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This paper extends the theoretical framework for exploring student understanding of the 
concept of the derivative, which was developed by Zandieh (2000).  We expand upon the 
concept of a physical representation for the derivative by extending Zandieh's map of the 
territory to provide higher resolution in regions that are of interest to those operating in a 
physical context.  We also introduce the idea of "thick" derivatives, which are ratios of small 
but not infinitesimal changes, which are practically equivalent to the true derivative. 
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In this theoretical report we extend the theoretical framework for exploring student 
understanding of the concept of the derivative which was developed by Zandieh (2000).  We 
expand upon the concept of a “physical” representation for the derivative.  As with Zandieh's 
original framework, this work is not meant to explain how or why students learn as they do, 
nor to propose a learning trajectory.  Rather, this work extends Zandieh's “map of the 
territory,” to provide higher resolution in regions that are of interest to those working with 
derivatives in a physical context.  In addition to focusing on the physical context, we discuss 
challenges that have arisen in applying Zandieh's framework to an understanding of the 
derivative beyond the level of first-year calculus.  

This work is motivated by preliminary results of a project to study understanding of the 
derivative across STEM fields (Roundy, Weber, Sherer & Manogue 2014b).  In the process 
of interviewing physicists and engineers, we have identified shortcomings that arise when 
applying Zandieh's framework beyond the level of first-year calculus, and in particular 
outside the field of mathematics.  We have found that the concept image for the derivative of 
physicists and engineers contains substantial elements that are congruent with the three 
process-object layers identified by Zandieh, but lead to the introduction of new contexts and 
representations that could also be productive in the instruction of calculus. 

Physicists and engineers live and work in a world full of uncertainty, and are accustomed 
to use the language of equality where there is actually approximation.  This language reflects 
a somewhat “thicker” concept of the derivative than that held by mathematicians.  Where a 
mathematician would speak of the slope of the secant line as an approximation for the 
derivative, a physicist or engineer might say that the slope of a line drawn between two 
carefully chosen measurements of a physical observable is the derivative (with some 
unspecified uncertainty).  As we will explain, this “thickness” derives from the impossibility 
of achieving exact results in physical or numerical contexts.  Attempts to estimate a 
derivative over too small an interval, for example, could result in a highly erroneous estimate 
of a derivative due to numerical round-off error or limitations in experimental precision. 

Theoretical Background 

Concept Image 
In this work, we extend the theoretical framework of Zandieh (2000), which itself draws 

on the idea of concept image (Vinner, 1983).  Vinner (1983) describes the concept image as 
the set of properties associated with a concept together with mental pictures of the concept. 
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Thompson (2013) argues that the development of coherent meanings is at the heart of the 
mathematics that we want teachers to teach and what we want students to learn. He argued 
that meanings reside in the minds of the person producing them and the person interpreting 
them.  

Zandieh’s framework for the concept of the derivative 
Zandieh (2000) introduced a framework for the concept of the derivative, aimed at mapping 
student concept images at the level of first-year calculus.  This framework maps out the 
correct concepts as understood by the mathematical community, and thus does not 
incorporate incorrect understandings.  We reproduce in Fig. 1 below Zandieh’s outline of her 
framework. This table consists of columns corresponding to representations or contexts, and 
rows corresponding to process-object layers.  The process-object framework is taken from 
Sfard (1991), who conceives of mathematics as proceeding through processes acting on 
objects, with those processes then becoming reified into objects. 
  

Process-object 
layer 

Graphical Verbal Physical Symbolic Other 

Slope Rate Velocity Difference 
Quotient  

Ratio      
Limit      
Function      

Figure 1: Zandieh’s outline of the framework for the concept of the derivative.  

Representations 
Each of the representations in Zandieh’s table can be used to convey the concepts behind the 
three process-object layers. She also likens these columns to “contexts” in the sense that each 
of these provides a context within which we can think about the derivative. In the paragraphs 
below, we give a brief summary of each position in Fig. 1. 
 Graphical.  The graphical representation of the derivative is slope. At the ratio layer, 
this is the slope of a secant line between two points on the curve describing a function. When 
taking the limit, we arrive at the slope of the tangent line at a point. Finally, considering the 
derivative as a function requires us to recognize that the slope is different for different values 
of the independent variable. 
 Verbal.  The verbal representation for the derivative discussed by Zandieh is the “rate 
of change.”  At the ratio layer, this is expressed as an “average rate of change.”  When taking 
the limit, this becomes the “instantaneous rate of change.”  Understanding this verbal 
description as a function requires us to visualize the instantaneous rate of change for the 
inputs over the domain of the function.  
 Physical.  The physical representation, or paradigmatic physical representation is 
velocity: average velocity, instantaneous velocity, and the velocity as a function of time. 
These physical concepts provide a language that we can use to understand the derivative: a 
large derivative means “faster” and a varying derivative means there is acceleration going on.  
 Symbolic.  The symbolic representation of the derivative is the formal definition of 
the derivative in terms of the limit of a difference quotient. In this case, the distinction 
between the limit layer and the function layer can be subtle. They differ in the recognition 
that the variable describing the point at which the limit is taken can be treated as the 
argument of a function. Zandieh expresses this with a notational distinction between !! and 
!. 
 Other.  Finally, we point out that Zandieh explicitly placed in her framework space 
for additional contexts.  In particular, when discussing the physical context, she mentioned 
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that there is a wide set of physical contexts for understanding the derivative. In this paper, we 
will discuss some of the subtleties we have encountered in investigating understanding of the 
derivative within the context of a mechanical system (Sherer, Kustusch, Manogue & Roundy 
2013, Roundy et al. 2014b). 

Extensions to Zandieh’s framework  
Likwambe and Christiansen (2008) extend Zandieh’s framework in three ways. Firstly, 

they recognize the importance in a concept image that we be able to make connections 
between different representations, and extend the use of the table to include arrows indicating 
that a student has made a connection between two representations or ideas. Secondly, they 
add a “non-layer” row, which indicates a recognition or use of that representation of the 
derivative without indication of an understanding of any of the three process-objects layers. 
Finally, Likwambe and Christiansen (2008) added a separate category for what they refer to 
as instrumental understanding, a term taken from Skemp (1978). Instrumental understanding 
(as opposed to relational understanding refers to the knowledge of and ability to follow a 
procedure. Both Skemp (1978) and Lithner (2003) point out that instrumental understanding 
is commonly emphasized in both homework assignments and exams. Zandieh explicitly 
omits instrumental understanding from her framework, but Likwambe and Christiansen 
(2008) add an additional box for instrumental understanding, in order to include “the only 
learning exhibited by most of the interviewees.”  

Extending Zandieh’s Framework for the Derivative  
In our research on expert understanding of the derivative across disciplines, we have 

encountered several issues that led us to an extension of Zandieh’s framework for the 
derivative, with a particular focus on physical contexts. We propose a deeper understanding 
of the “physical” representation, and add an additional “numerical” representation, which fills 
out the Rule of Four: graphical, verbal, symbolic and numerical (Hughes-Hallett et al., 1998). 
In addition, we follow Likwambe and Christiansen (2008) in adding an instrumental 
understanding category that lives outside the three process-object layers. 

Figure 2 shows our framework for the concept of the derivative. This figure is modeled 
after Fig. 1, the framework of Zandieh, and is best understood in terms of the differences 
between these two frameworks. We have added one additional column labeled numerical 
(and removed the Other column to make space). We have added the instrumental 
understanding of Likwambe and Christiansen (2008) (which is to say, the rules of 
differentiation) as an entirely separate table, partially to reflect its weak connection to any 
other aspect of the concept of the derivative.  

Finally, we have added into each entry of the table (which Zandieh left blank) an iconic 
description of the concept meant by that entry. These entries are intended to aide in 
understanding the table by compactly describing the conception of the derivative indicated by 
that combination of row and column.  
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Process-
object layer 

Graphical Verbal Symbolic Numerical Physical 

Slope Rate of 
Change 

Difference 
Quotient 

Ratio of 
Changes Measurement 

Ratio 

 

“average rate 
of change” 

! ! + Δ! − ! !
Δ!  

1.00 − 0.84
1.5 − 1.0  

 

Limit 

 

“instantaneous 
…” 

lim
!→!

!!!⋯ 0.89 − 0.84
1.1 − 1.0  

 

Function 

 

“… at any 
point/time” !! ! = ⋯ 

! ! 
!"
!" 

0.0 0.00 0.96 
0.5 0.48 0.72 
1.0 0.84 0.32 
1.5 1.00 -.18 

 

tedious 
repetition 

      

 
  Symbolic   

Instrumental Understanding 

Function rules to “take a derivative” 

Figure 2: Our extended framework for the concept of the derivative.  
 

 

Changes in the framework  
In this section, we discuss individually the extensions we have made to Zandieh’s framework.  

 Physical.  We begin by noting that the physical examples given by Zandieh (2000) 
each involve a time derivative: velocity, acceleration, and the time rate of change of 
temperature. We suggest that although these quantities do reside in a physical context, 
perhaps at least some uses of these phrases properly belong in the realm of verbal 
representation. We propose here a more “physical” (as opposed to verbal) concept of the 
physical representation of the derivative.  

We define the physical representation for the derivative to be a process to measure that 
derivative (see, for instance Roundy, Kustusch, & Manogue, 2014a; Styer, 1999). Of course, 
the concept does not require us to actually perform a measurement, just to imagine one. 
However, we note that it is the process of measurement itself that is the physical 
representation. Actually obtaining a numerical measurement would (also) require the use of 
the numerical representation, and describing the measurement may involve a verbal or 
graphical representation (Roundy et al., 2014a; Styer, 1999), but the measurement process 
itself is the physical representation of the concept of the derivative.  

As an example, consider the derivative !"/!" of the volume of a piston full of air with 
respect to the pressure on the piston, as controlled by a set of weights on the piston 
(illustrated in Fig. 2).  At the ratio layer, one can say that you need to measure the volume 
twice, with two different pressures, and the derivative is the change in volume divided by the 
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change in pressure. The limit layer imposes on this process the idea that the two pressures 
need to be quite similar in order for this ratio to “be” the derivative in the thick sense used by 
physicists and engineers. However, it is not desirable to choose too small a value for Δ!, 
because this would result in an imprecise measurement, since the change in volume would be 
too small to be precisely measured, resulting in increased error in the value of the measured 
derivative. Finally, the function layer requires us to recognize that this ratio will depend on 
the pressure itself and that to fully explore the derivative, we must perform repeated 
experiments—or more likely a single experiment in which we gradually add weight to the 
piston and repeatedly measure its volume. 
The physical representation of a derivative can often (but not always) be felt or perceived 
directly, which leads scientists to give derivatives names such as compressibility, velocity, 
thermal conductivity, etc. Qualitatively, the derivative !"/!" describes the compressibility 
of the air: how easy it is to compress. We anticipate that as the piston is compressed at higher 
pressures, it will require more and more pressure to compress it further. Because the volume 
cannot be negative, we can conclude on physical grounds that the derivative must eventually 
approach zero as the pressure increases. .  

Numerical.  The numerical representation is the one member of the Rule of Four 
(Hughes-Hallett et al., 1998) that was not present in the framework of Zandieh (2000). We 
recognize a numerical representation of the derivative that is closely allied to but distinct 
from the physical representation. This representation parallels the formal symbolic concept of 
the derivative, but differs in ways that are of practical importance in the use of the derivative 
in the sciences and in numerical analysis. 

The numerical concept of the derivative begins with a ratio of change: 
 !! − !!

!! − !!
, 

 
where it is understood that the values in this equation are numerical values. When we take the 
limit numerically, we do not formally write lim!!→!⋯, and we do not apply a formal 
procedure.  Rather we select a value of Δ! that is small, where small is understood in terms of 
the desired precision.  As in the case of physical measurements, practically speaking it is 
possible to make the change Δ! too small, in this case due to truncation error in a computer 
or calculator. In this regard, when operating numerically we think of derivatives as having 
some “thickness,” in contrast to the formal definition which requires an infinitesimal limit. 
Finally, the derivative as function is understood as a sequence of numerical ratios of 
differences, just as a function can be understood numerically as an array of numbers or set of 
ordered pairs.  

Conclusions 
We have extended the framework of Zandieh (2000) in several ways: we have elaborated on 
the physical representation of the derivative; we have added a numerical representation of the 
derivative; and we have added space in the framework for the set of rules for finding 
symbolic derivatives.  Each of these changes reflects an expansion of the table to incorporate 
additional answers to the prompt, “find the derivative.” By making use of the numerical 
representation of the derivative, one can answer the prompt numerically. Similarly, if the 
derivative is situated in a physical context, one can respond with a measurement process. 
Both of these responses require a conceptual understanding of the derivative in terms of ratio, 
limit and function, and involve a certain “thickness” in the derivative. In contrast, as pointed 
out by Zandieh, the instrumental-understanding approach to “find the derivative” using the 
rules for symbolic derivatives does not require a conceptual understanding of the derivative.  
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