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Quantitative study of spin-flip cotunneling transport in a quantum dot
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We report detailed transport measurements in a quantum dot in a spin-flip cotunneling regime and quantitatively
compare the data to microscopic theory. The quantum dot is fabricated by lateral gating of a GaAs/AlGaAs
heterostructure, and the conductance is measured in the presence of an in-plane Zeeman field. We focus on
the ratio of the nonlinear conductance values at bias voltages exceeding the Zeeman threshold—a regime that
permits a spin flip on the dot—to those below the Zeeman threshold, when the spin flip on the dot is energetically
forbidden. The data obtained in three different odd-occupation dot states show good quantitative agreement
with the theory with no adjustable parameters. We also compare the theoretical results to the predictions of a
phenomenological form used previously for the analysis of nonlinear cotunneling conductance, specifically in
the determination of the heterostructure g factor, and find good agreement between the two approaches. The ratio
of nonlinear conductance values is found to slightly exceed the theoretically anticipated value and to be nearly
independent of dot-lead tunneling coefficient and dot energy level.

DOI: 10.1103/PhysRevB.86.045430 PACS number(s): 73.23.Hk, 73.63.Rt, 73.43.Fj

Electronic transport in nanoscale devices1–7 has been of
significant interest recently, in part for its use as a spectroscopic
tool for precision studies of fundamental phenomena, and
because of the relevance of these devices to spintronics and
quantum computation.8–10 For spintronics, it is important
to understand how the spin state of a nanosystem couples
to its host surroundings. Spin-dependent transport can be
conveniently studied in tunable quantum dots (QDs).11–15

Using a dot weakly coupled to the “leads” with an applied in-
plane magnetic field, Kogan et al.13 showed that the differential
conductance G = dI/dVds exhibits steps at Vds values given
by the ratio of the Zeeman energy and the electron charge e and
used a phenomenological fit to the transport data to measure
the heterostructure g factor.13,16 Later, Lehmann and Loss17

developed a microscopic theory to calculate the conductance
through a QD in this regime, which included phonon-assisted
spin-flip mechanisms. In this paper, we present extensive trans-
port data of a quantum dot in the spin-flip cotunneling regime
and compare the results to microscopic theory.17 Importantly,
we measure all dot parameters needed for the calculation of
the conductance, which enables a direct comparison between
the data and the microscopic theory without any adjustable
parameters, and find excellent quantitative agreement between
the data and theory.

We present data obtained for three different choices of the
dot potential defined by the voltages on the confining gates,
which correspond to three different occupancies of the dot. We
focus on the ratio of the device conductance above and below
the Zeeman threshold as a function of tunneling rate and dot
energy. Since the orbital part of the wave function of the two
Zeeman spin states is the same, the tunneling probabilities
for each electron crossing the dot depend only on its spin
and the spin of the dot. Therefore, a useful insight can be
obtained from the ratio of the device conductance above and
below the Zeeman threshold (i.e., when the bias across the
dot matches the ratio of the Zeeman energy and the electron

charge). If the coupling to the leads is extremely weak (i.e.,
the tunneling rates between the dot and the leads are much
smaller than the spin relaxation rate on the dot) one might
expect this ratio to be approximately 2: at large bias, there are
two possible dot states (the ground spin state and the excited
spin state) available upon the completion of each tunneling
event, whereas at low bias, the dot has to remain in the ground
spin state. In practice, however, the spin relaxation rate due
to intradot processes is usually very slow compared to the
tunneling rates in transport experiments between the dot
and the leads.18–20 In that regime, therefore, exchanging spin
with the leads is the dominant mechanism of the dot spin relax-
ation. Predicting the device conductance in this regime requires
a formalism that includes a complete set of rate equations, as
we use in this paper for a single-orbital, spin-1/2 dot.17 Our
calculations and measurements reveal both a nontrivial value
for the conductance ratio ≈2.4, indicating the important role
of the current leads in providing spin relaxation in the dot.

Furthermore, we show that this ratio is independent of
the dot-lead tunneling rate � over approximately one decade,
0.02 < � < 0.2 meV, but varies slightly with the dot energy,
exhibiting a slight minimum in the middle of the Coulomb
blockade (CB) valley. Finally, we compare the shape of the
nonlinear conductance as function of the dot bias as obtained
from our calculations to the predictions of a phenomenological
form used in earlier work.13 For a given Zeeman energy, we
find excellent agreement between the two, which means that
either method provides a valid choice for using cotunneling
transport for g-factor measurements. For the device used in
this work, using both methods, we find the g factor to be
0.2073 ± 0.0013.

The QD we have studied is created by gating a
GaAs/AlGaAs heterostructure. Ti/Au electrodes of our sin-
gle electron transistor (SET) are patterned via e-beam and
photolithography followed by liftoff. The two-dimensional
electron gas (2DEG) under the electrodes is statically depleted

045430-11098-0121/2012/86(4)/045430(5) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.045430


TAI-MIN LIU et al. PHYSICAL REVIEW B 86, 045430 (2012)

(a)

(b)

(c) (d)

FIG. 1. (Color online) Cotunneling process through a Zeeman
split orbital occurs when the dot is occupied by an odd number
of electrons in the Coulomb blockade regime. Taking spin up to
be the lower-energy state, a spin-down electron from the lead can
tunnel onto and off of the dot resulting in non-spin-flip cotunneling
as shown in (a). When the bias voltage exceeds the Zeeman threshold,
|eVds | � � = |g|μBB, the spin-up electron can also tunnel off the dot
resulting in spin-flip cotunneling as shown in (b). (c) Micrograph of
a device nominally identical to the one used in this paper. A quantum
dot is created after applying negative voltages on electrodes VT , VS ,
VB , and VG. The electrode VS is used primarily to vary the dot-lead
tunneling rate � while the plunger gate VG is used to tune the dot
energy. Differential conductance is measured through source (S) and
drain (D) via standard lock-in techniques with 2 μVRMS excitation
at 17 Hz. (d) Differential conductance as a function of drain-source
voltage Vds in the cotunneling regime shows lower conductance (G0)
at |eVds | < � and higher conductance (G+) at |eVds | � �. Dashed
lines are guides for the average conductance values of G0 and G+.

to form an electron droplet (i.e., a QD) connected on both
sides to the electron reservoirs: source and drain [Fig. 1(c)].
We estimate the diameter of the QD to be ∼0.13 μm, which
contains tens of electrons. From magnetotransport data we find
that the 2DEG has a mobility of 5 × 105 cm2/(V s) and an elec-
tron density of 4.8 × 1011 cm−2 at 4.2 K. The device is oriented
parallel to the magnetic field within ±1 degree and is cooled
in a Leiden Cryogenics dilution refrigerator to a base electron
temperature Telec ∼ 55 mK. We use standard lock-in tech-
niques to measure the differential conductance through the QD.

Figure 1(d) shows the differential conductance steps at
source-drain voltages equal to the Zeeman energy of the dot.
The tunneling between the dot and the leads is relatively

weak, so that the Kondo effect in this regime is suppressed by
thermal fluctuations. In the Coulomb blockade (CB) regime,
when the QD has an unpaired electron in the dot energy
level, the spin degeneracy is removed by the Zeeman field,
and the level splits into spin-up and spin-down states. We
label the conductances below and above the Zeeman threshold
as G0 and G+, respectively. Figures 1(a) and 1(b) illustrate the
possible tunneling processes: In an elastic event [Fig. 1(a)],
the dot is left in the ground state and the electron does not
change its energy as it crosses the dot. If the dot is left in an
excited state [Fig. 1(b)], the electron energy is lowered by �.

To examine the cotunneling conductance and the ratio
of G+ to G0 quantitatively, we arrange three different dot
configurations: COT I (VS = −800 → −872, VT = −816,
VB = −1151, VG = −938 → −792 mV); COT II (VS =
−960 → −1025, VT = −750, VB = −1090, VG = −795 →
−671 mV); and COT III (VS = −800 → −917, VT = −750,
VB = −1090, VG = −1246 → −1008 mV). For each config-
uration, the dot contains a different number of electrons. To
tune the dot-lead coupling �, we use a previously developed
computer control of the dot gate voltages16 and adjust the
voltages VS and VG so as to maintain the occupancy of the
dot and keep the dot energy in the middle of the Coulomb
valley. To tune the dot energy |E1 − μ|, we vary the plunger
gate voltage VG while keeping voltages on other electrodes
unchanged. We focus on the changes of the conductance as
well as the ratio G+/G0 as either the tunneling rate or the
dot energy is varied. The experiment is performed for all three
device configurations described above.

We measure the tunneling rate � = �L + �R , where �L

(�R) is the tunneling rate from the left (right) lead, by
examining the shape of the charging peak as we vary the
voltages on the gates. Figure 2(a) shows clearly the evolution
of the Coulomb charging peak width as VS is varied. To
determine �, we fit the CB conductance line shape to a
thermally broadened Lorentzian (TBL):21,22

G(VG) = e2

h

A

4kT

∫ +∞

−∞
cosh−2

(
E

2kT

)

× (�/2)π

(�/2)2 + [eαG(VG − V0) − E]2
dE. (1)
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FIG. 2. (Color online) (a) Normalized Coulomb blockade peaks
taken at VS = −800, −830, and −872 mV (black, red, and blue lines,
respectively) for dot configuration I (COT I) clearly show the variation
in peak width. (b) Tunneling rate � as a function of VS . Tunneling
rate increases as the side gate voltage becomes less negative. Inset:
Fitting a Coulomb blockade peak (dots) to a thermally broadened
Lorentzian (red solid line) gives the corresponding �. Configurations
II and III show similar behavior (not shown).
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TABLE I. Capacitance ratio αG, used as the energy lever arm,
extracted from Coulomb blockade diamonds for different VS values.
Tunneling rate � and charging energy U shown are parameters for
the COT III dot configuration.

VS (mV) αG � (meV) U (meV)

−800 0.027 0.19 2.77
−850 0.03 0.06 2.89
−900 0.036 0.03 3.11

In this equation, V0 is the gate voltage that corresponds to the
CB peak maximum, � is the associated tunneling rate, αG is
the energy lever arm of the dot, and A is a fitting parameter
which is related to the dot asymmetry,23 S = �L/�R . The
dot asymmetry for each VS voltage setting is obtained from
the height of the CB peak;24,25 S varies from 4 to 51 in our
measurements. A slight deviation of αG due to a possible
shifting of the position of the dot has been observed and taken
into consideration. Table I lists αG and other dot parameters
for three different choices of VS . To assign the corresponding
� for each VS , we use the average of the tunneling rates
extracted from the two adjacent CB peaks in the same valley
� = (�LP + �RP )/2, where �LP (�RP ) corresponds to the left
(right) CB peak. An approximately linear dependence of � on
VS , and the TBL fitting to a CB peak are shown in Fig. 2(b). The
overall conductance decreases with more negative VS values,
as expected, because of the reduction in the transmission of
the barriers.

Figure 3(a) shows the characteristic features of the cotun-
neling conductance in the presence of the magnetic field, for
a typical valley with an odd-number electron occupation. At
each gate voltage, a threshold step is observed; the separation
between the steps at positive and negative bias is controlled by
the Zeeman energy, and it is thus independent of the gate
voltage. Figure 3(b) shows representative traces at several
different �s while the dot energy is kept in the midpoint of
the Coulomb valley as described above.

In order to make direct comparison between theory and
experiment, we consider a model where transport occurs across
a quantum dot contacted to two leads and in the presence of
a spin-flip mechanism due to the coupling of the quantum dot
to a phonon bath. The Hamiltonian of the system is described
by17,26,27

H = H0 + Htun + Hsp, (2)

where H0 stands for the Hamiltonian of the isolated dot, the
ideal leads, and the free phonons,

H0 =
∑

σ

εσ nσ + Un↑n↓ +
∑
lkσ

εlknlkσ +
∑

q

h̄ωqnq ; (3)

here, nσ (nlkσ ) is the number operator of the electron in the dot
(leads) with spin σ and U is Coulomb interaction between two
electrons in the dot with opposite spins. The last term in Eq. (3)
describes the free phonon bath with occupation numbers nq

and energy h̄ωq .

(a)

(c)

(b)

FIG. 3. (Color online) (a) Differential conductance as function of
Vds and VG at B = 9 T for COT III. The cotunneling trace of any given
� is taken in the middle of the Coulomb valley. Dashed lines with
arrows indicate the conductance threshold across the odd-occupied
valley. Dot-dashed lines mark the Coulomb blockade diamond edges.
(b) Representative differential conductance traces taken in the middle
of Coulomb valley for different �s of COT II: from 0.072 meV (top) to
0.032 meV (bottom). (c) Comparison of the microscopic calculation
with no adjustable parameters to predictions of a phenomenological
form [Eq. (1) in Ref. 13] used for the data analysis shows good
quantitative agreement. The gap width is twice the Zeeman energy.

The hybridization between the dot and the leads is described
by the tunneling Hamiltonian

Htun =
∑
lkσ

Vlkc
†
lkσ dσ + H.c., (4)

where c
†
lkσ (dσ ) is the fermionic creation (destruction) operator

of the electron on the leads (dot). Here, we have assumed that
the tunnel matrix elements Vlk are spin independent. Finally,
the spin-phonon interaction is modeled by

Hsp =
∑

q

(Mqxσx + Mqyσy)(a†
−q + aq), (5)

where the bosonic operator a
†
−q (aq) creates (destroys) a

phonon in the mode q; Mqx,Mqy are the spin-phonon coupling
amplitudes,17 and σx,σy are Pauli matrices.

To calculate the differential conductance G = dI/dV , we
derive the current which crosses the quantum dot from the left
(L) to the right (R) lead. The current through the dot can be

045430-3
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expressed by26,28

ILR = e
∑
σσ ′

WLσ ′,Rσ Pσ , (6)

where e is electron charge, WLσ ′,Rσ is the transition rate for
an electron tunneling from the L lead (spin σ ′) into the R lead
(spin σ ) and can in principle take into account elastic, inelastic,
as well as phonon-assisted elastic cotunneling processes; Pσ

is the occupation number of electrons in the dot which is
governed by a master equation17

dPσ

dt
= −γσ̄σPσ + γσσ̄Pσ̄ , (7)

with the rate γσ̄σ including spin-flip and inelastic cotunneling
processes with a current lead, and spin-flip processes due to
the spin-phonon coupling. In the stationary limit, the solution
of the master equation is given by Pσ = [1 + γσ̄σ /γσ σ̄ ]−1.
Detailed expressions and discussions for the different rates are
found in the literature.17,26

Direct comparison of the calculated and experimental
conductance traces, such as those in Fig. 4 (right panels), shows
their excellent agreement.29 Above the threshold, the measured
conductance exceeds slightly the calculated conductance,
arising perhaps from a slight bias dependence in the barrier
transmission coefficients and/or the increasingly important
role of other dot levels ignored in the model. We point out
that the spin-phonon interaction is expected to reduce the
conductance at high bias; moreover, the overshoot seen in the
data near threshold is not expected for the strongly asymmetric
quantum dots studied here.17,30 Its nature is still unresolved.

We have also compared the microscopic theory to the phe-
nomenological form used by Kogan et al.13 for the analysis of

FIG. 4. (Color online) Comparison of microscopic calculations
(dotted lines) and measurements for G0 (squares) and G+ (circles)
of three dot configurations. Left panels: dependence on the tunneling
rate. Middle panels: dependence on the dot energy. Right panels:
microscopic calculation (dotted line) of differential conductance as a
function of Vds shows agreement with the experimental measurement
(solid line) for the conductance near zero bias, but is slightly off at
high bias.

3
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 / 
G

0 

2 3 4 5 6 7 8 9
0.1

2 3

Γ (meV)

 COT I
 COT II
 COT III

3

2

G
+

 / 
G

0 
-1 0 1

ΔE (meV)

III I II

(a)

(b)

FIG. 5. (Color online) (a) The G+/G0 ratio as function of �. Both
calculations (lines) and measurements (symbols) show that G+/G0 ≈
2.4 is nearly independent of the tunneling rate �. (b) The conductance
ratio as function of dot energy—using as reference the midpoint
of the valley. Vertical dashed lines indicate where charging peaks
appear (at half the charging energies) for all three dot configurations.
Charging energy values for COT I, II, and III are 2.9, 2.0, and 3.0 meV,
respectively. The ratio reveals a minimum at the midpoint of the valley
�E = 0, but it slightly increases as the dot energy approaches the
charging peaks.

nonlinear cotunneling conductance. We specifically use both
approaches to determine the g factor of the heterostructure and
find excellent agreement [Fig. 3(c)] between both approaches.

Having obtained the dot energy, �, g factor, and the dot
asymmetry, we now focus on the conductances (G0) and (G+)
for the three different dot configurations. Figure 4 (left panels)
shows quantitative agreement between the predictions and the
data, for over two orders of magnitude in conductance, as
� changes. Notice that the theoretical curves are not smooth
functions of � since the asymmetry factor is not the same for
each choice of �. The ratio of conductances G+/G0 ≈ 2.4,
however, is nearly independent of � for all three configurations
[Fig. 5(a)].

Next, we address the variations of G0 and G+ with dot
energy. The dot energy is tuned by varying the plunger gate
voltage VG, while maintaining |E1 − μ|/� or (U − |E1 −
μ|)/� � 4, to avoid the dot entering the mix-valence regime.
We find that the conductance increases symmetrically as the
dot energy is tuned away from the midpoint of the valley [Fig. 4
(middle panels)]. We examine the ratio G+/G0 and find that,
although nearly constant at ≈2.4, it exhibits a slight minimum
at the midpoint of the valley; the ratio increases slightly as the
dot energy approaches the adjacent CB peaks. Figure 5(b)

045430-4
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again shows good agreement between the calculated and
measured results.

In summary, we have presented a systematic study of the
differential conductance of a quantum dot in the cotunneling
regime for three different dot occupancy configurations.
This allowed us to investigate the dependence of tunneling
rate and dot energy on conductance and to compare the
experimental data to microscopic calculations. Independent
experiments to determine the parameters of the dot state were
performed so that comparisons could be made without using
adjustable parameters. We find overall excellent agreement
between the calculations of a simple two-spin quantum dot
model and the measurements. We find that the ratio of the
device conductance above the Zeeman threshold to that below
the threshold is nearly independent of the dot-lead tunneling

rate and it is only slightly dependent on the dot energy, with
a value ≈2.4, in near agreement with the theoretical ratio.
The agreement is best in the middle of the Coulomb valley
and becomes worse closer to the charging peaks, possibly
due to the role of higher-excited states not included in our
calculations.

The authors thank A. Maharjan and M. Torabi for their
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M. Ankenbauer, and R. Schrott for technical assistance. T.-M.
L. acknowledges SET fabrication support from the Institute
for Nanoscale Science and Technology at the University of
Cincinnati. This research is supported by the NSF DMR
(0804199), MWN (07010581, 1108285), and PIRE (0730257),
and by the University of Cincinnati.
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