that
these factors are associated with twin concordance for EoE.
Indeed, antibiotic use during infancy has recently been identified
as a risk factor for EoE.18 Previous studies and our data substan-
tiate the importance of early life exposures, such as antibi-
otics,62-64 specifically penicillins and cephalosporins65 that alter
gut colonization, likely reflecting the role of the metagenome
and early microbiota and helminth colonization in priming the
developing immune system.44-47 Parent-/self-report of penicillin-
like allergies in twins differentiates concordant and discordant
pairs. Furthermore, young children ingest food, water, juice,
airborne particles, soil, and dust exposure doses many times
higher than do adults,66 presenting an opportunity for the
identification of novel environmental risk factors that alter
expression at an early age. An environmental effect on EoE risk
is plausible given the dynamic nature of the EoE transcriptome,
which varies with allergen exposure (eg, diet).10,31 Our breast-
feeding data suggest a protective effect against EoE, consistent
with current recommendations.67 Although birth weight differ-
ences between twins and birth season may affect outcomes,
they are less modifiable. These data should be interpreted with
caution given the small sample size of the Twin cohort and their
first-degree relations.

In summary, we have demonstrated that EoE clusters in
families and much of the clustering can be attributed to the
common family environment. Evidence-based risk assessment
data show that, overall, the sibling risk is modest (2.4%). Much of
this familial clustering is attributable to environmental factors,
suggesting that for individuals with a family history of EoE,
identification of early life factors will be essential to reduce the
risk. We propose that early life exposures prime genetically
susceptible individuals for the development of EoE, highlighting
the need to rigorously identify salient genetic and environmental
risk mechanisms. Thus, it is hoped that future studies will
facilitate the translation of these findings to actionable
recommendations.

TABLE III. Nested ACE twin models to estimate heritability

Model

Twin pair

intraclass

correlation Parameter estimates Model fit

MZ DZ ag2 c2 e2 x2
(df) P value

ACE 0.955 0.883 0.145 0.810 0.045 2.04 (3) .56

CE 0.940 0.940 — 0.94 0.060 14.64 (4) .006

AE 0.995 0.498 0.995 — 0.005 489.92 (4) <.001

Nonsignificant P value for x2 indicates superior fit of the model to the data.

A (ag), Additive genetic; C (c), common environmental exposures; E (e), error due to

unique environmental exposures.

FIG 4. A, Twin cohort ACE model more accurately estimates heritability by

separating common environment. B, Twin cohort ACE heritability model

estimates compared with Twin cohort AE and Nuclear-Family AE cohort

estimates. Fig 4, A, ‘‘ACE’’ latent class path analysis estimates (point prev-

alence estimate at 5.5/10,000) represent a generalized model across all

twins and all families. By convention, latent variables are represented as

ovals and measured variables as squares. Fig 4, B, Twin cohort ACE path

analysis (black) separates common family environment, estimating herita-

bility at 14.5%6 4% (P < .001) with superior model fit (P5 .56). As expected,

using the same data and model but excluding the common family environ-

ment (dark gray) inflates heritability to 99.5%. Similarly, Nuclear-Family

cohort (light gray) inflates heritability estimate to 72% 6 2.7% (P < .001; li-

ability threshold model). A, Additive genetic variance (heritability); C, com-

mon, shared household, environmental variance; E, unique environment

‘‘error’’ variance.
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HERITABILITY ANALYSES
In the Nuclear-Family cohort, heritability was modeled with

liability thresholds and variance components modeling using
sequential oligogenic linkage analysis routines (SOLAR;
Texas Biomedical Research Institute, San Antonio, Tex).E1

Briefly, this approach decomposes the trait’s phenotypic variance
into additive genetic variance and residual effects operationalized
as follows:

V5 2Fs2
ag1Is2

ε

V is the covariance between a pair of relatives and captures
phenotypic variance (V), F is the kinship coefficient matrix,
sag

2 is the additive genetic variance, I is the identity matrix,
and s

ε

2 is the residual variance due to stochastic error
(‘‘noise’’) and unique environment. In this model, only sag

2

and s
ε

2 are estimated with the matrices defined a priori. To
account for ascertainment, the sample mean was set to
population prevalence (5.5/10,000).E2-E4 To assess signifi-
cance of the genetic variance component, twice the difference
between the log-likelihoods of this model and one without the
genetic component was computed and compared with a x2

1

distribution. Heritability was defined as sag
2/(sag

2 1 s
ε

2).
However, given the nuclear family design, this heritability
estimate is denoted as hgc

2 (combined gene-environment
heritability) to account for the fact that the common family
environment (C) cannot be separated from additive genetic
effects.

To appropriately account for twin relationships, structural
equations modeling was appliedE5-E8 using Mplus (Mplus:
Muth�en & Muth�en, Los Angeles, Calif). Briefly, these models
examine the covariance within and between twins. Importantly,
jointly estimating effects in MZ and DZ twins, variation can be
portioned into genetic and environmental components (AE
model; additive genetic [A] and unique environment/error [E]).
However, because all twin pairs share common environmental
exposures, variation can further be partitioned into additive
genetic (A), common environment (C), and unique environ-
ment/error (E) using the ACE model. Using the terminology of

variance components analysis, the ACE model can be operation-
alized as follows:

V5 2Fs2
ag1Cs2

C1Is2
ε

where C is a matrix used to derive the variance explained by
the common family environment (sC

2). Model constraints
included intrafamily environmental correlation (C) at 1.0 for
both types of twins and genetic component (A) correlation
at 1.0 for MZ twins and 0.50 for DZ twins. Ascertainment
was corrected by incorporating the point estimate of preva-
lence of 5.5 per 10,000 in the population.E1-E3 As with vari-
ance components modeling, significance of effects was
determined by comparing the log-likelihoods of nested
models for all 3 combinations of ACE, AE, and CE models
to determine the best-fitting, data-driven model. Nonsignifi-
cant P values indicate better model fit to the data. Heritability
can be measured from both the AE and ACE models. Howev-
er, heritability from the AE model does not separate additive
genetic effects from shared family environment effects; it is
designated as hgc

2. Heritability from the ACE model uniquely
separates additive genetic effects and thus is designated hag

2.
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