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CHAPTER I 

 

INTRODUCTION 

 

A. Background and rationale for this study 
 
 

1. The Extracellular Matrix 
 

The extracellular matrix (ECM) functions as a bioactive scaffold, providing 

tissue architecture, strength, and elasticity. Although the ECM is historically 

characterized in relation to its structural components, the extracellular matrix is 

now known to plays far more roles; it is critical to cell adhesion, proliferation, 

motility, and even innate immunity. The ECM is a dynamic hub for 

morphogenesis, cell signaling, immune cell recruitment, and many other 

fundamental processes [1]. The complex network of collagens that comprise the 

basement membrane lend structure and tensile strength, while proteoglycans 

and glycoproteins provide the interstitial hydrating matrix and compartment for 

growth factor storage. The essential function of the ECM cannot be understated; 

indeed, genetic mutations in matrix components result in a spectrum of 

connective tissue pathologies [2-4], if not embryonic lethality [5, 6], which 

underlines its inherent function in all tissues. Dysregulation of ECM components 

is the etiologic basis of various pathologies, especially fibrosis and invasive 

neoplasia. Therefore, balanced regulation of ECM production and degradation is 

necessary for maintenance of organ structure and function. 
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Extracellular matrix remodeling has a critical role in tissue homeostasis 

and repair [7, 8]. In contrast, uncontrolled or aberrant remodeling in response to 

stress contributes to angiogenesis, inflammation, fibrotic diseases, as well as 

tumor invasion and metastasis in cancer [7, 9]. The ECM mediates cell 

biochemical signaling to regulate functions of tissues and movement of cells 

within the interstitium, as well as absorbing physical signals from the environment 

that affect cell organization and form. Sensing and sensitivity are key to this 

elasticity, and tactile density and pressure dictate actions cells correspondingly 

take towards migration, differentiation, and adhesion. A broad classification of 

proteins associated with the extracellular matrix has been termed matrisome; this 

incorporates the ECM proteome, etc. In Naba et al. [10], ECM glycoproteins, 

fibrillar proteins, collagens, and proteoglycans are designated to the “core 

matrisome.” Matrisome-associated proteins comprise the more dynamic set of 

ECM targets that regulate the ECM; enzymes, secreted factors, and ECM 

proteins [10, 11]. 

Liver ECM is responsive to microenvironment, integrating cell signals to 

coordinate diverse pathways of action; its interaction with parenchymal function 

is critical in maintaining tissue integrity and non-pathogenic matrix remodeling for 

tissue repair [12]. The ECM of many other organ system tissues share similar 

functions, though among them, the liver has the greatest capacity for 

regeneration of any visceral organ [13]. Consequently, it can manage acute 

insults to restore tissue homeostasis via degradation of the extracellular matrix 

and then tissue replacement via matrix deposition. However, dyshomeostasis of 
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matrix metabolism is a key feature of almost every form of chronic liver disease, 

regardless of etiology; e.g., conditions that result from either direct or secondary 

liver insult, whether from alcohol exposure, metabolic disease, or exogenous 

toxicants. Thereby, the ECM can be altered via inflammatory cascades that 

trigger progressively irreversible remodeling of the ECM.  

 
2. Integrins: ECM function and role in cancer 

 

Integrins are transmembrane receptors that facilitate interaction between 

cells and the extracellular matrix, as well as cell-cell interactions. Cell-surface 

integrin expression and activation mediates adhesion to ECM and leads to signal 

transduction that regulates proliferation, apoptosis, and differentiation, among 

other important processes [14-16]. Integrin receptor interactions are key 

mediators of cell attachment, migration, proliferation, among many other 

molecular processes, primarily via binding to extracellular matrix (ECM) 

glycoproteins, leading to bidirectional signal transduction that influences critical 

cellular functions. The composition of the ECM and the expression of their 

cognate receptors dictates cell behavior and dynamics. Vital to the maintenance 

of homeostatic conditions, integrins have become important therapeutic targets 

for diseases of dysregulation—namely various cancers, immune dysfunction, and 

chronic inflammation. Promiscuity among the repertoire of ECM ligands and 

integrin receptors, particularly those with Arg-Gly-Asp (RGD) binding motifs, 

means binding affinities vary for each combination. Understanding the kinetics of 
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integrin binding can provide a profile of integrin interaction relative to the ECM 

proteomic signature. 

Cell migration and cell-cell interactions that are modulated by integrins 

contribute to tumor invasion and metastasis [17, 18]. Integrin-ECM interactions 

play critical roles in the processes of tumor cell arrest in the vasculature, 

extravasation towards secondary site, and invasion and colonization of 

micrometastases. Gulubova et al. [19] have shown in clinical samples of hepatic 

metastases from human colorectal and gastric cancer that ECM components 

such as tenascin-C, fibronectin, and their respective integrin receptors were 

found to often form capsules around liver metastases, indicating a role in 

facilitating invasiveness. Excessive ECM deposition occurs frequently in tumors 

evaluated to have poor prognosis [9], and the ECM phenotype can shift as 

tumors progress, resulting in changes to differential expression of integrins that 

occur in response to the microenvironment.  For example, in pancreatic cancer, 

increased ECM protein deposition is classified as desmoplasia and is an 

important clinicopathologic biomarker disease progression and potential for 

chemorefractory response to therapeutic intervention [20, 21]. In breast cancer, 

ECM proteins common to both mammary gland involution involved in normal 

remodeling of breast adipose tissue following parturition, and also to breast 

cancer, are similarly upregulated, indicating potential for breast tumors to utilize 

normal ECM turnover processes to facilitate their own growth [22, 23].  

Dysregulation of integrin signaling in various cancers affect cancer cell 

processes of adhesion and invasion due to the interactions of tumor cells and the 
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ECM in the context of the local microenvironment [24-26]. Upregulated integrin 

expression in tumor cells has been investigated and various novel targets have 

been identified for development of anti-cancer therapeutics. Tumor cell 

overexpression of αvβ3 integrin and its promiscuity in ligand binding influences 

the site of metastasis by facilitating tumor arrest in vasculature and invasion of 

tissues [27]. In recent studies, integrin subunit α2 was determined to mediate 

selective metastasis to the liver [28]. Dysregulations in ECM composition can 

provide a favorable microenvironment for metastatic seeding, contributing to 

desmoplastic stroma characteristic of excessive ECM deposition [29], and also 

creating a 3D scaffold that can influence the behavior of tumor cells and their 

integrin expression phenotype, directly influencing their sensitivity to therapeutics 

[30]. Mueller et al. found that transformed hepatic stellate cells (HSCs) contribute 

to stroma formation in liver metastases [31], and early fibrotic pathologies cause 

inflammation that leads to HSC transformation to myofibroblasts that increase 

ECM deposition, so there are clear links between the two phenomena.   

 
3. Alcoholic liver disease 

 Alcohol use disorder and the health issues that arise from chronic alcohol 

abuse remain a significant healthcare issue worldwide, responsible for 5.9% 

deaths and 5.1% disability-adjusted life-years globally [32, 33]. Alcohol use is 

ubiquitous to human cultures, and its abuse often results in self-harm, accidents, 

and premature deaths [34, 35]. As a financial burden, alcohol abuse-related 

healthcare costs and loss of productivity have an impact of over 200 billion 

dollars annually in the US alone [36]. Besides lifestyle modification, currently 
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there is no medical treatment for alcohol use disorders, and high rates of relapse 

among alcoholics following rehabilitation make it clear that research on related 

pathologies remains important for helping to manage the affected populations 

[37]. 

 In addition to behavioral risks of alcohol abuse, chronic alcohol use is also 

a major health risk. The alcohol consumption pattern and length of drinking, 

including typical dose and frequency, are determining factors in risk assessment. 

Alcohol use disorders affect several primary target organs including the brain, 

heart, pancreas, kidneys, spleen, liver and lungs. Alcohol misuse is associated 

with long-term health risks, such as high blood pressure, stroke, pancreatitis, 

depression, dementia, and sexual dysfunction. Alcoholic liver disease (ALD), a 

spectrum of pathologies that progress from acute steatosis to fibrosis and 

cirrhosis, leads to damage to multiple organs and contributes to related 

comorbidities. In particular, advanced liver disease (i.e., cirrhosis) is the main 

cause of hepatocellular carcinoma (HCC) and end-stage liver failure via viral and 

alcoholic cirrhosis [38, 39]. 

Causes of liver disease include alcohol or toxicant exposure, or obesity. 

Regardless of the etiology of liver injury, the mechanisms of pathology similarly 

include secretion of inflammatory mediators by hepatocytes and Kupffer cells, 

resulting in activation of quiescent hepatic stellate cells (HSCs), upon which they 

transdifferentiate to myofibroblasts. Activated HSCs control secretion of fibrillar 

matrix proteins and collagens, as well as regulate expression of matrix 

metalloproteases and tissue metalloprotease inhibitors; these cells thereby 
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coordinate ECM degradation and production to manage fibrogenic and 

proliferative signals to effect tissue repair and regeneration. In this activated 

state, homeostasis is maintained by resolution of liver injury and apoptosis of 

myofibroblasts following fibrogenesis [40]. Progression from normal liver 

homeostasis to transient fatty liver, or steatosis, occurs in response to short term 

exposure and is reversible, and is characterized by presence of large sharp fat 

droplets in hepatocytes. As insult and injury persists, steatohepatitis develops 

with fatty liver progressing to development of parenchymal inflammation and 

hepatocellular damage. If inflammation is prolonged, fibrosis can occur with 

accumulation of fibrillar collagens deposited to the ECM [41]. Fibrosis/cirrhosis 

characterized by aberrant fibrin deposition with bridging fibrosis; this heralds the 

clinical end stage, with limited treatment options besides organ transplantation 

[42].  

 

4. Transitional ECM 

A major focus of the Arteel group is to examine how alcohol activates 

transitional tissue remodeling in liver and the consequences of these events [43, 

44]. Our group recently utilized proteomic data analysis [45] to demonstrate the 

dynamic response of the murine hepatic extracellular matrix (ECM) proteome 

(i.e., ‘mastrisome’) to alcohol exposure. Importantly, several of the ECM proteins 

that were either quantitatively or qualitatively changed by alcohol exposure are 

ligands for integrin receptor binding. Integrin receptors mediate attachment 

between a cell and surrounding tissues, which may be ECM or other cells [46].  
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Integrins transfer information from the ECM to the cell, allowing rapid and flexible 

responses to changes in the environment. Consequently integrins influence a 

myriad of molecular processes, including proliferation, angiogenesis, 

inflammation and apoptosis. As such, altered/aberrant ECM-integrin interactions 

can phenotypically change basal and induced response of the liver. Although this 

principle is partially understood in the context of hepatic fibrosis, little is known 

about the impact of these changes on earlier stages of liver disease.  

 

5. Alcoholic liver disease and liver cancer 

 In addition to primary injuries (e.g., alcoholic liver disease; see above), 

alcohol use also contributes to a broad range of secondary pathologies, including 

notably an increased risk of oncogenesis in several organs. Several studies 

having established links between alcohol consumption and cancers of the 

alimentary tract, as well as the breast, lung, and pancreas [47, 48]. The fibrotic 

pathology associated with chronic ALD leads to enhanced inflammation and 

higher risk in certain cancers for increased aggressiveness [49-53], and the 

associated induced dynamic tissue remodeling leads to desmoplasia and 

favorable conditions for tumor stromal overgrowth [54, 55]. Increased risk of 

development of cancers has been determined via epidemiological studies and 

meta-analyses to be related to alcohol consumption [56, 57]. The risk spectrum 

from light drinking to chronic alcohol consumption has been explored and a 

significant risk attributable to alcohol has been established for various primary 

cancers [58, 59].  
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In contrast to the known role of alcohol consumption in the development of 

primary tumors, whether or not alcohol exposure increases the risk to metastatic 

cancer distal from the primary site is unclear. Since cancer morbidity and 

mortality is largely attributable to metastases, rather than primary tumors, per se, 

the mechanisms by which alcohol influences metastasis requires further 

investigation. There are some clinical data that support the hypothesis that 

alcohol exposure increases the risk of cancer metastasis. In animal models, 

alcohol exposure increases the incidence of hematogenous metastases [60]. 

Many primary cancers commonly metastasize to the liver at a higher proportion 

than almost all secondary sites save lymph nodes, including breast, 

colon/colorectal, lung, ovarian, and neuroendocrine tumors [61, 62]. Hepatic 

metastases from colorectal cancer in particular are a significant clinical problem 

due to the frequency of synchronous lesions between the bowel and the liver [63, 

64]. In epidemiological studies, alcohol consumption has been identified as a 

significant independent risk factor for the development of colorectal liver 

metastases (CRLM) [65]. Retrospective analyses of clinical pathological reports 

have demonstrated a positive correlation between alcohol consumption and 

metastatic potential and patient outcomes [50, 66]. However, whether this is a 

direct effect of alcohol consumption, or an indirect effect via increasing the risk of 

a primary tumor, is unclear. Furthermore, the specific mechanisms driving this 

correlation have yet to be elucidated and little is known about subclinical changes 

to microenvironment that influence organotropism of circulating tumor cells [67].  
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Chronic hepatic inflammation promotes dramatic remodeling of the liver 

ECM, which is an important factor in both fibrotic disease and cancer, 

contributing to tumor progression and metastasis [68, 69]. The long-term efficacy 

of cancer therapeutics is often limited by metastatic disease, and often 

metastases exhibit selective tropism to the liver, particularly from primary lung 

and colorectal cancers. Although the mechanisms of metastatic organotropism 

are poorly understood, it is clear that communication between cancer cells and 

the target microenvironment are key.   Indeed, several of the hallmarks of 

metastasis, such as proliferation, angiogenesis and apoptosis, are hypothesized 

to be mediated by altered integrin signaling [17, 18].  Interestingly, alcohol 

consumption is a known risk factor for increasing metastasis to the liver, 

suggesting that early subclinical alcohol-mediated liver ECM remodeling may 

impact seeding and colonization of hepatic metastases [70]. 

In theory, integrins are attractive target because blocking their receptor 

function, or downstream signaling could prevent important steps in tumor 

development and progression, such as matrix adhesion and their ability to 

migrate. Integrin inhibition has been used as a targeted therapy against liver 

metastases, such as with endostatin and snake venom components [71, 72].  

While these studies are critical to creating more efficacious targeted diagnostics 

and therapeutics for metastatic disease, a more efficient approach may be to 

target the integrin profile. As there are multiple components that can make up the 

dimeric integrin cell surface receptors, there exist multiple probabilities for 

combinations of these monomers, dependent typically on resident tissue and 
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intended function [46, 73]. However, as there is a sophisticated coordination of 

integrin-ECM interactions that often involve a significant amount of redundancy 

due to overlapping functionality, consideration of this complex tableau of integrin 

expression and downstream consequences is necessary for development of 

optimally efficacious therapies. Additionally, since many of the major class 

integrins, i.e. those consisting of the β1-subunit, are ubiquitous and bind to most 

of the widespread group of ECM proteins (e.g., collagens, fibronectin, galectin), 

off-target effects of such therapies are a significant obstacle for these 

pharmaceuticals [74, 75]. Anti-integrin therapies therefore have had some 

success but it is clear that various integrins mediate the steps of the metastatic 

cascade in the liver, so targeting them in a composite manner may be more 

effective therapeutically. 

 

6. Macrophages and the cancer microenvironment 

 Macrophages are a key liver cellular population, critical for tissue 

homeostasis and regulating injury and repair responses [76]. Both resident 

macrophages, i.e. Kupffer cells, and those derived from monocytic precursors 

are present in hepatic tissue. Kupffer cells are involved in metabolism, 

phagocytosis of bacterial and cellular debris, and maintaining hepatic 

homeostasis. Once activated, these cells recruit immune cells to liver, mediating 

inflammation, fibrosis, angiogenesis, and tumor progression. In both primary liver 

cancer and in hepatic metastases, the interactions of liver macrophages and 

tumor cells directly influence the preponderance of tumor-associated 
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macrophages and their ability to modulate cancer-related inflammation to 

facilitate tumor progression [77]. 

 The tumor microenvironment (TME) is now recognized as an important 

facet of carcinogenesis and progression through advanced stages of disease. 

Key players in this setting include host immune cells, namely macrophages, 

lymphocytes, and neutrophils [78-81]. Structural elements such as the ECM, 

fibroblasts, and vasculature also play specific, tissue-dependent roles. The 

inflammatory modulator in the setting of tumor interactions with the ECM is most 

often macrophages, recruited from circulating monocytes, which undergo 

differentiation and polarization according to cytokines released in the 

microenvironment that take direct or indirect action to influence remodeling [82-

87] angiogenesis and proliferation. Indeed, cross-talk between tumor-associated 

macrophages (TAMs) and cancer cells is critical to determining the balance 

between tumor cell death and tumor promotion [87]. Cell-cell signaling, via 

cytokine secretion, can inform the local immune response; nutrient availability, 

oxygenation, and tumor cell metabolism contribute to the cacophony of signaling 

from cells that redirects polarization of macrophages to suit the needs of the 

tumor, often resulting in their unwitting participation in tumor progression [88-90]. 

These are all critical processes that are often co-opted by tumor cells to promote 

growth, invasion, and extravasation, via repolarization/reprogramming of 

macrophages and remodeling of the extracellular matrix. 

 As macrophages are the key stewards of all stages of tumor progression, 

including metastasis, an entire field has burgeoned around their study and 
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determining the capacity of their dual pro- and sometimes anti-tumor activity. In 

breast cancer, TAMs have been shown to facilitate cancer invasiveness via ECM 

degradation, promote angiogenesis, and suppress proinflammatory/tumoricidal 

T-cell responses [83, 91]. Proinflammatory-polarized TAMs in large B cell 

lymphoma promote tumor progression by remodeling the ECM via fibronectin 

and collagen I degradation [92]. In colorectal carcinoma, they produce growth 

factors and inflammatory mediators and are clinical biomarkers of poor prognosis 

[93, 94]. It is clear that TAMs and the ECM do not exert their influence on tumor 

progression in isolation, so development of a system by which to manage clinical 

surveillance of macrophages and target their actions on the ECM could be a key 

microenvironmental interaction for experimental analysis and theranostic 

interventional targeting [77].  

 

7. Statement of goals 

  Exploration of the links between ECM composition and in particular the 

cell signaling behaviors influenced by pathological remodeling of the extracellular 

matrix has become an indispensable tenet of cancer research. Indeed, the “seed 

& soil” hypothesis, one of the longest-surviving in medical literature, presumes a 

chicken & egg paradigm in which either the tumor itself, the “seed,” is the 

determinant in oncogenesis and metastatic spread; or, instead the “soil,” that is, 

the primary tissue or metastatic target organ and the composition and 

characteristics thereof guide and dictate the seeding of tumor cells. This theory 

succinctly encapsulates the complexity of the influences the ECM effects on 
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microenvironmental cues that drive the haywire functions that facilitate neoplastic 

spread. It is now clear that the seed, soil, and the entire milieu of secreted 

molecules, sequestered growth factors, and inevitable immune involvement all 

act in finely orchestrated concert to balance normal repair with injury and insult, 

including and up to the point when properties of each are exploited by cancer 

cells to promote their own survival and proliferation. 

 As discussed in this chapter, the Aims of this proposal will have a 

significant impact on the modeling of growth and neoangiogenesis of tumor cells 

in response to transitional fluctuations in abundance of chemotaxed and 

haptotaxed ECM components in the target organ. Our goal is to establish a 

composite profile of integrin binding to cognate ligands expressed in ECM based 

on quantitative analysis of the injured extracellular liver matrisome. Determining 

the pathological mechanisms by which alcohol influences hepatic metastases 

could help stratify a patient population which may have underlying ALD that 

contributes to metastatic seeding to the liver. Additionally, via surveillance of the 

phenotypic profile of macrophages in the tumor microenvironment, we hope to 

develop a 2D model to visualize tumors and macrophages, demonstrating that 

the tumor cells, as the “seed”, here have the ability to exert effects on local 

macrophages, thereby indirectly affecting the “soil” to favor their attachment and 

proliferation. This new approach, leveraging integrated data and systems biology, 

could potentially lead to lead to increased precision in integrin- or immune-

targeted prevention and treatment strategies. 
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B. Aims and proposals 
 
 

1. To computationally predict integrin binding kinetic profile based on 
experimental data analysis of integrin-mediated changes to the ECM   

 
 

This dissertation proposes to utilize mathematical modeling to 

systematically explore changes in hepatic phenotype driven by altered ECM-

integrin interactions.  In attempt to recapitulate integrin receptor binding kinetics, 

we will develop a divalent receptor kinetic model that employs a simple integrin 

clustering scheme to determine binding affinity of each of the various ECM proteins 

to their various cognate integrin receptors.  Proteomic data from a mouse model 

of hepatic fibrosis induced by carbon tetrachloride (CCl4) exposure will be used to 

establish model parameters to simulate ECM binding and compare kinetics to 

homeostatic liver controls. This well-characterized in vivo model exhibits changes 

in integrin signaling that can be used to develop and train the in silico model, along 

with information from published literature on known binding rate constants for 

specific integrin receptors.   

 

2. Characterizing macrophage polarization in response to treatments that 
promote liver injury in vivo 

 
 

The purpose of the current study will be to evaluate the effect of arsenic 

on polarization of bone-marrow derived macrophages (BMDMs), as macrophage 

Th-1-like and Th-2-like responses are critical components of innate immunity. 

Macrophages have a critical influence on the inflammatory microenvironment in 
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HCC [95]. In rodent studies, low level chronic exposure to inorganic arsenic 

induced malignancy and hepatocarcinogenesis. Arsenic trioxide has been shown 

to induce growth inhibition and apoptosis in human hepatocellular carcinoma cell 

lines, but not have sustained clinical effect in advanced or metastatic HCC [96]. 

Characterizing the effects of arsenic on macrophage behavior and, in turn, of 

macrophage polarization changes on tumor progression is the ultimate goal of 

this work. Polarized macrophages will be surveyed to determine modulation of 

macrophage populations following stimulation from their naïve state. 

Characterization of macrophage populations in response to various 

polarizing/depolarizing stimuli will provide a framework to explore molecules that 

modulate the inflammatory response, as well as assessing the conditions under 

which polarization switching begins to shift polarization differentially within a 

colony of differentiated macrophages. These data will be used to set 

experimental conditions for macrophages utilized in an indirect co-culture assay 

with both primary and metastatic tumor cells, to evaluate the potential for tumor 

signaling to influence polarization switching to co-opt macrophages in service of 

the proliferation of the tumor. 

 

3. Evaluate perturbations to immunomodulatory stimuli and the 
extracellular matrix in the tumor microenvironment via a spatio-temporal 
mathematical model of tumor growth 

 
 

This aim seeks to model the effects of ECM density and tumor-

macrophage interactions within the tumor microenvironment using in vitro data 

on tumor cell migration and cytokine levels measured in a transwell indirect co-
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culture of macrophages and tumor cells. These data will be used to set the 

parameters of a 2D tumor growth model within a transitionally-altered ECM 

scaffold and visualizing the distribution of heterogeneous macrophage 

populations clustered around the tumor and its nascent angiogenic vessels. This 

will determine if tumor cells have potential ability to exert immunomodulatory 

effect on local macrophages to induce their influence on ECM turnover, creating 

a more favorable microenvironment for expansion of tumor micronodule to a 

proangiogenic, proliferating cell cluster. 

 

Overall aim of this dissertation 
 

The overarching goals of the current work is to fill key gaps in current 

understanding of alcohol consumption and the risk of metastasis to liver. 

Considering the evidence this research group has compiled confirming that the 

hepatic matrisome responds dynamically to injury, an altered extracellular matrix 

(ECM) profile appears to be a key feature of pre-fibrotic inflammatory injury in the 

liver. This group has demonstrated that the hepatic ECM responds dynamically 

to alcohol exposure in particular, sensitizing the liver to LPS-induced 

inflammatory damage [45]. Although the study of alcohol in its role as a 

contributing factor to oncogenesis and metastatic progression has not been 

extensively investigated in basic science, it is clear from numerous clinical 

reports and meta-analyses that it would be a benefit to patients to understand the 

complexity of their comorbidities on a molecular level. It is well recognized that 

intramural research efforts are needed to understand the associated pathologies. 
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Using signatures of liver ECM to predict cell surface integrin binding profile can 

establish personalized data that can be used clinically to determine therapeutic 

targets.  

 This work will establish a novel approach that explores systems biology 

data with the use of proteomics, along with a mathematical modeling strategy, 

focusing on the dynamics and kinetics of system component interactions. We will 

use the compiled proteomic data on ECM proteins that arise in experimental ALD 

to model and identify integrins that may favor metastasis.  In order to tackle these 

big data, we employ a system-based approach integrating in silico, in vitro, and in 

vivo modeling. This project builds on the goals of the previous work in the Arteel 

lab, and proposes to continue exploring the overall hypothesis that alcohol-

related changes to the hepatic mastrisome (and subsequent alterations of 

integrin signaling) alters the hepatic phenotype. New exciting questions and 

cutting-edge modeling will be employed to use the information already attained in 

that project to leverage new clinically-relevant questions. This work will not only 

establish a novel approach, but also potentially identify new therapies that could 

be employed to prevent metastatic cancer to the liver. 

 This new approach leveraging integrated data could potentially lead to 

identifying new therapies that could be employed to prevent metastatic cancer to 

the liver. We hypothesize that transitional alterations to the hepatic matrisome 

create a more favorable environment for dissemination of metastases to the liver, 

and that specific integrins mediate these modifications.  Alcohol-induced 
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transitional remodeling of the hepatic ECM enhances metastatic seeding via 

integrin-mediated tumor-ECM interactions. 
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CHAPTER II 

 

EXPERIMENTAL PROCEDURES 

 

A. Animals and Treatments 

Mice were housed in a pathogen-free barrier facility accredited by the 

Association for Assessment and Accreditation of Laboratory Animal Care, and 

procedures were approved by the University of Louisville’s Institutional Animal 

Care and Use Committee. 

  

1. Animal sacrifice, tissue collection and storage 

Prior to sacrifice, mice were anesthetized by injection of a ketamine 

HCl/xylazine solution (100/15 mg/kg i.m.; Sigma-Aldrich, St. Louis, MO). Animals 

were exsanguinated, allowing for blood collection from the vena cava; citrated 

plasma samples were stored at -80°C. Liver tissues were divided for snap 

freezing in liquid nitrogen, fixation in 10% neutral buffered formalin, or embedding 

in frozen specimen medium (Tissue-Tek OCT compound, Sakura Finetek, 

Torrance, CA); small samples are collected in RNA STAT-60 (Tel-Test, Inc., 

Friendswood, TX) to collect total RNA via chloroform:phenol separation (see 

section D for additional details). 
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2. BMDM Collection 

To harvest BMDMs, mice were anesthetized with ketamine/xylazine 

(100/15 mg/kg i.p.) and sacrificed by exsanguination. Bone marrow cells were 

flushed from tibiae and femora of sacrificed mice using ice cold PBS, and then 

pooled from each cohort (4-6 mice) for propagation in cell culture using 

endotoxin-free RPMI 1640 medium supplemented with 10% fetal bovine serum 

(FBS; Gemini Bio-products, West Sacramento, CA) and 100 U/mL penicillin:100 

µg/mL streptomycin (GE Health care, Wauwatosa, WI), with macrophage colony 

stimulating factor (M-CSF) supplementation via conditioned media from L-929 

cells to induce differentiation into macrophages.  

 

3. Lieber-DeCarli alcohol diet model 

Weanling C57BL/6J mice were obtained from the Jackson Laboratory (Bar 

Harbor, ME) and, following housing acclimation, mice were maintained on Lieber-

DeCarli diet (Dyets, Inc., Bethlehem, PA), with either ethanol supplementation, or 

as pair-fed isocaloric control diet supplemented with only maltose-dextrin. 

Animals were housed in pairs and held in colony within a room where the 

ambient temperature was 75 ˚F to prevent hypothermia. Animals accessed diet 

via vacuum feeding tubes in which diet was replenished daily at 5:00 pm and 

consumption per cage was recorded. Following the initial two days of diet 

acclimation, wherein both cohorts were provided control isocaloric diet, the 

ethanol cohort received diet with increasing concentration of ethanol over a two-

week period, until reaching the intended experimental concentration of 6% 
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(vol/vol) for the last three weeks of diet maintenance. That is, the ethanol cohort 

diet was comprised of 0% ethanol for the two-day acclimation period, 1%, and 

then 2% for two days each, 4%, and then 5% for one week each, then finally 6% 

feeding for the final three weeks. Animals were then sacrificed and liver tissue 

harvested for histological processing and ECM extraction. 

 

B. Histology  

1. General morphology 

Liver tissues were either formalin fixed and embedded in paraffin (FFPE), 

or embedded frozen in OCT prior to cutting at either 5 µm or 8 µm, respectively, 

and then mounted onto charged glass slides. FFPE sections were processed in 

Citrisolv (Thermo Fisher Scientific, Waltham, MA) and rehydrated via incubation 

in graded ethanol concentrations. Sections were stained with hematoxylin and 

eosin (H&E), Sirius red, or Mason’s Trichrome, before mounting with Permount 

(Thermo Fisher, Waltham, MA). 

 

C.      Proteomics 

1. 3-step ECM extraction 

Sample preparation and wash: Snap-frozen liver tissue (75-100 mg) was 

immediately added to ice-cold phosphate-buffered saline (pH 7.4) wash buffer 

containing commercially available protease and phosphatase inhibitors (Sigma 

Aldrich) and 25 mM EDTA to inhibit proteinase and metalloproteinase activity, 

respectively. While immersed in wash buffer, liver tissue was diced into small 
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fragments and washed five times to remove contaminants. Between washes, 

samples were pelleted by centrifugation at 10,000×g for 5 min and wash buffer 

was decanted.   

NaCl extraction: Diced samples were incubated in 10 volumes of 0.5 M 

NaCl buffer, containing 10 mM Tris HCl (pH 7.5), proteinase/phosphatase 

inhibitors, and 25 mM EDTA. The samples were gently mixed on a plate shaker 

(800 rpm) overnight at room temperature. The following day, the remaining tissue 

pieces were pelleted by centrifugation at 10,000×g for 10 min. The supernatant 

was saved and labeled as the NaCl fraction.  

SDS extraction: The pellet from the NaCl extraction was subsequently 

incubated in 10 volumes (based on original weight) of a 1% SDS solution, 

containing proteinase/phosphatase inhibitors and 25 mM EDTA. The samples 

were gently mixed on a plate shaker (800 rpm) overnight at room temperature. 

The following day, the remaining tissue pieces were pelleted by centrifugation at 

10,000×g for 10 min. The supernatant was saved and labeled as the SDS 

extract.   

Guanidine HCl extraction: The pellet from the SDS extraction was 

incubated with five volumes (based on original weight) of a denaturing guanidine 

buffer containing 4 M guanidine HCl (pH 5.8), 50 mM sodium acetate, 25 mM 

EDTA, and proteinase/phosphatase inhibitors. The samples were vigorously 

mixed on a plate shaker at 1200 rpm for 48 h at room temperature; vigorous 

shaking is necessary at this step to aid in the mechanical disruption of ECM 

components. The remaining insoluble components were pelleted by 
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centrifugation at 10,000×g for 10 minutes. This insoluble pellet was retained and 

solubilized as described below. The supernatant was saved and labeled as the 

GnHCl fraction.  

Deglycosylation and solubilization: The supernatants from each extraction 

were desalted using Zeba Spin columns (Pierce) according to manufacturer’s 

instructions. The desalted extracts were then mixed with five volumes of 100% 

acetone and stored at -20⁰ C overnight to precipitate proteins. The precipitated 

proteins were pelleted by centrifugation at 16,000×g for 45 min.  Acetone was 

evaporated by vacuum drying in a RotoVap for one hour. Dried protein pellets 

were resuspended in 500 µL deglycosylation buffer (150 mM NaCl, 50 mM 

sodium acetate, pH 6.8, 10 mM EDTA, and proteinase/phosphatase inhibitors) 

that contained chondroitinase ABC (P. vulgaris; 0.025 U/sample), endo-beta-

galactosidase (B. fragilis; 0.01 U/sample) and heparitinase II (F. heparinum; 

0.025 U/sample). Samples were incubated overnight at 37⁰ C; those containing 

the pellet remaining after the guanidine HCl step received 20 µL DMSO for 

solubilization. Protein concentrations were estimated by absorbance at 280 nm 

using bovine serum albumin (BSA) in deglycosylation buffer for reference 

standards. 

 

2. LC-MS/MS analysis of samples 

Sample cleanup and preparation for liquid chromatography: Pooled 

samples in deglycosylation buffer were thawed to room temperature and clarified 

by centrifugation at 5,000×g for 5 min at 4°C. Samples were reduced by adding 1 
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M DTT to 50 µL (25 µg) of each sample and then incubating at 60°C for 30 min 

before addition of 8 M urea in 0.1 M Tris-HCl (pH 8.5) was added to each 

sample. Each reduced and diluted sample was digested with a modified Filter-

Aided Sample Preparation (FASP) method. Recovered material was dried in a 

SpeedVac and redissolved in 200 µL of 2% v/v acetonitrile (ACN)/0.4% formic 

acid (FA). The samples were then trap-cleaned with a C18 PROTOTM 300 Å 

Ultra MicroSpin Column (The Nest Group). The sample eluates were incubated 

at -80°C for 30 min, dried in a SpeedVac, and stored at -80°C. Before liquid 

chromatography, dried samples were warmed to room temperature and 

dissolved in 2%v/v ACN/0.1% FA to a final concentration of 0.25 µg/µL. A volume 

of 16 µL (4 µg) of sample was injected into the Orbitrap Elite. 

Liquid Chromatography: Dionex Acclaim PepMap 100, 75 µM x 2 cm 

nanoViper (C18, 3 µm, 100 Å) trap and Dionex Acclaim PepMap RSLC, 50 µM x 

15 cm nanoViper (C18, 2 µm, 100 Å) separating column were used.  An EASY n-

LC (Thermo) UHPLC system was used with mobile phase buffer A (2% v/v 

acetonitrile/0.1% v/v formic acid), and buffer B (80% v/v acetonitrile/0.1% v/v 

formic acid). Following injection of the sample onto the trap, separation was 

accomplished with a 140 min linear gradient from 0% B to 50% B, followed by a 

30 min linear gradient from 50% B to 95% B, and lastly a 10 min wash with 95% 

B. A 40-mm stainless-steel emitter (Thermo P/N ES542) was coupled to the 

outlet of the separating column. A Nanospray Flex source (Thermo) was used to 

position the end of the emitter near the ion transfer capillary of the mass 
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spectrometer.  The ion transfer capillary temperature of the mass spectrometer 

was set at 225°C, and the spray voltage was set at 1.6 kV. 

Mass Spectroscopy: An Orbitrap Elite – ETD mass spectrometer (Thermo) 

was used to collect data from the LC eluate.  An Nth Order Double Play with ETD 

Decision Tree method was created in Xcalibur v2.2.  Scan event one of the 

method obtained an FTMS MS1 scan for the range 300-2000 m/z.  Scan event 

two obtained ITMS MS2 scans on up to ten peaks that had a minimum signal 

threshold of 10,000 counts from scan event one.  A decision tree was used to 

determine whether collision induced dissociation (CID) or electron transfer 

dissociation (ETD) activation was used.  An ETD scan was triggered if any of the 

following held:  an ion had charge state 3 and m/z less than 650, an ion had 

charge state 4 and m/z less than 900, an ion had charge state 5 and m/z less 

than 950, or an ion had charge state greater than 5; a CID scan was triggered in 

all other cases.  The lock mass option was enabled (0% lock mass abundance) 

using the 371.101236 m/z polysiloxane peak as an internal calibrant.   

Proteome Data Analysis: Proteome Discoverer v1.4.0.288 was used to 

analyze the data collected by the mass spectrometer.  The database used in 

Mascot v2.4 and SequestHT searches was the 6/2/2014 version of the UniprotKB 

Mus musculus reference proteome canonical and isoform sequences.  In order to 

estimate the false discovery rate, a Target Decoy PSM Validator node was 

included in the Proteome Discoverer workflow.  The Proteome Discoverer 

analysis workflow allows for extraction of MS2 scan data from the Xcalibur RAW 

file, separate searches of CID and ETD MS2 scans in Mascot and Sequest, and 
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collection of the results into a single file (.msf extension). The resulting .msf files 

from Proteome Discoverer were loaded into Scaffold Q+S v4.3.2.  Scaffold was 

used to calculate the false discovery rate using the Peptide and Protein Prophet 

algorithms.  The results were annotated with mouse gene ontology information 

from the Gene Ontology Annotations Database. 

 

D. Computational Modeling 

1. Kinetic simulations 

Computer simulations were run using Spyder for Tellurium software 

version 2.3.5.2; Python version 2.7 [97]. Binding curves were plotted using 

SigmaPlot 13.0. Model was initialized using ligand concentrations from proteomic 

analysis and initial integrin concentrations were derived from published values. 

Ligand concentration was developed by collapsing the fractionated sample data 

using MudPIT functionality in Scaffold. Rappsilber et al. defined protein 

abundance index (PAI) for estimation of absolute protein abundance, and 

Ishihama et al. report that the emPAI, exponential PAI, is approximately 

proportional to protein abundance. Using the emPAI quantitative method, 

proteomic output was normalized by the tissue loading concentration of 0.25 

µg/µL; these values for concentration were then divided by the molecular weight 

of the protein to convert to molar concentration. Kinetic rates listed in Tables 2 

were used to calculate microrate parameters relative to the established binding 

rates from literature; where exact microrates were unavailable, rates were 

estimated from various published literature sources. Equilibrium constant table 
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relates the equilibrium constants of the system relative to initial integrin complex 

formation, such that subsequent binding and clustering steps produce 

cooperativity when simulated in these proportions. Sensitivity analysis was 

performed by varying levels of integrin receptor concentration in 10-fold 

increments, to explore binding when surface membrane integrin receptor 

expression is upregulated or downregulated as a consequence of disease state 

or in response to microenvironmental fluctuations. 

 

2. Tumor model simulations 

Tumor model simulates effect of ECM production/degradation ratios and 

the interaction with macrophage polarization to M1- and M2-activated subtypes 

on tumor growth and neoangiogenesis. Mathematical model is application of 

model developed in Leonard et al. and extended by Mahlbacher et al. A detailed 

summary is provided in Chapter V, Section B.6-7. 

 

E. RNA Isolation and Quantitative Reverse-Transcription Polymerase Chain 

Reaction 

The mRNA expression of select genes was detected by quantitative 

reverse-transcriptase polymerase chain reaction (qPCR), as previously described 

[98]. Total RNA was extracted by a guanidinium thiocyanate-based method (RNA 

STAT 60; Tel-Test, Friendswood, TX). RNA concentrations were determined 

spectrophotometrically and 1 μg of total RNA was reverse transcribed using 

qScript cDNA SuperMix (Quanta Biosciences, Gaithersburg, MD). PerfeCTa 
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qPCR Fast Mix (Applied Biosystems) was used for the PCR reaction, carried out 

on the ABI StepOne Plus (Applied Biosystems). The comparative CT method 

was used to determine fold changes in mRNA expression compared to an 

endogenous reference gene (18S). This method determines the amount of target 

gene, normalized to an endogenous reference and relative to a calibrator (2-

ΔΔCt). 

 

F. Microarray analysis of miRNA 

1. Biostatistical analysis 

Total RNA from cells were isolated using mirVana total RNA isolation kit 

(Life Technologies, Carlsbad, CA) according to the manufacturer’s guidelines. 

RNA concentrations were determined spectrophotometrically using a Nanodrop 

ND-1000 (Thermo Fisher Scientific, Grand Island, NY). The integrity of total 

RNAs was assessed using Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA). 

350 ng of total RNA was labeled with Biotin using a 3DNA Array Detection 

FlashTag™ Biotin HSR kit (Affymetrix, Santa Clara, CA, U.S.) following the 

manufacturer’s protocol, being subsequently hybridized overnight. The 

GeneChip® miRNA 4.0 arrays, containing 30,424 total mature miRNA probe sets 

were washed and stained using the Affymetrix GeneChip Hybridization Wash 

and Stain Kit and were then scanned with the Affymetrix GeneChip Scanner 

3000 7G (Affymetrix). Raw intensity scores were imported into Partek Genomics 

Suite 6.6 (Version 2.16.1441; Partek, Inc., St. Louis, MO, USA) and normalized 

on a gene level using the standard Robust Multi-array Average (RMA) algorithm 
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for normalization and background correction. Volcano plot and heatmap 

generated in R (Version 3.3.2, R Core Team, 2016) via data analysis using the 

pd.mirna.4.0 Bioconductor package [99] and linear contrast with the limma 

package [100]. The volcano plot stratifies array data with significance (p=0.05) 

versus log2 fold change (log2FC; >0.301 or <-0.301) on the y- and x-axes, 

respectively. As follows, the representative scatter plot visualizes miRNAs to 

identify those differentially expressed with respect to direction of fold change. 

The heatmap visualizes miRNAs with statistically significant expression changes 

across all treatments; hierarchical clustering analysis was used to identify 

patterns of miRNA expression in the As(III), LPS, and LPS+As(III) treatment 

groups. Linear discriminant analysis Effect size (LEfSe; [101]) analysis was used 

in parallel to identify differentially expressed miRNAs by using class comparison 

methods to predict significant biomarkers. 

 

3. Enrichment tools 

Raw data CEL-files for analysis of the miRNA arrays were produced with 

Affymetrix GeneChip Command Console Software Version 4.0 (Affymetrix). 

Partek Genomics Suite software (Version 6.14.0923; Partek, Inc.) was used for 

further analysis. CEL-files were imported including control and interrogating 

probes, and the arrays were normalized using quantile normalization. Probeset 

summarization was done using Median Polish. Probe values were log2-

transformed. One-way analysis of variance (ANOVA) was performed to detect 
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differential miRNA expression between the groups, and Fisher’s Least Significant 

Difference (LSD) was used as the contrast method. 

 

4. Gene ontology and pathway analysis 

TargetScan (Release 7.1: http://www.targetscan.org; [102] was used to 

predict biological targets of identified miRNAs via seed region matching; 

database accessed on 9/18/2016. miRBase database (miRBase 21 release; 

[103-105] ) was utilized for mining miRNA sequencing and annotation data. 

Ontological classification and functional enrichment analysis to identify 

significantly over-represented biological processes were performed using the 

database for annotation, visualization, and integrated discovery (DAVID) v6.7, 

and pathways in each cluster were classified; functional annotation completed 

4/13/2016. A modified Fisher's exact test/EASE (Enrichment) Score was utilized 

to calculate the p-values; threshold was set at p<0.05 and fold enrichment>2. 

Gene Ontology (GO) enrichment analysis tool corrected using the Bonferroni 

method. To identify enrichment terms associated with miRs of interest, gene lists 

were uploaded to the DAVID web site using the complete mouse genome as 

background. Significantly enriched functional groups were ranked using the 

Functional Annotation Clustering tool set to the highest classification stringency, 

with the p-value set at 0.05. Protein domain annotations were derived from Pfam 

database, a database of evolutionarily conserved protein domain coordinates 

(Bateman et al., 2000); BioCarta and KEGG tools were used to visualize gene 

pathway mapping.  

http://www.targetscan.org/
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miRNA expression analysis uploaded into the Ingenuity Pathway Analysis 

Knowledge Base (IPA®, Version 43605602, Qiagen, Redwood, CA) for pathway 

and gene otology analysis; Core analysis as well as comparative analysis was 

used with filters specific to inflammation, macrophages, and innate immunity. 

Toxicity functional analysis correlating pathological endpoints, as well as 

diseases and biofunctions were reported; database was queried on 9/7/2017. 

Fisher’s exact test was used to find the selected significant miRNA expression 

changes with FC >2 and p values <0.05, and network analysis was generated for 

interactions of the mapped genes of putative miRNA targets from expression 

data to the molecular relationships stored in the knowledge base. Additional 

detail on methodology and functionality can be obtained on the IPA website. 

 

5. Statistical analysis 

Flow cytometry and qPCR data results were reported as means ± 

standard error mean (SEM).  The comparative analysis of the results from 

various experimental groups with their corresponding controls was performed 

using SigmaStat for Windows (Systat Software, Inc., San Jose, CA). ANOVA 

followed by Tukey’s post-hoc test was carried out to assess statistical 

significance between treatment groups.  A p value <0.05 was selected before the 

study as the level of significance for results. 

 

G. In vitro cell analyses  

1. Flow cytometry 
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Cells were trypsinized, collected, washed in FAB buffer (1% FBS in PBS), 

and blocked with Fc block (BD Biosciences, San Jose, CA) for 15 min prior to 

antibody labeling and subsequent FAB washes. Cells were stained with 

antibodies for 30 min at 4oC (CD11b-APC, F4/80-PE, CD11c-BV 421, CD206-BV 

651; eBiosciences Inc., San Diego, CA). Cells were fixed with 2% 

paraformaldehyde (Alfa Aesar, Ward Hill, MA) for 15 min and resuspended in 

fresh FAB buffer prior to analysis. Data were acquired on a BD Fortessa flow 

cytometer using BD FACS Diva software (BD Biosciences), and all compensation 

and data analyses were performed using FlowJo software (FlowJo LLC, Ashland, 

OR). Compensation beads (eBiosciences Inc.) were used to balance multi-

channel emission spectra of the selected fluorochromes, in addition to 

fluorescence minus one (FMO) controls for gating. Unstained and isotype 

controls were used to exclude doublets and restrict gating to macrophage 

differentiated, CD11b++F4/80+ cells. 

 

2. BMDM cell culture and differentiation 

Cells were harvested and isolated from animals as described in Chapter II, 

Section A.2. Following seven days of media-conditioning, differentiated cells 

were harvested and seeded at a density of 2.5×105 cells/mL in 6-well tissue 

culture plates. After 24 h, cells were exposed for 6-18 h to increasing 

concentrations of arsenic (as sodium arsenite, Sigma-Aldrich, St. Louis, MO) in 

the presence/absence of lipopolysaccharide (LPS; from E. coli serotype O55:B5; 

Sigma-Aldrich) or IL-4 (R&D research; Minneapolis, MN) Ying et al., 2013. 
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3. MTT viability assay 

Cell viability was determined using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT; Sigma-Aldrich) assay as described previously 

(Anwar-Mohamed et al., 2012) and validated by trypan blue (Sigma Aldrich) 

exclusion.   

4. Transwell migration assay 

Tumor cell lines designated WLA3 (derived from primary lung tumor in 

B6129S2/J mice) and WA8 (derived from lung to lymph node metastases in 

B6129S2/J mice presenting with primary lung tumors) were a kind gift from Dr. 

Monte Winslow at the Massachusetts Institute of Technology [106]. Cell lines 

were maintained with DMEM media with 10% FBS, and 100 U/mL penicillin:100 

µg/mL streptomycin at 1%. Serum-starved tumor cells were seeded at 

concentration of 2×105 in transwells containing either lyophilized ECM (LECM) 

from control or ethanol-fed liver tissues, or control uncoated wells, with 2% FBS 

added to bottom receiver chamber as chemoattractant. After 48 h, cells on lower 

surface of membrane were fixed with 4% paraformaldehyde, stained with 0.2% 

crystal violet in 100% ethanol, and counted manually, 10 fields per membrane, 

using automatic slide reader.  

5. Tumor cell/macrophage indirect co-culture assay 

Transwell culture plates were utilized to create an indirect co-culture 

environment between tumor cell lines (either primary or metastatic) and BMDMs. 

A porous 0.4 µm transwell insert membrane was utilized to prevent migration of 
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tumor cells from top chamber to bottom receiver well. Macrophages were first 

seeded to bottom receiver plate well at a density of 1×105 cells/well and allowed 

to adhere overnight. Cells were then treated with either LPS to induce M1-

activation, or IL-4 for M2-activation; control cells were untreated naïve 

macrophages. After 24 h, tumor cells were seeded to the top chamber insert at a 

density of 5×104 cells/insert; control inserts contained media only and no tumor 

cells. Following 48 h of indirect co-culture, cell supernatant was collected for 

further analysis.  

6. ELISA 

Cell culture supernatant from indirect co-culture transwell assays was 

evaluated using Quantikine ELISA kits for TNF-α and TGFβ-1 (R&D Systems, 

Minneapolis, MN) per manufacturer’s instructions.  

 

H. Decellularized liver preparation  

1. Tissue preparation 

Liver tissues were snap frozen upon collection. To prepare for 

decellularization, 600 mg of frozen tissue was weighed and added to 45 ml sterile 

1X PBS in 50 ml conical tubes. Tubes were put on shaker in cold room for gentle 

agitation overnight at 4°C. Tissues were carefully removed from conical tubes 

with sterile forceps and transferred to new 50 ml conical tube containing 0.1% 

EDTA in 10 mM Tris HCl at pH 8.0. Tubes were shaken at room temperature for 

one hour, then carefully removed with forceps and transferred to new 50 ml 

conical tube containing 0.1% SDS in 10 mM Tris HCl at pH 8.0. Tubes were 
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shaken at room temperature for 24 h, then exchanged into fresh SDS buffer and 

shaken for another 24 h at room temperature. 

After final 24 h of decellularization, tissues were washed three times by 

careful transfer to new 50 ml conical containing sterile 1X PBS and gentle 

agitation for an hour. Tissues were then transferred to 1.5 ml Eppendorf tubes, 

then centrifuged at 10,000×g for 10 min. PBS was decanted and tissues were 

frozen overnight at -80°C. 

2. Lyophilization 

Tissues were kept on dry ice until lyophilization RotoVap was initiated. 

Eppendorf tubes were opened and covered with parafilm, with small holes 

perforated using a small pipette tip. Tubes were placed inside lyophilization jar 

with cap open and parafilm opening exposed. Jar was attached to adaptor and 

secured. Lyophilization was initiated at a temperature of -80°C and 30 mTorr 

pressure, then evaporated for 48 h. Upon completion of 48 h cycle, the pressure 

was slowly released from jar prior to its detachment from RotoVap apparatus. 

Tissue was hardened and white, then it was transferred to Eppendorf tube and 

ground with 10% pepsin in 0.1 M HCl. Sample was diluted to final concentration 

of 0.2 mg/ml in 0.2 M acetic acid. 

3. Culture plate coating 

To coat cell culture plates, uncoated 12-well plates were treated with 0.2 

mg/ml of lyophilized ECM in acetic acid, then incubated at 37°C for one hour. 

Wells were then washed three times with sterile 1X PBS prior to seeding cells.  

 



37 
 

 

 

CHAPTER III1 

 

MODELING THE KINETICS OF INTEGRIN RECEPTOR BINDING TO 

HEPATIC EXTRACELLULAR MATRIX PROTEINS1 

 

A. Introduction 

The extracellular matrix (ECM) consists of a broad range of components 

that interact bi-directionally with neighboring cells to create a dynamic and 

responsive microenvironment that regulates cell signaling, recruitment, and 

tissue function. The ECM not only provides structure and support for the cells in 

a tissue, but also acts as a reservoir for growth factors and cytokines and as a 

signaling mechanism by which cells can intercommunicate with their environment 

[107]. Quantitative and qualitative changes to the ECM structure and 

superstructure can impact overall health of the organ and organism. In particular, 

the hepatic ECM changes predominantly described in published literature occur 

in the context of hepatic fibrosis, which is characterized by robust scarring of the 

liver with collagen fibrils. However, the ECM of the healthy and fibrotic liver is 

significantly more diverse than collagen ECM. Recent studies also indicate that 

the hepatic ECM content changes dynamically in response to even acute stress 

and injury [7, 44, 45]. Furthermore, changes to the hepatic ECM may foster a 

                                                           
1  Published in Hudson SV et al. Scientific Reports 2017. 
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‘soil’ that is conducive to cancer and metastasis. Although the concept that 

hepatic ECM changes drive hepatic dysfunction under several conditions is well 

understood, the mechanisms by which these effects are mediated are not.  

Integrins comprise a family of heterodimeric transmembrane glycoprotein 

receptors that facilitate key interactions between cells and the ECM [16, 108, 

109]. The binding of ECM ligands to integrins mediates critical processes, 

including cell adhesion, migration, proliferation, differentiation, inflammation and 

apoptosis. Indeed, several of the hallmarks of liver diseases and cancer (e.g., 

altered proliferation, angiogenesis and apoptosis) are hypothesized to be 

mediated via changes in ECM:integrin signaling [110]. Based on this assumption, 

integrins have become important therapeutic targets for diseases of 

dysregulation, including various cancers, fibrosis, and immune dysfunction. 

However, few integrin-based therapies have been effective to prevent and/or 

treat these diseases in the clinics. This limitation is likely due, at least in part, to 

an incomplete understanding of the complexity of the changes to integrin 

signaling under these dysregulated conditions. 

The kinetics of ECM:integrin interactions are highly complex.  Integrin 

receptors complexes are structured as non-covalently linked α and β subunits, 

the various combinations of which contribute to diversity of receptors types [14] 

(Fig 1). The overall rate is not driven simply by ligand binding to the receptor, but 

also by clustering at focal adhesion points and an increase in avidity for binding 

additional ligand (i.e., positive cooperativity).  Masson-Gandais et al. described a 

two-step model wherein the α subunit binds ligand first, influencing ligand 
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recognition and determinant of association kinetics [111]. The β subunit binds 

second, which creates bond stabilization and determines dissociation kinetics. 

Ligand binding to the extracellular domain activates the receptor and initiates its 

conformational changes to a high-affinity state [112, 113]. This two-step process 

reflects a divalent kinetics model with the α subunit as the high affinity site, and 

the β subunit as the low affinity site [114]. In addition to binding processivity of 

individual receptors, ligand binding to distinct integrins favors subsequent binding 

by other receptors (i.e. focal adhesion clustering). Furthermore, integrin receptors 

bind promiscuously to various ECM ligands, creating redundancy, competition 

and diversity in biofunctionality [14, 16, 115]. These complex interdependent 

factors affect the kinetics of ECM-integrin interactions in the intact organism. 

Promiscuity among the repertoire of ECM ligands and integrin receptors, 

particularly those with RGD-binding motifs, implies a differential pattern of 

binding relative to the amounts of substrate available. Elucidating these complex 

cell-ECM-driven pathological changes could lead to improved prognostics and 

clinical outcomes via more precise therapeutic management of the tissue 

microenvironment. 

To explore these complex interactions, several mathematical descriptions 

of integrin binding have been reported with outputs related to spatial clustering 

and signal transduction, liver fibrosis and integrin-mediated cell haptotaxis [116-

118]. Although these models recapitulate certain aspects of ECM-integrin 

interactions, they typically focus on one ligand (e.g. collagen or fibronectin) as 

the ECM substrate. In this study, modeling of integrin receptor binding kinetics is 
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reported that considers the divalent receptor characteristic and employs a simple 

model of integrin clustering. The kinetic indices of each integrin for each of its 

ligands were initially determined to establish a single-species integrin profile. 

Proteomic data were compiled that assess the liver ECM under homeostatic 

conditions as well as under experimental fibrosis. These proteomic analyses 

provided information on relative abundance of hepatic ECM components to 

calibrate substrate concentrations for the kinetic simulations. By testing 

homeostatic conditions against the experimental treatment models, how the 

integrin binding phenotype changes in response to injury could be determined 

and used to predict the ECM-integrin binding within the context of transitional 

tissue remodeling.  

 

 

 

 

 

 

 

 

 

 

 



41 
 

Scheme 3.1: Repertoire of alpha and beta integrin subtype dimerization 

pairings.  

This diagram delineates the 24 possible integrin dimer species, classified by 

substrate type. For this study, of the integrins relevant to the CCl4 model, the 

collagen-binding β1 integrins and RGD-binding β1 and β3 receptors were 

evaluated. Binding here was treated as a two-step model with the α subunit 

binds ligand first, influencing ligand recognition and determinant of association 

kinetics. The β subunit binds second, creating bond stabilization and 

determining dissociation kinetics [115], apropos to a divalent kinetics model 

with the α subunit being the high affinity site, and the β subunit as the low 

affinity site. 
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B. Experimental Procedures 

1. Animals and treatments 

Male C57BL/6J mice (4-6 w) were purchased from Jackson Laboratory 

(Bar Harbor, ME). Food and tap water were provided ad libitum. Mice were 

administered CCl4 (1 ml/kg i.p.; diluted 1:4 in olive oil; Sigma-Aldrich, St. Louis, 

MO) 2×/wk for 4 wk. Twenty-four hours after the last CCl4 administration, mice 

were anesthetized by injection of a ketamine HCl/xylazine solution (100/15 mg/kg 

i.m.; Sigma-Aldrich, St. Louis, MO). Other animals received the same dose of 

CCl4, but only once, and were sacrificed 12-72 h after intoxication. At sacrifice, 

tissue samples were collected as described in Chapter II, Section A.1.    

  

2. Histology 

Liver tissues frozen in OCT medium blocks were sectioned and stained with 

collagen type 5α1 (Abcam) and resolved with Alexa 488-tagged secondary 

antibody for immunofluorescence microscopy as described in Chapter II, Section 

B.3.  

 

3. Proteomics 

Proteome analysis was performed as described in Chapter II, Section C. 

 

4. Computational Modeling 
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First is considered the divalent receptor model which corresponds to ECM 

ligand binding of the α subunit occurring prior to the β subunit [46, 119]. This 

kinetic reaction is represented as shown in Scheme 3.2. 
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Scheme 3.2: Model description 

(a), mass-action kinetics scheme of species variables. Divalent receptors bind 

ligand sequentially to α, β subunits, with K i = k 2 /k 1 for equilibrium of initial 

binding event (Cm) and Kc = k 4 /k 3 for fully occupied ECMP-Integrin receptor 

complex (Cd). The receptor aggregation scheme incorporates divalent binding 

and receptor pairing such that half/fully occupied receptors can aggregate only 

with an unbound receptor [aggregation equilibrium constant Ka = k 6 /k 5]. 

Binding constants for an additional ECM ligand binding to unbound receptor in 

an aggregate pair are the same regardless of occupancy status of its paired 

receptor [population equilibrium constant is Kp = k 10 /k 9]. The equilibrium 

constant for adding a second ECM ligand to a singly-bound receptor in any 

pair-configuration is Kx = k 8 /k 7. Adapted from Wanant and Quon (2000)28. (b), 

model species description. 
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These relationships are represented such that, k1 is the first-order 

association rate constant and k2 is the dissociation constant for singly occupied 

receptors (Cm). Cd indicates a fully occupied integrin receptor with two bound 

ECM ligands, and k3 and k4 define the rate constants for association and 

dissociation, respectively, of the doubly-bound integrin receptor. Differential 

equations for this model are:  

 

𝑑𝐼

𝑑𝑡
= 𝑘2𝐶𝑚 − 𝑘1𝐼𝐸,                                                                                 [1] 

𝑑𝐸

𝑑𝑡
= 𝑘2𝐶𝑚 − 𝑘1𝐼𝐸 + 𝑘4𝐶𝑑 − 𝑘3𝐶𝑚𝐸,                                               [2] 

𝑑𝐶𝑚

𝑑𝑡
= 𝑘1𝐼𝐸 − 𝑘2𝐶𝑚 + 𝑘4𝐶𝑑 − 𝑘3𝐶𝑚𝐸,                                            [3] 

𝑑𝐶𝑑

𝑑𝑡
= 𝑘3𝐶𝑚𝐸 − 𝑘4𝐶𝑑,                                                                           [4] 

 

The scheme for receptor aggregation and ligand binding is shown in Fig 4. 

In the model of receptor aggregation, we utilized the same scheme as Wanant et 

al. [119], wherein receptors pair in a manner such that either singly- or doubly-

bound receptors can aggregate only with an unbound receptor with the 

aggregation equilibrium constant KA (where KA=k5/k6), and disaggregation 

equilibrium constant KA’ (KA’=k6/k5). Binding constants for an additional ECM 

ligand binding to the unbound portion of an aggregate pair are the same 

regardless of whether the bound portion has one or two ligands, where the 

equilibrium association constant is KC=k9/k10. The equilibrium constant for adding 

a second ECM ligand to a singly-bound receptor in any pair-configuration is 
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KF=k7/k8. The differential equations describing receptor aggregation are listed 

below: 

 

𝑑𝐼

𝑑𝑡
= 𝑘2𝐶𝑚 − 𝑘1𝐼𝐸 + 𝑘6(𝐴𝑖𝑚 + 𝐴𝑖𝑑) − 𝑘5𝐼(𝐶𝑚 + 𝐶𝑑),                                       [5]  

𝑑𝐸

𝑑𝑡
= 𝑘2𝐶𝑚 − 𝑘1𝐼𝐸 + 𝑘4𝐶𝑑 − 𝑘3𝐶𝑚𝐸 + 𝑘10(𝐴𝑚𝑚 + 𝐴𝑚𝑑) − 𝑘9𝐸(𝐴𝑖𝑚 + 𝐴𝑖𝑑) +

      𝑘8(𝐴𝑖𝑑 + 𝐴𝑚𝑑 + 𝐴𝑑𝑑) − 𝑘7𝐸(𝐴𝑖𝑚 + 𝐴𝑚𝑚 + 𝐴𝑚𝑑),                        [6]              

                 

𝑑𝐶𝑚

𝑑𝑡
= 𝑘1𝐼𝐸 − 𝑘2𝐶𝑚 + 𝑘4𝐶𝑑 − 𝑘3𝐶𝑚𝐸 + 𝑘6𝐴𝑖𝑚 − 𝑘5𝐼𝐶𝑚,                                  [7]   

𝑑𝐶𝑑

𝑑𝑡
= 𝑘3𝐶𝑚𝐸 − 𝑘4𝐶𝑑 + 𝑘6𝐴𝑖𝑑 − 𝑘5𝐼𝐶𝑑,                                                            [8] 

𝑑𝐴𝑖𝑚

𝑑𝑡
= 𝑘5𝐼𝐶𝑚 − 𝑘6𝐴𝑖𝑚 + 𝑘10𝐴𝑚𝑚 − 𝑘9𝐸𝐴𝑖𝑚 + 𝑘8𝐴𝑖𝑑 − 𝑘7𝐸𝐴𝑖𝑚,                      [9] 

𝑑𝐴𝑖𝑑

𝑑𝑡
= 𝑘5𝐼𝐶𝑑 − 𝑘6𝐴𝑖𝑑 + 𝑘10𝐴𝑚𝑑 − 𝑘9𝐸𝐴𝑖𝑑 + 𝑘7𝐸𝐴𝑖𝑚 − 𝑘8𝐴𝑖𝑑 ,                       [10] 

𝑑𝐴𝑚𝑚

𝑑𝑡
= 𝑘9𝐸𝐴𝑖𝑚 − 𝑘10𝐴𝑚𝑚 + 𝑘8𝐴𝑚𝑑 − 𝑘7𝐸𝐴𝑚𝑚,                                           [11] 

𝑑𝐴𝑚𝑑

𝑑𝑡
= 𝑘9𝐸𝐴𝑖𝑑 − 𝑘10𝐴𝑚𝑑 + 𝑘8𝐸(𝐴𝑑𝑑 − 𝐴𝑚𝑑) + 𝑘7𝐸(𝐴𝑚𝑚 − 𝐴𝑚𝑑),                [12] 

𝑑𝐴𝑑𝑑

𝑑𝑡
= 𝑘7𝐸𝐴𝑚𝑑 − 𝑘8𝐴𝑑𝑑 ,                                                                              [13] 

 

where Aim indicates an aggregate pair comprised of one unbound integrin 

receptor coupled with a singly-bound receptor; Aid is the same combination, 

except featuring a doubly-bound receptor. A pair with two singly-bound receptors 

is defined as Amm, with two doubly-bound receptors is Add, and Amd indicates a 

singly-bound receptor paired with a doubly-bound one (Fig 4). 
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 The affinity of integrin receptors for ECM proteins fibronectin and laminin 

are generally in the micromolar range, and the Kd measured for ECM:integrin and 

in particular, fibronectin binding, ranges between approximately 10-7-10-6 M [120]; 

Takagi et al. report nanomolar Kd values for fibronectin binding [121]. Mallet et al. 

utilized a Kd of 2 × 10-4 M for tethered RGD peptides in their model of integrin 

binding [116]. 

 

5. Simulations 

Kinetic simulations were performed as described in Chapter II, Section 

D.1.  

 
C. Results 

1. Animal model phenotype confirmed for fibrotic injury. 

 As expected, 4 weeks of CCl4 exposure caused robust fibrotic scarring of 

the liver in our mouse model. The resultant phenotype of injury and fibrosis has 

been previously described to include degradation of basement membrane-like 

ECM and replacement with fibrillar collagens and other integrin ligands (Scheme 

3.3) [12]. The canonical change in ECM content during hepatic fibrosis is an 

increase in collagen 1 deposition. However, as has been described by others 

[122, 123], several other proteins increase in response to CCl4-induced fibrosis.   
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Scheme 3.3. Schematic of aberrant ECM accumulation following 

CCl4 injury.  

Key extracellular matrix proteins (ECMPs) and cognate integrin receptors in 

CCl4 exposure mouse model of fibrosis. The phenomena include quiescent 

hepatic stellate cell (HSC) activation and their subsequent differentiation into 

myofibroblasts after which growth factor-induced proliferation leads to the 

aberrant ECM deposition that characterizes cirrhotic liver fibrosis. The chronic 

inflammatory response involves impaired matrix degradation which further 

contributes to dyshomeostasis of ECM proteins, and therefore tissue structure 

and errant signal transduction. Following exposure to CCl4, damaged 

hepatocytes release cellular and membrane components, leading to 

recruitment of neutrophils and Kupffer cells. Profibrogenic and proinflammatory 

cytokines, reactive oxygen species (ROS), and proteases are released from 

resident immune cells, leading to stimulation and activation of quiescent HSCs, 

inducing their differentiation to myofibroblasts. Proliferation of activated 

myofibroblasts in response to fibrogenic factors results in excessive ECM 

deposition, leading to fibrotic scarring and end-stage liver disease. Integrin 

mediators known to be active in fibrotic pathology include β1, α1, α5, and α6 

on hepatocytes, which correlate clinically with stage of fibrosis. αvβ3 integrin 

signaling from HSCs/myofibroblasts is involved with regulating ECM-fibrolytic 

matrix metalloproteinases. De novo α8β1 expression in activated HSCs occurs 

in response to CCl4 injury; likewise, α1, α2, and α5 on HSCs is indicative of 

activation, enhancing attachment to basement membrane proteins [110]. Feed 
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forward mechanism results from the fibrillar ECM itself enhancing HSC 

activation, implicating integrins α1β1, α2β1, and αVβ1 [40]. 
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2. Proteomic data-ECM proteins. 

Analysis of the proteomic data (Table 3.1 and Figure 3.1) revealed ECM 

protein expression profiles, and a simple conversion for relating quantitative 

emPAI values to protein mass was employed as a proteomic ruler to estimate 

protein concentration under homeostatic and experimental treatment conditions 

[124]. We converted protein spectra using the exponentially modified protein 

abundance index (emPAI) quantitative method [125]. Weighting the values with 

the concentration of extraction fractions, we estimated a relative protein 

concentration for ECM components. The composition of the liver ECM as 

quantitated via proteomic analysis has influence on integrin expression of cells 

that haptotax towards ECM protein gradients, and also provides the pool of 

available ligands for subsequent binding.  
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Table 3.1. Quantitative differential protein expression of liver ECM following 4 
weeks of CCl4 exposure  

Protein 

GO 

Accession 

MW 

(kDa) 

Protein Abundance 

(µM) 

Log2 

FC 

   Con CCl4  
Col 1α1 CO1A1 138 3.60 6.42 0.83 

Col 1α2 CO1A2 130 2.55 4.25 0.74 

Col 3α1 CO3A1 139 0.75 1.64 1.13 

Col 4α1 CO4A1 161 0.20 0.23 -0.24 

Col 4α2 CO4A2 167 0.46 0.28 -0.71 

Col 5α1 CO5A1 184 0 0.05 11.80 

Col 5α3 Q9JLI2 172 0 0.06 11.90 

Col 18α1 E9QPX1 182 0.07 0 -11.81 

Dermatopontin DERM 24 0 7.11 16.06 

Fibronectin FINC 273 0.18 0.47 1.40 

Fibrinogen β chain FIBB 55 3.13 0.56 -2.48 

Fibrinogen γ chain FIBG 49 5.94 1.94 -0.45 

Galectin-1 LEG1 15 8.45 21.18 1.33 

Galectin-3 LG3BP 64 0 0.63 13.97 

von Willebrand factor 
A VMA5A 87 0.33 0.84 1.33 

 

Table 3.1. Proteomic data for integrin-binding ECM proteins of interest (full 

dataset not shown). Zeroes were set to 0.00001 for calculation of Log2 fold 

change. The exponentially modified protein abundance index (emPAI) was used 

for estimation of absolute protein abundance [125] and to approximate protein 

concentration of relevant integrin-binding proteins. Multidimensional protein 
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identification technology (MudPIT) was used to artificially recombine fraction data 

from Mascot and SequestHT searches and produce quantitation that relates total 

protein signal in each treatment group [126, 127]. To normalize for tissue 

fractionation, the dimensionless emPAI score was weighted with the 

concentration loaded for each fraction, i.e., 0.25 µg/µL, to calculate relative 

protein concentration as initial parameter values for the simulations. 
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Figure 3.1. Qualitative Venn diagram of proteomic data.  

Differentially expressed proteins of interest for evaluation of ECMP-integrin 

bindings include collagens, fibrillar proteins, glycoproteins and proteoglycans. 

Of seven proteins uniquely expressed in the CCl4 experimental model, one 

ECMP protein, Galectin-3, was identified. One protein was unique to the control, 

and 90 were differentially expressed. ECMPs used for these simulations are 

listed in Table 3.1.  
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 Qualitatively, the majority of proteins identified were found in both the 

control and treatment groups, with seven proteins uniquely expressed in the CCl4 

group and only one unique to the control group (Figure 3.1). Collagens, 

glycoproteins and proteoglycans identified via proteomic analysis as ECM 

substrate were quantified and their relative concentration was determined (Table 

3.1). Beta-1 and Beta-3 integrins selected for simulations reflect those involved in 

hepatic events that relate to CCl4 fibrosis. Integrin-ECM binding microrates have 

been determined for various cell types and conditions.  

 Proteomic results were previously validated to confirm relative 

abundance of identified proteins qualitatively and quantitatively [45]. In 

particular, the amounts and distribution of collagens in the treatment group 

relative to the control were verified. Here, the presence of trace amounts of Col 

V in the CCl4 treatment group was validated to explore whether changes on the 

nanomolar scale would have pathological consequence. (Figure 3.2). 
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Figure 3.2. Immunofluorescent staining of hepatic cryosections. 

OCT sections were probed with Col V primary antibody and resolved with 

Alexa 488-tagged secondary antibody. The CCl4 treatment group shows a 

marked increase in Col V staining relative to the control. 
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3. Simulations. 

 The goal herein was to establish a computational framework using 

proteomic data for binding species to enable evaluation of potential integrin 

binding. The model of integrin receptor binding kinetics reported here was 

developed with the consideration of sequential binding of subunits. In silico 

simulations were parameterized using rate constants that correlate with 

published literature on binding, or otherwise estimated. The rates are listed in 

Tables 3.2 and 3.3.  



 

 

Table 3.2. Binding rate parameters 

Integrin 
Species 

Initial 
Value 
(nM) 

Binding Kinetic Parameters 
(kon[s-1M-1];koff[s-1]) 

           Col I        Col IV Fibronectin 
von Willebrand 

factor A 

  kon koff kon koff kon koff kon koff 

α1β1 0.0001 5.6×104 1.3×10-3 8.0×105 5.0×10-3     

αVβ3 0.05     1.6×108 3.5×10-1 1.6×104 2.3×10-2 
 

Table 3.2. Initial conditions and reaction rate parameters of kinetic models – collagens, glycoproteins and 

proteoglycans. Rates for binding ECM components relevant to the CCl4 model are delineated per cognate integrin 

receptor. From published literature initial values of integrin receptor species are derived and given in nanomolar; 

similarly, binding rate parameters are given in s-1M-1 for kon and s-1 for koff; [121, 128-134].  
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Table 3.3. Equilibrium binding constants for receptor aggregation model. 

Kd 
(nM) 

Reaction Microrates  
(on; nM-1s-1/off; 
s-1) 

Manipulations 

Ki 
 

Integrin complex 
formation 

k2/k1 Kp>Ki 
increase in ligand affinity 
after aggregation 

Kc Filling divalent 
unpaired receptor 

k4/k3 Kc=0.01 Ki 
decreased unpaired 
receptor Keq for binding 
2nd ligand  

Ka Empty receptor 
pairing with bound 
receptor 

k6/k5 Ka>0 
aggregation constant 
drives positive 
cooperativity 

Kp Population of empty 
paired receptors 

k10/k9 Kp>Ki 
increase in ligand affinity 
after aggregation 
Kp=100 Kx 
decreased aggregate 
receptor Keq for binding 
2nd ligand 

Kx Receptor saturation k8/k7 Kp=100 Kx 
decreased aggregate 
receptor Keq for binding 
2nd ligand 

 

Table 3.3. Microrate parameters are derived from published values and set to 

implement positive cooperativity for sequential ligand binding and receptor 

aggregation. The rates for integrin complex formation (Ki) are set to simulate an 

increase in ligand affinity post-aggregation. Populating an empty unpaired 

receptor is set with a hundredth fold decrease in Keq for binding the second 

ligand. The aggregation equilibrium constant is set at ten times the equilibrium 

constant for initial complex formation to allow for aggregation to drive positive 

cooperativity. The population of empty paired receptors dictates an increase in 
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ligand affinity after aggregation and is set to decrease aggregate receptor Keq for 

binding second ligand for receptor saturation. These parameters are adapted 

from Wanant et al. [119], and applied here to simulate positive cooperativity in 

receptor aggregation pairing so that the model can be initialized and 

implemented with proteomic data to evaluate binding profiles. 
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The simulations were initialized using binding constants from published 

literature; where values were not available, parameters were estimated 

accordingly (see Methods). Collagen fragments for collagen I and IV were plotted 

together (Figure 3.3) and assumed to have the same rates of binding for the 

purposes of these experiments. For the other fragmented protein, fibrinogen, only 

the gamma subunit was considered due to the binding motif located within this 

fragment [135, 136]. The binding microrates were set to recapitulate positive 

cooperativity in divalent receptor saturation and in receptor aggregation pairs, as 

stipulated in Wanant et al. [119], wherein the aggregation equilibrium constant, 

Ka, drove cooperativity in the aggregate model (Table 3.3). 

The simulation graphs in Figure 3.3 show left-shifted curves with 

increased ECM ligand abundance, indicating increased affinity and avidity for 

ligand. This is reflected in both the curves for fully-occupied divalent receptors 

(Cd) and for fully-occupied aggregate receptor pairs (Add). Steady-state values 

(SS) and time to steady-state were recorded for each simulation (Table 3.4). 
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Table 3.4. Steady-state values for simulations of binding. 

 

Table 3.4. Steady-state (SS) and time to SS values for a fully-occupied single 

divalent receptor (Cd) and saturated aggregated receptor pairs (Add). Top values 

for each parameter are given. 

 

 

 

 

 

 

 

 

 

 

ECMP, Treatment Integrin Receptor Steady-state [Cd] 

vWF, CCl4 αvβ3 2.19×105 
ECMP, Treatment Integrin Receptor Steady-state [Add] 

vWF, CCl4 αvβ3 5.70×104 
ECMP, Treatment Integrin Receptor Time to Steady-state 

(sec;Cd) 

Col 1α1, CCl4 α1β1 4.02×101 
Col 1α1, CCl4 α1β1 4.67×101 
Col 4α2, Control α1β1 5.23×101 
Col 1α2, CCl4 α1β1 6.88×101 
Col 4α2, CCl4 α1β1 7.94×101 
Col 1α1, Control α1β1 8.49×101 
ECMP, Treatment Integrin Receptor Time to Steady-state 

(sec;Add) 

Col 1α1, CCl4 α1β1 1.00×102 
Col 1α2, CCl4 α1β1 1.00×102 
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Figure 3.3. Kinetic simulations data.  

Model was initialized using ligand concentrations from proteomic analysis 

(Table 3.1) and kinetic rates listed in Table 3.2. The ECM:integrin binding pairs 

fibronectin:αvβ3, von Willebrand factor: αvβ3, and collagen I:α1β1 are shown, 

with binding curves and percent occupancy for fully occupied single divalent 

receptors (Cd) and aggregated receptor pairs (Add). 
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From these simulation data it is clear that upregulated ECMPs reached 

steady state values in shorter time, and that aggregation of receptors produced 

positive cooperativity. Considering the single divalent receptor, Cd, the 

ECM:integrin binding pairs that had the highest steady-state values include both 

collagen 1 and fibrinogen γ chain in association with the αvβ3 integrin receptor. 

The combinations with the shortest time to SS were collagen 1 binding αvβ3 or 

α1β1 receptors. For the aggregated receptor pairs, Add, the pairs with the highest 

SS values include von Willebrand factor, fibrinogen γ chain, and collagen 1 

binding αvβ3, as well as fibronectin binding α5β1. The ECM:integrin pairings with 

the shortest time to SS for Add pairs were collagen 1 binding αvβ3 and α1β1, and 

fibronectin binding α5β1.  In nearly all cases, the CCl4 model ECM showed faster 

rise to SS compared to the control ECM; however, fibrinogen γ chain and Col 

4α2 behaved in an opposite manner, owing to the fact that CCl4 actually 

downregulated these ECMPs in our dataset.  

  

D. Discussion 

Integrin binding to ECM is a vital mechanism for cell migration, invasion, 

proliferation, and signal transduction between cells and their microenvironment. 

Diseases of chronic inflammation and injury, including fibroses and cancer, 

involve persistent dysregulation of ECM-integrin processes and induce 

remodeling of the ECM. In addition to their intrinsic utility in cellular processes, 

association between immune cells and the ECM is regulated via the β1 & β3 

integrin receptor subfamilies [137]. Several mathematical models of integrin 
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binding have been reported with outputs relating to spatial clustering and signal 

transduction, liver fibrosis, and cell migration [116, 118, 138, 139]. These models 

recapitulated certain aspects of integrin interactions; however, these previous 

studies typically modeled only one ligand, mainly fibronectin or collagen, and 

utilized generic cognate receptor.  

In this study, the relative abundance of ECM components that are 

canonical substrates of integrin receptors was developed for the proposed 

modeling framework based on experimentally-obtained liver ECM data. With 

binding parameters from published literature, an integrin binding pattern was 

established for each integrin involved in hepatic processes that are involved in 

fibrosis. The model from Wanant et al. was adapted to implement the basic 

model for divalent binding [119]. Specifically, this model aptly describes initial 

integrin binding leads to a conformational switch of the receptor complex from 

low- to high-affinity. A model of receptor aggregation, which can describe integrin 

clustering upon attachment to ECM via adhesions [16], was also implemented. 

This study simulates how each integrin binds with cognate ECM ligands and 

incorporates the varying affinities that drive this interaction. From these 

calculations, the kinetic indices of each integrin for each of its binding partners 

were determined separately. The impact of changes to the ECM (e.g., in 

response to CCl4-induced fibrosis) on integrin binding was modeled by calibrating 

the substrate concentration based on the proteomic analyses.  The extracellular 

matrix proteome was consistent with the known disease phenotype of the mouse 

model, with upregulation of specific ECMPs involved in fulminant fibrosis. The 
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computational results show that in simulations using these ECMPs as substrate 

for key integrin receptors, interactions involving profibrotic integrins were 

predominant.  

The CCl4 mouse model of liver fibrosis was chosen for development and 

validation of the in silico model due to its robustly characterized pathology and 

ECM/integrin phenotype (Scheme 3.3). This model is imperfect in its 

recapitulation of human liver fibrosis, but it is the current research standard and 

therefore has well-defined pathology and changes to the ECM [140]. Using 

proteomic data from CCl4-exposed mouse livers, integrin binding can be explored 

within the context of fulminant fibrosis. Collagen type Iα1, type III and type IV are 

excessively deposited due to activated hepatic stellate cells (HSCs) in response 

to myofibroblastic transformation induced by activated Kupffer cells and 

damaged hepatocytes [40, 141]. In agreement with these established 

phenomena, collagens I, III, and V were upregulated in the CCl4 cohort in the 

current study (Table 3.1). Collagen I is aberrantly produced in this mouse model, 

and collagen V, a potent nucleating effector for the co-upregulated fibronectin, 

exhibited a slight increase from trace levels. In contrast, collagen IV and XVIII 

levels were decreased relative to the control. Interestingly, collagen XVIII was 

identified at relatively minimal levels in the controls, and absent in the CCl4 

treated animals (Table3.1). This is contrary to an expected increase in collagen 

XVIII following CCl4 treatment [122]. Nevertheless, interactions simulated with 

this ECMP are still based on experimental proteomic analysis. Integrin receptors 

were not able to be resolved with this particular method of proteomic analysis, so 
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further proteomic analysis of integrin adhesion complexes in culture is a key 

component of the future directions for this project. 

Owing to their involvement in several critical functions that drive 

homeostasis and dyshomeostasis, integrins have been identified as key 

druggable targets in several diseases. For example, integrin inhibitors have been 

evaluated to suppress liver fibrogenesis, disrupt attachment and invasion of 

cancer cells, and to mediate immune response [71, 142-144]. Regrettably, many 

of these drugs fail in early trials and rarely make it to the clinics, perhaps due to 

an incomplete understanding of integrin binding kinetics, which are traditionally 

based on single-species models and assumptions; indeed, even antibodies and 

small peptide mimetics with specificities for multiple integrins have limited clinical 

application [145, 146]. Though necessary to target multiple integrins to maximize 

efficacy in vivo, perhaps the missing link is knowing which targeted doses are 

most effective for each anti-integrin molecule. In attempting to begin to develop a 

predictive tool for effective dosing, the primary goal of this work was to create a 

first step to simulate simple receptor aggregation and reproduce positive 

cooperativity induced by aggregate pairing. The simulations were parameterized 

to analyze for positive cooperativity of binding in the divalent and aggregation 

cases. The steady-state values and time to steady-state for each pairing 

correlated to upregulation of key ECMPs in CCl4 liver injury (Scheme 3.3; Table 

3.4). The integrin receptors that predominated simulations of occupancy were 

consistent with those known to be at play in this disease model (Figure 3.3).  
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The proposed framework has been validated using data from a model of 

fulminant fibrosis; other liver pathologies and how the transitional remodeling of 

the ECM affects ECM-integrin interactions could be explored. By testing 

homeostatic conditions against experimental treatment models, this platform 

could be broadly employed to predict or confirm changes in integrin binding (and 

by extension, signaling) caused by remodeling of the hepatic ECM in response to 

insult or injury. Longer term, a more complex stochastic model for concurrent 

integrin binding building upon the results of this study could be developed that 

considers competitive binding of multiple species. This would lay the foundation 

for a more detailed and nuanced analysis of ECM:integrin interactions. 
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CHAPTER IV 

 

ARSENIC ATTENUATES LIPOPOLYSACCHARIDE-STIMULATED 

POLARIZATION IN MURINE BONE MARROW DERIVED MACROPHAGES 

 

A. Introduction 

Inorganic arsenic is a ubiquitous element and a natural drinking water 

contaminant, typically occurring in the environment in its arsenic oxide [As2O5] or 

trioxide [As2O3] forms [147, 148]. Owing to its toxic potential to humans, it is a 

high priority hazardous substance in the United States, where ground water 

arsenic is elevated in many areas of the country [149, 150]. Nearly 4,000 

community wells in the U.S. have arsenic levels greater than the current 

recommended maximum contaminant level (MCL) of 10 ppb; in fact, there are an 

increasing number of community ground water wells that registered above the 

previous MCL of 50 ppb. Public water systems in Western states are also 

implicated, with some reaching levels over 90 ppb [149, 150]. Furthermore, 

arsenic concentrations in the ppm range have been reported in private artesian 

wells, which are not regulated by the Safe Drinking Water Act [151].    

  Chronic exposure to high arsenic concentrations has been directly linked 

with a myriad of possible health risks, including skin lesions, hypertension, 

cardiovascular disease, respiratory disease, and malignancies of the skin and 
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internal organs [152]. The arsenic concentrations required to cause disease are 

generally considered higher than those found in the U.S. drinking water supply. 

The paradigm in environmental research has recently shifted to take into account 

the impact of not only high environmental or occupational exposures, but also 

subacute and chronic low grade exposures; in this context, it is critical to 

evaluate the impact of multiple aspects of environmental factors that may 

contribute to the composite health risk (i.e., ‘exposure biology’) [153]. Some 

studies indicate that moderate to low arsenic exposure may modify disease risk 

from other, separate etiologies. For example, previous studies from this group 

indicate that arsenic exposure at concentrations that are not directly hepatotoxic, 

per se, modifies experimental inflammatory liver damage [154, 155]. In humans, 

the risk of developing some diseases (e.g., Type 2 Diabetes Mellitus (T2DM) in 

obese patients) has been suggested to be increased by low-level arsenic 

exposure [156]. The risk of arsenic exposure to human disease may therefore be 

incompletely understood. 

It is now well understood that dysregulation of macrophage responses 

contributes to both malignant [157] and non-malignant diseases such as T2DM 

[158]. A growing body of evidence indicates that arsenic impacts the innate 

immune response in both experimental models and in humans [159-163]. The 

mechanisms by which arsenic potentially alters macrophage function are not 

completely understood. Previous studies by this group indicated that sub-toxic 

arsenic exposure enhanced recruitment of proinflammatory macrophages to the 

mouse liver during experimental non-alcoholic fatty liver disease (NAFLD) [155].  
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The a priori hypothesis was therefore that arsenic would enhance LPS-induced 

M1 phenotype, contributing to macrophage mediated inflammation.    

Previous studies have investigated the impact of arsenic exposure on the 

alternative activation of terminally differentiated macrophages (e.g., tissue 

macrophages), using cell cultures such as RAW 264.7 murine macrophages 

[164, 165]. Cui et al. showed the effect of M2 polarization following long-term 

arsenic exposure [166]. However, these in vitro models present a challenge in 

terms of evaluating stimulation and polarization, as they often have an inherent 

basal expression of proinflammatory genes. The differentiation of macrophage 

precursors to their terminally differentiated phenotype is another level of 

regulation of macrophage function. The impact of arsenic exposure on this level 

of macrophage regulation has not been tested.  In attempt to reduce this 

potential background effect and derive a more homogeneous, naïve pool of 

macrophages, BMDM primary cells were utilized for these experiments.  The 

purpose of the current study was therefore to explore the impact of arsenic 

exposure on the polarization of naïve, uncommitted bone-marrow derived 

macrophages.   

 

B. Experimental Procedures 

1. Animals and treatments 

Male C57Bl6/J mice (6 wk) were obtained from the Jackson Laboratory 

(Bar Harbor, ME). Bone marrow derived macrophages harvested as described in 

Chapter II, Section A.2. 
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2. BMDM cell culture and treatments 

Cells isolated and cultured as indicated in Chapter II, Section G.2. 

 

3. BMDM MTT assay 

Cell viability assay completed as indicated in Chapter II, Section G.3. 

 

4. Flow cytometry 

Cells analyzed via flow cytometry as described in Chapter II, Section G.1. 

 

5. Quantitative RT-PCR 

mRNA expression of select genes was detected by quantitative reverse-

transcriptase polymerase chain reaction (qPCR), as previously described in Chapter II, 

Section E. PCR primers and probes for TNFα, iNOS, and PAI-1 were designed 

using Primer 3 (Whitehead Institute for Biomedical Research, Cambridge, MA); 

those for IL-1β and 18S rRNA were purchased from Applied Biosystems (Foster 

City, CA). 

 

6. Microarray analysis of miRNA 

miRNA analysis completed as described in Chapter II, Section F. 

C. Results  

1. Sodium arsenite attenuates LPS-induced polarization of BMDMs, but not 
IL-4-induced polarization 
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To test the effects of sodium arsenite on LPS-induced macrophage 

polarization, BMDMs were exposed to LPS in the presence/absence of with 

varying concentrations of sodium arsenite followed by characterization using flow 

cytometry (Figure 4.1). CD11c surface expression in F480+/CD11b+ BMDMs 

was measured as an index of M1 macrophage phenotype [167]. Arsenite 

exposure did not significantly impact cell survival at any concentration below 500 

ppb (Figure 4.1A.); all subsequent experiments were therefore performed at 

these sublethal concentrations. As expected, LPS exposure significantly 

increased the number of CD11c+ cells (Figure 4.1B and 4.1C). At all 

concentrations tested (0-100 ppb), sodium arsenite alone did not significantly 

affect surface expression CD11c in F480+/CD11b+ in BMDMs (Figure 4.1B), 

however sodium arsenite (100 ppb) significantly attenuated the increase in the 

number of CD11c+/F480+/CD11b+ cells caused by LPS (100 ng/ml). At all 

concentrations tested, sodium arsenite also significantly attenuated the increase 

in MFI caused by LPS exposure, with a maximal effect at 100 ppb (Figure 4.1C; 

Figure 4.2A-B); this concentration of arsenic significantly attenuated the increase 

in CD11c MFI caused by 5 log-order concentrations of LPS. Based on these 

results, all subsequent studies employed 100 ppb sodium arsenite and 100 ng/ml 

LPS.  In contrast to LPS, which polarizes BMDMs to a proinflammatory (i.e., ‘M1’) 

phenotype, other stimuli (e.g., IL-4) polarize these cells into an anti-inflammatory 

(i.e., ‘M2’) phenotype. The impact of sodium arsenite (100 ppb) on the 

polarization of BMDMs by IL-4 was therefore investigated.  Specifically, the 

number of CD206+/ F480+/CD11b+ and CD206+ MFI was determined by flow 



79 
 

cytometry (Figure 4.1D; Figure 4.2A). As expected, IL-4 dramatically increased 

the number of CD206+/F480+/CD11b+ BMDMs, with a maximal effect at 20 

ng/ml.  Sodium arsenite did not significantly impact the number (Figure 4.1D) or 

intensity of CD206 fluorescence alone or at any concentration of IL-4 tested. 
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Figure 4.1. Dose optimization for LPS and sodium arsenite to find lowest 

effective dose.  

BMDMs were assessed for cell viability under treatment with LPS and As(III) to 

find optimized dose for subsequent experimental analyses. (A): Effect on cellular 

viability measured using MTT assay of varying concentrations of sodium arsenite 

with or without cotreatment of 100 ng/mL LPS. (B): CD11c MFI for 

F4/80+/CD11b+ cells after flow cytometry analysis of differentiated BMDMs 

treated with varying concentrations of sodium arsenite for 18 h in the 

presence/absence of 100 ng/mL LPS. (C): Concentration-response curve of LPS 

treated BMDMs and CD11c MFIs in the presence (open circles) or absence 

(black circles) of 100 ppb sodium arsenite. (D): Concentration-response curve of 

IL-4 treated BMDMs and CD206 MFIs in the presence (open circles) or absence 

(black circles) of 100 ppb sodium arsenite. Values are presented as means ± 

S.E.M. (n = 3 to 4), a, P<0.05, compared to control, b, P<0.05, compared to 

respective LPS treatment.   
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Figure 4.2. Flow cytometric analysis of macrophage polarization. 

BMDMs polarized with either LPS (M1) or IL-4 (M2) and treated with As(III) were 

analyzed via flow cytometry with macrophage cell surface markers relative to 

each polarization state. Representative of flow cytometry plots are shown; data 

shown comprises cell numbers in the CD11c+ fraction of F4/80+/CD11b+ 

population. (A): Representative off-set histograms of flow cytometry are shown; 

left, M1 polarization marker CD11c, right, M2 polarization marker CD206. 

Representative off-set histograms of flow cytometry are shown. (B): 2D 

scatterplot for quantification of cell numbers in the CD11c+ fraction of 

F4/80+/CD11b+ population. 
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2. Sodium arsenite modifies constitutive and LPS-induced mRNA expression 
levels of TNF-α, IL-1β, iNOS, and PAI-1 

To further evaluate the impact of sodium arsenite on LPS-induced 

macrophage polarization, pro-inflammatory gene (TNF-α, IL-1β, iNOS, and PAI-

1) mRNA levels were determined. For this purpose, BMDMs were treated with 

100 ppb As(III), 100 ng/mL LPS, or LPS+ sodium arsenite for 6 h. This time point 

was chosen from pilot studies for the maximal expression of mRNA and miRNAs.  

Sodium arsenite alone did not significantly affect TNF-α mRNA levels, though it 

significantly decreased IL-1β and iNOS and significantly increased PAI-1 mRNA 

levels compared to control (Figure 4.3). LPS exposure robustly increased TNF-α, 

IL-1β, iNOS, and PAI-1 mRNA compared to control as expected for the M1 

polarization phenotype (Figure 4.3). Importantly, sodium arsenite significantly 

attenuated the LPS-mediated induction of TNF-α, IL-1β, iNOS, and PAI-1 mRNA 

levels compared to LPS alone. 
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Figure 4.3. Effect of sodium arsenite on constitutive and LPS-induced 

mRNA expressions.  

Differentiated BMDMs were treated with different concentrations of sodium 

arsenite for 6 h in the presence/absence of 100 ng/mL LPS. Real time RT-PCR 

for the pro-inflammatory genes TNFα (A), IL-1β (B), iNOS (C) in addition to PAI-1 

(D) was performed as described in the Methods section. a, p<0.05, compared to 

control; b, p<0.05, compared to respective LPS treatment. Quantitative data are 

shown as means ± SEM (n = 3). 
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3. Differential miRNA expression profiles of BMDMs treated with As(III), LPS, 
or LPS+As(III) 

Emerging evidence shows that macrophage miRNAs have close relationship with 

macrophage polarization [168-171]. Furthermore, arsenic exposure has been 

demonstrated to impact miRNA expression in vitro and in vivo [172].  In order to 

shed light on BMDMs miRNA profiles, miRNA arrays were performed to identify 

differentially expressed miRNAs in BMDMs treated with 100 ppb As(III), 100 

ng/mL LPS, or LPS+As(III). miRNAs identified to be significantly differentially 

expressed in the three linear contrasts are shown represented by volcano plots 

(Figure 4.4A) and delineated in Table 4.1. Specifically, BMDMs treated with 

sodium arsenite only resulted in one upregulated miR and two downregulated, 

while LPS treated BMDMs had eight upregulated and nine downregulated, 

respectively, compared to control (Figure 4.4A middle panel). Interestingly, when 

BMDMs were exposed to LPS+As(III) there were five upregulated and three 

down-regulated miRs compared to treatment with LPS alone (Figure 4.4A lower 

panel). A 2D scatter plot reveals a strong correlation of miRNA signals between 

LPS vs. LPS+As(III) treated BMDMs (Figure 4.4A lower panel inset; 

r = 0.627853). LEfSe analysis produced similar results for significant differentially 

expressed miRNAs (Figure 4.4B); data mining suggested potential biomarkers 

that explain differences between the treatment groups, filtered using the same 

threshold criteria of log2FC of 2 and p-value >0.05. Hierarchical clustering 

analysis of array data to identify patterns of expression between treatments is 

shown in heatmap (Figure 4.4C), with the LPS treatments segregating separately 

from the control and As(III) groups. For each treatment there was a set of unique 
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miRNAs found to be differentially expressed only in response to that treatment 

suggesting treatment-specific differences in miRNA influences on pathological 

processes.  
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Figure 4.4. MicroRNA (miRNA) transcriptome analysis.  

Volcano scatter-plot, LEfSe plot, and heatmap visualization of microarray analysis of 

BMDMs treatment groups and linear contrast analysis. (A): Volcano plots illustrating 

log2FC compared with p-value (-log base 10) between As(III) vs. Control (upper panel), 

LPS vs. Control (middle panel), and LPS+As(III) vs. LPS (lower panel). Horizontal bar at 

y = 1.301 represents threshold significance level of P=0.05; vertical cutoff of log2FC 

>0.301 (extreme right) and <-0.301 (extreme left). Lower panel inset shows scatter plot 

showing the relative spread of fold changes between LPS vs. LPS+As(III) treatments 

(r = 0.627853). (B): LEfSe analysis of same contrasts (with same threshold cutoffs) as 

volcano plot. (C): Heatmap showing miRNAs with statistically significant expression 

changes in all treatments. Hierarchical clustering analysis was used to identify patterns 

of miRNA expression in the As(III), LPS, and LPS+As(III) treatments. Heatmap scale bar 

indicates fold change range.  
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Table 4.1. Listing of differentially expressed miRNAs  

Contrast miRNA ID p-value log2FC 
As vs. C miR-466j 0.033 2.172 

 let-7j 0.034 -2.230 

 miR-222.5p 0.009 -2.542 
LPS vs. C miR-155-5p 7.370×10-9 10.889 

 mmu-miR-147-3p 2.233×10-4 9.293 

 mmu-miR-125a-3p 3.960×10-5 6.480 

 mmu-miR-5620-5p 0.039 2.477 

 mmu-miR-155-3p 0.033 2.263 

 mmu-miR-181a-1-3p 0.036 2.157 

 mmu-let-7e-5p 3.810×10-5 2.113 

 mmu-miR-7038-3p 0.047 -2.222 

 mmu-miR-25-5p 8.557×10-4 -2.517 

 mmu-miR-1893 0.014 -2.525 

 mmu-miR-339-3p 0.036 -2.664 

 mmu-miR-7578 0.049 -2.667 

 mmu-miR-7647-3p 0.042 -2.684 

 mmu-miR-700-5p 0.042 -2.759 

 mmu-miR-195a-5p 0.042 -2.786 

 mmu-miR-5122 0.006 -3.024 

 mmu-miR-27a-5p 6.633×10-4 -3.765 

    
LPS+As vs. LPS mmu-miR-5620-5p 0.022 2.856 
 mmu-miR-7079-5p 0.016 2.436 
 mmu-miR-6981-5p 0.036 2.337 
 mmu-miR-222-5p 0.016 2.295 
 mmu-miR-6388 0.001 2.109 
 mmu-miR-652-5p 0.025 -2.131 
 mmu-miR-34a-3p 0.003 -2.463 
 mmu-miR-301b-3p 8.239×10-4 -3.330 
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Contrast miRNA ID p-value log2FC 
LPS+As vs. As  mmu-miR-147-3p 6.920×10-5 13.986 

 mmu-miR-155-5p 4.950×10-9 12.327 

 mmu-miR-125a-3p 7.740×10-6 10.307 

 mmu-miR-222-5p 7.302×10-5 7.667 

 mmu-miR-5620-5p 0.002 5.657 

 mmu-miR-1906 0.033 4.608 

 mmu-miR-5620-3p 0.014 3.231 

 mmu-miR-29b-1-5p 0.032 3.126 

 mmu-miR-7070-5p 0.006 2.764 

 mmu-miR-7020-5p 0.040 2.760 

 mmu-miR-6971-5p 0.003 2.451 

 mmu-mir-155 0.026 2.411 

 mmu-miR-6388 6.784×10-4 2.315 

 mmu-miR-149-5p 0.025 2.263 

 mmu-let-7j 0.040 2.166 

 mmu-miR-6954-5p 0.001 2.165 

 mmu-miR-6988-5p 1.808×10-4 2.096 

 mmu-let-7e-5p 5.710×10-5 2.028 

 mmu-miR-25-5p 0.004 -2.012 

 mmu-miR-652-5p 0.022 -2.174 

 mmu-miR-762 0.029 -2.227 

 mmu-miR-5122 0.014 -2.520 

 mmu-miR-3104-5p 0.003 -2.715 

 mmu-miR-1893 0.008 -2.784 

 mmu-miR-27a-5p 0.001 -3.230 

 mmu-miR-7648-3p 0.010 -3.233 
 

Table 4.1. Linear contrast results representing highest and lowest log2FC 

values; threshold was miRNAs with significance of p<0.05, log2FC=2. Data 

generated from Affymetrix miRNA 4.0 GeneChip, and analyzed in R using the 
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pd.mirna.4.0 package from Bioconductor and linear contrast with the limma 

function. 

4. Differential miRNA expression profiles of miR-301b validation experiments 

miR-301b was an immediate attractive target based on its expression 

profile in the LPS+As(III) vs. LPS linear contrast; it was downregulated with a 

log2FC of -3.330. Putative targets of miR-301b were mined from TargetScan and 

resulting gene lists were uploaded in DAVID for exploration of pathway 

associations. Top results are found in Table 4.2. Based on these results, genes 

in the TGF-β signaling family were explored for their high degree of fold 

enrichment in predicted associated functional pathways, as well as their obvious 

relation to M2-like, anti-inflammatory phenotypes that may play a role in 

mitigating an inflammatory response. First, expression of miR-301b was 

evaluated in BMDMs from all treatment groups (Figure 4.5A). As expected, 

expression was significantly decreased in the LPS+As(III)-treated cells. Gene 

expression of putative gene targets were assessed as well (Figure 4.5B). Since 

miR-301b was downregulated in this contrast, target genes consequently were 

expected to be upregulated. INHB-A, the gene for a subunit of Activin A, has 

been shown to be associated with the mTOR signaling and transduction of TGF-

β signaling [173, 174], along with RICTOR, a gene associated with the mTORC2 

complex, were indeed both upregulated with treatment of LPS. With cotreatment, 

expression was significantly higher than both control and LPS treatment groups. 

The gene encoding the Activin type II receptor (ACVR2) was significantly 

upregulated only in the cotreatment group. Similarly, the BMP type II receptor 
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(BMP2R), a key part of the TGF-β signaling pathway, was also only upregulated 

in the cotreatment group, respective to all other treatments. 

 

Table 4.2. DAVID pathway analysis.   

Gene Targets Functional Pathways p-value 
Fold 
Enrichment 

HOXB3, HOXB1, 
HOXA3, HOXB2, 
HOXA5 

Homeobox protein, 
antennapedia type, 
conserved site 0.009 5.950 

TGFBR1, TGFBR2, 
PPARG Response to lipid 0.004 27.451 

ACVR2A, TGFBR2, 
ACVR1, ACVR1C Activin type II receptor 0.005 21.418 

MAPK1, TSC1, 
PIK3CB, ULK2, 
PRKAA1, PRKAA2 mTOR signaling pathway 0.035 3.253 

E2F2, TNF, ESR1, 
NEUROG1, PDE3A, 
PTEN, TGFB2, 
ADCYAP1, EREG, 
CCND3, DCUN1D3, 
SIK1, GADD45A, 
RUNX3 Regulation of cell cycle 0.049 1.796 

TNF, TGFBR1, 
TGFBR2, SMAD5, 
BMPR2, SMAD2, 
TGFB2, ACVR1C, 
INHBB, INHBA, 
MAPK1, ACVR2A, 
SP1, ZFYVE9, 
SMURF2, ACVR1 

TGF-beta signaling 
pathway 1.661 × 10-7 5.384 

TNFRSF1B, ACSL1, 
TNF, RXRA, PRKAB1, 
PRKAA1, PRKAA2, 
ACSL4 

Adipocytokine signaling 
pathway 0.007 3.496 

TNF, IL6ST, TGFBR1, 
CSF1, TGFBR2, IL25, 
BMPR2, KIT, TGFB2, 
INHBB, INHBA, 

Cytokine-cytokine receptor 
interaction 0.018 1.920 
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Table 4.2. Top pathways enriched by DAVID pathway analysis with predicted 

functional pathways associated with corresponding expression array data. 
Putative gene target predictions extracted from TargetScan. Gene annotation, 

ontology, and pathway analysis via DAVID. A modified Fisher's exact test/EASE 

(Enrichment) Score was utilized to calculate the p-values.  

 

 

 

 

 

 

 

 

 

 

 

 

ZFP91, ACVR2A, 
TNFRSF1B, PDGFRA, 
ACVR1 

ACVR2A, TGFBR1, 
TGFBR2, BMPR2, 
ACVR1C, ACVR1 TGF-beta receptor type I/II 2.380 × 10-5 15.303 

ACVR2A, TGFBR1, 
BMPR2, ACVR1C, 
ACVR1 

TGF-beta receptor/activin 
receptor, type I/II 4.010 × 10-4 12.981 
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Figure 4.5. Validation of miRNA expression profiles of treatment groups.  

RNA was harvested from BMDMs treated for 6h with either As(III), LPS, or 

cotreatment with both, was evaluated for mRNA expression via qRT-PCR. (A): 

mRNA expression of miR-301b in BMDMs from control and treatment groups; a, 

p<0.05, compared to control mRNA expressions; b, p<0.05, compared to 

respective LPS treatment. (B): qRT-PCR for putative gene targets of miR-301b; 

as expected, downregulation of miR-301b correlated to upregulated mRNA 

expression of target genes. INHBA (Activin A), ACVR2 (Activin Receptor) 

RICTOR (mTOR complex), and BMPR2 (BMP Receptor), all increased 

significantly with respect to control and LPS treatment. Quantitative data are 

shown as means ± SEM (n = 3). These genes are associated with the TGF-β and 

BMP pathways, which downregulate IL-12 in murine MΦ and suppress LPS-

induced TLRs. 
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5. Gene ontology 

Networks identified via IPA core and comparative analyses have some 

interesting relations to innate immunity and anti-inflammatory pathways. miR-

301b-3p is represented as miR-130 which is the family in which 301b is 

classified, with other miRNAs of shared seed regions. Compartmentally, this miR 

was identified to act in the cytoplasm. In the contrast LPS+As(III) vs. LPS, two 

networks were generated that included the miR-130 family. Network A (Figure 

4.6A) was comprised of molecules associated with connective tissue disorders, 

along with the inflammatory response and disease, while Network B (Figure 

4.6B) classified interrelated miRNAs and their targets into top diseases and 

functions implicated in inflammatory disease, inflammatory response, and 

organismal injury and abnormalities. Included in Network A is TP53, a tumor 

suppressor protein that regulates cell proliferation, which acts on miR-130. miR-

222-5p, which was upregulated in this contrast (Table 4.1), also has some 

indirect interactions with miR-130 via AGO2 and PGPEP1L (Figure 4.6A). 

The key molecules in Network B include insulin, which acts indirectly to 

affect miR-130 expression, and also Smad2/3 from BMP/TGF-β pathways. 

Importantly, miR-130 it has a direct interaction with the Activin type II receptor, 

which is also self-regulating. miR-130 in turn acts on TMEM250 which positively 

regulates proliferation via potential role in promoting S phase in cell cycle, along 

with MDM4, an inhibitor of the p53 tumor suppressor protein. MTMR9 is directly 

acted on by 130 as well, and it too plays a role in cell proliferation. 

Also identified in Network B was miR-34a-3p (Table 4.1), a miR that was 

also downregulated in the LPS+As(III) vs. LPS contrast; notably, this miR was 
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also classified in an overlapping network where it interacts with the TGFB1 ligand 

as well as IL-10, both of which are associated with M2 polarization. Upon 

association of the TGFB1 ligand with the TGF-β receptor, SMAD family 

molecules are activated, initiating the key components of the TGF-β pathway. 

Toxicity functions identified indicated links to cardiac, hepatic, and renal 

inflammation, hyperplasia/cancer, liver steatosis, and fibrosis/cirrhosis (Figure 

4.6C). 
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Figure 4.6. IPA network analysis.  

Network analysis for LPS-As vs. LPS contrast was completed in IPA suite. 

Network panels generated from a Disease Biofunctional analysis with filters 

selected for inflammation and innate immunity. (A): Network A includes the TGF-

β1 ligand gene, associated with the TGF-β pathway and SMAD family 

expression. Here miR-301b is represented as miR-130, its classification family 

which includes all other miRNAs with the same shared seed regions. Included in 

this network is TP52, a tumor suppressor protein that regulates cell proliferation, 

and miR-222-5p, which was upregulated in the LPS+As(III) vs. LPS contrast. (B): 

Network B includes insulin as an effector of miR-130 expression, as well as 

Smad2/3 from the BMP/TGF-β pathways. Here miR-130 also acts on TMEM250 

and MTMR9, which both positively regulate cell proliferation, as well as MDM4, 

an inhibitor of the p53 tumor suppressor protein (C): Toxicity function analysis 

identifying key clinical pathological endpoints and toxicity mechanisms. 
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Figure 4.7. IPA Diseases and Biofunctional analysis. 

Comparative Ingenuity Pathway Analysis of top diseases and biofunctions 

associated with miRNA expression dataset. (A): Comprehensive comparative 

analysis of disease and biofunctions identified in all contrasts. (B): Comparative 

analysis of disease and biofunctions specific to LPS+As(III) vs. LPS contrast. 
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D. Discussion 

As mentioned in the introduction, chronic exposure to arsenic in drinking 

water results in carcinogenicity, neurological dysfunction, cardiovascular 

disorders, reproductive defects and potentially diabetogenic effects. All of these 

disorders are impacted, at least in part, via altered function of the innate immune 

response.  It has been previously demonstrated that arsenic is a potent 

immunomodulatory agent in many experimental models and epidemiologic 

studies [175-179], for example, in altering the innate immune system in response 

to low dose arsenic exposure in mice [180]. Macrophages are highly specialized 

cells that perform numerous tasks in the innate immune system for example 

phagocytosis, antigen presentation, cytokine production, and migration [181-

183]. The potential impact of arsenic exposure on macrophage function is 

currently poorly understood. The results herein indicate that low concentration of 

arsenite attenuated the LPS-mediated induction of CD11c expression, a marker 

of M1 polarization, in addition to the associated abrogation of classic 

proinflammatory markers in treated macrophage populations. In agreement with 

these findings, low dose arsenic exposure was reported to attenuate the innate 

immune response to influenza A (H1N1) viral infection in mice with a significant 

decrease in the total number of CD11c+/CD103+, and CD11c+/B220+ dendritic 

cells [180].  

The BMDMs are an excellent model to study several mechanisms in 

primary cell culture. Compared to many other primary cells, the BMDMs are 

homogenous cells, possess proliferative capacity, can be transfected, and have a 
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relatively long lifespan without noticeable changes in cellular viability or 

morphology [184]. Other studies in published literature have employed Kupffer 

cells or RAW 264.7 cells to study polarization reversal or reprogramming [185]. 

Although RAW 264.7 cells are viewed as unstimulated macrophages, they are 

reported to have low basal [186, 187]. These are also immortalized cells that may 

differ in response than primary cells. Isolated macrophages (e.g., Kupffer cells or 

peritoneal macrophages) are at least partially polarized by their vivo 

environment, as well as potentially being influence by the isolation procedure 

[187, 188]. BMDMs provide a platform to evaluate uncommitted primary naïve 

macrophages in culture. 

In attempt to examine the impact of arsenite exposure on the stimulated 

polarization of bone-marrow derived macrophages, cells treated with LPS or 

LPS+As(III) were evaluated for M1 activation, and cells treated with IL-4 or IL-

4+As(III) were used to model the alternative M2a response. Flow cytometric 

analysis showed that arsenite alone did not significantly affect the number of 

CD11c+/F480+/CD11b+ cells or the MFI of CD11c as a marker of M1 

polarization. However, arsenite significantly attenuated the increase in the 

number of CD11c+/F480+/CD11b+ cells at all concentrations tested, with a 

maximal effect at 100 ppb. This effect of arsenite is independent of cytotoxicity, 

as arsenite treatment at all concentrations, with the exception of 500 ppb, did not 

cause any significant reduction in BMDMs cellular viability. In contrast, arsenite 

did not affect the number of CD206+/F480+/CD11b+ BMDMs or the intensity of 

CD206 in the presence/absence of IL-4. These results suggest that arsenite 
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alone does not affect macrophage polarization, but has the potential to modify or 

deregulate the toll-line receptor 4 (TLR4)-mediated M1 response. 

The term ‘macrophage polarization’ implies a potentially binomial 

response of macrophages to stimulation/activation; “M1” or “classically-activated” 

macrophages are viewed the predominant proinflammatory phenotype, and the 

“M2” or “alternatively activated” is viewed as the predominant anti-inflammatory 

phenotype. However, it is understood that this paradigm is likely an 

oversimplification. Specifically, it is understood that there is a continuum of 

phenotypes between “pure” M1 and M2 stages [189]. Furthermore, transcriptome 

analysis has revealed that there may be many more phenotypes than simply M1 

or M2 [190]. Thus, it is quite possible to impact the differentiation of 

macrophages to one phenotype without affecting the response to other stimuli.  

Indeed, here arsenic exposure appeared to impair the response to LPS (i.e., 

“M1”) without noticeably impacting indices in response to IL-4 (i.e., “M2”).   

Arsenic has been previously demonstrated to decrease cell adhesion and 

migration genes, pro-inflammatory genes such as IL-1β [180], and nitric oxide 

(NO) production through iNOS [191, 192]. In this study, arsenic-treated cells 

exhibited an attenuation of the LPS-mediated induction of the M1 prototypical 

pro-inflammatory genes TNF-α, IL-β, iNOS in addition to PAI-1 (Figure 4.3). 

Interestingly, arsenite alone increased PAI-1 expression, while it attenuated the 

LPS-mediated induction of PAI-1, suggesting the presence of separate 

mechanisms of PAI-1 regulation in BMDMs. Classically-activated M1 

macrophages are often associated with acute infection, contributing to the 
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development of microbicidal activity [193]. It is thus plausible that impairment of 

M1 polarization by arsenite might explain the increased susceptibility to infection 

and mortality due to bacterial infection upon arsenic exposure [194].  

miRNAs are mediators of gene regulation that are key biomarkers in 

tissue-specific gene expression and pathogenesis of disease [195, 196]. miRNAs 

are small, endogenous, non-coding RNA molecules of ~18–25 nucleotides that 

post-transcriptionally regulate gene expression [169]. It is currently known that 

miRNAs are involved in the regulation of maturation, proliferation, differentiation 

and activation of both the innate and adaptive immune cells [186]. miRNAs 

contribute to activation and polarization of macrophages and permit for an initially 

strong immune response which is gradually diminished, thus providing a possible 

advantage over other TLR regulatory mechanisms [188]. The inflammatory 

response is well characterized for microbial infections, especially in the case of 

LPS, which binds to the innate immune receptors TLR4 [197]. Sufficient 

production of inflammatory mediators by M1 macrophages is essential to clear 

pathogenic infection; therefore, restraining TLR responses can have major 

deleterious effects. The modulation of the balance between M1:M2 activation 

states has been the focus of numerous studies, particularly with regard to 

transcriptional and epigenetic regulation through microRNAs [171, 186].  

Microarray analysis of LPS treatment produced data similar to what has 

been previously described for miRNAs associated with TLR4 activation and 

inflammatory murine macrophages [198]. The current study is the first to report 

the effect of arsenite exposure on miRNA expression in BMDMs. In particular, 
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miR-155, miR-21 and miR-146a have been identified as primary players due to 

their expression levels following TLR activation [170, 199-201]. Indeed, in our 

analysis, miR-155-5p was the most upregulated miR in cells treated with only 

LPS (with respect to control cells), with a log2FC of 10.90 and a p value of 

7.37×10-9; miR-155-3p was also significantly upregulated at a log2FC of 2.26 

and p value 0.03. Another key miRNA, miR-147 was upregulated in the linear 

contrasts of LPS vs. C and LPS+As(III) vs. As(III) alone; this miR is induced with 

TLR activation and has been reported to regulate inflammation in murine 

macrophages [202, 203]. Other miRNAs have been also identified to be up 

regulated in response to TLR ligands such as miR-132 [204], miR-9 [205], miR-

147 [202] and miR-346 [206]. miRNA analysis of the contrasts LPS vs. C and 

LPS+As(III) vs. As(III) alone indicated an upregulation of miR-125a-3p, which is 

consistent with its role in differential activation of inflammatory murine 

macrophages [207]. miR-181, another effector of the TLR4 pathway, was also 

upregulated with the LPS vs. C contrast (log2FC=2.16; p=0.04). let-7e-5p was 

also upregulated in LPS-treated cells, consistent with its regulation by Akt1, 

which is activated by LPS [201]. 

The linear contrast comparing miRNA expression of LPS+As(III) cells vs. 

those treated with LPS alone revealed that miR-301b-3p as the most 

downregulated (Table 3.1), with a log2FC of -3.33 and p value of 0.0008. This 

miR was chosen for follow up analysis and exploration. First, it was verified as 

being downregulated by comparing all treatment groups via qRT-PCR 

quantitation. Putative gene targets identified in this group include ACVR2A, 
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TGFBR1, BMPR2, ACVR1C, ACVR1, INHBB, and INHBA. We measured 

ACVR2, INHBA, INHBB, BMPR2, ACVR2, RPTOR and RICTOR to determine 

expression in treated and untreated cells (Figure 4.5). Gene ontology analysis 

revealed a significant enrichment for the mTOR signaling pathway, TGF-β 

receptors, cytokine signaling, and cell cycle activation; the activin A receptor type 

I/II was selected group of gene targets for evaluation. Activin A has been shown 

to potentially function in regulating macrophage polarization switching [208]. 

Activin A suppresses LPS-induced TLRs, cytokines and iNOS by inhibition of NF-

κβ and MAPK [209]. It has been reported to skew macrophage polarization by 

promoting a proinflammatory phenotype and inhibiting the acquisition of anti-

inflammatory macrophage markers [210, 211].   

IPA analysis indicated strong correlations with cancer for the miR-130a 

family, which may be related to the increased expression of TH2-like cytokines of 

tumor cells coopting tumor associated macrophages (TAMs), and the exploitation 

of their tissue trophic and repair functions by invading tumor cells [212] (Pollard, 

2018). The disease and biofunction IPA analysis produced top results for various 

cancers, including squamous cell carcinoma, cervical cancer, thyroid carcinoma, 

leukemia, and colorectal cancer. Metastatic melanoma, as well as general 

autophagy, and metastasis, were identified; tumor migration and metastatic 

activation z-scores were the highest among the biofunctions classified in the 

LPS+As(III) vs. LPS contrast.  

Arsenite by itself did not significantly affect BMDMs polarization, however 

cotreatment with LPS, arsenite was attenuated the LPS-induced M1 polarization. 
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Taken together, activin A alone promotes classical activation of macrophages; 

whereas in macrophages that have already been activated to a proinflammatory 

state, it can attenuate the TLR-4 mediated M1 response. It is very possible that 

modulation of miRNAs, as shown in this study, controls the action of activin A in 

polarization switching; in this case, arsenic exposure upregulated expression of 

activin A, and subsequently the M1 polarization of treated macrophages was 

altered. This effect of arsenite could potentially be attributed to its effects on 

miRNA expression profiles of macrophage populations. In the context of human 

exposure, humans are exposed to relatively similar levels of arsenite used for in 

vitro work here, and can even exceed this level if consumption of food containing 

arsenic in addition to the exposure to arsenic contaminated air and water are 

taken in to consideration. Based on these findings, it is proposed that low dose 

arsenic exposures could attenuate the proinflammatory response of the innate 

immune system, which in this system may indicate potential impairment of the 

bactericidal macrophage activity in vivo. Further investigation is needed to 

elucidate the specific pathway by which the arsenic-induced downregulation of 

miR-301b acts to attenuate that classic inflammatory macrophage response in 

vitro.  
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CHAPTER V 

 

EVALUATION OF IMMUNOMODULATORY INTERACTIONS WITH 

MACROPHAGE POPULATIONS AND EFFECTS OF THE EXTRACELLULAR 

MATRIX IN THE TUMOR MICROENVIRONMENT VIA A SPATIO-TEMPORAL 

MATHEMATICAL MODEL OF TUMOR GROWTH 

 

A. Introduction 

The study of liver diseases and liver cancers and metastases often 

overlap, not only in underlying etiologies, but also in potential mechanisms of 

action. The causes of liver disease include alcohol or toxicant exposure, obesity, 

and viral infection, among a host of cofactors (Scheme 5.1); liver cancer, which is 

often preceded by liver diseases, also shares these underlying causes. 

Mechanistically, changes to the hepatic extracellular matrix (ECM) appear to play 

key roles, both oncogenic and nononcogenic [29]. These changes, in general, 

are mediated by a modulation of the normal balance between enzymes that 

degrade the ECM (e.g., matrix metalloproteinases; MMPs) and inhibitors of 

matrix degradation (e.g. tissue inhibitors of metalloproteinases; TIMPs). In liver 

fibrosis, TIMPs are upregulated and MMPs impaired, so that the balance tips 

towards aberrant matrix deposition. In cancer progression, the balance between 

these enzyme families is more nuanced; although cancers tend to induce MMP 
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activity to facilitate tumor cell invasion, they often also establish novel ECM in the 

stroma of the neoplastic burden.  

The cancer-specific ECM creates a niche for a tumor-specific 

microenvironment [9, 67]. Both primary tumors and metastatic lesions are 

accompanied by dense desmoplasia resulted from chronic trophic macrophage 

signaling from circulating monocytes, and repolarization of nearby and recruited 

macrophage populations [20, 21]. These cells are all subverted by the tumor to 

facilitate neoangiogenesis. The excessive deposition of ECM in the tumor 

microenvironment is not solely attributable to activated fibroblastic cells, such as 

in liver disease, but also with nonfibrogenic cells that have undergone an 

epithelial-mesenchymal transition (EMT)[5]. In the economical fashion that is 

inherent to nature, many of the processes derived from a regression to/recovery 

of stem-like properties that promote unchecked growth, are then exploited by 

tumor cells to evade normal mechanisms of cell death signaling and immune 

function. Similarly, remodeling of liver ECM both in the context of normal repair 

and regeneration as well as under pathological conditions, uses developmental 

pathways highly associated with cancer progression [7]. This modified 

microenvironment may confer proliferative, invasive, and migratory potential to 

the tumor [80, 95].  

Both macrophage signaling and ECM turnover in cancer and in liver 

diseases, involve the actions of macrophage modulation of the microenvironment 

[76], induced via their polarization to either classical M1, or proinflammatory 

activation state, or the so-called alternative M2 anti-inflammatory activation state. 
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While it has been shown that macrophage polarization states range over a 

spectrum of phenotypes [188], with the M2 populations being capable of 

exhibiting a host of subtypes [193], in the context of cancer and TAMs, the 

perivascular TAMs present with an M1 type cell surface expression phenotype, 

whereas the stromal macrophages bordering hypoxic regions, show a more M2 

trophic phenotype [87, 90]. These M2-like TAMs are those responsible for 

mediating the signaling from hypoxic cells, and subsequently inducing expression 

of proangiogenic factors such as vascular endothelial growth factor (VEGF) and 

angiopoietin 2 (Ang2)[213, 214]. These signaling events can be modeled 

alongside the physical properties of the ECM, including its composition, stiffness, 

density, and structure. These features all become useful parameters in 

computational modeling that allow in silico exploration of various modulations 

and their effects on tumor proliferation. Using the ECM as a framework, or 

scaffold for cell growth, modeling of diffused molecules and signal switching can 

be added to simulation to explore tumor growth with respect to the effects of 

other components of the tumor microenvironment while modulating ECM 

turnover. The role of innate immune cells is one key interaction that is closely 

related to ECM remodeling and influencing tumor progression via 

neovascularization. Mathematical modeling of the ECM properties, and its 

interaction with macrophages, using the conceptual binary model of macrophage 

polarization, allows for simplification of describing the action of TAMs for the 

purposes of elucidating their interactions with the ECM.  
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Here, we validate a mathematical model that assesses the heterogeneous 

macrophage population interactions with tumor cells, considering both control 

ECM and a profibrotic ECM, as could be associated with liver injury [215]. We 

perform experiments to calibrate the model to correlate simulations to in vitro and 

in vivo experiments. In the model, the ECM varies in thickness, modeled by 

simulating differing ratios of ECM degradation/production, the estimated 

parameters of which we base on a mouse model of transitional ECM remodeling 

resulting from chronic alcohol exposure. Macrophage behaviors simulated in the 

model include M1 release of TNF-α proinflammatory cytokine, M2 release of 

TGF-β anti-inflammatory factors, both of which were calibrated based on data 

from macrophage-tumor cell indirect co-cultures. In addition, general tumor 

angiogenic factors that facilitate angiogenesis and promote tumor growth are part 

of the model environment. 

 

 

 

  



115 
 

Scheme 5.1. Natural history of liver disease. 

Regardless of etiology, the progression of pathology is comparable, with 

clinical/histological features shared across the spectrum. Progression from 

normal homeostasis to steatosis occurs in response to short term exposure and 

is reversible, characterized by presence of large sharp fat droplets in 

hepatocytes. In a small percentage of steatotic livers, persistent injury can lead to 

steatohepatitis, in which fatty livers develop parenchymal inflammation and 

hepatocellular damage. Continued inflammatory stimulus promotes aberrant 

fibrin deposition characteristic of fibrosis/cirrhosis, and formation of cirrhotic 

nodules then precede the development of hepatocellular carcinoma. Besides 

therapeutics for fibrotic regression or liver transplantation, there are limited 

treatment options for end stage disease. 
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B. Experimental Procedures 

1. Animals and treatments 

Male C57Bl6/J mice (6 wk) were obtained from the Jackson Laboratory 

(Bar Harbor, ME). Animals underwent Lieber-DeCarli alcohol diet maintenance 

as described in Chapter II, Section A.3. Liver tissues harvested and processed 

as described in Chapter II, Section H.1-2. 

 

2. Histology 

Liver tissues processed as indicated in Chapter II, Section B.1-3. 

 

3. BMDM cell culture 

Cells isolated and cultured as indicated in Chapter II, Section G.2. 

 

4. Tumor cell culture and transwell assays 

Cells cultured as indicated in Chapter II, Section G.4-5. 

 

5. ELISA 

ELISA assays completed as described in Chapter II, Section G.6. 

 

6. Tumor simulations 

Tumor growth simulations were conducted as described in Chapter II, 

Section D.2. The tumor growth component is based on a model developed by 

Macklin et al. [216]. The simulation matrix consists of a 2D grid of vasculature, 
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evenly spaced (250 µm), representing the normal capillary network [217]. The 

microenvironment is described as follows: 

 Necrotic region—non-viable tumor oxygenation levels 

 Hypoxic region—non-proliferating tumor oxygenation levels 

 Normoxic region—sufficient oxygenation levels for tumor 

proliferation 

 Normal—non-cancerous tissue 

Tumor progression over time is modeled with proliferation dependent on changes 

to the microenvironment, including pressure, angiogenic factors, and oxygen 

concentration. 

 Tumor tissue advances in space with a certain velocity, vc, through the 

surrounding normal tissue based on Darcy’s law [216]:  

 

𝑣𝑐 =  −𝜇∇𝑃 + 𝜒𝐸∇E,         [1] 

 

where µ equates to tissue mobility (cell-cell, and cell-matrix linkages); P is oncotic 

pressure, χE is haptotaxis constant, and E is ECM density. If uniform density is 

assumed, the net tumor proliferation rate can be non-dimensionalized as λp, and 

the relationship between velocity and tumor growth is [216]:  

 

∇ ∙ 𝑣𝑐 = 𝜆𝑝           [2]  

 

With nominal oxygen levels, proliferation distal from vasculature slows, hypoxic 

tissue regions, ΩH, are created and from these are released the tumor angiogenic 



119 
 

factors (TAFs), that diffuse through tumor tissue into surrounding matrix, where 

they instigate capillary sprouts from endothelial cells as well as vascular 

extravasation of macrophages [218], which correlates to VEGF-recruited 

macrophages diverted by tumor.  

Simulations dictate monocytes extravasating from vascular grid in 

proportion to concentrations of macrophage chemoattractants produced by the 

hypoxic tumor tissue. The monocytes migrate towards tissue regions along 

increasing gradient of chemoattractant. Polarization to M1 or M2 phenotype 

occurs in the tumor microenvironment, relative to cytokine concentration released 

by ΩH and ΩP regions [215]. Monocytes and differentiated macrophages are 

treated as discrete agents, simulated via a cellular automaton algorithm. 

Table 5.1 Macrophage-associated cytokines 

Cytokine Function Source MW (kDa) Diffusivity* 

TNF-α M1 polarization ΩH and ΩP 17  1 
TGF-β M2 polarization ΩH and ΩP 13 3.7606* 

NO 
Triggers tumor 
necrosis M1   

Ang2/growth 
factor 

Stimulates 
growth/proliferation M2 70 0.26591 

 

Table 5.1. Macrophage-associated cytokines in the tumor microenvironment 

(adapted from Mahlbacher et al. [215]). *Diffusivity similar to IL-10, in Mahlbacher 

[215]. 

Table 5.2 Tumor parameters and values 

Parameter Value Reference 

Hypoxic tissue threshold 0.5750 [219] 
Necrotic tissue threshold 0.5325 [219] 
O2 diffusivity 1* [217] 
O2 vascular transfer rate 5* [217] 
Normoxic O2 uptake rate 1.5* [217] 
Hypoxic O2 uptake rate 1.3* [217] 
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TME O2 uptake rate 0.12* [217] 
O2 decay rate 0.35* [217] 

 

Table 5.2. Values for model main parameters (adapted from Mahlbacher et al. 

[215]). All other tumor parameters are as in Wu et al. [217] 

*Non-dimensionalized by O2 diffusivity (1×10-5 cm2s-1); from Nugent et al. [220].  
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The angiogenesis model [216, 217, 221] depicts tumor-derived 

neovascularization, the flow through the network, and both mechanical and 

chemical effects of tumor growth on various properties of the intrinsic vasculature 

matrix, simplified as a grid. Nascent angiosprouts are stimulated to form by TAFs 

produced by tumor tissue, in response to environmental stressors. The model 

recapitulates the high vascularization of the liver, thereby further enhancing the 

potential of metastatic seeding and growth. 

In keeping with the evolution of the tumor growth with differential 

oxygenation regions, the vascular growth is therefore randomized in its layout 

such that the tumor cells have correspondingly heterogeneous potential within 

the matrix space of having access to nutrients from the vessels. Angiosprouts are 

produced semi-stochastically, with growth probability weighted by the local 

hypoxic tissue-generated TAF gradient within the system [216, 221]. Sensitivity 

to growth of vasculature increases as cytokines diffused by the macrophage 

populations comes into contact with the vessels [215].  

Oxygen transport, σ, diffuses with coefficient Dσ from vessel location, and 

is supplied at rates λσneo and λσpre from the neo- and pre-existing vasculature, 

respectively. Oxygen uptake by normal cells has the rate λσtissue; normoxic tumor 

cells uptake oxygen with the rate of λσtumor , while hypoxic cells have the rate of qσ. 

Oxygen decays with rate λσV in the necrotic region. Oxygen transport is described 

as [216]:  
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,      [3]  

,        [4]  

 

 

where x is position in space, t is time, 1vessel is the vessel characteristic function 

(equal to 1 at vessel locations, and 0 otherwise), p is the solid tumor pressure, 

and h is the hematocrit in the vascular network relating to extravasation of 

oxygen (following Macklin [216]). The extravasation is modulated by the 

extravascular interstitial pressure pi, scaled by the effective pressure pe, with kPi 

being the weight of small molecule convective transport components [222]:  

 

,    [5] 

 

where λσev is the constant oxygen transfer rate from both pre-existing and tumor-

induced vessels. Constants HD and hmin, respectively, represent normal and 

minimum blood hematocrit required for oxygen extravasation. Oxygen values are 

normalized with respect to the vasculature, ranging from 0 to 1.  

Following Mahlbacher et al and Leonard et al. [215, 223], monocytes are 

simulated to extravasate from the vasculature in proportion to the local 

concentration gradient of macrophage chemoattractants (e.g., TAFs produced by 

hypoxic tumor tissue), and to preferentially migrate towards tissue regions (e.g., 

hypoxic tissue) along the increasing chemoattractant gradient. Monocytes 
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polarize to M1 or M2 subtypes in the local TME according to the cytokine 

concentration release from proliferating normoxic and non-proliferating, nutrient-

seeking hypoxic tumor cells (see Table 5.3 below). Monocytes and macrophages 

are simulated as discrete entities using a cellular automaton algorithm.  

With the number of cancer cells correlating to size of tumor mass, a 1 mm3 

tumor can be estimated to contain up to 3×106 cells; approximately 10% of this 

total is estimated to be macrophages. A conservative estimate, then, for the 

number of macrophages recruited by the tumor is ~25% of the reported amount 

observed in liver tumor metastases in vivo (~2.78×104 macrophages/mm3; [219]). 

In simulations, M1 macrophages were calibrated to recapitulate data 

indicating their deeper penetration into tumor mass than M2 subtypes; this was 

modeled as a concentric field of a value of 1 at the center of tumor mass, and a 

value of 0 at the tumor boundary [223]. Thus, the model is biased to direct M1 

macrophage movement based on its distance from the center of the tumor lesion. 

 

Table 5.3. Macrophage model associated parameters 

Parameter Description Value Reference 

Physiological parameters 

Macrophage mass 
% of macrophages 
per tumor mass 10% [219] 

M2/M1 ratio (hi-met) 
Highly-metastatic 
tumors 2.06 [224] 

M2/M1 ratio (norm) 
Moderately-
metastatic tumors 0.77 [224] 

Vessel Radius-associated parameters 

Host vessel grid  
(1° tumors)  

Initial vascular 
density 8×8 -- 

Host vessel grid  
(2° tumors) 

Initial vascular 
density 19×19 -- 

Macrophage-Associated Parameters Related to Tumor Growth 
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𝜆𝑀 

Tumor native 
proliferation rate 
(day-1) 0.5 [219] 

𝜆𝑂𝐿 

Recovery rate of 
quiescent oxygen 
level 0.05* [223] 

𝜆𝑂𝑇 

M2 induced 
lowering viable O2 
threshold rate 200 /s [223] 

𝜆𝑟𝑒𝑐 
Recovery rate of 
𝜆𝑀2 to zero 0.1* [223] 

𝜆𝐹 
M2 induced 
proliferation rate 1000 /s [223] 

𝜆𝑁𝑂 
M1 nitric oxide 
induced death rate 3 /s [225] 

𝐺𝑁 

Cell degradation 
rate in the necrotic 
region  0.3* [219] 

Macrophage Differentiation Scaling Coefficients 
𝑘𝑀1 M1 macrophage 200 [223] 
𝑘𝑀2 M2 macrophage 20 [223] 

Macrophage Movement Scaling Coefficients 
𝑀𝑂 Effect of oxygen on 

macrophage 
movement 

1000 

[219] 
𝑀𝑃 Effect of oxygen on 

macrophage 
movement 

350 

[219] 
𝑀𝐶 Chemotactic 

macrophage 
movement 

500 

[219] 
ECM Turnover Parameters 

ECM production 
constant cECM  5 

Calibrated from 
matrisome analysis 
[45] 

ECM degradation 
constant cECM 1 

Calibrated from 
matrisome analysis 
[45] 

ECM production 
constant tECM 10 

Calibrated from 
matrisome analysis 
[45] 

ECM degradation 
constant tECM 0.1 

Calibrated from 
matrisome analysis 
[45] 
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Table 5.3. Characteristics of macrophage model parameters (adapted from 

Mahlbacher et al. [215]). *Value non-dimensionalized by O2 diffusivity (1 x 10-5 

cm2 s-1; Nugent et al. [220]). 

 

Following calibration of tumor, vascular, and macrophage protein 

parameters, the effects of ECM and ECM-macrophage population interactions on 

tumor growth were evaluated in various cases, as stated below: 

 

Table 5.4. Macrophage model simulation conditions 

 

 

 

 

 

 

 

Table 5.4. Model conditions for simulation experiments. The control simulation 

cases were run first to assess tumor response to differential ECM composition. 

The other cases then explored the response to heterogeneous macrophage 

populations. The simulation timespan for each case was 13 days. 

 

 The effects of the M1 and M2 macrophage subtypes are quantified via 

secretion of nitric oxide (NO) and tumor growth factors, respectively. Thus, M2 

macrophages favor tumor growth, manifested as the lowering of the hypoxic 

Control Simulations Case 1 Case 2  Case 3 Case 4 
M1 cytokine     
M2 cytokine     
ECM comp cECM  tECM cECM  tECM 
Tumor Type Primary Primary Metastatic Metastatic 

Experimental Simulations Case 1 Case 2  Case 3 Case 4 
M1 cytokine M1 M1 M1 M1 
M2 cytokine M2 M2 M2 M2 
ECM comp cECM  tECM cECM  tECM 
Tumor Type Primary Primary Metastatic Metastatic 
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tissue threshold; M1 macrophages oppose this effect via secretion of NO, leading 

to tumoricidal activity. These effects, termed 𝜆𝑀1 and 𝜆𝑀2 , have been included in 

the proliferation term below [215]:  

 

𝜆𝑝 = {

𝑛𝑜𝑛 𝑡𝑢𝑚𝑜𝑟𝑎𝑙:                                                       0
Ω𝑃:                       (𝜆𝑀 +  𝜆𝑀2 )𝜎 − (𝜆𝐴 + 𝜆𝑀1)
Ω𝐻:                                      𝜆𝑀2 𝜎 − (𝜆𝐴 + 𝜆𝑀1)
Ω𝑁 :                                                                   − 𝐺𝑁

  ,   [6] 

 

where 𝜆𝑀 is the tumor native mitosis rate, 𝜎 is the local oxygen concentration 

calculated by Equation 3, and 𝜆𝐴 is the baseline apoptosis rate. The non-

dimensionalized cell degradation rate of the necrotic region is 𝐺𝑁; this rate 

assumes the constant degradation and removal of necrotic cellular debris and 

associated fluid. M1 cytotoxicity is modeled to affect both proliferating (cycling) and 

hypoxic (quiescent) tissue, since cell death presumed to be independent of cell-

cycle mechanistics.   

The antitumoral effect, 𝜆𝑀1 of the M1 subtype is simulated to affect tissue 

proportional to the release rate 𝜆𝑁𝑂 , of nitric oxide in the immediate vicinity of the 

macrophage (𝟏𝑴𝟏), since nitric oxide has a short half-life in vivo with limited 

diffusion distance [215].   

 

𝜆𝑀1 = 𝜆𝑁𝑂𝟏𝑴𝟏         [7] 
 

 

M2 growth factor, in addition inhibition of tumor cytotoxicity, positively affects the 

proliferating region as follows [215]:       
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𝑑𝜆𝑀2

𝑑𝑡
= 𝜆𝐹𝐹(1 − (𝜆𝑀 + 𝜆𝑀2)),        [8] 

 

where 𝜆𝑀2 is the proliferation rate related to the concentration, 𝐹, of diffusible M2 

growth factor; this adds to the native proliferation rate 𝜆𝑀. The effect of the M2 

growth factor on tumor proliferation is 𝜆𝐹. Thus, the proliferation effect due to  𝜆𝑀2 

actually decreases as net proliferation (𝜆𝑀 + 𝜆𝑀2) approaches the maximum 

value of 1 day-1.  

M2 macrophages can also stimulate the proliferation of quiescent, hypoxic 

tumor cells, though this occurs at lower rates than in normoxic, actively 

proliferating tissue. The M2 macrophage-secreted tumor growth factor 

concentration, F, can transiently lower the local viable oxygen threshold as 

follows [215]: 

 

𝑑𝑄𝑂𝐿

𝑑𝑡
=   𝜆𝑂𝐿 ∙ (1 − 𝐹) ∙ (�̅�𝑂𝐿 −  𝑄𝑂𝐿,𝑐𝑢𝑟𝑟𝑒𝑛𝑡) − 𝜆𝑂𝑇 ∙ 𝐹 ∙ (𝑄𝑂𝐿,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑄𝑂𝐿,𝑚𝑖𝑛),  [9] 

 

where 𝑄𝑂𝐿 is the quiescence oxygen level, 𝜆𝑂𝐿 is the quiescence oxygen level 

recovery rate back to the standard quiescence oxygen level, �̅�𝑂𝐿 , 𝑄𝑂𝐿,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is 

the current quiescence oxygen level, 𝐹 is the local concentration of M2 growth 

factor ([0,1]; dimensionless units), 𝜆𝑂𝑇 is the M2 growth factor effect rate on the 

lowering of the viable oxygen threshold, and 𝑄𝑂𝐿 𝑚𝑖𝑛 is the lower bound of the 

quiescence oxygen level. Effective oxygen levels are set to �̅�𝑂𝐿 if they exceed 

�̅�𝑂𝐿, and to 𝑄𝑂𝐿 𝑚𝑖𝑛 if less than 𝑄𝑂𝐿 𝑚𝑖𝑛.  
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As monocytic precursors, 𝑀𝜙, extravasate from the tumor-adjacent 

capillaries, they encounter proteins diffused tumor interior and vasculature that 

induce differentiation to macrophages. The concentration of factors, which 

correlate to interleukins and other cytokines that encourage differentiation and 

subsequent polarization to macrophage population subtypes, influences the 

respective differentiation rate, Ri.  

Under steady-state conditions, the overall mass balance for any cytokine 

concentration, C (dimensionless units), produced by the viable (either proliferating 

or hypoxic) tumor regions is [226]: 

 

   0 1
C C C

production circulation decayC vesselD C C C       1 1 ,  [10]  

 

where DC is diffusivity and C

production , 
C

circulation , and 
C

decay are constant, non-

dimensional rates of cytokine production,  circulation washout, and decay, 

respectively. These concentration values range from 0 to 1. Zero Neumann 

conditions are taken at the boundaries for all diffusion equations [216]. 

Oxygen, pressure, and chemoattractant gradients direct both monocyte 

and macrophage migration through the interstitium. Movement in one of four 

directions along the computational scaffold grid is governed semi-stochastically.  

The values of macrophage-associated parameters are defined in Table 

5.3.  Parameter values were set as in Mahlbacher et al, according to published 

literature, or otherwise calibrated to correlate simulated tumor growth to 

experimental endpoints. Cytokine characteristics are summarized in Table 5.1, 
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based on prior work which classified protein diffusivity relative to molecular 

weight [226]. Wash-out rate into the vasculature, decay rate, diffusivity, and 

production rates for each cytokine can be found in Table 5.5.  

Table 5.5. Macrophage cytokine rate parameters 

Parameter Function Value 
C

circulation  Wash-out rate into 
vasculature 

0.006* 

C

decay  Decay rate 0.001* 

1M fD  Diffusivity for M1f 0.005* 

2M fD  Diffusivity for M2f 0.01880* 

10ILD 
 Diffusivity for IL-10 0.01880* 

2T fD  Diffusivity for T2f 0.005* 

2AngD  Diffusivity for Ang2 0.00133* 
1M f

production  production rate of  M1f 1.0** 
2M f

production  production rate of  M2f 1.0** 
10IL

production
  production rate of  IL-10 1.0** 

2T f

production  production rate of  T2f 1.0** 
2Ang

production  production rate of  Ang2 1.0** 

 

Table 5.5. Model rate parameters for macrophage-associated cytokines adapted 

from Mahlbacher et al. [215]. Washout and decay rates are generically applied to 

all cytokines, C. (Based on proteomic analysis in Frieboes et al. [226]).  

*Value non-dimensionalized by O2 diffusivity (1 x 10-5 cm2 s-1; Nugent et al. [220]).   

**Value rescaled by the production rate of VEGF-A (VEGF -165) protein, for a 

general TAF molecule. 

 

C. Results  

1. Validation of liver decellularization 
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Tissues were evaluated both on gross pathology and via histological 

analysis to confirm decellularization of liver tissue (Figure 5.1). Following 48 h 

decellularization, liver “ghosts” visually showed translucence of gross tissue and 

were sufficiently acellular to continue with lyophilization step.  
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Figure 5.1. SDS decellularization. 

Gross pathology and histological analysis of decellularized liver tissues. (A): Liver 

tissues at each step of decellularization; at 48 h, incubation in SDS solution 

yields translucent tissue “ghost” prepared for lyophilization. (B): Histological 

analysis of decellularized liver tissues. Top row shows control livers; bottom row 

represents acellular samples. In the first column, Sirius Red/Fast Green collagen 

staining shows normal tissue in top row, with red staining of collagen, reticulin 

fibers, and basement membrane, and green staining of non-collagenous 

proteins, while the decellularized sample in bottom row shows only collagenous 

material remaining. The second column shows H&E stain of normal tissue (top), 

and denucleation of acellular samples in the bottom row. The third column shows 

Trichrome stain of normal tissue (top), with nuclei stained in black, cytoplasm 

stained red, and collagen in blue; the acellular sample (bottom) shows removal of 

nuclei and cytoplasm, with retention of collagen in blue. 
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Scheme 5.2. Tumor transwell migration assay. 

Primary and metastatic tumor cell lines were seeded on transwells with 8 µm 

porous membrane in chamber insert, coated with either cECM or tECM LECM 

liver ghosts. Receiver plates contained media +/ FBS serum and cells were 

allowed to migrate for 48 hours prior to fixation and staining of membrane to 

determine relative quantities of cells that had passed through the membrane.  
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Figure 5.2. Tumor transwell migration cell counts. 

Transwell membranes fixed and stained with crystal violet were assessed for 

quantification of migrated tumor cells. Five separate fields per slide were counted 

and averaged. Serum-free media controls were used to establish baseline 

migration with no chemoattractant in receiver well; ECM controls with no LECM 

treatment were utilized as well. Both primary and metastatic tumors plated on 

tECM with serum supplement exhibited increased migration as compared to all 

other experimental groups (P<0.05). 
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Scheme 5.3. Indirect co-culture assay. 

Indirect co-culture conditions. Naïve macrophages were seeded in bottom 

receiver plate well at a density of 1 × 105 cells/well. Control macrophages 

remained naïve and unactivated, while LPS and IL-4 treatments induced 

polarization to M1 and M2 activation states, respectively. Transwells with 0.4 µm 

membranes were utilized to prevent migration of tumor cells from top of transwell 

chamber to receiving plate below. Either primary or metastatic tumor cell lines 

were seeded in transwell insert at 5 × 104 cells/well. After 48 h, supernatant was 

harvested for ELISA analysis. This assay allows for tumor and macrophage cell 

populations to influence each other, with free exchange of cytokines across the 

transwell membrane, while restricting direct cell-cell contact between the two 

cultures.  
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2. ELISA analysis of TGFβ-1 and TNF-α present in co-culture system 

Data from ELISA assay was analyzed using two-way ANOVA with 

Bonferroni posttests to compare replicate means with regard to cell line. ELISA 

results indicated that while TNF-α levels were significantly higher in the M1-

activated macrophage group for each cell line, the metastatic tumor cell line 

exhibited the highest induction of TNF-α at 329.96 ± 18.89 (P<0.001; Figure 5.3) 

. TGFβ-1 levels were less dynamic, with only the primary tumor cell line 

exhibiting a significant difference between M1- and M2-activated macrophages 

(P<0.05). These levels were then utilized for calibration of macrophage proteins 

in tumor model.  
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Figure 5.3. TNF-α and TGFβ-1 ELISAs. 

ELISA results from indirect co-culture assay. Control transwells that were 

established with only macrophages seeded to the receiver plate without tumor 

cells in the insert showed no differences in TGFβ-1 levels across the treatment 

groups. The TNF-α levels indicated a significant difference between the control 

macrophages and the M1-activated macrophages (P<0.01). In transwells seeded 

with primary tumor cells in the inserts, TGFβ-1 was significantly higher in the M1-

activated macrophage group than the M2-activated macrophages. TNF-α levels 

in the primary tumor group were significantly increased among M1-activated 

macrophages compared to M2-activated and naïve macrophages (P<0.01 and 

P<0.05, respectively). In transwells seeded with metastatic tumor cells in the 

inserts, there were no significant differences in TGFβ-1 levels. TNF-α levels in 

this group were significantly increased in M1-activated macrophages compared 

to M2-activated and control macrophages (P<0.001). Additionally, TNF-α differed 

significantly between the control and M2 groups (P<0.01).  
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3. Visualization of tumor growth simulations 

 Data from transwell migration assay was used to calibrate ECM 

degradation/production ratio in model in the absence of macrophages (Table 5.3; 

Figure 5.4). This control simulation was run with only monocyte populations, to 

assess the effects of ECM modulations alone. The vascular grid for metastatic 

tumors was set to a higher density than that for the primary tumors (19×19 vs. 

8×8, respectively). This is reflected in the increased grid density on the 

uppermost left-hand corners of each 3×3 output grid from the simulations. For the 

primary tumors, there are larger regions of necrotic tissue (in brown; Figure 5.4); 

the metastatic tumors show blue hypoxic cores. As shown in the bottom leftmost 

corner panel of each grid, the ECM calibration has resulted in both a higher ECM 

density for the tECM simulations relative to the cECM, and a higher ECM density 

for metastatic tumors respective to the primary tumor simulations.  

 For the experimental simulations, the same calibrations were employed as 

above, with the addition of the TNF-α and TGFβ-1 macrophage 

chemoattractants, as correlated from data from the indirect co-culture ELISA 

assay. The primary tumor simulations produced a more even distribution of M1 

and M2 subtypes, while the metastatic tumors had a higher concentration of M1 

macrophages that were infiltrating the tumor mass, following the gradient of 

macrophage chemoattractants. The metastatic, cECM case exhibited monocytes 

distinctly clustered around tumor mass, with the highest ratio of proliferative cells 

than all other cases. 
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Figure 5.4. ECM-dependent simulations (monocyte populations only). 

Tumor growth at 13 days with ECM degradation/production ratio was calibrated 

to simulate murine hepatic control ECM (cECM) and the transitional ECM (tECM) 

induced by alcohol exposure. The output matrix shows primary and metastatic 

tumor cells in the top and bottom rows, respectively; cECM and tECM 

simulations are shown in the first and second columns, respectively. Each 3×3 

grid, comprised of nine 4 mm2 panels, shows the tumor growth and vessels in the 

top left corner, with proliferating regions in red, quiescent hypoxic regions in blue, 

and necrotic areas in brown. Both primary tumor simulations in the top row have 

larger areas of necrosis than the metastatic tumor simulations in the bottom row, 

which have mostly hypoxic blue cores. The vasculature grid for the metastatic 

cells was calibrated to be denser, to recapitulate the density of liver vasculature 

for the distal metastatic site. In the middle and right corners of the top row, the 

macrophage chemoattractants, TNF-α and TGFβ-1, are shown in heat map as 

they are secreted from hypoxic tumor tissue. The middle leftmost panel of each 

grid shows the extravasated monocytes emanating from the vasculature. The 

middle center and rightmost panel of each grid show the density of Type 1 (M1) 

and Type 2 (M2) macrophages, respectively, in the tumor microenvironment. As 

seen in the lower left corner of each grid, the ECM density is higher in the tECM 

simulations, successfully recapitulating the transitional ECM determined via 

matrisome analysis for alcohol-exposed liver tissue [45]. The bottom middle and 

leftmost panels of each grid show tumor oxygenation and tumor angiogenic 

factor, respectively. 
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Figure 5.5. ECM-macrophage simulations. 

Tumor growth at 13 days with mixed M1/M2 macrophage subtypes (same grid 

panel descriptions as in Figure 5.4). The primary tumor cell grids in the top row 

show tend to ward a balance between M1 and M2 populations, as indicated in 

the middle row of each 3×3 grid. Both subtypes appear to have penetrated the 

tumor mass, and the tumor on the control ECM is slightly larger than the tumor 

on transitional ECM, as measured by its final tumor radius. The metastatic 

tumors have a higher infiltration of M1 subtypes, which resulted in growth 

restriction relative to all other cases. The tumors were less oxygenated and the 

tECM simulation produced a larger metastatic tumor radius than on cECM.
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Figure 5.6. Simulation analyses of tumor radii and vessel surface area. 

Tumor radius and vessel surface area curves. (A): Tumor radius over 13 d 

simulation timespan (mm). Overall, control simulations produced larger tumor 

masses than experimental simulations. (B): Surface area (µm2) of tumor 

vasculature, calculated utilizing capillary radii, assuming individual capillary 

diameter of 10 µm. (C): Final tumor radius (mm) for all simulation cases. Among 

the experimental group, the metastatic tumor on tECM had a larger final tumor 

radius than the metastatic tumor on control ECM. There were nominal 

differences in tumor mass among the control simulation group.
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Figure 5.7. Macrophage cell counts and population fractions. 

Time evolution of macrophage subtype populations. Primary tumor simulations 

run on either ECM construct exhibited more balanced proportion of M1:M2 

macrophage subtypes than metastatic tumors; on either ECM construct, M2 

macrophages are more prominent than M1 for primary tumors. M1 macrophages 

dominate for the metastatic tumors, recapitulating results from indirect co-culture 

assay. However, on tECM, a higher proportion of monocytes have differentiated 

and polarized to M1 by the end of the simulation than on cECM. 
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D. Discussion 

Macrophages are one of the key immune cell populations that are 

associated with tumor growth, invasion, and migration throughout all stages of 

cancer development ad progression [88, 227, 228]. While they may be initially 

recruited to the tumor site in the capacity of normal host defense, exerting 

tumoricidal activity, often tumors take this opportunity to exploit their proximity to 

these immune cells by sending signals to divert and induce them to cease action 

against the tumor. Macrophages then become obligate partners of circulating 

tumor cells, subverting the local environment to facilitate invasion, niche 

attachment, and neovascularization to promote metastatic growth and survival 

[229-231]. Although the functions that TAMs perform in the tumor 

microenvironment are unique compared to normal, non-tumor-associated 

macrophages, phenotypically they share the activation markers as M1 and M2 

macrophages, and exhibit differential tumor effector expression profiles, both in a 

population location-dependent manner. Thus, having the ability to visualize their 

proximity to tumor stroma (classified by oxygenation threshold) and surrounding 

vasculature, is important with determining their functionality [232-234]. This 

model provides visualization of positional macrophage clustering, and also 

simulates tumor growth based on microenvironmental clues disseminated from 

hypoxic tumor regions, giving a clear picture of the tumor makeup with regard to 

oxygenation and general nutrient availability, and defining phenotypically the 

TAMs that share activation markers and tumor effector expression profiles with 

that of alternatively-activated M2 macrophages.  
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It is well-known that trophic TAMs are propagated from either tissue-

environment monocytes local to the tumor that are polarized to an M2-like 

phenotype, or from classically activated M1 macrophages that were initially 

recruited to the site to exert tumoricidal effect on the tumor, that due to stress 

signaling from the tumor, are repolarized to M2 [88, 212, 235]. Therefore as a 

method of validating macrophage signaling in this model system, the indirect 

transwell co-culture experiment, a more simple in vitro system [236, 237], was 

executed using BMDMs either seeded in various polarization states: naïve MΦ 

unpolarized, LPS-activated M1 polarized, or IL-4-activated M2 polarized. The 

murine tumor cell lines evaluated in co-culture were derived from either primary 

or metastatic tumor nodules; they were seeded into the top transwell chamber 

insert, on a cell-impermeable porous membrane such that only secreted 

cytokines were able to be exchanged with the macrophages below. These 

experiments provided the basis for estimation of macrophage parameters, as 

they were used to calibrate the levels of macrophage cytokines for growth 

simulations. The mathematical model visualizes the interactions described here, 

of the macrophage populations and tumor cells, by using data from ELISA 

assays to calibrate secreted cytokines from cell culture supernatants to cytokine 

levels diffused into cell [223] system matrix of the model [215]. 

In addition to having visualization of the cytokine diffusion gradients, the 

populations of polarized macrophages themselves are visible with respect to the 

field of established and nascent vasculature. This vascular grid, from which the 

monocytes extravasate prior to polarization to their activated states, is the matrix 
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upon which macrophages are clustered, and in this way the phenotypes of the 

heterogeneous differential populations of macrophages can be depicted in 

overlay of the proliferating tumor cells. The tumor mass is visualized by regions 

of differential oxygenation, which here represents oxygen, glucose, and nutrients 

in general for simplification. With only the normoxic sections being capable of 

proliferation, modeled as the expansion of the tumor boundary through the matrix 

scaffold, the model can capture the stress signaling of hypoxic regions via 

release of angiogenic factors and cytokine signals. Vascular sprouts and 

extravasation of macrophages is triggered, correlating to VEGF macrophage 

recruitment. Cytokine signals act on monocytes and macrophages, modeling the 

capability the tumor has to subvert monocytes and macrophages into generating 

the nutrient access via neoangiogenesis and matrix access via invasion of 

degradation of connective tissues of the ECM. Normoxic tumor cells continue to 

grow so long as they have a sufficient oxygen supply.   

In addition to incorporating macrophage cytokine parameters, the 

extracellular matrix density was also a part of the TME in the model. The 

interaction between the tumor cells and macrophages is explored in the context 

of seeding to the selective "soils" of the homeostatic control LECM vs LECM 

derived liver tissue that has undergone alcoholic injury [45, 67]. Migration assays 

on these two experimental ECM constructs showed that both tumor cell lines had 

optimal/higher migration across membrane to lower chamber on LECM derived 

from ethanol fed animals vs the control pair fed mice. This finding was 

recapitulated in the model using experimental data to modulate ECM thickness, 
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correlating to the increase in fibrous density that would occur in the transitional 

remodeling of the ECM in response to alcohol exposure. The simulations were 

executed via calibrating the production and degradation constants of the ECM, 

resulting in differential pattern of ECM, correlating to the aforementioned 

alterations to ECM protein composition explored in Chapter II. The tECM 

simulation produced a larger metastatic tumor radius than on cECM, as 

measured by its final tumor radius. 

 With levels of M1 and M2 macrophages calibrated to those found in the 

co-culture assay, simulations produced growth results that illustrate the potent 

antitumoral effect of M1 macrophages in the system, as tumor growth in all cases 

was decreased compared to control simulations run with no differentiated 

macrophages. In general, metastatic tumors exhibited decreased growth 

compared to primary tumors, again likely owing to the high M1 cytokine (TNF-α) 

levels measured in these cells. Interestingly, both primary tumor simulations had 

larger areas of necrosis than the metastatic tumor simulations, which had mostly 

hypoxic blue cores. The primary tumor cells tended toward a balance between 

M1 and M2 populations, while the metastatic tumors had a higher infiltration of 

M1 subtypes, which resulted in growth restriction relative to all other cases. 

Macrophages took longer time to appear in the metastatic cases in comparison 

to the primary cases, due to the vascular density for metastatic tumors (modeled 

after hepatic vasculature), and therefore a differential in oxygen thresholds [45, 

223]. Because of this, the metastatic cases took longer to become hypoxic and 
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start releasing TAF for recruitment of M2 growth-promoting factors [238]. There 

were nominal differences in tumor mass among the control simulation group. 

The results here move forward the original work on this model 

(Mahlbacher et al. [215]), by experimentally validating the modeling of both 

primary and metastatic lesion growth, modulated by macrophage interactions. 

Positional and quantitative data gave insight on the nuances of macrophage 

infiltration of the tumor mass as well as how the distribution of subtype 

populations differs between primary and metastatic cell types. The rate of growth 

and final tumor mass simulated by the model correlated well with the in vivo data, 

both experiments indicating that the primary tumor mass grows larger with 

necrotic cores, while the metastatic nodes are typically smaller in size and more 

hypoxic, in agreement with the reported incidence of necrosis in primary tumor 

spheroids [239-243]. The organ site was also taken into account in the grid 

composition of this simulation, with the metastatic tumor cells having a denser 

grid than the primary tumor cells, reflecting the higher vascularization of liver 

relative to the lung [244]. In the resulting tumor masses, the growth restriction of 

the metastatic tumors has allowed for more effective oxygenation of the smaller 

tumor mass. Though not verified in vivo, the simulations reflected the increased 

M1 cytokine levels in the metastatic tumors, as calibrated from co-culture assays, 

which contributes to the antitumoral activity exhibited in the metastatic 

simulations [245]. 

Future directions for this work include expanding cytokine panel to include 

additional signaling molecules, thereby having a more complex milieu of 
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cytokines from heterogeneous macrophage populations, giving the model output 

of tumor growth more translational value. Clinical implications could include 

therapies that are better targeted to the differential immune cell phenotypes and 

ECM composition states. Augmenting this model with data from further ECM 

experiments would help to more accurately calibrate the model to ECM changes 

that affect [tumor] cell attachment and subsequent immune activation. Data 

representing ECM adhesion characteristics could also be employed here, 

providing information on the proteomic adhesion protein profile. Parameters 

regarding both stimulatory and inhibitory effects of ECM protein would build 

complexity into the simulation of microenvironmental interactions, extending the 

utility of this application. The success of this model system in recapitulating the 

experimental conditions and outcomes as borne out in the data shows potential 

for a combined mathematical/experimental system to be applied to various other 

tumor-related paradigms. With suitable expansion and built in capacity, this will 

allow exploration of multiple other factors of the microenvironment that may 

influence the behavior of metastatic tumor growth under similar conditions.  
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CHAPTER VI 

 

DISCUSSION AND CONCLUSIONS 

 

A. Restatement of goals and questions 

The goal of the work outlined herein was to explore the hypothesis of 

whether alcohol-induced transitional ECM changes influence the potential of 

metastatic tumor seeding in the liver, and whether resulting immunomodulatory 

signals from macrophages in the TME facilitate tumor progression. This group 

had demonstrated that alcohol consumption, and resulting steatosis, has the 

ability to impact the composition of the extracellular matrix, creating the 

phenomena of the transitional ECM [45]. In this state, the expression of ECM 

proteins is altered in a way that can precipitate permanent alteration if the liver 

insult is sustained, but otherwise can be resolved if the insult is acute and 

minimally toxic. This was shown in Chapter III, where ECM composition under 

experimental liver injury was used to model altered integrin binding in 

computational kinetic simulations. Chapter IV characterizes experimental 

changes to macrophage polarization, to assess the conditions under which 

classically activated macrophages can be switched to alternatively activated 

macrophages, to correlate to changes in inflammatory microenvironment in 

hepatocellular carcinoma. Finally, Chapter V describes the application of a 

spatio-temporal mathematical model to evaluate tumor growth under altered 
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ECM conditions with repolarized macrophages. Taken together, these studies 

establish a new approach for employing computational modeling to investigate 

key features of the tumor microenvironment.  

 

B. Major findings of this dissertation 

1. Altered hepatic ECM protein composition resulting from ECM remodeling 
associated with liver injury changes binding profile for cognate integrin 
receptors 

 

Previous studies from the Arteel group have demonstrated that the hepatic 

extracellular matrix may affect the early stages of alcoholic liver disease via 

transitional remodeling of the matrix [44, 45]. Using proteomic data analysis, it 

was determined that alcohol exposure activates a dynamic response of the 

murine hepatic ECM proteome. As several of the ECM proteins identified to be 

quantitatively or qualitatively changed by alcohol exposure are ligands for integrin 

receptor binding, and integrin signaling plays an important role in the 

downstream cellular functions supported by the ECM, it was important to explore 

how altered ECM affects integrin binding. The goals of Chapter III were to 1) 

develop a mathematical model to systematically explore changes in hepatic 

phenotype driven by aberrant ECM/integrin interactions, and 2) to simulate 

binding kinetics of ECM proteins to their integrin receptors to investigate whether 

binding is affected by altered ECM expression. 

First, to establish a mathematical model, a two-step model described by 

Masson-Gandais et al. and Wanant et al. was modified to simulate sequential 

binding of a dimeric subunit, replicating the integrin α subunit binding prior to the 
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β subunit [111, 119]. This two-step process reflected a divalent kinetics model 

with the α subunit existing as the high affinity site, and the β subunit as the low 

affinity site. In addition to binding processivity of individual receptors, ligand 

binding to distinct integrins favors subsequent binding by other receptors (i.e. 

focal adhesion clustering). Finally, promiscuity among the repertoire of ECM 

ligands and integrin receptors, particularly RGD-binding ligands, implies a 

differential pattern of binding relative to the amounts of substrate available.  

To explore these interactions as a system, modeling of integrin receptor 

binding kinetics, considering a divalent receptor and affinities for each ligand 

species, a single-species integrin profile was established. The data from 

proteomic analyses provided substrate concentrations used to calibrate model 

simulations. As expected, altered ECM composition affected binding kinetics of 

integrin receptors. Increased affinity and avidity for ligand was reflected in 

simulation curves, corresponding with increased ECM ligand as reflected in 

proteomic data. Both the binding curves for fully occupied divalent receptors and 

fully occupied aggregate receptor pairs exhibited the same affinity increase. 

Additionally, simulation data indicated that upregulated ECM proteins reached 

steady state values in shorter time, and that aggregation of receptors produced 

positive cooperativity.  

This aim proposed a modeling framework that, although initially evaluated 

with data from a model of fulminant fibrosis, could be employed to explore other 

liver pathologies and how the transitional remodeling of the ECM affects ECM-

integrin interactions. By testing homeostatic conditions against experimental 
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treatment models, this platform could be broadly employed to predict or confirm 

changes in integrin binding (and by extension, signaling) caused by remodeling 

of the hepatic ECM in response to insult or injury.  

 
Text Box 6.1 

 

2. Arsenic attenuates lipopolysaccharide-stimulated polarization in murine 
bone marrow derived macrophages 

 
As described in Chapter 1 Section 6, macrophages are a key component 

of the tumor microenvironment throughout all stages of tumor growth and 

progression, including metastasis. An important determinant of their actions and 

the characteristics of the secreted effector molecules they release is their 

phenotypic polarization status. Whereas classically activated macrophages 

exhibit a proinflammatory response, alternatively activated macrophages are 

often more pliant to tumor cells and work in concert with them to facilitate 

attachment and invasion. As such, the goals of the experiments in Chapter IV 

were to 1) characterize both the M1 and M2, macrophage activation response in 

murine bone marrow derived macrophages, 2) test the effect of arsenic on these 

Take-home points 

•  

 Alcohol exposure activates transitional remodeling of hepatic 
extracellular matrix 
 

 Altered ECM protein expression within matrix affects cognate 
integrin binding kinetics 
 

 Mathematical modeling of integrin binding kinetics shows increased 
affinity and avidity for ligand in experimental groups exhibiting 
upregulated ECM proteins 
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polarization responses, 3) identify potential miRNAs that may regulate these 

effects.  

While chronic exposure to high concentrations of arsenic has been directly 

linked with a myriad of possible health risks, the concentrations of arsenic 

required to cause disease are generally considered higher than those found in 

the U.S. drinking water supply [152]. Subacute and chronic low-grade exposures 

are therefore important to research to assess its contribution to exposure biology 

in living organisms. Some studies indicate that moderate to low arsenic exposure 

may modify disease risk from other, separate etiologies. Previous studies by this 

group indicated that sub-toxic arsenic exposure enhanced recruitment of 

proinflammatory macrophages to the mouse liver during experimental NAFLD 

[155]. Indeed, here the a priori hypothesis was therefore that arsenic would 

enhance LPS-induced M1 phenotype, contributing to macrophage mediated 

inflammation.   

The results herein indicate that low concentration of arsenite attenuated 

the LPS-mediated induction of CD11c expression, a marker of M1 polarization, in 

addition to the associated abrogation of classic proinflammatory markers in 

treated macrophage populations. In agreement with these findings, low dose 

arsenic exposure was reported to attenuate the innate immune response to 

influenza A (H1N1) viral infection in mice with a significant decrease in the total 

number of CD11c+/CD103+, and CD11c+/B220+ dendritic cells [180]. This effect 

of arsenite is independent of cytotoxicity, as arsenite treatment at all 

concentrations, with the exception of 500 ppb, did not cause any significant 
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reduction in BMDMs cellular viability. In contrast, arsenite did not affect the 

number of CD206+/F480+/CD11b+ BMDMs or the intensity of CD206 in the 

presence/absence of IL-4. These results suggest that arsenite alone does not 

affect macrophage polarization, but has the potential to modify or deregulate the 

toll-line receptor 4 (TLR4)-mediated M1 response. 

 Microarray analysis of LPS treatment produced data similar to what has 

been previously described for miRNAs associated with TLR4 activation and 

inflammatory murine macrophages [198]. The current study is the first to report 

the effect of arsenite exposure on miRNA expression in BMDMs. The linear 

contrast comparing miRNA expression of LPS+As(III) cells vs. those treated with 

LPS alone revealed that miR-301b-3p as the most downregulated (Table 1), with 

a log2FC of -3.33 and p value of 0.0008. This miR was chosen for follow up 

analysis and exploration. First, it was verified as being downregulated by 

comparing all treatment groups via qRT-PCR quantitation. IPA analysis indicated 

strong correlations with cancer for the miR-130a family, which may be related to 

the increased expression of TH2-like cytokines of tumor cells coopting tumor 

associated macrophages (TAMs), and the exploitation of their tissue trophic and 

repair functions by invading tumor cells [212]. This effect of arsenite could 

potentially be attributed to its effects on miRNA expression profiles of 

macrophage populations. Based on these findings, it is proposed that low dose 

arsenic exposures could attenuate the proinflammatory response of the innate 

immune system, which in this system may indicate potential impairment of the 

bactericidal macrophage activity in vivo. 
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Text Box 6.2 

 

 

 

 

3. Immunomodulatory stimuli and the density of extracellular matrix in the 
tumor microenvironment affects in silico tumor growth in a spatio-temporal 
mathematical model of tumor growth 
 

Chronic hepatic inflammation promotes dramatic remodeling of the liver 

ECM, which is an important factor in both fibrotic disease and cancer, 

contributing to tumor progression and metastasis [69, 246]. The long-term 

efficacy of cancer therapeutics is limited by metastatic disease, and often 

metastases exhibit selective tropism to the liver, particularly from primary lung 

and colorectal cancers. Although the mechanisms of metastatic organotropism 

are poorly understood, it is clear that communication between cancer cells and 

the target microenvironment are key. Indeed, several of the hallmarks of 

metastasis, such as proliferation, angiogenesis and apoptosis, are hypothesized 

to be mediated by altered integrin signaling [17, 18, 144]. Interestingly, alcohol 

consumption is a known risk factor for increasing metastasis to the liver, 

suggesting that early subclinical alcohol-mediated liver ECM remodeling may 

impact seeding and colonization of hepatic metastases [47, 50]. We 

hypothesized that transitional alterations to the hepatic matrisome create a more 

Take-home points 

• Classic M1 and M2 polarization was achieved with LPS and IL-
4 treatment, respectively, as verified via FACS analysis of Mθ 
markers and mRNA expression of  related cytokines validated 
macrophage polarization 

• Arsenic alone did not significantly affect polarization of BMDMs; 
however In the presence of LPS, As(III) was able to attenuate 
LPS-induced M1 polarization 

• Various miRNAs significantly associated were identified, 
though miRNA 301b exhibited the highest fold change in 
response to LPS-As treatment compared to LPS treatment 
alone 
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favorable environment for dissemination of metastases to the liver, and modified 

the mathematical model developed by Mahlbacher et al. to simulate macrophage 

populations and ECM density changes and their effects on tumor growth [215]. 

Key findings indicated that the presence of M1+M2 heterogeneous 

macrophage population subtypes decreased tumor growth compared to controls 

where solely ECM density was modulated and only undifferentiated monocytes 

populated the grid. Overall, metastatic tumors exhibited decreased growth 

compared with primary tumors, on both cECM and tECM scaffolds. However, the 

tECM actually increased tumor growth in metastatic tumors, while decreasing 

growth of primary tumors. A potential theory for further exploration could be that 

the metastatic tumor cells, poised as they are for circulation, could be more 

effective at induction of classically activated macrophages, thereby instigating 

antitumoral activity at the onset of metastatic seeding. With successful 

neoangiogenesis, establishment of metastatic niche can progress and 

conversion of monocytes to tumor-associated macrophages could subvert the 

microenvironment to favor continued proliferation. Further investigation of this 

would require additional parameters to be set in model and increased timespan 

following tumor “seeding” to the matrix. 
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Text Box 6.3 

 

 

C. Significance of new findings 

As discussed in Chapter I, liver ECM is responsive to microenvironment, 

integrating cell signals to coordinate diverse pathways of action; its interaction 

with parenchymal function is critical in maintaining tissue integrity and non-

pathogenic matrix remodeling for tissue repair [7]. Dyshomeostasis of matrix 

turnover is a key feature of almost every form of chronic liver disease, regardless 

of etiology; e.g., conditions that result from either direct or secondary liver insult, 

whether from alcohol exposure, metabolic disease, or exogenous toxicants. 

Thereby, the ECM can be altered via inflammatory cascades that trigger 

progressively irreversible remodeling of the ECM. One of the primary aims of this 

dissertation was to utilize proteome data analysis of the hepatic ECM to explore 

Take-home points 
• Primary and metastatic tumor cell lines exhibited increased 

migration on alcohol-exposed ECM growth substrate 
 

• Metastatic tumor cell lines in indirect co-culture with naive 
BMDMs showed increased M1 cytokine markers in vitro; M2 
cytokine markers were higher in tumor co-cultures than control 
BMDMs 

 
• Computational model showed decreased tumor growth in 

presence of M1+M2 macrophages, and metastatic tumors 
exhibited decreased growth compared to primary tumors 
 

• Transitional ECM scaffold decreased tumor growth in primary 
tumors, while increasing tumor growth for metastatic tumors 
 

• Mathematical model applied herein can aid with investigating 
tumor growth under complex interactions of macrophage 
cytokine signaling and varying ECM density 
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integrin-ECM interactions. The experiments in Chapter III establish a divalent, 

aggregated integrin receptor model that simulated the binding kinetics of integrin 

receptors in response to experimental upregulation of ECM proteins, as exhibited 

in liver injury in response to CCl4 treatment. The results from this study suggest 

that integrin receptor affinity and ligand avidity increases in response to 

increased availability of ECM proteins from remodeled hepatic ECM. This model 

could be utilized for evaluating other remodeling events caused by separate liver 

pathologies. 

Macrophages are key players in tumor growth and progression, and their 

downstream affects depend largely on their polarization status. Often tumor cells 

using cytokine signaling to effectively switch the polarization of macrophages to 

support a more trophic phenotype that allows for ECM invasion and migration of 

tumor cells. Novel findings in Chapter IV show that arsenic has an attenuating 

effect on M1 proinflammatory polarization of bone marrow derived murine 

macrophages. This effect of arsenic could potentially be attributed to its effects 

on miRNA expression profiles of macrophage populations. In particular, miR-

301b was shown to have the greatest expression change in response to 

treatment with LPS+Arsenic vs LPS alone. It is very possible that modulation of 

miRNAs, as shown in this study, controls the action of activin A in polarization 

switching; in this case, arsenic exposure upregulated expression of activin A, and 

subsequently the M1 polarization of treated macrophages was altered. 

Finally, the third aim of this dissertation sought to develop a modeling 

approach that could be used to assess tumor growth while modifying the 
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macrophages and ECM of the tumor microenvironment. Cancer progression, 

invasion, and metastatic spread is facilitated by the ECM, while macrophages 

contribute microenvironmental cues that alter the ability of tumor cells to attach, 

invade the ECM, and migrate. In the model system applied in Chapter V, the 

roles of both M1 and M2 macrophages are visualized as cell populations, and the 

density of ECM is modified to recapitulate hepatic ECM remodeling in response 

to alcohol exposure. In each module, data from in vitro experiments are used to 

calibrate macrophage cytokine levels and ECM density, to provide translational 

value to the computational model. The simulations showed that tumor cell growth 

was enhanced when ECM turnover was held at levels that sustained matrix 

production, while preventing overproduction. M2 cytokine signaling was important 

for release of tumor nutrients and oxygenation to reach hypoxic regions of 

growing tumor mass. This model system could be utilized to simulate tumor-

induced switching of macrophage polarization, in conjunction with assimilation of 

ECM proteome data to configure ECM density, to test which microenvironmental 

conditions optimize tumor growth in silico. 

 

D. Strengths and weaknesses 

1. Strengths 

There are several strengths of the work presented in this dissertation.  

First, this work uses novel mathematical modeling approaches to study various 

biological questions that act in synergy to affect tumor growth and dissemination. 

A kinetic binding model modified to simulate integrin binding to ECM proteins 
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provides a novel way to employ proteome data to simulate dynamic changes to 

the hepatic extracellular matrix.  

Additionally, this dissertation explored macrophage polarization and 

treatments that can attenuate the classically activated state of M1 macrophages. 

As tumors can secrete effectors that affect macrophage polarization in the tumor 

microenvironment, understanding how these switches are made is important. 

This work identified several miRNAs that could potentially modulate the 

macrophage response, and selected one lead miRNA that can be followed in 

further studies to determine the exact mechanisms of arsenic’s ability to 

attenuate the M1 macrophage response when treated with LPS in vitro.  

A second spatio-temporal model was modified to simulate tumor growth in 

response to macrophage cytokine signaling and its effects on circulating 

monocytes and neoangiogenesis for tumor vascularization. This model can 

simulate multiple aspects of the tumor microenvironment and visualize their 

interaction in terms of cell populations and diffused chemoattractants. 

Importantly, these models were both calibrated with biological endpoints and 

validated with in vitro experiments.  

.  

2. Weaknesses 

Although the computational models used in this work are a key strength, 

there are some drawbacks in terms of model complexity. Since integrin binding in 

real time should be modeled stochastically, the dimeric aggregate model 

developed here should be integrated into a stochastic system to allow for 
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prediction of binding species in a probabilistic manner. Additionally, there is no 

translational component to this first aim, and the mathematical model has not 

been tested in a system of alcohol exposure as yet.   

In addition to this, though miRNAs were identified as lead candidates for 

influencing macrophage polarization in response to LPS+Arsenic, subsequent 

studies using genetic modification to either knock-out or overexpress these 

miRNAs would need to be done to establish whether there is a true effect of 

these miRNAs on macrophage polarization phenotypes in bone marrow derived 

macrophages. 

The spatio-temporal model utilized was calibrated using data from in vitro 

transwell assays of tumor migration and tumor-macrophage co-cultures. Further 

information could be provided in the model’s proteomic module if data from ECM 

proteome, or adhesome, could be incorporated into the model. Additionally, there 

was no successful in vivo model that was generated to further validate the 

transwell results, that alcohol-exposed livers are more permissive to tumor 

metastases. This would have provided additional translational value to the in 

silico simulation.  

Summary Table 6.1 

Strengths Limitations 
 Novel integrin binding model of 

divalent aggregated receptors 
showing increased affinity and 
avidity for ECM protein ligands 

 
 Novel finding of specific miRNAs 

that may play a role in the 
attenuation of the M1 classical 
macrophage activation state in 

 Prediction of binding species 
remain uninvestigated due to lack 
of probabilistic simulations 
 

 
 Lack of follow up studies to  verify 

mechanisms by which identified 
miRNAs affect macrophage 
polarization 

 



170 
 

response to LPS+Arsenic treatment 
in BMDMs 

 
 Validation of mathematical tumor 

model, using in vitro data on tumor 
cell microenvironments relating to 
macrophage cytokine signaling and 
hepatic ECM density 

 
 

 Lack of translational murine model 
of enhanced liver metastasis in a 
model of alcohol exposure;  
requires further investigation 

 

 

E. Future Directions 

While the experiments described in this dissertation addressed 

computational approaches that could improve tumor-microenvironment modeling 

and simulation, it has also created new questions to be followed in future studies. 

A few of these are addressed below. 

 

1. Could a stochastic model of integrin binding predict binding species? 

 

The experiments described in Chapter III utilize mathematical modeling to 

systematically explore changes in hepatic phenotype driven by altered ECM-

integrin interactions. While a simple integrin clustering scheme was developed to 

determine binding affinity of the various ECM proteins to their various cognate 

integrin receptors, this model could be built into a more complex model that could 

predict integrin binding species using probabilistic methods. In this way, 

proteomic data from alcohol-exposed hepatic ECM could be used to simulate 

binding by using a model of concurrent binding of multiple receptor and ligand 
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species, to develop an integrated binding phenotype based on the quantitative 

hepatic ECM proteomic signatures from alcohol-exposed livers.  

Summary Table 6.2 

Probabilistic Integrin Binding Model? 

Rationale 
Prediction of integrin binding “profile” under various 
conditions involving pathological remodeled hepatic ECM. 

Approach 
Use mathematical models to describe concurrent binding 
of divalent receptor aggregates using stochastic 
simulations. 

Expected Results 
ECM protein expression induced by liver remodeling in 
response to alcohol exposure will significantly alter 
integrin binding profile. 

 

2. What is the mechanism by which miR-301b modulates macrophage 
polarization attenuation in LPS+Arsenic-treated BMDMs? 

 
  In the second aim, macrophage polarization was explored in terms of 

using microarray expression analysis to identify miRNAs in BMDMs that had 

significant expression changes in response to treatment with LPS+Arsenic. Of 

those, miR-301b was identified as a lead candidate in miRNAs that played a role 

in modulating macrophage activation. While the results did validate this altered 

expression, additional studies would need to be undertaken in order to determine 

the mechanism by which miR-301b works in this system.  
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Summary Table 6.3 

Role of miR-301b in attenuating M1 macrophage response? 

Rationale 
Elucidate the specific pathway by which the arsenic-
induced downregulation of miR-301b acts to attenuate 
that classic inflammatory macrophage response in vitro. 

Approach 

Transfect BMDMs to over-express miR301b to verify 
expression changes from microarray results. Then use 
these cells in downstream experiments to identify 
mechanisms. 

Expected Results 
Activin A action, which may be controlled by modulation 
of specific miRNAs, may be the key mediator in 
polarization switching in this system.  

 

 

3. Can translational value of computational tumor growth model be enhanced 
by in vivo model data? 
 
The experiments in Chapter V provide calibration data for the tumor 

growth model. In particular, transwell migration assay data that showed 

increased migration of primary and metastatic tumor cell lines on alcohol-

exposed murine liver ECM growth substrate, were used to calibrate ECM density 

and turnover. Indirect co-culture transwell assays of macrophage and tumor cells 

resulted in data that showed that metastatic tumor cells were able to attenuate 

M1 macrophages, and this was modeled in macrophage populations and their 

associated chemoattractants in the in silico model. It is possible that further 

validation from in vivo model data could make the in silico model more robust 

and translational. This could be achieved by successful establishment of a model 

of liver metastasis in alcohol-exposed mice, and using the clinical/pathological 

study endpoints to calibrate the in silico model.  

 

Summary Table 6.4  
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Improvement of translational value of in silico tumor model? 

Rationale 
Alcohol-induced transitional remodeling of the hepatic 
ECM enhances metastatic seeding via macrophage-
mediated tumor-ECM interactions. 

Approach 
Establish an in vivo model of cancer metastasis to the 
liver, and use the pathological study endpoint data to 
calibrate in silico model.  

Expected Results 
Translational value of model will be improved by addition 
additional modules to simulate from in vivo data.  

 

F. Summary and conclusions 

The overall goal of the dissertation described herein addresses the 

hypothesis that transitional alterations to the hepatic matrisome create a more 

favorable environment for dissemination of metastases to the liver, and that 

specific integrins mediate these modifications.  Although several studies have 

investigated the role of the ECM in metastasis, the concept of leveraging the 

experimentally determined composition of the liver ECM under various conditions 

to inform a kinetic integrin binding model is novel and has implications for 

establishing a profile of integrin-ECM interaction. This work contributes to the 

understanding of the role of the hepatic ECM microenvironment in influencing the 

expression of integrin receptors on invading circulatory tumor cells.  

This work in Chapter III establishes a novel approach, in that we are 

employing top-down systems biology data with the use of proteomics, along with 

a bottom-up mathematical modeling strategy to study the dynamics and kinetics 

of system component interactions. The work explores new hypotheses of the role 
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of the matrisome in metastatic seeding. In addition, the experiments in Chapter 

IV begin to explore the attenuation of M1 polarization of macrophages, which is a 

phenomenon that often occurs in the tumor microenvironment when tumor cells 

induce polarization switching in circulating macrophages to facilitate their 

invasion and proliferation.  

The systems biology approach in Chapter V incorporates spatio-temporal 

tumor growth simulation, and translational validation of in silico results via 

relevant murine tumor cell culture models. Specifically, macrophage populations 

are modeled to investigate their polarization status and its effects on tumor 

growth and neovascularization. Additionally, the hepatic ECM is modeled in 

density and turnover of the matrix in the in silico system, to give a marginally 

complex depiction of interactions of at least three separate elements of the tumor 

microenvironment. Taken together, the data presented here developed a new 

approach to examine complex interactions of tumor-ECM interactions and the 

interplay with the innate immune system. 
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ABBREVIATIONS 

 

ALD Alcoholic liver disease 

Ang2 Angiopoietin 2 

ANOVA Analysis of variance 

AUD Alcohol use disorder 

BMDM Bone marrow derived macrophage 

ECM Extracellular matrix 

ELISA Enzyme-linked immunosorbent assay 

EtOH Ethanol 

HCC Hepatocellular carcinoma 

LECM Lyophilized extracellular matrix 

LPS Lipopolysaccharide 

MMP Matrix metalloprotease 

NIAAA National Institute on Alcohol Abuse and Alcoholism 

PBS Phosphate-buffered saline 
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qRT-PCR Quantitative reverse transcription polymerase chain reaction 

RGD arginine-glycine-aspartic acid domain 

SEM Standard error of the mean 

TACE TNFα-converting enzyme 

TAM Tumor-associated macrophages 
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TME Tumor microenvironment 

TNFα Tumor necrosis factor-alpha 

VEGF Vascular endothelial growth factor 
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