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Feasibility of Scalable Quantum Computers 

Introduction 

The advent of quantum computing has brought about a change in how scientists think 

about information systems. If we can create a computer that has limitless potential to expand and 

answer complex problems, what is between current technology and that goal? And are there 

fundamental limits to how powerful a quantum computer could become? While working small 

quantum computers can be found now, the results they obtain are so small that they could be 

done not only by a classical computer, but often also by hand. It is obvious that if quantum 

information grows in importance, it will have to become large enough to answer problems 

efficiently that cannot be answered right now. 

Problems faced in quantum computers come about as a result of fundamental properties 

of physics. Precise measurement of a qubit destroys any entanglement that qubit has with 

another. Acting even on qubits which haven’t been measured introduces error into their states. 

These are not problems faced by classical computers. The 1 or 0 that a classical bit represents is 

simple and it is obvious that a value close to 1 would represent 1 in physical computers. That is 

not so with quantum computers- if two values are obtained from running a computation twice, it 

is possible for neither, one, or both of them to be valid solutions. 

Scaling a quantum computer comes with even greater burdens. The threshold theorem 

puts forth stringent requirements for a computer to be scalable and as a computer gets bigger, so 
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do errors between qubits, and errors from the environment. If these errors are too great, the 

computer does not satisfy the threshold theorem, and therefore cannot be made scalable. Here is 

where there is question of whether a quantum computer of any useful size can be created: is there 

any way to minimize errors enough that a sufficiently large computer can provide accurate 

results? Also, will minimizing that error remove any benefits of the computer’s quantum rather 

than classical nature? 

Creating scaled quantum computers could introduce huge possibilities in math, physics, 

engineering, and computer science. Such issues as the many-body problem would be efficiently 

solved, a result known to be impossible with classical computers. Current encryption protocol 

would become useless, as Shor’s algorithm can be used by a large computer to factor large 

numbers within relatively short amounts of time. Simulation of the most fundamental quantum 

systems would be possible, and all without prohibitively large computers. Not only could 

quantum computers reasonably answer any of those questions, it could do so without taking 

exponentially longer times or taking significantly more computation power. 

 Currently, a large gap exists between the theoretical quantum computers we could create 

and the experimental ones that have shown success. While trivially small numbers can be 

factored, and one-dimensional potential systems can be simulated, those systems are redundant 

with modern classical computers. Attempts to create a physical, scaled quantum computer have 

so far all failed. Even the largest successes have been moot in the overall view of computer 

science. The bridge between where quantum computation is now and where it needs to be to 

become viable in commerce, personal use, or government use must be bridged by attempting to 

address errors and build bigger systems. 
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 Many possible solutions exist to the creation of a scalable quantum computer. So far, 

experimental computers have been severely limited by number of qubits available, 

environmental error, or resource costs to build the computers themselves. It is entirely possible 

that using some of the more recent ideas, such as using the structure of diamonds, might be the 

key to realizing the goal of scalable quantum computers. 

 

Chapter 1 

Overview of Quantum Computation Schemes 

 

Though many quantum computing schemes have been attempted, the most common few 

represent the vast majority of research done in quantum computation. The primary types will be 

discussed here in terms of their feasibility while scaling to larger systems as well as efficiency in 

monetary cost and space required. Most research done focuses specifically on how the computer 

itself will behave when extended. However, in many cases it fails to address whether such results 

are truly significant. While some scheme might be technically feasible, if it is prohibitively 

expensive in terms of its physical resources, it is not worth considering for scaling in commercial 

or consumer uses as it will never become advanced enough to see whether it scales smoothly. 

For this reason, scalability both in terms of economic and technical possibility will be addressed. 

Three systems stand out among all quantum computation schemes, in two categories. The 

first category includes optical quantum computers, which have significant support and research 

surrounding possible physical implementation. However, fewer experimental results have come 

as a result of studying photonic qubits. Optical systems have several aspects indicating increased 

scalability over other methods, so these will be addressed. The second category includes two 
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systems: using individual electrons as qubits, with either single or double quantum dots. The 

former uses one electron to represent a quantum state, while the latter has two entangled 

electrons placed next to each other and analyzes their combined spin using electric charge. All 

three systems have been proven in principle experimentally, and these will be the primary 

methods used to discuss feasibility of scaling quantum computers in general. 

 

Optical Schemes 

 

Optical quantum computers show significant promise in comparison to most other 

computation schemes. Photons are used as the computer's qubits, which is a desirable trait, since 

controlling singular qubits is simpler in photonic computers than many other systems, as no 

prohibitively expensive equipment is required to create photons with the properties desired. 

Generally, the qubit must be created with specific pure-state polarization, be kept in a specific 

location, and have minimal interaction with other qubits or the environment before entanglement. 

If any of these aspects is not met, it will not hold accurate enough information to provide 

accurate results. 

The orthonormal states these photons create are found in their polarization; since any 

polarized photon is a linear combination of arbitrarily-defined horizontal and vertical polarity, it 

can be represented in any location on the Bloch sphere. These photons, then, are sufficient for 

output of quantum states as computational results. The other required aspect, that the qubits have 

the ability to be entangled and manipulated in their entangled state, is inherently present as 

proved by Lu et al. where entanglement was proven to the extent of 12 standard deviations. The 

strong entanglement demonstrated by optical qubits indicates the feasibility of the method in 
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general, as the first step of Shor’s algorithm is essentially trivial so long as the qubits involved 

are highly entangled. 

The fact that Lu et al. devise a system using an optical system that demonstrated 

sufficient entanglement proves the computation system is quantum rather than classical. Every 

step of Shor's algorithm is carried out successfully in their experiment, and the end results have 

very high (>99%) accuracy. Scaling is also implied, since the system utilizes cluster states, 

which can be expanded endlessly. O'Brien comes to a similar conclusion, that linear optical 

systems or cluster states are the most likely to retain entanglement and least likely to have error 

that is prohibitively large for a scalable computer. 

O’Brien discusses the implications of optical quantum computing at length, focusing 

specifically on long-term scaling and the barriers faced in their realization. He states that one of 

the primary issues with feasible photonic qubit schemes is the need for several independent 

sources of electrons for entanglement to occur. One solution he proposes, which has been tested 

to a small degree elsewhere, is the use of a diamond. Such a system would be a cross between 

linear optical systems and semiconductors, reducing the issues of both systems. As O’Brien 

describes large systems, he states, “The majority of experimental demonstrations to date have 

relied on non-scalable single photon sources…scaling to useful devices will require high 

efficiency single photon sources and detectors that are efficiently coupled,” indicating the 

primary issues facing scaling are restriction to single photon emitters and insufficient 

entanglement. 

Uskov et al. address the need for additional resources to increase the likelihood of 

successful outputs in a linear-optical quantum computer. Their results indicate that adding 

ancillary qubits to an optical scheme does nothing to increase maximum probability of success. 
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So, unlike semiconductors, resources do not grow exponentially simply because of the 

requirement for ancillary qubits. While this is a moderate advantage in the scaling properties 

associated with photonic qubits, since quantum computers are generally approached on how to 

decrease exponential size increases, this has limited impact. Ancillary qubits are, at worst, only 

polynomially less efficient in use than standard entangled qubits. Even though the information 

indicates fewer resources are required for such a system, it has only moderate impact once the 

system is scaled. 

Many issues with scalability are addressed more effectively by optical systems than any 

other. First, no ancillary qubits are theoretically required to scale a quantum computer, greatly 

reducing the cost required (as use of ancillary qubits tends to be inefficient). Second, as 

previously mentioned, cluster states may be used effectively by optical computation schemes. 

The benefits of these cluster states are apparent in previously mentioned research by O’Brien: 

many qubits can be acted upon simultaneously without substantial increase in computation time 

or coherent error. Also, given that the qubits will be used for the same step of the computation 

process, they can be recycled in appropriate error correction schemes. Third, photonic qubits are 

readily created by inexpensive technology, since photons are ubiquitous, unlike such things as 

semiconductors which tend to be expensive and hard to access in large quantities. All three of 

these properties contribute to a lower entry barrier for scaling a quantum computer using 

photonic optical qubits. 
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Semiconducting Schemes 

 

Perhaps the most widely studied method of experimental quantum computers is the 

semiconductor. Among these, the most common versions utilize silicon chips and gallium 

arsenide. Since a scheme based on semiconductors requires an electron donor, Calderón, Koiller, 

and Das Sarma offer sulfur, selenium and tellurium as viable options. The authors prove that 

using any of these provides a very long time frame before error is insurmountable, so 

semiconductors seem to be a promising scheme. Another method, used by Coppersmith, Lee, 

and Allmen uses a combination of silicon and silicon germanium to “stretch” the silicon layer, 

providing a more stable environment for the electron qubits. The advantage to the system is 

decreased error caused by interaction among the electrons. 

The appealing aspect of semiconductor quantum computers is the ease of measuring and 

manipulating the qubits' states. Since the electrons used are in stable locations, unlike using 

qubits, they will remain there until otherwise moved. Petta et al. demonstrate a system to 

measure and change electrons' states in a semiconducting quantum computer, and similar to 

other articles, show that the error is slow to take effect. Another large advantage of 

semiconductors is that there is a working single electron transistor, outlined in the work by 

Conrad, Greentree, and Hollenberg, which encourages scalability as a possible result of work 

with quantum computers using a silicon semiconductor. 

Many aspects inherent to semiconductors are beneficial to their application to quantum 

computers. The lack of magnetism at low temperatures is ideal for the use of either spin or 

charge to be used as the qubit in single or double quantum dot architecture, and that aspect is not 

generally found outside of semiconductors. However, nonmagnetic semiconductors are very 
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expensive even in small amounts, so they are somewhat prohibitive in terms of the feasibility of 

increasing the scale of computers using silicon chips. Xue’s solution, to use only singular 

quantum chips in otherwise classical computers, may provide a solution to the increased price. 

Otherwise, these systems will likely be limited to only medium-to-large companies and other 

wealthy parties looking to use quantum computers. They will theoretically scale to even an 

arbitrary degree as described by the relatively low error and application of the threshold theorem. 

Therefore, semiconducting schemes are among the top candidates for research in order to 

increase efficiency and decrease both price and computational requirements. 

Scalability of semiconductors has been demonstrated in a quantitative analysis by 

Hornibrook et al. in which a supercooled semiconductor uses a field-programmable gate array 

(FPGA) to manipulate a qubit. The result of the demonstration is an application of a classical 

control scheme that is readily applied to quantum computers. Such a system would be extremely 

desirable: based on the threshold theorem, this would imply that scalable computers are not only 

possible, but relatively easily created. Using systems already available in classical computers 

would allow physical computers to be created using only small adjustments, and the macroscopic 

system would essentially just be a classical computer with its constituent parts being quantum. 

As classical computer construction is a well-developed field, expanding such computers would 

be trivial. 

While the theoretical aspects of semiconducting quantum computation schemes have 

been addressed in research by Hornibrook et al., separate problems arise in the availability of 

resources involved, and the conditions in which semiconductors work. In general, the silicon that 

is specially treated would be of a prohibitive cost for mass production for commercial or wide-

scale consumer use. The majority of experiments use this treated silicon for its magnetic 
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properties. Its magnetism is inherently insignificant, and therefore it does not interact undesirably 

with any quantum information. Because quantum computers fall apart when any notable 

interaction takes place within the computer itself (in this case the silicon) or the environment, 

using anything less than treated silicon would likely cause usable information to be lost. 

The second physical issue with semiconductors as quantum computers is that most 

experimental demonstrations of semiconducting architectures have been done only under 

extremely low temperatures, usually far below 1 Kelvin. This is restrictive if it must be done for 

larger systems, since supercooling objects means providing a constant supply of coolant. 

Because scaling quantum computers must address the issue of losing quantum information and 

also the costs involved in physical production of such computers, using limiting structures like 

supercooled computers restricts possibilities severely. How far a quantum computer might go in 

its utility and ability to be recreated for commercial or personal use must also be addressed, and 

for this reason, semiconductor solutions at or near room temperature is an area that needs 

significantly more attention. Otherwise, quantum computers will only be of very limited 

application, and only used by wealthy companies or governments. 

 

Single Dot Schemes 

 

In Si quantum computers, the two primary possibilities researched are single and double 

quantum dots. While quantum dots are used for a single qubit regardless of whether they use 

single or double dots, the stability of the resulting computer depends substantially on which 

system is used. Calderón, Koiller, and Das Sarma discuss the possibility of a single spin system 

with individual electrons as its qubits. In their results, the researchers found that the spin is much 



Goodberry 10 

 

harder to measure for a single electron than a double dot. Further, they state that “Double donors 

(S, Se, T) in Si are substitutional deep centers whose electrons’ binding energies … are typically 

one order of magnitude larger than for single donors (P, As, Sb).” What this implies is that the 

quantum information stored in the double-electron system is much more sensitive, so results will 

theoretically be on the order of 10 times more accurate, thereby reducing error. Given this, since 

double electron donors are still very commonly used elements, including sulfur which is 

mentioned as an option, double donors are a much better option for scalable quantum computers 

than single counterparts. 

One possibility that redeems the feasibility of using single quantum dots is outlined by 

Conrad, Greentree, and Hollenberg. Their experiment uses a Single Electron Transistor, or SET, 

to both measure and control the state of a qubit in a semiconducting quantum computer. While 

using a SET is not limited to single electron systems, the SET itself does use a single quantum 

dot to measure electric current. The issues outlined in other papers regarding sensitivity of single 

dot systems are not addressed. However, the ideas presented in this paper have two promising 

implications. First, the system is able to control the state of a quantum dot as well as measure the 

state it is in. This twofold application makes it very efficient, an aspect necessary in addressing 

scalability. Second, because the system is highly sensitive, the SET will have a relatively small 

margin of error on its measurements. Effectively, fewer error correction gates must follow a SET 

measurement, again decreasing the space requirement for SETs. So while the quantum dots 

themselves will likely not use single electrons as qubits in a scaled system, the single dot system 

still has possible applications. 

Phosphorous electron donors have also been used as a possible form for single-electron 

semiconducting quantum computers. Pla et al. devise a manipulation and measurement scheme 
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available for use in single quantum dot systems. According to the authors, “…it is a formidable 

challenge to combine the electrical measurement capabilities of engineered nanostructures with 

the benefits inherent to atomic spin qubits,” so rather than attempt to reconcile the extremes of 

measurement of qubits based on spin states, they use the simpler methods that could be measured 

using SETs. Even without using specifically engineered samples of the semiconducting material, 

the study ended with results of 90% or greater success, much of which would be addressed with 

more specific supplies (specifically enriched Si substrates). The results demonstrated by Pla et 

al. indicate that, while double quantum dots have more backing in terms of research and 

technical results, the advanced state of single electron systems indicates they are possible and 

worth pursuing. 

 

Double Dot Schemes 

 

Petta et al. demonstrate a physical example of how semiconductors using double quantum 

dots might be physically realized. The system is created using GaAs/AlGaAs to create a 2-well 

system in which two entangled electrons of independent states rest. As mentioned previously, 

such a system has a high accuracy in measurement, and the SET would act as a possible method 

of measurement at the end of the computation. Petta notes that “This two-electron spin qubit may 

provide a starting point for implementation of quantum computation schemes with considerable 

practical advantages: [a]ll operations for preparing, protecting, and measuring entangled electron 

spins can be implemented by local electrostatic gate control,” which is a well-developed area that 

could easily be scaled. Since the experiment’s results demonstrate necessary attributes for 

scaling, the GaAs/AlGaAs system must be considered a strong possibility. It meets the 
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requirements including entanglement, long coherence time, and high accuracy of measurement. 

While the same issues in economic expense apply here, the efficiency of the system reduces the 

costs associated with its production. 

A GaAs/AlGaAs computer is not the only scheme available for double dot quantum 

computers. Coppersmith, Lee, and Allmen offer Si/SiGe as a viable option for a semiconducting 

computer. One of the primary issues addressed in their research is interaction between electrons 

in wells that are close together, which causes coherent error in any silicon-based system. 

Normally, though, increasing in scale will cause the coherent error to increase while the 

computer increases in scale. The Si/SiGe does not have this issue however, and according to 

their results, the system is “robust even in the presence of gate potential fluctuations and 

imperfections such as quantum well width variations,” In other words, the system described does 

not lose information caused by the electrons themselves. These interactions in most articles are 

categorized with other coherent errors, but the fact that a Si/SiGe system essentially removes this 

as a problem places it ahead of other methods. 

Some of the research published regarding double quantum dots is among the most 

important step toward complete implementation of scalable quantum computers. This can be 

seen in an article by Xue, who outlines the gates and physical systems required for every step of 

a computation using two entangled electrons. While others have tried this, Xue’s research 

indicates high values for coherence time, accuracy of retrieved results, and scaling. 

Xue’s research has more implications than a schematic for a double dot computer: it also 

provides a system which hardware could use to implement the system onto a modern classical 

computer chip. The implications of his idea are great for the feasibility of scaling chips that are 

quantum in nature into systems that are already used in computer science. While others tend to 
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create entirely new quantum computers to answer specific problems, Xue’s chip would be used 

specifically for implementing Shor’s algorithm to factor large numbers, and would depend on 

classical hardware that would not need to be developed separately from regular systems. 

Double dot quantum computation schemes so far have proven to be the best in terms of 

space efficiency and accuracy of results. Since the materials to create them are expensive, this is 

especially important in respect to the feasibility of their scaling. Each article demonstrates that 

scalability is realistic in double dot systems, but also in semiconductors in general. Because there 

is precedent in creating physical realizations of scaled versions of both double and single dot 

quantum computers, each should be considered in feasibly developing scalable quantum 

computers. 

Chapter 2 

Quantitative Simulation of Quantum Computers 

 

 Despite their limited application, quantitative simulations of quantum systems run on 

classical computers drive advances in the creation of quantum computers. This is unsurprising, 

since the actual production of such computers is currently extremely expensive for no tangible 

return. Simulating systems, though, requires no actual quantum computer. However, the 

drawbacks are inherent in the fact that such computers are not quantum at all. They are instead 

very basic attempts at the mathematical processes behind quantum computations. Still, since 

creating a true quantum computer is economically unfeasible except in a few special cases 

presently, their results are the closest available to actual realization of quantum computers. 

 Currently, the problem facing quantitative approximations for quantum processes is that 

scaling cannot be attempted accurately with simple simulations. Researchers might be able to 
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address how specific error forms affect a computation scheme, but the results tend to be 

inconsistent. So true assessment of the scaling aspects of quantum computers cannot be 

approached this way in general. Still, the proposal and analysis of scalable architectures is 

valuable in providing the framework for physical creation of quantum computers that 

theoretically scale well. One thing to note about simulations is that they are often used as 

confirmation that a form of computation scheme is worth attempting. If even a simulation is 

unsuccessful, that idea is not pursued further. 

 Most of the systems described using quantitative analysis do not fit perfectly into a single 

category of a quantum scheme. Since they are not experimentally realized, current architecture is 

not a limitation to simulations. So while few of the systems described in this section are perfect 

matches for the category they are in, generally they are analogous and would best be described 

by one well-developed scheme. In this section, all research will be split into the scheme whose 

experiments are most similar to the methods used. 

 

Linear Optical Simulations 

 

 Both cluster states and linked states are possible setups of scaled optical computers. 

Cluster states depend on inputting a large number of qubits simultaneously, processing them all 

using the same algorithm, and finding average values among all qubits. Linked states, on the 

other hand, entangle successive photons with two other qubits, one “ahead” and one “behind”. 

The end result is a chain of entangled photonic qubits, and in theory spreads the error evenly 

among the qubits. The linked state system is implemented theoretically by Mor and Yoran. 

Though the scheme still uses linear optical photonic qubits, no other system has been created 
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previously that utilizes entanglement linearly between the qubits. The primary results 

demonstrate only a polynomial number of required photons to demonstrate entanglement. 

Therefore, the system should scale well without exponential increase in error or required 

materials. 

 Wang, Yang, and Nori further develop the use of cluster state optical qubits in order to 

scale computers without insurmountable error. The researchers describe their combination of 

atomic and photonic systems, 

 

“Cluster states can be easily generated and stored with atoms, but it is difficult to perform 

measurements on atoms. In contrast, it is easy to perform measurements on photons, but 

it is difficult to store quantum states using photons. Thus, this hybrid proposal uses the 

best from atomic and photonic qubits, to provide robust one-way [quantum computing]. 

Namely, to generate and store cluster states in an atomic system, then transfer to photons 

the states that are subjected to measurements, and then perform single-qubit operations 

and measurements on photonic qubits.” 

 

These results have profound implications in addressing scalability of hybrid atomic/photonic 

qubits. In effect, the long storage of information using atomic structures is similar to application 

of a classical computer storage system. Unfortunately, one major possible source of induced 

error is in exchange between the two forms of quantum information carriers. Wang, Yang, and 

Nori do not address this possibility, so their conclusion for a scalable hybrid system may be 

insignificant in its impact. 
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 Wei and Deng propose another architecture using photonic and atomic qubits. However, 

rather than transfer between the two systems, they propose the use of a linear optical quantum 

scheme for beginning the computation, using entangled photons for nearly the entire process. 

The single quantum dot would be used late in computation, only as an agent for the measurement 

of the states of the final qubits.  

The issue addressed here is the difficulty in creating interaction between photons, which 

is fixed by interaction with the quantum dot. Scalability comes from the ability to use highly-

entangled cluster states with an arbitrarily large number of optical qubits. Since cluster states are 

a well-developed system of scalable quantum computers, their ability to avoid and decrease 

coherent error can be taken advantage of in this system. In the end, a CNOT gate architecture is 

implemented that scales well with both the photonic and atomic qubits in the system. 

 In a separate article, Wei and Dang design a set of gates that would fit in the same system 

as their other research. These include CNOT, SWAP, square root of SWAP, and three-qubit 

Toffoli gates. Each of these is fundamentally required for a useful quantum computer, including 

one that has the ability to undergo Shor’s algorithm. All previous results regarding scalability of 

the system still hold, since the cluster states are used alongside a single dot scheme. The most 

interesting part of the implementation of all those gates is that, despite no full-scale quantum 

computer existing using these components currently, the entirety of a scalable quantum computer 

is theoretically possible with only those fundamental pieces. 
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Single Dot Simulations 

 

 On a simpler basis, some quantitative research focuses specifically on simulating one 

aspect of a quantum computer. For example, Das Sarma and de Sousa address the issue of 

whether the coherence time available to single dot quantum computers is feasible for production 

of scalable computers. While previous results indicated the upper bound for the timeframe is less 

than a microsecond, their research demonstrates theoretically that a P donor with a Si or GaAs 

quantum dot is feasible for long coherence times. Despite the simple premise of their research, 

proof that a reasonably useful time for scalability of single quantum dot schemes is significant in 

encouraging research in their use. 

 In contrast to manipulating only small number of atoms in a semiconducting quantum 

computer, Burgarth et al. offer the possibility of using a large scheme, but only analyzing 

properties of the extreme ends of a spin chain. The plan is fundamentally different from the 

linear optical qubit chain offered previously. In this case, the intermediate qubits are not used in 

final calculations. Instead, the middle particles are essentially used to shield against uncertainties 

caused by the end qubits. So if a small magnetic field is caused by the spin of one end, the 

environmental effects will not have any noticeable impact on the other end.  

In terms of application, this method may have issues when used in a scalable quantum 

computer. Significantly more space is required to have a chain between every pair of entangled 

qubits, and there is still an environmental effect, albeit a small one, by each of the intermediate 

particles. Further, the time required for information to travel from one end of the chain to the 

other may not be insignificant, and the authors do not address possible incoherent error caused 

by computation time. Overall, while the idea is interesting, there is a lack of numerical support 
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for why a chain of semiconducting qubits is more beneficial to quantum computers than a single 

pair. 

Zhang et al. use single dots as a formulation for cluster states, but only as a scalable set of 

qubits. In other words, they prepare a large number of single quantum dots in one location, and 

then act on each one independently by applying a radio wave with a specific frequency to change 

its phase. Three notable improvements can be found in this system. First, using unique qubits 

with virtually no interaction produces individual results with essentially separate calculations. 

Such a system means error can be reduced by increasing the number of qubits manipulated until 

the threshold theorem is satisfied. Second, there is little room for error in terms of the excited 

states of bound electrons, as they are held at low energy. Third, the system is simple, can be 

controlled easily using radio waves and is scalable in an obvious linear way. All that is required 

is a larger physical system. 

 “Data qubits” offer another unique possible solution to taking a small system and making 

it scalable. Demonstrated by O’Gorman et al., data qubits are used in conjunction with single dot 

quantum systems. While entangled semiconducting qubits are held at large separation, data 

qubits that are unentangled, are sent past the entangled qubits. The change in the test qubits’spin 

caused by the spin of the entangled qubits is retained by these data qubits, which are then 

measured to obtain the results of quantum computation. 

 Not only did the simulations and small experimental system find extremely high fidelity 

(>99.98%) among the qubits, but the system is also theoretically very fast given the exponential 

increase in speed when the scheme is made smaller. The main issue faced by this system is that, 

since the entangled photons are kept at larger distances than most system, finding ways to 

increase its speed or decrease its environmental decoherence are difficult. Still, the authors state, 
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“The footprint of the required electronic components to measure a single donor spin in silicon is 

typically on the order of 200 x 200 nm
2
 and is thus small enough to achieve qubit grid 

separations of D = 400nm.” While this might not be made smaller, keeping it at a similar size 

would offer polynomially increasing time and space required, neither of which is a hard barrier 

for achieving scalability. 

 

Double Dot Simulations 

 

 Fewer quantitative demonstrations of double quantum dots are performed than single 

quantum dots. This is likely the result of multiple factors. One possibility is that single dot 

systems are simpler to simulate classically while entanglement and interaction between two 

electrons does not need to be taken into account. Another is the ease with which a hybrid 

between linear optical and single quantum dot architectures can be combined. Since that 

combination formulates a significant body of the research in the field of scalability, it is likely 

that there is little reason to utilize double dot systems over single dot ones. However, double 

quantum dots have enough fundamental properties that lend themselves to scalable quantum 

computation that the likelihood of a method combining linear optical and double dot schemes 

must not be overlooked. 

 Jefferson et al. propose one of the only scalable systems using simulated double dot 

quantum computers. Several prospective methods for scaling are demonstrated. For example, 

they propose directly changing the magnitude of qubits’ states during computation in order to 

correct errors, an idea that is not regularly addressed in quantum computers. Generally, results of 

qubit interaction and fidelity are accepted immediately as either success or failure by the end of 
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an experiment. Another new idea provided in the same research utilizes, where the electron is 

brought individually to an enclosed region, passed through a lowered potential barrier, then 

measured by a SET. Though neither of these currently has the technology required to be feasible 

for a scaled quantum computer, since they have been proven in concept, they should be explored 

further. 

 

Shor’s Algorithm Simulations 

 

 Outside the context of the forms of quantum computation schemes discussed to this point, 

the first quantitative simulations worth discussing are those that interpret scaling of Shor’s 

algorithm in general. One benefit to quantitative analysis is that quantum computers in general 

can be viewed in general in order to confirm that, as in our example, Shor’s algorithm does not 

break down when extended to scalable systems. If it is the case that the quantum algorithms used 

cannot be extended arbitrarily, all physical architectures to realize those systems become moot. 

However, this fortunately does not appear to be the case, and so it would seem that quantum 

computers do have theoretical practical uses. 

 Two articles take Shor’s algorithm and simulate two different forms of error inherent in 

quantum computers. The first of these, published by García-Mata, Frahm, and Shepelyansky, 

specifically addresses environmental errors, namely those created between qubits within the 

architecture. Two of their conclusions must be weighed. First, the researchers state that, “[t]he 

results show that…the algorithm becomes not operational while below the border the 

factorization can be performed. This border drops only polynomially with the logarithm of 

factorized number N.” Since scalability is only ever restricted fundamentally by exponential 
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growth in decoherence, polynomial restrictions are technically achievable, and in many cases 

insignificant. Second, the results indicate that the only way to facilitate scalable quantum 

computers that are able to factor very large numbers, including those used in cryptography, the 

error in quantum gates must be extremely small. 

 Fortunately, effects of error in quantum gate operations are addressed in an article by 

Guo, Long, and Sun. The two types of error found are systematic and random, and according to 

the results of their analysis, “…the effect of the systematic errors is to shift the positions of the 

peaks, whereas the random errors change the shape of the probability distribution.” Guo, Long, 

and Sun go on to say that quantum error correction is essentially sufficient for correction of the 

systematic errror, meaning the only requirement to fix those is more qubits that go through an 

error correction process. However, random error appears to develop as the result of coherent 

error increasing over more time spent on the algorithm. Realistically, the only way then to reduce 

random error is to increase coherent times (which has been demonstrated in previous articles) or 

perform calculations more quickly, which is dependent again on the number of available qubits. 

 

Simulation of Uncategorized Architectures 

 

 This section will contain a collection of interesting results that are not classified in any 

quantum computer scheme described so far in previous sections. First among these is an 

adiabatic quantum computer described by Ashhab, Johansson, and Nori. Adiabatic systems bring 

qubits down to their ground state, and keeps them as close to that state as possible during 

manipulation. Resulting directly from that process, since it is highly unlikely for quantum states 

to be interrupted by the environment, the computer encounters a low magnitude of error. Due to 



Goodberry 22 

 

this, adiabatic computers are theoretically among the most feasible in scalability. If it is in fact 

possible to create a scalable quantum computer with entangled qubits all kept within small 

margins of their ground states, in an ideal system the result would be minimal loss of 

information. 

 Next, Beals et al. address the scalability of optical lattice structures. The basis of the 

optical lattice architecture is that atoms in a crystalline structure have certain normal modes with 

specific available energy levels. These can be used as qubits by storing information in the atoms 

themselves. Many problems with scaling the system come up immediately in the research. For 

example, forcing a particle into one of its two distinct states changes the physical property of that 

atom, shifting its position in the structure. Doing so leaves the qubit to interact and lose 

information to other nearby qubits. 2-dimensional systems might be operated on all at once, and 

in fact the article formulates a system using 10,000 qubits in parallel. However, the results make 

it clear that 3D systems with up to 1,000,000 qubits, though very desirable, would be difficult to 

act on or measure due to its dense physical structure. Also, the proximity between qubits in a 3D 

system would increase environmental decoherence, reducing its chances of scaling. 

 Universal quantum computers are the final system outside the standard quantum schemes. 

Since no experimental or theoretical framework for such a system has been created, Sau, Tewari, 

and Das Sarma describe a scalable quantum computer that utilizes what they refer to as “a 

semiconductor quantum wire network.” While no physical interpretation of the results has yet 

been created, the quantitative analysis shows great promises. The authors of the article state, 

“[o]ur schemes for deterministically generating two-qubit entanglement and arbitrary single-

qubit phase gates establish the semiconductor wire network as a viable platform for universal 

quantum computation.” Not only do the results contain demonstrations that universal quantum 
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systems are theoretically possible, they also end in a high limit for how well the computer would 

work with error, up to a maximum of 14% success, significantly above the standard .0001-.001 

generally accepted as sufficient for the threshold theorem. 

 Of these three less developed methods for creation of a quantum computer, the most 

promising appears to be the adiabatic quantum computer. Optical lattice structures have 

significant resource overheads, and the principles behind its scalability depend on prohibitively 

low error in the environment and also interaction between qubits. Universal quantum computers, 

though shown to be theoretically feasible, still have no experimental realization in any way. 

Also, the standard questions of coherent and incoherent errors are not thoroughly addressed, and 

those generally represent the most difficult obstacles to overcome for a system to be considered 

theoretically scalable. The adiabatic scheme does not share the same shortcomings of the other 

options: physical analogues have been explored, and the error present in the system is 

fundamentally low. Even if the error is put into the system, nothing bars adiabatic systems from 

undergoing quantum error correction after computation. 

 

Chapter 3 

Experimental Results 

 

 Whereas quantitative analysis of theoretical quantum computation schemes forms the 

basis of most research in quantum computing, experimental results confirm whether such tests 

are physically valid and should be explored further. The end goal in creating scalable quantum 

computers is not to prove whether such a system could exist. In fact, this has already been done 

several times, which is clearly seen in previous sections, but with trivially and uselessly small 
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calculations. Rather, the goal in researching quantum schemes is to create systems which will 

answer problems that are unsolvable with current technology. The problem most researchers 

focus on, Shor’s algorithm, is used primarily for its simplicity and for the fact that the principle 

behind it is well understood, but the various applications of quantum computers will be 

addressed in later sections. 

 As outlined in previous sections, addressing whether a quantum computer is scalable 

depends on several aspects of the quantum system itself, such as degree of entanglement, 

suppression of error, and length of coherence time. On a more utilitarian level, the cost of 

materials, environmental conditions, and physical space required to create a large computer must 

also be taken into account. The computers created to this point have tended to rely on very 

expensive, large systems at ultra-cool temperatures to process simple calculations. For anybody 

to invest into scaled quantum computers, it must be relatively efficient, which is in no way the 

case right now. 

 Scalable realizations may be a long way off from production, but the combination of 

systems outlined in the quantitative section offer several realistic approaches to scaling quantum 

computers. Researchers have demonstrated in many different computation schemes, a scalable 

system is not only theoretically possible but also experimentally sound. Some possible methods 

are ensemble quantum computing, strong magnetic fields, linear optical systems, as well as both 

single and double dot schemes. 
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Unscaled Successes 

 

 Before quantum computers could be created on an increasing scale, researchers needed to 

demonstrate that a quantum computer is a physical possibility. One demonstration of a successful 

quantum computation came from Vandersypen et al., who managed to create the first 

experimental quantum computer. The system used they is a nuclear magnetic resonance (NMR) 

with F and C molecules used as qubits, whose computational information is stored in the spins of 

their electrons. The results of the experiment are very significant: not only did the group create a 

working quantum computer, but they also did so with a coherence time of greater than .7 

seconds, a relatively long time in terms of holding information without losing accuracy to the 

environment. 

The next important breakthrough came from Lu et al. who used a computer to factor the 

number 15 with a computer that they proved is quantum in nature. Earlier creations of possible 

quantum computers were created, but Lu demonstrates the doubt in whether the systems in the 

original experiments were truly quantum. The criterion used to measure this is entanglement: Lu 

proves the photonic qubits involved are definitely entangled before a full experimental 

realization of Shor’s algorithm. The results did more than required. 50% fidelity of results is the 

minimum threshold for particles to be considered entangled, and the results indicate 99% 

fidelity. This level in certainty that the computer is quantum with extremely accurate results 

acted as a proof-of-principal for optical quantum computers, and also any entangled system in 

general. While results published by Vandersypen et al. undoubtedly advanced quantum 

computation, in hindsight their study was flawed in its failure to address whether the computer 

they created was technically quantum instead of classical. Lu’s results build on this significantly, 
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demonstrating that the seemingly unapproachable idea does show physical feasibility, at least in 

principle. Effectively, Lu provided encouragement that quantum computation is a field worth the 

time and resources invested. 

 

Scaled NMR Systems 

 

 Two major results in scalability have come from application of NMR as the basis for a 

quantum computer. The first, published by Cory et al., uses NMR spectroscopy to apply searches 

to significantly more qubits per cycle than usual schemes. Through ensemble quantum 

computers, which utilize the average value over a large number of qubits that undergo the same 

computation, similarly to cluster states, the researchers obtain scaled results. In the article, Cory 

states, “We have described a macroscopic analogue of a [quantum computer] that can be 

implemented today, using commercially available NMR spectrometers and ordinary liquid 

samples,” demonstrating that scaling in an NMR system is feasible.  

However, problems occurring in the system detract from its scalability. Primary among 

these is the margin of error required to reach a conclusion in reasonable time. The article does 

not address solutions to avoiding significant incoherent error. The facts that the NMR scheme 

provided a correct solution and that the system is scalable in theory simply using greater sample 

sizes are both helpful in concluding that NMR spectroscopy is a legitimate possibility for scaling 

quantum computers. 

The second interesting advancement in liquid-state NMR use is outlined by Lages and 

Shepelyansky. Their results depend on a large ensemble and the application of a strong magnetic 

field over the entire sample. Primarily, the article addresses a method in which information can 
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be protected from the environment. That goal is realized through application of a strong 

magnetic field, which causes all fluctuations around the qubits and between pairs of the qubits 

themselves to be relatively insignificant, therefore reducing the error to negligible levels. 

Lages and Shepelyansky are highly successful in suppressing all types of error. They 

state, “[The numerical and analytical studies] clearly show that a presence of magnetic field 

gradient allows suppressing quantum chaos in the quantum computer hardware if the gradient g 

is larger than the quantum chaos border…” Clearly, this result is significant in NMR 

spectroscopy: all the issues encountered but not addressed in Cory’s research can be effectively 

ignored if some strong magnetic field is applied to the sample used. Combining these two sets of 

research indicates that NMR schemes have the feasibility to scale well, without overwhelming 

loss of information. 

A unique application of an NMR computer can be seen in work done by Shankar, Hegde, 

and Mahesh. The system in their article uses the computer to simulate one-dimensional quantum 

systems. It has been proven that no classical computer has the technical capability to simulate 

systems that are quantum in nature, so reliance upon quantum computers is the only possibility. 

The end results of the simulations of Schrödinger’s wave equation matched very well with values 

expected by the researchers, and also had no contradictions with theoretical descriptions of 

systems that include free particles as well as particles in certain potential fields. 

 

Scaled Linear Optical Systems 

 

 In linear optical quantum computers, scaling faces unique challenges not addressed in 

NMR systems. While NMR depends on a large number of qubits being acted on all together and 
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then later measured through varying means, optical quantum computers are built with the intent 

of single or double qubits being processed at a time. What this causes is a significant loss in the 

efficiency of the computer itself for a couple reasons. First, the increased time required for 

calculation makes the minimum coherence time barrier significantly higher. Therefore, a system 

must be found that either can suspend quantum states for longer lengths of time, or the 

computation itself must be made faster. Second, there is some discrepancy between error 

inherent in logic gates and qubit measurement success. So while two gates may each have 80% 

fidelities, a qubit that goes through both gates could still retain >99% success. That discrepancy 

is not present in NMR systems. 

 Lanyon et al. address both of the issues inherent in linear optical systems in depth. While 

their results do demonstrate an experimental success of Shor’s algorithm, they also illustrate the 

shortcomings in attempting scaling of a linear optical quantum computer. One major advantage 

in comparison to NMR architecture is the knowledge that the system is quantum in nature, 

providing basis for a quantum computer with much greater certainty than with NMR 

spectroscopy. 

 According to Lanyon, gates used in optical schemes “do not require pre-existing 

entanglement and…encode our qubits into the polarization of up to four photons,” which may 

directly be used in scaling the quantum computer. However, because there is no standard way to 

describe quantum gates using four inputs, it is currently impossible to see how the result of 

coherent error from a scalable gate will affect final outputs. 

 Using a different setup than a standard linear optical system, Choi et al. are able to use 

trapped ions as qubits in an optical quantum computer. As a direct result, unique possibilities for 

addressing scalability issues are discovered. Since trapped ions already have fundamentally low 



Goodberry 29 

 

levels of coherent error, suppression of that error in a scaled quantum computer requires 

significantly less error correction. Also, the group demonstrates an architecture in which more 

than two entangled qubits could be addressed simultaneously, further expanding the possibility 

of scaling. 

 Some research indicates that linear optical systems could contain unexplored features that 

would greatly increase the feasibility of scalability for quantum computers in general. In fact, the 

features of said systems could theoretically be applied to non-optical schemes as well. Zhao et al. 

propose a blueprint in which information stored on qubits could be sent across long distances. 

The primary use of such a system would be sending information about a certain state from one 

part of a quantum computer to another part, so that information could be recycled for further use. 

 Zhao’s proposed system has significant physical ramifications. Among these, the 

architecture has coherence times of greater than 1ms, 3 orders of magnitude greater than any 

other communication between gates. The next logical step from this is the ability to store mass 

quantum information, and in doing so, create a scaled quantum computer. Because information 

can be experimentally stored now in this manner, one linear optical system of modest size could 

be recycled, with each result of the computation being stored non-locally. That information could 

later be retrieved for further calculation. Applying a system in this way provides a new 

theoretical construction system for scalable linear optical quantum computers. 

 

Scaled Single Dot Semiconductor Systems 

 

 Single dot semiconductors have significantly less experimental support than double dot 

systems. Most likely, this is caused by the beneficial and convenient properties inherent to 
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double dot systems, such as the significantly greater magnitude of spin. Properties like this make 

working with double donor systems much easier. Still, some of the end results of experiments 

using single dot schemes have advanced quantum computing in general, via a combination of 

multiple schemes. 

 An article by Calderón, Koiller, and Das Sarma, in tandem with other previous 

experiments that allow for coherence times near a second, provide a possible solution to avoiding 

coherent error. The use of a single electron donor for isolated qubits has one interesting result: 

Calderón describes the unique state when he says “if they form a triplet, selection rules imply a 

much longer lived state.” This unique situation does not come as a result of double donors, only 

single. By using only single dot triplets, it might be possible to combine the system with others 

because of its abnormally long coherence time and high accuracy. 

 As discussed, the use of single dot architecture could be combined in unique ways with 

linear optical schemes. Economou et al. support this idea, stating “[s]pins…have received a great 

deal of attention because they interact strongly with light and provide the opportunity for 

ultrafast all-optical implementation of logical operations.” While the negative implications of 

that statement, especially in decoherence caused by environmental interaction, have been 

discussed, there are many potential benefits as well. Foremost among these is the possible 

combination of single dot semiconductors with linear optical systems. Since each of these has 

unique properties in terms of feasibility of scaling, it may be possible to combine the two 

methods in order to create a quantum computer that scales without the problems that arise in 

using one individual system. 

 Single electron donor systems like the one proposed by Economou have the potential to 

have scalability beyond that of other schemes. The group proposes two issues that need to be 
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addressed in scaling: the ability to “tune” the system in order to prepare states for computation, 

and the difficulty in entangling arbitrary qubits. Since Shor’s algorithm depends entirely on 

randomly-chosen states, if two qubits begin in incompatible states, the computer will fail. 

However, since the fidelity of states is relatively high in all circumstances, the research group 

determines that the threshold theorem is upheld and information obtained is more than accurate 

enough for a scalable system. 

 

Scaled Double Dot Semiconductor Systems 

 

 Similar results to those discovered in single dot systems have been developed for double 

dot quantum computers. A prime example of this is seen in the article by Petta et al. who, using 

photons to control qubits’ phases, increases coherence time of double dots. While this is nothing 

entirely new in quantum computing in general, extending this result to double dot systems means 

similar methods combining multiple methods might be applied also to double quantum dots. 

Once again, if a scalable quantum computer is ever to be realized, if the limiting aspects required 

in reduction of various errors can be covered by a combination of quantum computation 

schemes, then it is worth exploring all possible options. It is possible that in the future, the 

combination of systems will be what allows for scaled computers, rather than one specific 

method. 

 By introducing another method using double quantum dots, Veldhorst et al. create a 

quantum computer using a combination of two methods. The first of course is a double quantum 

dot, using two electrons in a double potential well. The second, rather than analyzing the qubits 

based on their charge distributions, uses spin of both electrons. This results in very long 
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coherence time, but also causes measurement and entanglement to become more complex. 

According to Veldhorst et al., 

 

“Here, by realizing a quantum dot qubit in isotopically enriched Silicon (28Si), 

we…show that all of the above coherence times can be improved by orders of magnitude. 

These long coherence times…lead to low control error rates and the high fidelities that 

will be required for large-scale, fault tolerant quantum computing.” 

 

Original solutions like this show promise in the development of quantum computers into the 

realm of scalable. By combining long coherence times and high accuracy, the article 

demonstrates how fault tolerant systems could exist in physical terms. 

 

Combined Scalable Systems 

 

 Few articles specifically approach the idea of combining multiple quantum computation 

schemes into one quantum computer. In general, as can be seen in previous references, they 

focus on one of the most common qubit structures or macro architectures. Linear optical systems, 

NMR computers, and single and double quantum dots are all thoroughly explored. In most cases, 

the limiting parts of those systems are explained and an answer is given regarding whether or not 

further development is warranted. 

 Analyzing the scalability of certain setups always comes down to checking several 

specific traits. Computation and coherence time must be low enough to avoid loss of 

information; accuracy of results must be great enough to pass the threshold theorem; and qubits 
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must be sufficiently entangled so the computations remain quantum in nature. If any of these is 

not met, or breaks down when trying to increase the degree to which the computer works, the 

system will not scale. 

 While each physical, experimental system has failed in some aspect of scaling, each also 

has some part that offers an advantage over other systems. For linear optical architecture, 

availability of photonic qubits and a high degree of entanglement are present. NMR systems 

offer very easy macroscopic results for measurement with expected values. Quantum dots have 

the potential for very high coherence times with relatively low errors. 

 The final development referenced previously had significant success through combining 

multiple systems into one cohesive quantum computation scheme. This is a unique approach to 

creating quantum computers, and one that appears to have more promise than any single system 

used in an isolated computer. Research by both Veldhorst et al. and Petta et al. supports the 

conclusion that the most effective way to formulate a scalable computer is through a combination 

of multiple methods. 

 Overall, it is a stretch to consider anything more than the most basic quantum computers 

to be experimental successes in terms of scalable quantum computing. The lowest forms, which 

factored trivial values, were only significant as proof-of-principle for quantum computers in 

general. Focus must now be placed on whether these ideas can be extended to realistically larger 

systems with more widespread applications. 

 

 

 

 



Goodberry 34 

 

Chapter 4 

Minimizing Quantum Error 

 

 Correcting for quantum errors takes multiple forms, corresponding to the various possible 

types of error in the system. Most commonly, error correction schemes are implemented at the 

end of manipulation of qubits, thereby reducing coherent error. The other forms of error, 

including environmental decoherence and random error, cannot be addressed as directly as 

coherent error simply because they generally are unpredictable. Addressing these must be done 

through indirect means, such as decreasing computation time, decreasing the error inherent in 

gate operations, or repeating computations and taking the average so errors are minimized. 

 Among the many reasons for focusing on systematic errors is the fact that they are easily 

fixed. In comparison to environmental error, caused by uncertain aspects of the system itself, the 

coherent error is known prior to computation, making it easy to create gates specifically to 

readjust qubits. Also, scaled systems that use error correction throughout the process are 

guaranteed to have more accurate results, increasing the probability of obtaining correct values. 

Unfortunately, other forms of error still propose significant issues in creating scaled quantum 

computers. 

 This section will be split into architectures used to correct systematic errors and those 

used for incoherent error. There is about as much research put into systematic error as all other 

forms combined, and coherent error correction schemes have been used in realistic situations, 

including some outlined in the experimental chapter. The variety of options available for 

coherent error indicates the extent that field covers, so some methods will be addressed that use 

indirect methods in order to avoid error. The difference in those cases is that instead of 
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correcting for error that has already been introduced into the system, in some cases decoherence 

is just avoided entirely by making the system more efficient in time or in the number of qubits 

used in computation. 

 

Scaling of Coherent Error Correction 

 

 Prospects for quantum error correction in working experimental quantum computers are 

positive. Coherent manipulation of qubits’ states is made possible by knowledge of the unitary 

operations applied originally on them. Quantum algorithms depend on states that are by nature 

“messy”, in that quantum mechanical properties of the qubits involved make it impossible to 

know exact information about the qubits. So error correction is an integral part to creating scaled 

quantum computers, as there is no feasible way in which an error-free computer could be created 

as per the threshold theorem. 

 Reichardt and Grover expand on this issue by arguing that coherent error must be 

addressed above all other errors, since once a computer is scaled, all error intrinsic to the 

computation gates will likewise scale. If the algorithms to suppress that error are inefficient, they 

will only become more cumbersome as the computations and computer become larger. Reichardt 

and Grover compose a sequence of what they call composite pulses used to counteract all the 

available types of coherent error. Each pulse acts on the qubit, undoing any error caused by the 

computation at a quantum gate. In their own words, “Therefore this composite pulse sequence 

allows for an arbitrarily accurate set of universal gates, giving a threshold result for this error 

model.” By answering the requirements set forth by the threshold theorem, and by decreasing 
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coherent error efficiently to an arbitrary level, the researchers manage to define a fault tolerant 

error correction scheme. 

 Due to the low time required for computation in any quantum scheme, time scaling is not 

generally an issue as quantum computers by definition are exponentially faster than classical 

computers. The direct result of this is that if error correction increases computation time, but 

decreases the number of qubits or space required to produce its desired output, then it sacrifices 

little for a substantial benefit. Martín-López et al. take advantage of this fact by reducing the 

qubit requirement for a quantum error correction architecture. They state,  

 

“So for full scale implementations, qubit recycling reduces the total number of qubits required 

from [3log(2)N] to [log(2)N]+1; the only penalty is a polynomial increase in computation time, 

while the exponential speedup is retained-i.e. it is scalable. In general, saving in qubits can be 

more than 2/3 if more control qubits are required, or less than 2/3 in smaller proof of principle 

demonstrations such as this.” 

 

After implementing a CNOT gate followed by the error correction gate, Martín-López et al. 

obtain a successful value of 99% and an error margin of 4%. Since this is well above the 

requirement set by the threshold theorem, these results demonstrate that the system is technically 

scalable. 

 Unlike standard quantum error correction schemes, Qu et al. implement the idea of 

addressing coherent error numerically post-computation rather than using unitary 

transformations. This change represents a significant branch away from the standard system. 

Normally, since the operator acting on a qubit is known prior to processing, near-unitary 
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operations have similar decoding procedures. Using properties of linear algebra, undoing the 

error is a simple process, though not one without overhead. Qu et al. offer the possibility that the 

method used to avoid or repair incoherent error should be applied to coherent error as well.  

Among the most advantageous parts of this is the ability to avoid additional qubits only 

for error correction. Because in many cases experimental quantum computers use more qubits for 

error correction than quantum gates, coherent error correction is very inefficient under that 

method. Whether this has significance after any quantum architecture is scaled is a possible 

problem. While the decrease in qubits for error correction is beneficial, once a system is scaled, 

the number of required qubits will still increase exponentially, regardless of whether there are 

more qubits used for error correction. Qu et al. only address the simplicity of procedures for 

obtaining the information and simplifying calculation. They do not analyze whether or not the 

results will remain important once an experimental quantum computer becomes significantly 

larger. 

 Two important results come from analysis of coherent error correction schemes. One of 

these is the ease of scalability. Since quantum computers’ power scales exponentially with size, 

time can be sacrificed for resource requirements or error correction without loss of information, 

success rates, or scaling. This is not an insignificant result: retaining the ability to make systems 

more physically efficient while ignoring time scaling leaves more options for possible physical 

realizations. The other primary result of coherent quantum error correction is the idea that error 

is intrinsic to quantum gates. While this would appear to be a direct extension of quantum 

mechanical rules, the analogue between quantum errors and error correction gates is surprising. 

Reichardt and Grover’s work in finding the best way to address systematic error over large scales 
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attests to the complexity of error correction, and encourages pursuing other solutions in that 

field. 

 

Indirect Error Correction 

 

 Most quantum computational error comes in forms that are uncorrectable through means 

of shifting phases that coherent error takes advantage of. Because of this, the unknown nature of 

the errors must be accounted for by avoiding error in the first place, or by taking a more general 

approach of increasing system sizes so errors are less significant in the final results. The latter 

has severe limitations, since the size of the computer might be increased exponentially to 

accomplish this goal. Doing so would of course go against the goal of scalable quantum 

computers, which aim to produce useful schemes that only increase polynomially with 

computation size. 

 Fowler offers the first solution to creation of a scalable, computationally efficient 

quantum computer. Without limiting the type of quantum computer to any specific scheme, 

Fowler manages to reduce error by exponentially speeding up the computation time. In his 

analysis of the results, Fowler states, “This enables fault-tolerant quantum computation to be 

performed orders of magnitude faster than previously thought possible, with the execution time 

independent of the error correction strength.” The most important part of that statement is the last 

phrase; since the overall execution of the error correction scheme does not scale with increased 

error, it will be constant regardless of how big a computer is and how long execution takes. 

 Because Fowler’s work depends on an error correction scheme that works randomly, all 

possible error strengths are addressed with equal likelihood. In a way, his scheme itself simulates 
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a quantum computer, searching for any feasible solution and adjusting for it if an unsuccessful 

state is found. Because of that process, Fowler states, “almost all known fault-tolerant universal 

quantum computation enabling [quantum error correcting] codes…achieve time-optimal 

quantum computation with modest additional quantum circuitry.” This fits very well with the 

goals of scalable quantum computers: by increasing their size, error correction itself does not 

need to be increased by any significant amount. Fowler’s results also demonstrate a quantitative 

simulation of finding factors of large numbers, granting credibility to his article. The results 

indicate that error detection takes time in the same order of magnitude as computation, meaning 

it is not exponentially larger, and therefore it scales. 

Using gates that correct errors dynamically, during rather than after computation, allows 

Khodjasteh and Viola to create a robust method to removing multiple types of error in scalable 

systems. While the standard error per gate required for scalable computers is .001 as defined by 

the threshold theorem, the article addresses a system that would have this property in order to 

prove it is scalable. The authors state, “While our present construction addresses arbitrary linear 

decoherence, different algebraic error structures may be tackled by modifying the [dynamic 

decoupling] group.” Because the discovered error is quadratic (and therefore polynomial), and 

because the errors per gate in the proposed scheme do not increase with coherent error, it appears 

all incoherent error is corrected in the given architecture. Like Huang and Wei’s system, 

combining a dynamic error correction scheme in with a proven coherent error correction scheme 

could lead to a full, robust error correction scheme. 

In one of the only experimental realizations of a robust quantum error correction method, 

Pudenz et al. describe an experimentally scaled version of an error corrected annealing quantum 

computer. While discussing the results, they state, “We demonstrate a substantial improvement 
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over the performance of the processors in the absence of error correction. These results pave a 

path toward large scale noise-protected adiabatic quantum optimization devices.” 

Though it might fall under the category of coherent error correction, Weinstein introduces 

the option of decreasing the occurrence of error correction gates inside any given quantum 

computer. So instead of applying an error correction after every quantum gate in the computer, 

Weinstein proposes removing any gate that is unnecessary. Since the coherent error introduced 

by a gate is known prior to computation, changing the distribution of error correction gates 

should have no risk of causing information loss. Results of the decrease in gates decreases the 

qubit and computation time requirements, but those results do not scale exponentially. No 

numeric example used in the research has a qubit reduction of even 50%, and the stated impacts 

do not greatly affect whether exponentially scaled quantum computers are feasible. Despite this, 

if scalable computers are in fact possible, the reduction would still decrease computation time 

significantly. 

The only commonality among the methods to avoid various types of decoherence is the 

fact that each takes advantage of some scalable feature of quantum computers. They might be 

made more efficient, have aspects of the computation switched or run concurrently, or even have 

the error itself be analyzed as if it were a quantum system. Since not one of the systems is similar 

in method to any other, none of the possibilities can be discarded until more research has been 

done on whether the results might be extended to scalable quantum architecture. Each method 

affects a different part of the evolution of a qubit through a calculation, so in theory it is also 

possible that some of the methods could be combined. Regardless of the end result, the 

possibilities outlined throughout the section offer proven ways to simplify and increase 

efficiency of a quantum computer. 
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Combined Error Correction 

 

 Some of the greatest successes in error correction come as the result of using two distinct 

schemes and combining them. Whether that means two error correction methods and applying 

them together, or using two forms of qubits that transfer information between each other, the use 

of multiple methods helps avoid overwhelming issues in scaling. For example, using photonic 

qubits for computations causes fast calculation time, then transferring the information to spin 

qubits stores the information while other data is being processed by the computer. Such 

combinations offer more possibilities than a quantum error correction scheme that is limited to 

one form. 

Because error correction depends on retaining information while measuring the qubit’s 

state and obtaining the final output, coherence must last long enough for the quantum computer 

to correct the qubit’s state during error correction itself. Many systems would benefit from a 

system that had longer coherence time, since then errors could be corrected without the risk of 

decoherence mid-computation. Waldherr et al. create a computer in which electron spin, in 

combination with semiconducting qubits, corrects for error over longer times. So the benefits 

available in using hyperfine interaction as a measurement method for the semiconducting qubits 

can be retained while also using spin to store information, which lasts longer and therefore has a 

lower chance of information loss. 

 Increasing the number of parallel quantum circuits running at a time is another method of 

decreasing decoherence introduced by Huang and Wei. Using a universal quantum computer and 

cluster states, the researchers form a more efficient quantum computer. They develop proofs that 
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lead to the conclusion that if cluster states are used, the computer can be scaled infinitely with no 

increased overhead in time or qubits required.  

Huang and Wei’s conclusion has two possible shortcomings. Since the errors corrected 

for do not include single qubit error, those must be corrected for separately, likely through 

another standard error correction scheme.  Also, because computational systems are produced in 

this method in parallel, increasing the scale of the computer means producing a larger computer. 

Fortunately, the authors demonstrate that the size only increases polynomially, but since it must 

be produced in conjunction with coherent error correction architectures, it may not be an 

efficient architecture. In spite of this, the system does theoretically scale, and sufficiently 

answers the question of how incoherent error might be reduced. 

Kosut, Shabani and Lidar offer a solution to the problem of insufficient robustness of 

coherent error correction. While generally only specific forms of error such as bit flips or sign 

flips can be fixed in coherent schemes, all other forms of error are left unaddressed. Adjusting 

for those errors, according to Kosut, Shabani, and Lidar, requires exponentially increasing 

amounts of time to correct if applied to a quantum computer. So rather than use limited schemes, 

the article illustrates a set of fault tolerant formats for addressing incoherent error. 

The researchers note that, “The [computational] cost can vary greatly if the algorithm is 

modified for the specific problem structure.” What this indicates is that the architecture will 

perform less efficiently if nothing is known about the system initially. However, the results of 

the study find that several forms of error are easily addressed using a relatively low number of 

qubits. Also, the results are scalable, since the form of the error is not assumed at any point, 

meaning the system is robust in detecting error both from the environment and from quantum 

gates. 
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Omkar, Srikanth, and Banerjee offer an original description of quantum computers by 

means of quantum error correction. The system used is essentially defining a quantum computer 

based on the error correction codes required to bring it to maximum possible certainty. Though 

the system is a significant departure from standard methods of quantum computation 

descriptions, it offers a significant advantage. Since the authors use their system to categorize 

quantum computation schemes based also on environmental, incoherent error, that error can be 

addressed without needing to avoid slow computation times. While a system is fully described, 

each aspect of it is known before computation, so error correction gates can be implemented with 

little uncertainty, effectively allowing scalability. According to Omkar, Srikanth, and Banerjee, 

“It can better cope with noise that changes over time-scales smaller than that required for a full 

characterization of the noise. This makes it well suited for real-time applications like feedback 

control of open quantum information processing systems.” 

After describing the many possible systems used to correct for both coherent and 

incoherent error, it is easily seen that no single system dominates the body of research in robust 

error correction. Results include combining intrinsic properties from multiple systems, increasing 

the number of error corrections going on at once, and even using as few gates as possible to 

speed up the process. Out of all of this, it is most obvious that before a scalable quantum 

computer can be feasibly produced, new developments must also be made in the field of robust 

incoherent quantum error correction. The coherent errors, which will be discussed in the next 

section, are in comparison much easier to repair, and scalability of coherent error correction 

schemes is what must be taken into account. 
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Chapter 5 

Extensions and Applications of Quantum Systems 

  

 As quantum information processing has developed as a field of study, numerous 

approaches to previously unsolvable problems have arisen. Some of those applications, such as 

Shor’s algorithm, are already strongly developed and the results are commonly known. Others, 

like simulation of physical quantum systems, are only explored in theory and with small 

simulations, taking a less prominent spot in the field than Shor’s algorithm or Grover’s 

algorithm. In addition, though it has been slow to develop, mathematicians have also begun to 

develop a system supporting quantum logical systems. 

  

Quantum Logic and Quantum Computation Theory 

 

 Due to the fact that quantum computers are intrinsically different from their classical 

counterparts, a new formulation of programming and logic schemes must be realized before 

scalable quantum computers have any real purpose. Otherwise, any computer that is created will 

be limited only to one specific problem. So while it may be useful to have a computer that finds 

the factors of one specific number, that solution is expensive and will not lead to the 

development of quantum systems overall. 

 Before a quantum programming language can be developed, there must be mathematical 

proof that quantum logic is inherently different from classical logic used in standard computers. 

Dunn et al. develop this proof by defining a set of variables in a quantum system, and show that 

classical logic is a subset of the simplest form of quantum logic. They then go on to define 
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quantum systems of higher orders, and prove that each higher order is greater than all sets below 

it. One of the strange results of these proofs is that, given an arbitrarily high-dimensional 

quantum logic system, the power of quantum computers is without a theoretical bound. This idea 

implies that quantum computers are not only more powerful than classical computers in all cases, 

but also could be made the most powerful form of computer possible. 

 The second necessary development in creating scalable quantum computers focuses on 

the threshold theorem. While the original theorem depends on strict definitions and ideal 

circumstances, the reality of quantum computers depends on noisy systems, error correction, and 

decoherence. Dyakonov redefines the issues surrounding definition of errors, because the 

threshold theorem makes many assumptions using a mathematically perfect computer. By 

describing the issues with assuming a mathematically ideal interpretation of the physical world, 

Dyakonov shows why the threshold theorem holds little weight in whether scalable quantum 

computers are feasible or even possible. According to his results, it is better to address scalability 

of quantum computers not by whether or not they abide by the threshold theorem, but rather on 

whether physical implementations of a quantum scheme actually work when made 

experimentally. 

 Since now it is clear that quantum logic is inherently powerful and distinct from classical 

logic, classical code is insufficient for taking advantage of the extent of a quantum system’s 

application. Quipper, a programmable language developed by Green et al. provides a unique and 

straightforward solution to the gap in quantum logic. Quipper is a system in which a classical 

computer is applied to analyzing the states of a quantum computer. Because the inputs and 

outputs of quantum computers are still generally classically described, such as numbers in Shor’s 
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algorithm, operating under a classical framework does not produce problems in interacting with a 

quantum computer. 

 Most importantly among the system put in place with Quipper is that the logic can be 

applied even to scalable quantum systems. As a result of the classical inputs and outputs, the 

only requirement for a scalable quantum computer language is that it must not introduce 

insurmountable error, in order to satisfy the threshold theorem. This is the case in Quipper. 

Green et al. state,  

 

“We demonstrate its usability to implementing seven non-trivial quantum algorithms, 

chosen to represent a broad range of quantum computing capabilities…Programming the 

seven algorithms required approximately 55 man months and resulted in a representation 

usable for resource estimation using realistic problem sizes. On this basis, we conclude 

that Quipper is both useable and useful.” 

 

These results are significant, as Green et al. produce a physical interpretation of quantum results. 

This demonstrates very clearly that quantum computers can be manipulated using classical 

computers, making their results easy to interpret using algorithms and computational 

understanding available now. 

 

Quantum Computer Applications 

 

 Many interesting but classically computationally difficult problems are efficiently 

simulated by quantum computers. Take, for example, simulation of physical quantum 
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mechanical problems. Sornborger creates a quantum computer that simulates electron tunneling 

under standard quantum mechanical properties. While a working simulation of the system on a 

classical computer would take exponentially longer as size increases, it only takes polynomially 

longer on a quantum computer. Sornborger’s system scales with log2N qubits where N particles 

are simulated. So in comparison to standard techniques used to see the development of a 

tunneling electron, this one requires few qubits and scales indefinitely. 

 Another well understood problem that is difficult to model on a classical computer is the 

many-body problem. The interactions between particles develop in complex ways due to their 

quantum mechanical properties, and so no good approximation of their trajectories is feasible 

using only classical computer methods. However, Alarcón et al. outline a physical interpretation 

of a quantum computer that could simulate the many-body problem. Because the researchers use 

particles’ Hamiltonians to analyze their trajectories, these are well defined systems. The system 

was quickly proven in principle by the fact that a two-particle system, which can be developed 

classically, is exactly found when using quantum computation. 

 

Classical and Quantum Cryptography 

 

 Because quantum computing developed in large part by the problem of factoring large 

numbers, there are numerous questions about the safety of classically encrypted data with 

scalable quantum computers. Shor’s algorithm, by efficiently factoring those encryption keys, 

can break any modern system using prime factorization as its basis. 

 While there is worry for whether quantum computers will break all encryption protocol 

used, there is also substantial research into quantum encryption systems that are as secure with 
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quantum computers as current protocol is with classical computers. That is to say, efficiently 

breaking the encryption would take an extremely long time even using quantum computers. For 

example, Marshall and Weedbrook create a quantum key distribution system which does not 

even assume anything about the error present in the quantum computers of either person using 

the key. While the authors state that previous key distribution methods assume near-perfect 

control over the error of a computer (similar to the threshold theorem), their system requires no 

such assumptions.  

Their solution, rather than use discrete variables as keys, uses continuous variables. The 

difference lies in the fact that if the correct key requires a certain value, any error creates a non-

zero probability that the keys will not be found correctly. However, by using continuous 

variables, an infinite number of possible values would be valid, allowing for a certain margin of 

error in either party’s quantum computer. This method of a fault tolerant key distribution scheme 

is promising for protecting information from quantum computers. 

While many other solutions exist that demonstrate the possibility of a protected quantum 

encryption system, this one example is sufficient as a proof of principle. Other solutions would 

be redundant, as the fact that cryptography as a whole is still protected under scalable quantum 

computation schemes is enough to cover that worry of security. Shor’s algorithm, which drove 

the early development of quantum computers, introduced significant worry in whether creating 

such powerful computers is ethical. Fortunately, the research done in new systems demonstrates 

that there is no worry about whether unbreakable systems will exist after the mass use of 

quantum computers. 
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Conclusion 

 The research surrounding all the architectures and theory behind quantum computers is 

vast and in a lot of cases contradictory. As the field is still young, the rules change often and 

what is considered an insurmountable problem now might be trivial to solve for in a year. This 

has been the course so far in quantum computing. In the earlier stages, there was significant 

doubt into whether a quantum computer could be created at all. Now researchers are asking how 

big of a system can be created. Some articles depend entirely on the threshold theorem to prove 

results are scalable, while others state that the theorem is insignificant and does not lend 

credibility to scalability. Different quantum computation architectures get more or less focus 

depending on whether similar methods have produced promising results in the recent past. In the 

end, the field is still advancing rapidly, with entirely new results published often. 

 Of all the feasible systems for incoherent error correction, robust schemes offer the 

greatest theoretical potential for avoiding all types of decoherence. While performing parallel 

computations or decreasing computation time might be beneficial in making a quantum computer 

faster, when discussing extremely large computers, those small differences are unimportant. 

There should be a much greater focus on the errors that scale exponentially along with the 

system, rather than decoherence over time, since that can be adjusted for with much less effort. 

Among the solutions for robust error correction, some of the most promising are the ones that 

work universally. Since it is not yet known what form of quantum computer will dominate in 

scaling, the error correction methods that are limited to a single form are of lower priority than 

the ones that are universal. 

 Coherent error correction offers much less of an issue with the creation of scalable 

architecture. In part, this is because coherent error correction has already been implemented into 
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successful experimental quantum computers, so it is accepted that they work as intended. Also, 

since these errors are always of forms that are approximately unitary, how they impact the 

system is known even before computation. So scaling will become less of an issue of how to 

decrease coherent error and more of a focus on how many error correction gates would be ideal. 

Still, coherent quantum error correction does represent a large portion of the qubits required in a 

quantum computer. So once the computers are scaled, a lot of the overhead in physically 

building it will depend on how efficient the correction scheme for these errors is. Fortunately, 

though, coherent errors do not ultimately limit whether or not a scalable quantum computer is 

feasible. 

 In terms of the type of what quantum computer is likely to be scaled successfully first, the 

types with the most momentum and promise are linear optical and double quantum dot systems. 

Both have their downfalls when it comes to how they address error, and how they could be 

scaled without becoming very expensive. However, each of them has already been shown to 

have the ability to scale to an arbitrary degree, and each has also been realized experimentally in 

small systems. Outside of those two possible candidates, NMR and single quantum dot 

architectures have some possibility of being used, but have lost favor because of error correction 

problems. Still, some of the more obscure computation schemes, especially those utilizing more 

than one system, might offer the most positive option overall. This could change relatively easily 

since combining multiple systems has a reasonable possibility of retaining the most useful 

properties of each. 

 Computation is on the edge of a redefinition. Quantum computers have already been 

proven, and though they are not yet developed, neither were classical computers when those 

came into being. Incoherent error has more and more possible solutions coming in, and coherent 
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errors are being discussed in terms of efficiency instead of whether or not they can be done at all. 

There have been many successes in creating computers that are truly quantum in nature, of such 

a variety that it is likely at least one is scalable. Most importantly, every one of the results shows 

that scaling is possible within reasonable restrictions, all of which can be realistically met. There 

is every reason to believe that useful, scalable quantum computers are feasible. 
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