Journal of Student Financial Aid

Volume 12 | Issue 1 Article 3

2-1-1982

Learning to Program; A Self Help Idea for Financial
Aid Ofhcers

John B. Fisher

Follow this and additional works at: https://irlibrarylouisville.edu/jsfa

Recommended Citation

Fisher, John B. (1982) "Learning to Program; A Self Help Idea for Financial Aid Officers," Journal of Student Financial Aid: Vol. 12 : Iss.
1, Article 3.
Available at: https://irlibrarylouisville.edu/jsfa/vol12/iss1/3

This Issue Article is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for
inclusion in Journal of Student Financial Aid by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. For

more information, please contact thinkir@louisville.edu.


https://ir.library.louisville.edu/jsfa?utm_source=ir.library.louisville.edu%2Fjsfa%2Fvol12%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/jsfa/vol12?utm_source=ir.library.louisville.edu%2Fjsfa%2Fvol12%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/jsfa/vol12/iss1?utm_source=ir.library.louisville.edu%2Fjsfa%2Fvol12%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/jsfa/vol12/iss1/3?utm_source=ir.library.louisville.edu%2Fjsfa%2Fvol12%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/jsfa?utm_source=ir.library.louisville.edu%2Fjsfa%2Fvol12%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/jsfa/vol12/iss1/3?utm_source=ir.library.louisville.edu%2Fjsfa%2Fvol12%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thinkir@louisville.edu

LEARNING TO PROGRAM;
A SELF-HELP IDEA FOR
FINANCIAL AID OFFICERS

by John B. Fisher

Financial aid officers need at least some expertise in many disparate fields such as
accounting, counseling, employment, loan management, publications, etc. Despite
already being involved with so many fields, I would suggest that the financial aid of-
ficer might well consider acquiring some proficiency in yet another area: computer
programming. Of course, most aid officers at institutions with computers have
learned much of the jargon and concepts which managers typically acquire. They
know the difference between a printer and a CRT, between batch mode and on-line
systems and they often talk about data bases, tape exchanges, system back-up, etc.

But despite this sometimes vast user oriented knowledge, few aid officers have
considered learning to program as a way of gaining greater control of data proc-
essing and increasing the range of support services available to them from the com--
puter. I would like to suggest that in many situations, learning to program might be

- both easier and of greater potential benefit than many might think.

I. Why Learn How to Program

Discussions about ways to obtain computer software for the financial ald office
usually present a choice between purchasing from a vendor or developing a home-
grown system. Packages from a vendor are expensive and often are not very well
suited to the unique needs of a particular financial aid office. A home-grown
system, one developed by the institution’s own data processing staff, suggests the
possibility of a system carefully designed around the procedures, priorities and goals
of one’s own operation. All too often, however, the institution’s data processing
staff can seem even more remote to the financial aid office than an outside vendor.
An outside vendor, although working with the needs of financial aid offices in
general, not yours in particular, at least has a staff of programmers more or less
familiar with financial aid. The institution’s own data processing staff is frequently
not familiar with financial aid, and the high turnover which is typical of the field
makes it difficult for programmers to develop a deep enough understanding of
financial aid to exploit the potential advantages of a home-grown system.

One reason for learning to program might be to take the idea of ‘‘home-grown’’
one step further; that is, financial aid officers might write some or all of their own
programs. While this certainly requires an investment of time and energy, the return
can be enormous. Not only will the programs provide for the precise needs of one’s
own operation, but modifications required by changes in programs or procedures
can be made without delay. _

In the long run, many experts feel that we can expect to see software in many
specialized fields come to be written by specialists turned programmers, rather than
by programmers who try to learn enough about the field to write useful programs.

Mr. Fisher is the director of financial aid at Bloomfield College in New Jersey.

16 VOL. 12, NO. 1, FEBRUARY, 1982




In the past, programming required very sophisticated skills normally acquired only
by engineers. Today, programming languages do so much automatically, that lear-
ning to program is not an overwhelming task. In fact, it seems that those who
possess the skills and talents that have enabled them to become successful financial
aid officers, can probably learn, in a few months of spare time study, to write at
least some of the software required by the financial aid office.

Programs differ greatly in the amount of programming skill required to create
them. Perhaps the most difficult are the programs that maintain a data base of in-
formation on a large number of students. Such programs rely heavily on complex
mathematical theories of searching and sorting. On the other hand, a program
which performs various types of need analysis and eligibility index calculations is
quite easy to write. Because of this, the situation which lends itself most readily to
financial aid officer written software is one in which the financial aid office is
already part of a system which incorporates financial aid information into the
overall administrative data base. Since a primary purpose of incorporating financial
aid data is to enable student bills to reflect offsets from financial aid sources, such
systems often do not do much to make use of the information for the benefit of the
financial aid office. Writing programs to benefit the financial aid office around this
already existing data base, is an accomplishable task for a financial aid officer
turned amateur programmer.

In some situations, it might not be possible or sensible for the financial aid officer
to write any of the programs which are needed. The data processing staff may refuse
to provide access to the machine. Or, in a very large school, the financial aid office
might have its own full-time programmer/analyst. Even in these situations,
however, knowing how to program, even at a rudimentary level, can be very helpful.
Knowing the terminology which covers the structure and operations of computer
-systems is helpful, but does not really allow the aid officer to speak the same
language as the data processing staff. Learning how to program will go a long way
toward accomplishing this at least.

II. How to Learn to Program

A professional programmer will usually know how to program in many computer
languages. A financial aid officer, with limited time available, should probably pick
one language, and learn it as well as possible. The institution’s computer and
existing software system may dictate this choice. However, many computers offer a
choice of languages. If it is one of the options available, the best choice is un-
doubtedly BASIC. Some languages, notably FORTRAN, are designed to perform
mathematical calculations, but they do not have a natural ability to handle files con-
taining large amounts of information. Others, such as COBOL, are capable of han-
- dling files easily, but are not designed to perform calculations. It is typical of finan-
cial aid applications, however, that a single program will need to handle files and
perform calculations. A need analysis program, for example, might pull in-
formation from files, perform some calculations, then store the results someplace
else. BASIC is a compromise of design features. It has a natural ability to perform
many kinds of calculations, although it is not very good at more advanced
mathematical concepts, such as recursive functions. Fortunately, these are never
necessary in financial aid applications. In addition, most implementations of BASIC
have a fairly good file handling capability, which should be adequate for situations,
short of a system which must handle information for a huge number of students at a
large university.

Perhaps the most important advantage of BASIC is the wealth of opportunities to
learn it. There is more introductory material on learning BASIC than any other

THE JOURNAL OF STUDENT FINANCIAL AID 17



computer language. (Lien, 1977 and Blackwood, 1981 are two excellent examples.)
Of course, to learn to program you need more than ‘written material, you need a
“computer on which to practlce BASIC offers options other than usmg the in-
stitution’s main computer since it is the universal language of personal microcom-
puters. Access to one of these for several weeks should enable you to learn BASIC
well enough to begin writing some truly useful financial aid programs. _

Of course, one could also learn by enrolling in a formal course of 1nstruct10n I
think most aid officers will find this process frustratmgly slow, however. The fun-
damental concepts of programming, particularly in BASIC, can be learned very
quickly. Beyond this, developing prof1c1ency as a programmer involves acquiring an
increasingly large repertoire of tricks; i.e. clever ways of writing routines which
enable the computer to perform 1ncreasmg1y complex tasks with greater speed and
efficiency. The fastest way to achieve the ab111ty to write one’s own financial aid
software is to start writing programs, see what problems and limitations are en-
countered, and then learn techniques to deal with these specific problems.

III. What Kind of Progran_zs Can you Write?

-I. Need Analysis '

The easiest financial aid programs are those which perform need analysis
calculations. The most difficult aspect of programming is translation of a general
idea into a very precise and specific series of steps that the computer can carry out,
i.e., an algorithm. A need analys1s formula is already such an algorithm. Writing a
‘program to carry it out requires three steps. First a routine must be writtento enable
the computer to acquire the data required to carry out the calculation. This is easily
accomplished in BASIC with'a routine which enables the computer to ask the ap-
propriate questions in turn. (Later, however, you may wish to use ‘the more
sophisticated technique of printing-a “‘form’’ on the screen. ) Second, the need
analy51s algorithm must be rewritten using the specific words and phrases available
in the BASIC language. This is also easy because the terms available in BASIC lend
themselves naturally to this sort of calculation. Finally, a routine is requlred to
report the results of the calculation. This can be anything from a simple series of
PRINT statements, to an elaborate report similar to those provided by the College
Schelarship Service and the American College Testing Program.

A good program to start with might be the one that performs the calculatlon to
determine a Pell Grant Ellglblllty Index (or Student Aid Index as it will be called
starting with ’82- ’83) After you’ve gotten this program debugged and running
‘nicely, you will want to expand it so that it performs all of the calculations- used in
your operation; uniform methodology, calculation for state program awards, etc.
You now have a program which will be immediately useful to help with the task of
recalculating eligibility when information on an application needs to be chaniged. Of
course, this same capability is already available with various company-produced
calculators. However, a home-grown need analysis program offers the followmg ad-
vantages which can’t be obtained in any other way:

a. You can include tables in the program so that the results are not just
eligibility indices for entitlements such as for Pell Grants, but actual
award amounts for your institution.

b. If anything in an eligibility formula or payment table changes at any
point, you can make the changes in your program immediately.

¢. The need analysis program can be modified to provide various kinds -
of estimates and projections. A simple modification would be a program
which displays the effect of one variable, say income, on another, say
Pell Grant eligibility. BASIC provides a simple way to incorporate any

18 : VOL. 12, NO. 1, FEBRUARY, 1982



routine as part of a loop in which the routine is run a number of times,
each time changing one or more variable'in specific ways. This concept
can be applied to do increasingly elaborate projections. Ultimately, one
can have the program take a new academic year’s methodology and sum
~up the results of applying it to either the current year’s aid population or
some hypothetical aid population devised from enrollment projections.
This activity can yield, among other things, an estimate of the need for
institutional grant funds. : ' x ' :
d. The need analysis program can be used to provide an estimate of
financial aid eligibility for prospective students. There is often pressure
on the financial aid office to provide this kind of service, but the time
required to perform a need analysis by hand can severely limit‘this op-
~ tion. A need analysis program can be used by the financial aid office to
make the process speedier, or the program might be made available to -
- the admissions office which could then on its own develop estimates
directly. ‘ ' o '

2. Award Letters - ‘ o S : :

- A second type of program within reach of the amateur programmer is one which
prints financial aid award letters. (See illustration 1) Assuming that the system is
already maintaining a data base on financial aid awards, a program can be written
which automatically prints award letters. While such a program itself should not be
very difficult to write, it is very important to think through the whole idea in ad-
vance and make a number of key decisions, before starting to write the program.
Some of the most important questions are: - -

a. How will those for whom award letters are to be printed be selected for
each run? Do you want award letters printed for all those who have had
their aid changed since the last run; should only certain changes generate -
an award letter; or, do you prefer simply providing the computer with a -
list of those who need award letters on each run? - .

b. What order should the award-letter output be in? Some possibilities
are alpha order, ID number order, or in the order that the aid changes
‘were made. : . . s

- ¢. How do you want to treat entitlements for which you have estimated
an award that is not yet finalized. (e.g., a Pell Grant estimate for which .
the student has not brought in a Student Eligibility Report). Do you want

- the award listed at all and if so how will it be made clear that it is still an -

- estimate? - _ . ‘ ' o o L
d. Do you.want to include a figure for cost of attendance and if:s0, how
will the system determine the appropriate figure?

e. Do you want the system to print just the unique data on a pre-printed
computer form (which will result in shorter printing times) or use the full -
text of a letter (which may have a better appearance).

3. Other Aids to Office Management S

In addition to need analysis and award letters, there is an infinite variety of poten-
tial programs which can help the aid officer. Programs to track -students, generate
lists, compute totals, etc., can all be important. In addition, the ability to make even
slight modifications to existing programs can often make a world of difference.
Having learned to program, most aid officers will find the computer a valuable tool
rather than an alien presence with its own set of rigid demands.

THE JOURNAL OF STUDENT FINANCIAL AID 19



o _ 1V. Technical Tips :

This section presents some technical suggestions on writing financial aid

programs. To some extent it is an attempt to emphasize general principles of good

programming which happen to be particularly important in financial aid. In at least

one case, however, it is important to do just the opposite of what programmers are

taught. _

I will assume some knowledge of BASIC programming in what follows, but it

- should be possible to understand the ideas before one’s study of programming has
progressed very far. '

1. Write Structured Programs

The concept of a “‘structured program’ is being emphasized generally in
programming these days. It is particularly important, however, in writing financial
aid programs. The disadvantage of structured programs is that they tend to be a lit-
tle longer than they need to be. A great advantage, however, is that they are much
easier to change or modify for other purposes. Many financial aid programs will
need to be changed annually, or even more often than that. This will only be possible
if they have initially been written in a structured manner. An excellent guide to the
techniques of structured programming in BASIC is Negin and Ledgard (1978).

2. Learn to Write Good Input Routines oo

Financial aid programs typically require a great deal of data entry, much of it
numerical. Financial aid officers who want to write useful programs should take
some time early in their study of programming to learn how to write professional in-
put routines. The idea is to avoid having a program ‘‘bomb”’ (i.e., stop running)
when an obvious mistake (like entering a letter when a number is required) is made.
Rather, the program should point out the error and guide the operator in making an
appropriate response.

Some good advice on writing input routines can be obtained from Roche and
Nemzow (1981) and Todd (1981). An example of a routine which edits commas and
other extraneous characters from a numerical input is shown in Illustration 2.

3. Don’t Be Afraid to Disregard Good Programming Principles

A general principle of good programming is to condense a series of operations in-
to as few lines as possible. This has two desirable results: it makes the program shor-
ter, and it reduces the number of distinct variables required. Consider, for example,
Illustration 3, which shows a routine to derive the ’81-’82 uniform methodology
parental contribution for dependent students. A professional programmer looking
at this would see many opportunities to condense lines. For example, lines 6430,
6435, 6455, 6460, 6465, 6470 and 6515 could be condensed into one line which reads:
Cs=1(5) + (1(6) * .0613 MIN 1588) + (I(7) * .0613 MIN 1588) + (B3*B7) + (I(10)-
(B3*.03 MAX O) ) + (Bl MIN 2400) + C3. While this condensation reduces both
the size of the program and the number of variables required, it is not wise in writing
a need analysis program to carry the process too far. A key feature of need analysis
programs is that intermediate results of calculations need to be used later, either for
* further calculations or as part of the output which is reported. The contraction
above, for example, makes it impossible to retain values of FICA, medical deduc-
tion and employment allowance.

Another reason not to condense too much is that when writing a need analysis
program one must always keep in mind that it will be necessary to make changes
each year. To take another example, lines 6530, 6540, 6545, 6550 and 6555 could be
condensed into:

20 VOL. 12, NO. 1, FEBRUARY, 1982



D1=(I(12) + I(13)-1(14) + I(15)-1(16)-C(((I(1) MAX 40) MIN 65)-39,A5) ). If, let’s
say, the age range in the asset protection allowance should change in the future, it
would certainly be easier to change in the original version, where the age figures are
part of short, clear lines.

4. Put Tables into Files

BASIC allows one to include numerical information such as the tables required
for need analysis directly in a program as lines of DATA. While this may be
adequate when getting started, it will be much better in the long run to put this data
into files which a program utilizes as necessary. There are two major advantages to
this. First, they will make the progtams shorter. Since each computer has only a
limited amount of work space for each program, and since financial aid programs

- can. become quite long, savings in space can become significant. Secondly, these
tables need to be updated often. It is much easier to make the changes to tables
stored in files than when they are embedded in programs. In fact you can develop
separate programs for the purpose of managing the tables. Such programs can
display the information currently in the tables and provide a convénient format for
making changes. '
‘ V. Conclusion

The purpose of this paper has been to suggest what may be a new idea to financial
aid officers. As computer systems play an even larger role in student financial aid,
the aid officer is in danger of losing further ground in his or her attempt to remain in
control of the process. It seems to me that learning to program can be a key element
in the effort to retain the control needed to manage aid programs effectively.

THE JOURNAL OF STUDENT FINANCIAL AID 21



	Journal of Student Financial Aid
	2-1-1982

	Learning to Program; A Self Help Idea for Financial Aid Officers
	John B. Fisher
	Recommended Citation


	tmp.1375122979.pdf.CwKlt

