
Introduction

Clinical research in pneumonia involves the creation and 
dissemination of new knowledge studying patients with 
pneumonia. The process of clinical research can be summarized 
in four steps: planning the study, performing of the study, 
analyzing the data, and disseminating study results. During 
the third step of data analysis, data are often examined to 
define if associations exist between independent variables 
(e.g. predictor variable or other variables in the model) and 
the dependent variable (e.g. outcome). This examination of 
the data is performed using two types of methods: 1) clinical 
analysis and 2) statistical analysis. During clinical analysis, the 
data are evaluated to define biological plausibility and clinical 
importance. During statistical analysis, the data are commonly 
evaluated to define statistical significance for the purposes of 
hypothesis testing, an approach termed ‘frequentist statistics’ 
[1].

Several limitations are recognized with the use of these 
traditional frequentist approaches in clinical research. The 
overemphasis on hypothesis testing, calculation of P-values 
as the primary means of significance assessment, and the 
convention of using the 5% level of statistical significance are 
all now considered limiting issues for defining causal effects; 
the actual impact of the independent variable (predictor) on the 
dependent variable (outcome). Here, the approach to analysis is 
based only on two mutually exclusive hypotheses, the null and 
alternative hypotheses, with results being either significant or 
nonsignificant. This leads to either rejecting the null hypothesis 
(significant P-value) or not rejecting the null hypothesis (non-
significant P-value). Statistically significant P-values, those 
below an arbitrary cut point (often 0.05), can be obtained when 
the sample sizes are large but actual differences or associations 
are small (and potentially not clinically meaningful). On the 
other hand, non-significant results (e.g. P values over the cutoff) 
may be due to a small sample of patients (often termed lack of 
statistical power), or true non-significance. Therefore, when 
non-significant results are obtained using traditional hypothesis 
testing, it is not known if the results are due to the sample size 
(leading to reduced statistical power to detect the association or 
difference), or there truly is no association or difference between 
the predictor variable and the outcome.  

Here, we propose adding machine learning, a branch of artificial 
intelligence, as a new methodology to analyze study results in 
pneumonia clinical research. Currently, few investigators use 
these methods as a replacement for traditional frequentist 
statistical methodologies. 

Machine learning in small datasets
Until recently machine learning methods were considered 
useful only for ‘big data’ (e.g. millions of patients and hundreds 
of variables), and were used for purely predictive modeling 
(versus explanatory modeling). This led to most machine 
learning approaches being labeled as ‘black boxes’. These black 
boxes were very accurate at predicting an outcome for a new 
individual after being trained on historical data, but were not 
able to provide an estimate of the impact of each variable on the 
outcome. This latter concept (explanatory modeling) has been a 
necessary part of clinical research for many decades. However, 
machine learning can now be used to estimate the impact of 
each variable on the outcome using a few novel methods. Newer 
algorithms are also much better at dealing with the smaller 
datasets typically available in pneumonia clinical research.

One of the most useful developments in the area of machine 
learning is causal forests and a limited number of other methods 
(Bayesian trees, Gaussian processes for machine learning, 
causal multivariate adaptive regression). These methods allow 
for the direct calculation of treatment effects, the effect of the 
predictor variable on the outcome. This can be particularly 
useful in the case of a negative study, when the results are 
inconclusive or suggest that the intervention is not effective. 
In these negative studies, there may be subpopulations or 
clusters of individuals who will have a different and sometimes 
clinically meaningful treatment effect. Some subpopulations 
may even result in opposite associations between predictor and 
outcome. This differential treatment effect among subsamples 
is termed ‘heterogeneous treatment effects’, and can now be 
identified using machine learning methods. Although one can 
use traditional methods to identify subpopulations through 
stratified regression modeling or inclusion of interaction terms 
(to detect effect modification), the investigator will run into 
issues with multiple testing bias, a common pitfall in frequentist 
statistics. In those hypothesis testing-driven methods, each 
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additional test run on the data increases the amount of 
statistical error present. Therefore, if an investigator wishes to 
evaluate ten different variables as potentially providing different 
effects among the study sample, the level of statistical error 
increase substantially. At the most conservative, one can use 
the Bonferroni correction to account for this. In this approach, 
the cutoff for statistical significance (again, typically 0.05) is 
divided by the number of tests run, allowing for identification 
of a new cutoff. Here, 0.05/10 = 0.005. Therefore, no variable 
in the models could be considered significant until the P-value 
is below that new threshold. Given the typical sample sizes in 
pneumonia clinical research, this is unlikely to occur, even if 
there is a true and large treatment effect in the data. Our novel 
machine learning methods do not suffer from this issue, as they 
are not focused around hypothesis testing, rather algorithmic 
approaches to defining treatment effects. Because of this, 
one can evaluate as many variables as they wish for defining 
heterogeneous treatment effects without increasing error.

Machine learning algorithms
The term machine learning is an umbrella term comprising 
multiple computational methods. These methods are often 
combined with traditional frequentist statistical approaches 
such as bivariable tests, basic general linear models including 
logistic regression, leading some individuals to prefer the phrase 
“Statistical Learning”. For the purposes of this paper, we will use 
machine learning. 

One can think of machine learning as a set of tools used to 
algorithmically compute a prediction for a clinical outcome.  
Often the outcome is binary,  such as the presence versus 
absence of a disease or mortality versus survival; however, an 
outcome also can be multiclass such as a risk score like the 
Pneumonia Severity Index [2].

Logistic regression is widely used for analysis in clinical 
research. However, it suffers from several problems including 
difficulty with interpreting log-odd or odds ratios, comparing 
log-odd ratios calculated with different independent variables, 
and comparing log-odds and odds ratios across subgroups in 
the sample, even if they use the same independent variables 
[3]. Several machine learning algorithms are available that can 
also be used that overcome some of the problems of logistic 
regression.  These include, but are not limited to, Decision 
Trees, Support Vector Machines, Artificial Neural Networks, 
and Deep Learning (Table 1).

Figure 1 Sample Decision Tree

Decision Tree
Decision tree algorithms determine how to split a dataset into a 
tree structure that can be followed from the top of the tree to the 
bottom to make a prediction. Decision trees are already widely 
used in epidemiological and clinical research.  For example, 
consider a small dataset with variables gender (M/F), trouble 
breathing (Y/N), and cough (Y/N); the outcome is whether or 
not a person has the common cold. A decision tree algorithm 
uses the dataset to “learn” the rules and build the tree for predict 
the outcome (Figure 1). 

Several algorithms exist for creating decision trees including 
ID3 [4], C4.5 and CART [5].These approaches have been further 
enhanced to reduce error in the computation with ensemble 
decision trees in which multiple trees are generated from the 
data and their results averaged. Examples include random 
forests, extreme gradient boosted machines, and causal forests. 
In fact, CART and random forests can be used for propensity 
score generation to overcome some of the limitations of logistic 
regression [6].

Support Vector Machine
A Support Vector Machine is a machine learning technique that 
seeks optimal separation between two classes of data.  SVMs 
calculate a margin, which is the largest region that separates 
two classes (Figure 2). The margin is also called the separating 
hyperplane. Imagine using a piece of paper placed on its edge 
on the line in Figure 2. The paper would cleanly separate these 
classes with the margin being the largest distance possible 
between the classes. 
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Table 1 Summary of methods

Figure 2 Support Vector Machine - margin

Method Description 

Frequentist Statistics  

  Hypothesis Testing Input data either rejects a null hypothesis or not, 
usually using a 5% level of significance 

Machine Learning  

  Decision Trees A tree structure of decisions regarding input data is 
created and paths can be followed to make a 
prediction 

  Support Vector Machines Input data is separated into 2 classes to make 
predictions and generalizations about each class 

  Artificial Neural Networks A series of connections modeling the human brain are 
given input data and trained iteratively to make 
predictions 

  Deep Learning Many more layers of connections are used to train the 
neural network to increase the accuracy of its 
predictions 

 



SVM works particularly well for problems that are linear, but can 
also be used on non-linear problems if they can be transformed 
into a representation that supports a separating hyperplane. For 
example, in Figure 3-a, no line can be drawn through the data 
to separate two classes. However, if the data were transformed 
into a “bowl” shape, a line can be drawn to separate them 
(Figure 3-b). The algorithm then can determine which class a 
data point belongs (Figure 3-c). The mathematical transforms 
to convert non-linear data into linear are called kernels. Several 
kernels exists for various linear and non-linear problems 
including, linear, nonlinear, polynomial, radial basis function 
(RBF), and sigmoid. 

One significant limitation of SVMs is that they are inherently 
binary classifiers. To accomplish multi-classification, they are 
typically run one against everything else and results of each 
classification compared. For example, if determining risk 
classification with four levels, SVM would classify the first level 
against all others, the second level against all others and so 
on.  Like logistic regression, SVM also can be used to generate 
propensity scores. However, they are not as effective as boosting 
and decision trees [6].

Artificial Neural Networks
Artificial Neural Networks (ANN) model the human brain. The 
input data are represented as a set of nodes that connect to one 
or more hidden layers of nodes called neurons. The hidden layer 
then connect to an output layer that provides the result (see 
Figure 4).

The connections between each neuron (the lines in Figure 4) 
have weights that control whether or not a neuron “fires”. Using 
a mathematical technique called gradient descent, the a neural 
network algorithm “learns” the optimal set of weights to fire the 

appropriate neurons that will discriminate between different 
classes by produce a 1 or 0 at the output layer.  One advantage 
of ANNs over some of the other machine learning algorithms is 
that they train on the same dataset multiple times. Therefore, 
there is less of an effect on the training if the dataset is small. 
Furthermore, ANNs can model linear and non-linear problems.  
The are several other models of ANNs including recurrent 
neural networks in which nodes later in the model (toward the 
right side in Figure 4) can be connected to previous layers.

Deep Learning
An extension to the ANN is the Deep Artificial Neural Network 
often just called  Deep Learning.  Traditional ANNs only use a 
few hidden layer, usually ten or less. To model the human brain 
more effectively, the number of hidden layers can be expanded 
to several hundred layers. While this still doesn’t approach the 
size of the networks in the human brain, deep learning has 
proven to be effective for many categorization tasks and pattern 
matching (Figure 5) [7].

The primary disadvantages of ANNs and Deep Learning is 
interpretability and overfitting. With linear regression and 
logistic regression, the coefficients can be interpreted, although 
as previously discussed, it is more complicated for logistic 
regression. With any form of neural network, the feature of the 
network that is optimized are the weights between the neurons. 
There is no straightforward way to explain how the weights 
affect the prediction. In contrast, I decision tree, even if large, 
has paths that can be followed to show how the outcome is 
derived.  Overfitting, in which the ANN learns the training data 
extremely well, but does not generalize to other data  is another 
significant problem.  This can be addressed with regularization 
which is a common mathematical technique that adds data to 
the model so it better generalizes to other data.

Conclusions

When analyzing an association in clinical research, our 
traditional statistical methods, or frequentist statistics, are too 
rigid. The results are either significant or nor significant and the 
study is either positive or negative. One important advantage 
of machine learning will be our capability to better evaluate 
effects of interventions in study subpopulations. We think that 
the adoption of machine learning in clinical research will open 
a new and more productive way to analyze study results.  Our 
capacity for interpretation of data and the generation of study 
conclusions will be enhanced by machine learning. 
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Figure 3 Support Vector Machine - transformation

Figure 4 Artificial Neural Network

Figure 5 Deep Learning Artificial Neural Network
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