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Abstract
In the last decade, the use of engineered nanomaterials (ENMs) such

as titanium dioxide (TiO2), carbon nanotubes (CNTs), carbon nanofibers
(CNFs), as well as a variety of other materials have become increasingly
popular in commerce because of their many beneficial properties (e.g.
ability to manufacture products that are lighter, stronger, and/or more
compact). However, according to the National Institute of Occupational
Safety and Health, with the development of new nanotechnology it is pru-
dent to ensure the health and safety of workers who are producing or using
these materials at the forefront. For many ENMs, occupational exposure
limits (OELs) are not available and the OELs developed for microscale
materials may not be adequate for ENMs. In the absence of human data,
rodent assays are often used to find a dose estimate which can then be used
as a point of departure (POD) to extrapolate to humans. Some bioassays
report summary statistics, which can be used to determine benchmark
dose (BMD) estimates – the dose that corresponds to a specified level
of increased response called a benchmark response or BMR [4]. Pooling
data across studies with a small number of dose groups (as in many of the
studies in this dataset) provides a more robust dataset by increasing the
sample size, although also adding variability across different experimental
designs (i.e. species, strain, gender). Thus, the aim of this project was to
examine the influence of material type on the dose-response relationship
using statistical regression modeling in R (statistical software) since the
EPA’s Benchmark Dose Software (BMDS) does not allow for covariates,
and building upon these regression models by adding covariates to account
for experimental design features which add variability that may obscure
these relationships.

Disclaimer: The findings and conclusions in this report are those of the
author(s) and do not necessarily represent the views of the National Institute
for Occupational Safety and Health.
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Background
Engineered nanomaterials (ENMs or nanomaterials) are particles with a diam-
eter less ranging from 1-100 nanometers which have become increasingly more
popular in industry because of their chemical properties that make it possible
to manufacture products that are lighter, stronger, and/or more compact. How-
ever, individuals working with these materials in the production of goods that
are produced using ENMs are susceptible to inhaling any excess nanomaterials
that escapes into the air. These nanoparticles when inhaled can be deposited
into various parts of the respiratory tract (lungs and other air pathways) which
can lead to the development of adverse health effects. In an effort to protect
individuals from developing chronic illnesses agencies like the National Institute
of Occupational Safety and Health (NIOSH) work to set occupational expo-
sure limits (OELs) to improve the working conditions of individuals. For many
ENMs, OELs are not available and the OELs for the microscale materials may
not be adequate for nanomaterials. In absence of human data, rodent bioassays
are often used to develop OELs. Rodent doses associated with no or low level of
adverse effect is used as a point of departure (POD) to extrapolate to humans.
These dose estimates also provide a measure of the relative potency of nanoscale
particles, which could then be used for developing OELs for ENMs.

Dose estimates provide a measure of the relative potency of nanoscale parti-
cles. These include NOAELs (no observed adverse effect level), LOAELs (lowest
observed adverse effect level), BMD (benchmark dose), and BMDL (lower one
sided 95% confidence limit on the BMD). All of these dose estimates are used
as a POD for developing OELs, but there are advantages and disadvantages to
the various methods and there is a strong case of moving towards working with
BMD/BMDL estimates.

NOAEL is the highest experimental dose group that is not statistically differ-
ent from the control group. LOAEL is the lowest experimental dose group that
is statistically different from the control group. The use of NOAELs/LOAELs
are advantageous for setting recommended exposure limits because they are con-
ceptually they are relatively simple to use [7]. They are also nice to use since
the dose estimates come from the experimental dose groups in the toxicology
studies. Also, they can be used to compare the potency of various materials in
the absence of common endpoints [4]. However, this simplicity also comes at a
price and presents a number of disadvantages:

1. Larger studies tend to produce smaller NOAELs which discourages larger
experiments to be conducted [4].

2. NOAELs do not lend themselves to cost-benefit with experimental studies
(i.e. failed studies may force a requirement of additional studies) [4].

3. Since the NOAEL/LOAEL come from the dose groups of the experiment
then the actual NOAEL may be lower than the observed NOAEL if the
response if not statistically significant (e.g. due to small sample size)
(Gezondheidsraad, 25). Thus, when extrapolating to a recommended OEL
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it will produce a more conservative exposure limit than is necessary. On
the surface this seems good, but the feasibility of managing that conser-
vative level of exposure may not be reasonable for financial and practical
reasons.

4. The NOAEL corresponds to a single dose group in a toxicology study.
So, results at other dose groups are not taken into account eliminating
information about the variability of the data, it does not giving a clearer
picture of the precision of the NOAEL, and it also does not allow for
information about the shape of the dose-response curve [7].

5. The experimental design of the toxicology study (such as number of ani-
mals, number of dose groups, and intervals between the level dose groups)
greatly influences the NOAEL, for example in general a lower number of
animals per study group may result in a higher value for the NOAEL [7].

6. Since the NOAEL/LOAEL method is dependent upon the design of the
experiment and the dose groups, then that also means that if an experi-
ment is not designed well then it is possible that the results do not produce
a NOAEL, which would result in more testing which can be expensive and
time consuming.

Although using the NOAEL/LOAEL method is commonly used practice, its lack
in statistical robustness as well as its other disadvantages (mentioned above)
promotes the use of the BMD method when it it feasible to do so.

The BMD method, like the NOAEL/LOAEL method, has its advantages
and disadvantages. Some of the disadvantages that come about with the BMD
method are, firstly one must take care to fit a model which is not only statis-
tically significant but biologically significant as well. Another disadvantage to
using the BMD method is that when there is not a common endpoint between
two studies, then it is not possible to compare the resulting BMD estimates [4].
On the other hand there are many advantages of using BMD estimation:

1. In the absence of a NOAEL a BMD estimate can still be calculated for a
specific dose-response study [4].

2. Less likely to involve difficult decisions about particular experimental
groups defining a NOAEL [4].

3. The full dose-response relationship is used to estimate the BMD and
BMDL [4],

4. The BMD method also reflects sample size, and makes better use of the
dose-response relationship [4].

Thus, the BMD methods is statistically more robust, makes use of more of the
data in each of the studies, and the health-based exposure limits that result from
the BMD method have an inherently lower uncertainty than those generated
from the NOAEL method [7].
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The EPA’s benchmark dose software was developed to model dose-response
relationships and calculate BMD/BMDLs. The BMDL is the lower one sided
confidence limit on the BMD, with a 95% confidence that the true BMD estimate
is not lower, and is the preferred POD because it accounts for variability in the
data used to estimate the BMD. However, BMDS does not allow for the addition
of covariates and thereby does not allow data from multiple studies (which are
not identically designed) to be pooled together and modeled. The motivation
for this analysis was to be able to pool summary data together from multiple
inhalation toxicology studies for ENMs to evaluate the hazard potency across
materials using a more flexible software for dose-response modeling. Being able
to pool together data and writing a model with covariates could be helpful in
evaluating experimental variables as well as estimate exposure limits to prevent
adverse health effects in workers.

Methods
Data Collection. The data in this analysis was extracted from a pre-exisiting
dataset used in a previous research project, and the studies included from the
original dataset were chosen based on the criterion that each of the studies were
adequately fit with a dose-response model in BMDS.

All of the data from the pre-existing dataset came from one of two published
compiled datasets (OECD and Gernand) or from 8 recently published toxicology
studies that were added in an effort to supplement the compiled datasets with
more current up to date studies. In order to be included in the dataset the
studies had to fit the following criteria:

1. The rodent bioassay was focused on pulmonary (lungs) health effects (in-
halation, intratracheal instillation, intranasal instillation, intraperitoneal,
or pharyngeal aspiration).

2. An original published study could be found, so that data could be col-
lected.

3. Eliminating and consolidating duplicates between the three main sources
of data.

4. The individual studies had available quantitative dose-response data for
the biological endpoint of interest (polymorphonuclear leukocytes/neutrophils
- PMNs; which is a biological endpoint for measuring inflammation) in-
cluding dose, number of animals per group, proportions/count of PMNs,
and standard deviation or standard error of PMNs.

The studies that fit these criteria were modeled in BMDS to determine BMD
estimates for the various materials. In all we started with 82 studies and ran 28
studies in through BMDS looking for model fits with reasonable BMD estimates.

The dataset that was used for our study resulted from the studies that
when modeled in BMDS had a model that passed through the model fit criteria
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and an acceptable BMD estimate (based on the criteria for model fit to the
data) was produced. As a result, in our dataset there were 12 studies that
were included. Then, after further review of the quantitative data that was
provided by each one of these studies, two of the studies did not provide sufficient
summary statistics about variance of the percent of PMNs, and estimating those
values based of other information that are already rough estimates would have
introduced uninterpretable error into our dataset. Thus, it was necessary to
remove those two studies from our dataset, and we were left with 10 studies
that would provide summary data for us to produce our model in R.

Since each one of the individual studies followed a different experimental
design, in particular differences in the dosage rates and exposure times, it was
necessary to normalize the dose metrics and make sure all of the response point
estimates were of the same type (i.e. percent PMNs). Instead of using the dose
concentration in the chamber at a particular time, the cumulative exposure dose
(Cumulative.Exposure = [concentration] ∗ exposure.time) was used in order
to compare all of the dose groups from the various studies, and take into account
how much a subject was exposed to overall and the PMN response in accordance
to that given dose.

Exploring the Data. Since the response at various post-exposures will differ
based on clearance of the material from the lungs and/or reduction of inflamma-
tion caused by the material. Then it was first necessary to stratify the dataset
into subgroups based dose groups from four different post-exposure periods,
either short-term, moderate, moderately long, or long term. Short-term post-
exposure were any studies that had a post-exposure period from 0,1, or 3 days,
moderate post-exposure were any studies with 16 days post-exposures, moder-
ately long post-exposure were any studies with 45 days, and long term post-
exposure were any studies with 90 days or more post-exposure. Then looked at
plots of each of the subgroups to see if there was a distinct trend across data,
and to see if there was a particular subgroup that would be more beneficial to
use for this study.

Modeling in R

Replication of Basic Dose-Response Model from BMDS to R.
Since BMDS does not allow for the addition of covariates into model fits, then it
was necessary to replicate the model fits in some other software that would allow
for covariate additions (i.e. R statistical software). For this analysis the focus
was placed on the following dose-response models (assuming constant variance)
from BMDS:

• Linear (Polynomial 1)

◦ y = b0 + b1(dose)

• Quadratic (Polynomial 2)
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◦ y = b0 + b1(dose) + b2(dose)
2

• Cubic (Polynomial 3)

◦ y = b0 + b1(dose) + b2(dose)
2 + b3(dose)

3

The following models were chosen as the first set of models to be replicated from
BMDS to R because of their ability to be replicated quite simply into another
software.

In R there is a function called glm (or generalized linear model), which is
a statistical regression modeling function that was used to replicate the model
fitting process that BMDS implements. The function glm was chosen on the
criterion that it is able to incorporate more arguments when fitting a regression
model (if necessary) than the function lm (linear model), which is another sta-
tistical regression modeling function in R. Two individual bioassays were chosen
to replicate the polynomial models form BMDS into R, and the studies were
chosen based on the following criteria:

1. The inhalation studies were included in the pooled dataset for this analysis

2. The inhalation studies had multiple experimental dose groups (i.e. had
a control group, and multiple dose groups exposed to some dose of the
aerosalized ENM)

The first criterion was set to ensure that the studies used were adequately fit
with a model in BMDS - does not necessarily mean one of the polynomial
models was the best fit models but it was a sufficient dataset to be able to fit
a dose-response model. The second criterion was set to ensure that there was
enough data in the individual study dataset to be able to adequately replicate
a cubic (polynomial 3) model from BMDS to R. Also, it was necessary to use
two individual inhalation datasets to ensure that model fits being output in R
were in fact replicas of the model fits in BMDS. Thus, the initial study was
meant to see if the gglm function does in fact use essentially the same statistical
modeling methods as BMDS. The second dataset was meant to verify - in the
case of replication of model fits for the initial study - that the replication was
not just a matter of circumstances and R does in fact use essentially the same
modeling methods as BMDS.

Now, when fitting the 2 individual datasets we decided the following criteria
would be sufficient for ruling BMDS and R model fits to be approximately the
same and thus a replication of BMDS models into the R statistical software:

1. The intercept estimate (b0) in the dose-response model in R is the same
as intercept from the model output in BMDS

2. All of the parameter estimates (bn ; n ∈ N) in the dose-response model
in R are the same as the parameter estimates from the model output in
BMDS
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These two criteria are sufficient to determine a successful replication of the model
fit because if the intercept and all of the parameter estimates are essentially the
same, then the two model fits would also be essentially the same (i.e. one could
lay the dose-response model fit from BMDS on top of the model fit from R and
they would be relatively indistinguishable).

Fitting the Pooled data with Dose-Response Models. The next
step was to fit the pooled dataset with each one of the basic polynomial models.
However, since the data that is being fit now with a dose-response curve is
a collection of multiple studies and all of the data points are mean responses
for each dose group, then in order for our model to be valid it is necessary
to weight the model accounting for some variability in the data within each
dose group (from the individual studies). Thus, weighting the model takes
away the assumption that each mean response contributes the same amount of
information to a dose-response model. Two approaches were explored in the
analysis:

1. Weighting the model using precision - which is derived using the standard
deviation from each dose group (i.e. the sufficient summary statistic of
variability for a dose groups) and the number of subjects per dose group

2. Weighting the model using the number of animals per dose group

The first method, which is the more favorable of the two methods because of
its use of the sufficient statistic of variability for each of the groups, utilizes
something called precision. Precision is defined in the following manner:

Precision =
1

SEM2

SEM -Standard error of the mean (or ( sd√
n
) - standard deviation of the dose

group divided by the square root of the number of animals in the dose
group)

Weighting the model based on the precision is telling our model fitting function
that mean responses with a lot of variability should contribute less to the overall
fitting of the dose-response model. In turn, that also means that the mean
responses with low variability should contribute a lot of information to the
dose-response model fit. Also, weighting by precision is optimal if the SEM
values are correctly estimated. However, with the small sample sizes in the dose
groups, the estimates of the SEM may be poor; thus, a reason to weight by the
number of animals per dose group, which gives higher weight to responses based
on larger sample size.

The second method, which is also valid but less statistically robust, would
be finding the number of animals for each mean response and weighting the
model based off of the number of animals that produced the mean response for
a specified dose. One advantage of using this method is that it is relatively
simple as well as it accounts for some of the variability of the study designs.
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Secondly, this method responses that are based on larger sample sizes contribute
more weight to the model fit. If the sample sizes for dose groups are relatively
small then the standard deviations could be very imprecise, which could cause
the model to be inadequately fit when weighting with precisions.

Both weighting methods were explored in this analysis and the one that was
most feasible to fit a dose-response model was implemented in our later model.

Adding Covariates to the Pooled Data Dose-Response Linear Model.
After fitting each of the basic polynomial models (Linear, Poly 2, and Poly 3)
with the respective weighting method, then it was possible to begin adding co-
variates to our model. For this portion of the analysis it was best to again begin
with the simpliest model to add covariates to. Therefore, the model that was
focused on for adding covariates was the linear model. All of the covaritates
that were included in our dataset were categorical varibles and the main goal
for adding these covariates was to explain the variability in the data as well as
explain their effect on the observed response in PMNs. When adding the covari-
ates to the linear model in R, the covariates were coded to observe slope effects
to determine any explanation in a significant increase in the PMN response.

The model development method implemented to add covariates to the linear
model was a step-wise method, i.e. adding one variable at a time to see if it
would help to develop a better model fit. The order of adding covariates was as
follows in order of importance:

1. Material Type

2. Species/Strain

3. Gender

The purpose for this order of importance stemmed from the main objectives of
the analysis. The main purpose for this analysis was to evaluate the hazard
potency of the various ENM types, and thus was placed as the most impor-
tant covariate to consider for developing the model fit. Following that would
be species and strain, since species was the more general case of categorizing
animal subjects it made sense to add it as a covariate first. Furthermore, strain
being a more specific categorizations of the animal subjects, that was also con-
sidered a reasonable next step in the model development. However, the addition
of species as well as strain in the model is not necessary and may make unrea-
sonable parameter estimates if both are included in the model fit. For example,
calculating a parameter estimate for the species: hamster and strain: Wistar
would not make sense considering there is not such a combination, because ham-
sters correspond with the Syrian strain in our dataset and Wistar is a strain
of rat. Finally, gender effects are always important to consider in biological
studies, but not necessarily the primary concern for explaining variability in the
dose-response data.

The following criteria were used to help determine our final model fit:
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1. The addition of a covariate to the linear model must lower the AIC (Akaike
information criterion) of the model fit

2. There was no direct correlation between covariates

3. The addition of the covariate not only had to be statistically significant in
developing a best fit model but it also needed to be biologically significant

The AIC is a goodness-of-fit test for a proposed statistical regression model,
which is assessed by the log-likelihood function and includes a penalty for in-
creasing the number of parameter to the proposed model [5]. The idea of the
AIC is to discourage over-fitting a model. If an addition of a parameter lowers
the overall AIC of the regression model, then the variability in the data being
explained by the addition of that particular covariate outweighs the penalty as-
signed for the addition of the covariate; the lower the AIC then the better the
model fit.

The second criterion was set in place to ensure that the model fit does not
attempt to estimate separate parameters that provide the same information
about the data and to avoid over-parameterizing the model. Finally, the third
criterion was set in place in order to ensure statistically adequate model fits
did not make unreasonable biological assumptions to achieve a “better model
fit”, developing models that are not biologically significant can result inaccurate
BMD/BMDL estimates which would be used as a POD to extrapolate to humans
thereby developing an OEL that was not sufficient to protect workers adequately.
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Results

Exploring the Data.
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Figure 1: Pooled dataset of all of the published inhalation toxicology studies
contained within the dataset for this analysis. This plot contains studies varying
in material type being tested, species/strain of subjects, gender, as well as post-
exposure time.
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Figure 2: Pooled dataset of only the short-term post-exposure (0-3 days) in-
halation toxicology studies contained within the dataset for this analysis.

In both of the plots the pooled data looks as if it follows a typical dose-response
trend with much of the data is contained in the lower dose regions. However,
the dose-response trend that is seen in these plots does not account that the
mean responses come from a mix of various material types.
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Replication of Model Fits
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Figure 3: Plot of the individual study that was used to replicate the polyno-
mial models from BMDS into R. - Test Dataset No.1 corresponds to Study 85
(Bermudez, E. et al.) in the original dataset.

Linear:

Table 1: Test Dataset No. 1, Replication Results for the Linear (Poly 1) Model.
BMDS output (top) ; R output (bottom).
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Figure 4: Test Dataset No. 1, BMDS Linear (Poly 1) Model plot.
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Figure 5: Test Dataset No. 1, R Linear (Poly 1) Model plot.
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Quadratic (Polynomial 2):

Table 2: Test Dataset No. 1, Replication Results for the Quadratic (Poly 2)
Model. BMDS output (top) ; R output (bottom).

Figure 6: Test Dataset No. 1, BMDS Quadratic (Poly 2) Model plot.
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Figure 7: Test Dataset No. 1, R Quadratic (Poly 2) Model plot.

Cubic (Polynomial 3):

Table 3: Test Dataset No. 1, Replication Results for the Cubic (Poly 3) Model.
BMDS output (top) ; R output (bottom).
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Figure 8: Test Dataset No. 1, BMDS Cubic (Poly 3) Model plot.
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Figure 9: Test Dataset No. 1, R Cubic (Poly 3) Model plot.

All of the replication model fits (Linear, Poly2, and Poly 3) for test dataset No.1
in R had essentially the same parameter estimates - down to the thousandths

16



decimal place - as model fits from BMDS. Similar results for the test dataset
No. 2 were found, all of the model fits were matched to the thousanths place.
Since test dataset No. 2 was meant to be a cross-check of model fitting method,
see the R code in the Appendix for these replication results for test dataset
No.2. Thus, the replication of BMDS modeling methods (for models assuming
constant variance) were successful.

Model fitting the Pooled Data
Weighting Assessment
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Figure 10: Comparison plot of precisions ( 1
SEM2 ) across Cumulative Exposure

groups. Large variability in the precisions at the low exposure end and almost
no precision seen in the the higher exposure groups.

The estimates of SEM may be poor given the small number of animals per
group. In addition, the true SEM may be increasing with dose due to greater
variability in responses from a distribution of individual animal sensitivities to
the exposure (i.e. nonconstant variance). The high exposure regions have very
low precision esitimates relative to those in the low exposure region where most
of the data are (about 8 orders of magnitude difference between precisions).

Consider the number of animals per exposure group as a method of weighting
the model with variability. This approach will provide more weight to the
responses that are based on larger sample sizes.
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Figure 11: Comparison plot of No. of Animals per Cumulative Exposure group.
The number of animals per Cumulative Exposure group ranges from 5 to 12
animals per group.

Since the range number of animals per exposure (dose) group is more evenly
distributed across all of the exposure groups and there are issues with the vari-
ance structure of the data, then it is sufficient to weight the pooled model with
the number of animals per dose group (as mentioned in the methods section).
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Model Fits to the Short-term Post-exposure Pooled Dataset (weight-
ing based on number of animals per dose group)

Linear (Polynomial 1):

Table 4: Linear (Poly 1) Model.

Thus, the linear model that follows is y = b0 + b1(dose) ; b0 = 4.2628386,
b1=0.0040918; and is shown in the plot below:
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Figure 12: Linear (Poly 1) Model fit plot for the short-term post-exposure
pooled dataset.
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Quadratic (Polynomial 2):

Table 5: Quadratic (Poly 2) Model fit for the short-term post-exposure pooled
dataset.

Thus, the quadratic model that follows is y = b0 + b1(dose) + b2(dose)
2 ; b0 =

-1.024e+00, b1=1.544e-02,b2= -1.410e-06 ; and is shown in the plot below:
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Figure 13: Quadratic (Poly 2) Model fit plot for the short-term post-exposure
pooled dataset.

Cubic (Polynomial 3):

Table 6: Cubic (Poly 3) Model fit for the short-term post-exposure pooled
dataset.
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Thus, the cubic model that follows is y = b0 + b1(dose) + b2(dose)
2 + b3(dose)

3

; b0 = 6.659e-01, b1=8.505e-03,b2=8.256e-07, b3= -1.615e-10 ; and is shown in
the plot below:
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Figure 14: Cubic (Poly 3) Model fit for short-term post-exposure pooled dataset.
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Comparison of Polynomial Models
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Figure 15: Comparison of the weighted polynomial dose-response models. Pink
- Linear (Poly 1); Green - Quadratic (Poly 2); Blue - Cubic (Poly 3).

Adding Covariates to the Basic Linear Model of the Pooled
Data

Table 7: Possible covariates to consider for explaining variability among our
mean responses from various individual toxicology studies.

The table of possible covariates shows that there are direct correlations between
material with species/strain as well as material and gender, because for all of the
materials (except TiO2) the mean responses only come from one species/strain
and the same for gender. Thus, planning the modeling development it is only
sufficient to model the linear model adding material as a covariate, to evaluate
experimental factors that may be significant for explaining the variability in
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the data. Adding material as a covariate helps to evaluate the relative hazard
potencies across the ENMs as well.

The linear model with material a covariate is shown as follows:

Table 8: Linear Model fit for the short-term post-exposure pooled dataset with
Material as a Covariate.

The linear model can be written in the following form:

y = b0+b1(dose)+b2(IMWCNT )+b3(ISWCNT )+b4(ITiO2)+b5(IMWCNT )(dose)+b6(ISWCNT )(dose)+b1 = 0.0010835(dose)

where b0= 0.9653231; b1= 0.0010835; b2= -0.9339423; b3= -0.9653231; b4=
2.8256788; b5= -0.0009728; b6= 0.0010977; b7= 0.0069034 ; and I is an indicator
parameter (0 or 1 depending on if the material is present).
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Figure 16: Comparison of Linear Models for the various Material Types. This
plot shows the effect of various nano-material types on PMN response, TiO2
(titatnium dioxide) looks to be significant in increasing the PMN response over
CNF, MWCNT, and SWCNT for this biological endpoint.

From the slope estimates of the model output and the corresponding visual
plot of the various linear models based on material, then for the PMN endpoint,
TiO2 is significantly more potent than CNFs, MWCNTs, and SWCNTs. TiO2
is followed in potency by CNF, but dose not seem to be as significant in the low
dose regions above MWCNTs and SWCNTs, and the multi-walled and single-
walled carbon nanotubes do not seem to have much of an effect over the PMN
response.

Discussion
Model Fitting and Adding Covariates. The polynomial models (assuming
constant variance) from BMDS were successfully replicated in R with a function
that uses similar best fit optimization methods as implemented in BMDS. This
provided us the opportunity to fit multiple regression models to the pooled
dataset.

Before fitting the pooled data with the polynomial models it was necessary
to considered the underlying variance structure so that the model could be
weighted appropriately. The first method that was evaluated was weighting
by precision, but further exploration into the precisions across the data it was
apparent that there are some nuances in the variance structure. Across the
board there were vast differences in precisions across the data, in the low dose
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region were higher in precision as opposed to those in the higher dose regions.
Between the maximum and minimum precisions there were about 8 orders of
magnitude difference, and the highly precise data points were all contained
within that low dose region, and even the precisions within that low dose region
were quite varied. The large magnitude of difference between precisions makes
the higher dose groups have essentially zero precision, which then leads to a
model fit that is determined mostly by data points in the low dose region and
does not give a good description of the data. Thus, the next method of weighting
that was explored was to weight the model using the number of animals per
dose group. The number of animals per dose groups was a more reasonable
representation, for this analysis, of variability in the data than weighting by the
precisions because of the smaller range in the number of animals per dose group
(5-12 animals) across all of the dose groups.

The short-term post-exposure pooled data was modeled with all of the poly-
nomial models (i.e. Linear, Polynomial 2 and Polynomial 3), seen in Fig 12-14.
The AIC decreased from the linear model to the quadratic, but the cubic AIC
did not have a very significant drop from the quadratic. Thus, the quadratic
and cubic are about the same when describing the trend in the data (for the
dose-response trend for general nanomaterials) and is a “better model fit” over
the linear model. However, when adding the covariates the simplest model to
consider was the linear model.

Adding covariates to the linear model, material was the main variable of
interest so was added first to the model output seen in Table 8. Other variables
of interest were species/strain, and gender, but there were direct correlations
between material and species/strain as well as material and gender. If these
variables were added to the model fit then there are two consequences. Firstly,
adding directly correlated variables to a model might over-parameterize the
model, fitting a model that is inaccurate. Secondly, might fit a model that
estimates parameters that would rely upon making assumptions about biological
processes that may not be feasible to make. Thus, it was only valid to add
material as a covariate to the linear model.

Comparing the basic linear model and the linear model with with material
as a covariate, there was drop in the AIC from 325.98 to 305.6, thus material
is significant variable. Thus, this means that there is a difference in the po-
tencies across the various ENMs and we can evaluate their potencies using the
model. Looking at the slope estimates and Figure 16 we can see that for the
PMN endpoint that TiO2 is significantly more potent that CNFs, MWCTs, and
SWCNTs. The statistical tests for significance of the model parameters (and
associated p-values) are not considered reliable due to the nonconstant variance
observed in the data (i.e. increasing variance with increasing dose, as seen in the
TiO2 data). A model that adequately accounts for the variance structure was
not feasible in these data due to the large differences in the precision estimates
based on small sample sizes.

27



Data Limitations. Although the replication of models from BMDS to R was
successful and it was possible to write a model with covariates to evaluate the
potencies of various ENMs, there were some limitations in the data that forced
some assumptions to be made. Some of the limitations and their consequences
are as follows:

• Sparse data for several variables and correlations in the variables.

A small amount of data and sparse data for several of the variables limited the
number of variables that could be evaluated for significance on their effect of
evaluating the potecies of various nanomaterials. Thus, may have limited our
ability to describe some of the variability in the data.

• Working with Summary Statistics.

Working with summary statistics limited our ability to see how the individual
data was distributed, which affects our ability to model variability.

• Relatively few material types represented in the dataset.

The number of nanomaterials that exist and are used in industry are numerous,
and the dataset for this analysis only covers a small snippet of a broad spectrum
of materials. This limits the ability of researchers to be able to evaluate potencies
of the numerous nanomaterials and set OELs to protect workers.

• Much of the data was in the low dose region.

Data in the low dose region had a huge impact on the overall model fit and
made the information in the higher dose region “less” important even though
all of the data in the higher dose regions are important in the grand scheme of
developing an adequate OEL.

• Heterogeneity in variability in PMN response.

Heterogeneous variance issues cannot be ignored in these data, and more explo-
ration into the underlying variance structure is necessary to be able to write an
adequate dose-response model from which a BMD and BMDL can be estimated
from. Furthermore, for this analysis since the model was weighted using an al-
ternative method than precision and the uncertainty in the variance structure,
then there were also limitations in the validity of statistical tests for the model
fit of the data (i.e. cannot rely upon the significance tests for the model param-
eters when adding covariates due to the nonconstant variance observed in the
data).

All of these data limitations would be important to explore and account for
in further explorations of dose-response modeling problems.

Conclusion
This analysis was crucial in demonstrating that data from multiple toxicology
studies can be pooled together and evaluated to estimate potency based on
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material type (and other factors if sufficient data are available for modeling).
Importantly, BMDS models could be replicated into R, which gives more flexi-
bility to dose-response modeling and allows one to be able to evaluate different
variables across a number of toxicology studies. Finally, this analysis showed
that material is in fact an important factor for estimating BMD/BMDLs, which
means that potencies across ENMs are not the same and therefore OELs is not
sufficient for all ENMs.
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Appendix
The R Code for this analysis can be found at the following website http://bit.ly/1peenBa.
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