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ABSTRACT

How and where cosmic rays are produced, and how they diffuse through various turbulent media, represent
fundamental problems in astrophysics with far-reaching implications, both in terms of our theoretical understanding
of high-energy processes in the Milky Way and beyond, and the successful interpretation of space-based and ground
based GeV and TeV observations. For example, recent and ongoing detections, e.g., by Fermi (in space) and HESS
(in Namibia), of γ -rays produced in regions of dense molecular gas hold important clues for both processes. In
this paper, we carry out a comprehensive numerical investigation of relativistic particle acceleration and transport
through turbulent magnetized environments in order to derive broadly useful scaling laws for the energy diffusion
coefficients.

Key words: acceleration of particles – cosmic rays – magnetohydrodynamics (MHD) – turbulence

1. INTRODUCTION

Until recently, the widely held paradigm for the origin of
cosmic rays, at least below the knee at roughly 1 PeV, promoted
the view that all of the intragalactic injection occurred via first-
order Fermi acceleration in supernova shells. However, any
direct evidence for this view is meager and equivocal. More
recently, data from balloon-borne experiments have refuted
the expectation from supernova acceleration schemes that the
cosmic-ray spectrum ought to be structureless and universal
(Wefel 1988). The latest measurements with PAMELA confirm
and extend the balloon-based claims (Adriani et al. 2011). These
data seem to call for a diverse variety of acceleration sites and
mechanisms throughout the Galaxy.

In recent work (Melia & Fatuzzo 2011; Fatuzzo & Melia
2012a, 2012b), we have begun to assess the feasibility of
stochastic acceleration within turbulent magnetized regions us-
ing highly detailed simulations of individual particle trajecto-
ries. A principal goal of this work is to accurately determine the
spatial and energy diffusion coefficients of cosmic-ray protons
in a broad range of environments, e.g., inside molecular clouds
and the more tenuous intercloud medium. The spatial and energy
diffusion coefficients calculated over a broad range of param-
eter space may be used, e.g., to compare estimates of the time
required to energize protons up to TeV energies with the escape
and cooling times throughout the interstellar medium (ISM). In
previous applications, this approach has allowed us to conclude
that protons in the intercloud medium at the galactic center can
be energized up to the 1–10 TeV energies required to account
for the observed HESS emission in this region (Aharonian et al.
2006; Liu et al. 2006a; Ballantyne et al. 2007; Wommer et al.
2008; see also Markoff et al. 1997, 1999; Liu & Melia 2001).
Stochastic particle acceleration by magnetic turbulence appears
to be a viable mechanism for cosmic-ray production at the galac-
tic center (Liu et al. 2006b).

Developing an understanding of how the spatial diffusion
coefficients depend on the physical environment and energy of
the particles was the subject of our previous work (Fatuzzo et al.
2010). The focus of the present paper is specifically to determine
the diffusion of cosmic rays in energy space, with its attendant
dependence on all of the critical physical characteristics of the
medium, such as the magnetic intensity, degree of turbulence,

and size of the fluctuations. As before, we do this by using
a modified numerically based formalism developed for the
general study of cosmic-ray diffusion by Giacalone & Jokipii
(1994). This approach has already been used successfully
in several other contexts (see, e.g., O’Sullivan et al. 2009;
Fatuzzo & Melia 2012a, 2012b). Here, we will extend this
robust numerically based framework for the general analysis
of stochastic acceleration of cosmic-rays by the turbulent
electric fields generated along with the time-dependent turbulent
magnetic field in a dynamically active medium.

We stress that our adopted model of turbulence as a super-
position of Alfvénic like waves with linear dispersion relations
is not meant to fully describe MHD turbulence in the ISM. For
example, the model does not account for the fact that mag-
netic fluctuations decorrelate due to non-linear interactions be-
fore they can propagate over distances of multiple wavelengths
(Goldreich & Sridhar 1995)—an effect that leads to resonance
broadening—and as such, influences how thermal particles in-
teract with turbulence (Lynn et al. 2012, 2013). However, our
intent is to adopt a formalism that adequately describes turbu-
lence as seen locally by highly relativistic cosmic rays. Since
relativistic particles have speeds that are much greater than the
Alfvén speeds considered in our analysis (which is then the limit
in which our results are expected to be valid), they should not be
sensitive to dynamical processes that occur on MHD timescales.
In essence, we are relying on basic principles (e.g., the scaling
laws between intensity and wavelength) to capture the global
features of MHD turbulence that affect the propagation and ac-
celeration of high energy cosmic rays.

The work presented here extends the results of previous
works, most notably, that of O’Sullivan et al. (2009), as it
significantly broadens the explored parameter space and also
considers anisotropically distributed wave vectors (Goldreich
& Sridhar 1995; Cho & Vishniac 2000). We focus primarily on
strong turbulence (δB ∼ B) for which quasilinear theory is not
applicable, although we do present results for isotropic weak
turbulence as a consistency check. Our paper is organized as
follows. The pertinent properties of the medium through which
the particles diffuse are outlined in Section 2. The scheme for
generating the turbulent magnetic and electric fields is presented
in Section 3, along with the equations that govern the motion of
cosmic rays. The basic elements of stochastic acceleration are
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discussed in Section 4, and the results of our work are presented
in Section 5. The conclusions of our work are summarized in
Section 6.

2. THE PHYSICAL MEDIUM

The physical parameters found throughout the intergalactic
and interstellar media have values that span several orders
of magnitude. Of particular interest to our study, the most
vacuous regions of the intergalactic medium have particle
number densities n � 10−3 cm−3 and magnetic field strengths
B � 0.1 μG (see, e.g., Kronberg 1994; Fraschetti & Melia
2008). In contrast, the denser regions near the supermassive
black hole at the galactic center have densities n � 1012 cm−3

and field strengths B � 1 G (Ruffert & Melia 1994; Falcke &
Melia 1997; Kowalenko & Melia 1999; Melia 2007; see also
Misra & Melia 1993 for the case of stellar-mass size black
holes).

Exactly how the magnetic field is partitioned within these
various media is not yet known, but there is a general relation
between density and field strength. In the simplest case where
flux freezing applies (say in the ISM), the magnetic field strength
B would scale with gas density n according to B ∝ n1/2. It is
noteworthy, then, that an analysis of magnetic field strengths
measured in molecular clouds yields a relation between B and
n of the form

B ∼ 10 μG
( n

102 cm−3

)0.47
, (1)

though with a significant amount of scatter in the data used to
produce this fit (Crutcher 1999; see also Fatuzzo et al. 2006 and
references therein). This result is consistent with the idea that
nonthermal linewidths, measured to be ∼1 km s−1 throughout
the cloud environment (e.g., Lada et al. 1991), arise from MHD
fluctuations.

Of course, even among molecular clouds, the physical
environment can be quite different depending on location.
Near the galactic center, the molecular clouds are consider-
ably different from their counterparts in the disk. For exam-
ple, the average molecular hydrogen number density over the
Sgr B complex—the largest molecular cloud complex (Lis &
Goldsmith 1989; Lis & Goldsmith 1990; Paglione et al. 1998)
near the galactic center—has a density 3–10×103 cm−3. Like its
traditional counterparts, Sgr B displays a highly nonlinear struc-
ture, containing two bright sub-regions, Sgr B1 and Sgr B2, the
latter having an average molecular density of ∼106 cm−3, and
containing three dense (n ∼ 107.3–8 cm−3), small (r ∼ 0.1 pc)
cores—labeled north, main, and south. These cores also show
considerable structure, containing numerous ultra-compact and
hyper-compact H ii regions. As such, the densities associated
with the galactic-center molecular clouds are about two orders
of magnitude greater than those in the disk of our galaxy.

The exact nature of magnetic turbulence in these environ-
ments is itself not well constrained, though magnetic fluctua-
tions typically have a power-law spectrum. Their intensity at
a given wavelength scales according to (δBλ)2 ∼ λΓ−1, with
values of Γ = 1 (Bohm), Γ = 3/2 (Kraichnan), or Γ = 5/3
(Kolmogorov) often adopted. In addition, the range in wave-
lengths over which these fluctuations occurs is not well known,
though it is reasonable to assume that the upper end corresponds
to the lengthscale over which the fluctuations are generated. (For
example, in the ISM, the turbulence is generated by supernova
remnants and stellar-wind collisions, so one might expect the

longest wavelength to be on the order of several parsecs or less;
see, e.g., Coker & Melia 1997; Melia & Coker 1999.) The lower
end must be smaller than the characteristic length scale associ-
ated with the particle motion (i.e., the gyration radius), under
the assumption that magnetic energy ultimately dissipates into
plasma energy via its coupling to these particles.

3. GOVERNING EQUATIONS

We explore how cosmic rays diffuse through a homogeneous
hydrogen gas of mass density ρ = nmp threaded by a uniform
static background field B0, on which magnetic and electric
fluctuations propagate. From our numerical simulations, we
then compute energy diffusion coefficients covering a broad
range of particle energies and parameter space expected to span
the great diversity of environments observed both within our
galaxy and in the intergalactic medium. We focus primarily on
strong turbulence, for which the energy density of the turbulent
fields is comparable to that of the background fields.

A standard numerical approach to studying cosmic-ray dif-
fusion treats the spatially fluctuating magnetic component δB
as the superposition of a large number of randomly polarized
transverse waves with wavelengths λn = 2π/kn, logarithmi-
cally spaced between λmin and λmax (e.g., Giacalone & Jokipii
1994; Casse et al. 2002; Fatuzzo et al. 2010). Adopting a static
turbulent field removes the necessity of specifying a dispersion
relation between the wavevectors kn and their corresponding
angular frequencies ωn. This approach appears suitable for con-
sidering highly non-linear turbulence (δB � B0), or simply
an environment without a background component. Of course,
turbulent magnetic fields in cosmic environments are not static.
Nevertheless, a static formalism in spatial diffusion calculations
of relativistic particles seems justified for environments in which
the Alfvén speed is much smaller than the speed of light.

The situation in this paper is quite different: we are focusing
on the energy diffusion of cosmic rays propagating through
a turbulent magnetic field, which requires the use of a time-
dependent formalism in order to self-consistently include the
fluctuating electric fields that must also be present (say, from
Faraday’s law). At present, such a theory of MHD turbulence in
the ISM remains elusive. Nevertheless, it is generally understood
that turbulence is driven from a cascade of longer wavelengths
to shorter wavelengths as a result of wave–wave interactions.
For strong MHD turbulence in a uniform medium, this cascade
seemingly produces eddies on small spatial scales that are
elongated in the direction of the underlying magnetic field, so
that the components of the wave vector along (k||) and across
(k⊥) the underlying field direction are related by the expression
k|| ∝ k

2/3
⊥ , with a Kolmogorov energy spectrum that scales as

k
−5/3
⊥ (Goldreich & Sridhar 1995; Cho & Vishniac 2000).

It is beyond the scope of this paper to develop a self-consistent
theory of MHD turbulence in the ISM that includes electric field
fluctuation. We therefore adopt the formalism of O’Sullivan
et al. (2009). Specifically, we assume a medium represented by
a nonviscous, perfectly conducting fluid threaded by a uniform
static field B0, and use linear MHD theory as a guide. In the
linear regime, one can encounter three types of MHD waves:
Alfvén, fast and slow. As in O’Sullivan et al. (2009), we here
consider only Alfvén waves, for which the turbulent magnetic
field may be written as a sum of N randomly directed waves

δB =
N∑

n=1

An ei(kn·r−ωnt+βn) . (2)

2
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As noted already, this formalism does not adequately describe
decorrelation effects known to be important for thermal cosmic
rays (Lynn et al. 2012, 2013). However, it should serve as a
reasonable model for the turbulence experienced by particles
with velocities much greater than the Alfvén speed vA, as such
particles would be expected to travel over many correlation
lengths (∼0.1λmax) in an Alfvén time τA ∼ λmax/vA.

To keep the analysis as broad as possible, we focus on an
isotropic turbulence spectrum, but we also perform a suite of
experiments with anisotropic turbulence as informed by the
results of Goldreich & Sridhar (1995). For the isotropic case,
the direction of each propagation vector kn is set through a
random choice of polar angles θn and φn, and the phase of
each term is set through a random choice of βn. The sum has
N = Nk log10[kmax/kmin] terms, with kn evenly spaced on a
logarithmic scale between kmin = 2π/λmax and kmax = 2π/λmin.
A value of Nk = 25 appears to provide enough terms to suitably
model what is really a continuous rather than a discrete system.
The appropriate choice of Γ in the scaling

A2
n = A2

1

[
kn

k1

]−Γ Δkn

Δk1
= A2

1

[
kn

k1

]−Γ+1

(3)

sets the desired spectrum of magnetic turbulence (e.g., Γ = 3/2
for Kraichnan and 5/3 for Kolmogorov turbulence). For our
adopted scheme, the value of Δkn/kn is the same for all n. The
normalization for A1 is set by the parameter

η = 〈δB2〉
B2

0

, (4)

defined as the ratio of magnetic energy density in the turbulent
component to that of the static background field B0.

For the anisotropic case, the direction of each perpendicular
wavevector kn⊥ is set through a random choice of azimuthal
angle φn, and the phase of each term is again set through a
random choice of βn. The corresponding parallel component of
the wavevector is then set through the relation

kn|| = ±
√

2

2
k

1/3
1⊥ k

2/3
n⊥ (5)

(with a randomly chosen sign), such that

k1 =
√

k2
1⊥ + k2

1|| = 2π

λmax
. (6)

Consistent with the results of Goldreich & Sridhar (1995), we
only consider a Kolmogorov profile, so that

A2
n = A2

1

[
kn⊥
k1⊥

]−2/3

. (7)

Since Alfvén waves don’t compress the fluid through which
they propagate, their fluid velocity v satisfies the condition
k · v = 0. In addition, v · B0 = 0 for Alfvén waves. The fluid
velocity associated with the nth term in Equation (2) is therefore

δvn = ±An

vA

B0

B0 × kn

|B0 × kn| ei(kn·r−ωnt+βn) , (8)

where the sign is chosen randomly for each term in the sum. The
dispersion relation for Alfveńic waves is given by the expression

ωn = vA|kn‖| . (9)

Each wave has a magnetic field given by the linear form of
Ampère’s law,

An = ∓An

kn · B0

|kn · B0|
B0 × kn

|B0 × kn| , (10)

which is identical to that of O’Sullivan et al. (2009).
Insofar as the electric fields are concerned, if we were to

naively extrapolate from the results of linear MHD theory, the
total electric field δE associated with the turbulent magnetic
field in Equation (2) would be given by a sum over the terms

δEn = −δvn × B0 . (11)

Notice that δE · B0 = 0, but the second order term δE · δB �= 0.
The presence of an electric field component parallel to the
magnetic field in this second order term can significantly
increase the acceleration efficiency artificially, especially if
the formalism is extended to the nonlinear regime (δB ∼B0).
However, the ISM is highly conductive, so any electric field
component parallel to the magnetic field should be quickly
quenched. O’Sullivan et al. (2009) circumvented this problem
by first obtaining the total fluid velocity δv via the summation

δv =
N∑

n=1

δvn , (12)

and then using the MHD condition to set the total electric field:

δE = −δv
c

× B, (13)

where B = B0 + δB. This is the procedure we too will use here.
With these electric and magnetic field components, one may

then solve the Lorentz force equation

d

dt
(γmpv) = e

[
δE +

v × B
c

]
, (14)

with
dr
dt

= v, (15)

to determine the motion of a relativistic charged proton with
Lorentz factor γ through the turbulent medium. The solutions
to these equations are not sensitive to the value of λmin so long
as the particle’s gyration radius Rg = γmc2/(eB) � λmin

(Fatuzzo et al. 2010). As such, we set λmin = 0.1γmc2/(eB0) in
all our simulations. To completely specify the physical state of
an environment to be studied, we must therefore provide values
for the parameters B0, n, λmax, Γ and η.

4. BASIC ELEMENTS OF STOCHASTIC ACCELERATION

The motion of a charged particle in perpendicular uniform
electric and magnetic fields represents a fundamental topic in
electrodynamics and is well understood. It is therefore easy to
show that in general, the charge gains and loses kinetic energy
in cyclic fashion as it “drifts” in the E × B direction.

In the turbulent medium in which the magnetic and electric
fields are perpendicular, a single particle’s energy, characterized
by Δγ /γ0 = γ /γ0 − 1, therefore exhibits a random-walk like
behavior, as shown in Figure 1. The energy distribution of an
ensemble of particles injected with the same Lorentz factor γ0
thus broadens as the particles sample the turbulent nature of

3
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Figure 1. Fractional change in particle energy Δγ /γ0 as a function of time
for a γ0 = 105 particle injected into an environment (B0 = 100 μG,
n = 102 cm−3) with an isotropic Alfvénic turbulent field defined by the
parameters λmax = 0.1 pc, Γ = 5/3, and η = 1.0.

Figure 2. Particle energy distribution at time t = 1000λmax/c for an ensemble
of Np = 1000 particles injected into an environment (B0 = 100 μG,
n = 102 cm−3) with an anisotropic Alfvénic turbulent field defined by the
parameters λmax = 0.1 pc, Γ = 5/3, and η = 1.0. The solid line shows a
Gaussian fit to the data.

the accelerating electric fields. Interestingly, these distributions
appear Gaussian for all of the isotropic and η = 1 anisotropic
cases explored in our analysis. This point is illustrated by
Figure 2, which shows the distribution of Δγ values at time
t = 1000λmax/c for an ensemble of 1000 particles injected with
γ0 = 105 into a medium defined by the same parameters used
to calculate the energy evolution shown in Figure 1, but with an
anisotropic turbulence profile. In such cases, one can therefore
quantify the stochastic acceleration of particles in turbulent
fields through the dispersion of the resulting distributions of
initially mono-energetic particles.

In contrast, the particle distributions obtained for anisotropic,
weak turbulence (η  1) cases have wings that are much
broader than a Gaussian distribution, so that their dispersion
significantly overestimates the true distribution width. This point
is illustrated in Figure 3, which shows the distribution of Δγ
values at time t = 1000λmax/c for an ensemble of 1000 particles
injected with γ0 = 105 into a medium defined by the same
parameters used to calculate the distribution shown in Figure 2,
but with η = 0.01.

Figure 3. Particle energy distribution at time t = 1000λmax/c for the ensemble
of Np = 1000 particles injected into an environment (B0 = 100 μG,
n = 102 cm−3) with an anisotropic Alfvénic turbulent field defined by the
parameters λmax = 0.1 pc, Γ = 5/3, and η = 0.01. The solid line shows a
Gaussian fit to the data.

Figure 4. Dispersion of the particle energy distribution as a function of time
for the Np = 1000 particles injected into an environment (B0 = 100 μG,
n = 102 cm−3) with an Alfvénic turbulent field defined by the parameters
λmax = 0.1 pc, and Γ = 5/3. Solid squares: isotropic turbulence with η = 1.0.
Open squares: anisotropic turbulence with η = 1.0. Solid circles: isotropic
turbulence with η = 0.01. Open circles: anisotropic turbulence with η = 0.01.
The solid line serves as a reference and has a slope of 1/2, clearly indicating
that σγ ∝ √

t for time t � λmax/c.

To further compare strong and weak isotropic and anisotropic
turbulence, we plot in Figure 4 the dispersion σγ ≡

√
〈Δγ 2〉

of the Δγ distribution as a function of time for the particles
used to generate Figures 2 and 3 (for which the turbulence
was anisotropic) along with their isotropic counterparts. As
found throughout our analysis, there is little difference between
the isotropic and anisotropic cases when the turbulence is
strong (η = 1). However, anisotropic turbulence appears to be
significantly less effective at energizing particles than isotropic
turbulence when η  1, in agreement with results obtained in
the quasi-linear approximation (Chandran 2000; see also Yan &
Lazarian 2002).

Clearly, the chaotic nature of motion through turbulent fields
necessitates a statistical analysis. We define a single experiment
as a numerical investigation of particle dynamics through a given
environment (as defined by the parameters B0, n, Γ, λmax, and
η) over a broad range of particle injection energies (as defined

4
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Table 1
Summary of Experiments

Exp B0 n Γ λmax η Dγ 0 α

(μG) (cm−3) (pc) (s−1)

1 100 100 5/3 0.1 1 5.4 × 10−13 1.44
2 100 100 5/3 0.1 0.1 2.5 × 10−14 1.48
3 100 100 5/3 0.1 0.01 2.6 × 10−16 1.63
4 100 100 5/3 0.1 0.001 5.9 × 10−18 1.70
5 100 100 3/2 0.1 1 1.2 × 10−12 1.39
6 100 100 3/2 0.1 0.001 2.4 × 10−17 1.64
7 100 100 1 0.1 1 6.1 × 10−11 1.10
8 100 100 1 0.1 0.001 8.2 × 10−15 1.20
9 100 1 5/3 0.1 1 4.7 × 10−11 1.46
10 100 3.16 5/3 0.1 1 1.5 × 10−11 1.46
11 100 10 5/3 0.1 1 3.9 × 10−12 1.47
12 100 31.6 5/3 0.1 1 1.4 × 10−12 1.46
13 100 316 5/3 0.1 1 1.2 × 10−13 1.48
14 100 103 5/3 0.1 1 5.2 × 10−14 1.45
15 0.1 100 5/3 0.1 1 1.1 × 10−20 1.46
16 3.16 100 5/3 0.1 1 7.5 × 10−17 1.45
17 3160 100 5/3 0.1 1 3.0 × 10−9 1.46
18 105 100 5/3 0.1 1 4.0 × 10−6 1.54
19 100 100 5/3 10−4 1 1.0 × 10−11 1.48
20 100 100 5/3 100 1 1.8 × 10−14 1.47
21 0.1 100 3/2 0.1 1 1.9 × 10−20 1.39
22 3.16 100 3/2 0.1 1 1.6 × 10−16 1.37
23 3160 100 3/2 0.1 1 1.4 × 10−8 1.37
24 105 100 3/2 0.1 1 5.3 × 10−5 1.42
25 100 100 3/2 10−4 1 1.8 × 10−11 1.40
26 100 100 3/2 100 1 1.0 × 10−13 1.38
27 0.1 100 1 0.1 1 1.1 × 10−19 1.11
28 3.16 100 1 0.1 1 2.6 × 10−15 1.09
29 3160 100 1 0.1 1 9.6 × 10−7 1.12
30 105 100 1 0.1 1 6.2 × 10−2 1.07
31 100 100 1 10−4 1 1.0 × 10−10 1.12
32 100 100 1 100 1 2.6 × 10−11 1.10

by the Lorentz factor γ0). As expected from the random nature
of stochastic acceleration, σγ ∝ √

t once particles have had a
chance to sample the turbulent nature of the underlying electric
fields, i.e., for t � λmax/c. This in turn means that the energy
diffusion coefficient Dγ ≡ 〈Δγ 2〉/(2Δt) can be calculated by
using an integration time Δt � λmax/c. For each particle energy,
we numerically integrate the equations of motion for a time
Δt = 10λmax/c for Np = 1000 protons randomly injected from
the origin. Each particle samples its own unique magnetic field
structure (i.e., the values of βn, θn, φn, and the choice of a ± are
chosen randomly for each particle for the isotropic case).

5. RESULTS OF NUMERICAL EXPERIMENTS

We use the procedure described above to carry out a suite
of experiments sampling a broad region of parameter space for
isotropic turbulence, and perform a limited complimentary set
of experiments for anisotropic, strong (η = 1) Kolmogorov
turbulence. We limit our analysis to particle energies for which
the gyration radius Rg falls comfortably below the maximum
turbulence wavelength λmax, so that particles actually diffuse
through the turbulent medium. A principal goal of this paper
is to determine the relationship between the energy diffusion
coefficient Dγ and the particle’s energy for each experiment.
We therefore fit the numerical data using a power law

Dγ = Dγ 0γ
α . (16)

Figure 5. Energy diffusion coefficients as a function of particle Lorentz factor
for Experiments 1–4 which sample various turbulence strengths of η. Solid
shapes denote values for isotropic turbulence, and open squares denote values
for anisotropic turbulence. The uniform magnetic field is 100 μG in every case.
In addition, n = 100 cm−3, and λmax = 0.1 pc. Solid lines show fits to the
isotropic turbulence data. Results obtained by quasi-linear theory as given by
Equation (17) are shown by the dotted (η = 1), dashed (η = 0.1), dot–dashed
(η = 0.01), and long-dashed (η = 0.001) lines.

Figure 6. Energy diffusion coefficients as a function of particle Lorentz factor
for Experiments 1, 5, and 7 (isotropic turbulence). The uniform magnetic field
is 100 μG in every case. In addition, n = 100 cm−3, and λmax = 0.1 pc. Solid
lines show fits to the data. Results obtained by quasi-linear theory as given by
Equation (17) are shown by the dotted (Γ = 5/3), dot–dashed (Γ = 3/2), and
dashed (Γ = 1) lines.

The parameters for each experiment and corresponding values of
Dγ 0 and α obtained through the fits are summarized in Table 1.
As a reference, we then compare these empirical fits to the
quasi-linear expression

Dql
γ ≈ v2

A

c2

(
δB

B0

)2 (
Rg

λmax

)Γ−1
γ 2c

Rg

, (17)

(Schlickeiser 1989, O’Sullivan et al. 2009). We note that in
terms of our parameters, this predicted expression reduces to
the simpler form

Dql
γ ∝ n−1B4−Γ

0 η λ1−Γ
max γ Γ . (18)

We plot the results of Experiments 1–4 in Figure 5 and
Experiments 1, 4, and 5–8 in Figures 6 and 7 to illustrate how the
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Figure 7. Energy diffusion coefficients as a function of particle Lorentz factor
for Experiments 4, 6, and 8 (isotropic turbulence). The uniform magnetic field
is 100 μG in every case. In addition, n = 100 cm−3, and λmax = 0.1 pc. Solid
lines show fits to the data. Results obtained by quasi-linear theory as given by
Equation (17) are shown by the dotted (Γ = 5/3), dot–dashed (Γ = 3/2), and
dashed (Γ = 1) lines.

Figure 8. Energy diffusion coefficients as a function of particle Lorentz factor
for Experiments 1, 9, 11, and 14 (isotropic turbulence), which sample various
ambient densities n. The uniform magnetic field is 100 μG, η = 1, Γ = 5/3,
and λmax = 0.1 in every case. Solid lines show fits to the data, and dotted lines
represent the results obtained by quasi-linear theory as given by Equation (17).

diffusion coefficient index changes between the strong (η ∼ 1)
and weak (η  1) turbulence limits. As predicted by quasi-
linear theory, α ≈ Γ when η  1 for isotropic turbulence, with
the best match occurring for Kolmogorov diffusion. However,
Equation (17) overestimates the value of Dγ 0 by as much as
two orders of magnitude. In addition, the indices decrease as
the turbulence grows stronger, and quasi-linear theory does
not appear to adequately describe the energy dependence for
Kolmogorov (Γ = 5/3) and Kraichnan (Γ = 3/2) diffusion
when η ∼ 1.

We next consider how the diffusion coefficients for Kol-
mogorov (Γ = 5/3), Kraichnan (Γ = 3/2) and Bohm (Γ = 1)
turbulence scale with n, B0 and λmax, but limit our analysis to
the strong turbulence limit (η = 1). Our results for Kolmogorov
turbulence (derived from Experiments 1 and 9–20) are shown in
Figures 8–13. Specifically, Figure 8 illustrates the energy depen-
dence of Dγ for four values of ambient density n. As expected,
a greater density yields a smaller Alfvén speed, and therefore a
reduced energy diffusion. However, the index α is not sensitive

Figure 9. Energy diffusion coefficients for γ0 = 105 as a function of density n
for Experiments 1 and 9 –14 (isotropic turbulence). The uniform magnetic field
is 100 μG, η = 1, Γ = 5/3, and λmax = 0.1 in every case. The solid line show
the fit to the data (Dγ ∝ n−1), and the dotted line represents the result obtained
by quasi-linear theory as given by Equation (17).

Figure 10. Energy diffusion coefficients as a function of particle Lorentz factor
for Experiments 1 and 15–18, which sample various background field strengths
B0. The particle density n = 100 cm−3, η = 1, Γ = 5/3, and λmax = 0.1 in
every case. Solid shapes denote values for isotropic turbulence, and open shapes
denote values for anisotropic turbulence. Solid lines show fits to the data, and
dotted lines represent the results obtained by quasi-linear theory as given by
Equation (17).

to n. We note that Equation (17) overestimates the energy dif-
fusion coefficient for γ0 � 103, and underestimates the energy
diffusion coefficient for γ0 � 103. Figure 9 then illustrates the
relation between Dγ and n for the value γ0 = 105, where the
fits from Figure 8 (along with fits to the data not shown in that
figure) are used to obtain the plotted data points. The relationship
between Dγ and n clearly takes on the same scaling obtained
from quasi-linear theory, i.e., Dγ ∝ n−1. This result is expected
since Dγ ∝(Δγ )2 ∝ (δE)2 ∝ v2

A ∝ n−1. We therefore assume
that this scaling holds for all values of Γ.

Figure 10 illustrates the energy dependence of Dγ for five
values of background field strengths B0. Since a greater magnetic
field strength leads to a greater electric field strength, energy
diffusion increases with field strength. Again, the index α is not
sensitive to B0, but we find that Equation (17) overestimates the
energy diffusion for larger values of γ0, and underestimates the
energy diffusion for smaller values of γ0, although the transition

6



The Astrophysical Journal, 784:131 (11pp), 2014 April 1 Fatuzzo & Melia

Figure 11. Energy diffusion coefficients for γ0 = 105 as a function of back-
ground field strength B0 for Experiments 1 and 15–18 (isotropic turbulence).
The particle density n = 100 cm−3, η = 1, Γ = 5/3, and λmax = 0.1 in every
case. The solid line shows the fit to the data (Dγ ∝ B2.50

0 ), and the dotted line
represents the result obtained by quasi-linear theory as given by Equation (17).

Figure 12. Energy diffusion coefficients as a function of particle Lorentz factor
for Experiments 1 and 19–20, which sample various values of λmax. The particle
density n = 100 cm−3, background field strength B0 = 100 μG, η = 1, and
Γ = 5/3 in every case. Solid shapes denote values for isotropic turbulence, and
open shapes denote values for anisotropic turbulence. Solid lines show fits to
the data, and dotted lines represent the results obtained by quasi-linear theory
as given by Equation (17).

varies depending on the field strength. Figure 11 illustrates the
relation between Dγ and B0 for the value γ0 = 105, where the
fits from Figure 10 are used to obtain the plotted data points.
We note that the scaling Dγ ∝ B2.50

0 obtained from our results
differs from quasi-linear theory (Dγ ∝ B2.33

0 ).
Figure 12 illustrates the energy dependence of Dγ for three

values of λmax. Again, the index α is not sensitive to λmax, and
once again, Equation (17) overestimates the energy diffusion for
larger values of γ0, and underestimates the energy diffusion for
smaller values of γ0. Figure 13 illustrates the relation between
Dγ and λmax for the value γ0 = 105, where the fits from
Figure 12 are used to obtain the plotted data points. As was the
case with the field, the scaling obtained (Dγ ∝ λ−0.47

max ) differs
from that predicted by quasi-linear theory (Dγ ∝ λ−0.67

max ).
Corresponding results for isotropic Kraichnan turbulence

(derived from Experiments 5 and 21–26) are shown in
Figures 14–17, and for isotropic Bohm turbulence (derived from

Figure 13. Energy diffusion coefficients for γ0 = 105 as a function of λmax
for Experiments 1 and 19–20 (isotropic turbulence). The particle density n =
100 cm−3, background field strength B0 = 100 μG, η = 1, and Γ = 5/3 in
every case. The solid line shows the fit to the data (Dγ ∝ λ−0.47

max ), and the
dotted line represents the result obtained by quasi-linear theory as given by
Equation (17).

Figure 14. Same as Figure 10, but for Γ = 3/2 and Experiments 5 and 21–24.

Experiments 7 and 27–32) are shown in Figures 18–21. The
analysis for these cases mirrors that described above for Kol-
mogorov turbulence, and the same general results are obtained.

Our results indicate that simple scaling laws of the form
Dγ = Dγ 0 γ α , where

Dγ 0 = D0

( n

1 cm−3

)−1
(

B0

1 μG

)δ (
λmax

1 pc

)κ

(19)

can be used to obtain values of the energy diffusion coeffi-
cient over a wide range of parameters that pertain to turbulent
interstellar and intergalactic environments, so long as the parti-
cle gyration radius λmin  Rg  λmax. In addition, the same
expressions can be used to describe the isotropic and anisotropic
cases in the limit of strong turbulence (η ≈ 1).

We obtain values of D0, α, δ, and κ in the strong turbulent
limit (η = 1) for the three turbulence profiles considered in our
work by using the results presented above. Specifically, final
values of D0 and α, along with their 1σ errors, are obtained
by finding the mean and standard deviations of the D0 and α
values from the corresponding experiments listed in Table 1.
The values of δ and κ are obtained from the fits to the data

7
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Figure 15. Same as Figure 11, but for Γ = 3/2 and Experiments 5 and 21–24.
The fit to the data (as shown by the solid line) yields Dγ ∝ B2.61

0 .

Figure 16. Same as Figure 12, but for Γ = 3/2 and Experiments 5 and 25–26.

Table 2
Fitting Parameters

Γ D0 α δ κ

(s−1)

5/3 (1.6 ± 0.8) × 10−16 1.47 ± 0.02 2.50 −0.47
3/2 (3.7 ± 1.7) × 10−16 1.39 ± 0.02 2.61 −0.39
1 (7.6 ± 2.8) × 10−15 1.10 ± 0.02 2.91 −0.11

shown in Figure 11 and Figure 13 for Γ = 5/3, Figure 15 and
Figure 17 for Γ = 3/2, and Figure 19 and Figure 21 for Γ = 1.
The results are summarized in Table 2.

We conclude our analysis by applying the results of this
work toward obtaining estimates of the acceleration time τacc ≡
γ 2/Dγ required to energize protons up to energies of 1 TeV in
molecular cloud environments. To keep this analysis as simple as
possible, we assume that the magnetic field scales with density
as given by Equation (1). We also assume that the maximum
turbulence wavelength λmax scales as the cloud size. Following
Larson’s law (Larson 1981), we obtain the relation

λmax = 1600 pc
( nH2

1 cm−3

)−0.91
. (20)

Figure 17. Same as Figure 13, but for Γ = 3/2 and Experiments 5 and 25–26.
The fit to the data (as shown by the solid line) yields Dγ ∝ λ−0.39

max .

Figure 18. Same as Figure 10, but for Γ = 1 and Experiments 7 and 27–30.

A plot of the acceleration time τacc as a function of molecular
hydrogen density nH2 is shown in Figure 22 for Kolmogorov,
Kraichnan, and Bohm turbulence. Given that clouds are not
expected to last for more than ∼10 Myr, TeV cosmic ray
production from stochastic acceleration of turbulent magnetic
fields can clearly be ruled our for normal molecular cloud
environments. We note, however, that the molecular clouds near
the galactic center (GC) have fairly extreme environments. As
shown in Fatuzzo & Melia (2012b), the acceleration times is
the GC environment are considerably shorter, as illustrated by
the solid circle (inter cloud region at the GC) and solid square
(molecular cloud at the GC) shown in Figure 22.

6. CONCLUSIONS

We have used a detailed numerical simulation to determine
the spatial and spectral profiles of cosmic rays diffusing with
arbitrary energy through turbulent media characterized by a
broad range of magnetic fields, turbulence strength, fluctua-
tion size, and ambient particle density, for both isotropic and
anisotropic turbulence. This study has expanded considerably
from the initial attempt at simulating the behavior of relativis-
tic particle propagation through the galactic-center environment,
where they encounter a variety of physical conditions, inside and
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Figure 19. Same as Figure 11, but for Γ = 1 and Experiments 7 and 27–30.
The fit to the data (as shown by the solid line) yields Dγ ∝ B2.91

0 .

Figure 20. Same as Figure 12, but for Γ = 1 and Experiments 7 and 31–32.

outside of the molecular gas in that region. Our goal throughout
this exercise has been to avoid using “standard” techniques, e.g.,
quasi-linear theory or the diffusion equation, all of which are
often subject to unknown factors that delimit the applicability
of these approaches to real systems (but see also Nayakshin &
Melia 1998; Wolfe & Melia 2006). Indeed, one of the princi-
pal benefits of the technique we have developed in this work
is an accurate determination of the spatial and energy diffusion
coefficients that in turn may be used in these other approaches
without the need to guess or estimate their normalization and
energy dependence.

As the sensitivity and spectral range of high-energy obser-
vatories continue to improve, the need to accurately simulate
the propagation of relativistic particles through turbulent me-
dia arises in an ever increasing range of environments, from
the ISM, to compact accretion regions surrounding supermas-
sive black holes (such as Sgr A* at the galactic center), to the
hot intracluster gas, and in even more exotic structures, such
as the Fermi bubbles straddling the center of the Milky Way
(Crocker & Aharonian 2011). However, the physical conditions
characterizing these regions change considerably from one envi-
ronment to the next. For example, the magnetic intensity may be
as large as several Gauss near accreting black holes, but smaller
than 0.01 μG in the intergalactic medium. We now know that

Figure 21. Same as Figure 13, but for Γ = 1 and Experiments 7 and 31–32.
The fit to the data (as shown by the solid line) yields Dγ ∝ λ−0.11

max .

Figure 22. Acceleration time τacc ≡ γ 2/Dγ as a function of molecular hydrogen
density for molecular cloud environments. The magnetic field is assumed to
scale with density as per Equation (1), and λmax is set equal to the size of the
molecular cloud, where Larson’s Law is then used to relate λmax to the density
nH2 . The solid curve denotes the results obtained for Γ = 5/3, the dotted curve
denotes the results obtained for Γ = 3/2, and the dashed curve denotes the
results obtained for Γ = 1. For comparison, the solid circle and solid square
represent the acceleration times in the inter cloud region and molecular clouds
at the GC, respectively (Fatuzzo & Melia 2012b).

quasi-linear theory is only approximately valid even in weakly
turbulent environments, let alone regions where the turbulent
magnetic energy is comparable to, or bigger than, the underly-
ing uniform component. Worse, it is often difficult to estimate
the absolute value of the diffusion coefficients without resorting
to observational data which, however, are sometimes difficult to
get (as in the case of the giant radio lobes in FR II galaxies).

These are among the reasons we have embarked on this
type of investigation, to develop methods of handling the
great diversity of physical conditions encountered by cosmic
rays propagating through high-energy emitting environments.
Previously (Fatuzzo et al. 2010; Fatuzzo & Melia 2012b), we
reported some results of this study pertaining to the spatial
diffusion coefficients. We found that the spatial diffusion of
particles through turbulent fields is not sensitive to the minimum
wavelength of the fluctuations, so long as the particle’s radius
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of gyration exceeds λmin. For a given environment, as defined
by B0 and vA, the diffusion process is thus dependent upon
the maximum turbulence wavelength λmax, the turbulent field
strength, as characterized by η, and the turbulence spectrum, as
characterized by the spectral index Γ.

We also noted that quasi-linear theory does not appear to
be valid in the strong turbulence limit (see also O’Sullivan
et al. 2009). We therefore investigated how the energy diffusion
coefficient depends upon λmax and η for Kolmogorov (Γ = 5/3)
turbulence, and found that the energy diffusion coefficients
could be characterized as Dγ ∝ λ−0.47

max . This behavior is not
consistent with quasi-linear theory, which instead predicts that
Dγ ∝ λ−0.67

max for Kolmogorov turbulence in the strong turbulence
(η � 1) limit. However, we also found that Dγ ∝ η1.2 in both
the weak and strong turbulence limits.

Clearly, this initial sampling of the complex behavior of Dγ

under a variety of physical conditions is far from satisfactory.
The purpose of the present paper has been to complete this
work, finding scaling relations that one may use to calculate
Dγ under most conditions of interest, for all practical ranges of
magnetic intensity, turbulence strength, ambient particle density,
fluctuation size, and turbulence spectrum.

The empirical relations useful for this purpose have all been
presented in Section 5. Broadly speaking, we have found that in-
sofar as the energy diffusion coefficient Dγ is concerned, quasi-
linear theory predicts its correct energy dependence only for
very weak, isotropic turbulence (i.e., η � 0.01). These predic-
tions deviate substantially for η ∼ 1, particularly for turbulence
spectral indices Γ > 1, such as Kolmogorov turbulence, which
seems to be prevalent in many diverse environments. For exam-
ple, for the physical conditions one encounters at the galactic
center (i.e., B ∼ 1–103 μG and n ∼ 1–103 cm−3), the actual
index characterizing the dependence of Dγ on γ may be as small
as ∼1.4 instead of the predicted value ∼1.7.

In addition, our results indicate that there is no difference in
the energy diffusion of particles between isotropic turbulence
and the anisotropic turbulence profiles predicted by Goldreich
& Sridhar (1995) so long as the turbulence is strong (δB ∼ B).
On the other hand, our results indicate that anisotropic weak tur-
bulence is considerably less effective in energetically scattering
particles, consistent with the results of Chandran (2000).

Needless to say, if one is attempting to interpret the GeV
Fermi spectrum of, say, the Fermi bubbles, in terms of an
underlying population of cosmic rays, deviations from quasi-
linear theory are rather critical, since the inferred particle
distribution differs considerably from its injection point to where
it emits the radiation, and the difference will be interpreted
incorrectly with the inaccurate energy dependence predicted by
these other techniques.

Not being sure of the normalization of Dγ has its own
challenges. For one thing, it is not possible to say anything
definitive about the overall power being generated by the
acceleration of these cosmic rays, which speaks directly to the
mechanism associated with the relativistic particle injection,
or even to the required density of dark matter particles, if
these cosmic rays are produced via dark matter decays and
collisions. With our approach, it is not necessary to estimate the
normalization of Dγ , because its absolute value is determined
self-consistently from the statistical aggregate of numerous
individual particle trajectories.

We have found that quasi-linear theory provides an acceptable
estimate of the normalization of Dγ at ∼1 TeV energies,
but can deviate considerably at lower energies, especially in

the GeV range, and at energies exceeding 10–100 TeV. A large
factor responsible for these differences is the incorrect energy
dependence predicted for Dγ . Obviously, if the normalization
is adequate at ∼1 TeV, the incorrect energy index will cause
deviations at lower and higher energies.

Most importantly, however, our analysis has provided a
method of determining not only the dependence of Dγ on γ ,
but also its absolute value without the need to normalize it
from the data. Having said this, one is not completely free of
ambiguity, since one must still have an accurate estimate of
the physical conditions, i.e., the magnetic field, the ambient
density, and other characteristics that determine the state of
the medium though which the cosmic rays are propagating.
Fortunately, these conditions are easier to measure than the
diffusion coefficients themselves, and in a more sophisticated
use of our technique, in which MHD turbulence is simulated
numerically rather than via the simple Kolmogorov or Bohm
scaling relations, one can approach a level of realism not
available to any of the other methods.

We look forward to the application of the scaling relations
we have presented in this paper across a broad range of physical
environments, allowing us to study high-energy sources with a
level of accuracy commensurate with the detailed measurements
now being made by the ever improving suite of space-based and
ground-based observatories.

This work was supported by Xavier University through the
Hauck Foundation, and by ONR grant N00014-09-C-0032 at
the University of Arizona.
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